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DETECTING K-THEORY BY CYCLIC HOMOLOGY

WOLFGANG LÜCK and HOLGER REICH

Dedicated to the memory of Michel Matthey

0. Introduction and statement of results

Fix a commutative ring k, referred to as the ground ring. Let R be a k-algebra,
that is, an associative ring R together with a unital ring homomorphism from
k to the center of R. We denote by HH⊗k

∗ (R) the Hochschild homology of R
relative to the ground ring k, and similarly by HC⊗k

∗ (R), HP⊗k
∗ (R) and HN⊗k

∗ (R)
the cyclic, the periodic cyclic and the negative cyclic homology of R relative to k.
Hochschild homology receives a map from the algebraic K-theory, which is known as
the Dennis trace map. There are variants of the Dennis trace taking values in cyclic,
periodic cyclic and negative cyclic homology (sometimes called Chern characters),
as displayed in the following commutative diagram:

HN⊗k
∗ (R) ��

h

��

HP⊗k
∗ (R)

��

K∗(R)

ntr

������������
dtr

�� HH⊗k
∗ (R) �� HC⊗k

∗ (R)

(0.1)

For the definition of these maps see [18, Chapters 8 and 11] and § 5 below.
In the following we will focus on the case of group rings RG, where G is a group

and we refer to the k-algebra R as the coefficient ring. We investigate the following
question.

Question 0.2. Which part of K∗(RG)⊗Z Q can be detected using linear trace
invariants like the Dennis trace to Hochschild homology, or its variants with values
in cyclic homology, periodic cyclic homology and negative cyclic homology?

For any group G, we prove ‘detection results’, which state that certain parts of
K∗(RG)⊗Z Q can be detected by the trace maps in diagram (0.1), accompanied by
‘vanishing results’, which state that a complement of the part which is then
known to be detected is mapped to zero. For the detection results, we only make
assumptions on the coefficient ring R, whereas for the vanishing results we
additionally need the Farrell–Jones Conjecture for RG as an input; compare
Example 1.2. Modulo the Farrell–Jones Conjecture, we will give a complete answer
to Question 0.2, for instance in the case of Hochschild and cyclic homology, when
the coefficient ring R is an algebraic number field F or its ring of integers OF . We
will also give partial results for periodic cyclic and negative cyclic homology.
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All detection results are obtained by using only the Dennis trace with values
in HH⊗k

∗ (RG), whereas all vanishing results hold even for the trace with values
in HN⊗Z

∗ (RG), which, in view of diagram (0.1), can be viewed as the best among
the considered trace invariants. (Note that for a k-algebra R every homomorphism
k′ → k of commutative rings leads to a homomorphism HN⊗k ′

∗ (R) → HN⊗k
∗ (R).

Hochschild, cyclic and periodic cyclic homologies are similar.) We have no example
where the extra effort that goes into the construction of the variants with values in
cyclic, periodic cyclic or negative cyclic homology yields more information about
K∗(RG)⊗Z Q than one can obtain by Hochschild homology; see also Remarks 0.16
and 0.17 below.

We will now explain our main results. We introduce some notation.

Notation 0.3. Let G be a group and H a subgroup. We write 〈g〉 for the cyclic
subgroup generated by g ∈ G. We denote by (g) and (H) the conjugacy classes of
g and H, respectively, in G. Let con G be the set of conjugacy classes of elements
of G. The set of conjugacy classes of finite cyclic subgroups of G will be denoted
by (FCyc).

Let ZGH and NGH denote the centralizer and the normalizer of H in G,
respectively. The Weyl group WGH is defined as the quotient NGH

/
H · ZGH

and coincides for an abelian subgroup H with NGH/ZGH.

Let C be a finite cyclic group. We will define in (1.11) an idempotent θC ∈
A(C) ⊗Z Q in the rationalization of the Burnside ring A(C) of C. Since there is a
natural action of A(C) on K∗(RC), we obtain a corresponding direct summand

θC

(
K∗(RC) ⊗Z Q

)
⊆ K∗(RC) ⊗Z Q.

In Lemma 7.4, we prove that θC(K∗(RC) ⊗Z Q) is isomorphic to the Artin defect

coker
( ⊕

D�C

indC
D :

⊕
D�C

K∗(RD) ⊗Z Q → K∗(RC) ⊗Z Q

)
,

which measures the part of K∗(RC)⊗Z Q which is not obtained by induction from
proper subgroups of C.

The conjugation action of NGC on C induces an action of the Weyl group
WGC = NGC/ZGC on K∗(RC) ⊗Z Q and thus on θC(K∗(RG) ⊗Z Q). There is
an obvious WGC-action on BZGC = ZGC\ENGC. These actions are understood
in the following statement.

Theorem 0.4 (Main Detection Result). Let G be a group, k a commutative
ring and R a k-algebra. Suppose that the underlying ring of R is from the following
list:

(i) a finite-dimensional semisimple algebra R over a field F of characteristic
zero;

(ii) a commutative complete local domain R of characteristic zero;
(iii) a commutative Dedekind domain R in which the order of every finite cyclic

subgroup of G is invertible and whose quotient field is an algebraic number
field.
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Then there exists an injective homomorphism⊕
(C)∈(FCyc)

H∗(BZGC; Q) ⊗Q[WG C] θC

(
K0(RC) ⊗Z Q

)
−→ K∗(RG) ⊗Z Q(0.5)

whose image is detected by the Dennis trace map

dtr : K∗(RG) ⊗Z Q −→ HH⊗k
∗ (RG) ⊗Z Q,(0.6)

in the sense that the composition of the map (0.5) with dtr is injective. Also the
composition with the map to HC⊗k

∗ (RG) ⊗Z Q remains injective.

Examples of rings R appearing in the list of Theorem 0.4 are:
– fields of characteristic zero;
– the group ring FH of a finite group H over a field F of characteristic zero;
– the ring Zp̂ of p-adic integers;
– for the given G, the localization S−1OF of the ring of integers OF in an

algebraic number field F , for instance S−1Z, where S is the multiplicative
set generated by the orders of all finite cyclic subgroups of G.

Depending on the choice of the coefficient ring R, the description of the source
of the map (0.5) can be simplified. We mention two examples. Let Q∞ be the field
obtained from Q by adjoining all roots of unity.

Theorem 0.7 (Detection Result for Q and C as coefficients). For every group
G, there exist injective homomorphisms⊕

(C)∈(FCyc)

H∗(BNGC; Q) −→ K∗(QG) ⊗Z Q,

⊕
(g)∈con G,|g|<∞

H∗(BZG〈g〉; Q∞) −→ K∗(CG) ⊗Z Q∞.

The images of these maps are detected by the Dennis trace map with Q and C,
respectively, as ground rings. The coefficient field Q (respectively, C) can be replaced
by any field of characteristic zero (respectively, any field containing Q∞).

Theorem 0.7 for Q∞ and C as coefficient fields is the main result of the paper
by Matthey [26]. The techniques there are based on so-called delocalization and
the computation of the Hochschild homology and of the cyclic homology of group
rings with commutative coefficient rings containing Q (see [37, § 9.7] and [4]). They
are quite different from the ones used in the present paper and are exactly suited
for the cases studied there and do not seem to be extendable to the situations
considered here. Both maps appearing in Theorem 0.7 are optimal in the sense
of Theorem 0.10 and of Theorem 0.12 below, provided that the Farrell–Jones
Conjecture holds rationally for K∗(QG) and K∗(CG) respectively.

The Main Detection Theorem 0.4 is obtained by studying the following
commutative diagram:

HG
∗ (EG;KR)

HG
∗ (EG;dtr)

��

assembly
�� K∗(RG)

dtr

��

HG
∗ (EG;HH⊗ZR)

assembly
�� HH⊗Z

∗ (RG)

(0.8)
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Here, the horizontal arrows are generalized assembly maps for K-theory and
Hochschild homology respectively, and the left vertical arrow is a suitable version
of the Dennis trace map. The G-space EG is a model for the so-called classifying
space for proper G-actions. Moreover, HG

∗ (−;KR) and HG
∗ (−;HH⊗ZR) are certain

G-homology theories. We will explain the diagram in more detail in § 1. We will
prove that the lower horizontal arrow in (0.8) is split injective; see Theorem 1.7.
In fact, Theorem 1.7 gives a complete picture of the generalized assembly map for
Hochschild and cyclic homology. We will also compute the left-hand vertical arrow
after rationalization; compare Theorem 1.13 and Propositions 3.3, 3.4 and 3.5.
According to this computation, the left-hand side in (0.5) is a direct summand in
H∗(EG;KR) ⊗Z Q on which, for R as in Theorem 0.4, the map

HG
∗ (EG;KR) ⊗Z Q −→ HG

∗ (EG;HH⊗ZR) ⊗Z Q(0.9)

is injective. This will prove Theorem 0.4. Now, suppose that R is as in case (i)
of Theorem 0.4, with F a number field. Then, it turns out that the map (0.9)
vanishes on a complementary summand. According to the Farrell–Jones Conjecture
for K∗(RG), the upper horizontal arrow in (0.8) should be an isomorphism (this
uses the fact that R is a regular ring with Q ⊆ R). Combining these facts, we will
deduce the following result.

Theorem 0.10 (Vanishing Result for Hochschild and cyclic homology). Let G
be a group, F an algebraic number field, and R a finite-dimensional semisimple F -
algebra. Suppose that for some n � 0, the Farrell–Jones Conjecture holds rationally
for Kn(RG); see Example 1.2 below.

Then Theorem 0.4 is optimal for the Hochschild homology trace invariant, in the
sense that the Dennis trace map

dtr : Kn(RG) ⊗Z Q −→ HH⊗Z

n (RG) ⊗Z Q(0.11)

vanishes on a direct summand that is complementary to the image of the injective
map (0.5) in degree n. Consequently, also the trace taking values in rationalized
cyclic homology HC⊗Z

n (RG) ⊗Z Q vanishes on this complementary summand.

One might still hope that the refinements of the Dennis trace map with
values in periodic cyclic or negative cyclic homology detect more of the rationalized
algebraic K-theory of RG. But one can show that this is not the case if one
additionally assumes a finiteness condition on the classifying space EG. Recall
that the G-space EG is called cocompact if the orbit space G\EG is compact, in
other words, if it consists of finitely many G-equivariant cells. Cocompact models
for EG exist for many interesting groups G such as discrete cocompact subgroups
of virtually connected Lie groups, word-hyperbolic groups, arithmetic subgroups
of a semisimple connected Q-algebraic group, and mapping class groups (see for
instance [21]).

Theorem 0.12 (Vanishing Result for periodic and negative cyclic homology).
Let F be an algebraic number field, and R a finite-dimensional semisimple F -
algebra. Suppose that for some n � 0, the Farrell–Jones Conjecture holds rationally
for Kn(RG). Suppose further that there exists a cocompact model for the classifying
space for proper G-actions EG.
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Then also the refinements of the Dennis trace with values in HP⊗Z

n (RG) ⊗Z Q

and in HN⊗Z

n (RG) ⊗Z Q vanish on a direct summand which is complementary to
the image of the injective map (0.5) in degree n.

The next result is well known. It shows in particular that the rational group
homology H∗(BG; Q) is contained in K∗(RG)⊗Z Q for all commutative rings R of
characteristic zero.

Theorem 0.13 (Detection Result for commutative rings of characteristic zero).
Let R be a ring such that the canonical ring homomorphism Z → R induces an
injection

HH⊗Z

0 (Z) = Z ↪→ HH⊗Z

0 (R) = R
/
[R,R],

for instance a commutative ring of characteristic zero.
Then, for any group G, there exists an injective homomorphism

H∗(BG; Q) −→ K∗(RG) ⊗Z Q(0.14)

whose composition with the Dennis trace map (0.6) is injective for every choice of a
ground ring k such that R is a k-algebra. The corresponding statement holds with
Hochschild homology replaced by cyclic homology.

Special cases of this result are treated for example in [29, Proposition 6.3.24 on
p. 366].

According to the Farrell–Jones Conjecture, the image of (0.14) should only be a
very small part of the rationalized K-theory of RG. The following result illustrates
that, for certain coefficient rings, including Z, one cannot expect to detect more by
linear traces than is achieved in Theorem 0.13.

Theorem 0.15 (Vanishing Result for integral coefficients). Let S−1OF be a
localization of a ring of integers OF in an algebraic number field F with respect to
a (possibly empty) multiplicatively closed subset S. Assume that no prime divisor
of the order |H| of a non-trivial finite subgroup H of G is invertible in S−1OF .
Suppose that for some n � 0, the Farrell–Jones Conjecture holds rationally for
Kn(S−1OF [G]).

Then the Dennis trace (0.11) vanishes on a summand in Kn(S−1OF [G]) ⊗Z Q

which is complementary to the image of the map (0.14) in degree n. Consequently,
the analogous statement holds for the trace with values in HC⊗Z

n (S−1OF [G])⊗Z Q.

The most interesting case in Theorem 0.15 is R = Z. We remark that rationally,
the Farrell–Jones Conjecture for K∗(ZG) is known in many cases, for example for
every subgroup G of a discrete cocompact subgroup of a virtually connected Lie
group [13]. For a survey of known results about the Farrell–Jones Conjecture, we
refer the reader to [22].

Remark 0.16. There are further trace invariants (or Chern characters) given
by maps chn,r : Kn(RG) → HC⊗k

n+2r(RG), for fixed n, r � 0; see [18, 8.4.6 on p. 272
and 11.4.3 on p. 371]. This will however produce no new detection results in the



598 wolfgang lück and holger reich

spirit of the above statements, since there is a commutative diagram

Kn(RG)

ntr

���������������������

����
��

��
��

��

chn ,r

��
��

��
��

��
��

�����������������������

HN⊗k
n (RG) �� HP⊗k

n (RG)
S

�� HC⊗k
n+2r(RG) Sr

�� HC⊗k
n (RG)

Remark 0.17. In [2], Bökstedt, Hsiang and Madsen define the cyclotomic
trace, a map out of K-theory which takes values in topological cyclic homology.
The cyclotomic trace map can be thought of as an even more elaborate
refinement of the Dennis trace map. In contrast to the Dennis trace, it seems that
the cyclotomic trace has the potential to detect almost all of the rationalized K-
theory of an integral group ring. This question will be investigated in joint work of
John Rognes, Marco Varisco and the authors.

The paper is organized as follows:
1. Outline of the method
2. Proofs
3. The trace maps for finite cyclic groups
4. Notation and generalities
5. The trace maps
6. Equivariant homology theories, induction and Mackey structures
7. Evaluating the equivariant Chern character
8. Comparing different models
9. Splitting assembly maps
References

1. Outline of the method

This paper is concerned with comparing generalized assembly maps for K-
theory, via the Dennis trace or its refinements, with generalized assembly maps
for Hochschild homology, for cyclic, periodic cyclic or negative cyclic homology.
Before we explain the general strategy behind our results we briefly explain the
concept of a generalized assembly map; for more details the reader is referred to [8]
and [22, §§ 2 and 6].

A family of subgroups of a given group G is a non-empty collection of subgroups
which is closed under conjugation and finite intersections. Given a family F of
subgroups, there always exists a G-CW -complex EF (G) all of whose isotropy groups
lie in F and which has the property that for all H ∈ F , the fixed subspace EF (G)H

is a contractible space. A G-CW -complex with these properties is unique up to
G-homotopy because it receives a G-map from every G-CW -complex all of whose
isotropy groups lie in F and this G-map is unique up to G-homotopy. If F = F in is
the family of finite subgroups, then one often writes EG for EF in(G). For a survey
on these spaces see, for instance, [21].

Let OrG denote the orbit category of G. Objects are the homogenous spaces
G/H considered as left G-spaces, and morphisms are G-maps. A functor E, from
the orbit category OrG to the category of spectra, is called an OrG-spectrum. Each
OrG-spectrum E gives rise to a G-homology theory HG

∗ (−;E); compare [22, § 6]
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and the beginning of § 6 below. Given E and a family F of subgroups of G, the
so-called generalized assembly map

HG
∗

(
EF (G);E

) assembly
�� HG

∗ (pt;E)(1.1)

is merely the homomorphism induced by the map

EF (G) −→ pt .

The group HG
∗ (pt;E) can be canonically identified with π∗(E(G/G)).

Example 1.2 (The Farrell–Jones Conjecture). Given an arbitrary ring R and
an arbitrary group G, there exists a non-connective K-theory OrG-spectrum,
denoted by K−∞R(?), such that there is a natural isomorphism

πn

(
K−∞R(G/H)

) ∼= Kn(RH)

for all H � G and all n ∈ Z; compare [22, Theorem 6.9]. The Farrell–Jones
Conjecture for Kn(RG), [13, 1.6 on p. 257], predicts that the generalized assembly
map

HG
n

(
EVCyc(G);K−∞R

) assembly
�� HG

n (pt;K−∞R) ∼= Kn(RG)

is an isomorphism. Here VCyc stands for the family of all virtually cyclic subgroups
of G. A group is called virtually cyclic if it contains a cyclic subgroup of finite index.

In § 5, we will construct the following commutative diagram of connective OrG-
spectra and maps (alias natural transformations) between them:

HN⊗k R ��

h

��

HP⊗k R

��

KR
dtr

��

ntr

������������
HH⊗k R �� HC⊗k R

(1.3)

Decisive properties of these constructions are that, for all n � 0, we have natural
isomorphisms

πn

(
KR(G/H)

) ∼= Kn(RH),

πn

(
HH⊗k R(G/H)

) ∼= HH⊗k
n (RH),

πn

(
HC⊗k R(G/H)

) ∼= HC⊗k
n (RH),

πn

(
HP⊗k R(G/H)

) ∼= HP⊗k
n (RH),

πn

(
HN⊗k R(G/H)

) ∼= HN⊗k
n (RH),

(1.4)

and all negative homotopy groups vanish. Note that we need to distinguish
between the non-connective version K−∞R and the connective version KR. Under
the identifications above, the maps of OrG-spectra in (1.3) evaluated at an orbit
G/H induce, on the level of homotopy groups, the maps in (0.1) with R replaced
by the corresponding group ring RH.

Remark 1.5. We found it technically convenient to work, at the level of spectra,
with the connective versions of periodic cyclic and negative cyclic homology. Since
we are mainly interested in the trace maps (whose source will be the connective
K-theory spectrum), we do not lose any information.
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Since the assembly map (1.1) is natural in the functor E, we obtain, for each
family of subgroups F of a group G and for each n � 0, the commutative diagram

HG
n

(
EF (G);KR

) assembly
��

HG
n (EF (G);ntr)

��

HG
n (pt;KR) ∼= Kn(RG)

ntr

��

HG
n

(
EF (G);HN⊗k R

) assembly
��

HG
n (EF (G);h)

��

HG
n (pt;HN⊗k R) ∼= HN⊗k

n (RG)

h

��

HG
n

(
EF (G);HH⊗k R

) assembly
�� HG

n (pt;HH⊗k R) ∼= HH⊗k
n (RG)

(1.6)

The vertical compositions are the corresponding versions of the Dennis trace map.
Our investigation relies on two main ingredients. The first ingredient is splitting

and isomorphism results for the assembly maps of Hochschild and cyclic type.

Theorem 1.7 (The Isomorphism Conjecture for HH and HC). Let k be a
commutative ring, R a k-algebra, and G a group. Then the generalized Hochschild
homology assembly map

H∗
(
EF (G);HH⊗k R

) assembly
�� H∗(pt;HH⊗k R) ∼= HH⊗k

∗ (RG)

is split injective for every family F . If F contains the family of all (finite and infinite)
cyclic subgroups, then the map is an isomorphism. The analogous statement holds
for HC in place of HH.

The fact that the definition of periodic cyclic and of negative cyclic homology
involves certain inverse limit processes prevents us from proving the analogous result
in these cases without assumptions on the group G. But we still have the following
statement.

Addendum 1.8 (Splitting Results for the HP and HN-assembly maps). Suppose
that there exists a cocompact model for the classifying space EF (G). Then the
statement of Theorem 1.7 also holds for HP and HN in place of HH.

The proofs of Theorem 1.7 and Addendum 1.8 are presented in § 9.

Remark 1.9. We do not know any non-trivial example where the isomorphism
statement in Addendum 1.8 applies, that is, where F contains all (finite and infinite)
cyclic groups and where, at the same time, EF (G) has a cocompact model.

The second main ingredient of our investigation is the rational computation of
equivariant homology theories from [20]. For varying G, our G-homology theories
like HG

∗ (−) = HG
∗ (−;KR) or HG

∗ (−) = HG
∗ (−;HH⊗k R) are linked by a so-called

induction structure and form an equivariant homology theory in the sense of [20].
Moreover, these homology theories admit a Mackey structure. In § 6, we review
these notions and explain some general principles which allow us to verify that
G-homology theories like the ones we are interested in indeed admit induction and
Mackey structures. In particular, Theorems 0.1 and 0.2 in [20] apply and yield
an explicit computation of HG

∗ (EG) ⊗Z Q. In § 7, we review this computation and
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discuss a simplification which occurs in the case of K-theory, Hochschild, cyclic,
periodic cyclic and negative cyclic homology, due to the fact that in all these special
cases, we have additionally a module structure over the Swan ring.

In order to state the result of this computation, we introduce some more notation.
For a finite group G, we denote by A(G) the Burnside ring which is additively
generated by isomorphism classes of finite transitive G-sets. Let (sub G) denote the
set of conjugacy classes of subgroups of G.

The counting fixpoints ring homomorphism

χG : A(G) −→
∏

(sub G)

Z,(1.10)

which is induced by sending a G-set S to (|SH |)(H), becomes an isomorphism after
rationalization; compare [34, p. 19]. For a finite cyclic group C, we consider the
idempotent

θC = (χC ⊗Z Q)−1
(
(δCD)D

)
∈ A(C) ⊗Z Q,(1.11)

where (δCD)D ∈
∏

sub C Q is given by δCC = 1 and δCD = 0 if D �= C.
Recall that K∗(RC) and, similarly, Hochschild, cyclic, periodic cyclic and

negative cyclic homology of RC are modules over the Burnside ring A(C). The
action of a C-set S is in all cases induced from taking the tensor product over Z

with the corresponding permutation module ZS. In Lemma 7.4 below, we prove
that θC(K∗(RC) ⊗Z Q) is isomorphic to the Q-vector space

coker
( ⊕

D�C

indC
D :

⊕
D�C

K∗(RD) ⊗Z Q → K∗(RC) ⊗Z Q

)
,(1.12)

which is known as the Artin defect of K∗(RC) ⊗Z Q.
In § 7 we establish the following result.

Theorem 1.13. For each n � 0, the following diagram commutes and the
arrows labelled chG are isomorphisms:⊕

p,q�0
p+q=n

⊕
(C)∈(FCyc)

Hp(BZGC; Q) ⊗Q[WG C] θC

(
Kq(RC) ⊗Z Q

)
chG

∼=
��������������������

dtr∗

��

HG
n (EG;KR) ⊗Z Q

HG
n (EG;dtr)⊗ZQ

��

⊕
p,q�0
p+q=n

⊕
(C)∈(FCyc)

Hp(BZGC; Q) ⊗Q[WG C] θC

(
HH⊗k

q (RC) ⊗Z Q
)

chG

∼=
��������������������

HG
n (EG;HH⊗k R) ⊗Z Q

The left-hand vertical arrow is induced by the Dennis trace maps for finite cyclic
groups and respects the double direct sum decompositions. The right-hand vertical
arrow is induced by the OrG-spectrum Dennis trace dtr; compare (1.3). There
are similar diagrams and isomorphisms corresponding to each of the other maps in
diagram (1.3).
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Remark 1.14. The (−1)-connected covering map of OrG-spectra

KR −→ K−∞R

induces for every orbit G/H an isomorphism

πn(KR(G/H)) −→ πn(K−∞R(G/H))

if n � 0. The source is trivial for n < 0. This map induces the following commutative
diagram:⊕

p,q�0
p+q=n

⊕
(C)∈(FCyc)

Hp(BZGC; Q) ⊗Q[WG C] θC

(
Kq(RC) ⊗Z Q

)
chG

∼=
���������������������

��

HG
n (EG;KR) ⊗Z Q

��

⊕
p,q∈Z

p+q=n

⊕
(C)∈(FCyc)

Hp(BZGC; Q) ⊗Q[WG C] θC

(
Kq(RC) ⊗Z Q

)
chG

∼=
���������������������

HG
n (EG;K−∞R) ⊗Z Q

Here the arrows labelled chG are isomorphisms. Note the restriction p, q � 0 for the
sum in the upper left-hand corner.

1.1. General strategy

We now explain the strategy behind all the results that appeared in the
introduction. If we combine the diagram appearing in Theorem 1.13 with diagram
(1.6), for each n � 0, we get a commutative diagram⊕

p,q�0
p+q=n

⊕
(C)∈(FCyc)

Hp(BZGC; Q) ⊗Q[WG C] θC

(
Kq(RC) ⊗Z Q

)
�����������������������

dtr∗

��

Kn(RG) ⊗Z Q

dtr

��

⊕
p,q�0
p+q=n

⊕
(C)∈(FCyc)

Hp(BZGC; Q) ⊗Q[WG C] θC

(
HH⊗Z

q (RC) ⊗Z Q
)

�����������������������

HH⊗Z

n (RG) ⊗Z Q

Because of Theorem 1.7 and the isomorphism statement in Theorem 1.13 the lower
horizontal map is injective. There is an analogue of the commutative diagram above,
where the upper row is the same and HH is replaced by HC in the bottom row.
Also in this case we know that the lower horizontal map is injective because of
Theorems 1.7 and 1.13.

Observe that WGC is always a finite group; hence Q[WGC] is a semisimple ring,
so that every module over QWGC is flat and the functor Hp(BZGC; Q)⊗QWG C (−)
preserves injectivity.



detecting K-theory by cyclic homology 603

For q � 0 given, we see that suitable injectivity results about the maps

θC

(
Kq(RC) ⊗Z Q

)
−→ θC

(
HH⊗k

q (RC) ⊗Z Q
)

(1.15)

for the finite cyclic subgroups C � G lead to the proof of detection results in degree
n. These maps (1.15) will be studied in § 3.

If R is a regular ring containing Q, then the family VCyc of virtually cyclic
subgroups can be replaced by the family F in of finite subgroups and the non-
connective K-theory OrG-spectrum K−∞R(?) by its connective version KR(?) in
the statement of the Farrell–Jones Conjecture, that is, in this case, the Farrell–
Jones Conjecture for Kn(RG), for some n ∈ Z, is equivalent to the statement that
the assembly map

HG
n (EG;KR)

assembly
�� Kn(RG)

is an isomorphism if n � 0, and to the statement that Kn(RG) = 0 if n � −1
(see [22, Proposition 2.14]). As a consequence, the upper horizontal arrow in the
diagram above (where n � 0) is bijective if the Farrell–Jones Conjecture is true
rationally for Kn(RG).

So for q � 0 given, we see that suitable vanishing results about the maps
(1.15) (and about their analogues involving cyclic homology) combined with the
assumption that the Farrell–Jones conjecture holds rationally for Kn(RG) lead to
the proof of vanishing results in degree n.

2. Proofs

Based on the strategy explained in the previous paragraphs we now give the
proofs of the theorems stated in the introduction, modulo the following results:
Theorem 1.7 and Addendum 1.8 (proved in § 9); Theorems 1.13 (proved in § 7,
using §§ 4–6); and the results of § 3 (which is self-contained, except for Lemma 7.4
whose proof is independent of the rest of the paper).

2.1. Proof of Theorem 0.4

After the general strategy of § 1.1, the necessary injectivity result to complete
the proof appears in Proposition 3.3 below.

2.2. Proof of Theorem 0.10

The result follows directly from the general strategy of § 1.1 and the vanishing
result stated as Proposition 3.5 below.

2.3. Proof of Theorem 0.12

The proof is completely analogous to that of Theorem 0.10. The extra condition
that there is a cocompact model for EG is only needed to apply Addendum 1.8 in
place of Theorem 1.7.
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2.4. Proof of Theorem 0.7

The next lemma explains why Theorem 0.7 for Q as coefficients follows
from Theorem 0.4. The case of C as coefficients is proven similarly; compare
[20, Example 8.11].

Lemma 2.1. (i) Let C be a finite cyclic group. Then one has

θC

(
K0(QC) ⊗Z Q

) ∼= Q

and every group automorphism of C induces the identity on Q.
(ii) For any group G and finite cyclic subgroup C � G, the map

H∗(BZGC; Q) ⊗Q[WG C] Q
∼=−−→ H∗(BNGC; Q)

induced by the inclusion ZGC ↪→ NGC is an isomorphism. Here Q carries the trivial
WGC-action.

Proof. (i) There is a commutative diagram

A(C) ⊗Z Q

χC ⊗ZQ ∼=
��

∼=
�� K0(QC) ⊗Z Q

∼=
��∏

D∈sub C Q
∼=

�� map(subC, Q)

Here, the upper horizontal map sends a C-set to the corresponding permutation
module. The product in the lower left corner is taken over the set subC of all
subgroups of C and the left-hand vertical arrow is given by sending the class of
a C-set S to (|SD|)D and is an isomorphism, as already mentioned after (1.10).
The right-hand vertical map is given by sending a rational representation V to its
character, that is, if d generates the subgroup 〈d〉, then 〈d〉 	→ trQ(d : V → V ). This
map is also an isomorphism; compare [32, II, § 12]. The lower horizontal map is the
isomorphism given by sending (xD)D∈sub C to (D 	→ xD). The diagram is natural
with respect to automorphisms of C. By definition, θC ∈ A(C) ⊗Z Q corresponds
to the idempotent (δCD)D in the lower left-hand corner. Now, the result follows.

(ii) This follows from the Lyndon–Hochschild–Serre spectral sequence of the
fibration BZGC → BNGC → BWGC and from the fact that, the group WGC being
finite, for any Q[WGC]-module M , the Q-vector space Hp(C∗(EWGC)⊗Z[WG C] M)
is isomorphic to M ⊗Q[WG C] Q for p = 0 and trivial for p � 1.

2.5. Proof of Theorem 0.13

The proof is analogous to that of Theorem 0.4, with the exception that we do not
use Proposition 3.3 but the following consequences of the hypothesis on R made in
the statement: the diagram

K0(Z) dtr
∼=

��

��

HH⊗Z

0 (Z) = Z

��

K0(R) dtr
�� HH⊗Z

0 (R)
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commutes, the upper horizontal map is an isomorphism and both vertical arrows are
injective. The map (0.14) is now defined as the restriction of the upper horizontal
arrow of the diagram appearing in § 1.1, in degree n, to the summand for q = 0 and
C = {e} and then further to the Q-submodule

Hp(BG; Q) ∼= Hp(BG; Q) ⊗Q

(
K0(Z) ⊗Z Q

)
⊆ Hp(BG; Q) ⊗Q

(
K0(R) ⊗Z Q

)
(here, p = n). Injectivity of (0.14) is now clear from the general strategy § 1.1.

2.6. Proof of Theorem 0.15

For the given n � 0, the diagram

HG
n

(
EF in(G);K−∞S−1OF

)
��

��

HG
n

(
EF in(G);K−∞F

)
∼=

��

HG
n

(
EVCyc(G);K−∞S−1OF

)
��

assembly ∼=Q

��

HG
n

(
EVCyc(G);K−∞F

)
assembly

��

Kn

(
S−1OF [G]

) ∼= HG
n (pt;K−∞S−1OF ) �� HG

n (pt;K−∞F ) ∼= Kn(FG)

Kn

(
S−1OF [G]

) ∼= HG
n (pt;KS−1OF )

∼=

		

��

dtr

��

HG
n (pt;KF ) ∼= Kn(FG)

∼=

		

dtr

��

HH⊗Z

n

(
S−1OF [G]

) ∼=Q
�� HH⊗Z

n (FG)

commutes. Here the upper vertical maps are induced by the unique, up to G-
homotopy, G-maps. The other vertical maps are given by the assembly maps, the
maps induced by the passage from connective to non-connective K-theory spectra,
respectively by the trace maps; the horizontal arrows are induced by the inclusion
of rings S−1OF ⊆ F . Some explanations are in order for some of the indicated
integral, respectively rational, isomorphisms.

For every ring R, there are isomorphisms HH⊗Z

∗ (R) ⊗Z Q ∼= HH⊗Z

∗ (R ⊗Z Q)
and HC⊗Z

∗ (R) ⊗Z Q ∼= HC⊗Z

∗ (R ⊗Z Q), because CN⊗Z

• (R ⊗Z Q) ∼= CN⊗Z

• (R) ⊗Z Q

and because the functor (−) ⊗Z Q commutes with homology and with Tot⊕. (For
the notation, see §§ 4.2 and 4.3 below.) Here, we use the fact that for the total
complex occurring in the definition of cyclic homology it does not matter whether
one takes Tot⊕ or Tot

∏
. Note that a corresponding statement is false for HP and

HN. Hence the bottom horizontal arrow in the diagram above is rationally bijective
since S−1OF ⊗Z Q ∼= F .

The middle left vertical arrow is rationally bijective, since we assume that the
Farrell–Jones Conjecture holds rationally for Kn(S−1OF [G]).

Since F is a regular ring and contains Q, the top right vertical arrow is an
isomorphism by [22, Proposition 2.14]; see also § 1.1.

Bartels [1] has constructed, for every ring R and every m ∈ Z, a retraction

r(R)m : HG
m

(
EVCyc(G);K−∞R

)
−→ HG

m

(
EF in(G);K−∞R

)
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of the canonical map HG
m(EF in(G);K−∞R) → HG

m(EVCyc(G);K−∞R), which is
natural in R. We obtain a decomposition, natural in R,

HG
m

(
EVCyc(G);K−∞R

) ∼= HG
m

(
EF in(G);K−∞R

)
⊕ ker

(
r(R)m

)
.

Therefore, we conclude from the commutative diagram above that for n � 0 the
composition

HG
n

(
EVCyc(G);K−∞S−1OF

) ∼=Q−−→ HG
n (pt;K−∞S−1OF )

∼=←−− HG
n (pt;KS−1OF ) dtr−−→ HH⊗Z

n

(
S−1OF [G]

)
,

after tensoring with Q, contains ker(r(S−1OF )n) ⊗Z Q in its kernel, because
ker(r(F )n) = 0. So, to study injectivity properties of the Dennis trace map we
can focus attention on the composition

HG
n

(
EF in(G);K−∞S−1OF

)
⊗Z Q ↪→ HG

n

(
EVCyc(G);K−∞S−1OF

)
⊗Z Q

∼=−−→ HG
n (pt;K−∞S−1OF ) ⊗Z Q

∼=←−− HG
n (pt;KS−1OF ) ⊗Z Q

dtr−−→ HH⊗Z

n

(
S−1OF [G]

)
⊗Z Q.

By naturality of the bottom isomorphism in Remark 1.14, there is a commutative
diagram⊕

p,q∈Z
p+q=n

⊕
(C)∈(FCyc)

Hp(BZGC; Q) ⊗Q[WG C] θC

(
Kq(S−1OF [C]) ⊗Z Q

)
chG

∼=
������������������

��

HG
n

(
EF in(G);K−∞S−1OF

)
⊗Z Q

��

⊕
p,q∈Z

p+q=n

⊕
(C)∈(FCyc)

Hp(BZGC; Q) ⊗Q[WG C] θC

(
Kq(FC) ⊗Z Q

)
chG

∼=
������������������

HG
n

(
EF in(G);K−∞F

)
⊗Z Q

Now, consider the composition⊕
p,q∈Z

p+q=n

⊕
(C)∈(FCyc)

Hp(BZGC; Q) ⊗Q[WG C] θC

(
Kq(S−1OF [C]) ⊗Z Q

)
(2.2)

chG

−−→∼= HG
n

(
EF in(G);K−∞S−1OF

)
⊗Z Q

↪→ HG
n

(
EVCyc(G);K−∞S−1OF

)
⊗Z Q

∼=−−→ HG
n (pt;K−∞S−1OF ) ⊗Z Q

dtr−−→ HH⊗Z

n

(
S−1OF [G]

)
⊗Z Q.

By the previous two diagrams, the composition (2.2) takes each of the direct
summands for q � −1 to zero, since Kq(FC) = 0 for q � −1 (the ring FC being
regular).

Combining the commutativity of the diagrams occurring in Theorem 1.13 and
Remark 1.14 (for R = S−1OF ), we deduce that the composition (2.2) restricted
to a direct summand with p, q � 0 and with C arbitrary factorizes through the
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Q-vector space

Hp(BZGC; Q) ⊗Q[WG C] θC

(
HH⊗Z

q (S−1OF [C]) ⊗Z Q
)
.

Using the isomorphism

HH⊗Z

∗ (S−1OF [G]) ⊗Z Q ∼= HH⊗Z

∗ (FG) ⊗Z Q,

from the vanishing result stated as Proposition 3.5 below, we conclude that the
composition (2.2) vanishes on all summands with q � 1.

Finally, Proposition 3.4 below implies that the composition (2.2) vanishes on all
summands with q = 0 and C �= {e}, and is injective on the summand for q = 0
and C = {e}. But the restriction of the composition (2.2) to the summand with
q = 0 and C = {e} is precisely the composition of the injective map (0.14) with the
Dennis trace, simply by Remark 1.14 and by construction of the map (0.14) (see
the proof of Theorem 0.13 above). This finishes the proof of Theorem 0.15.

3. The trace maps for finite cyclic groups

In this section, for a finite cyclic group C, a coefficient k-algebra R, and q � 0,
we investigate the trace map

θC

(
Kq(RC) ⊗Z Q

)
−→ θC

(
HH⊗k

q (RC) ⊗Z Q
)

(3.1)

and its variants using cyclic, periodic cyclic and negative cyclic homology. All results
concerning the map (3.1) with q > 0 will in fact be vanishing results stating that
the map is the zero map.

Remark 3.2. Note that for a commutative ring k and every k-algebra R, the
canonical maps

HH⊗Z

0 (R)

∼=
��

∼=
�� HH⊗k

0 (R)

∼=
��

HC⊗Z

0 (R)
∼=

�� HC⊗k
0 (R)

are all isomorphisms, because all four groups can be identified with R/[R,R]. The
following results about HH⊗Z

0 hence also apply to other ground rings and to cyclic
homology.

Proposition 3.3. Let G be a finite group. Suppose that the ring R is from the
following list:

(i) a finite-dimensional semisimple algebra R over a field F of characteristic
zero;

(ii) a commutative complete local domain R of characteristic zero;
(iii) a commutative Dedekind domain R whose quotient field F is an algebraic

number field and for which |G| ∈ R is invertible.

Then the trace map K0(RG) → HH⊗Z

0 (RG) is injective in cases (i) and (ii) and
is rationally injective in case (iii). This implies in all cases that for a finite cyclic
group C, the induced map,

θC

(
K0(RC) ⊗Z Q

)
−→ θC

(
HH⊗Z

0 (RC) ⊗Z Q
)



608 wolfgang lück and holger reich

is injective. Moreover, in all cases, except possibly in case (ii), the Q-vector space
θC(K0(RC) ⊗Z Q) is non-trivial.

Proof. (i) We first prove injectivity of the trace K0(RG) → HH⊗Z

0 (RG). Since
R is semisimple and the order of G is invertible in R, the ring RG is semisimple as
well; see for example [17, Theorem 6.1]. Using the Wedderburn–Artin Theorem [17,
Theorem 3.5] and the fact that the trace map is compatible with finite products of
rings and with Morita isomorphisms [18, Theorem 1.2.4 on p. 17 and Theorem 1.2.15
on p. 21], it suffices to show that the trace map

dtr : K0(D) −→ HH⊗Z

0 (D)

is injective in the case where D is a skew-field which is a finite-dimensional algebra
over a field F of characteristic zero. The following diagram commutes, where the
vertical maps are given by restriction to F :

K0(D)

res

��

dtr
�� HH⊗Z

0 (D)

res

��

K0(F ) dtr
�� HH⊗Z

0 (F )

The left vertical map can be identified with the map dimF (D) · id : Z → Z and
is hence injective. The trace map K0(F ) → HH⊗Z

0 (F ) can be identified with the
inclusion Z → F . This proves injectivity of the Dennis trace K0(RG) → HH⊗Z

0 (RG).
Let R be a finite-dimensional F -algebra. Then induction and restriction with

respect to the inclusion FG → RG induces maps

ind: K0(FG) −→ K0(RG) and res : K0(RG) −→ K0(FG)

such that res ◦ ind = dimF (R) · id. Hence the map

ind: K0(FG) ⊗Z Q −→ K0(RG) ⊗Z Q

is injective. For G = C a finite cyclic group, this restricts to an injective map

θC

(
K0(FC) ⊗Z Q

)
−→ θC

(
K0(RC) ⊗Z Q

)
.

Since F is a field of characteristic zero, there exists a commutative diagram of ring
homomorphisms

K0(QC) ⊗Z Q

��

∼=
�� map(subC, Q)

��

K0(FC) ⊗Z F
∼=

�� map(ΓF,C\ con C,F )

Here, the set con C of conjugacy classes of elements of C identifies with C. Set
m = |C| and let µm

∼= Z/mZ be the group of mth roots of 1 in an algebraic closure
of F . The action of the Galois group G(F (µm)|F ) on µm determines a subgroup
ΓF,C of (Z/mZ)× ∼= Aut(µm). An element t ∈ ΓF,C operates on con C by sending
(the conjugacy class of) the element c to ct. The set of orbits under this action is
ΓF,C\ con C. Note that for F = Q, the group ΓQ,C is the whole group (Z/mZ)×

and ΓQ,C\ con C can be identified with subC, the set of subgroups of C. So, the
first line in the diagram is a special case of the second. The right-hand vertical map
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is contravariantly induced from the quotient map ΓF,C\ con C → subC and is in
particular injective. The horizontal maps are given by sending a representation to
its character. They are isomorphisms by [32, II, § 12]. Hence θC(K0(QC) ⊗Z Q)
injects in θC(K0(FC)⊗Z F ). We have shown in Lemma 2.1 that θC(K0(QC)⊗Z Q)
is non-trivial. Hence θC(K0(RC) ⊗Z Q) is non-trivial as well.

(ii) According to Theorem 6.1 in [33], the left-hand vertical map in the
commutative diagram

K0(RG) dtr
��

��

HH⊗Z

0 (RG)

��

K0(FG) dtr
�� HH⊗Z

0 (FG)

is injective. Here F is the quotient field of R. The bottom map is injective by (i).
(iii) Since any Dedekind ring is regular, the ring R is a regular domain in which

the order of G is invertible. Hence RG and FG are regular; compare [22, Proof
of Proposition 2.14]. For any regular ring S, the obvious map K0(S) → G0(S),
with G0(S) the Grothendieck group of finitely generated S-modules, is bijective [7,
Corollary 38.51 on p. 29]. Therefore, the map K0(RG) → K0(FG) can be identified
with the map

G0(RG) −→ G0(FG).

This map has a finite kernel and is surjective under our assumptions on R and F
[7, Theorem 38.42 on p. 22 and Theorem 39.14 on p. 51]. We infer that the map
K0(RG) → K0(FG) is rationally bijective. Using the corresponding commutative
square involving the trace maps we have reduced our claim to the case (i).

Proposition 3.4. Let S−1OF be a localization of the ring of integers OF in
an algebraic number field F . Then the canonical map

K0(Z) ⊗Z Q
∼=−−→ K0(S−1OF ) ⊗Z Q

is an isomorphism and the trace map

dtr : K0(S−1OF ) ⊗Z Q −→ HH⊗Z

0 (S−1OF ) ⊗Z Q

is injective. If C is a non-trivial finite cyclic group and no prime divisor of its order
|C| is invertible in S−1OF , then

θC(K0(S−1OF C) ⊗Z Q) = 0.

Proof. According to a result of Swan [33, Proposition 9.1], the canonical map
K0(Z) ⊗Z Q → K0(S−1OF [G]) ⊗Z Q is an isomorphism for a finite group G if no
prime divisor of |G| ∈ OF occurs in S. As a consequence, the Artin defect (1.12) of
K0(S−1OF C)⊗Z Q (that is, in degree 0) vanishes. The result now follows from the
identification, which will be proved in Lemma 7.4 below, of θC(K0(S−1OF C)⊗Z Q)
with the Artin defect.

We next collect the results which state that the trace map is the zero map
in higher degrees. Note that all linear trace maps factorize through HN⊗Z

∗ . The
following result implies that they all vanish in positive degrees for suitable rings R.
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Proposition 3.5. Let F be an algebraic number field and R be a finite-
dimensional semisimple F -algebra. Then, for every finite cyclic group C and for
every n � 1, we have

HH⊗Z

n (RC) ⊗Z Q = 0 and HN⊗Z

n (RC) ⊗Z Q = 0.

Proof. Analogously to the proof of Proposition 3.3(i), one reduces the claim
to the case where the ring RC is replaced by a skew-field D which is a finite-
dimensional algebra over an algebraic number field F . Let F be a splitting field for
D, that is, a finite field extension F of F such that F ⊗F D ∼= Mn(F ), for some
n � 1; see [6, Corollary 7.22 on p. 155]. Induction and restriction for D ⊆ F ⊗F D
yield maps ind: K∗(D) → K∗(F ⊗F D) and res : K∗(F ⊗F D) → K∗(D) such
that res ◦ ind = dimF (F ) · id. Hence ind: K∗(D) → K∗(F ⊗F D) is rationally
injective. The same procedure applies to Hochschild homology, cyclic, periodic cyclic
and negative cyclic homology, and all these induction and restriction maps are
compatible with the various trace maps. Applying Morita invariance, we see that
it thus suffices to prove that

HH⊗Z

n (F ) ⊗Z Q = 0 and HN⊗Z

n (F ) ⊗Z Q = 0,

for every n � 1. For every Q-algebra A, there is obviously an isomorphism
CN⊗Z

• (A) ∼= CN⊗Q

• (A) of cyclic nerves; see § 4.2 for the notation. Hence there is
an isomorphism HX⊗Z

∗ (A) ∼= HX⊗Q

∗ (A), where HX stands for HH, HC, HP or HN.
So, we may consider HX⊗Q

∗ in place of HX⊗Z

∗ in the sequel.
By the Hochschild–Kostant–Rosenberg Theorem, one has HH⊗Q

∗ (F ) ∼= Λ∗
F
Ω1

F |Q;
compare [18, Theorem 3.4.4 on p. 103]. But Ω1

F |Q = 0 because F is a finite
separable extension of Q (see [12, Corollary 16.16]); therefore HH⊗Q

∗ (F ) ∼= F and is
concentrated in degree 0. From the long exact sequence

. . . −→ HH⊗Q

n (F ) −→ HC⊗Q

n (F ) S−−→ HC⊗Q

n−2(F ) −→ HH⊗Q

n−1(F ) −→ . . . ,

it follows that HC⊗Q

∗ (F ) is isomorphic to F in each even non-negative degree, and
is zero otherwise. Since the periodicity map S is an isomorphism as soon as its
target is non-trivial, the periodic cyclic homology is the inverse limit HP⊗Q

n (F ) =
limk HC⊗Q

n+2k(F ) and hence is concentrated in (all) even degrees, with a copy of F
in each such degree; compare [18, 5.1.10 on p. 163] and also Remark 3.6 below. In
the long exact sequence

. . . −→ HN⊗Q

n (F ) −→ HP⊗Q

n (F ) S−−→ HC⊗Q

n−2(F ) −→ HN⊗Q

n−1(F ) −→ . . .

(compare [18, Proposition 5.1.5 on p. 160]), the map S is then an isomorphism
whenever its target is non-trivial. It follows that HN⊗Q

∗ (F ) is concentrated in non-
positive even degrees (with a copy of F in each such degree).

Remark 3.6. We could not decide whether for an odd n � 1 and a finite cyclic
group C, the map θC(Kn(ZC)⊗Z Q) → θC(HN⊗Z

n (ZC)⊗Z Q), or the corresponding
map to periodic cyclic homology, is non-trivial. The calculations in [16] and [5]
show that a finer analysis of the trace map is needed in order to settle the problem.
The difficulty is that the lim1-terms in the computation of HP out of HC might
contribute to non-torsion elements in odd positive degrees.
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4. Notation and generalities

4.1. Categories and k-linear categories

Let k be a commutative ring. A k-linear category is a small category which is
enriched over k-modules, that is, each morphism set homA(c, d), with c, d ∈ objA,
has the structure of a k-module, composition of morphisms is bilinear and satisfies
the usual associativity axiom; moreover, there are unit maps k → homA(c, c), for
every object c, satisfying a unit axiom. Compare [25, I.8 on p. 27, VII.7 on p. 181].
Let R be a k-algebra. For any small category C, we can form the associated k-
linear category RC. It has the same objects as C and the morphism k-modules are
obtained as the free R-module over the morphism sets of C, that is,

homRC(c, d) = R morC(c, d).

In fact, this yields a functor R(−) from small categories to k-linear categories. Given
a k-linear category A, we denote by A⊕ the k-linear category whose objects are
finite sequences of objects of A, and whose morphisms are ‘matrices’ of morphisms
in A with the obvious ‘matrix product’ as composition. Concatenation of sequences
yields a sum denoted by ‘⊕ ’ and we hence obtain, functorially, a k-linear category
with finite sums; compare [25, VIII.2, Exercise 6 on p. 194]. If we consider a k-
algebra R as a k-linear category with one object then R⊕ is a small model for the
category of finitely generated free left R-modules.

4.2. Nerves and cyclic nerves

Let C be a small category and let A be a k-linear category. The cyclic nerve of C
and the k-linear cyclic nerve of A are respectively denoted by

CN• C and CN⊗k
• A.

Depending on the context, they are considered as a cyclic set or as a simplicial
set, respectively as a cyclic k-module or as a simplicial k-module. Recall that by
definition, we have

CN[q] C =
∐

c0,c1,...,cq ∈obj C
morC(c1, c0) × . . . × morC(cq, cq−1) × morC(c0, cq),

CN⊗k

[q] A =
⊕

c0,c1,...,cq ∈objA
homA(c1, c0) ⊗k . . . ⊗k homA(cq, cq−1) ⊗k homA(c0, cq).

The simplicial and cyclic structure maps are induced by composition, insertion of
identities and cyclic permutations of morphisms. For more details, see [35, 2.3;
14; 10]. The (ordinary) nerve of a small category C will always be considered as a
simplicial category and denoted by N•C. We will write objN•C for the underlying
simplicial set of objects.

4.3. Simplicial abelian groups and chain complexes

If we are given a simplicial abelian group M•, we denote by DK∗(M•) the
associated normalized chain complex. For a chain complex of abelian groups C∗
which is concentrated in non-negative degrees, we denote by DK•(C∗) the simplicial
abelian group that is associated to it under the Dold–Kan correspondence. For
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details see [37, § 8.4]. In particular, recall that there are natural isomorphisms
DK•(DK∗(M•)) ∼= M• and DK∗(DK•(C∗)) ∼= C∗.

The good truncation τ�0C∗ of a chain complex C∗ is defined as the non-negative
chain complex which coincides with C∗ in strictly positive degrees, has the 0-cycles
Z0(C∗) in degree 0, and only trivial modules in negative degrees. Given a bicomplex
C∗∗, we denote by

Tot⊕ C∗∗ and Tot
∏

C∗∗

the total complexes formed using, respectively, the direct sum or the direct product;
compare [37, 1.2.6 on p. 8].

4.4. Spectra, Γ-spaces and Eilenberg–Mac Lane spectra

For us, a spectrum consists of a sequence E of pointed spaces En, with n � 0,
together with pointed maps sn : S1 ∧En → En+1. We do not require that the
adjoints σn : En → ΩEn+1 of these maps are homotopy equivalences. A map of
spectra f : E → E′ consists of a sequence of maps fn : En → E′

n such that fn+1◦sn =
s′n ◦ idS1 ∧ fn. One defines in the usual way the homotopy groups as πn(E) =
colimk πn+k(Ek), with n ∈ Z. The spectrum E is connective if πn(E) = 0 for all
n < 0. A map of spectra is called a stable weak equivalence, or to be brief, an
equivalence, if it induces an isomorphism on all homotopy groups. A spectrum of
simplicial sets is defined similarly, using pointed simplicial sets in place of pointed
spaces. Such spectra can be realized and then yield spectra in the sense above. We
denote by S the sphere spectrum (as a spectrum of simplicial sets).

Let Γop denote the small model for the category of finite pointed sets whose
objects are k+ = {+, 1, . . . , k}, with k � 0, and whose morphisms are pointed
maps. A Γ-space E is a functor from the category Γop to the category of pointed
simplicial sets which sends 0+ = {+} to the (simplicial) point. Every Γ-space E

can be extended in an essentially unique way to an endofunctor of the category of
pointed simplicial sets which we again denote by E. By evaluation on the simplicial
spheres, a Γ-space E gives rise to a spectrum of simplicial sets denoted by E(S).
The realization |E(S)| is then a spectrum in the sense defined above. A Γ-space E is
called special if the map E(k+) → E(1+) × . . . × E(1+) induced by the projections
pi : k+ → 1+, with i = 1, . . . , k, is a weak equivalence for every k. Here, pi(j) is 1 if
j = i, and is + otherwise. For more information on spectra and Γ-spaces, we refer
to [3] and [24].

An important example of a Γ-space is the Eilenberg–Mac Lane Γ-space HM•
associated to a simplicial abelian group M•. Its value on the finite pointed set
k+ is given by the simplicial abelian group HM•(k+) = Z̃[k+] ⊗Z M•. Here Z[S]
denotes the free abelian group generated by the set S, and, if the set S is pointed
with s0 as base-point, then Z̃[S] = Z[S]

/
Z[s0] is the corresponding reduced group.

The spectrum HM• = |HM•(S)| is a model for the Eilenberg–Mac Lane spectrum
associated to M•. The Γ-space HM• is very special in the sense of [3, p. 98] and,
by [3, Theorem 4.2], the homotopy groups of the spectrum HM• coincide with the
(unstable) homotopy groups of (the realization of) HM•(S0) and hence of M•, and
consequently with the homology groups of the associated chain complex DK∗(M•).
So we have natural isomorphisms

π∗(HM•) ∼= π∗
(∣∣HM•(S0)

∣∣) ∼= π∗
(
|M•|

) ∼= H∗
(
DK∗(M•)

)
.(4.1)
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4.5. Cyclic, periodic cyclic and negative cyclic homology

If Z• is a cyclic object in the category of abelian groups, then we denote by
B∗∗(Z•), Bper

∗∗ (Z•) and B−
∗∗(Z•) the cyclic, periodic cyclic and negative cyclic

bicomplexes; see [18, pp. 161–162]. For the good truncations of the associated total
complexes, we write

CHC
∗ (Z•) = Tot

∏
B∗∗(Z•),

CHP
∗ (Z•) = τ�0 Tot

∏
Bper

∗∗ (Z•),
CHN

∗ (Z•) = τ�0 Tot
∏

B−
∗∗(Z•).

In order to have a uniform notation, it is also convenient to write

CHH
∗ (Z•) = DK∗(Z•).

There is a commutative diagram of chain complexes

CHN
∗ (Z•) ��

h∗
��

CHP
∗ (Z•)

��

CHH
∗ (Z•) �� CHC

∗ (Z•)

(4.2)

where the horizontal arrows are induced by inclusions of sub-bicomplexes and the
vertical arrows by projections onto quotient bicomplexes. Let k be a commutative
ring. If Z• is the k-linear cyclic nerve CN⊗k

• (A) of a k-linear category A, we
abbreviate

CHX⊗k

∗ (A) = CHX
∗

(
CN⊗k

• (A)
)
.

Here HX stands for HH, HC, HP or HN. The corresponding simplicial abelian group
and the corresponding Eilenberg–Mac Lane spectrum will be denoted

CHX⊗k

• (A) = DK•
(
CHX⊗k

∗ (A)
)
,

HX⊗k (A) = HCHX⊗k

• (A).

In particular, we have the map h : HN⊗k (A) → HH⊗k (A) induced from the map
h∗ in (4.2). If R is a k-algebra, we can consider it as a k-linear category with
one object. Then the homology groups of CHX⊗k

∗ (R) as defined above coincide in
non-negative degrees with the groups HX⊗k

∗ (R) that appear in the literature, for
instance in [18]. Often negative cyclic homology HN⊗k

∗ (R) is denoted by HC−
∗ (R)

or HC−
∗ (R|k) in the literature.

5. The trace maps

The aim of this section is to produce the diagram (1.3), that is, the trace maps as
maps of OrG-spectra. We will concentrate on the part of the diagram involving K-
theory, Hochschild homology and negative cyclic homology. The remaining arrows
are obtained by straightforward modifications.

5.1. The trace maps for additive categories

We now review the construction of K-theory for additive categories, and of the
map h and the trace maps ntr and dtr for k-linear categories with finite sums,
following the ideas of [27, 11, 9].
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The following commutative diagram is natural in the k-linear category A:

CHN⊗k

[0] (A) = DK0(C
HN⊗k
∗ (A))

h0

��

�� DK•(C
HN⊗k
∗ (A)) = CHN⊗k

• (A)

h•=DK•(h∗)

��

objA dtr0
��

ntr0

��

CHH⊗k

[0] (A) = CN
⊗k
0 A �� DK•(C

HH⊗k
∗ (A)) ∼= CN⊗k• (A)

(5.1)

Here, the lower horizontal map dtr0 is given by sending an object to the
corresponding identity morphism. The lift ntr0 of this map is explicitly described
on [27, p. 286]. The remaining horizontal maps are just the inclusions of the zero
simplices. The vertical maps are induced by the map h∗ in diagram (4.2). The
isomorphism in the bottom right corner is a special case of the natural isomorphism
DK•(DK∗(M•)) ∼= M•; compare § 4.3. It will be considered as an identification in
the following.

The model for the trace maps, for a given k-linear category with finite sums
A, will be obtained by replacing A in the diagram above by a suitable simplicial
k-linear Γ-category. On the K-theory side, we will use the fact that A has finite
sums; on the Hochschild side, we will use the k-linear structure.

Let A be a small category with finite sums. We can then apply the Segal
construction which yields a Γ-category SegA, that is, a functor from Γop to the
category of small categories; compare [9, Definition 3.2] and [31, § 2].

Recall that we consider the nerve of a category as a simplicial category. Let N iso
• A

be the simplicial subcategory of N•A for which the objects in N iso
[q] A are q-tuples of

composable isomorphisms in A, whereas there is no restriction on the morphisms.
Observe that objN iso

• C = objN• iso C, where iso C stands for the subcategory of
isomorphisms.

The connective K-theory spectrum K(A) can now be defined as the spectrum
associated to the Γ-space objN iso

• SegA, that is,

K(A) =
∣∣(objN iso

• SegA)(S)
∣∣.(5.2)

For a comparison with other definitions of K-theory, see [36, § 1.8].
We proceed to discuss the trace maps. Let A be a k-linear category with finite

sums. Recall that ∆ is the category of finite ordered sets [n] = {0 � 1 � . . . � n},
with n � 0, and monotone maps as morphisms. Observe that N iso

• SegA is a functor
from ∆op × Γop to k-linear categories and it hence makes sense to apply the cyclic
nerve constructions. Since the diagram (5.1) is natural in A, we obtain maps of
simplicial Γ-spaces (alias natural transformations of functors from ∆op ×∆op ×Γop

to the category of pointed sets)

DK• CHN⊗k

∗ N iso
• SegA

h••

��

objN iso
• SegA dtr••

��

ntr••
��

CN⊗k
• N iso

• SegA

(5.3)

Here objN iso
• SegA is constant in one of the simplicial directions. Taking the

diagonal of the two simplicial directions and passing to the associated spectra yields
the model for the trace maps that we will use. It remains to identify the objects
on the right in (5.3) with our more standard definitions of Hochschild and negative
cyclic homology.
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Lemma 5.4. Let A be a k-linear category with finite sums. There is a zigzag of
stable weak equivalences, natural in A, between

HN⊗k (A) = HDK• CHN⊗k

∗ A

h

��

∣∣(DK• CHN⊗k

∗ N iso
• SegA)(S)

∣∣
| h••(S)|

��

and

HH⊗k (A) = HCN⊗k
• A

∣∣(CN⊗k
• N iso

• SegA)(S)
∣∣

Proof. Consider, for each q, the inclusion of the zero simplices

i : A = N iso
[0] A −→ N iso

[q] A.

There are a left inverse p (forget everything but the 0th object) and an obvious
natural transformation between i ◦ p and the identity which is objectwise an
isomorphism. This induces a special homotopy equivalence [27, Definition 2.3.2]
and hence in particular a homotopy equivalence of cyclic nerves

CN⊗k
• A 	−−→ CN⊗k

• N iso
• A,

which passes to a chain homotopy equivalence on the negative cyclic construction;
compare [27, Proposition 2.4.1]. So we get rid of the N iso

• in the expressions above.
The rest now follows by applying the following lemma to the map

H(h•) : H DK• CHN⊗k

∗ SegA −→ H CN⊗k
• SegA

of bi-Γ-spaces, provided we can prove that the source and the target are both
special in both variables (see § 4.4). Specialness in the Eilenberg–Mac Lane-variable
is standard and follows immediately from the definition of the functor H(−). Being
special in the Segal-variable means in the case of the first bi-Γ-space that for every
l+ and k+, the following composition is a weak equivalence:

Z̃[l+] ⊗Z

(
CN⊗k

• SegA(k+)
)
−→ Z̃[l+] ⊗Z

(
CN⊗k

• (A× . . . ×A)
)

−→ Z̃[l+] ⊗Z

(
CN⊗k

• A× . . . × CN⊗k
• A

)
−→ Z̃[l+] ⊗Z CN⊗k

• A× . . . × Z̃[l+] ⊗Z CN⊗k
• A.

This is clearly true for the last map. The Segal construction is designed in such
a way that SegA(k+) → A × . . . × A is an equivalence of categories. By [27,
Proposition 2.4.1], this passes to an equivalence on the cyclic constructions and
yields that the first map is an equivalence. Proposition 2.4.9 in [27] deals with the
second map. The argument for the second bi-Γ-space is analogous.

Lemma 5.5. Suppose that (k+, l+) 	→ A(k+, l+) is a bi-Γ-space which is special
in both variables, that is, for every fixed l+, the Γ-space k+ 	→ A(k+, l+) is special,
and similarly in the other variable. Then there is a natural zigzag of stable weak
equivalences of spectra of simplicial sets between

A(1+,S) and A(S, 1+).

Proof. There is a naive definition of a bi-spectrum (of simplicial sets) as a
collection E of pointed simplicial sets En,m, with n � 0 and m � 0, together
with horizontal and vertical pointed structure maps σh : En,m ∧S1 → En+1,m and
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σv : S1 ∧En,m → En,m+1 satisfying

σh ◦ (σv ∧S1) = σv ◦ (S1 ∧σh).

After some choice of a poset map µ : N0 → N0 × N0 satisfying a suitable cofinality
condition, for example µ(2n) = (n, n) and µ(2n + 1) = (n + 1, n), one can form the
diagonal spectrum diagµ E; compare [15, § 1.3].

A bi-Γ-space A is a functor from Γop to the category of Γ-spaces, denoted by
k+ 	→ A(k+,−), and such that A(0+, l+) is the (simplicial) point for each l+.
Every bi-Γ-space A gives rise to a simplicial bi-spectrum A(S,S′) in the naive sense
above, with A(S,S′)n,m = A(Sn, Sm). Here S′ is just a copy of the simplicial sphere
spectrum S which we want to distinguish in the notation.

There are maps of bi-Γ-spaces

A(1+, k+ ∧ l+) ←− k+ ∧A(1+, l+) −→ A(k+, l+)

which extend to maps of bi-spectra. We claim that for every pointed simplicial set
Y , the corresponding maps of simplicial spectra

A(1+, Y ∧S) ←− Y ∧A(1+,S) −→ A(Y,S)(5.6)

are stable weak equivalences. For the first map, this is [3, Lemma 4.1] and no
specialness assumption is needed. For the second map, one argues as follows. For a
pointed simplicial set X, the simplicial set A(1+,X) is at least as connected as X
[24, Proposition 5.20]. Now, the composition

k+ ∧A(1+,X) −→ A(k+,X) −→ A(1+,X) × . . . × A(1+,X)

is the inclusion of a k-fold wedge into the corresponding k-fold product and hence
roughly twice as connected as A(1+,X). Since the second map is a weak equivalence
(by the assumption that A is special in the second variable), we conclude that the
connectivity of the first map grows faster than n for X = Sn. The same statement
holds for arbitrary pointed simplicial sets Y in place of k+ by a careful version
of the Realization Lemma for bisimplicial sets (realization preserves connectivity;
compare [35, Lemma 2.1.1]). So, the second map in (5.6) is indeed a stable weak
equivalence, proving the claim above.

If we now apply the elementary Lemma 1.28 from [15] (this is a Realization
Lemma for bi-spectra), we obtain a zigzag of weak equivalences of spectra of
simplicial sets between

A(1+,diagµ S∧S′) = diagµ A(1+,S∧S′)

and diagµ A(S,S′). The pointed isomorphism between S0 and the 0th simplicial set
of the spectrum diagµ S∧S′ determines uniquely a map of spectra S → diagµ S∧S′

which clearly is an isomorphism. In total, we have constructed a zigzag of stable
weak equivalences between A(1+,S) and diagµ A(S,S′). The result now follows by
symmetry (using specialness in the first variable).

Summarizing we have that for a k-linear category A with finite sums, the model
for the trace maps, at the level of spectra, is given by a commutative diagram of
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the following form ∣∣∣(DK• CHN⊗k
∗ N iso

• SegA)(S)
∣∣∣

| h••(S)|
��

�
�� . . .�




�

�� HN⊗k (A)

h

��

K(A) =
∣∣∣(objN iso

• SegA)(S)
∣∣∣ dtr

��

ntr
��

∣∣∣(CN⊗k• N iso
• SegA)(S)

∣∣∣ �
�� . . .�




�

�� HH⊗k (A)

5.2. The trace maps as maps of spectra over the orbit category

We will now define the OrG-spectra representing K-theory, Hochschild homology
and other cyclic homology theories, and the trace maps which appear in (1.3).

Given a G-set S, let GG(S) denote the associated transport groupoid, that is, the
category whose objects are the elements of S and where the set of morphisms from
s ∈ S to t ∈ S is given by mor(s, t) = {g ∈ G | gs = t}. Given a k-algebra R we
can compose the functor GG(?) with the functors R(−) and (−)⊕ (compare § 4.1)
to obtain a functor

RGG(?)⊕ : OrG −→ k-Cat⊕, G/H 	−→ RGG(G/H)⊕,

where k-Cat⊕ denotes the category of small k-linear categories with finite sums,
whose morphisms are k-linear functors (and hence respect the sum; compare [25,
VIII.2, Proposition 4 on p. 193]). The idempotent completion IdemA of a category
A has as objects the idempotent endomorphisms in A, that is, morphisms p : c → c
with p ◦ p = p; a morphism from p : c → c to q : d → d is given by a morphism
f : c → d with q ◦ f = f ◦ p. The idempotent completion of a k-linear category
is again k-linear. For a small category C, the idempotent completion of RC⊕ is a
k-linear category with finite sums. For an arbitrary ring S, the category Idem S⊕
is a small model for the category of finitely generated projective left S-modules.

Let R be a k-algebra and H a subgroup of G. Consider the commutative diagram
of k-linear categories

RH ��

��

RH⊕ ��

��

IdemRH⊕

��

RGG(G/H) �� RGG(G/H)⊕ �� Idem RGG(G/H)⊕

(5.7)

The vertical functors are all induced from considering H as the full subcategory
of GG(G/H) on the object eH ∈ G/H = objGG(G/H). All vertical functors are
k-linear equivalences and the two right-hand functors are cofinal inclusions into the
corresponding idempotent completions. Hence it follows from [27, Propositions 2.4.1
and 2.4.2] that all functors in the diagram above induce equivalences if one applies
Hochschild homology or one of the cyclic homology theories, that is, HX⊗k (−).
Observe that our K-theory functor K(−) can only be applied to the four categories
on the right (they have finite sums). The two right-hand vertical maps induce
isomorphisms on all higher K-groups; however, K0 may differ for a category with
finite sums and its idempotent completion.

Finally, define OrG-spectra KR(?) and HX⊗k R(?) by

KR(G/H) = K IdemRGG(G/H)⊕,(5.8)
HX⊗k R(G/H) = HX⊗k RGG(G/H).(5.9)
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Here again HX stands for HH, HC, HP or HN. Compare (5.2) and the
notation introduced in § 4.5. The discussion above and the one in § 4.5 verify all the
isomorphisms claimed in (1.4).

Now, apply the construction of (5.3) in the case where the additive category A is
Idem RGG(G/H)⊕. Using the equivalences (discussed above) induced by the map
Idem RGG(G/H)⊕ ← RGG(G/H) and the equivalences appearing in the diagram
at the end of § 5.1, we obtain a commutative diagram of connective OrG-spectra
of the shape

′HN⊗k R

��

′′HN⊗k R
	





��

	
�� . . .	




	

�� HN⊗k R

h

��

KR
dtr

��

ntr

��											
′HH⊗k R ′′HH⊗k R

	




	
�� . . .	




	

�� HH⊗k R

where all arrows labelled with a ‘� ’ (in particular all those pointing left) are
objectwise stable weak equivalences.

6. Equivariant homology theories, induction and Mackey structures

A G-homology theory is a collection of functors HG
∗ (−) = {HG

n (−)}n∈Z from the
category of (pairs of) G-CW -complexes to the category of abelian groups, which
satisfies the G-analogues of the usual axioms for a generalized homology theory;
compare [22, 2.1.4].

For example, every OrG-spectrum E = E(?) gives rise to a G-homology theory
HG

∗ (−;E) by setting, for a G-CW -complex X,

HG
∗ (X;E) = π∗

(
X?

+ ∧
OrG

E(?)
)

and more generally, for a pair of G-CW -complexes (X,A),

HG
∗ (X,A;E) = π∗

(
(X+/A+)? ∧

OrG
E(?)

)
.

Here, for a G-space Y , the symbol Y+ denotes the space Y with a disjoint base-point
added (viewed as a G-fixpoint), and Y ? stands for the fixpoint functor mapG(−, Y ),
considered as a contravariant functor from OrG to the category of spaces; and
X?

+ ∧OrG E(?) is the balanced smash product of a contravariant pointed OrG-
space and a covariant OrG-spectrum. It is constructed by applying levelwise the
balanced smash product

Y ∧
Or G

Z = coequ
( ∨

f∈mor Or G Y (t(f))∧Z(s(f))
��
��

∨
G/H∈Or G Y (H)∧Z(H)

)
(6.1)

of a contravariant pointed OrG-space Y (?) and a covariant pointed OrG-space
Z(?); here, s(f) stands for the source and t(f) for the target of the morphism
f ∈ mor OrG, coequ is the coequalizer, and the two indicated maps are defined
by f∗ ∧ id and id∧ f∗ on the wedge-summand corresponding to f . We repeat
that HG

∗ (pt;E) identifies with π∗(E(G/G)). For details, we refer to [8] and [22,
Chapter 6].

For a group homomorphism α : H → G and an H-CW -complex X, let indα X be
the quotient of G × X by the right action of H given by (g, x)h = (gα(h), h−1x).
An equivariant homology theory H?

∗ = H?
∗(−) consists of a G-homology theory for

each group G together with natural induction isomorphisms

indα : HH
∗ (X,A)

∼=−−→ HG
∗ (indα X, indα A)
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for each group homomorphism α : H → G and each H-CW -pair (X,A) such that
ker α acts freely on X. The induction isomorphisms need to satisfy certain natural
axioms; compare [22, 6.1]. We refer to the collection of induction isomorphisms as
an ‘induction structure’.

Suppose that an OrG-spectrum D(?) is a composition of functors D = E◦GG(?),
where E : Groupoids → Sp is a functor from the category of small groupoids to
the category of spectra. If E is a homotopy functor, that is, sends equivalences
of groupoids to stable weak equivalences of spectra, then, according to [22,
Proposition 6.10] and [30], there is a ‘naturally’ defined induction structure for the
collection of G-homology theories, one for each group G, given by HG

∗ (−;E ◦ GG).
Hence each homotopy functor E : Groupoids → Sp determines an equivariant
homology theory H?

∗(−;E ◦ GG).
Given an equivariant homology theory H?

∗(−), one can, for each n ∈ Z, construct
a covariant functor from FGINJ, that is, the category of finite groups and injective
group homomorphisms, to Ab, that is, the category of abelian groups, by setting

M∗ : FGINJ −→ Ab, G 	−→ HG
n (pt);(6.2)

for a group monomorphism α : H ↪→ G, we define M∗(α) as the composition

M∗(H) = HH
n (pt) indα−−−−→ HG

n

(
G/α(H)

) HG
n (pr)−−−−−→ HG

n (pt) = M∗(H),(6.3)

where pr is the projection onto the point.
A Mackey functor M is a pair (M∗,M

∗) consisting of a co- and a contravariant
functor FGINJ → Ab which agree on objects, that is, M∗(H) = M∗(H) (merely
denoted by M(H)), and satisfy the following axioms.

(i) For an inner automorphism cg : G → G, h 	→ g−1hg with g ∈ G one has
M∗(cg) = id: M(G) → M(G).

(ii) If f : G
∼=−−→ H is an isomorphism, then one has M∗(f) ◦ M∗(f) = id and

M∗(f) ◦ M∗(f) = id.
(iii) There is a double coset formula, that is, for two subgroups H,K � G, one

has

M∗(i : K → G
)
◦ M∗

(
i : H → G

)
=

∑
KgH∈K\G/H

M∗
(
cg : H ∩ g−1Kg → K

)
◦ M∗(i : H ∩ g−1Kg → H

)
,

where cg(h) = g−1hg and i in each case denotes the inclusion.
If, for every n ∈ Z, the covariant functor M∗ that we associated in (6.2) and (6.3)

to an equivariant homology theory H?
∗(−) can be extended to a Mackey functor,

then we say that the equivariant homology theory admits a ‘Mackey structure’.
Let R be a k-algebra. We will consider compositions of functors of the form

OrG
GG (−)

�� Groupoids
R(−)⊕

�� k-Cat⊕
F

�� Sp.

Recall that k-Cat⊕ denotes the category of small k-linear categories with finite
sums.

The OrG-spectra in which we are mainly interested, namely KR(?) and
HX⊗k R(?), are defined (up to equivalence for HX⊗k R(?)) as such a composition
with F being the composite functor K◦Idem(−) for the former (see (5.2) and (5.8)),
and being HX⊗k (−) for the latter (see § 4.5 and the discussion following diagram
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(5.7), and (5.9)). It turns out that the non-connective K-theory OrG-spectrum
K−∞R(?) of Example 1.2 is also such a composition. In that case F is the Pedersen–
Weibel functor (defined on Cat⊕); compare [28]. Up to equivalence a model for
the (−1)-connective covering map of OrG-spectra KR(?) → K−∞R(?) mentioned
in Example 1.2 is induced by a specific natural transformation between the
corresponding functors F.

So, consider a functor F : k-Cat⊕ → Sp. We call F a homotopy functor if it takes
k-linear equivalences to stable weak equivalences of spectra. We call F additive if
for all k-linear functors f, g : A → B between k-linear categories with finite sums,

π∗(F(f ⊕ g)) = π∗(F(f)) + π∗(F(g))(6.4)

holds; here, f ⊕ g : A → B is the composition

A
diag

�� A×A
f×g

�� B × B ⊕
�� B,

where diag denotes the diagonal embedding and ⊕ is the sum in B.

Proposition 6.5. Suppose that F : k-Cat⊕ → Sp is a homotopy functor.
Then, the composite functor F ◦ R(−)⊕ is a homotopy functor; in particular, it
determines an equivariant homology theory whose underlying G-homology theory,
for a group G, is given by the OrG-spectrum FRGG(?)⊕, that is, by

HG
∗

(
X,A;FRGG(?)⊕

)
= π∗

(
(X+/A+)? ∧

OrG
FRGG(?)⊕

)
.

If F is additive then this equivariant homology theory admits a Mackey structure.

Proof. The first part is clearly true. For the second, we need to define the
contravariant half of the Mackey functor and verify the axioms. For a given ring S let
F(S) denote the category of finitely generated free left S-modules, which is of course
not a small category. If we consider a group H as a groupoid with one object, then
RH⊕ is a small model for the category of finitely generated free left RH-modules
and there is an inclusion functor iH : RH⊕ → F(RH) which is an equivalence of
categories. We choose a functor pH : F(RH) → RH⊕ such that pH ◦ iH � id and
iH ◦ pH � id. Here, f � g indicates that there exists a natural transformation
through isomorphisms. Given a homomorphism α : H → G between finite groups,
there are the usual induction and restriction functors indα : F(RH) → F(RG)
and resα : F(RG) → F(RH). For n ∈ Z, we define induction and restriction
homomorphisms

indα : πn

(
FRH⊕

)
−→ πn

(
FRG⊕

)
and resα : πn

(
FRG⊕

)
−→ πn

(
FRH⊕

)
as indα = πn(F(pG ◦ indα ◦iH)) and resα = πn(F(pH ◦ resα ◦iG)). Since f � g
implies πn(F(f)) = πn(F(g)), this does not depend on the choice of pH and pG.

Unravelling the definitions, one checks that under the identifications

M(H) = πn

(
pt?+ ∧

OrG
FRGG(?)⊕

) ∼= πn

(
FRGG(H/H)⊕

) ∼= πn

(
FRH⊕

)
,

the induction homomorphism M∗(α) from (6.3) coincides with the induction
homomorphism that we have just constructed. Using the same identifications, we
consider the map resα constructed above as a map M(G) → M(H) and denote
it by M∗(α). The axioms now follow since each of the remaining equalities
corresponds to a well-known natural isomorphism between functors on categories
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of finitely generated free left modules; for the third axiom, one uses (6.4), that is,
additivity of F.

The functors F that are responsible for K−∞(?), K(?) and HX⊗k (?) are
homotopy invariant and additive. We hence obtain the corresponding equivariant
homology theories with Mackey structures given, at a group G, by HG

∗ (−;KR),
HG

∗ (−;K−∞R) and HG
∗ (−;HX⊗k R). The maps between these theories that

are induced from the maps of OrG-spectra that we have discussed above are
compatible with the induction and Mackey structures.

7. Evaluating the equivariant Chern character

In this section, we prove Theorem 1.13 which is a slight improvement of results
in [20].

In the previous section we have verified that the assumptions of Theorem 0.1
and of Theorem 0.2 in [20] are satisfied in the case where the equivariant homology
theory H?

∗(−) is given, at a group G, by HG
∗ (−;KR)⊗Z Q, by HG

∗ (−;K−∞R)⊗Z Q,
or by HG

∗ (−;HX⊗k R)⊗Z Q. Let M be a Mackey functor, for instance H 	→ HH
n (pt)

for n ∈ Z fixed. For a finite group H, recall the notation

SH

(
M(H)

)
= coker

( ⊕
K�H

indH
K :

⊕
K�H

M(K) → M(H)
)

(7.1)

from [20]. Observe for example in the case of K-theory that this specializes to
(1.12). We obtain from [20, Theorems 0.1 and 0.2], for every G-CW -complex X
which is proper (that is, with all stabilizers finite) and every n ∈ Z, a canonical
isomorphism

HG
n (X) ∼=

⊕
p+q=n

⊕
(H)∈(F in)

Hp

(
ZGH\XH ; Q

)
⊗Q[WG H] SH

(
HH

q (pt)
)
,

where (F in) denotes the set of conjugacy classes of finite subgroups of G. This
isomorphism is natural in X and also in the equivariant homology theory with
Mackey structure H?

∗(−) (that is, for natural transformations of equivariant
homology theories respecting the induction and Mackey structures). Now, take
X = EG. As in Lemma 8.1 in [23], one shows that the projections

ZGH\EGH ←− EZGH ×ZG H EGH −→ EZGH/ZGH = BZGH

induce isomorphisms on rational homology. Theorems 1.13 now follows from the
next two lemmas.

Lemma 7.2. Let R be a ring and let H be a finite group. If H is not cyclic,
then

SH

(
Kn(RH) ⊗Z Q

)
= 0 and SH

(
HX⊗k

n (RH) ⊗Z Q
)

= 0,

for all n ∈ Z.

Proof. For a group H, let Sw(H, Z) be its Swan group, that is, the Grothendieck
group of left ZH-modules which are finitely generated as abelian groups. Let
Swf (H, Z) be the Grothendieck group of left ZH-modules which are finitely
generated free as abelian groups. The obvious map Swf (H, Z) → Sw(H, Z) is
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an isomorphism; see [33, Proposition 1.1 on p. 553]. If H is a finite group,
then Swf (H, Z), and hence also Sw(H, Z), has the structure of a commutative
associative ring, where multiplication is induced by the tensor product over Z

equipped with the diagonal H-action. The tensor product over Z equipped with the
diagonal action also leads to a Swf (H, Z)-module structure, and hence a Sw(H, Z)-
module structure, on Kn(RH) for each n ∈ Z and each coefficient ring R. For
an injective group homomorphism α : H ↪→ K between finite groups, we have the
usual induction and restriction homomorphisms indK

H : Sw(H, Z) → Sw(K, Z) and
resK

H : Sw(K, Z) → Sw(H, Z). It is not difficult to check that with these structures,
Sw(−, Z) is a Green ring functor with values in abelian groups and that, for each
n ∈ Z, the functor Kn(R(−)) is a module over it (compare [20, §§ 7 and 8]). Now,
by a result of Swan [33, Corollary 4.2 on p. 560], for every finite group H, the
cokernel of the map⊕

C�H
C cyclic

indH
C :

⊕
C�H

C cyclic

Sw(C, Z) ⊗Z Q −→ Sw(H, Z) ⊗Z Q

is annihilated by |H|2. With suitable elements xC ∈ Sw(C, Z), we can hence write

|H|2 · [Z] =
∑

C�H
C cyclic

indH
C (xC).

Therefore, up to multiplication by |H|2, every element y ∈ Kn(RH) is induced from
proper cyclic subgroups, since

|H|2 · y = |H|2 · [Z] · y =
∑

C�H
C cyclic

indH
C (xC) · y =

∑
C�H

C cyclic

indH
C (xC · resH

C y).

The argument for Hochschild homology and its cyclic variants is similar. The
module structure over the Swan ring is also in that case induced by the tensor
product over Z.

Remark 7.3. More generally, the proof of Lemma 7.2 works for every
module over the rationalized Swan group Sw(−, Z) ⊗Z Q considered as a Green
ring functor. Note that such a statement does not hold in general for modules over
the rationalized Burnside ring A(−) ⊗Z Q viewed as a Green ring functor.

Lemma 7.4. Let C be a finite cyclic group and M a Mackey functor with values
in Q-modules. With notation as in (1.11) and (7.1), there is a natural isomorphism

θC

(
M(C)

) ∼= SC

(
M(C)

)
.

Proof. Let D be a subgroup of C. The ring homomorphism χC of (1.10) sends
[C/D] to (x(E))(E), where x(E) = |(C/D)E | and hence x(E) = [C : D] if E � D and
is 0 otherwise. Therefore the maps iCD and rC

D which make the diagrams

A(D)

χD

��

indC
D

�� A(C)

χC

��

A(C)

χC

��

resC
D

�� A(D)

χD

��∏
sub D Q

iC
D

��
∏

sub C Q
∏

sub C Q
rC

D
��
∏

sub D Q



detecting K-theory by cyclic homology 623

commutative are easily seen to be given as follows. The map iCD is multiplication by
the index [C : D] followed by the inclusion of the factors corresponding to subgroups
of C contained in D. The map rC

D is the projection onto the factors corresponding
to subgroups of C contained in D. In particular, χC(indC

D(θD)), considered as
a function, is supported only on (D) and takes there the value [C : D]. As a
consequence, in A(C) ⊗Z Q, we have

1 = [C/C] =
∑

D�C

1
[C : D]

indC
D(θD).

Each element in the image of the map 1 − θC : M(C) → M(C) lies in the image of
I =

⊕
D�C indD

C , because

(1 − θC)x =
( ∑

D�C

1
[C : D]

indC
D θD

)
x =

∑
D�C

1
[C : D]

indC
D(θD resC

D x).

Moreover θC : M(C) → M(C) vanishes on the image of this map I; indeed, for
D � C, it follows from the description of rC

D that resC
D(θC) = 0, and therefore

θC indC
D y = indC

D(resC
D(θC)y) = indC

D(0 · y) = 0.

So, the cokernel SC(M(C)) of I is isomorphic to the image θC(M(C)) of θC .

8. Comparing different models

In order to prove splitting results in § 9, we will work with a chain complex
version and occasionally with a simplicial abelian group version of the equivariant
homology theory that is associated to Hochschild homology. In the present section,
we define these versions and prove that they all agree.

Again, we fix a group G. A construction analogous to the balanced smash
product (6.1), but with smash products ‘∧ ’ replaced by tensor products over Z,
and with wedge sums ‘∨ ’ replaced by direct sums, yields the notion of balanced
tensor product M(?) ⊗ZOrG N(?) of a co- and a contravariant ZOrG-module
M(?) and N(?). Here by definition a co- or contravariant ZOrG-module is a
co- respectively contravariant functor from OrG to abelian groups. Let C∗ = C∗(?)
be a covariant ZOrG-chain complex, that is, a functor from the orbit category to
the category of chain complexes of abelian groups. We define the G-equivariant
Bredon hyperhomology of a pair of G-CW -complexes (X,A) with coefficients in
C∗ as

HG
∗ (X,A;C∗) = H∗

(
Tot⊕

(
C̃sing

∗ ((X+/A+)?) ⊗ZOrG C∗(?)
))

.

Here, for a pointed G-space Y = (Y, y0) (where y0 is a G-fixpoint), the functor which
sends G/H to the reduced singular chain complex of Y H is denoted by C̃sing

∗ (Y ?).
In this construction, up to canonical isomorphism, we can replace C̃sing

∗ (−) by the
reduced cellular chain complex C̃cell

∗ (−) (this will be needed in § 9.2).
For a simplicial ZOrG-module M• = M•(?), that is, a covariant functor from

OrG to the category of simplicial abelian groups, we define similarly

HG
∗ (X,A;M•) = π∗

(∣∣Z̃[
S•((X+/A+)?)

]
⊗ZOrG M•(?)

∣∣).
Here, S• stands for the singular simplicial set associated to a topological space. For
a pointed simplicial set Y• = (Y•, y0), we set Z̃[Y•] = Z[Y•]

/
Z[y0] and the tensor

products of simplicial abelian groups are taken degreewise.
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For an OrG-spectrum E = E(?), recall that we use the notation

HG
∗ (X,A;E) = π∗

(
(X+/A+)? ∧

OrG
E(?)

)
.

A simplicial ZOrG-module M• = M•(?) gives rise to a ZOrG-chain complex
DK∗M• via the Dold–Kan correspondence and determines an OrG-spectrum HM•
via the Eilenberg–Mac Lane functor (see §§ 4.3 and 4.4). The following proposition
specializes to a well-known fact in the case where G is the trivial group.

Proposition 8.1. Let M• be a functor from OrG to simplicial abelian groups.
Then, there are natural isomorphisms of G-homology theories defined on pairs of
G-CW -complexes

HG
∗ (−;HM•)

∼=−−→ HG
∗ (−;M•)

∼=−−→ HG
∗ (−; DK∗M•).

In particular, we have natural isomorphisms

HG
∗ (−;HX⊗k R) ∼= HG

∗ (−;CHX⊗k R
• ) ∼= HG

∗ (−;CHX⊗k R
∗ ).(8.2)

Here we have used the notation

CHX⊗k R
• (?) = CHX⊗k

• RGG(?),(8.3)

CHX⊗k R
∗ (?) = CHX⊗k

∗ RGG(?),(8.4)

for the indicated simplicial ZOrG-module, respectively ZOrG-chain complex;
compare § 4.5, and (5.9).

Proof of Proposition 8.1. We discuss the first natural transformation in the
absolute case, that is, for A = ∅ (the general case is similar). For a spectrum E in
simplicial sets we denote by |E| the associated (topological) spectrum. For every
G-CW -complex X and every OrG-spectrum E = E(?) in simplicial sets, there is
a natural equivalence and, since realization commutes with taking coequalizers, a
natural homeomorphism

X+ ∧
OrG

|E| 	←−− |S•X+| ∧
OrG

|E|
∼=−−→

∣∣S•X+ ∧
OrG

E
∣∣.

Note that there is an obvious natural isomorphism of spectra

S•X+ ∧
OrG

HM•(S) ∼=
(
S•X+ ∧

OrG
HM•

)
(S).

Observe also that for an (unpointed) simplicial set Y•, there is an isomorphism of
Γ-spaces

Z[Y•] ⊗ZOrG HM• ∼= H
(
Z[Y•] ⊗ZOrG M•

)
.(8.5)

By (4.1), the homotopy groups of the spectrum associated to the right-hand side
are given by the (unstable) homotopy groups of (the realization of) Z[Y•]⊗OrG M•.

So, observing that Z̃(S•X+) ∼= Z[S•X], we see that to produce the first natural
transformation of the statement, it will suffice to define a natural transformation
of Γ-spaces

S•X+ ∧
OrG

HM• −→ Z̃[S•X+] ⊗ZOrG HM•.(8.6)
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More generally, for every contravariant functor Z• = Z•(?) from OrG to pointed
simplicial sets and every covariant functor N• = N•(?) from OrG to simplicial
abelian groups, we will construct a natural transformation

Z• ∧
OrG

N• −→ Z̃[Z•] ⊗ZOrG N•.

To produce the map we use the following facts. The left-hand side is defined as a
coequalizer in the category of pointed simplicial sets completely analogous to (6.1),
and the right-hand side similarly as a coequalizer in the category of simplicial
abelian groups. Let U denote the forgetful functor from simplicial abelian groups
to pointed simplicial sets. For a pointed simplicial set X, a simplicial abelian group
A and a family Ai, with i ∈ I, of simplicial abelian groups there are obvious natural
maps

X ∧UA −→ U(Z̃[X] ⊗ A) and
∨
i∈I

UAi −→ U

(⊕
i∈I

Ai

)
.

Given two maps f, g : A → B of simplicial abelian groups there is an obvious natural
map coequ(Uf,Ug) → U coequ(f, g). Combining these facts one easily constructs
the required natural transformation above.

Now, we show that the first natural transformation of the statement is an
isomorphism. If a natural transformation between G-homology theories induces
an isomorphism when evaluated on all orbits G/H, then it induces an isomorphism
for all pairs of G-CW -complexes by a well-known argument. Unravelling the
construction of the first natural transformation, we find that it suffices to check
that for every orbit G/H, the map(

S•(G/H)+ ∧
OrG

HM•
)
(S) −→ H

(
Z̃[S•(G/H)+] ⊗ZOrG M•

)
(S)

induced by (8.5) and (8.6) is a stable weak equivalence. Before evaluation at S, both
sides are canonically isomorphic to the Γ-space HM•(G/H) by suitable analogues
of Lemma 9.15. We leave it to the reader to verify that we indeed have G-homology
theories here; compare [8, Lemma 4.2].

We now construct the second natural transformation of the statement and prove
at the same time that it is an isomorphism. For a bisimplicial abelian group A••,
let C∗∗(A••) denote the associated bicomplex; compare [37, p. 275]. Note that
given two simplicial abelian groups C• and D•, there is a natural isomorphism
of bicomplexes DK∗(C•)⊗ZDK∗(D•) ∼= C∗∗(C•⊗ZD•), where C•⊗ZD• is viewed as
a bisimplicial abelian group. Note also that DK∗

(
Z̃[S•(X)]

)
= C̃sing

∗ (X), for every
space X. The degreewise tensor products of simplicial abelian groups appearing in
the source of the second natural transformation can be thought of as diagonals of
the corresponding bisimplicial sets. Applying all these observations and using again
the definition of the balanced tensor product in terms of coequalizers, we see that
it suffices to observe that for every pair of maps f••, g•• : A•• → B•• of bisimplicial
abelian groups, we have the following chain of isomorphisms:

π∗
(∣∣ coequ(diag f••,diag g••)

∣∣) ∼= π∗
(∣∣ diag coequ(f••, g••)

∣∣)
∼= H∗

(
Tot⊕ C∗∗(coequ(f••, g••))

)
∼= H∗

(
coequ(Tot⊕ C∗∗(f••),Tot⊕ C∗∗(g••))

)
;

here the second isomorphism is the Eilenberg–Zilber Theorem as formulated in [37,
Theorem 8.5.1 on p. 276].
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9. Splitting assembly maps

In this section, we prove Theorem 1.7 and Addendum 1.8, that is, the splitting
and isomorphism results for the assembly maps in Hochschild, cyclic, periodic cyclic
and negative cyclic homology. We begin with the case of Hochschild homology.

9.1. Splitting the Hochschild homology assembly map

Fix a group G and let S be a G-set. Recall that con G denotes the set of conjugacy
classes of G. Sending a q-simplex (g0, . . . , gq) in CN• GG(S) to the conjugacy class
(g0 . . . gq) yields a map of cyclic sets

CN• GG(S) −→ con G.

Here con G is considered as a constant cyclic set. The cyclic nerve decomposes, as
a cyclic set, into the disjoint union of the corresponding pre-images, namely

CN• GG(S) =
∐

(c)∈con G

CN•(c) GG(S).(9.1)

Observe that CN•(c) GG(G/H) �= ∅ implies that 〈c〉 is subconjugate to H. For every
small category C, we have a natural isomorphism

k CN• C ∼= CN⊗k
• kC

and, because of the isomorphism RC ∼= R ⊗k kC, also

CN⊗k
• RC ∼= (CN⊗k

• kC) ⊗k (CN⊗k
• R).(9.2)

We therefore obtain an induced decomposition for the k-linear cyclic nerve of
RGG(S), that we denote by

CN⊗k
• RGG(S) =

⊕
(c)∈con G

CN⊗k

•(c) RGG(S)(9.3)

=
⊕

(c)∈con G

CN⊗k

•(c) kGG(S) ⊗k CN⊗
• R.(9.4)

For typographical reasons we introduce an abbreviation for the corresponding
decomposition of simplicial ZOrG-modules:

CHH⊗k R
• (?) =

⊕
(c)∈con G

CHH⊗k R
•(c) (?);(9.5)

see (8.3) for the notation. Using the identifications (8.2) and the decomposition
(9.5), we can identify the Hochschild homology generalized assembly map

HG
n (EF (G);HH⊗k R)

assembly
�� HG

n (pt;HH⊗k R) ∼= HH⊗k
n (RG)

appearing in diagram (1.6) with the upper horizontal map in the following
commutative diagram:

HG
n

(
EF (G);

⊕
(c)∈con G CHH⊗k R

•(c)
)

id⊗ prF
��

assembly
�� HG

n

(
pt;

⊕
(c)∈con G CHH⊗k R

•(c)
)

id⊗ prF
��

HG
n

(
EF (G);

⊕
(c)∈con G
〈c〉∈F

CHH⊗k R
•(c)

)
�� HG

n

(
pt;

⊕
(c)∈con G
〈c〉∈F

CHH⊗k R
•(c)

)(9.6)
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Here, the vertical maps are induced by the projection prF onto the summands
for which the cyclic subgroup 〈c〉 belongs to the family F . Note that prF is the
identity map if F contains all cyclic subgroups of G. The statement about
Hochschild homology in Theorem 1.7 now follows directly from the following two
lemmas.

Lemma 9.7. For every family F , the left vertical map in (9.6) is an isomorphism.

Lemma 9.8. For every family F , the bottom map in (9.6) is an isomorphism.

The proofs of Lemmas 9.7 and 9.8 will occupy the rest of this subsection. They
rely on the following computation of the cyclic nerve of a transport groupoid.

Let E•G be the simplicial set given by N•GG(G/1). In words: consider G as a
category with G as set of objects and precisely one morphism between any two
objects, and then take the nerve of this category. This is a simplicial model for
the universal free G-space which is usually denoted by EG. For c ∈ G let 〈c〉 be
the cyclic subgroup generated by c. For h ∈ NG〈c〉, let Rh ∈ mapG(G/〈c〉, G/〈c〉)
be the map given by Rh(g〈c〉) = gh〈c〉. For every G-set S, precomposing with Rh

yields a left action of ZG〈c〉 � NG〈c〉 on mapG(G/〈c〉, S).

Proposition 9.9. For a group G, choose a representative c ∈ (c) for each
conjugacy class (c) ∈ con G. Let 〈c〉 denote the cyclic subgroup it generates. There
is a map of OrG-simplicial sets (depending on the choice)∐

(c)∈con G

E•ZG〈c〉 ×ZG 〈c〉 mapG(G/〈c〉, ?) −→ CN• GG(?).

This map is objectwise a simplicial homotopy equivalence, and is compatible with
the decomposition (9.1) of the target.

Remark 9.10. There seems to be no obvious cyclic structure on the source of
the map above.

Proof of Proposition 9.9. We first introduce some more notation. Given a
groupoid G, we denote by autG its category of automorphisms, that is, the
category whose objects are automorphisms h : s → s in G and where a morphism
from h : s → s to h′ : t → t is given by a morphism g : s → t satisfying h′ ◦g = g ◦h.
In the case where G = GG(S), the conjugacy class (h) ∈ con G associated to an
object h : s → s in autGG(S) does only depend on the isomorphism class of this
object. This yields a well-defined map of simplicial sets

N• autGG(S) −→ con G,

s0

h0
��

s1

h1
��

g0


 . . .

g1


 sq

hq
��

gq−1




s0 s1g0


 . . .g1



 sq
gq−1




	−→ (h0),

where con G is considered as a constant simplicial set. Let aut(c) GG(S) denote
the full subcategory of autGG(S) on the objects h : s → s with h ∈ (c). The
decomposition of the nerve into pre-images under the map to conG above is given by

N• autGG(S) =
∐

(c)∈con G

N• aut(c) GG(S).
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The components of the map in Proposition 9.9 are obtained as the composition of
the three maps

E•ZG〈c〉 ×ZG 〈c〉 mapG(G/〈c〉, ?) �� N•GZG 〈c〉( mapG(G/〈c〉, ?)
)

��




















N• aut(c) GG(?) �� CN•(c) GG(?)

which are constructed in the following lemma. Proposition 9.9 is an immediate
consequence of that lemma.

Lemma 9.9. Let G be a group and S a G-set.
(i) There is a simplicial isomorphism E•G ×G S → N•GG(S).
(ii) For (c) ∈ con G, choose a representative c ∈ (c). There is an equivalence of

categories

GZG 〈c〉( mapG(G/〈c〉, S)
)
−→ aut(c) GG(S),

which depends on the choice.
(iii) For every groupoid G, there is a simplicial isomorphism

N• autG −→ CN• G.

If G = GG(S) then the isomorphism commutes with the maps to con G.
All three constructions are natural with respect to S.

Proof. (i) The isomorphism E•G ×G S → N•GG(S) is given, on level q, by[
g0 g1

g0g−1
1



 . . .
g1g−1

2


 gq , s

]
	−→

(
g0s

gq−1g−1
q



 g1s
g0g−1

1


 . . .

g1g−1
2



 gqs
)
.

gq−1g−1
q





(ii) The functor sends an object φ ∈ mapG(G/〈c〉, S) to the automorphism
c : φ(e〈c〉) → φ(e〈c〉). Here e is the trivial element in G and c is the chosen
representative in (c). A morphism z : φ → zφ, with z ∈ ZG〈c〉, is taken to the
(iso)morphism z−1 : φ(e〈c〉) → z−1φ(e〈c〉). The functor is full and faithful and
every object in the target category is isomorphic to an image object.

(iii) The isomorphism N• autG → CN• G is given, on level q, by

s0

h0
��

s1

h1
��

g0


 . . .

g1


 sq

hq
��

gq−1




	−→
s0 s1g0



 . . .g1


 sq

gq−1




s0

h0(g0. . .gq−1)
−1




s1

g0


 . . .

g1


 sq

gq−1




The compatibility with the maps to conG is clear.

The following is the linear analogue of Proposition 9.9.

Corollary 9.12. For every conjugacy class (c) ∈ con G there is a natural
transformation of functors from the orbit category OrG to the category of simplicial
k-modules,

k[E•ZG〈c〉] ⊗kZG 〈c〉 k map(G/〈c〉, ?) ⊗k CN⊗k
• R −→ CN⊗k

•(c) RGG(?)

which is objectwise a homotopy equivalence.
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Proof. Apply the functor free k-module k(−) to the map in Proposition 9.9 and
recall the identification (9.2).

Observe that we have a decomposition of G-homology theories

HG
∗

(
−;CHH⊗k R

•
) ∼=

⊕
(c)∈con G

HG
∗

(
−;CHH⊗k R

•(c)
)
,(9.13)

because the tensor product over the orbit category and homology both commute
with direct sums. For each of the summands, we have the following computation.

Proposition 9.14. For every G-CW -complex X and every (c) ∈ con G, there
is a natural isomorphism

HG
∗

(
X;CHH⊗k R

•(c)
) ∼= H∗

(
X〈c〉 ×ZG 〈c〉 EZG〈c〉; CN⊗k

• R
)
.

Proof. On the level of simplicial abelian groups, Corollary 9.12, in combination
with Lemma 9.15, yields

Z̃[S•X
?
+] ⊗ZOrG CHH⊗k R

•(c) (?)

� Z̃[S•X
?
+] ⊗ZOrG k[E•ZG〈c〉] ⊗kZG 〈c〉 k map(G/〈c〉, ?) ⊗k CN⊗k

• R

∼= Z̃[S•X
〈c〉
+ ] ⊗ZZG 〈c〉 Z[E•ZG〈c〉] ⊗Z CN⊗k

• R,

and hence the result follows.

Lemma 9.15. Let F be a contravariant functor from OrG to simplicial k-
modules. Then, for every subgroup H � G, there is a natural isomorphism

F (?) ⊗kOrG k mapG(G/H, ?) ∼= F (G/H).

We can now finish the proof of the part of Theorem 1.7 concerned with Hochschild
homology.

Proof of Lemmas 9.7 and 9.8. Compute the relevant maps in diagram (9.6)
by using (9.13) and Proposition 9.14. Observe that by the very definition of
EF (G), we have EF (G)〈c〉 = ∅ if and only if 〈c〉 ∈ F . So the projection id⊗prF
is the zero map exactly on those summands which are trivial anyway. This proves
Lemma 9.7. For 〈c〉 ∈ F , the map EF (G)〈c〉 → pt is a homotopy equivalence.
Therefore,

EF (G)〈c〉 × EZG〈c〉 −→ pt×EZG〈c〉
is an equivalence of free ZG〈c〉-spaces and hence remains an equivalence if we
quotient out the ZG〈c〉-action. This establishes Lemma 9.8.

The following example gives a further illustration of the computation achieved
above.

Example 9.16. Combining (8.2), the isomorphism (9.13) and Proposition 9.14,
we get, for every G-CW -complex X, a decomposition

HG
∗ (X;HH⊗k R) ∼=

⊕
(c)∈con G

H∗
(
X〈c〉 ×ZG 〈c〉 EZG〈c〉;CHH⊗k

∗ (R)
)
,
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where each direct summand on the right-hand side is the (non-equivariant)
hyperhomology of the space X〈c〉×ZG 〈c〉 EZG〈c〉 with coefficients in the Hochschild
complex, that is, in the k-chain complex

CHH⊗k

∗ (R) = DK∗(CN⊗k
• R).

In the case R = k, the degree zero inclusion k → CHH⊗k (k) is a homology
equivalence and hence a chain homotopy equivalence, because both complexes are
bounded below and consist of projective k-modules. Thus, we infer that

H∗
(
X〈c〉 ×ZG 〈c〉 EZG〈c〉;CHH⊗k

∗ (k)
) ∼= H∗

(
X〈c〉 ×ZG 〈c〉 EZG〈c〉; k

)
for each conjugacy class (c), and therefore

HG
∗

(
X;HH⊗k R

) ∼=
⊕

(c)∈con G

H∗
(
X〈c〉 ×ZG 〈c〉 EZG〈c〉; k

)
.

In the special case where X = pt and R = k, we rediscover the well-known
decomposition of k-modules

HH⊗k (kG) ∼=
⊕

(c)∈con G

H∗
(
BZG〈c〉; k

)
.(9.17)

If we insert X = EF (G) for an arbitrary family of subgroups F , we obtain

HG
∗

(
EF (G);HH⊗k R

) ∼=
⊕

(c)∈con G
〈c〉∈F

H∗
(
BZG〈c〉; k

)
,

because EF (G)〈c〉×EZG〈c〉 is a model for EZG〈c〉 if 〈c〉 ∈ F and is empty otherwise.
The map EF (G) → pt induces the obvious inclusion.

Remark 9.18. Of course one does not need the elaborate set-up using spectra,
nor Theorem 1.7, in order to prove the well-known decomposition (9.17). But our
aim was to compare the Hochschild assembly map with the one for K-theory.
There is no chain complex version of the assembly map on the level of K-theory.
Furthermore, our effort has the pay off that it can be generalized to topological
Hochschild homology and its refinements. This will be explained in joint work of
John Rognes, Marco Varisco and the authors.

9.2. Splitting cyclic, periodic cyclic and negative cyclic assembly maps

Observe that the sum decomposition (9.3) is compatible with the cyclic structure.
Keeping notation as in (8.4), we hence obtain a decomposition

CHX⊗k R
∗ (?) =

⊕
(c)∈con G

CHX⊗k R
∗(c) (?)

of ZOrG-chain complexes. Compare with the splitting (9.5). There is consequently
a version of diagram (9.6) with CHH⊗k R

•(c) replaced everywhere by CHX⊗k R
∗(c) , and

where the upper horizontal map corresponds to the generalized assembly map for
HX-homology. In order to prove the cyclic homology part of Theorem 1.7 and to
establish Addendum 1.8, it suffices to obtain the analogues of Lemmas 9.7 and 9.8
with CHH⊗k R

•(c) replaced everywhere by CHX⊗k R
∗(c) . However, this follows immediately

from the following proposition.
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Proposition 9.19. Let X → X ′ be a map of G-CW -complexes and Z•(?) →
Z ′
•(?) be a map of cyclic ZOrG-modules, that is, a natural transformation between

functors from the orbit category OrG to the category of cyclic abelian groups. Keep
notation as at the beginning of § 4.5.

If the induced map

HG
∗

(
X;CHH

∗ (Z•)
)
−→ HG

∗
(
X ′;CHH

∗ (Z ′
•)

)
is an isomorphism, then the map

HG
∗

(
X;CHC

∗ (Z•)
)
−→ HG

∗
(
X ′;CHC

∗ (Z ′
•)

)
is an isomorphism. If moreover X and X ′ are finite G-CW -complexes, then also
the maps

HG
∗

(
X;CHP

∗ (Z•)
) ∼=−−→ HG

∗
(
X ′;CHP

∗ (Z ′
•)

)
,

HG
∗

(
X;CHN

∗ (Z•)
) ∼=−−→ HG

∗
(
X ′;CHN

∗ (Z ′
•)

)
are isomorphisms.

Proof. There is a short exact sequence of chain complexes

0 −→ CHH
∗ (Z•) −→ CHC

∗ (Z•) −→ CHC
∗ (Z•)[−2] −→ 0,

which is natural in Z•; see [18, 2.5.10 on pp. 78–79]. We use here the notation C∗[r]
for the chain complex which is shifted down r steps, that is, (C∗[r])n = Cn+r.
Since Tot⊕ and C̃cell

∗ (X?
+)⊗ZOrG (−) are exact functors (we use here the fact that

C̃cell
∗ (X?

+) is a free ZOrG-module), the maps induced by X → X ′ and Z• → Z ′
•

lead to a short exact ladder diagram of chain complexes. The corresponding long
exact ladder in homology, the fact that HG

∗ (X;CHH
∗ (Z•)) and HG

∗ (X;CHC
∗ (Z•)) are

concentrated in non-negative degrees, and an easy inductive argument based on the
Five Lemma finish the proof for cyclic homology.

In order to prove the statement for periodic cyclic homology, one uses the fact
that the periodic cyclic complex can be considered as the inverse limit of the tower
of cyclic complexes

. . . −→ CHC
∗ (Z•)[4] −→ CHC

∗ (Z•)[2] −→ CHC
∗ (Z•)[0].(9.20)

For n � 0, we have the following natural maps:

HG
n

(
X;CHP

∗ (Z•)
) ∼= Hn

(
Tot⊕

(
C̃cell

∗ (X?
+) ⊗ZOrG lim

r
CHC

∗ (Z•)[2r]
))

−→ Hn

(
lim

r
Tot⊕

(
C̃cell

∗ (X?
+) ⊗ZOrG CHC

∗ (Z•)[2r]
))

−→ lim
r

Hn

(
Tot⊕

(
C̃cell

∗ (X?
+) ⊗ZOrG CHC

∗ (Z•)[2r]
))

∼= lim
r

HG
n+2r

(
X;CHP

∗ (Z•)
)
.

In Lemma 9.21 below, we show that the first map is an isomorphism if X is a
finite G-CW -complex. The second map sits in a short exact lim1-lim-sequence,
because the maps in the tower (9.20) above are all surjective and the functors
C̃cell

∗ (X?
+) ⊗ZOrG (−) and Tot⊕ preserve surjectivity; compare [37, Theorem 3.5.8

on p. 83]. Since we already know the comparison result for the lim- and lim1-terms
involving cyclic homology, a Five-Lemma argument yields the result for periodic
cyclic homology.
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It remains to prove the statement about negative cyclic homology. There is a
natural exact sequence of chain complexes [18, 5.1.4 on p. 160]

0 −→ CHN
∗ (Z•) −→ CHP

∗ (Z•) −→ CHC
∗ (Z•)[−2] −→ 0.

Again, one uses the fact that C̃cell
∗ (X?

+)⊗ZOrG (−) and Tot⊕ are exact functors to
produce a long exact ladder in homology and then uses the Five Lemma.

In the previous proof we used the following statement.

Lemma 9.21. Suppose that X is a finite G-CW -complex. Then the natural
map

Tot⊕
(

C̃cell
∗ (X?

+)⊗ZOr G lim
r

CHC
∗ (Z•)[2r]

)
∼=−−→ lim

r
Tot⊕

(
C̃cell

∗ (X?
+)⊗ZOr G CHC

∗ (Z•)[2r]
)

is an isomorphism.

Proof. There exists an exact sequence (by explicit construction of an inverse
limit)

0 −→ lim
r

CHC
∗ (Z•)[2r] −→

∞∏
r=0

CHC
∗ (Z•)[2r] −→

∞∏
r=0

CHC
∗ (Z•)[2r].

As C̃cell
∗ (X?

+) ⊗ZOrG (−) and Tot⊕ are exact functors, we see that it suffices to
study the natural map

Tot⊕
(
C̃cell

∗ (X?
+) ⊗ZOrG

∏∞
r=0 CHC

∗ (Z•)[2r]
)

��∏∞
r=0 Tot⊕

(
C̃cell

∗ (X?
+) ⊗ZOrG CHC

∗ (Z•)[2r]
)

Let C�p
∗ ⊆ C̃cell

∗ (X?
+) be the OrG-sub-complex which agrees with C̃cell

∗ (X?
+) up to

dimension p and is trivial in dimension greater than p. This yields a finite filtration
by our assumption on X. There is an induced map of filtered chain complexes

F p
∗ = Tot⊕

(
C�p

∗ ⊗ZOrG

∏∞
r=0 CHC

∗ (Z•)[2r]
)

��

′F p
∗ =

∏∞
r=0 Tot⊕

(
C�p

∗ ⊗ZOrG CHC
∗ (Z•)[2r]

)
and the induced chain map of filtration quotients F p

∗ /F p−1
∗ → ′F p

∗
/′F p−1

∗ can be
identified with the composition

Tot⊕
(
C̃cell

p (X?
+) ⊗ZOrG

∏∞
r=0 CHC

∗ (Z•)[2r]
)

��

Tot⊕
( ∏∞

r=0 C̃cell
p (X?

+) ⊗ZOrG CHC
∗ (Z•)[2r]

)

��∏∞
r=0 Tot⊕

(
C̃cell

p (X?
+) ⊗ZOrG CHC

∗ (Z•)[2r]
)
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because the tensor product with a fixed module over the orbit category, Tot⊕ and∏∞
r=0 all ‘behave well’ (in an obvious sense) with respect to taking quotients. The

second map in the composition above is clearly an isomorphism. The first map is an
isomorphism because the assumption on X implies that each C̃cell

p (X?
+) is a finitely

generated free ZOrG-module; compare [19, p. 167]. Since the filtrations are finite,
this concludes the proof.

Remark 9.22. If we only assumed that X is a G-CW -complex of finite type
instead of being finite, then one would have the same conclusion that the induced
map of filtration quotients is an isomorphism for each p, as in the proof of
Lemma 9.21, but the second filtration would not necessarily be exhaustive. The
0th module of the complex

∞∏
r=0

Tot⊕
(
C̃cell

∗ (X?
+) ⊗ZOrG CHC

∗ (Z•)[2r]
)

would for instance contain the infinite product
∏∞

r=0 C̃cell
2r (X?

+) ⊗ZOrG CHC
0 (Z•),

whereas an element that is contained in ′F p
∗ for some p has to be contained in the

corresponding infinite direct sum.
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Mathematics 248 (Birkhäuser, Basel, 2005) 269–322.

22. Wolfgang Lück and Holger Reich, ‘The Baum–Connes and the Farrell–Jones conjectures
in K- and L-theory’, Handbook of K-theory (ed. E. M. Friedlander and D. R. Grayson;
Springer, Berlin, 2005) 703–842.

23. Wolfgang Lück, Holger Reich and Marco Varisco, ‘Commuting homotopy limits and
smash products’, K-Theory 30 (2003) 137–165.

24. Manos Lydakis, ‘Smash products and Γ-spaces’, Math. Proc. Cambridge Philos. Soc. 126
(1999) 311–328.

25. Saunders MacLane, Categories for the working mathematician, Graduate Texts in
Mathematics 5 (Springer, New York, 1971).

26. Michel Matthey, ‘A delocalization property for assembly maps and an application in
algebraic K-theory of group rings’, K-Theory 24 (2001) 87–107.

27. Randy McCarthy, ‘The cyclic homology of an exact category’, J. Pure Appl. Algebra 93
(1994) 251–296.

28. E. K. Pedersen and C. A. Weibel, ‘A non-connective delooping of algebraic K-theory’,
Algebraic and geometric topology, Rutgers University, New Brunswick, 1983 (ed.
A. Ranicki, N. Levitt and F. Quinn), Lecture Notes in Mathematics 1126 (Springer, New
York, 1985) 166–181.

29. Jonathan Rosenberg, Algebraic K-theory and its applications (Springer, New York, 1994).
30. Juliane Sauer, ‘K-theory for proper smooth actions of totally disconnected groups’, PhD

Thesis, Universität Münster, 2002.
31. Graeme Segal, ‘Categories and cohomology theories’, Topology 13 (1974) 293–312.
32. Jean-Pierre Serre, Linear representations of finite groups, translated from the second

French edition by Leonard L. Scott, Graduate Texts in Mathematics 42 (Springer, New
York, 1977).

33. Richard G. Swan, ‘Induced representations and projective modules’, Ann. of Math. (2) 71
(1960) 552–578.

34. Tammo tom Dieck, Transformation groups (Walter de Gruyter, Berlin, 1987).
35. Friedhelm Waldhausen, ‘Algebraic K-theory of topological spaces. II’, Algebraic topology,

Aarhus, 1978 (ed. J. L. Dupont and I. Madsen), Lecture Notes in Mathematics 763
(Springer, Berlin, 1979) 356–394.

36. Friedhelm Waldhausen, ‘Algebraic K-theory of spaces’, Algebraic and geometric topology,
New Brunswick, NJ, 1983 (ed. A. Ranicki, N. Levitt and F. Quinn; Springer, Berlin, 1985)
318–419.

37. Charles A. Weibel, An introduction to homological algebra (Cambridge University Press,
1994).

Wolfgang Lück and Holger Reich
Westfälische Wilhelms-Universität Münster
Mathematisches Institut
Einsteinstrasse 62
D-48149 Münster
Germany

lueck@math.uni-muenster.de
http://www.math.uni-muenster.de/u/lueck

reichh@math.uni-muenster.de
http://www.math.uni-muenster.de/u/reichh


