
A ROUGH SUPER-BROWNIAN MOTION
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Abstract. We study the scaling limit of a branching random walk in static random environ-
ment in dimension d = 1, 2 and show that it is given by a super-Brownian motion in a white
noise potential. In dimension 1 we characterize the limit as the unique weak solution to the
stochastic PDE:

∂tµ = (∆+ξ)µ+
√

2νµξ̃

for independent space white noise ξ and space-time white noise ξ̃. In dimension 2 the study
requires paracontrolled theory and the limit process is described via a martingale problem. In
both dimensions we prove persistence of this rough version of the super-Brownian motion.
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Introduction

This work explores the large scale behavior of a branching random walk in a random environ-
ment (BRWRE). Such process is a particular kind of spatial branching process on Zd, in which
the branching and killing rate of a particle depends on the value of a potential V in the position
of the particle. In the model analyzed in this work, the dimension is restricted to d = 1, 2 and
the potential is chosen at random on the lattice:

V (x) = ξ(x), with {ξ(x)}x∈Zd i.i.d., ξ(x) ∼ Φ

for a given probability distribution Φ (normalized via EΦ = 0,EΦ2 = 1).
All particles behave independently of each other: To clarify the model it is convenient to

describe the behavior of a particle X in this process via its jump rates:

X(t+ ds) given X(t)


Jumps to nearest neighbor at rate ds,

Gives birth to a particle at rate ξ(X(t))+ ds,

Dies at rate ξ(X(t))− ds.

After branching, the new and the old particle follow the same rule independently of each other.
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2 A ROUGH SUPER-BROWNIAN MOTION

The BRWRE is used as a model for chemical reactions or biological processes, e.g. mutation,
in a random medium. This model is especially interesting in relation to intermittency and local-
ization [ZMRS87, GM90, ABMY00, GKS13], and other large times properties such as survival
[BGK09, GMPV10].

Scaling limits of branching particle systems have been an active �eld of research since the
early results by Dawson et al. and gave rise to the study of superprocesses (see [Eth00, DP12]
for excellent introductions). This work follows the original setting and studies the behavior
under di�usive scaling: Spatial increments ∆x ' 1/n, temporal increments ∆t ' 1/n2. The
particular nature of our problem requires us to couple the di�usive scaling with the scaling of
the environment: This is done via an �averaging parameter� % ≥ d/2, while the noise is assumed

to scale to space white noise (i.e. ξn(x) ' nd/2).
The di�usive scaling of spatial branching processes in a random environment has already been

studied, for example by Mytnik [Myt96]. As opposed to the current setting, the environment in
Mytnik's work renews itself independently in time. Thus on large scales it behaves like space-time
white noise, instead of space white noise. This has the advantage that the model is amenable to
probabilistic martingale arguments, which are not available in the space white noise case that we
investigate here. Therefore, we replace some of the probabilistic tools with arguments of a more
analytic �avor. Nonetheless, at a purely formal level our limiting process is very similar to the
one obtained by Mytnik, up to exchanging space-time with space white noise: See for example
the SPDE representation (2) below. Moreover, our approach is reminiscent of the conditional
log-laplace transform, that is conditional duality, appearing in later works by Cri³an [Cri04],
Mytnik and Xiong [MX07]. Notwithstanding these resemblances, we shall see later that some
statistical properties of the two processes di�er substantially.

At the heart of our study of the BRWRE lies the following observation. If u(t, x) indicates the
numbers of particles in position x at time t, then the conditional expectation given the realization
of the random environment, w(t, x) = E[u(t, x)|ξ], solves a linear PDE with stochastic coe�cients
(SPDE), which is a discrete - in the sense that the spatial variable is restricted to a lattice -
version of the parabolic Anderson model (PAM):

(1) ∂tw(t, x) = ∆w(t, x) + ξ(x)w(t, x), (t, x) ∈ R≥0 × R, w(0, x) = w0(x).

The PAM has been object of study both in the discrete and in the continuous setting (see
[Kön16] for an overview). In the latter case (ξ is space white noise) the SPDE is not solvable
via Itô integration theory, which highlights once more the di�erence between the current setting
and the work by Mytnik. In particular, in dimension d = 2, 3 the study of the continuous PAM
requires special analytical and stochastic techniques in the spirit of rough paths, such as the
theory of regularity structures [Hai14] or of paracontrolled distributions [GIP15]. In dimension
d = 1 classical analytical techniques are su�cient. In dimension d ≥ 4 no solution is expected to
exist, because the equation is no longer locally subcritical. Local subcriticality is a notion that
in the present context was introduced by Hairer [Hai14], and it means that on small scales the
equation is well approximated by a linear equation with additive noise. The dependence of the
subcriticality condition on the dimension is explained by the fact that white noise loses regularity
as the dimension increases.

Moreover, in dimension d = 2, 3 certain functionals of the white noise need to be tamed with
a technique called renormalization, with which we remove certain diverging singularities. In this
work, we restrict to dimensions d = 1, 2 as this simpli�es several calculations. At the level of
the 2-dimensional BRWRE, the renormalization has the e�ect of slightly tilting the centered
potential by considering instead an e�ective potential:

ξne (x) = ξn(x)−cn, cn ' log(n),

which means that our system is out of criticality, albeit very slightly when confronted with the
other orders of magnitude involved.
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The special character of the noise and the analytic tools just highlighted allow, in a nutshell,
to �x one realization of the environment - outside a nullset - and to derive a scaling limit for
that single realization. Tightness of the measure-valued process then follows via a study of the
associated martingale problem, whereas the uniqueness of the limit is shown by duality, which is
similar to the case of classical super-Brownian motion (SBM), but di�erent from the uniqueness
proof in [Myt96], where duality is not available.

For �averaging parameter� % > d/2 a law of large numbers holds: The process converges to the
continuous PAM. Instead, for % = d/2 one captures �uctuations from the branching mechanism
and the limiting process can be characterized via duality or a martingale problem (see Theorem
2.13) and is referred to in this work as rough super-Brownian motion (rSBM). In dimension
d = 1, following the analogous results for SBM by [KS88, Rei89], the rSBM admits a density
which in turn solves the SPDE:

(2) ∂tµ(t, x) = ∆µ(t, x)+ξ(x)µ(t, x)+
√

2νµ(t, x)ξ̃(t, x), (t, x) ∈ R≥0 × R, µ(0, x) = δ0(x),

where ξ̃ is space-time white noise that is independent of the space white noise ξ, and where
ν = EΦ+. The solution is weak both in the probabilistic and in the analytic sense (see Theorem
2.19 for a precise statement). This means that the last product represents a stochastic integral in
the sense of Walsh [Wal86] and the space-time noise is constructed from the solution. Moreover,
the product ξ·µ is de�ned only upon testing with functions in the random domain of the Anderson
Hamiltonian H = ∆+ξ, a random operator that was introduced by Fukushima-Nakao [FN77]
in d = 1 and by Allez-Chouk [AC15] in d = 2, see also [Lab18] for d = 3. This notion of solution
should be expected. Indeed, the fact that the solutions are probabilistically weak is due to the
presence of the super-Brownian non-linearity, since even for the classical SBM the existence of
probabilistically strong solutions is open. In addition, the expected local Hölder regularity in

space of the solution is C
1/2−ε
loc , for any ε > 0, due to the presence of the space-time white noise.

This means that the product ξ ·µ is a priori not well-de�ned. Although the path-wise theories of
regularity structures and paracontrolled distributions aim exactly at �nding spaces of functions
where such products are well-de�ned, the presence of the singular non-linearity

√
2νµ makes this

equation currently untreatable in such a framework (see however [CT19] for some progress on
�nite-dimensional rough path di�erential equations with square root nonlinearities).

One of the main motivations for this work was the aim to understand the SPDE (2) in d = 1

and the corresponding martingale problem in d = 2. For ξ̃ = 0, equation (2) is just the PAM
which we can only solve with pathwise methods, while for ξ = 0 we obtain the classical SBM, for
which the existence of pathwise solutions is a long standing open problem and for which we only
have probabilistic martingale techniques. So the challenge was to combine these two approaches,
and the weak formulation based on the Anderson Hamiltonian allows us to do exactly that,
we can transfer all the pathwise regularity analysis into the construction of the domain of H
and then only use martingale analysis on the level of the process µ. A similar point of view
was recently taken by Corwin-Tsai [CT18] who deal with the multiplicative linear stochastic
heat equation driven by independent space and space-time white noises in d = 1 (where no
paracontrolled analysis is required), and to a certain extent also in [GUZ18].

Coming back to the rSBM, we conclude this work with a proof of persistence of the process
in dimension d = 1, 2. More precisely we even show that with positive probability we have
µ(t,K) → ∞ for all compact sets K ⊂ Rd with non-empty interior. This is opposed to what
happens for the classical SBM, where persistence holds only in dimension d ≥ 3, whereas in
dimensions d = 1, 2 the process dies out: See [Eth00, Section 2.7] and the references therein. Even
more extreme is the case of SBM in a random, white in time, environment: Under the assumption
of a heavy-tailed spatial correlation function Mytnik and Xiong [MX07] prove extinction in �nite
time in any dimension. Note also that in [Eth00, MX07] the process is started in the Lebesgue
measure, whereas here we prove persistence if the initial value is a Dirac mass. Intuitively,
this phenomenon can be explained by the presence of �very favorable regions� in the random
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environment: With positive probability, one particle survives long enough to reach a favorable
region, and once it arrives there the mass grows exponentially.

Structure of the Work

After clarifying the notation and introducing some �rst analytical tools, we present the model
for our branching process in random environment. In Assumption 2.1 we state the probabilistic
requirements on the random environment. In the spirit of rough paths, the probabilistic as-
sumptions allow us to �x a null set outside of which certain analytical conditions are satis�ed,
see Lemma 2.4 for details. We then introduce the model, although a rigorous construction of
the (random) Markov process is a bit subtle because of the unbounded branching rates, and we
postpone it to Section A of the Appendix. We also state the main results in Section 2, namely
the law of large numbers (Theorem 2.10), the convergence to the rSBM (Theorem 2.13), the
representation as an SPDE in dimension d = 1 (Theorem 2.19) and the persistence of the pro-
cess (Theorem 2.21). We then proceed to the proofs. In Section 3 we study the discrete and
continuous PAM both on the real line and on a box with Dirichlet boundary conditions. In the
�rst case, we recall the results from [MP17] and adapt them to the current setting. In the second
case, we introduce the techniques developed by Chouk and van Zuijlen [CvZ19] to study (para-
controlled) equations on boxes with Dirichlet boundary conditions. We extend these techniques
to the lattice, mimicking the construction of [MP17]. The required stochastic calculations are
postponed to Section C of the Appendix.

With these techniques at our disposal, we prove the convergence in distribution of the BRWRE
in Section 4. First, we show tightness by using a mild martingale problem (see Remark 4.1) which
�ts well with our analytical tools. We then show the duality of the process to the SPDE (6).
Eventually we use duality to deduce the uniqueness of the limit points of the BRWRE and thus
we get its weak convergence.

Since our only way of constructing the rSBM is through this weak convergence, the parameter
ν = EΦ+ in (2) must be in (0, 1/2]. In Section 4.2 we show how to recover all values of ν by
mixing our process with a classical Dawson-Watanabe superprocess.

In Section 5 we derive some properties of the rough super-Brownian motion: We show that
in d = 1 it is the weak solution to an SPDE, where the key point is that the random measure
admits a density w.r.t. the Lebesgue measure, as proven in Lemma 5.1. We also show that the
process survives with positive probability, which we do by relating it to the rSBM on a �nite
box with Dirichlet boundary conditions and by applying the spectral theory for the Anderson
Hamiltonian on that box. To construct the rSBM with Dirichlet boundary conditions we need
to study a modi�cation of the BRWRE, where all particles that reach the boundary are killed.
This process and its scaling limit are described in Section 5.3.

1. Notations

We de�ne N = {1, 2, . . .}, N0 = N ∪ {0} and ι =
√
−1. We write Zdn for the lattice 1

nZ
d, for

n ∈ N, and since it is convenient we also set Zd∞ = Rd. Let us recall the basic constructions
from [MP17], where paracontrolled distributions on lattices were developed. De�ne the Fourier
transforms for k, x ∈ Rd

FRd(f)(k) =

∫
Rd

dx f(x)e−2πι〈x,k〉, F−1
Rd (f)(x) =

∫
Rd

dk f(k)e2πι〈x,k〉

as well as for x ∈ Zdn, k ∈ Tdn (with Tdn = n[−1/2, 1/2]d /∼ being the n-dilatation of the torus Td
and �∼� being the relation that glues two opposing edges):

Fn(f)(k) =
1

nd

∑
x∈Zdn

f(x)e−2πι〈x,k〉, k ∈ Tdn, F−1
n (f)(x) =

∫
Tdn

dk f(k)e2πι〈x,k〉.
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Consider ω(x) = |x|σ for some σ ∈ (0, 1). We then de�ne Sω and S ′
ω as in [MP17, De�ni-

tion 2.8]. Roughly speaking Sω is a subset of the usual Schwartz functions, and S ′
ω consists of

ultradistributions, a generalization of Schwartz distributions with more permissive growth con-
ditions for |x| → ∞. We also introduce the space %(ω) of admissible weights as in [MP17,
De�nition 2.7]. For our purposes it su�ces to know that for any a ∈ R≥0, l ∈ R, the functions
p(a) and e(l) belong to %(ω), where

p(a)(x) = (1 + |x|)−a, e(l)(x) = e−l|x|
σ
.

Moreover, we �x functions %, χ in Sω supported in an annulus and a ball respectively, such
that for %−1 = χ and %j(·) = %(2−j ·), j ∈ N0, the sequence {%j}j≥−1 forms a dyadic partition

of the unity. We also assume that supp(χ), supp(%) ⊂ (−1/2, 1/2)d and write jn ∈ N for the
smallest index such that supp(%j) 6⊆ n[−1/2, 1/2]d. For j < jn and ϕ : Zdn → R we de�ne the
Littlewood-Paley blocks

∆n
j ϕ = F−1

n

(
%jFn(ϕ)

)
, ∆n

jnF
−1
n

(
(1−

∑
−1≤j<jn

%j)Fn(ϕ)
)

and de�ne for α ∈ R, p, q ∈ [1,∞] and z ∈ %(ω) the discrete weighted Besov spaces Bα
p,q(Zdn, z)

via the norm:
‖ϕ‖Bαp,q(Zdn,z) =

∥∥(2jα‖∆n
j ϕ‖Lp(Zdn,z)

)
j≤jn‖`q(≤jn)

where ‖ϕ‖Lp(Zdn,z) =
(∑

x∈Zdn n
−d|z(x)ϕ(x)|p

)1/p
and ‖ · ‖`q(≤jn) is the classical `q norm with

the sum truncated at the jn-th term. We write C α(Zdn, z) for Bα
∞,∞(Zdn, z) and C α

p (Zdn, z) for

Bα
p,∞(Zdn, z). The same de�nitions and notations are assumed for the classical Besov spaces on the

whole space Bα
p,q(Rd, z), which are de�ned analogously (with ∆jϕ = ∆∞j ϕ = F−1

Rd (ρjFRdϕ) for

all j ≥ −1, and j∞ =∞). We also consider the extension operator E n : Bα
p,q(Zdn, z)→ Bα

p,q(Rd, z)
as in [MP17, Lemma 2.24]. We denote with C∞c (Rd) the space of smooth and compactly sup-
ported functions and with Cb(Rd) the space of continuous and bounded functions.

Remark 1.1. In the setting we just introduced, we can decompose the (in the continuous case a
priori ill-posed) product of two distributions ϕ,ψ as:

ϕ · ψ = ϕ4 ψ+ϕ� ψ+ψ 4 ϕ, ϕ4 ψ =
∑

1≤i≤jn

∆n
<i−1ϕ∆n

i ψ, ϕ� ψ =
∑
|i−j|≤1
−1≤i,j≤jn

∆n
i ϕ∆n

j ψ

with ∆n
<i−1ϕ =

∑
−1≤j<i−1 ∆n

j ϕ. Here we explicitly allow the case n = ∞. To simplify the
notation and because it will be clear from the context, we do not include n in the notation for 4
and �. We call ϕ4 ψ the paraproduct, and ϕ� ψ the resonant product.

Now we consider time-dependent functions. Fix an (arbitrary) time horizon T > 0 and assume
we are given an increasing family of normed spaces X = (X(t))t∈[0,T ] with decreasing norms
(X(t) ≡ X(0) is allowed). Usually we will use this to deal with time-dependent weights and
take X(t) = C α(Zdn, e(l + t)) for some α, l ∈ R. We then write CX for the space of continuous
functions ϕ : [0, T ] → X(T ) endowed with the supremum norm ‖ϕ‖CX = supt∈[0,T ] ‖ϕ(t)‖X(t).

For α ∈ (0, 1) we sometimes quantify the time regularity via CαX = {f ∈ CX : ‖f‖CαX <∞},
where

‖f‖CαX = ‖f‖CX + sup
0≤s<t≤T

‖f(t)−f(s)‖X(t)

|t−s|α
.

To control a blowup of the norm of order γ ∈ [0, 1) as t→ 0 we also de�ne the spaces M γX of
functions f : (0, T ] → X(T ) with norm ‖ϕ‖M γX = supt∈(0,T ] t

γ‖ϕ(t)‖X(t). Finally, we need the
following parabolically scaled spaces

L γ,α
p (Zdn, e(l)) =

{
f ∈ C([0, T ],S ′

ω) : f ∈M γC α(Zdn, e(l+·)), t 7→ tγf(t) ∈ Cα/2Lp(Zdn, e(l+·))}.
See [MP17, De�nition 3.8] for these constructions.
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We will write Ln = ∂t−∆n, where ∆n is the discrete Laplacian (for x, y ∈ Zdn we say x ∼ y if
|x−y| = n−1):

∆nϕ(x) =
1

n2

∑
y∼x

(ϕ(y)−ϕ(x)),

and ∆∞ = ∆ is the usual Laplacian. We stress that ∆n without subscript always denotes the
discrete Laplacian, while ∆n

j always denotes a Littlewood-Paley block. The following estimates
will be useful in the discussion ahead.

Lemma 1.2. The estimates below hold uniformly over n ∈ N ∪ {∞} (recall that Zd∞ = Rd).
Consider z, z1, z2, z3 ∈ %(ω) and α, β ∈ R. We �nd that:

‖ϕ4 ψ‖Cαp (Zdn;z1z2) . ‖ϕ‖Lp(Zdn;z1)‖ψ‖Cα(Zdn;z2),

‖ϕ4 ψ‖
Cα+βp (Zdn;z1z2)

. ‖ϕ‖
C βp (Zdn;z1)

‖ψ‖Cα(Zdn;z2), if β < 0,

‖ϕ� ψ‖
Cα+βp (Zdn;z1z2)

. ‖ϕ‖
C βp (Zdn;z1)

‖ψ‖Cα(Zdn;z2) if α+β > 0.

Similar bounds hold if we estimate ψ in a Cp Besov space and therefore ϕ in C = C∞. And for
any γ ∈ [0, 1), ε ∈ [0, 2γ] ∩ [0, α), 0 < α < 2 and any δ > 0 we can bound:

‖ϕ‖
L
γ−ε/2,α−ε
p (Zdn;z)

. ‖ϕ‖L γ,α
p (Zdn;z).

Moreover, for the operator C1(ϕ,ψ, ζ) = (ϕ4 ψ) � ζ − ϕ(ψ � ζ) we have:

‖C1(ϕ,ψ, ζ)‖
C β+γp (Zdn;z1z2z3)

. ‖ϕ‖Cαp (Zdn;z1)‖ψ‖C β(Zdn;z2)‖ζ‖C γ(Zdn;z3),

if β+γ < 0, α+β+γ > 0.

Proof. The proof of the �rst three estimates is contained in [MP17, Lemma 4.2] and the fourth
estimate comes from [MP17, Lemma 3.11]. In that lemma the case ε = 2γ < α is not included,
but it follows by the same arguments (since [GP17, Lemma A.1] still applies in that case). The
last estimate is provided by [MP17, Lemma 4.4]. �

For two functions ψ,ϕ : Rd → R we de�ne 〈ψ,ϕ〉 = ∫ dx ψ(x)ϕ(x). For two functions
ψ,ϕ : Zdn → R we write:

〈ψ,ϕ〉n =
1

nd

∑
x∈Zdn

ψ(x)ϕ(x),
(
ψ,ϕ

)
=
∑
x∈Zdn

ψ(x)ϕ(x)

and whenever there is no danger of misunderstanding we write 〈ψ,ϕ〉 instead of 〈ψ,ϕ〉n. We also
use the following notation for convolutions:

f ∗ g(x) =

∫
Rd

dy f(x−y)g(y), for f, g : Rd → R,

f ∗n g(x) =
1

nd

∑
y∈Zdn

f(x−y)g(y), for f, g : Zdn → R.

Moreover, for f, g : Rd → R if supp(FRdf), supp(FRdg) ⊂ (−n/2, n/2)d, then f ∗ g = f ∗n g and
we will use the two notations without distinction.

Finally, for a metric space E we denote with D([0, T ];E) and D([0,+∞);E) the Skorohod
space equipped with the Skorohod topology (cf. [EK86, Section 3.5]).

We will also write M (Rd) for the space of positive �nite measures on Rd with the weak
topology, which is a Polish space (cf. [DP12, Section 3]).
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2. The Model

We consider a branching random walk in a random environment (BRWRE). This will be a
process on the lattice Zdn, for n ∈ N and dimension d = 1, 2, and we are interested in the limit
n → ∞. The evolution of this process depends on the environment it lives in. Therefore, we
start by discussing the environment before introducing the Markov process.

A deterministic environment is a sequence {ξn}n∈N of potentials on the lattice, i.e. functions
ξn : Zdn → R. The environment we will work with will be chosen randomly. A random environ-
ment is a sequence of probability spaces (Ωp,n,F p,n,Pp,n) together with a sequence {ξnp }n∈N of

measurable maps ξnp : Ωp,n × Zdn → R.
Assumption 2.1 (Random Environment). We assume that {ξnp (x)}x∈Zdn is a set of i.i.d random
variables which satisfy:

(3) n−d/2ξnp (x) ∼ Φ, ∀n ∈ N
for a probability distribution Φ on R which �nite moments of every order and which satis�es

E[Φ] = 0, E[Φ2] = 1.

Remark 2.2. For clarity, in this setting it follows that ξnp converges in distribution to a white

noise ξp on Rd, in the sense that:

〈ξnp , f〉n =
1

nd

∑
x∈Zdn

ξnp (x)f(x) −→ ξp(f)

for any continuous f with compact support.

To separate the randomness coming from the potential from that of the branching random
walks it will be convenient to freeze the realization of ξnp and to consider it as a deterministic
environment. But of course we cannot expect to obtain reasonable scaling limits (or even a
well de�ned branching random walk) for all deterministic environments. Therefore, we need
to identify certain analytical properties that hold for typical realizations of random potentials
satisfying Assumption 2.1. The reader only interested in random environments may skip the
following assumption and use it as a black box, since by Lemma 2.4 below it is satis�ed for
random environments satisfying Assumption 2.1.

Assumption 2.3 (Deterministic environment). Let ξn be a deterministic environment and let
Xn be the solution to the equation −∆nXn = χ(D)ξn = F−1

n (χFnξ
n) in the sense explained in

[MP17, Section 5.1], where χ is a smooth function equal to 1 outside of (−1/4, 1/4)d and equal
to zero on (−1/8, 1/8)d. Consider a regularity parameter

α ∈ (1, 3
2) in d = 1, α ∈ (2

3 , 1) in d = 2.

We assume that the following holds:

(i) There exists ξ ∈
⋂
a>0 C α−2(Rd, p(a)) such that for all a > 0:

sup
n
‖ξn‖Cα−2(Zdn,p(a)) < +∞ and E nξn → ξ in C α−2(Rd, p(a)).

(ii) For any a, ε > 0 we can bound:

sup
n
‖n−d/2ξn+‖C−ε(Zdn,p(a)) + sup

n
‖n−d/2|ξn|‖C−ε(Zdn,p(a)) < +∞

as well as for any b > d/2:

sup
n
‖n−d/2ξn+‖L2(Zdn,p(b)) < +∞.

Moreover, there exists ν ≥ 0 such that the following convergences hold:

E nn−d/2ξn+ → ν, E nn−d/2|ξn| → 2ν

in C−ε(Rd, p(a)).
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(iii) If d = 2 there exists a sequence cn ∈ R such that n−d/2cn → 0 and distributions X ∈⋂
a>0 C α(Rd, p(a)) and X � ξ ∈

⋂
a>0 C 2α−2(Rd, p(a)) which satisfy for all a > 0:

sup
n
‖Xn‖Cα(Zdn,p(a)) + sup

n
‖(Xn � ξn)−cn‖C 2α−2(Zdn,p(a)) < +∞

and E nXn → X in C α(Rd, p(a)) and E n
(
(Xn � ξn)−cn

)
→ X � ξ in C 2α−2(Rd, p(a)).

We also say that ξ ∈ S ′
ω(Rd) is a deterministic environment satisfying Assumption 2.3 if there

exists a sequence {ξn}n∈N such that the conditions of Assumption 2.3 hold.
The next result establishes the connection between the probabilistic and the analytical condi-

tions we have stated. To formulate it we need the following sequence of diverging constants:

(4) κn =

∫
T2
n

dk
χ(k)

ln(k)
∼ log(n),

with ln being the Fourier multiplier associated to the discrete Laplacian ∆n.

Lemma 2.4. Given a random environment {ξ̄np }n∈N satisfying Assumption 2.1, there exists a

probability space (Ωp,F p,Pp) supporting random variables {ξnp }n∈N such that ξ̄np = ξnp in dis-
tribution and such that {ξnp (ωp, ·)}n∈N is a deterministic environment satisfying Assumption 2.3
for all ωp ∈ Ωp. Moreover the sequence cn in Assumption 2.3 can be chosen equal to κn (see
Equation (4)) outside of a nullset. Similarly, ν is strictly positive and deterministic outside of a
nullset and equals the expectation E[Φ+].

Proof. The existence of such a probability space is provided by the Skorohod representation
theorem. Indeed it is a consequence of Assumption 2.1 that all the convergences hold in the
sense of distributions: The convergences in (i) and (iii) follow from Lemma B.2 if d = 1 and from
[MP17, Lemmata 5.3 and 5.5] if d = 2 (where it is also shown that we can choose cn = κn). The
convergence in (ii) for ν = E[Φ+] is shown in Lemma B.1. After changing the probability space
the Skorohod representation theorem guarantees almost sure convergence, so setting ξn, ξ, cn, ν =
0 on a nullset we �nd the result for every ωp. (There is a small subtlety in the application of
the Skorohod representation theorem because C γ(Rd, p(a)) is not separable and thus not Polish
space, but we can always restrict our attention to the closure of smooth compactly supported
functions in C γ(Rd, p(a)), which is a closed separable subspace). �

Notation 2.5. A sequence of random variables {ξnp }n∈N de�ned on a common probability space
(Ωp,F p,Pp) which almost surely satis�es Assumption 2.3 is called a controlled random environ-
ment. By Lemma 2.4, for any random environment satisfying Assumption 2.1 we can �nd new
random variables on a new probability space with the same distribution, which form a controlled
random environment. For a given controlled random environment we encode the renormalization
needed in dimension d = 2 by introducing the e�ective potential:

ξnp,e(ω
p, x) = ξnp (ωp, x)−cn(ωp)1{d=2}.

If we work with a deterministic environment we will write ξne for the e�ective potential, de�ned
analogously. In addition, given a controlled random environment we de�ne H ωp as the random
Anderson Hamiltonian de�ned on the random domain DH ωp (see Lemma 3.5). If the environ-
ment is deterministic we write H ,DH instead.

We pass to the description of the particle system. This will be a (random) Markov process

on the space E =
(
NZdn

0

)
0
of functions η : Zdn → N0 with compact support, whose construction

is discussed in detail in Appendix A. We de�ne ηx 7→y(z) = η(z)+(1{y}(z)−1{x}(z))1{η(x)≥1} and

ηx±(z) = (η(z) ± 1{x}(z))+. Moreover, Cb(E) is the Banach space of continuous and bounded
functions on E endowed with the discrete topology.

De�nition 2.6. Fix an �averaging parameter� % ≥ 0 and a controlled random environment
ξnp . Let Pn be the measure on Ωp × D([0,+∞);E) de�ned as the �semidirect product measure�
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Pp n Pωp,n, where for ωp ∈ Ωp the measure Pωp,n on D([0,+∞);E) is the law under which the
canonical process unp (ωp, ·) started in unp (ωp, 0) = bn%c1{0}(x) is the Markov process associated to
the generator

L n,ωp : D(L n,ωp)→ Cb(E)

de�ned via:

(5)

L n,ωp(F )(η) =
∑
x∈Zdn

ηx ·
[∑
y∼x

n2
(
F (ηx 7→y)−F (η)

)
+ (ξne )+(ωp, x)[F (ηx+)−F (η)] + (ξne )−(ωp, x)[F (ηx−)−F (η)]

]
where the domain D(L n,ωp) is the set of all functions F ∈ Cb(E) such that the right-hand side
of Equation (5) lies in Cb(E). To unp we associate the process

µnp (ωp, t, x) = ndbn%c−1unp (ωp, t, x)

with the pairing

µnp (ωp, t)(ϕ) := 〈µnp (ωp, t), ϕ〉n =
∑
x∈Zdn

bn%c−1unp (ωp, t, x)ϕ(x)

for any function ϕ : Zdn → R. Hence µnp is a stochastic process with values in D([0,+∞); M (Rd)),
with the law induced by Pn.

Remark 2.7. Although not explicitly stated, it is part of the de�nition that ωp 7→ Pωp,n(A) is
measurable for Borel sets A ∈ B(D([0,+∞);E)).

Remark 2.8. Since all particles move and branch independently, we expect that for % → ∞
the law of large numbers applies and we obtain the expected value of the branching dynamics
conditionally on the realization of the random environment. This is why we refer to % as an
averaging parameter.

Notation 2.9. In the terminology of stochastic processes in random media, we refer to Pωp,n as
the quenched law of the process unp (or µnp ) given the noise ξnp . We also call Pn the total law.
Moreover, although clearly a deterministic environment is also a controlled random environment,
we will naturally distinguish the case in which we deal with a deterministic environment by
dropping all the subscripts p and the dependence on ωp (we will then consider the processes un

or µn).

We can now state the main results of this work. We will �rst prove quenched versions of the
convergence results: the total version is then an easy corollary. We start with a law of large
numbers.

Theorem 2.10. For any deterministic environment {ξn}n∈N satisfying Assumption 2.3 and for
averaging parameter % > d/2, let w be the solution of PAM (1) with initial condition w(0, x) =
δ0(x), as constructed in Proposition 3.1 (cf. also Remark 3.2). The measure-valued process µn

from De�nition 2.6 converges to w in probability in the space D([0,+∞); M (Rd)) as n→ +∞.

Proof. The proof can be found in Section 4.1. �

If the averaging parameter takes the critical value % = d/2, we see random �uctuations in the
limit and we end up with the rough super-Brownian motion. As in the case of the classical super-
Brownian motion, the limiting process can be characterized also via duality with the following
equation:

(6) ∂tϕ = H ϕ−κ
2
ϕ2, ϕ(0) = ϕ0,

for ϕ0 ∈ C∞c (Rd), ϕ0 ≥ 0. With some abuse of notation (since the equation above is not linear)
we write Utϕ0 = ϕ(t). Since the following de�nition is set in continuous space, we slightly
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tweak the original de�nition and say that a distribution ξ is a deterministic random environment
satisfying Assumption 2.3, if there exists a sequence ξn which satis�es Assumption 2.3 with such
ξ.

De�nition 2.11. Let ξ be a deterministic environment satisfying Assumption 2.3, let κ > 0
and let µ be a stochastic process with values in C([0,+∞); M (Rd)), such that µ(0) = δ0. Write
F = {Ft}t∈[0,+∞) for the completed and right-continuous �ltration generated by µ. We say that
µ is a rough super-Brownian motion with parameter κ if it satis�es one of the three properties
below:

(i) For any t ≥ 0 and ϕ0 ∈ C∞c (Rd), ϕ0 ≥ 0 and for U·ϕ0 the solution to Equation (6) with
initial condition ϕ0, the process

Nϕ0
t (s) = e−〈µ(s),Ut−sϕ0〉, s ∈ [0, t],

is a bounded continuous F−martingale.
(ii) For any t ≥ 0 and ϕ0 ∈ C∞c (Rd) and f ∈ C([0, t]; C ζ(Rd, e(l))) for some ζ > 0 and

l < −t, and for ϕt solving

∂sϕt + H ϕt = f, s ∈ [0, t], ϕt(t) = ϕ0,

it holds that

Mϕ0,f
t (s) := 〈µ(s), ϕt(s)〉−〈µ(0), ϕt(0)〉−

∫ s

0
dr 〈µ(r), f(r)〉, s ∈ [0, t],

is a continuous square-integrable F−martingale with quadratic variation

〈Mϕ0,f
t 〉s = κ

∫ s

0
dr 〈µ(r), (ϕt)

2(r)〉.

(iii) For any ϕ ∈ DH the process:

Lϕ(t) = 〈µ(t), ϕ〉−〈µ(0), ϕ〉−
∫ t

0
dr 〈µ(r),H ϕ〉, t ∈ [0,+∞),

is a continuous F−martingale, square-integrable on [0, T ] for all T > 0, with quadratic
variation

〈Lϕ〉t = κ

∫ t

0
dr 〈µ(r), ϕ2〉.

Every one of the three properties above is su�cient to characterize the process uniquely.

Lemma 2.12. The three conditions of De�nition 2.11 are equivalent. Moreover, if µ is a rough
super-Brownian motion with parameter κ, then the law of µ is unique.

Proof. The proof can be found at the end of Section 4.1. �

Theorem 2.13. Let {ξn}n∈N be a deterministic environment satisfying Assumption 2.3 and let
the averaging parameter % = d/2. Then the sequence {µn}n∈N converges to the rough super-
Brownian motion µ with parameter κ = 2ν and initial condition µ(0) = δ0 in distribution in
D([0,+∞); M (Rd)).

Proof. The proof can be found at the end of Section 4.1. �

Remark 2.14. Lemma 2.12 gives the uniqueness of the rough super-Brownian motion for all
parameters κ > 0, but Theorem 2.13 provides existence conditional on having an environment
which satis�es Assumption 2.3. Here a natural constraint ν ∈ (0, 1

2 ] appears, because we should

think of ν = E[Φ+] for a centered random variable Φ with E[Φ2] = 1. We can establish the
existence of the rough super-Brownian motion for general parameters κ > 0 by adding a critical
branching mechanism to the dynamics of µn, see Section 4.2 for details.
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Remark 2.15. We restrict our attention to the Dirac delta initial condition for simplicity, but
most of our arguments extend to initial conditions µ ∈ M (Rd) that satisfy 〈µ, e(l)〉 < ∞ for
all l < 0. In this case only the construction of the initial value sequence {µn(0)}n∈N is more
technical, because we need to come up with an approximation in terms of integer valued point
measures (which we need as initial condition for the particle system). The canonical choice would
be µn = n−%

∑
k∈Zdn δkbn

%µ(Q1/n(k))c, where Q1/n(k) is a box with radius 1/n centered around

k. But for % ∈ [d2 , d) and for absolutely continuous µ with bounded density this would give µn ≡ 0

for all large n. A possible solution is to discretize µ on a coarser grid than Zdn = 1
nZ

d, say on
M(n)
n Zd with M(n)� n1/2. We also need that ‖µn‖C 0

1 (Zdn,e(l)) . µn(e(l)) . µ(e(l)) for all l < 0,

which can be veri�ed by writing the discrete Littlewood-Paley blocks as discrete convolutions.
The extension to µ ∈ M (Rd) without the moment condition µ(e(l)) < ∞ or even to mea-

sures with in�nite mass seems more subtle and would need more signi�cant adaptations of our
arguments.

The previous results describe the scaling behavior of the BRWRE conditionally on the envi-
ronment, and we now pass to the unconditional statements. To a given random environment
ξnp satisfying Assumption 2.1 (not necessarily a controlled random environment) we associate a

sequence of random variables in S ′
ω(Rd) by de�ning ξnp (f) = n−d

∑
x ξ

n
p (x)f(x). The sequence

of measures Pn = Pp,nnPωp,n on S ′
ω(Rd)×D([0,+∞); M (Rd)) is then such that Pp,n is the law

of ξnp and Pωp,n is the quenched law of the branching process µnp given ξnp (cf. Appendix A).

Corollary 2.16. The sequence of measures Pn converges weakly to the measure P = PpnPωp on
S ′
ω(Rd)×D([0,+∞); M (Rd)), where Pp is the law of the space white noise on S ′

ω(Rd), and Pωp

is the quenched law of µp given ξp which is described by Theorem 2.10 if % > d/2 or by Theorem
2.13 if % = d/2.

Proof. Consider a continuous bounded function F : S ′
ω(Rd)×D([0,+∞); M (Rd))→ R. We need

to prove convergence of:
lim
n

E
[
F (ξnp , µ

n)
]
→ E

[
F (ξp, µ)

]
.

Up to changing the probability space (which does not a�ect the law) we may assume that ξnp is
a controlled random environment. We condition on the noise, rewriting the left-hand side as

E
[
F (ξnp , µ

n)
]

=

∫
Eω

p,n
[
F (ξnp (ωp), µn)

]
Pp(dωp).

Under the additional property of being a controlled random environment and for �xed ωp ∈ Ωp,
the conditional law Pωp,n on the space D([0,+∞); M (Rd)) converges weakly to the measure Pωp

given by Theorem 2.10 respectively Theorem 2.13, according to the value of %. We can thus
deduce the result by dominated convergence. �

For % > d/2 the process of Corollary 2.16 is simply the continuous parabolic Anderson model.
For % = d/2 it is a new process, which we name as follows:

De�nition 2.17. For % = d/2 we call the process µ of Corollary 2.16 an SBM in static random
environment (of parameter κ > 0).

In dimension d = 1 we characterize the process µ as the solution to the SPDE (2). First, we
rigorously de�ne solutions to such an equation.

De�nition 2.18. Consider dimension d = 1, a value κ > 0, and π ∈ M (R). A weak solution
to the SPDE

∂tµp(t, x) = H ωpµp(t, x)+
√
κµp(t, x)ξ̃(t, x), µp(0) = π,(7)

is a couple formed by a probability space (Ω,F ,P) and a random process

µp : Ω→ C([0,+∞); M (R))
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such that Ω = Ωp× Ω̄ and P is of the form PpnPωp with (Ωp,Pp) supporting a space white noise

ξp and (Ω,P) supporting a space-time white noise ξ̃ that is independent of ξ, and such that the
following properties are ful�lled for almost all ωp ∈ Ωp:

• There exists a �ltration {Fωp
t }t∈[0,T ] on the space (Ω̄,Pωp) which satis�es the usual

conditions and such that µp(ω
p, ·) is adapted to the �ltration and almost surely lies in

Lp([0, T ];L2(R, e(l))) for all p < 2 and l ∈ R. Moreover, under Pωp the process ξ̃(ωp, ·)
is a space-time white noise adapted to the same �ltration.
• The random process µp satis�es for all ϕ ∈ DH ωp :∫

R
dx µp(ω

p, t, x)ϕ(x) =

∫
R
ϕ(x)π(dx) +

∫ t

0

∫
R

ds dx µp(ω
p, s, x)(H ωpϕ)(x)

+

∫ t

0

∫
R
ξ̃(ωp, ds, dx)

√
κµp(ωp, s, x)ϕ(x), ∀t ≥ 0,

with the last integral understood in the sense of Walsh [Wal86].

Thus, we can state the existence and uniqueness of solutions to the above SPDE.

Theorem 2.19. For π = δ0 and any κ > 0 there exists a weak solution µp to the SPDE (7)
in the sense of the above equation. The law of µp as a random process on C([0,+∞); M (R)) is
unique and corresponds to a SBM in static random environment of parameter κ.

Proof. The proof can be found at the end of Section 5.1. �

As a last result, we show that rSBM is persistent in dimension d = 1, 2.

De�nition 2.20. We say that a random process µ ∈ C([0,+∞); M (Rd)) is super-exponentially
persistent if for any nonzero positive function ϕ ∈ C∞c (Rd) and for all λ > 0 it holds that:

P
(

lim
t→∞

e−tλ〈µ(t), ϕ〉 =∞
)
> 0

Theorem 2.21. Let µp be an SBM in static random environment. Then for almost all ωp ∈ Ωp

the process µp(ω
p, ·) is super-exponentially persistent.

The result follows from Corollary 5.7 and the preceding discussion.

3. Discrete and Continuous PAM & Anderson hamiltonian

We discuss the existence of solutions to PAM (1) in the discrete and continuous setting and
the interplay between the two.

Recall that the regularity parameter α from Assumption 2.3 satis�es:

(8) α ∈ (1, 3
2) in d = 1, α ∈ (2

3 , 1) in d = 2.

3.1. Spatially Global Solutions. Here we review some results from [MP17] regarding the
solution of the PAM on the whole space (see also [HL15]), and regarding the convergence of

lattice models to the PAM. We take an initial condition w0 ∈ C ζ
p (Rd, e(l)) and a forcing f ∈

M γ0C α0
p (Rd, e(l)), and consider the generalized equation

(9) ∂tw = ∆w + ξw + f, w(0) = w0

and its discrete counterpart

(10) ∂tw
n = (∆n + ξne )wn + fn, wn(0) = wn0 .

To motivate the constraints on the parameters appearing in the proposition below, let us
�rst formally discuss the solution theory in d = 1. Under Assumption 2.3 it follows from the
Schauder estimates in [MP17, Lemma 3.10] that the best regularity we can expect at a �xed

time is w(t) ∈ C α∧(ζ+2)∧(α0+2)(R, e(k)) for some k ∈ R. In fact we lose a bit of regularity, so
let ϑ < α be �large enough� (we will see soon what we need from ϑ) and assume that ζ + 2 ≥ ϑ
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and α0 + 2 ≥ ϑ. Then we expect w(t) ∈ C ϑ(R, e(k)), and the Schauder estimates suggest the
blow-up γ = max{(ϑ + ε − ζ)+/2, γ0} for some ε > 0, which has to be in [0, 1) to be locally
integrable, so in particular γ0 ∈ [0, 1). If ϑ + α − 2 > 0 (which is possible because in d = 1 we
have 2α− 2 > 0), then the product w(t)ξ is well de�ned and in C α−2(R, e(k)p(a)), so we can set
up a Picard iteration. The loss of control in the weight (going from e(k) to e(k)p(a)) is handled
by introducing time-dependent weights so that w(t) ∈ C ϑ(Rd, e(l+ t)). In the setting of singular
SPDEs this idea was introduced by Hairer-Labbé [HL15], and it induces a small loss of regularity
which explains why we only obtain regularity ϑ < α for the solution and the additional +ε/2 in
the blow-up γ.

In two dimensions the white noise is less regular and we no longer have 2α − 2 > 0, and
therefore we have to use paracontrolled analysis to solve the equation. The solution lives in a
space of paracontrolled distributions, and now we take ϑ > 0 such that ϑ+ 2α− 2 > 0.

and to solve the equation in that space we need additional regularity requirements for the
initial condition w0 and for the forcing f . More precisely, we need to be able to multiply (Ptw0)ξ

and
( ∫ t

0 Pt−sf(s) ds
)
ξ, and therefore we require now also ζ+2+(α−2) > 0 and α0+2+(α−2) > 0,

i.e. ζ, α0 > −α.
We do not provide the details of the construction and refer to [MP17] instead, where the two-

dimensional case is worked out (the one-dimensional case follows from similar, but much easier
arguments).

Proposition 3.1. Consider α as in (8), any T > 0, p ∈ [1,+∞], l ∈ R and ϑ, ζ, γ0, α0 satisfying:

(11) ϑ ∈

{
(2−α, α), d = 1,

(2−2α, α), d = 2,
ζ > (ϑ−2) ∨ (−α), γ0 ∈ [0, 1), α0 > (ϑ−2) ∨ (−α),

and let wn0 ∈ C ζ
p (Zdn, e(l)) and fn ∈M γ0C α0

p (Zdn, e(l)) such that

E nwn0 → w0, in C ζ
p (Rd, e(l)), E nfn → f in M γ0C α0

p (Rd, e(l)).
Then under Assumption 2.3 there exist unique (paracontrolled) solutions wn, w to Equation (10)

and (9). Moreover, for all γ > (ϑ−ζ)+/2∨ γ0 and for all l̂ ≥ l+T , the sequence wn is uniformly

bounded in L γ,ϑ
p (Zdn, e(l̂)):
sup
n
‖wn‖

L γ,ϑ
p (Zdn,e(l̂))

. sup
n
‖wn0 ‖C ζp (Zdn,e(l))

+ sup
n
‖fn‖M γ0C

α0
p (Zdn,e(l))

,

where the proportionality constant depends on the time horizon T and the norms of the objects
in Assumption 2.3. Moreover

E nwn → w in L γ,ϑ
p (Rd, e(l̂)).

Remark 3.2. For most applications the integrability parameter p = +∞ is su�cient. In this
work, p < ∞ is only required for the construction of the Green function associated to PAM.
Indeed the Dirac measure δ0 lies in C−d(Rd, e(l)) for any l ∈ R. This means that ζ = −d, and in
d = 1 we can choose ϑ small enough such that (11) holds, which allows us to solve the PAM (9)
in dimension d = 1 with initial condition δ0. But in d = 2 this is not su�cient, so we use instead

that δ0 ∈ C
d(1−p)/p
p (Rd, e(l)) for p ∈ [1,∞] and any l ∈ R, so that for p ∈ [1, 2) the conditions

in (11) are satis�ed.

Notation 3.3. We write

t 7→ Tnt w
n
0 +

∫ t

0
ds Tnt−sf

n
s , t 7→ Ttw0 +

∫ t

0
ds Tt−sfs

for the solution to Equation (10) and (9), respectively.

Proposition 3.1 can roughly speaking be interpreted as the convergence of the semigroup asso-
ciated to the discrete Anderson hamiltonian H n = ∆n+ξne to that of the continuous Anderson
hamiltonian H = ∆+ξ, since formally Tnt = etH

n
and Tt = etH . We are also interested in the
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martingale problem based on H , and therefore we need to rigorously construct H . This is a bit
subtle, because smooth functions are not in its domain. In �nite volume and d = 1 Fukushima-
Nakao [FN77] use Dirichlet forms for the construction, while the two-dimensional case in �nite
volume is studied by Allez-Chouk [AC15], who use paracontrolled distributions and the resolvent
equation. In in�nite volume the resolvent equation is problematic though, because we expect the
spectrum of H to be unbounded from above. Hairer-Labbé [HL18] suggest a construction based
on spectral calculus by setting H = t−1 log Tt, but this gives insu�cient information about the
domain. And constructing an in�nitesimal generator of the semigroup (Tt) is also quite subtle,
since due to the time-dependent weights Tt maps C ζ(Rd, e(l)) to C ζ∧ϑ(Rd, e(l+t)), and therefore
it does not de�ne a continuous semigroup in a Banach space. Therefore, we take an ad-hoc
approach here which is su�cient for our purpose.

Let us �rst treat the case d = 1. Then ξ ∈ C α−2(R, p(a)) for all a > 0 by assumption, where
α ∈ (1, 3

2). In particular, H u = (∆+ξ)u is well de�ned for all u ∈ C ϑ(R, e(l)) with ϑ > 2−α
and l ∈ R, and H u ∈ C α−2(R, e(l)p(a)). Our aim is to identify a subset of C ϑ(R, e(l)) on which
H u is even a continuous function. We can do this by de�ning for t > 0

Atu =

∫ t

0
Tsuds.

Then Atu ∈ C ϑ(R, e(l+t)), and by de�nition

H Atu =

∫ t

0
H Tsu ds =

∫ t

0
∂sTsuds = Ttu−u ∈ C ϑ(R, e(l + t)).

Moreover,

lim
n→∞

n(T1/n− id)Atu = lim
n→∞

n

(∫ t+1/n

t
Ts ds−

∫ 1/n

0
Tsu ds

)
= Ttu−u = H Atu,

where the convergence is in C ϑ(R, e(l+t+ε)) for arbitrary ε > 0. Therefore, we de�ne

DH = {Atu : u ∈ C ϑ(R, e(l)), l ∈ R, t ∈ [0, T ]}.
Since for u ∈ C ϑ(R, e(l)) the map (t 7→ Ttu)t∈[0,ε] is continuous in C ϑ(R, e(l+ε)) we can �nd for

all u ∈ C ϑ(R, e(l)) a sequence {um}m∈N ⊂ DH such that ‖um−u‖Cϑ(R,e(l+ε)) → 0 for all ε > 0.

Indeed, it su�ces to set um = m−1Am−1u. The same construction also works for H n instead of
H .

In the two-dimensional case (∆+ξ)u would be well de�ned whenever u ∈ C β(R2, e(l)) with
β > 2−α for α ∈ (2

3 , 1). But in this space it seems impossible to �nd a domain that is mapped
to continuous functions. And also (∆+ξ)u is not the right object to look at, we have to take
the renormalization into account and should think of H = ∆+ξ−∞. So we �rst need an
appropriate notion of paracontrolled distributions u for which can de�ne H u as a distribution.
As in Proposition 3.1 we let ϑ ∈ (2−2α, α).

De�nition 3.4. We say that un (resp. u) is paracontrolled if u ∈ C ϑ(R2, e(l)) for some l ∈ R,
and

u] = u−u4X ∈ C α+ϑ(R2, e(l)),

where we recall that X = (−∆)−1χ(D)ξ is de�ned in Assumption 2.3. For paracontrolled u we
set

H u = ∆u+ ξ 4 u+ u4 ξ + u] � ξ + C1(u,X, ξ) + u(X � ξ),
where C1 is de�ned in Lemma 1.2. The same lemma also shows that H u is a well de�ned
distribution in C α−2(R2, e(l)p(a)).

The operator Tt maps paracontrolled distributions to paracontrolled distributions, and there-
fore the same arguments as in one dimension allow us to �nd a domain DH such that for all para-
controlled u ∈ C ϑ(R2, e(l)) there exists a sequence {um}m∈N ⊂ DH with ‖um−u‖Cϑ(R2,e(l+ε)) →
0 for all ε > 0. For general u ∈ C ϑ(R2, e(l)) and ε > 0 we can �nd a paracontrolled v ∈



A ROUGH SUPER-BROWNIAN MOTION 15

C ϑ(R2, e(l)) with ‖u−v‖C ϑ(R2,e(l+ε)) < ε, because Ttu is paracontrolled for all t > 0 and con-

verges to u in C ϑ(R2, e(l+ε)) as t→ 0. Thus, we have established the following result:

Lemma 3.5. Make Assumption 2.3 and let ϑ be as in Proposition 3.1. There exists a domain
DH ⊂

⋃
l∈R C ϑ(Rd, e(l)) such that H u = limn n(T1/n− id)u ∈ C ϑ(Rd, e(l+ε)) for all u ∈

DH ∩ C ϑ(Rd, e(l)) and ε > 0 and such that for all u ∈ C ϑ(Rd, e(l)) there exists a sequence
{um}m∈N ⊂ DH with ‖um−u‖C ϑ(R2,e(l+ε)) → 0 for all ε > 0. The same is true for the discrete

operator H n (with Rd replaced by Zdn).

3.2. Bounded Domains with Dirichlet Boundary Conditions. We will discuss the results
of [CvZ19], in order to solve PAM with Dirichlet boundary conditions both on a discrete and a
continuous box. We �x the size of the box to be an arbitrary L ∈ N and de�ne N = 2L. The
main result here will be the analog of Proposition 3.1 with Dirichlet boundary conditions. We
study the equation:

(12)
∂tw(t, x) = ∆w(t, x)+ξ(x)w(t, x)+f(t, x), (t, x) ∈ (0, T )× (0, L)d,

w(0, x) = w0(x), w(t, x) = 0 on (0, T ]× ∂[0, L]d.

We consider n ∈ N ∪ {∞}, and for n = ∞ we �nd ourselves in the continuous case, which

studied in [CvZ19]. We write Λn for the lattice 1
n(Zd ∩ [0, Ln]d) (resp. Λ∞ = [0, L]d if n =∞).

Similarly, we call Θn the lattice 1
n(Zd ∩ [−Nn

2 , Nn2 ]d) /∼ with opposite boundaries identi�ed
(resp. TdN if n = ∞) and de�ne the �dual lattice� (where the Fourier transform lives) Ξn =
1
N (Zd ∩ [−Nn

2 , Nn2 ]d) /∼ , (resp. 1
NZd if n = ∞) as well as Ξ+

n = 1
N (Zd ∩ [0, Ln]d), (resp. 1

NNd0)
and ∂Ξ+

n = {k ∈ Ξ+
n : ki = 0 for some i ∈ {1, . . . , d}}.

The idea of [CvZ19] in the case n = ∞ is to consider suitable even and odd extensions of
functions on Λn to periodic functions on Θn, and then to work with the usual tools from periodic
paracontrolled distributions on Θn. So for u : Λn → R we de�ne

Πou : Θn → R, Πou(q ◦ x) =
∏

q · u(x),

Πeu : Θn → R, Πeu(q ◦ x) = u(x),

where x ∈ Λn, q ∈ {−1, 1}d and we de�ne the component-wise product q ◦ x = (qixi)i=1,...,d as

well as the total product
∏

q =
∏d
i=1 qi. We can interpret a function on Θn as being de�ned on

the whole Zdn by extending it periodically and thus in principle we would be in the same setting
as in Section 3.1. But it is convenient to make use of the periodic structure, and to work with a
discrete periodic Fourier transform, de�ned for ϕ : Θn → R by

FΘnϕ(k) =
1

nd

∑
x∈Θn

ϕ(x)e−2πι〈x,k〉, k ∈ Ξn.

As in [CvZ19] we have a periodic, a Dirichlet and a Neumann basis, which we indicate with:
{ek}k∈Ξn , {dk}k∈Ξ+

n \∂Ξ+
n
, {nk}k∈Ξ+

n
respectively. Here ek is the classical Fourier basis:

ek(x) =
e2πι〈x,k〉

N
d
2

, so that FΘnϕ(k) = N
d
2 〈ϕ, ek〉, k ∈ Ξn,

the Dirichlet basis consists of sine functions,

dk(x) =
1

N
d
2

d∏
i=1

2 sin(2πkixi), k ∈ Ξ+
n \ ∂Ξ+

n .

and the Neumann basis of cosine functions:

nk(x) =
1

N
d
2

d∏
i=1

21−1{ki=0}/2 cos(2πkixi), k ∈ Ξ+
n .
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We will not work with the explicit expressions for dk and nk, and instead mostly rely on the
following alternative characterization:

Remark 3.6. For k ∈ Ξ+
n de�ne νk = 2−#{i:ki=0}/2. Then we have:

Πodk = ιd
∑

q∈{−1,1}d

∏
q · eq◦k, ∀k ∈ Ξ+

n \ ∂Ξ+
n ,

Πenk = νk
∑

q∈{−1,1}d
eq◦k, ∀k ∈ Ξ+

n .

Notation 3.7. The following results will be stated for distributions. In the discrete case of course
any distribution is a function. Thus for l ∈ {d, n} and n <∞ we write:

S ′
l (Λn) = span {lk}k.

For n =∞ we de�ne distributions via formal Fourier series:

S ′
l ([0, L]d) =

{∑
k

αklk : |αk| ≤ C(1+|κ|γ), for some C, γ ≥ 0

}
.

In both cases the range of k depends implicitly on the choice of l (and n).

Now we want to introduce Littlewood-Paley blocks on the lattice, in order to control products
between distributions on Λn uniformly in n. First, let us recall the notion of a Fourier multiplier.
Consider a function σ+ : Ξ+

n → R. Then for ϕ ∈ S ′
l (Λn) we de�ne:

σ+(D)ϕ =
∑
k

σ+(k)〈ϕ, lk〉lk.

Upon extending ϕ in an even or odd fashion we recover the classical notion of Fourier multiplier
(namely on a torus: σ(D)ϕ = F−1

Θn
(σFΘnϕ)),

Πo

(
σ+(D)ϕ

)
=
(
Πeσ

+
)
(D)Πoϕ, Πe

(
σ+(D)ϕ

)
=
(
Πeσ

+
)
(D)Πeϕ.

Remark 3.8. We are particularly interested in radial Fourier multipliers σ. Since radial func-
tions are even, we can replace both σ+,Πeσ

+ with σ.

Fix a dyadic partition of the unity {%j}j≥−1 and jn as in Section 1, so as to de�ne for
ϕ ∈ S ′

l (Λn):

∆n
j ϕ = %j(D)ϕ for j < jn, ∆n

jnϕ =

(
1−

∑
−1≤j<jn

%j(D)

)
ϕ.

In view of the previous calculations this is coherent with our original de�nition on the lattice,
in the sense that:

Πo

(
∆n
j ϕ
)

= ∆n
j Πoϕ, Πe

(
∆n
j ϕ
)

= ∆n
j Πeϕ, −1 ≤ j ≤ jn.

We then de�ne Dirichlet and Neumann Besov spaces via the following norms:

‖u‖Bd,α
p,q (Λn) = ‖Πou‖Bαp,q(Θn) = ‖(2αj‖∆jΠou‖Lp(Θn))j‖`q(≤jn) u ∈ span{dk}k∈Ξ+

n \∂Ξ+
n
,

‖u‖Bn,α
p,q (Λn) = ‖Πeu‖Bαp,q(Θn) = ‖(2αj‖∆jΠeu‖Lp(Θn))j‖`q(≤jn), u ∈ span{nk}k∈Ξ+

n
,

and for brevity we write C α
l,p(Λn) = Bl,α

p,∞(Λn) and C α
l (Λn) = Bl,α

∞,∞(Λn) for l ∈ {n, d}. We also

write ‖u‖Lpd(Λn) = ‖Πou‖Lp(Θn) and ‖u‖Lpn(Λn) = ‖Πeu‖Lp(Θn). Moreover, we do not explicitly
include the lattice in the notation, whenever it is clear from the context on which lattice we are.
The last ingredient for multiplication in our spaces is the following identity for the extension of
products of functions:

Πe(ϕψ) = ΠeϕΠeψ, Πo(ϕψ) = ΠoϕΠeψ.
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To solve equations with Dirichlet boundary conditions, we are interested in the Laplace op-
erator with Dirichlet boundary conditions. For n < ∞ and ϕ : Λn → R we de�ne this operator
as

∆n
dϕ(x) = n2

 ∑
y∼x,
y 6∈∂Λn

(
ϕ(y)−ϕ(x)

)
+
∑
y∼x,
y∈∂Λn

−ϕ(x)

 1{Λn\∂Λn}(x).

De�ne also the domain

Dom(∆n
d ) = {ϕ : Λn → R : ϕ = 0 on ∂Λn} = span{dk}k∈Ξ+

n \∂Ξ+
n

and note that on this domain the identity ∆n
dϕ =

(
∆nΠoϕ

)
|Λn holds true.

A direct computation (Remark 3.6 in combination with [MP17, Section 3]) then shows that
we can represent the Laplacian with Dirichlet boundary conditions as a Fourier multiplier:

∆n
d dk = ln(k)dk, ln(k) =

d∑
j=1

2n2
(

cos (2πkj/n)−1
)
.

Note that ln is an even function in k, so all the remarks from the previous discussion apply. The
Laplacian with Neumann boundary conditions we simply de�ne as

∆n
nϕ :=

(
∆nΠeϕ

)
|Λn .

By the same argument as in the Dirichlet case, this as well can be represented via a Fourier
multiplier, with the same ln. We will use the following notations for the parabolic operators:

Lnd = ∂t−∆n
d , Lnn = ∂t−∆n

n , Ln = ∂t−∆n.

For n = ∞ we use the classical Laplacian: the boundary condition is encoded in the domain.
We write ∆l for the Laplacian on S ′

l ([0, L]d). The next result follows from [MP17, Lemma 3.4]
by even or odd extension.

Lemma 3.9. For α ∈ R, p ∈ [1,∞], δ ∈ [0, 1] and l ∈ {d, n} we can estimate:

‖∆n
l ϕ‖Cα−2

l,p (Λn) . ‖ϕ‖Cαl,p(Λn), ‖(∆n
l −∆l)ϕ‖Cα−2−δ

l,p ([0,L]d) . n
−δ‖ϕ‖Cαl,p([0,L]d),

where we slightly abuse notation by de�ning ∆n
l for distributions in S ′

l ([0, L]d) via the same
formula (which makes sense, because translations are well de�ned on distributions).

We introduce Dirichlet and Neumann extension operators as follows:

E n
d u = E n(Πou)

∣∣
[0,L]d

, E n
n u = E n(Πeu)

∣∣
[0,L]d

, for n <∞.

These functions are well-de�ned since for �xed n the extension En(·) is a smooth function.
Moreover a simple calculation shows that

(13) Πo(E
n
d u) = E n(Πou), Πe(E

n
n u) = E n(Πeu).

In the following we will use the notation ∆n
<iϕ =

∑
j<i ∆n

j ϕ, and we introduce the parabolic

spaces L γ,α
l,p and M γC α

l,p with the same de�nitions as in Section 1, mutatis mutandis. The
consistency between the lattice and the continuous space is then stated in terms of an extension
property. Consider a Banach space Xl ⊂ S ′

l ([0, L]d) (resp. Xl ⊂ C([0, T ],S ′
l ([0, L]d))) for l ∈

{d, n} which possesses discrete approximations Xn
l ⊂ S ′

l (Λn) (resp. Xn
l ⊂ C([0, T ],S ′

l (Λn))).
Similarly, consider a functional F which has discrete approximations Fn: For concreteness let
us write F∞ instead of F and X∞l instead of Xl. In this setting, suppose that we are given a
bound:

‖Fn(u1, . . . , um)‖Xn
l
. ‖u1‖Xn

1,l1
· · · ‖um‖Xn

m,lm
, ∀n ∈ N ∪ {∞}.

We then say that F satis�es the (E )-Property if

‖E n
l F

n(u1, . . . , um)−F∞(E n
l1u1, . . . ,E

n
lmum)‖X∞l . ε(n)c(‖u1‖Xn

1,l1
, . . . , ‖um‖Xn

m,lm
)
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for some ε(n)→ 0 as n→∞ and a continuous function c.
We also need to consider a sort of space-time paraproduct, so let θ ∈ C∞c ((0,∞)) be such that∫∞

0 θ(s) ds = 1 and de�ne for i ≥ −1 as in [MP17, De�nition 4.5]

Qiu(t) =

∫ t

−∞
22iθ(22i(t− s))u(s ∨ 0) ds.

As in [GIP15, MP17] we silently identify u with t 7→ 1{t>0}u(t) if u ∈M γX for some X.

Lemma 3.10. Consider n ∈ N∪{∞}. We de�ne the following paraproducts for u, v, w : Λn → R
(depending also on time in case of the parabolically scaled paraproduct ≺≺ ):

u4 v =
∑

1≤i≤jn

∆n
<i−1u ∆n

i v, u� v =
∑
|i−j|≤1

∆n
j u ∆n

i v, u≺≺v =
∑

1≤i≤jn

Qi(∆
n
<i−1u) ∆n

j v

as well as the following operators, which we call the �paracontrolled operators� because they form
the backbone of paracontrolled analysis:

C1(u, v, w) = (u4 v) � w−u · (v � w), C2(u, v) = u≺≺w−u4 w, C3(u, v) = Lnd (u≺≺v)−u≺≺Lnnv.

For p ∈ [1,+∞], γ ∈ [0, 1), α, β, δ ∈ R we can bound such terms uniformly in n as follows:

‖u4 v‖Cαd,p . ‖u‖Lpd‖v‖Cαn , ‖u4 v‖
Cα+βd,p

. ‖u‖
C βd,p
‖v‖Cαn , if β < 0,

‖u� v‖
Cα+βd,p

. ‖u‖
C βd,p
‖v‖Cαn , if α+β > 0,

‖u≺≺v‖M γCαp . ‖u‖M γLpd
‖v‖CCαn , ‖u≺≺v‖M γCα+βd,p

. ‖u‖
M γC βd,p

‖v‖CCαn , if β < 0,

‖u≺≺v‖L γ,α
d,p
. ‖u‖

L γ,δ
d,p

(‖v‖CCαn +‖Lnnv‖CCα−2
n

), if δ, α ∈ (0, 2).

And for the paracontrolled operators we �nd:

‖C1(u, v, w)‖Cα+δd,p
. ‖u‖

C βd,p
‖v‖Cαn ‖w‖C δn , if α+β+δ > 0, α+δ 6= 0,

‖C2(u, v)‖
M γCα+βd,p

. ‖u‖
L γ,β

d,p
‖v‖CCαn , if β ∈ (0, 2),

‖C3(u, v)‖
M γCα+β−2

d,p
. ‖u‖

L γ,β
d,p
‖v‖CCαn , if β ∈ (0, 2).

and similar bounds hold if we consider (n, n) or (n, d) instead of (d, n) boundary conditions, or
if we move the integrability constant p from one function to the other. Moreover, all estimates
satisfy the (E )-Property if the regularity on the left hand side is lowered by an arbitrary amount.

Proof. All the proofs follow via even or odd extension from [MP17, Lemmata 4.2, 4.3, 4.4, 4.7,
4.8, 4.9]. �

With the help of the above paraproduct estimates, we can solve PAM with Dirichlet boundary
conditions (12). We essentially follow verbatim the construction of [MP17], except that things
are slightly simpler now because we do not have to work with weights. Let us start with the
analytical assumption on the stochastic data. A deterministic Neumann environment is just a
sequence of functions ξn : Λn → R, for n ∈ N.

In the following assumption we shift Λn to be centered around the origin and identify it with
a subset of [−L/2, L/2]d. This is convenient because later we want to interpret processes on Λn
as �restrictions� of processes on Zdn to (large) boxes centered around the origin.

Assumption 3.11 (Deterministic Neumann environment). Let ξn be a deterministic Neumann
environment and let Xn be the solution to the equation −∆n

nX
n
n = χ(D)ξn, where χ is the same

cut-o� function as in Assumption 2.3. Consider once more a regularity parameter

(14) α ∈ (1, 3
2) in d = 1, α ∈ (2

3 , 1) in d = 2.

We assume that the following holds:
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(i) There exists ξ ∈
⋂
a>0 C α−2

n ([−L/2, L/2]d) such that:

sup
n
‖ξn‖Cα−2

n (Λn) < +∞ and E n
n ξ

n → ξ in C α−2
n ([−L/2, L/2]d).

(ii) For any ε > 0 we can bound:

sup
n
‖n−d/2ξn+‖C−εn (Λn) + sup

n
‖n−d/2|ξn|‖C−εn (Λn) + sup

n
‖n−d/2ξn+‖L2

n(Λn) < +∞

Moreover, there exists a ν ≥ 0 such that

E n
n n
−d/2ξn+ → ν, E n

n n
−d/2|ξn| → 2ν in C−εn (Λn).

(iii) If d = 2 there exists a sequence cn ∈ R such that n−d/2cn → 0 and distributions Xn, Xn�ξ
in C α

n ([−L/2, L/2]d) and C 2α−2
n ([−L/2, L/2]d) respectively, sucht that:

sup
n
‖Xn

n ‖Cαn (Λn) + sup
n
‖(Xn

n � ξn)−cn‖C 2α−2
n (Λn) < +∞

and E n
n X

n
n → Xn in C α

n ([−L/2, L/2]d), E n
n

(
(Xn

n�ξn)−cn
)
→ Xn�ξ in C 2α−2

n ([−L/2, L/2]d).

Under this assumption we get the following �Dirichlet version� of Proposition 3.1.

Proposition 3.12. Consider α as in (14), any T > 0, p ∈ [1,+∞] and ϑ, ζ, γ0, α0 satisfying:

(15) ϑ ∈

{
(2−α, α), d = 1,

(2−2α, α), d = 2,
ζ > (ϑ−2) ∨ (−α), γ0 ∈ [0, 1), α0 > (ϑ−2) ∨ (−α),

and let wn0 ∈ C ζ
d,p(Λn) and fn ∈M γ0C α0

d,p (Λn) such that

E nwn0 → w0 in C ζ
d,p([−L/2, L/2]d), E nfn → f in M γ0C α0

d,p ([−L/2, L/2]d).

Let wn : [0, T ]× Λn → R be the unique solution to the �nite-dimensional linear ODE:

(16) ∂tw
n = (∆n

d + ξne )wn + fn, wn(0) = wn0 , w(t, x) = 0 ∀(t, x) ∈ (0, T ]× ∂Λn.

Then under Assumption 3.11 there exist a unique (paracontrolled in d = 2) solution w to the
equation

(17) ∂tw = ∆dw + ξw + f, w(0) = w0, w(t, x) = 0 ∀(t, x) ∈ (0, T ]× ∂[−L/2, L/2]d,

and for all γ > (ϑ−ζ)+/2 ∨ γ0 the sequence wn is uniformly bounded in L γ,ϑ
d,p (Λn):

sup
n
‖wn‖

L γ,ϑ
d,p (Λn)

. sup
n
‖wn0 ‖C ζd,p(Λn)

+ sup
n
‖fn‖M γ0C

α0
d,p (Λn),

where the proportionality constant depends on the time horizon T and the magnitude of the norms
in Assumption 3.11. Moreover,

E nwn → w in L γ,ϑ
d,p ([−L/2, L/2]d).

Proof. Note that solving Equation (16) (resp. (17)) is equivalent to solving on the discrete (resp.
continuous) torus Θn the equation:

∂tw̃
n = ∆nw̃n+Πe(ξ

n
e )w̃n+Πof, w̃n(0) = Πow0,

and then restricting the solution to the cube Λn, i.e. w
n = w̃n|Λn , and w̃n = Πow

n. In view
of Assumption 3.11 and the estimates of Lemma 3.10 this equation can be solved via Schauder
estimates and (in dimension d = 2) paracontrolled theory following the arguments of [MP17]
(without considering weights). From the arguments of the same article we can also deduce the
convergence of the extensions. �

As on the full space, we also use the Anderson hamiltonian Hd with Dirichlet boundary
conditions. The domain and spectral decomposition for this operator are constructed in [CvZ19]
with the help of the resolvent equation. Unlike H the operator Hd has a compact resolvent and
thus a discrete spectrum that is bounded from above, and based on that we easily obtain the
following result:
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Notation 3.13. We write H n
d ,Hd for the operators ∆n

d+ξn−cn1{d=2} and ∆d+ξ−∞1{d=2}
respectively. Furthermore, we write:

t 7→ Tn,dt un0 +

∫ t

0
ds Tn,dt−sf

n
s , t 7→ T d

t u0+

∫ t

0
ds T d

t−sfs

for the solutions to Equation (16) and (17) respectively. Then we have Tn,dt = etH
n
d and T d

t =
etHd .

4. The Rough Super-Brownian Motion

4.1. Scaling Limit of Branching Random Walks in Random Environment. In this sec-
tion we consider a deterministic environment, that is a sequence {ξn}n∈N satisfying Assumption
2.3, to which we associate the Markov process µn as in De�nition 2.6: Our aim is to prove that
the sequence µn is weakly converging, the limit depending on the value of %. This section is
divided in two parts. First, we prove a tightness result for the sequence µn in D([0, T ]; M (Rd))
for % ≥ d/2. Then, we prove uniqueness in law of the limit points and thus deduce the weak
convergence of the sequence. Recall that for µ ∈ M (Rd) and ϕ ∈ Cb(Rd) we use both the
notation 〈µ, ϕ〉 and µ(ϕ) for the integration of ϕ against the measure µ.

Remark 4.1. For any ϕ ∈ L∞(Zdn; e(l)), for some l ∈ R:

(18) Mn,ϕ
t (s) = µn(s)(Tnt−sϕ)−Tnt ϕ(0)

is a centered martingale on [0, t] with predictable quadratic variation given by:

〈Mn,ϕ
t 〉s =

∫ s

0
µn(r)

(
n−%|∇nTnt−rϕ|2 + n−%|ξne |(Tnt−rϕ)2

)
dr.

Sketch of proof. This follows from the de�nition of the generator of the process, by using Dynkin's
formula. We �rst apply the martingale problem to µ 7→ FK(µ(ϕ)), where FK(x) = (x∧K)∨(−K).
Sending K → ∞ and using that the solution to the discrete PAM with compactly supported
initial condition is in C([0, T ], L∞(Zdn, e(−k))) for all k, T > 0 by Proposition 3.1, we obtain that

Ln,ϕt = µnt (ϕ)−µn0 (ϕ)−
∫ t

0
µns (H nϕ) ds, t ≥ 0,

is a martingale with predictable quadratic variation

〈Ln,ϕ〉t =

∫ t

0
µn(r)

(
n−%|∇nϕ|2+n−%|ξne |ϕ2

)
ds.

This extends to time-dependent functions by an approximation argument (via time discretiza-
tion), for which the martingale becomes

µnt (ϕ(t))−µn0 (ϕ(0))−
∫ t

0
µns (∂sϕ(s)+H nϕ(s)) ds.

Now it su�ces to use that ∂sT
n
t−sϕ = −H nTnt−sϕ. �

For the remainder of this section we assume that % ≥ d/2. To prove the tightness of the
measure-valued process we use the following auxiliary result, which gives the tightness of the
real-valued processes {t 7→ µn(t)(ϕ)}n∈N.

Lemma 4.2. For any l ∈ R and ϕ ∈ C∞(Rd, e(l)) the processes {t 7→ µn(t)(ϕ)}n∈N form a tight
sequence in D([0,+∞);R).

Proof. Choose 0 < ϑ < 2 according as in Proposition 3.1. In the following computation k ∈ R
may change from line to line, but it is uniformly bounded for l ∈ R and T > 0 varying in a
bounded set.
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We apply [EK86, Theorem 3.8.8]. For this purpose, let (Fn
t )t≥0 be the natural �ltration

induced by µn and let us start by bounding the following conditional expectation for 0 ≤ t ≤
t+h ≤ T :

E
[
|µn(t+h)(ϕ)−µn(t)(ϕ)|2|Fn

t

]
= E

[
|Mn,ϕ

t+h(t+h)−Mn,ϕ
t+h(t)+µn(t)(Tnh ϕ−ϕ)|2|Fn

t

]
.ϕ E

[ ∫ t+h

t
dr µn(r)

(
n−%|∇nTnt+h−rϕ|2 + n−%|ξne |(Tnt+h−rϕ)2

)∣∣∣∣Fn
t

]
+ hϑ|µn(t)(ek|x|

σ
)|2

=

∫ t+h

t
dr µn(t)

(
Tnr−t

(
n−%|∇nTnt+h−rϕ|2 + n−%|ξne |(Tnt+h−rϕ)2

))
+ hϑ|µn(t)(ek|x|

σ
)|2

.
∫ t+h

t
dr µn(t)

(
ek|x|

σ
+ (r−t)−ζek|x|σ

)
+ hϑ|µn(t)(ek|x|

σ
)|2

. h1−ζµn(t)(ek|x|
σ
) + hϑ|µn(t)(ek|x|

σ
)|2(19)

for any ζ > 0. Here we have �rst used that, applying Proposition 3.1 together with the results of
Lemmata E.1, E.2, E.3, as well as the fourth estimate in Lemma 1.2, the term n−%|∇nTnt+h−rϕ|2

converges to zero in C ϑ̃(Zdn, e(2(l+t+h−r))) for 0 < ϑ̃ < ϑ−1+%/2 (we can choose ϑ su�-
ciently large so that the latter quantity is positive). Thus Proposition 3.1 gives the bound for
Tnr−t(n

−%|∇nTnt+h−rϕ|2). Moreover, since according to Assumption 2.3 for % ≥ 2/d the term

n−%|ξne | is bounded in C−ε(Zdn, p(a)) whenever ε > 0, it follows with the same arguments as
before that the quantity s 7→ Tns (n−%|ξne |(Tnt+h−rϕ)2) is bounded in M ζC 2ζ−ε(Zdn, e(k)) for any

ε/2 < ζ < 1. As for the last addend, we simply used that s 7→ Tns ϕ ∈ L ϑ(Zdn, e(l)).
To apply [EK86, Theorem 3.8.8] we have to multiply two increments of µn(ϕ) on [t−h, h] and

on [t, t+h]. We use the previous computation to bound:

E
[
(|µn(t+h)(ϕ)−µn(t)(ϕ)| ∧ 1)2(|µn(t)(ϕ)−µn(t−h)(ϕ)| ∧ 1)2

]
≤ E

[
|µn(t+h)(ϕ)−µn(t)(ϕ)|2|µn(t)(ϕ)−µn(t−h)(ϕ)|

]
. E

[(
h1−ζµn(t)(ek|x|

σ
) + hϑ|µn(t)(ek|x|

σ
)|2
)
|µn(t)(ϕ)−µn(t−h)(ϕ)|

]
.(20)

Note that we voluntarily dropped the square in the second term. Now we treat one addend at
a time. For the �rst one we compute

E
[
µn(t)(ek|x|

σ
)|µn(t)(ϕ)−µn(t−h)(ϕ)|

]
≤ E

[(
|µn(t)(ek|x|

σ
)−µn(t−h)(ek|x|

σ
)|+µn(t−h)(ek|x|

σ
)
)
|µn(t)(ϕ)−µn(t−h)(ϕ)|

]
. (h(1−ζ)+hϑ)+(h(1−ζ)/2+hϑ/2) . h(1−ζ)/2+hϑ/2

by the Cauchy-Schwarz inequality together with (19) and the moment bound for µnt (ek|x|
σ
)

that is shown in Lemma D.1. As for the second term in (20), we similarly bound:

E
[
|µn(t)(ek|x|

σ
)|2|µn(t)(ϕ)−µn(t−h)(ϕ)|

]
. E

[
|µn(t)(ek|x|

σ
)|4
]1/2E[|µn(t)(ϕ)−µn(t−h)(ϕ)|2

]1/2
. h(1−ζ)/2+hϑ/2.

Together with Young's inequality for products, this yields the following bound for the expres-
sion on the left hand side of (20):

E
[
(|µn(t+h)(ϕ)−µn(t)(ϕ)| ∧ 1)2(|µn(t)(ϕ)−µn(t−h)(ϕ)| ∧ 1)2

]
. h3(1−ζ)/2+h3ϑ/2.

Since ϑ > 2
3 and ζ > 0 is arbitrary, the right hand side is . hθ for some θ > 1.
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Hence we can apply [EK86, Theorem 3.8.8] with β = 4, which in turn implies that the tightness
criterion of Theorem 3.8.6 (b) of the same book is satis�ed. This concludes the proof of tightness
for {t 7→ µn(t)(ϕ)}n∈N. �

As a consequence, we �nd tightness of the process µn in the space of measures.

Corollary 4.3. The processes {t 7→ µn(t)}n∈N form a tight sequence in D([0,+∞); M (Rd)).

Proof. We apply Jakubowski's criterion [DP12, Theorem 3.6.4]. We �rst need to verify the
compact containment condition. For that purpose note that for all l > 0 and R > 0 the set

KR = {µ ∈M (Rd) | µ(el|x|
σ
) ≤ R}

is compact in M (Rd). Since the processes µn(el|x|
σ
) are tight by Lemma 4.2, we �nd for all

l, T, ε > 0 an R(ε) such that

sup
n

P
(

sup
t∈[0,T ]

µn(t)(el|x|
σ
) ≥ R(ε)

)
≤ ε,

which is the required compact containment condition.
Second we note that the space C∞c (Rd) is closed under addition and the maps µ 7→ {µ(ϕ)}ϕ∈C∞c (Rd)

separate points in M (Rd). Since Lemma 4.2 shows that t 7→ µn(t)(ϕ) is tight for any ϕ ∈
C∞c (Rd), we can conclude.

�

Lemma 4.4. Any limit point of the sequence {t 7→ µn(t)}n∈N is supported in the space of
continuous function C([0,+∞); M (Rd)). Furthermore any such limit point µ satis�es condition
(ii) of De�nition 2.11 with

κ =

{
0, if % > d/2,

2ν, if % = d/2.

Proof. Step 1. We show the continuity of an arbitrary limit point µ. Consider ϕ ∈ C∞c (Rd). We
prove that the one-dimensional projection t 7→ 〈µ(t), ϕ〉 is continuous almost surely. Choosing
a countable separating set of smooth functions the continuity of µ follows. Note that for ϕ ∈
C∞c (Rd) and T > 0 we get ‖(Tnt ϕ)t∈[0,T ]‖L ϑ(Zdn) . ‖ϕ‖C ζ(Zdn,e(−T )) from Proposition 3.1.

Now we apply a Burkholder-Davis-Gundy inequality that bounds càdlàg martingales in terms
of their predictable quadratic variation and the supremum of their jumps (Lemma B.1 of [MW17]):
for any p ≥ 2 and 0 ≤ t ≤ t+ h ≤ T we have

E
[∣∣µn(t+h)(ϕ)−µn(t)(ϕ)

∣∣p] . E
[∣∣µn(t+h)(ϕ)−µn(t)(Tnh ϕ)

∣∣p]+E
[∣∣µn(t)(Tnh ϕ−ϕ)

∣∣p]
=E[|Mn,ϕ

t+h(t+h)−Mn,ϕ
t+h(t)|p]+E

[∣∣µn(t)(Tnh ϕ−ϕ)
∣∣p]

.E
[∣∣∣∣ ∫ t+h

t
dr µn(r)

(
n−%|∇nTnt+h−rϕ|2 + n−%|ξne |(Tnt+h−rϕ)2

)∣∣∣∣p/2]
+ E

[
sup

t≤r≤t+h
|∆rM

n,ϕ
t+h(r)|p

]
+ ‖ϕ‖p

C ϑ(Zdn,e(−T ))
|h|pϑ/2E[|µn(t)(1)|p],

where ∆rM = M(r)−M(r−) is the jump at time r. Since the functions Tnt ϕ are bounded
uniformly in n ∈ N and t ∈ [0, T ], we can estimate the jump term by n−p%, up to a multiplicative
constant. The expectation in the last addend is controlled with Lemma D.1. We are left with
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the most complicated term, for which we estimate

E
[∣∣∣∣ ∫ t+h

t
dr µn(r)

(
n−%|∇nTnt+h−rϕ|2 + n−%|ξne |(Tnt+h−rϕ)2

)∣∣∣∣p/2]
. |h|p/2−1

∫ t+h

t
dr E

[∣∣µn(r)
(
n−%|∇nTnt+h−rϕ|2 + n−%|ξne |(Tnt+h−rϕ)2

)∣∣p/2]
. |h|p/2−1

∫ t+h

t
dr r−γ . |h|p/2−γ

for any γ ∈ (0, 1), where in the last step we applied the second estimate of Lemma D.1. Passing

to the limit (with Fatou's inequality), we �nd E
[∣∣µ(t+h)(ϕ)−µ(t)(ϕ)

∣∣p] . |h|p/2−γ for arbitrarily
small γ > 0. It thus follows from Kolmogorov's continuity criterion that this process is almost
surely continuous.

Step 2. We �x a limit point µ and study the required martingale property. For f, ϕ0 as
required, observe that ϕn0 = ϕ0|Zdn is uniformly bounded in C ζ0(Zdn; e(l)) for any ζ0 > 0 and

l ∈ R, and similarly fn = f |Zdn is uniformly bounded in C([0, t]; C ζ(Zdn)), with an application of
Lemma E.1. Hence by Proposition 3.1 the discrete solutions ϕnt to

∂sϕ
n
t +H nϕnt = fn, ϕnt (t) = ϕn0

converge in L ϑ(Rd, e(l)) to ϕt, up to choosing a possibly larger l. At the discrete level we �nd
that

Mϕ0,f,n
t (s) := 〈µn(s), ϕnt (s)〉−

∫ s

0
dr 〈µn(r), fn(r)〉, s ∈ [0, t]

is a square-integrable martingale. Moreover this martingale is bounded in L2 uniformly over
n, since the second moment can be bounded via the initial value and the predictable quadratic
variation by

E
[

sup
s≤t
|Mϕ0,f,n

t |2(s)
]
. |〈µn(0), ϕnt (0)〉|2+

∫ t

0
dr Tnr

(
n−%|∇nϕnt (r)|2 + n−%|ξn|(ϕnt (r))2

)
and the latter quantity is uniformly bounded in n. This is su�cient to deduce that Mϕ0,f

t is
a martingale w.r.t. its own �ltration, but we want to prove that in fact it is a F−martingale.

Since by assumption Mϕ0,f,n
t converges to the continuous process Mϕ0,f

t , we get from [EK86,
Theorem 3.7.8] that for 0 ≤ s ≤ r ≤ t and for bounded and continuous Φ: D([0, s]; M )→ R

E[Φ(µ|[0,s])(M
ϕ0,f
t (r)−Mϕ0,f

t (s))] = lim
n

E[Φ(µn|[0,s])(M
ϕ0,f,n
t (r)−Mϕ0,f,n

t (s))] = 0.

From here we easily deduce the martingale property of Mϕ0,f
t .

Step 3. We show that Mϕ0,f
t has the correct quadratic variation, which should be given as the

limit of

〈Mϕ0,f,n
t 〉s =

∫ s

0
dr µn(r)

(
n−%|∇nϕnt (r)|2 + n−%|ξn|(ϕnt (r))2

)
.

We only treat the case % = d/2, the case % > d/2 follows by similar but easier arguments

because then we can use Lemma E.2 to gain some regularity from the factor nd/2−%, so that then
‖n−%|ξn|‖C ε(Zdn,p(a)) converges to zero for some ε > 0 and for all a > 0.

First we assume, leaving the proof for later, that for any sequence {ψn}n∈N with limn ‖ψn‖C−ε(Rd,p(a)) =
0 for some a > 0 and all ε > 0 the following convergence holds true:

(21) E
[

sup
s≤t

∣∣∣∣ ∫ s

0
dr µn(r)

(
ψn · (ϕnt (r))2

)∣∣∣∣2] −→ 0.
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By Assumption 2.3 we can apply this result to ψn = n−%|ξn|−2ν, and deduce that along a
subsequence we have the following weak convergence in D([0, t];R):(

Mϕ0,f,n
t

)2 − 〈Mϕ0,f,n
t 〉 −→

(
Mϕ0,f
t

)2 − ∫ ·
0

dr µ(r)
(
2ν(ϕt)

2(r)
)
.

Note also that the limit lies in C([0, t];R). If the martingales on the left-hand side are uniformly
bounded in L2 we can deduce as before that the limit is an L2−martingale, and conclude that

〈Mϕ0,f
t 〉s =

∫ s

0
dr µ(r)

(
2ν(ϕt)

2(r)
)
.

As for the uniform bound in L2, note that it follows from Lemma D.1 that

sup
n

sup
0≤s≤t

E
[
|Mϕ0,f,n

t |4(s)
]
< +∞.

For the quadratic variation term we can estimate:

E
[
|〈Mϕ0,f,n

t 〉s|2
]
≤ s

∫ s

0
dr E

[∣∣µn(r)
(
n−%|∇nϕnt (r)|2 + n−%|ξn|(ϕnt (r))2

)∣∣2],
and the right hand side can be bounded via the second estimate of Lemma D.1.

Thus, we are left with proving Equation (21). By introducing the martingale from Equa-
tion (18) we �nd that

E
[
|µn(r)

(
ψn(ϕnt (r))2

)
|2
]
. |Tnr

[
ψn(ϕnt (r))2

]
|2(0)

+

∫ r

0
dq Tnq

(
n−%

∣∣∇n[Tnr−q[ψn(ϕnt (r))2]
]∣∣2 + n−%|ξn|(Tnr−q[ψn(ϕnt (r))2])2

)
(0).

We start with the �rst term. For any su�ciently small ε > 0 and some l > 0 as well as for
ϑ ∈ (0, α) (cf. Proposition 3.1), we have that

‖Tq[ψn(ϕnt (r))2]‖C ϑ(Zdn;e(l)) . q
−(ϑ+ε)/2‖ψn‖C−ε(Zdn;p(a)).

It follows that we can bound:

|Tnr
[
ψn(ϕnt (r))2

]
|2(0) . r−2ε‖ψn‖2C−ε(Zdn;p(a)).

Now we pass to the �rst term in the integral. Let us assume that 1−d/4 < ϑ < 1−ε, since we
can take ε small enough such that the two bounds are feasible. We then apply Lemmata 1.2,
E.2, E.3 to obtain that:

‖|n−d/4∇n
[
Tnr−q[ψ

n(ϕnt (r))2]
]∣∣2‖C ϑ−1+d/4(Zdn;e(2l)) . (r−q)−(ϑ+ε)‖ψn‖2C−ε(Zdn;p(a)),

so that we can overall estimate:∫ r

0
dq Tnq

(
n−%

∣∣∇n[Tnr−q[ψn(ϕnt (r))2]
]∣∣2)(0)

. ‖ψn‖2C−ε(Zdn;p(a))

∫ r

0
dq (r−q)−(ϑ+ε) . ‖ψn‖2C−ε(Zdn;p(a)).

Following the same steps, in view of Assumption 2.3, we can treat similarly the second term in
the integral (we now use the same parameter ε both for the regularity of n−%|ξn| and of ψn):

‖n−%|ξn|(Tnq [ψn(ϕnt (r))2])2‖C−ε(Zdn;e(2l)p(a)) . q
−(ϑ+ε)‖ψn‖2C−ε(Zdn;p(a))

so that we can estimate:∫ r

0
dq Tnq (n−%|ξn|(Tnq [ψn(ϕnt (r))2])2)(0) . ‖ψn‖2C−ε(Zdn;p(a))

∫ r

0
dq (r−q)−(ϑ+ε)q−2ε

. r1−ϑ−3ε‖ψn‖2C−ε(Zdn;p(a)) . r
−2ε‖ψn‖2C−ε(Zdn;p(a)),
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since 1−ϑ > ε. Overall, we conclude that

E
[
|µn(r)

(
ψn(ϕnt (r))2

)
|2
]
. r−2ε‖ψn‖2C−ε(Zdn;p(a)).

Integrating over r proves (21) . �

Our �rst main result, the law of large numbers, is now an easy consequence.

Proof of Theorem 2.10. Recall that now we assume % > d/2. In view of Corollary 4.3 we can
assume that along a subsequence µnk ⇒ µ in distribution in the space D([0,+∞); M (Rd)). To
show that µn ⇒ w it thus su�ces to prove that µ = w. And indeed the previous lemma shows
that for ϕ ∈ C∞c (Rd) the process s 7→ µ(s)(Tt−sϕ)−Ttϕ(0) is a continuous square-integrable
martingale with vanishing quadratic variation. Hence it is constantly zero and thus µ(t)(ϕ) =
Ttϕ(0) = (Ttδ0)(ϕ) almost surely for each �xed t ≥ 0. Note that T·δ0 is well-de�ned, as explained
in Remark 3.2. Since µ is continuous, the identity holds almost surely for all t > 0. The
identity µ(t) = Ttδ0 then follows by choosing a countable separating set of smooth functions in
C∞c (Rd). �

Now we pass to the case % = d/2. To deduce weak convergence of the sequence µn we have to
complete the last step of our program, namely prove that the distribution of the limit points is
uniquely characterized. This is the content of the next results.

First, we introduce a duality principle for the Laplace transform of our measure-valued process.
For this reason we have to study Equation (6). We will consider mild solutions, i.e. ϕ solves (6)
if and only if

ϕ(t) = Ttϕ0 −
κ

2

∫ t

0
ds Tt−s(ϕ(s)2)

We shall denote such solution via ϕ(t) = Utϕ0, which is justi�ed by the following existence and
uniqueness result:

Proposition 4.5. Let T, κ > 0, l0 < −T and ϕ0 ∈ C∞(Rd, e(l0)) with ϕ0 ≥ 0. For l = l0 + T
and ϑ as in Proposition 3.1 there is a unique mild solution ϕ ∈ L ϑ(Rd, e(l)) to Equation (6):

∂tϕ = H ϕ−κ
2
ϕ2, ϕ(0) = ϕ0.

We write Utϕ0 := ϕ(t) and we have the following bounds:

0 ≤ Utϕ0 ≤ Ttϕ0, ‖{Utϕ0}t∈[0,T ]‖L ϑ(Rd,e(l)) . e
C‖{Ttϕ0}t∈[0,T ]‖CL∞(Rd,e(l)) .

Proof. We de�ne the map I (ψ) = ϕ, where ϕ is the solution to

∂tϕ =
(
H −κ

2
ψ
)
ϕ, ϕ(0) = ϕ0.

If l0 < −T , then (Ttϕ0)t∈[0,T ] ∈ L ϑ(Rd, e(l)) for l = l0 + T , and thus a slight adaptation of the
arguments leading to Proposition 3.1 shows that I satis�es

I : L ϑ(Rd, e(l))→ L ϑ(Rd, e(l)), ‖I (ψ)‖L ϑ(Rd,e(l)) . e
C‖ψ‖

CL∞(Rd,e(l))

for some C > 0. Moreover, for positive ψ this map satis�es the a priori bound:

0 ≤ I (ψ)(t) ≤ Ttϕ0,

so in particular ‖I (ψ)‖CL∞(Rd,e(l)) ≤ ‖{Ttϕ0}t∈[0,T ]‖CL∞(Rd,e(l)). We de�ne ϕ0 = Ttϕ0 and then

iteratively ϕm = I (ϕm−1) for m ≥ 1. Hence our a priori bounds guarantee that

sup
m
‖ϕm‖L ϑ(Rd,e(l)) . e

C‖{Ttϕ0}t∈[0,T ]‖CL∞(Rd,e(l)) .

By compact embedding of L ϑ(Rd, e(l)) ⊂ L ζ(Rd, e(l′)) for ζ < ϑ, l′ < l we obtain convergence
of a subsequence in the latter space. The regularity ensures that the limit point is indeed a
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solution to Equation (6). The uniqueness of such a �xed-point follows from the fact that the
di�erence z = ϕ−ψ of two solutions ϕ and ψ solves the well posed linear equation:

∂tz =
(
H +

κ

2
(ϕ+ψ)

)
z, z(0) = 0,

and thus z = 0. �

We proceed by proving some implications between the properties (i)− (iii) of De�nition 2.11.

Lemma 4.6. In De�nition 2.11 the following implications hold between the three properties:

(ii)⇒ (i), (ii)⇔ (iii).

Proof. (ii)⇒ (i): Consider U·ϕ0 as in point (i) of De�nition 2.11, which is well de�ned in view
of Proposition 4.5. An application of Itô's formula together with property (ii) guarantees that
for any F ∈ C2(R), and for f(r) = κ

2 (Ut−rϕ0)2:

F (〈µ(t), ϕ0〉) =F (〈µ(s), Ut−sϕ0〉)+
∫ t

s
dr F ′(〈µ(r), Ut−rϕ0〉)〈µ(r), f(r)〉

+
1

2

∫ t

s
F ′′(〈µ(r), Ut−rϕ0〉) d〈Mϕ0,f

t 〉r+
∫ t

s
F ′(〈µ(r), Ut−rϕ0〉) dMϕ0,f

t (r),

where d〈Mϕ0,f
t 〉r = 〈µ(r), κ(Ut−rϕ0)2〉dr. Since the function F (x) = e−x is bounded for positive

x, we deduce property (i) from this.
(ii)⇒ (iii): Let ϕ ∈ DH and t > 0 and let 0 = tn0 ≤ tn1 ≤ . . . ≤ tnn = t, n ∈ N, be a sequence

of partitions of [0, t] with maxk≤n−1 ∆n
k := maxk≤n−1(tnk+1−tnk)→ 0. Then

〈µ(t), ϕ〉 − 〈µ(0), ϕ〉 =
n−1∑
k=0

[(
〈µ(tnk+1), ϕ〉−〈µ(tnk), T∆n

k
ϕ〉
)

+ 〈µ(tnk), T∆n
k
ϕ−ϕ〉

]
=

n−1∑
k=0

[(
Mϕ,0
tnk+1

(tnk+1)−Mϕ,0
tnk+1

(tnk)
)

+ ∆n
k〈µ(tnk),

T∆n
k
ϕ−ϕ

∆n
k

〉
]
.

We start by studying the second term on the right hand side:

n−1∑
k=0

∆n
k〈µ(tnk),

T∆n
k
ϕ−ϕ

∆n
k

〉 =
n−1∑
k=0

∆n
k〈µ(tnk),

T∆n
k
ϕ−ϕ

∆n
k

−H ϕ〉+
n−1∑
k=0

∆n
k〈µ(tnk),H ϕ〉

=: Rn +
n−1∑
k=0

∆n
k〈µ(tnk),H ϕ〉.

By continuity of µ the second term on the right hand side converges almost surely to the Rie-

mann integral
∫ t

0 〈µ(r),H ϕ〉dr. Moreover, from the characterization (ii) we get E[µ(s)(ψ)] =
〈µ(0), Tsψ〉 and

E[µ(s)(H ϕ)2] . 〈µ(0), (Ts(H ϕ))2〉+

∫ s

0
dr 〈Tr, (Ts−rH ϕ)2〉,

which is uniformly bounded in s ∈ [0, t]. So the sequence is uniformly integrable and converges
also in L1 and not just almost surely. Moreover,

E[|Rn|] .
n−1∑
k=0

∆n
k

〈
µ0, Ttnk (|(∆n

k)−1(T∆n
k
ϕ−ϕ)−H ϕ|)

〉
,

and since maxk≤n−1(∆n
k)−1(T∆n

k
ϕ−ϕ) converges to H ϕ in C ϑ(Rd, e(l)) for some l ∈ R and ϑ > 0

(so in particular uniformly), it follows from Proposition 3.1 and the assumption 〈µ0, e(l)〉 < ∞
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for all l ∈ R that E[|Rn|]→ 0. Thus, we showed that

Lϕt = 〈µ(t), ϕ〉 − 〈µ(0), ϕ〉 −
∫ t

0
〈µ(r),H ϕ〉 dr = lim

n→∞

n−1∑
k=0

(
Mϕ,0
tnk+1

(tnk+1)−Mϕ,0
tnk+1

(tnk)
)
,

and the convergence is in L1. By taking partitions that contain s ∈ [0, t) and using the martingale

property of Mϕ,0
r we get E[Lϕ(t)|Fs] = Lϕ(s), i.e. Lϕ is a martingale. By the same arguments

that we used to show the uniform integrability above, Lϕ(t) is square integrable for all t > 0.
To derive the quadratic variation we use again a sequence of partitions containing s ∈ [0, t) and
obtain

E
[
Lϕ(t)2−Lϕ(s)2

∣∣Fs

]
= E

[
(Lϕ(t)−Lϕ(s))2

∣∣Fs

]
= lim

n→∞

∑
k:tnk+1>s

E
[(
Mϕ,0
tnk+1

(tnk+1)−Mϕ,0
tnk+1

(tnk)
)2∣∣Fs

]
= lim

n→∞

∑
k:tnk+1>s

E
[
κ

∫ tnk+1

tnk

dr 〈µ(r), (Ttnk+1−rϕ)2〉
∣∣∣Fs

]

= E
[
κ

∫ t

s
dr 〈µ(r), ϕ2〉

∣∣∣Fs

]
.

Since the process κ
∫ ·

0 dr 〈µ(r), ϕ2〉 is increasing and predictable, it must be equal to 〈Lϕ〉.
(iii)⇒ (ii): Let t ≥ 0, ϕ0 ∈ DH , and let f : [0, t]→ DH be a piecewise constant function (in

time). We write ϕ for the solution to the backward equation

(∂s+H )ϕ = f, ϕ(t) = ϕ0,

which is given by ϕ(s) = Tt−sϕ0 +
∫ t
s Tr−sf(r) dr. Note that by assumption ϕ(r) ∈ DH for all

r ≤ t. For 0 ≤ s ≤ t, let 0 = tn0 ≤ tn1 ≤ . . . ≤ tnn = s, n ∈ N, be a sequence of partitions of
[0, s] with maxk≤n−1 ∆n

k := maxk≤n−1(tnk+1−tnk) → 0. Similarly to the computation in the step
�(i)⇒ (ii)� we can decompose:

〈µ(s), ϕ(s)〉−〈µ(0), ϕ(0)〉 =
n−1∑
k=0

[(
〈µ(tnk+1), ϕ(tnk+1)〉−〈µ(tnk), ϕ(tnk+1)〉

)
− 〈µ(tnk), ϕ(tnk)−ϕ(tnk+1)〉

]
=
n−1∑
k=0

[
Lϕ(tnk+1)(tnk+1)−Lϕ(tnk+1)(tnk)+

∫ tnk+1

tnk

dr 〈µ(r), f(r)〉
]

+Rn,

with

Rn =

n−1∑
k=0

∫ tnk+1

tnk

dr

[
〈µ(r),H ϕ(tnk+1)〉−〈µ(tnk), (∆n

k)−1(T∆n
k
− id)ϕ(tnk+1)〉

+ 〈µ(tnk), Tr−tnk f(r)〉−〈µ(r), f(r)〉
]
.

By similar arguments as in the step (ii) ⇒ (iii) we see that Rn converges to zero in L1, and
therefore s 7→ 〈µ(s), ϕ(s)〉−〈µ(0), ϕ(0)〉−

∫ s
0 dr 〈µ(r), f(r)〉 is a martingale. Square integrability

and the right form of the quadratic variation are shown again by similar arguments as before.

By density of DH it follows that Mϕ0,f
t is a martingale on [0, t] with the required quadratic

variation for any ϕ0 ∈ C∞c (Rd) and f ∈ C([0, t]; C ζ(Rd)) for ζ > 0. This concludes the proof. �

Characterization (i) of De�nition 2.11 enables us to deduce the uniqueness in law and then to
conclude the proof of the equivalence of the di�erent characterizations in De�nition 2.11.
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Proof of Lemma 2.12. First, we claim that property (i) of De�nition 2.11 gives uniqueness in
law for the stochastic process µ. Indeed, we have for 0 ≤ s ≤ t and ϕ ∈ C∞c (Rd) with ϕ ≥ 0

E
[
e−〈µ(t),ϕ〉∣∣Fs

]
= e−〈µ(s),Ut−sϕ〉.

For s = 0 we can use the Laplace transform and the linearity of ϕ 7→ 〈µ(t), ϕ〉 to deduce that the
law of (〈µ(t), ϕ1〉, . . . , 〈µ(t), ϕn〉) is uniquely determined by (i) whenever ϕ1, . . . , ϕn ∈ C∞c (Rd)
are positive functions. By density of C∞c (Rd) this shows that the law of µ(t) is unique. We then
see inductively that the �nite-dimensional distributions of µ = {µ(t)}t≥0 are unique, and thus
that the law of µ is unique.

It remains to show the implication (i) ⇒ (ii) to conclude the proof of the equivalence of the
characterizations in De�nition 2.11. But this is now immediate, because we showed in Lemma 4.4
that there exists a process satisfying (ii), and in Lemma 4.6 we showed that then it must also
satisfy (i). And since we just saw that there is uniqueness in law for processes satisfying (i)
and since property (ii) only depends on the law and it holds for one process satisfying (i), it
must hold for all processes satisfying (i) (strictly speaking Lemma 4.4 only gives the existence
for κ = 2ν ∈ (0, 1], but see Section 4.2 below for general κ). �

Now the convergence of the sequence {µn}n∈N is an easy consequence:

Proof of Theorem 2.10. This follows from the characterization of the limit points from Lemma 4.4
together with the uniqueness result from Lemma 2.12.

�

4.2. Mixing with a classical Superprocess. In Section 4.1 we constructed the rSBM of
parameter κ = 2ν, for ν de�ned via Assumption 2.1. This leads to the restriction ν ∈ (0, 1

2 ].
This section is devoted to constructing the rSBM for arbitrary κ > 0. We do so by means of an
interpolation between the rSBM and a Dawson-Watanabe superprocesses (cf. [Eth00, Chapter
1]). Let Ψ be the generating function of a discrete �nite positive measure Ψ(s) =

∑
k≥0 pks

k

and ξnp a controlled random environment associated to a parameter ν = E[Φ+]. We consider the
quenched generator:

L n,ωp

Ψ (F )(η) =
∑
x∈Zdn

ηx ·
[∑
y∼x

n2
(
F (ηx 7→y)−F (η)

)
(ξne )+(ωp, x)[F (ηx;1)−F (η)]

+ (ξne )−(ωp, x)[F (ηx;−1)−F (η)] + n%
∑
k≥0

pk[F (ηx;(k−1))−F (η)]

]
with the notation ηx;k(y) = (η(y)+k1{x}(y))+, for k ≥ −1. The rigorous derivation of this
operator as the generator of a Markov process follows analogously to the results in Section A.

Assumption 4.7 (On the Moment generating function). We study the process associated to

the generator L n,ωp

Ψ under the assumption that Ψ′(1) = 1 (critical branching, i.e. the expected
number of o�springs in one branching/killing event is 1) and we write σ2 = Ψ′′(1) for the variance
of the o�spring distribution.

Now we introduce the associated process. The construction of the process ūn is analogous to
the case without Ψ, which is treated in Appendix A.

De�nition 4.8. Let % ≥ d/2 and let Ψ be a moment generating function satisfying the previous
assumptions. Consider a controlled random environment ξnp associated to a parameter ν ∈ (0, 1

2 ].

Let Pn = Pp n Pn,ωp be the measure on Ωp × D([0,+∞);E) such that for �xed ωp ∈ Ωp, under
the measure Pn,ωp the canonical process on D([0,+∞);E) is the Markov process ūnp (ωp, ·) started
in ūnp (0) = bn%c1{0}(x) associated to the generator L ωp,n

Ψ de�ned as above. To ūnp we associate
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the measure valued process

〈µ̄np (ωp, t), ϕ〉 =
∑
x∈Zdn

ūnp (ωp, t, x)ϕ(x)bn%c−1

for any bounded ϕ : Zdn → R. With this de�nition µ̄np takes values in Ωp ×D([0, T ]; M (Rd)) with
the law induced by Pn.

Remark 4.9. As in Remark 4.1 we see that for ϕ ∈ L∞(Zdn, e(l)) with l ∈ R the process
M̄n,ϕ
t (s) := µ̄n(s)(Tnt−sϕ)−Tnt ϕ(0) is a martingale with predictable quadratic variation:

〈M̄n,ϕ
t 〉s =

∫ s

0
dr µ̄n(r)

(
n−%|∇nTnt−rϕ|2 + (n−%|ξne |+σ2)(Tnt−rϕ)2

)
.

In view of this Remark, we can follow the discussion of Section 4.1 to deduce the following
result (cf. Corollary 2.16).

Proposition 4.10. The sequence of measures Pn as in De�nition 4.8 converge weakly as mea-
sures on Ωp × D([0, T ]; M (Rd)) to the measure Pp × Pωp associated to a rSBM of parameter
κ = 1{%= d

2
}2ν+σ2, in the sense of Theorem 2.13 and Corollary 2.16. In short, we write µnp → µp.

In particular the rSBM is also the scaling limit of critical branching random walks whose
branching rates are perturbed by small random potentials.

5. Properties of the Rough Super-Brownian Motion

5.1. Scaling Limit as SPDE in d=1. In this section we characterize the rough super-Brownian
motion in dimension d = 1 as the solution to the SPDE (7):

∂tµp(t, x) = H ωpµp(t, x)+
√
κµp(t, x)ξ̃(t, x), (t, x) ∈ [0, T ]× R

in the sense of De�nition 2.18. The �rst result in this direction states that the random measure
µp admits a density with respect to the Lebesgue measure.

Lemma 5.1. Let µ be a one-dimensional rough super-Brownian motion of parameter ν. For any
β < 1/2, p ∈ [1, 2/(β+1)) and l ∈ R, we have:

E
[
‖µ‖p

Lp([0,T ];Bβ2,2(R,e(l)))

]
<∞.

Proof. Let t > 0 and ϕ ∈ C∞c (Rd). By point (ii) of De�nition 2.11 the process Mϕ
t (s) =

〈µ(s), Tt−sϕ〉−〈µ(0), Ttϕ〉, s ∈ [0, t], is a continuous square-integrable martingale with quadratic
variation 〈Mϕ

t 〉s =
∫ s

0 〈µ(r), (Tt−rϕ)2〉. With the help of the moment estimates of Lemma D.1,
which by Fatou's lemma also hold for the limit µ of the {µn}, we can extend this martingale
property to ϕ ∈ C ϑ(R, e(k)) for arbitrary k ∈ R and ϑ > 0. In particular, for such ϕ we get

E[〈µ(t), ϕ〉2] . E
[ ∫ t

0
〈µ(r), (Tt−rϕ)2〉dr

]
+ (Ttϕ)2(0)a =

∫ t

0
Tr((Tt−rϕ)2)(0) dr + (Ttϕ)2(0),

and thus for ϕ = Kj(· − x)

E
[
‖µ(t)‖2

Bβ2,2(e(l))

]
=
∑
j

22jβ

∫
E[〈µ(t),Kj(x− ·)〉2]e−2l|x|σ dx

.
∑
j

22jβ

∫ [ ∫ t

0
Tr((Tt−rKj(x− ·))2)(0) dr + (TtKj(x− ·))2(0)

]
e−2l|x|σ dx.(22)

We start by proving that for any k > 0 we can bound ‖Kj(x−·)‖Cα1 (R,e(k)) . 2jαe−k|x|
σ
. Indeed,

using that Ki is an even function and writing K̃i−j = 2(i−j)dK0(2i−j ·) ∗ K0 if i, j ≥ 0 and
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appropriately adapted if i = −1 or j = −1:

‖∆i(Kj(x− ·))e(k)‖L1(R) = 1{|i−j|≤1}

∫
Rd
|Ki ∗Kj(x− y)|e−k|y|σ dy

= 1{|i−j|≤1}

∫
Rd
|K̃i−j(y)|e−k|x−2−jy|σ dy

. 1{|i−j|≤1}

∫
Rd
|K̃i−j(y)|ek|2−jy|σ−k|x|σ dy

. 1{|i−j|≤1}e
−k|x|σ ,

where in the last step we used that |K̃i−j(y)| . e−2k|y|σ and 2−jσ ≤ 2σ < 2.
Now, for ζ < 0 satisfying the assumptions of Proposition 3.1 and for p ∈ [1,∞] and su�ciently

small ε > 0:

‖TsKj(x− ·)‖C εp (R,e(k+s)) . ‖TsKj(x− ·)‖
C

1− 1
p+ε

1 (R,e(k+s))
. 2jζs

(ζ−1+ 1
p
−2ε)/2

e−k|x|
σ
.

To control the �rst term on the right hand side of (22), we apply this with p = 2 and obtain for
t ∈ [0, T ] and ζ > −1/2∫ t

0
Tr((Tt−rKj(x− ·))2)(0) dr .

∫ t

0
‖Tr((Tt−rKj(x− ·))2)‖C ε∞(R,e(2k+T )) dr

.
∫ t

0
‖Tr((Tt−rKj(x− ·))2)‖C 1+ε

1 (R,e(2k+T )) dr

.
∫ t

0
r−

1+2ε
2 ‖(Tt−rKj(x− ·))2‖C ε1 (R,e(2k)) dr

.
∫ t

0
r−

1+2ε
2 ‖Tt−rKj(x− ·)‖2C ε2 (R,e(k)) dr

.
∫ t

0
r−

1+2ε
2 (2jζ(t− r)(ζ− 1

2
−2ε)/2e−k|x|

σ
)2 dr

' 22jζe−2k|x|σ t1−
1+2ε

2
+ζ− 1

2
−2ε = 22jζe−2k|x|σ tζ−3ε,

where we used that
∫ t

0 r
−α(t − r)−β dr ' t1−α−β for α, β < 1. The second term on the right

hand side of (22) is bounded by

(TtKj(x− ·))2(0) . ‖(TtKj(x− ·))2‖C ε∞(R,e(2k+2T ))

. ‖TtKj(x− ·)‖2C ε∞(R,e(k+T ))

. 22jζtζ−1−2εe−2k|x|σ .

Note that this estimate is much worse than the �rst one (because t ∈ [0, T ] is bounded above).
We plug both those estimates into (22) and set ζ = −β − ε and k > −l to obtain for β < 1/2
and for l ∈ R

E
[
‖µ(t)‖2

Bβ2,2(e(l))

]
. t−β−1−3ε.

So �nally for p ∈ [1, 2)

E
[
‖µ‖p

Lp([0,T ];Bβ2,2(R,e(l)))

]
=

∫ T

0
E
[
‖µ(t)‖p

Bβ2,2(e(l))

]
dt .

∫ T

0
t(−β−1−3ε) p

2 dt,

and now it su�ces to note that there exists ε > 0 with (−β − 1 − 3ε)p2 < −1 if and only if
p < 2/(β + 1).

�

Corollary 5.2. In the setting of Proposition 5.1 we have almost surely
√
µ ∈ L2([0, T ];L2(R, e(l)))

for all T > 0 and l ∈ R.
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Proof of Theorem 2.19. We follow the same approach as Konno and Shiga [KS88]. First, consider
a probability space (Ωp,F p,Pp) supporting a sequence of controlled random environments. If
κ ∈ (0, 1) we additionally assume that ν = κ/2, for ν as in Assumption 2.1, and let µp be the
limit of the discrete processes µnp as derived in Theorem 2.13 and Corollary 2.16. If κ > 1 we
consider the process µ̄np constructed in Section 4.2 for an appropriate moment generating function

Ψ, such that σ2 = Ψ′′(1) = κ−2ν0, and for some ν0 ∈ (0, 1/2) and a random environment ξn

satisfying Assumption 2.1 with ν = ν0. We then work with its limit µ̄p described in Proposition
4.10.

In both cases, we have constructed a process, which we denote with µp, on the space

(Ωp × D([0, T ]; M (R)),F ,Pp n Pω
p
),

with F being the product sigma algebra. Enlarging the probability space, we can moreover
assume that the process is de�ned on

(Ωp × Ω̄,F p ⊗ F̄ ,Pp n P̄ω
p
)

such that the probability space (Ω̄, F̄ , P̄) supports a space-time white noise ξ̄ which is indepen-
dent of ξ. More precisely, we are given a map

ξ : Ωp × Ω→ S ′(Rd × [0, T ])

which has the law of space-time white noise and does not depend on Ωp, i.e. ξ(ωp, ω) = ξ(ω).
For ωp ∈ Ωp let {Fωp

t }t∈[0,T ] be the usual augmentation of the (random) �ltration generated

by µ(ωp, ·) and ξ̄. For almost all ωp ∈ Ωp the collection of martingales

t 7→ Lϕ(ωp, t), t ∈ [0, T ], ϕ ∈ DH ωp ,

de�nes a (random) worthy orthogonal martingale measureM(ωp, dt, dx) in the sense of [Wal86],
with quadratic variation

Q(A×B × [s, t]) =

∫ t

s
µ(r)(A ∩B) dr

for all Borel sets A,B ⊂ R (�rst we de�ne Q(ϕ× ψ × [s, t]) =
∫ t
s 〈µ(r), ϕψ〉 dr for ϕ,ψ ∈ DH ωp ,

then we use Lemma 5.1 with p = 1 and β ∈ (0, 1/2) to extend the quadratic variation and the

martingales to indicator functions of Borel sets). We can thus build a space-time white noise ξ̃
by de�ning for ϕ ∈ L2([0, T ]× R):∫

[0,T ]×R
ξ̃(ωp, ds, dx)ϕ(s, x) :=

∫
[0,T ]×R

M(ωp, ds, dx)
ϕ(s, x)√
µ(ωp, s, x)

1{µ(ωp,s,x)>0}

+

∫
[0,T ]×R

ξ̄( ds, dx)ϕ(s, x)1{µ(ωp,s,x)=0}.

By taking conditional expectations with respect to ξp we see that ξ̃ and ξp are independent.
Moreover, it is straightforward to see that any solution to the SPDE is a rSBM of parameter

ν = κ/2. Uniqueness in law of the latter then implies uniqueness in law of the solution to the
SPDE. �

5.2. Persistence. In this section we study the persistence of the SBM in static random envi-
ronment µp and we prove Theorem 2.21, i.e. that µp is super-exponentially persistent. We work
with a slightly modi�ed controlled random environment {ξnp }n∈N which we build in Lemma 5.9
and assume that µp is given as limit of branching random walks, as in Corollary 2.16. Since
persistence is a property that only depends on the distribution and there is uniqueness in law
for µp, this assumption does not restrict the validity of our arguments.

In the next section we rigorously construct for L > 0 a killed SBM in static random envi-
ronment µLp , where particles are killed once they leave the box (−L/2, L/2)d, and we couple µLp
with µp so that almost surely µLp ≤ µp for all L ∈ 2N (see Proposition 5.19 and Corollary 5.20).
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In this section we prove that given a nonzero positive ϕ ∈ C∞c (Rd) and λ > 0, for almost all ωp

there exists L = L(ωp) with

(23) P
(

lim
t→∞

e−tλ〈µLp (ωp, t, ·), ϕ〉 =∞
)
> 0.

This implies Theorem 2.21.
The reason for working with µLp is that the spectrum of the Anderson Hamiltonian on the space

of bounded volume (−L/2, L/2)d is discrete, and its highest eigenvalue almost surely becomes
bigger than λ for L → ∞. Given this information, the proof of (23) follows from a simple
martingale convergence argument, see Corollary 5.7 below.

Remark 5.3. For simplicity we only treat the case of (killed) rSBM with parameter ν ∈ (0, 1/2].
For greater values of ν we additionally need to mix the process with a Dawson-Watanabe super-
process as in Section 4.2, after which we can follow the same arguments to show persistence.

Let us write λ(ωp, L) for the largest eigenvalue of the Anderson Hamiltonian H ωp

d,L with Dirich-

let boundary conditions on (−L/2, L/2)d. We will use the following results.

Lemma 5.4 (Lemmata 2.3 and 4.1, [Che14]). In dimension d = 1 there exists a constant c1 > 0
such that for almost all ωp ∈ Ωp:

lim
L→+∞

λ(ωp, L)

log(L)2/3
= c1.

Lemma 5.5 (Theorem 10.1, [CvZ19]). In dimension d = 2 there exists a constant c2 > 0 such
that for almost all ωp ∈ Ωp:

lim
L→+∞

λ(ωp, L)

log(L)
= c2.

Lemma 5.6. The operator H ωp

d,L admits an eigenfunction eλ(ωp,L) associated to λ(ωp, L), such

that eλ(ωp,L)(x) > 0 for all x ∈ (−L
2 ,

L
2 )d.

Proof. For ϕ,ψ ∈ L2((−L
2 ,

L
2 )d) we write ψ ≥ ϕ if ψ(x) − ϕ(x) ≥ 0 for Lebesgue-almost all x

and we write ψ � ϕ if ψ(x) − ϕ(x) > 0 for Lebesgue-almost all x. By the strong maximum
principle of [CFG17, Theorem 5.1] (which easily extends to our setting, see Remark 5.2 of the

same paper) we know that for the semigroup T d,L,ωp

t = etH
ωp

d,L of the PAM we have T d,L,ωp

t ϕ� 0

whenever ϕ ≥ 0 and ϕ 6= 0; we even get T d,L,ωp

t ϕ(x) > 0 for all x in the interior (−L
2 ,

L
2 )d.

So by a consequence of the Krein-Rutman theorem, see [Dei85, Theorem 19.3], there exists an

eigenfunction eλ(ωp,L) � 0. And since eλ(ωp,L) = e−tλ(ωp,L)T d,L,ωp

t eλ(ωp,L), we have eλ(ωp,L)(x) >

0 for all x ∈ (−L
2 ,

L
2 )d. �

These results allow us to conclude the following.

Corollary 5.7. Let d ≤ 2 and λ > 0 and let µp be an SBM in static random environment, coupled

for all L ∈ 2N to a killed SBM in static random environment µLp on [−L
2 ,

L
2 ]d with µLp ≤ µp (as

described in Corollary 5.20). For almost all ωp ∈ Ωpa there exists an L0(ωp) > 0 such that for
all L ≥ L0(ωp) the killed SBM µLp (ωp, ·) satis�es (23). In particular, for almost all ωp ∈ Ωp the
process µp(ω

p, ·) is super-exponentially persistent.

Proof. In view of Lemmas 5.4 and 5.5, for almost all ωp ∈ Ωp we can choose L0(ωp) such that
the largest eigenvalue of the Anderson Hamiltonian λ(ωp, L) is bigger than λ for all L ≥ L0(ωp).
Now we �x ωp such that the above holds true and thus drop the index p (i.e.: we will use a purely
deterministic argument). We also �x some L ≥ L0(ωp) and write λ1 instead of λ(ωp, L) for the
largest eigenvalue. Finally, let e1 be the strictly positive eigenfunction with ‖e1‖L2((−L

2
,L
2

)d) = 1

associated to λ1. By Proposition 5.19 we �nd for 0 ≤ s < t:

E[〈µL(t), e1〉|Fs] = 〈µL(t), T d
t−se1〉 = 〈µL(t), e(t−s)λ1e1〉,
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and thus the process E(t) = 〈µL, e−λ1te1〉, t ≥ 0, is a martingale. Moreover, the variance of this
martingale is bounded uniformly in t. Indeed:

E
[
|E(t)−E(0)|2

]
'
∫ t

0
dr T d

r ((e−λ1re1)2)(0) .
∫ t

0
dr e−λ1r . 1,

where we used that as a consequence of Proposition 3.12 we have e1 ∈ C ϑ((−L
2 ,

L
2 )d) for some

admissible ϑ > 0, and therefore

T d
r ((e−λ1re1)2)(0) ≤ ‖e1‖∞e−λ1rT d

r (e−λ1re1)(0) = ‖e1‖∞e−λ1re1(0) . e−λ1r.

It follows that E(t) converges almost surely and in L2 to a random variable E(∞) ≥ 0 as
t → ∞, and since E[E(∞)] = E(0) = e1(0) > 0 we know that E(∞) is strictly positive with
positive probability. For ϕ ≥ 0 nonzero with support in [−L/2, L/2]d we get by projecting on
the eigenspaces:

e−λ1t〈µL(t), ϕ〉 → 〈e1, ϕ〉X, as t→∞,
so that we get from the strict positivity of e1 and from the fact that λ1 > λ

P
(

lim
t→∞

e−λt〈µL(t), ϕ〉 =∞
)
≥ P(X > 0) > 0.

�

Remark 5.8. The connection of extinction or persistence to the largest eigenvalue of the Hamil-
tonian in a branching particle system is reminiscent of conditions appearing in the theory of
multi-type Galton-Watson processes: See for example [Har02, Section 2.7]. The above proof via
the martingale argument can be traced back at least to Everett and Ulam, as explained in [Har51,
Theorem 7b].

5.3. Killed rSBM. Here we introduce the killed rSBM on a box of size L ∈ 2N, and we couple
it with the �usual� rSBM. The killed rSBM will also be the scaling limit of branching random
walks, but now we kill all particles that leave the box. Throughout this section we work under
the assumption that % = d/2.

In Section 3.2 we considered the PAM on a box with Dirichlet Boundary conditions. Recall
that to simplify the calculations, we chose the box to be of the form [0, L]d �rst, but later
shifted it to [−L/2, L/2]d. Here we will only consider [−L/2, L/2]d and the associated lattice
approximation ΛLn = {x ∈ Zdn : x ∈ [−L/2, L/2]d}.

Let us start by showing that a random environment gives rise to deterministic environments
satisfying both Assumption 2.3 and Assumption 3.11.

Lemma 5.9. Given a random environment {{ξnp (x)}x∈Zdn}n∈N satisfying Assumption 2.1, there

exists a probability space (Ωp,F p,Pp) supporting random variables {{ξnp (x)}x∈Zdn}n∈N such that

for all n ∈ N we have ξ
n
(·) = ξn(·) in distribution. In addition, there exists a null set N ⊂ Ωp

such that for any ωp 6∈ N :

(1) {{ξnp (ωp, x)}x∈Zdn}n∈N is a deterministic environment satisfying Assumption 2.3 with cn =

κn (cf. Equation (4)) and ν = E[(Φ)+].
(2) for all L ∈ 2N the restriction {{ξnp (ωp, x)}x∈ΛLn

}n∈N of the above sequence to ΛLn is a
deterministic Neumann environment satisfying Assumption 3.11 with cn = κn and ν =
E[(Φ)+].

and such that ξn = cn = ν = 0 on the null set N .

Proof. The proof of the �rst point is already contained in Lemma 2.4. The proof of the second
statement follows from Proposition C.1 and Lemma C.2. �

Notation 5.10. We call a sequence of random variables {ξnp }n∈N which satisfy conditions (1)
and (2) of Lemma 5.9 a controlled random Neumann environment, and we de�ne the e�ective
potential via:

ξne (ωp, x) = ξnp (ωp, x)−cn(ωp)1{d=2}.



34 A ROUGH SUPER-BROWNIAN MOTION

Let us introduce the discrete space EL =
{
η ∈ NΛLn

0 : η(x) = 0,∀x ∈ ∂ΛLn
}

De�nition 5.11. Fix an averaging parameter % ≥ d/2 and a controlled random Neumann en-
vironment ξnp . Let unp be the (random) Markov process from De�nition 2.6. The process unp
corresponds to an (unlabelled) BRWRE, which can be constructed from an underlying labelled
BRWRE Xn

p (see Remark A.3 for a rigorous de�nition).

We build Xn,L
p by killing (i.e. setting to the cemetery state ∆) a particle in Xn

p as soon as it

reaches the boundary ∂ΛLn . We then build the process un,Lp taking values in EL by disregarding

the labels of the process Xn,L
p . That is, if at time t, Xn,L

p (t) has N(t) particles at positions
Y n
p (t, 1), . . . , Y n

p (t,N(t)), then:

un,Lp (t, x) = #{i ∈ {1, . . . , N(t)} : Y n
p (t, i) = x}.

The following result is now easy to verify.

Lemma 5.12. For any ωp ∈ Ωp the process un,Lp (ωp, ·) is a Markov process taking values in

D([0,+∞);EL), associated to the generator L n,ωp

L : Cb(E
L)→ Cb(E

L) de�ned via:

L n,ωp

L (F )(η) =
∑

x∈ΛLn\∂ΛLn

ηx ·
[∑
x∼y

n2(F (ηx7→y)−F (η))

+(ξne )+(ωp, x)[F (ηx+)−F (η)] + (ξne )−(ωp, x)[F (ηx−)−F (η)]

]
,

where for η ∈ EL we de�ne ηx 7→y(z) = η(z)−1{z=x}+1{z=y, y 6∈∂ΛLn} and ηx± is de�ned in the

same way as for η ∈ E = (NZdn
0 )0.

Remark 5.13. Extending un,Lp by 0 to Zdn \ ΛLn , we �nd:

un,Lp (ωp, t, x) ≤ unp (ωp, t, x), ∀(ωp, t, x) ∈ Ωp × R≥0 × Rd.

Consider now the random measure associated to this process:

(24) µn,Lp (ωp, t)(ϕ) =
∑
x∈ΛLn

bn−%cun,Lp (ωp, t, x)ϕ(x),

and �x one realization of the noise ωp. As before, we drop all dependence on the index p to
underline that we are working with a deterministic (Neumann) environment. We also write
M ([−L/2, L/2]d) for the set of all �nite positive measure on [−L/2, L/2]d.

Remark 5.14. When studying the convergence of the process µn,L, special care has to be taken
with regard to what happens on the boundary of the box. Indeed a function ϕ ∈ C∞([−L/2, L/2]d)
(i.e. smooth in the interior with all derivatives continuous on the entire box) is not smooth in

the scale of spaces Bl,α
p,q for l ∈ {d, n}, since it does not satisfy the required boundary conditions:

a priori it only lies in the above space for α = 0 and any value of p, q.

For this reason we consider a weaker kind of convergence for the processes µn,L than one might
expect. We write

M L
0 =

(
M ((−L/2, L/2)d), τv

)
of �nite positive measures on (−L/2, L/2)d endowed with the vague topology τv (cf. [DP12,
Section 3]), i.e. µn → µ in M L

0 if

µn(ϕ)→ µ(ϕ), ∀ϕ ∈ X

where X can be chosen to be either the space C∞c ((−L/2, L/2)d) or the space C0((−L/2, L/2)d)
of continuous functions which vanish on the boundary of the box (the latter is a Banach space,
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when endowed with the uniform norm). The reason why this topology is convenient is that sets
of the form KR ⊂M L

0

KR = {µ ∈M L
0 : µ(1) ≤ R}

are compact. In this setting it is also important to remark the following embedding, which follows
from a short calculation.

Remark 5.15. For α > 0 there is a continuous (in the sense of Banach spaces) embedding

C α
d ([−L/2, L/2]d) ↪→ C0((−L/2, L/2)d).

Now we can pass to study the convergence of the killed process.

Lemma 5.16. We can bound the mass of the killed process locally uniformly in time:

sup
n

E[ sup
t∈[0,T ]

µn,L(t)(1)] < +∞,

as well as the mass of the semigroup:

sup
n

sup
t∈[0,T ]

‖Tn,dt 1‖∞ < +∞.

Proof. The �rst bound follows from comparison with the process on the whole real line. The
second bound follows from the �rst. The second bound follows from Proposition 3.12 because
the antisymmetric extension of 1 is in L∞: we have |Πo1(·)| ≡ 1.

�

Lemma 5.17. The sequence {t 7→ µn,L(t)}n∈N is tight in the space D(R≥0; M L
0 ). Any limit

point µL lies in C(R≥0; M L
0 ).

Proof. We want to apply Jakubowski's tightness criterion [DP12, Theorem 3.6.4]. The se-
quence µn,L satis�es the compact containment condition in view of Lemma 5.16. The tightness
thus follows if we prove that the sequence {t 7→ µn(t)(ϕ)}n∈N is tight in D([0, T ];R) for any
ϕ ∈ C∞c ((−L/2, L/2)d). Here we follow the calculation of Lemma 4.2, using the results from
Section 3.2 on the PAM with Dirichlet boundary conditions. The continuity of the limit points
is shown as in Lemma 4.4. �

We will characterize the limit points of {µn,L}n∈N in a similar way as the rough super-Brownian
motion, and for that purpose we need to solve the following equation:

Lemma 5.18. For T > 0 and ϕ0 ∈ C∞c ((−L/2, L/2)d) with ϕ0 ≥ 0 and ϑ as in Proposition 3.12,
there exists a unique (paracontrolled in d = 2) solution ϕ ∈ L ϑ

d ([−L/2, L/2]d) to

∂tϕ = Hdϕ−νϕ2, ϕ(0) = ϕ0, ϕ(t, x) = 0, ∀(t, x) ∈ (0, T ]× ∂[−L/2, L/2]d,(25)

and the following bounds hold:

0 ≤ ϕ(t) ≤ T d
t ϕ0, ‖ϕ‖L θ

d ([−L/2,L/2]d) . e
C‖{T d

t ϕ0}t∈[0,T ]‖CL∞([−L/2,L/2]d) .

The proof is analogous to the one of Proposition 4.5, except that here we do not need to
consider weights. As in Section 4.1 we thus arrive at the following description of the limit points
of {µn,L}n∈N:

Proposition 5.19. For any deterministic Neumann environment {ξn}n∈N satisfying Assump-
tion 3.11 there exists µL ∈ C(R≥0; M L

0 ) such that for % = d/2 we have µn,L → µL in distribution
in D(R≥0; M L

0 ). The process µL is the unique (in law) process in C(R≥0; M L
0 ) which satis-

�es one (and then all) of the following equivalent properties with F = {Ft}t≥0 being the usual
augmentation of the �ltration generated by µL.
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(i) For any t ≥ 0 and ϕ0 ∈ C∞c ((−L/2, L/2)d), ϕ0 ≥ 0 and for Ud
t ϕ0 the solution to Equation

(25) with initial condition ϕ0 the process

Nϕ0
t (s) = e−〈µ(s),Ud

t−sϕ0〉, s ∈ [0, t]

is a bounded continuous F−martingale.
(ii) For any t ≥ 0 and ϕ0 ∈ C∞c ((−L/2, L/2)d) and f ∈ C([0, t];C0((−L/2, L/2)d)), and for

ϕt solving
∂sϕt + Hdϕt = f, s ∈ [0, t], ϕt(t) = ϕ0

it holds that

Mϕ0,f
t (s) := 〈µL(s), ϕt(s)〉−〈δ0, ϕt(0)〉−

∫ s

0
dr 〈µL(r), f(r)〉, s ∈ [0, t]

is a continuous square-integrable F−martingale with quadratic variation

〈Mϕ0,f
t 〉s = 2ν

∫ s

0
dr 〈µL(r), (ϕt)

2(r)〉.

(iii) For any ϕ ∈ DHd the process:

Lϕ(t) = 〈µL(t), ϕ〉−〈δ0, ϕ〉−
∫ t

0
dr 〈µL(r),Hdϕ〉, t ∈ [0, T ]

is a continuous F−martingale, square-integrable on [0, T ] for all T > 0, with quadratic
variation

〈Lϕ〉t = 2ν

∫ t

0
dr 〈µL(r), ϕ2〉.

Proof. The proof is almost identical to the one of Theorem 2.13. The main di�erence is that
here we only test against functions with zero boundary conditions and thus use the results from
Section 3.2. �

We call the above process the killed rough super-Brownian motion (killed rSBM) on (−L
2 ,

L
2 )d.

Note that we can interpret the killed rSBM as an element of C(R≥0; M (Rd)) by extending it
by zero, i.e. µL(t, A) = µL(t, A ∩ (−L/2, L/2)d) for any measurable A ⊂ Rd. This allows us to
couple in�nitely many killed rSBMs with a rSBM on Rd so that they are ordered in the natural
way.

Corollary 5.20. For any deterministic Neumann environment {ξn}n∈N satisfying conclusions
(1) and (2) of Lemma 5.9 there exists a process (µ, µ2, µ4, . . . ) ∈ C(R≥0; M (Rd))N (equipped
with the product topology) such that µ is an rSBM and µL is a killed rSBM for all L ∈ 2N (all
associated to the environment {ξn}n∈N), and such that almost surely

(26) µ2(t, A) ≤ µ4(t, A) ≤ · · · ≤ µ(t, A)

for all t ≥ 0 and all Borel sets A ⊂ Rd.

Proof. The construction (24) of µn and µn,L based on the labelled particle system gives us a
coupling (µn, µn,2, µn,4, . . . ) such that almost surely

µn,2(t, A) ≤ µn,4(t, A) ≤ · · · ≤ µn(t, A)

for all t ≥ 0 and all Borel sets A ⊂ Rd, where as above we extend µn,L to Rd by setting it to
zero outside of (−L

2 ,
L
2 )d. By Theorem 2.13 respectively Proposition 5.19 we get tightness of the

�nite-dimensional projections (µn, µn,2, . . . , µn,L) for L ∈ 2N, and this gives us tightness of the
whole sequence in the product topology. Moreover, for any subsequential limit (µ, µ2, µ4, . . . ) we
know that µ is an rSBM and µL is a killed rSBM on (−L

2 ,
L
2 )d.

It is however a little subtle to obtain the ordering (26), because we only showed tightness in
the vague topology on M L

0 for the µn,L component. So we introduce suitable cut-o� functions to
show that the ordering is preserved along any (subsequential) limit: Let χm ∈ C∞c ((−L/2, L/2)d),
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χm ≥ 0 such that χm = 1 on a sequence of compact sets Km which increase to (−L/2, L/2)d as
m→∞. Note that on compact sets the sequence µn,L converges weakly (and not just vaguely).
We then estimate (in view of Remark 5.13) for ϕ ∈ Cb(Rd) with ϕ ≥ 0:

〈µL(t), ϕ〉 = lim
m→∞

〈µL(t), ϕ · χm〉 = lim
m→∞

lim
n→∞

〈µn,L(t), ϕ · χm〉 ≤ lim
m→∞

〈µ(t), ϕ · χm〉 = 〈µ(t), ϕ〉,

and similarly we get 〈µL(t), ϕ〉 ≤ 〈µL′(t), ϕ〉 for L ≤ L′. Since a signed measure that has a
positive integral against every positive continuous function must be positive, our claim follows.

�

Appendix A. Construction of the Markov Process

This section is dedicated to a rigorous construction of the BRWRE. For simplicity and without

loss of generality we will work with n = 1. Since the space NZd
0 is harder to deal with and we

do not need it, we consider the countable subspace E =
(
NZd

0

)
0
of functions η : Zd → N0 with

η(x) = 0, except for �nitely many x ∈ Zd. We endow E with the following distance:

d(η, η′) =
∑
x∈Zd

|η(x)−η′(x)|,

under which E is a discrete and hence locally compact separable metric space. Recall that we are
given a probability space (Ωp,F p,Pp) with a random potential ξp : Ωp×Zd → R. Recall also that
we write x ∼ y with x, y ∈ Zd, |x−y| = 1, and ηx 7→y(z) = η(z)+(1{y}(z)−1{x}(z))1{η(x)≥1} and

ηx±(z) = (η(z) ± 1{x}(z))+, as well as (·)+ = max{0, ·} and (·)− = max{0,−·}. Furthermore,
let Cb(E) be the Banach space of continuous and bounded functions on E, endowed with the
supremum norm.

Lemma A.1. Assume that for any ωp ∈ Ωp the potential ξp(ω
p) is uniformly bounded and

consider π ∈ E. There exists a unique probability measure Pπ on Ω = Ωp × D([0,+∞);E)
endowed with the product sigma algebra, such that Pπ is of the form PpnPωpπ , with Pωpπ being the
unique measure on D([0,+∞);E) under which the canonical process u is a Markov jump process
with u(0) = π whose generator is given by L ωp : D(L ωp)→ Cb(E):

(27)

L ωp(F )(η) =
∑
x∈Zd

ηx ·
[∑
y∼x

(
F (ηx 7→y)−F (η)

)
+ (ξp)+(ωp, x)[F (ηx+)−F (η)]+(ξp)−(ωp, x)[F (ηx−)−F (η)]

]
,

where the domain D(L ωp) is the set of functions F ∈ Cb(E) such that the right-hand side of
Equation (27) lies in Cb(E).

Proof. First, let us construct the process for �xed ωp ∈ Ωp. This follows via a classical construc-
tion. Indeed, let us consider the modi�ed generator

L ωp

b (F )(η) =
∑
x∈Zd

ηx∑
z∈Zd ηz(2d+|ξp|(ωp, z))

×
[∑
y∼x

(
F (ηx 7→y)−F (η)

)
+ (ξp)+(ωp, x)[F (ηx+)−F (η)] + (ξp)−(ωp, x)[F (ηx−)−F (η)]

]
.

This is the generator associated to a discrete time Markov chain Y on E. We turn this Markov
chain to a Markov jump process u as in [EK86, Equation (4.2.3)], with

λ(η) =
∑
x∈Zd

ηx(2d+|ξp|(ωp, x)).
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In order for this process to be de�ned for all times we need to verify that∑
k∈N

1

λ(Yk)
= +∞, a.s..

This is the case, since by assumption ξp is bounded and thus∑
k∈N

1

λ(Yk)
&
∑
k∈N

1∑
x Yk(x)

≥
∑
k∈N

1

c+k
= +∞

with c =
∑

x π(x). It follows via classical calculations that L ωp is the generator associated to
the process u. This allows us to de�ne for �xed ωp the unique measure κ(ωp, ·) on D([0,+∞);E),
which is associated to the law of the process we just described. To de�ne the measure Pπ we have
to show that κ is a Markov kernel. This amounts to proving measurability in the ωp coordinate.
But κ depends continuously on ξp, which we can verify for example by coupling the processes for

ξp and ξ̃p through a construction based on Poisson jumps at rate K > ‖ξp‖∞, ‖ξ̃p‖∞ and then
rejecting the jumps if an independent uniform [0,K] variable is not in [0, |ξp(x)|] respectively in

[0, |ξ̃p(x)|]. Since ξp is measurable in ωp, also κ is measurable in ωp.
�

In the previous result, we have constructed the random Markov process under the assumption
that the random potential is bounded. Now we extend the result to allow sub-polynomial growth.

Lemma A.2. Assume that for all ωp ∈ Ωp the potential ξp(ω
p) lies in

⋂
a>0 L

∞(Zd, p(a)) and
consider π ∈ E. There exists a unique probability measure Pπ on Ω = Ωp × D([0,+∞);E)
endowed with the product sigma algebra, such that Pπ is of the form PpnPωpπ , with Pωpπ being the
unique measure on D([0,+∞);E) under which the canonical process u is a Markov jump process
with u(0) = π whose generator is given by L ωp : D(L ωp) → Cb(E), with L ωp and D(L ωp)
de�ned as in the previous result.

Proof. Let us �x ωp ∈ Ωp. Consider the Markov jump processes uk started in π with generator
L ωp,k associated to the uniformly bounded noise ξkp (x) = (ξp(x) ∧ k) ∨ (−k) whose existence

follows from the previous result. The sequence {uk}k∈N is tight (this follows as in Lemma 4.2
and Corollary 4.3, keeping n �xed but letting k vary) and converges weakly to a Markov process
u. Indeed, for k,R ∈ N let τkR be the �rst time with supp(uk(τkR)) 6⊂ Q(R), where Q(R) is the
square of radius R around the origin, and let τR be the corresponding exit time for u. Then we
get for all k, l > maxx∈Q(R) |ξp(x)|, for all T > 0, and all F ∈ Cb(D([0, T ];E)):

E[F ((uk(t))t∈[0,T ])1{τkR≤T}
] = E[F ((ul(t))t∈[0,T ])1{τ lR≤T}

] = E[F ((u(t))t∈[0,T ])1{τR≤T}],

where we used that the exit time τR is continuous because E is a discrete space. Moreover,
from the tightness of {uk}k∈N it follows that for all ε > 0 and T > 0 there exists R ∈ N
with P(τkR ≤ T ) < ε. This proves the uniqueness in law and that u is the limit (rather than

subsequential limit) of {uk}k∈N. Similarly we get the Markov property of u from the Markov
property of the {uk}k∈N and from the convergence of the transition function of uk as k →∞.

It remains to verify that L ωp is the generator of u. But for large enough R we have Pωpπ (τR ≤
h) = O(h2) as h → 0+, because on the event {τR ≤ h} at least two transitions must have
happened (recall that π is compactly supported). We can thus compute for any F ∈ Cb(E):

Eω
p

π

[
F (u(h))

]
= Eω

p

π

[
F (uk(h))

]
+O(h2).

The result on the generator then follows from the previous lemma. As before, we now have
a constructed a collection of probability measures κ(ωp, ·) as the limit of the Markov kernels
κk(ωp, ·). Since measurability is preserved when passing to the limit, we can again construct the
measure Pπ on the whole space Ω.

�
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We introduced the BRWRE without keeping track of the individual particles (all particles are
identical and only their position matters). Sometimes it is also useful to consider a labelled pro-
cess, which distinguishes individual particles and lives in a much larger (although still countable)
space and which can be constructed using similar arguments to the unlabelled case. We thus
introduce the space Elab =

⊔
m∈N(Zd∪{∆})m, where

⊔
denotes the disjoint union, endowed with

the discrete topology. Here ∆ is a cemetery state. Moreover, for η ∈ Elab we write dim(η) = m
if η ∈ (Zd ∪ {∆})m.

Remark A.3. Assume that for all ωp ∈ Ωp the potential ξp(ω
p) lies in

⋂
a>0 L

∞(Zd, p(a)) and
consider an initial condition X(0) ∈ Elab. We can construct a (random) Markov jump process
X on Elab via the following generator:

L ωp

lab(F )(η) =

dim(η)∑
i=1

1{Zd}(ηi)

[∑
y∼ηi

(
F (ηi 7→y)−F (η)

)
+ (ξn)+(ωp, ηi)

(
F (ηi,+)−F (η)

)
+(ξn)−(ωp, ηi)

(
F (ηi,−)−F (η)

)]
,

where ηi 7→yj = ηj(1−1{i}(j))+y1{i}(j) and ηi,+j = ηj1[0,dim(η)](j)+ηi1{dim(η)+1}(j) as well as

ηi,−j = ηj(1−1{i}(j))+∆1{i}(j), and where F is such that the right hand-side is bounded. We
then �nd that the process

u(t, x) = #{i ∈ {i, . . . ,dim(X(t))} : Xi(t) = x}
has the same law Pωpπ as the process introduced in Lemma A.2, with π(x) = u(0, x).

Appendix B. Some Estimates for the Random Noise

In this section we prove parts of Lemma 2.4, i.e. that a random environemnt satisfying
Assumption 2.1 gives rise to a deterministic environment satisfying Assumption 2.3.

Lemma B.1. Let a, ε, q > 0 and b > d/2. Under Assumption 2.1 we can bound

sup
n

[
E‖n−d/2(ξnp )+‖qC−ε(Zdn,p(a))

+ E‖n−d/2(ξnp )+‖2L2(Zdn,p(b))

]
< +∞,

and the same holds if we replace (ξnp )+ with |ξnp |. Furthermore, for ν = E[Φ+], the following

convergences hold true in distribution in C−ε(Rd, p(a)):

E nn−d/2(ξnp )+ −→ ν, E nn−d/2|ξnp | −→ 2ν.

Proof. We prove the result only for (ξnp )+, since then we can treat (ξnp )− by considering −ξnp
(note that −Φ is still a centered distribution). Start by noting that

E[‖n−d/2(ξnp )+‖qLq(Zdn,p(a))
] =

∑
x∈Zdn

n−dE[|n−d/2(ξnp )+|q]|p(a)(x)|q . E[|Φ|q]
∫
Rd

(1 + |y|)−aq dy,

which is �nite whenever aq > d. From here the uniform bound on the expectations follows by
Besov embedding.

Now we pass to the convergence result. The uniform bound guarantees tightness of the se-
quence E nn−d/2(ξnp )+ in C−ε(Rd, p(a)), for any ε, a > 0 and we are left with proving that the
weak limit is ν. Using the spatial independence of ξnp we can compute for any ϕ ∈ Sω with

supp(FRdϕ) ⊂ nTd:

E
[
〈E nn−d/2(ξnp )+−ν, ϕ〉2

]
= E

[( ∑
x∈Zdn

ϕ(x)n−d(n−d/2(ξnp (x))+−ν)

)2]
' n−2d

∑
x∈Zdn

ϕ(x)2 = O(n−d).
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This proves that ν is indeed the limit. �

The following result is a simpler variant of [MP17, Lemma 5.5] for the case d = 1.

Lemma B.2. Fix ξn satisfying Assumption 2.1, d = 1, a, q > 0 and α < 2−d/2. We have:

sup
n

E
[
‖ξnp ‖

q
Cα−2(Zdn,p(a))

]
< +∞, E nξnp → ξp,

where ξp is a white noise on R and the convergence holds in distribution in C α−2(Rd, p(a)).

Proof. The uniform bound follows along the lines of [MP17, Lemma 5.5]. This guarantees the
tightness of the sequence. Convergence follows by an application of the central limit theorem.

�

Appendix C. Stochastic Estimates under Dirichlet Bundary Conditions

The following bounds are essentially an adaptation of [CGP17, Section 4.2] to the Dirichlet
boundary condition setting (see also [CvZ19] for the spatially continuous setting). Our aim is to
prove the following proposition. Fix a box of size L ∈ N and assume the box is given by [0, L]d

(the same results hold for any integer translation of this box, mutatis mutandis). Recall the
notation and constructions from Section 3.2 as well as the de�nition of κn from Equation (4).

Proposition C.1. Fix a sequence ξnp satisfying Assumption 2.1 and consider the restriction
{{ξnp (x)}x∈Λn}n∈N. The following bounds and convergences (all of which are to be understood in
distribution) hold true for any α < 2−d/2:

• Let ξp be space white noise on [0, L]d, then:

sup
n

E[‖ξnp ‖
q

Cα−2
n (Λn)

] < +∞, E n
n ξ

n
p → ξp in C α−2

n ([0, L]d).

• In dimension d = 2, for Xn
n = χ(D)

ln(D)ξ
n
p and Xn = ∆−1

n χ(D)ξp (with the same χ as in

Equation (4)) we have:

sup
n

E[‖Xn
n ‖Cαn (Λn) + ‖(Xn

n � ξnp )−κn‖C 2α−2
n (Λn)] < +∞

and there exists a random distribution Xn � ξp ∈ C 2α−2
n ([0, L]d) such that

E n
n X

n
n → Xn in C α

n ([0, L]d), E n
n (Xn

n � ξnp−κn)→ Xn � ξp in C 2α−2
n ([0, L]d).

Proof. Step 1. First, we establish all uniform bounds. We will derive only bounds in spaces of

the kind Bn,β
p,p (Λn) for appropriate β and any p su�ciently large. The results on the Hölder scale

then follow by Besov embedding. Also, in order to avoid confusion and for clarity, we will omit
the subindices p, n in the noise terms.

Recall that with N = 2L we have Θn = 1
n(Zd ∩ [−Nn

2 , Nn2 ]d) /∼ with opposite boundaries

identi�ed (resp. TdN if n = ∞) and Ξn = 1
N (Zd ∩ [−Nn

2 , Nn2 ]d) /∼ , (resp. 1
NZd if n = ∞) as

well as Ξ+
n = 1

N (Zd ∩ [0, Ln]d), (resp. 1
NNd0). We write sums as discrete integrals against scaled

measures with the following de�nitions:

∫
Θn

dx f(x) =
∑
x∈Θn

f(x)

nd
,

∫
Ξn

dk f(k) =
∑
k∈Ξn

f(k)

Nd
,

∫
{−1,1}d

dq f(q) =
∑

q∈{−1,1}d
f(q).

For k1, k2 ∈ Ξn and q1, q2 ∈ {−1, 1}d we moreover adopt the notation: k[12] = k1+k2, q[12] =
q1+q2 and (q ◦ k)[12] = q1 ◦ k1+q2 ◦ k2. Let us start with the �rst estimate. We have:

E[‖ξn‖p
Bα−2,n
p,p (Λn)

] =
∑

−1≤j≤jn

2(α−2)jp

∫
Θn

dx E[|∆jΠeξ
n|p(x)]
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Since the integral over Θn is bounded, it su�ces to derive a uniform bound for E[|∆jΠeξ
n|p(x)]

in n, x. Let us thus rewrite:

∆jΠeξ
n(x) =

∫
Ξn

dk e2πι〈x,k〉%j(k)FΘnΠeξ
n(k)

=

∫
Ξ+
n

dk

∫
{−1,1}d

dq νkN
d
2 e2πι〈x,q◦k〉%j(k)〈ξn, nk〉 = Πe∆jξ

n(x),

where we have used that FΘnϕ(k) = N
d
2 〈ϕ, ek〉. By enumerating Ξ+

n we can consider the integral
as a sum of martingale increments. Indeed, a simple calculation shows that the {〈ξn, nk〉}k are
independent centered normal random variables with variance 1. Hence we can estimate for p ≥ 2
with the discrete time Burkholder-Davis-Gundy inequality and Minkowski's inequality:

E[|∆jΠeξ
n(x)|p] . E

[∣∣∣∣∫
Ξ+
n

dk %2
j (k)〈ξn, nk〉2

∣∣∣∣ p2
]
.

(∫
Ξ+
n

dk %2
j (k)E[〈ξn, nk〉p]

2
p

) p
2

. 2jdp/2.

This provides an estimate on the regularity of the required order. The bound for Xn follows
along the same lines.

Let us pass to a bound for the resonant product. Here we �rst compute:

∆jΠe(ξ
n �Xn)(x)

=

∫
({−1,1}d×Ξ+

n )2

dq12 dk12 N
dνk1νk2e

2πι〈x,(q◦k)[12]〉·

· %j((q ◦ k)[12])ψ0(k1, k2)
χ(k2)

ln(k2)
〈ξn, nk1〉〈ξn, nk2〉

=

∫
({−1,1}d×Ξ+

n )2

dq12 dk12 1{k1 6=k2}Ndνk1νk2
e2πι〈x,(q◦k)[12]〉·

· %j((q ◦ k)[12])ψ0(k1, k2)
χ(k2)

ln(k2)
〈ξn, nk1〉〈ξn, nk2〉+ Diag

where Diag indicates the integral over the set {k1 = k2}. The �rst term can be bounded by
generalizing the martingale inequality argument we used for ∆jΠeξ

n(x) to multiple discrete
stochastic integrals, see [CGP17, Proposition 4.3]. We can thus bound for arbitrary ` ∈ N:

E[|∆j(Πe(ξ
n �Xn)(x)−κn)|p]

.

[∫
dq12 dk12

∣∣∣∣%j((q ◦ k)[12])ψ0(k1, k2)
χ(k2)

ln(k2)

∣∣∣∣2
] p

2

E[〈ξn, n`〉p]2 + E[|Diag−1{j=−1}κn|p].

For the �rst term on the right hand side we have:∫
({−1,1}d×Ξ+

n )2

dq12 dk12

∣∣∣∣%j((q ◦ k)[12])ψ0(k1, k2)
χ(k2)

ln(k2)

∣∣∣∣2

=

∫
Ξ2
n

dk12

∣∣∣∣%j(k[12])ψ0(k1, k2)
χ(k2)

ln(k2)

∣∣∣∣2
.
∑
i≥j−`

∫
Ξ2
n

dk12 1{|k1+k2|∼2j}1{|k2|∼2i}2
−4i .

∑
i≥j−`

2jd2i(d−4) . 22j(d−2),
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which is of the required order (and we used that d < 4). Let us pass to the diagonal term. We
�rst smuggle in the expectation of Diag:

E[|Diag−E[Diag]|p] = E

[∣∣∣∣ ∫
Ξ+
n×({−1,1}d)2

dq12 dk ν2
ke

2πι〈x,q[12]◦k〉%j(q[12] ◦ k)
χ(k)

ln(k)
η(k)

∣∣∣∣p
]
,

where we have lost the factor Nd due to the normalization of the integral in k and η(k) =
〈ξn, nk〉2−E[〈ξn, nk〉2] = 〈ξn, nk〉2−1 is sequence of centered i.i.d random variables. Therefore,
we can use the same martingale argument as above to bound the integral by:

E[|Diag−E[Diag]|p] .
(∫

Ξ+
n

dk

∣∣∣∣ ∫
({−1,1}d)2

dq12 %j(q[12] ◦ k)

∣∣∣∣2∣∣∣∣ χ(k)

ln(k)

∣∣∣∣2E[|η(k)|p]
2
p

) p
2

.

(∫
x∈Rd:|x|&2j

1

|x|4
dx

)p/2
. 2j(d−4) = 2j(

d
2
−2)

whenever d < 4, which is even better than the bound for the o�-diagonal terms. We are hence
left with a last, deterministic term:∫

Ξ+
n×({−1,1}d)2

dq12 dk ν2
ke

2πι〈x,q[12]◦k〉%j(q[12] ◦ k)
χ(k)

ln(k)
− 1{j=−1}κn.

We split up this sum in di�erent terms according to the relative value of q1, q2. If q1 = −q2

(there are 2d such terms) the sum does not depend on x and it disappears for j ≥ 0. Let us
assume j = −1: We are then left with the constant:

2d
∫

Ξ+
n

dk ν2
k

χ(k)

ln(k)
− κn =

∫
Ξn

dk
χ(k)

ln(k)
− kn

Note that the sum on the left-hand side diverges logarithmically in n and we now show how to
renormalize with κn. Let us recall the de�nition of κn and to clarify our computation let us also
introduce an auxiliary constant κ̄n (it di�ers fron the previous integrand only on the boundary):

κn =

∫
Tdn

dk
χ(k)

ln(k)
, κ̄n =

∫
Ξn

dk ν2
k

χ(k)

ln(k)
,

where νk = 2−#{i : ki=±n}/2. For x ∈ Rd, r ≥ 0, let us indicate with Qnr (x) ⊆ Tdn the box
Qnr (x) = {y ∈ Tdn : |y−x|∞ ≤ r/2} ( | · |∞ being the maximum of the component-wise distances
in Tdn). Then note that we can bound uniformly over n and N :

|κn−κ̄n| =
∣∣∣∣ ∫

Tdn
dk

χ(k)

ln(k)
−
∫

Ξn

dk ν2
k

χ(k)

ln(k)

∣∣∣∣ =

∣∣∣∣ ∑
k∈Ξn

∫
Qn1
N

(k)
dk′

χ(k+k′)

ln(k+k′)
− χ(k)

ln(k)

∣∣∣∣
.

1

N

(
1 +

1

Nd

∑
k∈Ξn

sup
ϑ∈Q 1

N
(k)

χ(k)

(ln(ϑ))2
|∇ln(ϑ)|

)
.

1

N

(
1+

1

Nd

∑
k∈ 1

N
Zd

χ(k)

|k|3

)
.

1

N
,

where we have used that d = 2, |ln(ϑ)| & |ϑ|2 on [−n/2, n/2]d as well as |∇ln(ϑ)| . |θ| on
[−n/2, n/2]d. Similar calculations show that the di�erence converges: limn→∞ κn−κ̄n ∈ R. We
are now able to estimate: ∣∣∣∣ ∫

Ξn

dk
χ(k)

ln(k)
− κn

∣∣∣∣ . 1 + |κ̄n−κn| . 1

where we used that the sum on the boundary ∂Ξn converges to zero and is thus uniformly bounded
in n. For the same reason, the above di�erence converges to the limit limn→∞ κn−κn ∈ R.

For all other possibilities of q1, q2 we will show convergence in a distributional sense. If q1 = q2

we have: ∣∣∣∣ ∫
Ξ+
n

dk ν2
ke

2πι〈x,2q1k〉%j(2k)
χ(k)

ln(k)

∣∣∣∣ . 2j(d−2).
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Finally, if only one of the two components of q1, q2 di�ers (let us suppose it is the �rst one) we
�nd ( with x = (x1, x2) and k = (k1, k2)):∣∣∣∣ ∫

Ξ+
n

dk ν2
ke

2πι2x2k2%j(2k2)
χ(k)

ln(k)

∣∣∣∣ .
∑
k1≥1

1

|k1|2θ

∑
k2≥1

%j(2k2)

|k2|2(1−θ)

 . 2jε

for any ε > 0, up to choosing θ ∈ (1/2, 1) su�ciently close to 1/2.
Step 2. Now we brie�y address the convergence in distribution. Clearly the previous calcu-

lations and compact embeddings of Hölder-Besov spaces guarantee tightness of the sequences
ξnp , X

n
n and Xn

n � ξnp−κn in the respective spaces for any α < 2−d/2. We have to uniquely iden-
tify the distribution of any limit point. For ξp, X

n
n the limit points are Gaussian and uniquely

identi�ed as white noise ξp and ∆−1
n χ(D)ξp respectively. The resonant product requires more

care, but we can use the same arguments as in [MP17, Section 5.1]. �

Lemma C.2. In the same setting as above, we have that for any ε > 0 and ν = E[(Φ)+]:

sup
n

E[‖n−d/2(ξnp )+‖C−εn (Λn) + ‖n−d/2(ξnp )+‖L2(Λn)] < +∞,

as well as:

E n
n n
−d/2(ξn)+ → ν in C−εn ([0, L]d).

Proof. This result is analogous to Lemma B.1 �

Appendix D. Moment Estimates

Here we derive uniform bounds for the moments of the processes {µn}n∈N. As a convention, in
the following we will write E and P for the expectation and the probability under the distribution
of un. For di�erent initial conditions η ∈ E we will write Eη,Pη.

Lemma D.1. Let for all n ∈ N the process {µn(t)}t≥0 be as in De�nition 2.6 and consider
ϕn : Zdn → R with ϕn ≥ 0 and q, T > 0. If for all n ∈ N we have ϕn = ϕ|Zdn with ϕ ∈ C 2(Rd, e(l))
for some l ∈ R, then

sup
n

sup
t∈[0,T ]

E
[
|µn(t)(ϕn)|q

]
< +∞.

If for all ε > 0 there exists an l ∈ R such that supn ‖ϕn‖C−ε(Rd,e(l)) < +∞, we can bound for

any γ ∈ (0, 1):

sup
n

sup
t∈[0,T ]

tγE
[
|µn(t)(ϕn)|q

]
< +∞.

Proof. We prove the second estimate (for uniformly bounded ‖ϕn‖C−ε(Rd,e(l))), since the �rst

estimate is similar but easier (Lemma E.1 below controls ‖ϕn‖C ϑ(Zdn,e(l)) for all ϑ < 2 in that

case). Also, we assume without loss of generality that q ≥ 2. As usual, we use the convention
of freely increasing the value of l in the exponential weight. Let us start by recalling that
E
[
µn(t)(ϕn)

]
= Tnt ϕ

n(0). Moreover, via the assumption on the regularity, Proposition 3.1
guarantees that for any γ ∈ (0, 1) there exists ε = ε(γ, q) > 0 such that

sup
n
‖t 7→ Tnt ϕ

n‖L γ/q,ε(Zdn,e(l)) < +∞.

By the triangle inequality it thus su�ces to prove that for any γ > 0:

sup
n

sup
t∈[0,T ]

tγE
[
|µn(t)(ϕn)−Tnt ϕn(0)|q

]
< +∞.

Note that we can interpret the particle system un as the superposition of bn%c independent
particle systems, each started with one particle in zero; we write un = un1 + · · ·+unbn%c. To lighten
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the notation we assume that n% ∈ N. We then apply Rosenthal's inequality, [Pet95, Theorem 2.9]
(recall that q ≥ 2) and obtain

E
[
|µn(t)(ϕn)−Tnt ϕn(0)|q

]
= E

[∣∣∣∣ n%∑
k=1

[
n−%(unk(t), ϕn)−n−%Tnt ϕn(0)

]∣∣∣∣q]

. n−%q
n%∑
k=1

E
[
|(unk(t), ϕn)−Tnt ϕn(0)|q

]
+ n−%q

( n%∑
k=1

E
[
|(unk(t), ϕn)−Tnt ϕn(0)|2

]) q
2

. n−%(q−1)E
[
|(un1 (t), ϕn)|q

]
+
(
n−%E

[
|(un1 (t), ϕn)|2

])q/2
+ n−

%q
2 tγ‖t 7→ Tnt ϕ

n‖q
L γ/q,ε(Zdn,e(l))

for the same ε > 0 and l ∈ R as above. The two scaled expectations are of the same form, in the
second term we simply have q = 2. To control them, we de�ne for p ∈ N the map

mp,n
ϕn (t, x) = n%(1−p)E1{x}

[
|(un1 (t), ϕn)|p

]
.

As a consequence of Kolmogorov's backward equation each mp,n
ϕn solves the discrete PDE (see

also Equation (2.4) in [ABMY00]):

∂tm
p,n
ϕn (t, x) = H nmp,n

ϕn (t, x) + n−%(ξne )+(x)

p−1∑
i=1

(
p

i

)
mi,n
ϕn(t, x)mp−i,n

ϕn (t, x),

with initial condition mp,n
ϕn (0, x) = n%(1−p)|ϕn(x)|p. We claim that this equation has a unique

(paracontrolled in d = 2) solution mp,n
ϕn , such that for all γ > 0 there exists ε = ε(γ, p) > 0

with supn ‖m
n,p
ϕn ‖L γ,ε(Zdn,e(l)) < ∞. Once this is shown, the proof is complete. We proceed by

induction over p. For p = 1 we simply have mn,1
ϕn (t, x) = Tnt ϕ

n(x). For p ≥ 2 we use that by

Lemma E.2 we have ‖n%(1−p)|ϕn(x)|p‖C κ(Zdn,e(l)) → 0 for some κ > 0 and we assume that the

induction hypothesis holds for all p′ < p. Since it su�ces to prove the bound for small γ > 0, we
may assume also that κ > γ. We choose then γ′ < γ such that for some ε(γ′, p) > 0:

sup
n

∥∥∥∥ p−1∑
i=1

mi,n
ϕnm

p−i,n
ϕn

∥∥∥∥
M γ′C ε(γ′,p)(Zdn,e(l))

< +∞.

Since by Assumption 2.3 ‖n−%(ξne )+‖C−ε(Zdn,p(a)) is uniformly bounded in n for all ε, a > 0, the
above bound is su�cient to control the product:

sup
n

∥∥∥∥n−%(ξne )+

p−1∑
i=1

mi,n
ϕnm

p−i,n
ϕn

∥∥∥∥
M γ′C−ε(Zdn,e(l))

< +∞.

Now the claimed bound for mn,p
ϕn follows from an application of Proposition 3.1. For non-integer

q we simply use interpolation between the bounds for p < q < p′ with p, p′ ∈ N.
�

Appendix E. Besov Spaces

Here we prove some results concerning discrete and continuous Besov spaces. First, we show
that restricting a function to the lattice preserves its regularity.

Lemma E.1. Let ϕ ∈ C α(Rd) for α ∈ R>0 \ N. Then ϕ|Zdn ∈ C α(Zdn) and

sup
n∈N
‖ϕ|Zdn‖Cα(Zdn) . ‖ϕ‖Cα(Rd).

For the extension of ϕ|Zdn we have E n(ϕ|Zdn)→ ϕ in C β(Rd) for all β < α.
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Proof. Let us call ϕn = ϕ|Zdn .We have to estimate the norm ‖∆n
j ϕ

n‖L∞(Zdn), and for that purpose

we consider the cases j < jn and j = jn separately. In the �rst case we have for x ∈ Zdn
∆n
j ϕ

n(x) = Kj ∗ ϕ(x) = ∆jϕ(x)

where we used that since supp(%j) ⊂ n(−1/2, 1/2)d the discrete and the continuous convolutions
coincide. Therefore:

‖∆n
j ϕ‖L∞(Zdn) ≤ ‖∆jϕ‖L∞(Rd) ≤ 2jα‖ϕ‖Cα .

As for j = jn we have %
n
jn

(·) = 1−χ(2−jn ·) where χ ∈ Sω is one of the two functions generating
the dyadic partition of unity, a symmetric smooth function such that χ = 1 in a ball around
the origin. By construction we have %njn(x) ≡ 1 for x near the boundary of n(−1/2, 1/2)d, and

therefore supp(χ(2−jn ·)) ⊂ n(−1/2, 1/2)d. Let us de�ne ψn = F−1
n χ(2−jn ·) = F−1

Rd χ(2−jn ·).
Then ∑

x∈Zdn

n−dψn(x) = Fnψn(0) = χ(2−jn · 0) = 1,

and for every monomial M of strictly positive degree we have, since ψn is an even function,∑
x∈Zdn

n−dψn(x)M(x) = (ψn ∗nM)(0) = (ψn ∗M)(0) = F−1
Rd (χ(2−jn ·)FRdM)(0) = M(0),

where we used that the Fourier transform of a polynomial is supported in 0. Thus we get for
x ∈ Zdn with the usual multi-index notation:

∆n
jnϕ

n(x) = ϕ(x)−(ψn ∗n ϕ)(x) = −ψn ∗n
(
ϕ(·)−ϕ(x)−

∑
1≤|k|≤bαc

1

k!
∂kϕ(x)(·−x)k

)
(x),

and as above we can replace the discrete convolution ∗n with a convolution on Rd. Moreover,
since ϕ ∈ C α(Rd) and α > 0 is not an integer, we can estimate∥∥∥∥ϕ(·)−

∑
0≤|k|≤bαc

1

k!
∂kϕ(x)(·−x)⊗k

∥∥∥∥
L∞(Rd)

. |y|α‖ϕ‖Cα(Rd),

and from here the estimate for the convolution holds by a scaling argument. The convergence
then follows by interpolation. �

The following result shows that multiplying a function on Zdn by n−κ for some κ > 0 gains
regularity and gives convergence to zero under a uniform bound for the norm.

Lemma E.2. Consider z ∈ %(ω) and p ∈ [1,∞], α ∈ R and a sequence of functions fn ∈
C α
p (Zdn, z) with uniformly bounded norm:

sup
n
‖fn‖Cαp (Zdn,z) < +∞.

Then for any κ > 0 the sequence n−κfn is bounded in C α+κ
p (Zdn, z):

sup
n
‖n−κfn‖Cα+κp (Zdn,z)

. sup
n
‖fn‖Cαp (Zdn,z)

and n−κE nfn converges to zero in C β
p (Rd, z) for any β < α+ κ.

Proof. This is a simple consequence of the de�nition of the Besov spaces on Zdn. Indeed we have
to consider only the Littlewood-Paley blocks up to an order jn ' log2(n). Hence for j ≤ jn and
ε ≥ 0 :

2j(α+κ−ε)n−κ . 2jαn−ε.

Thus the claim follows from the de�nition of the Besov norm. �

Now we study the action of discrete gradients. We write C α
p (Zdn, z;Rd) for the space of maps

ϕ : Zdn → Rd such that each component lies in C α
p (Zdn, z) with the naturally induced norm.
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Lemma E.3 ([MP17], Lemma 3.4). The discrete gradient (∇nϕ)i(x) = n(ϕ(x+ei/n)−ϕ(x)) for
i = 1, . . . , d (with {ei}i being the standard basis in Rd) and the discrete Laplacian

∆nϕ(x) = n2
d∑
i=1

(ϕ(x+ei/n)−2ϕ(x)+ϕ(x−ei/n))

are bounded linear maps

∇n : C α
p (Zdn, z)→ C α−1

p (Zdn, z;Rd), ‖∇nϕ‖Cα−1
p (Zdn,z;Rd) . ‖ϕ‖Cαp (Zdn,z),

∆n : C α
p (Zdn, z)→ C α−2

p (Zdn, z), ‖∆nϕ‖Cα−2
p (Zdn,z)

. ‖ϕ‖Cαp (Zdn,z),

for all α ∈ R and p ∈ [1,∞], where the two estimates hold uniformly in n ∈ N.

Proof. The only nontrivial statement is that the bounds hold uniformly in n. For ∆n (and more
generally for generators of symmetric random walks) this is shown in [MP17, Lemma 3.4]. The
argument for the gradient ∇n is essentially the same but slightly easier. �
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