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Abstract. We prove a foliated control theorem for automorphisms

of geometric modules. This is the analogue of a result for h-cobordism
from [3].

1. Introduction

For a compact connected Riemannian manifold M it makes sense to talk
of the size of an h-cobordism over M . A typical and well known theorem
in controlled topology says that for manifolds of dimension ≥ 5 we have
(compare [2]):

A sufficiently small h-cobordism over M is trivial.

Let Γ denote the fundamental group of M , then translated to the language
of geometric modules (compare [7]) the statement reads:

A sufficiently small automorphism of a geometric module
over M represents the trivial class in the Whitehead group
Wh(Γ).

In connection with the Isomorphism Conjecture in algebraic K-theory
we shifted our attention from vanishing results towards computations of
K-theory groups of group rings RΓ, compare [5] and [1]. In general, i.e. for
groups containing torsion or coefficient rings R other than Z, the White-
head group does not vanish and one should work directly with the K-theory
groups. The following statement is equivalent to the above but more con-
venient for generalizations.

A sufficiently small automorphism of a geometric module
over M can be deformed (via a small deformation) to an
arbitrarily small automorphism (which represents the same
class in K1(ZΓ)).

In the following we call such a statement a squeezing theorem. Our aim
in this paper is to prove a foliated squeezing theorem for automorphisms of
geometric modules over a foliated Riemannian manifold. Before we formu-
late the result let us discuss its relevance.
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In [1] we prove certain cases of the Isomorphism Conjecture in algebraic
K-theory. There the assembly map which is conjectured to be an isomor-
phism is reinterpreted as a “forget-control map”. In particular the problem
of proving surjectivity becomes the problem of regaining control. We there
follow the ideas of [3] and use the geodesic flow on a negatively curved
Riemannian manifold as a tool to regain control. But the control that is
obtained this way is only foliated control instead of ordinary control, see
Section 7. In this paper we prove the following theorem which is responsible
for the remaining step from foliated to ordinary control.

Theorem 1.1. Let N be a Riemannian manifold which is equipped with a
1-dimensional smooth foliation. Let α > 0 be an arbitrarily large and ε > 0
be an arbitrarily small number. Fix a compact subset N2 of N which does
not meet the short closed leafs of the foliation (what “short” means depends
on α).

There exists a constant C ≥ 1 such that the following holds:

Suppose we are given an automorphism of a (geometric)
module over N which together with its inverse is (α, δ)-
foliated controlled. If δ is sufficiently small then one can
find a deformation such that the deformed automorphism
and its inverse are both (non-foliated) ε-controlled over N2

and still (Cα,Cδ)-controlled everywhere else.

In fact we need an equivariant version and we also need control over
the constructed deformation. For a more detailed (and more technical)
statement see Theorem 9.5. Along the way we also reprove the ordinary
squeezing statement for compact connected Riemannian manifolds men-
tioned above, see Proposition 6.6 and Theorem 9.4.

For the reader familiar with [3] the proof of Theorem 1.1 contains no
surprise. It relies on two main ingredients: A relative version of an ordi-
nary squeezing theorem for simple geometric standard situations (like finite
polyhedra see 6.1 and its Corollaries) which goes back to [8] and the long
and thin cell structure from Section 7 in [3]. Apart from these two results
the technical difficulty is the bookkeeping for the control data.

In order to make the proof more transparent we develop a uniform lan-
guage for squeezing theorems and formulate a couple of easy general prin-
ciples which are then used throughout the paper. In particular we found
it helpful to organize the control data in tables which contain all the es-
sential information about a squeezing. In Section 4 we define a “relative
squeezing situation” and what it means that “there exists a relative squeez-
ing” for a given such situation (compare Definition 4.3). Then in Section 5
we describe abstractly the induction process that is used later to produce
squeezing statements on a large scale out of local relative squeezing state-
ments (see 5.4).
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In Section 6 we review the well known relative squeezings for some geo-
metric standard situations. These results go back to [8]. Recently a new
proof (which avoids the use of the torus trick) of a squeezing result for finite
polyhedra appeared in [6]. We briefly discuss the trivial modifications of
that proof necessary to obtain the relative version we need.

Section 7 discusses foliated versions of the general principles developed
in Section 5. Once these are established the proof of the foliated squeezing
theorem in Section 8 is a straightforward consequence of the existence of a
suitable covering as described in Section 7 and 8 of [3].

The first two sections briefly review the definitions of geometric mod-
ules and deformations and introduce the different notions of control. Note
that finally we will work with equivariant modules and morphisms on the
universal covering where short paths are essentially determined by their
endpoints. For this reason our morphisms do not involve paths.

2. Geometric modules

In this section we briefly recall the notions of modules and morphisms
over a space. For more details the reader can consult Section 2 and 11 of
[1].

Throughout the whole paper we fix an associative ring with unit R. Let
X be a topological space. A locally finite R-module M over X is a family of
free R-modules M = (Mx)x∈X such that for every compact subset K ⊂ X
the module ⊕x∈KMx is finitely generated. A morphism φ = (φy,x) from
M to N is a family of R-linear maps φy,x : Mx → Ny such that for fixed x
the set of y with φy,x 6= 0 is finite and for fixed y the set of x with φy,x 6= 0
is finite. The composition of morphisms is given by matrix multiplication,
i.e.

(φ ◦ ψ)z,x =
∑

y

φz,y ◦ φy,x.

The category of all locally finite modules and morphisms over X is denoted
C(X). There is an obvious notion of direct sum of modules and in fact C(X)
is an additive category. As in every additive category there is a notion of
elementary morphisms and deformations. An automorphism e : M → M
is called elementary if there is a decomposition M = M0 ⊕ · · · ⊕Mk such
that with respect to this decomposition e has only one nonzero off-diagonal
entry and identities on the diagonal. A deformation η = (e1, . . . , el) is a
finite sequence of elementary automorphisms with respect to a fixed de-
composition of a fixed module M . Every deformation η has an underlying
automorphism namely the product η = e1 ◦ · · · ◦ el.

An automorphism φ represents an element [φ] in K1(C(X)). A defor-
mation η represents an element in K2(C(X)). Note that composing an
automorphism with the underlying automorphism of a deformation does
not change its class in K1(C(X)).
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Given a locally finite R-module M we define the support of M as

supp(M) = {x ∈ X|Mx 6= 0} ⊂ X

and the support of a morphism φ as

supp(φ) = {(x, y)|φy,x 6= 0} ⊂ X ×X.

For deformations we are mostly interested in the support of the off diagonal
entries. We define the support of a deformation η = (e1, . . . , el) as the union
of the sets supp(φ)−∆, where φ varies over all partial products of the ei and
∆ denotes the diagonal in X ×X. Note that the support of a deformation
η does not coincide with the support of the underlying automorphism η. If
X is a metric space, then a morphism is said to be bounded if

|φ| = sup{d(x, y)|x, y ∈ supp} <∞.

If A ⊂ X and δ > 0 we denote by Aδ the δ-thickening of A, i.e. the set of
all points with distance less than δ to A. More general, if E is a symmetric
neighborhood of the diagonal in X ×X (where X is no longer necessary a
metric space), we set

AE = {x ∈ X|(x, a) ∈ E for some a ∈ A}.
In a metric space we clearly have Aδ = AEδ where Eδ consists of all pairs
of points of distance less than δ. We will also use the notations A−δ for
the set of point with distance greater than δ to the complement of A, i.e.
A−δ = ((Ac)δ)c if Ac denotes the complement of A in X. Observe that
Aδ ⊂ B is equivalent to A ⊂ B−δ.

3. Control

In the following it will be important to use the right notion of “control
over a subset”. For a module M over X and a subset B ⊂ X we denote
by M |B the largest submodule of M with support in B. Let iB and pB be
the inclusion of respectively the projection onto M |B . For a morphism φ
we then have the restriction φ|B = pB ◦ φ ◦ iB .

Definition 3.1 (Control). Let X be a metric space or let E ⊂ X ×X be
a symmetric neighbourhood of the diagonal. Let B ⊂ X. Let φ and ψ be
morphisms in C(X).

(i) A morphism φ is α-controlled if |φ| ≤ α. A morphism φ is E-
controlled if supp(φ) ⊂ E.

(ii) An automorphism φ in C(X) is called an α-automorphism if φ and
φ−1 are α-controlled, it is called an E-automorphism if φ and φ−1

are E-controlled.
(iii) A morphism φ is α-controlled over B ⊂ X if for every x ∈ X and

y ∈ B with d(x, y) > α we have φx,y = φy,x = 0. A morphism φ is
said to be E-controlled over B if

supp(φ ◦ iB) ⊂ E and supp(pB ◦ φ) ⊂ E
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or equivalently φ ◦ iB = iBE ◦ pBE ◦ φ ◦ iB and pB ◦ φ = pB ◦ φ ◦
iBE ◦ pBE .

Warning 3.2. Control over B is not a local notion, i.e. we can not compute
the control of φ over B from the knowledge of φ|B .

However we have the following two lemmata which we will use in the
sequel. Both are easy consequences of the definitions.

Lemma 3.3. Let U be a set of subsets of X and let φ be a morphism in
C(X), then φ is E-controlled over

⋃
U∈U U if and only if for each U ∈ U it

is E-controlled over U .

Lemma 3.4. Let φ and ψ in C(X) be E-controlled and let A and B be
subsets of X with B ⊃ AE, then (φ|B ◦ ψ|B) |A = (φ ◦ ψ)|A. Moreover φ
and φ|B have the same control over A.

We also need control notions for deformations. Note that they are
stronger than the corresponding notions for the underlying automorphism.

Definition 3.5. Let X be a metric space or let E ⊂ X×X be a symmetric
neighborhood of the diagonal. A deformation η = (e1, . . . , el) is α-controlled
if

∑
|ei| ≤ α. The deformation is E-controlled if all partial products of the

ei are E-controlled.

4. Relative squeezings

Squeezing theorems come as a patchwork of local relative squeezing the-
orems (or briefly local relative squeezings) which are put together according
to the principles we will develop in Section 5. Here local refers to the fact
that we are dealing with a small part of a larger ambient space and relative
indicates that over a certain part of this space we already achieved very
good control and our squeezing should not destroy this.

In this section we formalize the notion of a relative squeezing (see Def-
inition 4.3). A special case is an absolute squeezing, the type of squeezing
we are really after.

Let U be a metric space. Let U1, U2, U4 and U3 be subsets of U with

U2 ⊂ U4 ⊂ U3.

The slightly odd indexing is chosen to better fit with the notation for the
“models” in 6.4 in [3]. We call such a 5-tuple (U,U1, U2, U4, U3) a relative
squeezing situation. If U1 = ∅ we talk of an absolute squeezing situation. In
the following one should think of these subsets as follows:

U1 = region where we already have very good control
U2 = region where we want to improve control
U4 = the working zone, i.e. here the deformation will take place
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Recall that control is not a local notion (compare Warning 3.2) and hence
even though the deformation takes place over U4 the control may change
over a larger region. Hence

U3 = region where the control changes at all.

In practice squeezing situations will only be useful if we have certain
security-zones:

Definition 4.1 (Security). Let εs > 0. A relative squeezing situation
(U,Ui) has εs-security if U εs

2 ⊂ U4 and U εs
4 ⊂ U3. More generally let

E ⊂ U × U be a symmetric neighborhood of the diagonal. We say that
(U,Ui) has E-security if UE

2 ⊂ U4 and UE
4 ⊂ U3.

Usually U is embedded in some larger metric space. In Section 5 we will
discuss the relation to this ambient space and it will be convenient to have
the following definition.

Definition 4.2 (Security in Y ). Let εs > 0. Let U be a subspace of the
metric space Y . A relative squeezing situation (U,Ui) has εs-security in Y
if U εs

2 ⊂ U4, U εs
4 ⊂ U3 and U εs

3 ⊂ U . Here the thickenings are taken in Y .
Let E ⊂ Y ×Y be a symmetric neighborhood of the diagonal. We say that
(U,Ui) has E-security in Y if UE

2 ⊂ U4, UE
4 ⊂ U3 and UE

3 ⊂ U .

Note that in the case where U = Y we get back Definition 4.1 because
the condition U εs

3 ⊂ U is trivially satisfied. The reader who wants to see
typical relative squeezing situations should consult Example 5.5.

The following definition is crucial for the whole paper. Note that it
makes sense for an arbitrary squeezing situation.

Definition 4.3 (Relative squeezing). We say that there exists a relative
squeezing for the situation (U,U1, U2, U4, U3) if the Statement 4.4 below is
true. The constant ε0 is called the a priori control, the function r is called
the response function. In the special case where U1 = ∅ we talk of an
absolute squeezing.

Statement 4.4. There exists an ε0 > 0 and a homeomorphism

r : [0,∞) → [0,∞)

with r(ε) ≥ ε such that for every εvg and εg with 0 < εvg ≤ εg ≤ ε0 the
following holds:

Let φ and ψ be endomorphisms of a module M over U
which are inverses of one another over U3, i.e.

(φ ◦ ψ) |U3 = (ψ ◦ φ) |U3 = idM |U3
.

Suppose that both endomorphisms are εg-controlled over
U3 and both are εvg-controlled over U1, then we can find a
stabilizing module L and a deformation η on M ⊕ L such
that
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(i) supp(L) ⊂ U4 and supp(η) ⊂ U4 × U4.
(ii) η (and hence η) is r(εg)-controlled.
Moreover the deformed endomorphisms

φnew = η ◦ φ and ψnew = ψ ◦ η−1

are both r(εg)-controlled over U3 and they are both r(εvg)-
controlled over U1 ∪ U2.

Briefly: There exists an ε0 > 0 and a response function r : [0,∞) → [0,∞)
such that given any εvg and εg with 0 < εvg ≤ εg ≤ ε0 we can achieve the
following control improvement by working only on U4:

control over U1 U2 U3 U − U3

before εvg εg ≤ ε0

after r(εvg) r(εvg) r(εg) no change
Note that in the absolute case, where U1 is empty we get the following

statement because r is a homeomorphism:
There exists an ε0 > 0 and a response function r such that given any

0 < εvg ≤ εg ≤ ε0 we can achieve the following control improvement working
on U4:

control over U2 U3 U − U3

before εg ≤ ε0

after εvg r(εg) no change
In particular we can achieve arbitrary good control over U2.

Remark 4.5. Suppose there exists a relative squeezing for the situation
(U,Ui). Then there exists a relative squeezing with the same response
function and the same a priori control for every squeezing situation (U,U ′

i)
obtained by enlarging U4 and U3, making U2 smaller and keeping U1. The
only not completely trivial observation here is that U ′

3 is the disjoint union
of U3 (where we have r(εg) control afterwards) and U ′

3 ∩ (U − U3) (where
nothing changes and we had εg and hence r(εg)-control before).

5. Some general principles

In this section we discuss a couple of general principles which hold for
squeezings.

Let (U,Ui) be a relative squeezing situation where U is embedded in some
larger space Y . Suppose there exists a squeezing for (U,Ui). The following
lengthy Remark basically says that if (U,Ui) has E-security in Y and we
are given an E-automorphism then we can cut down the automorphisms
to U , apply a relative squeezing for U (if the a priori control-condition is
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fulfilled) and glue the result back to Y . The second remark says that we
can work simultaneously over different pieces of the big space if the zones
where we change control (the U3’s) are pairwise disjoint.

Remark 5.1. Global to local and back.
Let U be a subset of Y and let (U,Ui) be a relative squeezing situation. Let
E be a symmetric neighborhood of the diagonal in Y ×Y . Let Φ and Ψ be
endomorphisms of the module M in C(Y ) which are E-controlled over U3.
Global to local.
Suppose Φ and Ψ are inverse to one another over U3, i.e.

(Φ ◦Ψ) |U3 = (Ψ ◦ Φ) |U3 = idM |U3

If UE
3 ⊂ U , i.e. there is a security zone between U3 and Y − U which is at

least E-thick. Then the endomorphisms φ = Φ|U and ψ = Ψ|U are inverse
to one another over U3 (cf. Lemma 3.4). Moreover φ and Φ respectively ψ
and Ψ have the same control over U3.
Local to global.
Suppose LU is a stabilizing module over U and ηU is a deformation on
M |U ⊕ LU such that

(a) supp(LU ) ⊂ U4 and supp(ηU ) ⊂ U4 × U4.
Let L be the module LU considered as a module over Y . Extend ηU trivially
to a deformation η = ηU ⊕ idM |Y−U

on M ⊕L. Then L and η again satisfy
(a) above. Let Φnew = η ◦ (Φ⊕ idL) and Ψnew = (Ψ⊕ idL) ◦ η−1.

Suppose (U,Ui) has E-security in Y then the support of Φnew and Ψnew

can be computed as follows (cf. Lemma 3.3).
(i) The control does not change outside of U3, i.e. Φ and Φnew have

the same control over Y − U3. Similar for Ψ and Ψnew.
(ii) The control change over U3 is determined by the local control

change, i.e. Φnew and φnew = ηU ◦ (Φ|U ⊕ idL) have the same
control over U3. Similar for Ψnew.

Note that if Φ = Ψ−1 is an automorphism then Φnew = Ψ−1
new is also an

automorphism and Φnew and Φ represent the same class in K1(C(Y )).

Even though it is convenient to state part of the assumption above as
“(U,Ui) has E-security in Y ” we did not really use all conditions of Defi-
nition 4.2. Namely UE

2 ⊂ U4 was not used above. This condition will only
be important later in 6.1.

Remark 5.2. Working simultanously over disjoint pieces.
Suppose we are in the situation of the previous remark but instead of a
single subset U we have a covering U of a subset of Y , such that each
U ∈ U comes equipped with a relative squeezing situation (U,Ui). Let Φ
and Ψ be E-controlled over

⋃
U∈U U3. Suppose each (U,Ui) has E-security

in Y . Suppose there exists for each U ∈ U an LU and an ηU satisfying (a)
as in Remark 5.1 above.
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If the U3 are pairwise disjoint, then there exists a module L and a de-
formation η satisfying

(a’) supp(L) ⊂
⋃

U∈U U4 and supp(η) ⊂
⋃

U∈U U4 × U4.
The deformed endomorphisms Φnew = η ◦ (Φ ⊕ idL) and Ψnew = (Ψ ⊕
idL) ◦ η−1 have no control change outside of

⋃
U∈U U3 (compare (i)) and

the control change over each U3 is determined by the local control change
as in (ii) above.

Warning 5.3. Let the situation be as in the previous remark. In particular
suppose we have disjoint control change-zones. Suppose each (U,Ui) admits
a relative squeezing with response function r and a priori control ε0. It may
happen that while applying a squeezing simultanously over the disjoint
pieces as above we destroy control which was already very good. This can
happen if U3 − (U1 ∪ U2) meets U ′

1 for different U , U ′ ∈ U . Abbreviate
Up = U3 − (U1 ∪ U2) (“p” for possibly problematic). Let Ui denote the
collection of sets {Ui|U ∈ U} and write

|Ui| =
⋃

Ui∈Ui

Ui.

The best squeezing statement we can obtain is the following: Working over
|U4| we can achieve:

control over |U1| |U2| |U3| |U| − |U3|

before εvg εg ≤ ε0

control over |U1| − |Up| |U2| |U3| |U| − |U3|

after r(εvg) r(εvg) r(εg) no change

The Induction Principle
We are now prepared to describe the formal induction process which out
of local relative squeezings for small pieces of a space produces a squeezing
on a larger scale. Let Y be a space. Let U be a covering of some subset of
Y which comes as a disjoint union

U = U (0) ∪ U (1) ∪ · · · ∪ U (n).

Suppose every covering set U is equipped with subsets Ui, such that each
(U,Ui) is a relative squeezing situation. Let Y1 ⊂ Y be given and define
inductively the region R(q) where we want to achieve very good control
after the q-th induction step:

R(−1) = Y1

R(q) =
(
R(q−1) ∪ |U (q)

2 |
)
−

⋃
U∈U(q)

(U3 − (U1 ∪ U2))
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This definition reflects the fact that on those parts of the working zone
which do not lie in U1 or U2 we may destroy control we obtained in previous
induction steps. Compare Warning 5.3. Suppose that

(i) For each U ∈ U (q) we have U1 ⊂ R(q−1).
This will ensure the hypothesis for the q-th induction step. Note that in
particular U1 = ∅ is allowed.

(ii) For fixed q we have disjoint security zones, i.e. the U3 with U ∈ U (q)

are pairwise disjoint.
Moreover set Y2 = |U2| ∩R(n), Y4 = |U4| and Y3 = |U3|. Assume that

(iii) Y1 ⊂ R(n).
This last condition is only necessary to simplify the statement. It follows for
example if for every U ∈ U we have (U3−U1∪U2)∩Y1 = ∅. In applications
that produce absolute squeezings, we have of course Y1 = ∅ and condition
(iii) is empty.

Proposition 5.4 (Induction Principle). Let ε0 > 0 and let r : [0,∞) →
[0,∞) be a homeomorphism. Let U satisfy the conditions above. Suppose

(i) For each U ∈ U there exists a relative squeezing for (U,Ui) with a
priori control ε0 and response function r.

(ii) Each (U,Ui) has εs-security in Y with εs ≥ ε0.
Then there exists a squeezing for (Y, Yi) with a priori control (rn)−1(ε0) and
response function rn+1 = r ◦ r ◦ · · · ◦ r. Moreover (Y, Yi) has εs-security.

Proof. We again abbreviate Up = U3−U1 ∪U2. One can use the statement
in 5.3 with U (q) instead of U to see that in the q-th step one can obtain the
following by working over |U (q)

4 |:

control over R(q−1) |U (q)
2 | |U (q)

3 | Y − |U (q)
3 |

before rq(εvg) rq(εg) ≤ ε0

control over R(q−1) − |U (q)
p | |U (q)

2 | |U (q)
3 | Y − |U (q)

3 |

after rq+1(εvg) rq+1(εvg) rq+1(εg) no change

Note that all sets in {Up, U2|U ∈ U (q)} are pairwise disjoint and hence

R(q) =
(
R(q−1) − |U (q)

p |
)
∪ |U (q)

2 |.

�

Example 5.5. For illustration we give a typical example of a covering U as
described above. Consider Rn equipped with the maximum-metric. Equip
Rn with the standard cellulation by unit cubes. Let X and X1, X2 ⊂ X be
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subcomplexes of Rn. LetX(q) denote the q-skeleton ofX and letX(−1) = ∅.
Define the following subsets of X (Thickenings in X not in Rn!)

V (q) = (X(q))
1

2q+2 and W (q) = V (q) − V (q−1).

Choose εs > 0 so small that 4εs ≤ 1
2n+2 . Then (W (q))4εs decomposes into

path components (which are in one-to-one correspondence with the q-cells
of X). Let U (q) be the set of those path-components which meet X2. For
each U ∈ U (q) define

U2 = U ∩W (q), U4 = U ∩ (W (q))εs and U3 = U ∩ (W (q))2εs

Let R(−1) = X1, R(q) = X1 ∪
⋃

U∈U(0)∪···∪U(q) U2 and set U1 = U ∩R(q−1).
Note that by construction for each U ∈ U (q) we have (U3 − (U1 ∪ U2)) ∩
R(q−1) = ∅ (compare 5.3). Note also that in the case where X is a codi-
mension 0-submanifold and X1 = ∅ the local squeezing situations (U,Ui)
have the shape of the models from 6.4 in [3].

Under mild conditions one can transport a relative squeezing via a home-
omorphism. In special situations one can compute a new a priori control
and a new response function. In particular we will see that it is very useful
to have linear response functions.

Proposition 5.6 (Transporting a squeezing). Let f : X → U be a home-
omorphism. Suppose there exists a relative squeezing for (X,Xi) with a
priori control εX and response function rX . Set Ui = f(Xi). Suppose
moreover that rX(ε) = λε is linear.

(i) If X ⊂ Rn and f(x) = Cx is a rescaling with a constant C > 0,
then εU = CεX and the response function does not change, i.e.
rX = rU .

(ii) Suppose f is a bi-Lipschitz homeomorphism with bi-Lipschitz con-
stant η > 1, i.e. it satisfies

η−1 · d(x, y) ≤ d(f(x), f(y)) ≤ η · d(x, y),
then εU = η−1εX and rU = 2ηrX . In particular the new response
function is again linear.

If (X,Xi) has εs-security then (U,Ui) has Cεs respectively η−1εs-security.

Proof. Everything follows immediately from the definitions. �

6. Relative squeezings in some standard situations

So far we have only discussed how to produce new squeezing results out
of given ones. To get the process started we need the following theorem
which is the main building block for all the squeezing theorems below. This
is implicit in Section 4 of [8]. Compare in particular Theorem 4.5 there.
Recently a new proof of such a squeezing statement appeared in [6]. We
briefly discuss how the argument in [6] needs to be modified to obtain a
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relative squeezing instead of the absolute squeezing formulated there. A
cubical subcomplex of the boundary of the unit cube in Rn is a complex
consisting entirely of faces of In.

Theorem 6.1. Suppose (X,X1, X2, X4, X3) is a relative squeezing situ-
ation where X and the Xi are cubical subcomplexes of the boundary of
the unit cube In ⊂ Rn. Suppose (X,Xi) has positive and hence 1

2 -security.
Then there exists a relative squeezing with a linear response function r(ε) =
λ · ε. The a priori control ε0 and the constant λ both depend only on the
dimension of X.

Proof. We indicate how a minor modification of Theorem 3.6 and The-
orem 3.7 in [6] gives the relative result: Identify In × [1,∞) with the
outer part of the open cone over In. Let ε0 = 2/(3 · 6dimX+1) . Let
φ, ψ, εvg and εg be given as in Statement 4.4. Construct a module L′

and a deformation η′ on X × [1,∞) as in the proof of Theorem 3.6 in
[6] but work only over X3 × [1,∞) so that supp(L′) ⊂ X3 × [1,∞) and
supp(η′) ⊂ (X3 × [1,∞))×2. Inspecting the construction one observes that
η′ is Cεvg-controlled over X1× [1,∞) and Cεg-controlled over X3× [1,∞).
Here C is an explicit constant only depending on the dimension of X. Now
in the proof of Theorem 3.7 instead of cutting down the off-diagonal entries
of η′ to X× [1, R] for some large R and then restricting the deformation one
obtains to X × [1, R+ Cε0] do the following: Cut the off-diagonal entries
of η′ down to X4 × [1, R] and then restrict to X4 × [1, R+ Cε0]. Finally
project the result down to X. This gives the desired deformation η. The
point is that φ · (η′|X4×[1,R]) is the identity over X2 × [1, R− Cε0] so that
by projecting down we really improve the control over X2, whereas over
X3 −X4 things do not get worse. �

Corollary 6.2. Let X ⊂ Rn be a finite polyhedron. Let X be equipped
with the subspace metric it inherits from Rn equipped with the Euclidean or
maximum-metric. Suppose we are given subcomplexes Xi such that (X,Xi)
is a relative squeezing situation with positive security. Then there exists a
relative squeezing for (X,Xi) with a linear response function.

Remark 6.3. It is not hard to check that the metric onX is up to Lipschitz
equivalence independent of the given embedding in Rn since X is finite.

Proof of 6.2. Every finite polyhedron is PL homeomorphic to a cubical sub-
complex of the boundary of some unit cube, see the discussion after Lemma
3.4 in [6]. Hence the models are bi-Lipschitz homeomorphic to some (X,Xi)
as in Theorem 6.1. Now use Proposition 5.6. �

In particular we immediately obtain a relative squeezing for the models
Mj and M ′

j on page 558 in [3].
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Corollary 6.4. Let (X,X1, X2, X3) be one of the models Mj or M ′
j from

[3]. Set X4 = X
1
16
2 . There exists a relative squeezing for (X,Xi) with a

linear response function.

Now that we have the basic building block available we can use the princi-
ples developed in the last subsection to prove more sophisticated squeezing
theorems. To illustrate the general method we prove an absolute squeez-
ing theorem for (not necessarily compact) subcomplexes of the standard
cellulation of Rn.

Proposition 6.5. Let X and the Xi be (not necessarily compact) subcom-
plexes of the standard cellulation of Rn by unit cubes. Suppose (X,Xi) is
a relative squeezing situation with positive and hence 1

2 -security, then there
exists a relative squeezing for (X,Xi) with a linear response function.

Proof. Of course we want to apply the Induction Principle 5.4 with Y1 = X1

and Y2 = X2. Let U be the covering constructed in Example 5.5. The con-
ditions (i) to (iii) before Proposition 5.4 are satisfied. Each local squeezing
situation (U,Ui) is a finite polyhedron and has positive security. There
are only finitely many different isometry types of such local situations. By
Corollary 6.2 there exists a squeezing for each of these with the same linear
response function and the same a priori control. The Induction Princi-
ple 5.4 applies. Note that iterating the linear response function again gives
a linear response function. It remains to observe that by construction of
the covering the Y3 and Y4 which appear in the Induction Principle are
contained in X3 respectively X4 because we assume 1

2 -security. The result
follows by Remark 4.5. �

Similarly we immediately obtain the following squeezing result for com-
pact Riemannian manifolds.

Proposition 6.6. Let Y be a compact connected Riemannian manifold
and let (Y, Yi) be an absolute squeezing situation with positive security εs >
0. Then there exists an absolute squeezing for (Y, Yi) with linear response
function.

Proof. For some large n embed Y into the half space Rn
+ such that the

boundary of Y embeds into the boundary of the half space and some stan-
dard collar of the half space restricts to a collar for Y . Now note that, since
Y is compact, the path length metric induced from the Riemannian metric
on Y and the metric Y inherits as a subspace of the half space (or Rn)
are Lipschitz equivalent. We can therefore work with the subspace metric.
Let β be a positive number with β < εs

4 . Using the normal bundle νY of
the embedding we can construct an open neighborhood νβY of Y in Rn

+

together with a Lipschitz retraction

p : νβY → Y which satisfies d(p(x), x) < β for all x ∈ νβY.
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Note that this implies:

p−1(A) ⊂ Aβ for any A ⊂ Y and(1)

p(B) ⊂ Bβ ∩ Y for any B ⊂ νβY.(2)

Since Y is compact there clearly exists a δ > 0 such that δ < εs

4 and
Y δ ⊂ νβY

−δ ⊂ νβY .
For this given δ > 0 let Rn

δ be Rn considered as a cellular complex with
the rescaled cubical standard cellulation in which the diameter of a cube
is δ. For X ⊂ Rn

δ define X� as the union of all n-dimensional closed
cubes meeting X. Define X−� as the closure of ((Xc)�)c and for any ε set
X−ε = ((Xc)ε)c, where Xc denotes the complement in Rn. Observe that
X−� and X� are cubical subcomplexes of Rn

δ and that we have inclusions

X−δ ⊂ X−� ⊂ X ⊂ X� ⊂ Xδ.

Set

K = νβY
−�

K2 = p−1(Y2)� ∩K
K4 = p−1(Y4)−�

K3 = p−1(Y3)−�.

Set ε = εs − 2β − 2δ. Then(
p−1(Y2)�

)ε

⊂ p−1(Y2)δ+ε ⊂ Y δ+ε+β
2 ⊂ p−1(Y4)−δ ⊂ p−1(Y4)−�

and (
p−1(Y4)−�

)ε

⊂ p−1(Y4)ε ⊂ Y ε+β
4 ⊂ p−1(Y3)−δ ⊂ p−1(Y3)−�.

Here the third inclusion is equivalent to Y 2δ+ε+β
2 ⊂ p−1(Y4) and hence to

p(Y 2δ+ε+β
2 ) ⊂ Y4. But by (2) and the security assumption we have

p(Y 2δ+ε+β
2 ) ⊂ Y 2δ+ε+2β

2 ∩ Y = Y εs
2 ∩ Y ⊂ Y4.

The argument for the third inclusion in the second line is similar. One con-
cludes that (K,Ki) is an absolute squeezing situation with security ε > 0.
By rescaling as in 5.6 and the squeezing Theorem 6.5 for cubical subcom-
plexes of Rn or directly from 6.2 we know that there exists a squeezing with
a linear response function for the situation (K,Ki).

Now note that

Y ⊂ νβY
−δ ⊂ νβY

−� = K ⊂ νβY

and define
q : K → Y

as the restriction of p. Note that q is again Lipschitz with the same Lipschitz
constant and is still a retraction onto Y . Via the inclusion we can now
consider morphisms over Y as morphisms over K apply the squeezing there
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and then map them back to Y via q. Since K3 ∩ Y ⊂ Y3 the before-control
data for Y implies the “same” before-control data for K. The working zone
is mapped under q to the working zone, i.e. q(K4) ⊂ Y4. The after-control
data for Y depends via the Lipschitz constant of q on the after-control data
for K because q−1(Y2) ⊂ K2, q−1(Y3) ⊂ K and q−1(Y − Y3) ⊂ K − K3.
Note that we do not have q−1(Y3) ⊂ K3 but K is the disjoint union of K3

(where we have r(εg)-control afterwards) and K−K3 (here nothing changes
so bad control stems from Y −Y3 which does not meet q−1(Y3)). This yields
the desired squeezing with linear response function for (Y, Yi). �

7. Foliated versions

For the foliated control theorem we need foliated versions of the notions
developed in Sections 4 and 5.

Let Y be a Riemannian manifold equipped with a smooth 1-dimensional
foliation. Let α, δ > 0 be given. A pair (x, y) ∈ Y × Y is said to be (α, δ)-
controlled if there exist points x′ and y′ in Y and a piecewise smooth path
γ which connects x′ to y′ such that

(i) γ lies inside one leaf of the foliation.
(ii) γ is shorter than α.
(iii) d(x, x′) ≤ δ and d(y, y′) ≤ δ.

Let E(α,δ) be the set of all pairs (x, y) ∈ Y × Y which are (α, δ)-controlled.
This is a neighborhood of the diagonal and the E-control notions from
Definition 3.1 and Definition 3.5 apply. Usually we talk of (α, δ)-control
instead of E(α,δ)-control.

A foliated relative squeezing situation (U,Ui) is a relative squeezing sit-
uation where U is a subset of a Riemannian manifold Y which is equipped
with a 1-dimensional foliation. Note that Definition 4.2 applies and we can
hence talk about (α, δ)-security in Y for a foliated relative squeezing situa-
tion (U,Ui) with ambient foliated Riemannian manifold Y . In the foliated
context a response function

r = r1 × r2 : [0,∞)× [0,∞) → [0,∞)× [0,∞)

is simply a product of response functions, i.e. r1 and r2 are homeomorphisms
of [0,∞) with ri(ε) ≥ ε. A response function r is called linear if r1 and r2
are linear.

In the following we write

(α, δ) ≤ (α′, δ′) if α ≤ α′ and δ ≤ δ′.

There is an obvious analogue of the Statement 4.4 which in the short
version reads as follows:

Statement 7.1. There exists an (α0, ε0) > (0, 0) such that given any
(αg, εg) and (αvg, εvg) with

(0, 0) < (αvg, εvg) ≤ (αg, εg) ≤ (α0, ε0)
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we can achieve the following control improvement by working only on U4:

control over U1 U2 U3 U − U3

before (αvg, δvg) (αg, δg) ≤ (α0, δ0)

after r(αvg, δvg) r(αvg, δvg) r(αg, δg) no change

Definition 7.2 (Foliated relative squeezing). Let (U,Ui) be a foliated rela-
tive squeezing situation. We say that there exists a foliated relative squeez-
ing with a priori control (α0, δ0) and response function r = r1 × r2 for
(U,Ui) if Statement 7.1 above holds for (U,Ui).

Note that Remark 5.1 about the global-local passage and Remark 5.2
apply in the context of foliated control. Consequently there is an analogue
of the Induction Principle 5.4 whose proof only used Remarks 5.1 and 5.2.
In the statement one simply replace ε0 by (α0, δ0) and εs by (αs, δs). We also
need an analogue of Proposition 5.6. The following Proposition describes
the behavior of a foliated squeezing with respect to a map which preserves
the foliation and stretches by a factor γ in the foliation direction. Its proof
is straightforward from the definitions.

Proposition 7.3 (Transporting a foliated squeezing). Let (X,Xi) be a
foliated relative squeezing situation. Let U be an open subset of a foliated
Riemannian manifold. Let f : X → U be a diffeomorphism which respects
the foliations, i.e. maps leafs to leafs. Set Ui = f(Xi). Suppose there exists
a foliated relative squeezing with a priori control (α0, δ0) and linear response
function rX(α, δ) = (λ1α, λ2δ) for (X,Xi). Suppose that the differential of
f satisfies the following two Lipschitz conditions.

(i) There is η ≥ 1 such that for all tangent vectors v to X

η−1|v| ≤ |df(v)| ≤ η|v|.
(ii) There are β ≥ 1, γ > 0 such that for all vectors v tangent to the

foliation on X

β−1γ|v| ≤ |df(v)| ≤ βγ|v|.
Then there exists a foliated relative squeezing for (U,Ui) with a priori con-
trol (γα0β

−1, δ0η
−1) and linear response function rU (α, δ) = (β2λ1α, η

2λ2δ).
If (X,Xi) has (αs, δs)-security then (U,Ui) has security (γαsβ

−1, δsη
−1).

Here are some trivial remarks concerning the relation between ε-control
and (α, δ)-control: Let as above Eα,δ be the set of all pairs of points which
are (α, δ) apart. Then

Eε ⊂ Eε,ε and Eα,δ ⊂ Eα+2δ.

In words: ε-control implies (ε, ε)-foliated control and (α, δ)-control implies
α+ 2ε-control. Using this every ordinary squeezing gives rise to a foliated
squeezing. In particular there exists a foliated squeezing for the models.
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Proposition 7.4. Equip Rn = R1×Rn−1 with the foliation by lines parallel
to R×{0}. Let (X,Xi) be one of the models Mj or M ′

j from Section 6 of [3].
There exists a foliated relative squeezing for (X,Xi) with a priori control
(ε0, ε0) and a linear response function r(α, δ) = (λ ·α, λ · δ). The constants
ε0 and λ depend only on the dimension n.

Proof. By the remarks above this follows from Corollary 6.4. Note that the
foliation breaks the symmetry and we really have to distinguish between
the models Mj and M ′

j . �

8. A foliated squeezing theorem

In this section we prove the foliated squeezing theorem. Roughly such a
theorem states that once one has sufficient foliated control one can achieve
arbitrarily good control at least away from short compact leaves. More
precisely we have the following:

Let N be a not necessarily compact Riemannian manifold. Suppose N
is equipped with a 1-dimensional smooth foliation. For a constant α > 0
let N≤α ⊂ N denote the union of all compact leafs which are shorter than
α.

Proposition 8.1. There exists a constant µ1 > 1 such that:
Given any large number α0 > 0 and any compact subset

N2 ⊂ N −N≤µ1α0

there exists a constant δ0 > 0 and compact subsets N4 and
N3 with N2 ⊂ N4 ⊂ N3 such that there exists a foliated ab-
solute squeezing for (N,Ni) with a linear response function
and a priori control (α0, δ0).

The proof relies on two main ingredients: The squeezing theorem for
subcomplexes of the unit cube 6.1 (and its Corollaries in particular 7.4)
and the long and thin cell structure from Section 7 in [3].

Let N be an n-dimensional Riemannian manifold N equipped with a
one-dimensional foliation. In Section 7 of [3] and the Appendix of [4] the
authors construct a so called long and thin cell structure L with arbitrarily
long cells (in the direction of the foliation) whose underlying set covers any
given compact subset N2 of N which does not meet the short closed leaves.

In Lemma 8.1 of [3] this long and thin cell structure is used to produce
a cover U of (a neighborhood) of N2 that allows the application of the
induction principle described before (cf. 5.4). The sets in U are indexed by
cells of L. In particular U is a disjoint union

U = U (0) ∪ U (1) ∪ · · · ∪ U (n),

where the covering sets in U (q) are indexed by the q-cells. For every set
U of U there is a diffeomorphism gU : X = X(U) → U that respects the
foliation, where X(U) is one of the finitely many models Mq,M

′
q. We set
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Ui := gU (Xi). We proceed to state the crucial properties of U in more
detail. We will use the notation from the discussion preceding 5.4.

Proposition 8.2. There exists a constant µ1 such that, given any large
number γ > 0 and any compact subset N2 ⊂ N −N≤µ1γ there is a cover U
of a neighborhood of N2 as above such that the following is satisfied:

(i) The conditions stated before the induction principle 5.4 are satisfied.
Moreover, we have N2 ⊂ |U2| ∩R(n).

(ii) There are η, β > 1, where β depends only on the dimension of N ,
such that we have the following estimates for all U ∈ U .
• For all tangent vectors v to X

η−1|v| ≤ |dgU (v)| ≤ η|v|.
• For all vectors v tangent to the foliation on X

β−1γ|v| ≤ |dgU (v)| ≤ βγ|v|.

Proof. This is Lemma 8.1 in [3], see also 8.2 there. �

Proof of 8.1. We use the cover described in the previous proposition. This
together with 7.3 and 7.4 immediately implies:

(A) There is a foliated squeezing for each (U,Ui) with a priori control
(γε0β−1, ε0η

−1) and response function r(α, δ) = (β2λα, η2λδ). Here
(ε0, ε0) is a common a priori control and r(α, δ) = (λα, λδ) is a
common response function for all the models Mj and M ′

j as in
Proposition 7.4.

(B) Each (U,Ui) has (γεsβ−1, εsη
−1)-security, where (εs, εs) is such that

all models have εs-security.
Hence we can apply the foliated analogue of the Induction Principle 5.4.
We obtain a foliated absolute squeezing with a priori control

((β2λ)−nγε0β
−1, (η2λ)−nε0η

−1)

and a linear response function. Note that ε0, λ and β depend only on the
dimension of N , while η depends (via the cell structure L) on the given
arbitrary large γ. However η only appears on the δ-side of the (α, δ)-
expression above. Hence 8.1 follows for arbitrary large α0. The Induction
Principle also gives us explicitly the new response function. It is given by
r(α, δ) = ((β2λ)n+1α, (η2λ)n+1δ). Note that again the constant on the
α-side only depends on the dimension of N . �

9. From non-equivariant to equivariant

In [1] we need squeezing statements for automorphisms on the universal
covering of a given space which are invariant under the action of the funda-
mental group. In this section we discuss the necessary easy modifications.

Let us first recall some definitions. Let X be a free Γ-space. A module
M over X is Γ-invariant if for all x ∈ X and g ∈ Γ we have Mx = Mgx.
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A morphism φ is Γ-invariant if for all g ∈ Γ and all x, y ∈ X we have
φy,x = φgy,gx. Similarly there is the notion of an invariant deformation.
The category of all locally finite Γ-invariant R-modules and Γ-invariant
morphisms is denoted CΓ(X).

An equivariant relative squeezing situation consist of a Γ-space U with
a Γ-invariant metric equipped with Γ-invariant subsets Ui such that U2 ⊂
U4 ⊂ U3.

There is an obvious equivariant version of the relative squeezing state-
ment 4.4 where all modules, morphisms and deformations are Γ-invariant.

Let π : Ñ → N be the universal covering of the Riemannian manifold N
equipped with the lifted Riemannian metric and let Γ be the fundamental
group. Let U be a subset of N and let (U,Ui) be a relative squeezing
situation. One observes:

Note 9.1. Suppose U ⊂ N is simply connected. Then π−1(U) ⊂ Ñ is the
disjoint union of Γ many copies of U . If there exists a relative squeezing for
(U,Ui), then there exists an equivariant relative squeezing for the preimage
situation (π−1(U), π−1(Ui)) with the same a priori control and the same
response function.

Note 9.2. If moreover N is equipped with a smooth 1-dimensional foliation
and there exists a foliated relative squeezing for (U,Ui) then there exists an
equivariant foliated relative squeezing for the preimage situation with the
same a priori control and the same response function.

Note 9.3. If (U,Ui) has εs- or in the foliated context (αs, δs)-security in
N then the preimage situation (π−1(U), π−1(Ui)) has the same security in
Ñ . Compare Definition 4.2.

Hence every squeezing theorem which is proven via an induction over
local relative squeezings or foliated local relative squeezings as described in
Proposition 5.4 has an equivariant analogue if all the covering sets U ∈ U
that occur are simply connected. In particular we obtain equivariant ana-
logues of the squeezing theorem for compact Riemannian manifolds Theo-
rem 6.6 and of the foliated squeezing theorem from the last subsection.

For convenience we formulate these two squeezing statements explicitly
without referring to Statement 4.4. The following is Theorem 13.1 in [1].

Theorem 9.4. (Equivariant absolute squeezing for compact Riemannian
manifolds.)) Let N be a compact connected Riemannian manifold. Let K
and S be closed subsets of N with S∩K = ∅. Then there is ε0 = ε0(N,K, S)
and a homeomorphism r = r(N,K, S) : [0,∞) → [0,∞) such that the
following holds:

Let ε0 ≥ εg ≥ εvg ≥ 0 and α > r(εg) and let φ : M → M

in CΓ(Ñ) be an α-automorphism. Assume moreover that φ
and φ−1 are εg-controlled over X̃ − π−1(S).
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Then there is a stabilizing module L and a deformation
η = (e1, . . . , en) on M ⊕ L in CΓ(Ñ) such that:
(i) The deformed automorphism φnew = (ϕ⊕ idN )η is an

α-automorphism. Moreover, φnew and φ−1
new are εvg-

controlled over π−1(K).
(ii) The deformation η is r(εg)-controlled and each ei is

the identity on (M ⊕N)|π−1(S).

Proof. Construct a squeezing situation (N,Ni) with N2 = K, S ⊂ N −N3

and positive security. Apply the discussion above to Theorem 6.6. �

Theorem 9.5 (Equivariant absolute foliated squeezing). Let N be a not
necessarily compact Riemannian manifold which is equipped with a smooth
1-dimensional foliation. Let π : Ñ → N denote the universal cover and Γ
the fundamental group. Equip Ñ with the lifted Riemannian metric and the
lifted foliation.

There is a constant µ1 which only depends on the dimension of N for
which the following statement is true:

Let α0 > 0 be an arbitrarily large number. Let N2 be an
arbitrary compact subset of N which does not meet N≤µ1α0 .
Then there exist

numbers δ0 > 0 and µ2 > 1 depending on N2 and
α0

such that:
For any ε > 0 and (α, δ) with

(ε, ε) ≤ (α, δ) ≤ (α0, δ0)

and every (α, δ)-automorphism φ : M → M in
CΓ(Ñ) there exists a stabilizing module L over Ñ
and a deformation η on M ⊕ L in CΓ(Ñ) such
that:

(i) The deformed automorphism φnew = η(φ⊕
idL) and its inverse φ−1

new = (φ−1⊕ idL)η−1

are both ε-controlled over π−1(N2).
(ii) The deformation η, φnew and also its in-

verse φ−1
new are all everywhere (µ1α, µ2δ)-

controlled.

In particular we obtain the following statement: Given an arbitrary large
α0, there exists a δ0 such that given an arbitrary small ε we can achieve
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the following control improvement:

control over N2 everywhere

before (α, δ) ≤ (α0, δ0)

after ε (µ1α, µ2δ)

The important point is that α0 can be chosen arbitrarily large.
For Theorem 13.2 in [1] observe:

Addendum 9.6. There is a version of 9.5 where all modules have Γ-
compact support, i.e. we can work in the category CΓ(Ñ ,FΓc) from [1].

Proof. The working zone N4 in 8.1 is compact and hence π−1(N4) is Γ-
compact. �
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