A ROUGH SUPER-BROWNIAN MOTION

NICOLAS PERKOWSKI AND TOMMASO CORNELIS ROSATI

ABsTRACT. We study the scaling limit of a branching random walk in static random environ-
ment in dimension d = 1,2 and show that it is given by a super-Brownian motion in a white
noise potential. In dimension 1 we characterize the limit as the unique weak solution to the
stochastic PDE: ~

Ot = (A+E) pu++/2vpé
for independent space white noise £ and space-time white noise £~ In dimension 2 the study
requires paracontrolled theory and the limit process is described via a martingale problem. In
both dimensions we prove persistence of this rough version of the super-Brownian motion.
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INTRODUCTION

This work explores the large scale behavior of a branching random walk in a random environ-
ment (BRWRE). Such process is a particular kind of spatial branching process on Z¢, in which
the branching and killing rate of a particle depends on the value of a potential V in the position
of the particle. In the model analyzed in this work, the dimension is restricted to d = 1,2 and
the potential is chosen at random on the lattice:

V(z) =¢&(x), with {{(z)},eza 1id., &(x) ~ P

for a given probability distribution ® (normalized via E® = 0,E®? = 1).
All particles behave independently of each other: To clarify the model it is convenient to
describe the behavior of a particle X in this process via its jump rates:

Jumps to nearest neighbor at rate ds,
X (t+ds) given X (t) ¢ Gives birth to a particle at rate £(X(t))4+ ds,
Dies at rate £(X (t))— ds.

After branching, the new and the old particle follow the same rule independently of each other.

(NP) MAX-PLANCK-INSTITUT FUR MATHEMATIK IN DEN NATURWISSENSCHAFTEN LEIPzIG & HUMBOLDT-
UNIVERSITAT ZU BERLIN
(TR) HuUMBOLDT-UNIVERSITAT ZU BERLIN
Date: May 14, 2019.
NP gratefully acknowledges financial support by the DFG via the Heisenberg program. This paper was
developed within the scope of the IRTG 1740 / TRP 2015/50122-0, funded by the DFG / FAPESP.
1



2 A ROUGH SUPER-BROWNIAN MOTION

The BRWRE is used as a model for chemical reactions or biological processes, e.g. mutation,
in a random medium. This model is especially interesting in relation to intermittency and local-
ization [ZMRS87, I(GM90, [ABMY00, (GKS13], and other large times properties such as survival
[BGK09, (GMPV10].

Scaling limits of branching particle systems have been an active field of research since the
early results by Dawson et al. and gave rise to the study of superprocesses (see [Eth00, [DP12]
for excellent introductions). This work follows the original setting and studies the behavior
under diffusive scaling: Spatial increments Ax ~ 1/n, temporal increments At ~ 1/n?. The
particular nature of our problem requires us to couple the diffusive scaling with the scaling of
the environment: This is done via an “averaging parameter” ¢ > d/2, while the noise is assumed
to scale to space white noise (i.e. £"(z) ~ n%/?).

The diffusive scaling of spatial branching processes in a random environment has already been
studied, for example by Mytnik [Myt96]. As opposed to the current setting, the environment in
Mytnik’s work renews itself independently in time. Thus on large scales it behaves like space-time
white noise, instead of space white noise. This has the advantage that the model is amenable to
probabilistic martingale arguments, which are not available in the space white noise case that we
investigate here. Therefore, we replace some of the probabilistic tools with arguments of a more
analytic flavor. Nonetheless, at a purely formal level our limiting process is very similar to the
one obtained by Mytnik, up to exchanging space-time with space white noise: See for example
the SPDE representation below. Moreover, our approach is reminiscent of the conditional
log-laplace transform, that is conditional duality, appearing in later works by Crisan [Cri04],
Mytnik and Xiong [MX07]. Notwithstanding these resemblances, we shall see later that some
statistical properties of the two processes differ substantially.

At the heart of our study of the BRWRE lies the following observation. If u(t, z) indicates the
numbers of particles in position z at time ¢, then the conditional expectation given the realization
of the random environment, w(t, x) = Elu(t, z)|£], solves a linear PDE with stochastic coefficients
(SPDE), which is a discrete - in the sense that the spatial variable is restricted to a lattice -
version of the parabolic Anderson model (PAM):

(1) Qw(t,x) = Aw(t,x) + £(x)w(t, x), (t,z) € R>o x R, w(0,z) = wo(x).

The PAM has been object of study both in the discrete and in the continuous setting (see
[Kénl16| for an overview). In the latter case (£ is space white noise) the SPDE is not solvable
via Itd integration theory, which highlights once more the difference between the current setting
and the work by Mytnik. In particular, in dimension d = 2,3 the study of the continuous PAM
requires special analytical and stochastic techniques in the spirit of rough paths, such as the
theory of regularity structures [Hail4] or of paracontrolled distributions [GIP15]. In dimension
d =1 classical analytical techniques are sufficient. In dimension d > 4 no solution is expected to
exist, because the equation is no longer locally subcritical. Local subcriticality is a notion that
in the present context was introduced by Hairer [Hail4], and it means that on small scales the
equation is well approximated by a linear equation with additive noise. The dependence of the
subcriticality condition on the dimension is explained by the fact that white noise loses regularity
as the dimension increases.

Moreover, in dimension d = 2,3 certain functionals of the white noise need to be tamed with
a technique called renormalization, with which we remove certain diverging singularities. In this
work, we restrict to dimensions d = 1,2 as this simplifies several calculations. At the level of
the 2-dimensional BRWRE, the renormalization has the effect of slightly tilting the centered
potential by considering instead an effective potential:

§e(x) =& (@)=cn, e =log(n),

which means that our system is out of criticality, albeit very slightly when confronted with the
other orders of magnitude involved.
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The special character of the noise and the analytic tools just highlighted allow, in a nutshell,
to fix one realization of the environment - outside a nullset - and to derive a scaling limit for
that single realization. Tightness of the measure-valued process then follows via a study of the
associated martingale problem, whereas the uniqueness of the limit is shown by duality, which is
similar to the case of classical super-Brownian motion (SBM), but different from the uniqueness
proof in [Myt96|, where duality is not available.

For “averaging parameter” ¢ > d/2 a law of large numbers holds: The process converges to the
continuous PAM. Instead, for o = d/2 one captures fluctuations from the branching mechanism
and the limiting process can be characterized via duality or a martingale problem (see Theorem
and is referred to in this work as rough super-Brownian motion (rSBM). In dimension
d = 1, following the analogous results for SBM by [KS88|, [Rei89], the rSBM admits a density
which in turn solves the SPDE:

(2) 8t:u(t7x) = Aﬂ(tvx)'i_f(x)u(tvx)"_ V QVM(tvx)g(tvx)v (t’ ‘T) € RZO x R, /L(O,IL‘) = 50(x)7

where §~ is space-time white noise that is independent of the space white noise &, and where
v =E®". The solution is weak both in the probabilistic and in the analytic sense (see Theorem
for a precise statement). This means that the last product represents a stochastic integral in
the sense of Walsh [Wal86] and the space-time noise is constructed from the solution. Moreover,
the product £y is defined only upon testing with functions in the random domain of the Anderson
Hamiltonian % = A+¢, a random operator that was introduced by Fukushima-Nakao [FN77]
in d =1 and by Allez-Chouk [AC15] in d = 2, see also [Labl8§| for d = 3. This notion of solution
should be expected. Indeed, the fact that the solutions are probabilistically weak is due to the
presence of the super-Brownian non-linearity, since even for the classical SBM the existence of
probabilistically strong solutions is open. In addition, the expected local Hoélder regularity in

space of the solution is C'ﬁ)/cz_g, for any € > 0, due to the presence of the space-time white noise.
This means that the product & -y is a priori not well-defined. Although the path-wise theories of
regularity structures and paracontrolled distributions aim exactly at finding spaces of functions
where such products are well-defined, the presence of the singular non-linearity 1/2vu makes this
equation currently untreatable in such a framework (see however [CT19] for some progress on
finite-dimensional rough path differential equations with square root nonlinearities).

One of the main motivations for this work was the aim to understand the SPDE ind=1
and the corresponding martingale problem in d = 2. For é = 0, equation is just the PAM
which we can only solve with pathwise methods, while for £ = 0 we obtain the classical SBM, for
which the existence of pathwise solutions is a long standing open problem and for which we only
have probabilistic martingale techniques. So the challenge was to combine these two approaches,
and the weak formulation based on the Anderson Hamiltonian allows us to do exactly that,
we can transfer all the pathwise regularity analysis into the construction of the domain of 7
and then only use martingale analysis on the level of the process p. A similar point of view
was recently taken by Corwin-Tsai [CT18| who deal with the multiplicative linear stochastic
heat equation driven by independent space and space-time white noises in d = 1 (where no
paracontrolled analysis is required), and to a certain extent also in [GUZ18S].

Coming back to the rSBM, we conclude this work with a proof of persistence of the process
in dimension d = 1,2. More precisely we even show that with positive probability we have
p(t, K) — oo for all compact sets K C R? with non-empty interior. This is opposed to what
happens for the classical SBM, where persistence holds only in dimension d > 3, whereas in
dimensions d = 1, 2 the process dies out: See [Eth00, Section 2.7| and the references therein. Even
more extreme is the case of SBM in a random, white in time, environment: Under the assumption
of a heavy-tailed spatial correlation function Mytnik and Xiong [MX07| prove extinction in finite
time in any dimension. Note also that in [Eth00, [MX07| the process is started in the Lebesgue
measure, whereas here we prove persistence if the initial value is a Dirac mass. Intuitively,
this phenomenon can be explained by the presence of “very favorable regions” in the random
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environment: With positive probability, one particle survives long enough to reach a favorable
region, and once it arrives there the mass grows exponentially.

STRUCTURE OF THE WORK

After clarifying the notation and introducing some first analytical tools, we present the model
for our branching process in random environment. In Assumption we state the probabilistic
requirements on the random environment. In the spirit of rough paths, the probabilistic as-
sumptions allow us to fix a null set outside of which certain analytical conditions are satisfied,
see Lemma for details. We then introduce the model, although a rigorous construction of
the (random) Markov process is a bit subtle because of the unbounded branching rates, and we
postpone it to Section [A] of the Appendix. We also state the main results in Section [2| namely
the law of large numbers (Theorem , the convergence to the rSBM (Theorem @, the
representation as an SPDE in dimension d = 1 (Theorem and the persistence of the pro-
cess (Theorem . We then proceed to the proofs. In Section |3| we study the discrete and
continuous PAM both on the real line and on a box with Dirichlet boundary conditions. In the
first case, we recall the results from [MP17]| and adapt them to the current setting. In the second
case, we introduce the techniques developed by Chouk and van Zuijlen [CvZ19] to study (para-
controlled) equations on boxes with Dirichlet boundary conditions. We extend these techniques
to the lattice, mimicking the construction of [MP17]. The required stochastic calculations are
postponed to Section [C] of the Appendix.

With these techniques at our disposal, we prove the convergence in distribution of the BRWRE
in Section First, we show tightness by using a mild martingale problem (see Remark which
fits well with our analytical tools. We then show the duality of the process to the SPDE @
Eventually we use duality to deduce the uniqueness of the limit points of the BRWRE and thus
we get its weak convergence.

Since our only way of constructing the rSBM is through this weak convergence, the parameter
v =E®, in must be in (0,1/2]. In Section we show how to recover all values of v by
mixing our process with a classical Dawson-Watanabe superprocess.

In Section [5| we derive some properties of the rough super-Brownian motion: We show that
in d = 1 it is the weak solution to an SPDE, where the key point is that the random measure
admits a density w.r.t. the Lebesgue measure, as proven in Lemma We also show that the
process survives with positive probability, which we do by relating it to the rSBM on a finite
box with Dirichlet boundary conditions and by applying the spectral theory for the Anderson
Hamiltonian on that box. To construct the rSBM with Dirichlet boundary conditions we need
to study a modification of the BRWRE, where all particles that reach the boundary are killed.
This process and its scaling limit are described in Section

1. NOTATIONS

We define N = {1,2,...}, Ny = NU {0} and ¢« = v/=1. We write Z for the lattice 274, for
n € N, and since it is convenient we also set Z%& = R Let us recall the basic constructions
from [MP17], where paracontrolled distributions on lattices were developed. Define the Fourier
transforms for k,z € R?

ffRd(f)(k) = /Rd dx f(x)e—%r&x,k)’ o‘\ﬂgdl(fxx) —_ /Rd dk f( ) 2mu(x,k)

hS

as well as for z € Z&, k € T¢ (with T¢ = n[—1/2,1/2]? /<, being the n-dilatation of the torus T%
and “~” being the relation that glues two opposing edges):

yﬂ Z f —27rLack kETd f—l(f)(m):/H:d dk f( ) 27rL:vk)

z€Z2
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Counsider w(z) = |z|? for some o € (0,1). We then define .#, and ./, as in [MP17, Defini-
tion 2.8]. Roughly speaking .7, is a subset of the usual Schwartz functions, and ./ consists of
ultradistributions, a generalization of Schwartz distributions with more permissive growth con-
ditions for |z| — oco. We also introduce the space o(w) of admissible weights as in [MP17,
Definition 2.7]. For our purposes it suffices to know that for any a € R>q,! € R, the functions
p(a) and e(l) belong to o(w), where

pla)(@) = 1+ [z  el)(z) =e ",

Moreover, we fix functions p, x in .7, supported in an annulus and a ball respectively, such
that for p_1 = x and p;(-) = 0(277), j € No, the sequence {p;};>_1 forms a dyadic partition
of the unity. We also assume that supp(x),supp(o) C (—=1/2,1/2)% and write j, € N for the
smallest index such that supp(o;) € n[—1/2,1/2]¢. For j < j, and ¢: Z¢ — R we define the
Littlewood-Paley blocks

Aje=Z (0 Fa(@), A FH(= D) 0)Falv))
71§j<jn
and define for a € R, p,q € [1,00] and z € p(w) the discrete weighted Besov spaces Bﬁq(ZfL, 2)
via the norm: '
lellsg, ) = [ 1A%z o) s leng

where ||l zp(za -y = (> seza n*d\z(x)cp(x)]p)l/p and || - [lga(<j,) is the classical £4 norm with
the sum truncated at the j,-th term. We write €*(Z, z) for Bg;,oo(zd z) and %;‘(Zd z) for

nI n’
By (Z2, z). The same definitions and notations are assumed for the classical Besov spaces on the
whole space ng(Rd, z), which are defined analogously (with Ajp = Ay = ﬂR_dl (pjFprayp) for
all 7 > —1, and jo = 00). We also consider the extension operator & : ng(Zg, z) = Bﬁq(Rd, 2)
as in [MP17, Lemma 2.24]. We denote with C°(R?) the space of smooth and compactly sup-
ported functions and with Cy(R?) the space of continuous and bounded functions.

Remark 1.1. In the setting we just introduced, we can decompose the (in the continuous case a
priori ill-posed) product of two distributions ¢, as:

P U =pQUtp 0Pt @y, oY= Y AL oA, 0= Y AlpAlY
1<i<jn li—j|<1
—1<6,5<jn
with A% _p = Z_1§j<i_1 A?g@. Here we explicitly allow the case n = oco. To simplify the
notation and because it will be clear from the context, we do not include n in the notation for ©
and ©. We call ¢ © ¢ the paraproduct, and ¢ ® ¢ the resonant product.

Now we consider time-dependent functions. Fix an (arbitrary) time horizon 7' > 0 and assume
we are given an increasing family of normed spaces X = (X(t))¢cpo,7] With decreasing norms
(X(t) = X(0) is allowed). Usually we will use this to deal with time-dependent weights and
take X (t) = €%(Z%,e(l + t)) for some a,l € R. We then write CX for the space of continuous
functions ¢: [0,7] — X(T') endowed with the supremum norm |l¢llcx = supscpr lo(®)lx(0)-
For a € (0,1) we sometimes quantify the time regularity via C*X = {f € CX : || f|lcex < o0},

where 10— F(s)]
f$)l
Iflcex = IIfllex +  sup X0,
0<s<t<T |t—s|

To control a blowup of the norm of order v € [0,1) as t — 0 we also define the spaces .#7X of
functions f: (0,T] — X (T') with norm [|¢||.z7x = supsco,m t?[l¢(t)llx (). Finally, we need the
following parabolically scaled spaces

L3z e(l)) = {f € C([0,T), 7L) : f € MVE*(ZL, e(I++)), t — 7 f(t) € CY2LP(ZE, e(l++))}.
See [MP17, Definition 3.8| for these constructions.
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We will write £" = 9;—A", where A" is the discrete Laplacian (for z,y € Z% we say x ~ y if
o=yl =n))

Ap(w) = 5 S (ply) ~(a),
Yy~

and A% = A is the usual Laplacian. We stress that A™ without subscript always denotes the
discrete Laplacian, while A? always denotes a Littlewood-Paley block. The following estimates
will be useful in the discussion ahead.

Lemma 1.2. The estimates below hold uniformly over n € N U {oo} (recall that 7, = R?).
Consider z,z1, 29,23 € p(w) and o, B € R. We find that:

||()0 © wH%’)ﬁ(Z%;azz) S ”90||LP(Z%;Z1)HwH%a(Z%;ZQ)7

e © G2t (Zd ;21 20) Slle ﬁ@%;zl)ﬂw C(Z4;22) > if B <0,
lo @ GOt (221 2) Sle cgf(zgl;zl)”w Co(24;22) if a+3 > 0.

Similar bounds hold if we estimate 1 in a 6, Besov space and therefore ¢ in € = €. And for
any v € 10,1),e € [0,29]N[0,a),0 < o < 2 and any § > 0 we can bound:

6l gy-er20-< g0y S Il g atey
Moreover, for the operator C1(p,%,() = (p© 1Y) © ( — o1 ® ) we have:
1C1(, 7, C)

if B+v <0, a+p8+y > 0.

%ﬁ(zsz)”C”%W(zdasw

%1?+’Y(Z%;Z12223) S’ ”90 %ﬁ(zzvzl)nw n? ns

Proof. The proof of the first three estimates is contained in [MP17, Lemma 4.2] and the fourth
estimate comes from [MP17, Lemma 3.11|. In that lemma the case € = 2y < « is not included,
but it follows by the same arguments (since [GP17, Lemma A.1] still applies in that case). The
last estimate is provided by [MP17, Lemma 4.4]. O

For two functions v, ¢: R — R we define (¢,0) = [ dz 9(z)p(x). For two functions
Y, p: 78 — R we write:

(Y, 0)n = % S w@e), (o) =) bla)e(x)

z€ZL z€ZL

and whenever there is no danger of misunderstanding we write (1, ¢) instead of (¢, ¢),,. We also
use the following notation for convolutions:

fro@= [y fe-nat).  for fug RIS R

f#*ng(x) = % Z flz—y)g(y), for f,g: 22 — R.
yezs

Moreover, for f,g: R — R if supp(Fgaf),supp(Frag) C (—n/2,n/2)¢, then fxg = f *, g and
we will use the two notations without distinction.

Finally, for a metric space E we denote with D([0,7]; E) and ([0, 4+00); E) the Skorohod
space equipped with the Skorohod topology (cf. [EK86, Section 3.5|).

We will also write .#(R%) for the space of positive finite measures on R? with the weak
topology, which is a Polish space (cf. [DP12, Section 3|).
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2. THE MODEL

We consider a branching random walk in a random environment (BRWRE). This will be a
process on the lattice Z¢, for n € N and dimension d = 1,2, and we are interested in the limit
n — oo. The evolution of this process depends on the environment it lives in. Therefore, we
start by discussing the environment before introducing the Markov process.

A deterministic environment is a sequence {{" },en of potentials on the lattice, i.e. functions
€": 7% — R. The environment we will work with will be chosen randomly. A random environ-
ment is a sequence of probability spaces (QP", ZP", PP") together with a sequence {{] }nen of

measurable maps £ : QP X Z& - R.

Assumption 2.1 (Random Environment). We assume that {£;(7)},cza is a set of i.i.d random

variables which satisfy:

(3) n 2 (z) ~ B, VYneN

for a probability distribution ® on R which finite moments of every order and which satisfies
E[®] =0, E[®% =1.

Remark 2.2. For clarity, in this setting it follows that £ converges in distribution to a white

noise &, on R?, in the sense that:

(G Fn =g 3 G@) @) — &)

z€ZY
for any continuous f with compact support.

To separate the randomness coming from the potential from that of the branching random
walks it will be convenient to freeze the realization of §; and to consider it as a deterministic
environment. But of course we cannot expect to obtain reasonable scaling limits (or even a
well defined branching random walk) for all deterministic environments. Therefore, we need
to identify certain analytical properties that hold for typical realizations of random potentials
satisfying Assumption The reader only interested in random environments may skip the
following assumption and use it as a black box, since by Lemma below it is satisfied for
random environments satisfying Assumption

Assumption 2.3 (Deterministic environment). Let " be a deterministic environment and let
X" be the solution to the equation —A"X"™ = x (D)™ = Z7 1 (x.Zn€™) in the sense explained in
[MP17, Section 5.1], where x is a smooth function equal to 1 outside of (—1/4,1/4)* and equal
to zero on (—1/8,1/8)%. Consider a regularity parameter

a€(1,3)ind=1, a€(3,1)ind=2.
We assume that the following holds:
(i) There exists £ € (0 € 2(R%, p(a)) such that for all a > 0:

sup anucg'a—2(zf’i”p(a)) < 4oo and EME" — € in €2 2(RY, p(a)).

(i) For any a,e > 0 we can bound:

_d _
sup |0~ Y2€% |-z p(ayy + SUP I~ 2 1€" g -2 24 pay) < +00
n n

as well as for any b > d/2:
sup I~ 2| p2za pryy < +00.
Moreover, there exists v > 0 such that the following convergences hold:
@("nn*dmfi — v, é"”n*d/2|§"| — 2v

in €7¢(R?, p(a)).
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(iii) If d = 2 there exists a sequence ¢, € R such that n=%?c, — 0 and distributions X €
Naso € (RY, p(a)) and X o & € oo €2 2RY, p(a)) which satisfy for all a > 0:

sup [ X" |5z p(a)) + sup [(X™ @ ") —cnllg20-2(2d p(a)) < +00
and £"X™ — X in €*(R%, p(a)) and EM (X" © ") —cn) = X 0 & in €2 2(RY, p(a)).

We also say that ¢ € .7/ (R%) is a deterministic environment satisfying Assumptionif there
exists a sequence {£"},en such that the conditions of Assumption hold.

The next result establishes the connection between the probabilistic and the analytical condi-
tions we have stated. To formulate it we need the following sequence of diverging constants:

(4) Kon = /T dk l’ff(]]?) ~ log(n),

with [ being the Fourier multiplier associated to the discrete Laplacian A™.

Lemma 2.4. Given a random environment {é_’g}neN satisfying Assumption there exists a
probability space (P, FP,PP) supporting random variables {£) }nen such that § = £ in dis-
tribution and such that {§;(wP, ) }nen s a deterministic environment satisfying Assumption
for all WP € QP. Moreover the sequence ¢, in Assumption can be chosen equal to Kk, (see
Equation ) outside of a nullset. Similarly, v is strictly positive and deterministic outside of a
nullset and equals the expectation E[®].

Proof. The existence of such a probability space is provided by the Skorohod representation
theorem. Indeed it is a consequence of Assumption that all the convergences hold in the
sense of distributions: The convergences in (i) and (iii) follow from Lemma[B.2if d = 1 and from
[MP17, Lemmata 5.3 and 5.5] if d = 2 (where it is also shown that we can choose ¢, = k;,). The
convergence in (ii) for v = E[®] is shown in Lemma After changing the probability space
the Skorohod representation theorem guarantees almost sure convergence, so setting £”,&, ¢, v =
0 on a nullset we find the result for every wP. (There is a small subtlety in the application of
the Skorohod representation theorem because € (R%, p(a)) is not separable and thus not Polish
space, but we can always restrict our attention to the closure of smooth compactly supported
functions in €7(R?, p(a)), which is a closed separable subspace). O

Notation 2.5. A sequence of random variables {£] }nen defined on a common probability space
(QP, P PP) which almost surely satisfies Assumption s called a controlled random environ-
ment. By Lemma for any random environment satisfying Assumption [2.1 we can find new
random variables on a new probability space with the same distribution, which form a controlled
random environment. For a given controlled random environment we encode the renormalization
needed in dimension d = 2 by introducing the effective potential:

Epe(Wh ) = (WP, @) —cn(WP) 1 (4=}
If we work with a deterministic environment we will write £ for the effective potential, defined
analogously. In addition, given a controlled random environment we define A" as the random

Anderson Hamiltonian defined on the random domain 2 ,.r (see Lemma , If the environ-
ment 1s deterministic we write 7€, Dy instead.

We pass to the description of the particle system. This will be a (random) Markov process
d
on the space F = (N%”) 0 of functions 7: Zg — Ng with compact support, whose construction
is discussed in detail in Appendix [Al We define n™7¥(2) = n(2)+ (1,1 (2) =14} (2)) Liy(z)>1y and
"t (z) = (n(z) £ 14z1(2))+- Moreover, Cy(E) is the Banach space of continuous and bounded
functions on E endowed with the discrete topology.

Definition 2.6. Fiz an “averaging parameter” o > 0 and a controlled random environment
&y Let P" be the measure on QP x D([0, +o0); E) defined as the “semidirect product measure”
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PP & P" where for wP € QP the measure P“"" on D([0,4+00); E) is the law under which the
canonical process uy (WP, ) started in uy(wP,0) = [n? |1y (x) is the Markov process associated to
the generator

L YL = Cy(E)
defined via:

LE) ) = Y e {2”2 (F(r™)=F(n))

(5) x€Z4 Yy~

+(€0)+ (W, ) [F (™) =F ()] + (£)— (", ) [F (") —F (n)]

where the domain 2(ZL™") is the set of all functions F € Cy(E) such that the right-hand side
of Equation lies in Cy(E). To u, we associate the process

(WPt ) = ndLngjfluZ(wp,t, x)
with the pairing

Hp (W, (@) = (WP, 1), @)n = Y [n8] tup (WP, b 2)p(x)
x€Z4

for any function ¢: Z& — R. Hence 1y s @ stochastic process with values in D([0, +-00); M (R)),
with the law induced by P™.

Remark 2.7. Although not explicitly stated, it is part of the definition that wP s P""(A) is
measurable for Borel sets A € B(D(]0,+00); E)).

Remark 2.8. Since all particles move and branch independently, we ezpect that for o — oo
the law of large numbers applies and we obtain the expected value of the branching dynamics
conditionally on the realization of the random environment. This is why we refer to o as an
averaging parameter.

Notation 2.9. In the terminology of stochastic processes in random media, we refer to P“"™" as
the quenched law of the process uy (or ,u;}) gwen the noise §,. We also call P" the total law.
Moreover, although clearly a deterministic environment is also a controlled random environment,
we will naturally distinguish the case in which we deal with o deterministic environment by
dropping all the subscripts p and the dependence on wP (we will then consider the processes u"

or u").
We can now state the main results of this work. We will first prove quenched versions of the

convergence results: the total version is then an easy corollary. We start with a law of large
numbers.

Theorem 2.10. For any deterministic environment {£" }nen satisfying Assumption and for
averaging parameter o > d/2, let w be the solution of PAM with initial condition w(0,x) =
do(x), as constructed in Proposition (cf. also Remark , The measure-valued process p"
from Definition converges to w in probability in the space D([0, 4+00); .4 (RY)) as n — +oo.

Proof. The proof can be found in Section [4.1} ([

If the averaging parameter takes the critical value o = d/2, we see random fluctuations in the
limit and we end up with the rough super-Brownian motion. As in the case of the classical super-
Brownian motion, the limiting process can be characterized also via duality with the following
equation:

K
(6) D = %”@—5902, ©(0) = o,

for v € C°(RY), ¢o > 0. With some abuse of notation (since the equation above is not linear)
we write Uypg = @(t). Since the following definition is set in continuous space, we slightly



10 A ROUGH SUPER-BROWNIAN MOTION

tweak the original definition and say that a distribution ¢ is a deterministic random environment
satisfying Assumption if there exists a sequence £ which satisfies Assumption [2.3] with such
€.

Definition 2.11. Let & be a deterministic environment satisfying Assumption let Kk > 0
and let ;1 be a stochastic process with values in C([0, +o0); . # (R?)), such that 1u(0) = &. Write
F = {ft}tE[O,Jroo) for the completed and right-continuous filtration generated by . We say that
i 1s a rough super-Brownian motion with parameter x if it satisfies one of the three properties
below:

(i) For any t >0 and py € C(R?), pg > 0 and for U.pg the solution to Equation (6] with
initial condition @q, the process

Nfo(s) = e WOVeso) e 0,1,

is a bounded continuous % —martingale.
(i) For any t > 0 and @9 € CX(RY) and f € C([0,t]; €%(R%,e(l))) for some ¢ > 0 and
Il < —t, and for ¢, solving
asgpt_'_%@t:f’ ENS [Out]7 Sot(t):SOOu
it holds that

ME(5) = (o), (o)) ~(ul0). 0= [ (utr). ), s € 0.

is a continuous square-integrable # —martingale with quadratic variation
S
M7ty = [ ar Gulo). (@)
(111) For any ¢ € Dy the process:

L9(t) = (u(t), )~ ((0). )~ / dr (u(r), #9),  te 0, +o0),

is a continuous F —martingale, square-integrable on [0,T] for all T > 0, with quadratic
variation

¢
(L= [ ar (). ).
Every one of the three properties above is sufficient to characterize the process uniquely.

Lemma 2.12. The three conditions of Definition [2.11] are equivalent. Moreover, if p is a rough
super-Brownian motion with parameter k, then the law of p is unique.

Proof. The proof can be found at the end of Section 4.1} g

Theorem 2.13. Let {{"}nen be a deterministic environment satisfying Assumption and let
the averaging parameter o = d/2. Then the sequence {u"}nen converges to the rough super-

Brownian motion p with parameter k = 2v and initial condition p(0) = oo in distribution in
D([0, +o0); .4 (RY)).

Proof. The proof can be found at the end of Section [.1] O

Remark 2.14. Lemma gives the uniqueness of the rough super-Brownian motion for all
parameters £ > 0, but Theorem provides existence conditional on having an environment
which satisfies Assumption , Here a natural constraint v € (0, %] appears, because we should
think of v = E[®,] for a centered random wvariable ® with E[®?] = 1. We can establish the
existence of the rough super-Brownian motion for general parameters k > 0 by adding a critical
branching mechanism to the dynamics of u", see Section [{.4 for details.
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Remark 2.15. We restrict our attention to the Dirac delta initial condition for simplicity, but
most of our arguments extend to initial conditions p € .4 (RY) that satisfy (u,e(l)) < oo for
all 1 < 0. In this case only the construction of the initial value sequence {p™(0)}nen is more
technical, because we need to come up with an approzimation in terms of integer valued point
measures (which we need as initial condition for the particle system). The canonical choice would
be " =n7 1 cpa Ok [nPu(Qi/m(k))], where Q1n(k) is a box with radius 1/n centered around

k. But for o € [%, d) and for absolutely continuous p with bounded density this would give u™ =0
for all large n. A possible solution is to discretize p on a coarser grid than 79 = %Zd, say on

@Zd with M (n) > n'/2. We also need that ||u™ wozd ey S H'(e(l) S p(e(l)) for all 1 <0,

which can be verified by writing the discrete Littlewood-Paley blocks as discrete convolutions.
The extension to u € M (R?) without the moment condition u(e(l)) < oo or even to mea-

sures with infinite mass seems more subtle and would need more significant adaptations of our

arguments.

The previous results describe the scaling behavior of the BRWRE conditionally on the envi-
ronment, and we now pass to the unconditional statements. To a given random environment
&, satisfying Assumption (not necessarily a controlled random environment) we associate a

sequence of random variables in .%}(R?) by defining £(f) = n~?Y_, &% (x)f(z). The sequence
of measures P = PP™ x P“"" on .7 (RY) x D([0, +-00); .4 (R?)) is then such that PP™ is the law
of £ and P+~" is the quenched law of the branching process py given & (cf. Appendix .

Corollary 2.16. The sequence of measures P" converges weakly to the measure P = PP x P*" on
Z(RY) x D(]0, +00); 4 (R?)), where PP is the law of the space white noise on . (R?), and P*"
is the quenched law of p, given &, which is described by Theorem if 0> d/2 or by Theorem
if o =dJ2.

Proof. Consider a continuous bounded function F': ./ (R?) x D([0, +00); .# (R%)) — R. We need
to prove convergence of:

im B [F (&, u")] = E[F (&, 1)].

Up to changing the probability space (which does not affect the law) we may assume that & is
a controlled random environment. We condition on the noise, rewriting the left-hand side as

E[F(e, )] = / B [F (€0 (wP), 1) PP (d wP).

Under the additional property of being a controlled random environment and for fixed w?P € QP,
the conditional law P“"" on the space D([0, +o0);.# (R?)) converges weakly to the measure P*”
given by Theorem respectively Theorem 2.13] according to the value of o. We can thus
deduce the result by dominated convergence. g

For ¢ > d/2 the process of Corollary is simply the continuous parabolic Anderson model.
For o = d/2 it is a new process, which we name as follows:

Definition 2.17. For ¢ = d/2 we call the process p of Corollary[2.16l an SBM in static random
environment (of parameter k > 0).

In dimension d = 1 we characterize the process p as the solution to the SPDE . First, we
rigorously define solutions to such an equation.

Definition 2.18. Consider dimension d = 1, a value kK > 0, and 7 € .# (R). A weak solution
to the SPDE

(7) ettt ) = A" py(t, )+ wpp(t, )€t ), pp(0) =,

is a couple formed by a probability space (0, F,P) and a random process
iyt Q= C([0, +00); .4 (R))
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such that Q = QP x Q and P is of the form PP x P with (QP,PP) supporting a space white noise
&p and (2, P) supporting a space-time white noise & that is independent of £, and such that the
following properties are fulfilled for almost all WP € QP

o There exists a filtration {F¢" }icio) on the space (,P*") which satisfies the usual
conditions and such that p,(wP,-) is adapted to the filtration and almost surely lies in
LP([0,T); L*(R, e(1))) for all p < 2 and | € R. Moreover, under P* the process &(wP, ")
s a space-time white noise adapted to the same filtration.

o The random process i, satisfies for all ¢ € D ypur:

[ 4@ e tajota) = [ playmtan) + [ t [ dsde e s.0) ()@

t ~
+ /0 [ & ds, da)yfry(er.s,2)pte), ez o

with the last integral understood in the sense of Walsh [Wal86].
Thus, we can state the existence and uniqueness of solutions to the above SPDE.

Theorem 2.19. For m = 0y and any k > 0 there exists a weak solution p, to the SPDE
in the sense of the above equation. The law of p, as a random process on C([0,+00); # (R)) is
unique and corresponds to a SBM in static random environment of parameter k.

Proof. The proof can be found at the end of Section [5.1} O
As a last result, we show that rSBM is persistent in dimension d = 1, 2.

Definition 2.20. We say that a random process p € C([0, +00); .4 (R%)) is super-exponentially
persistent if for any nonzero positive function ¢ € C°(RY) and for all X > 0 it holds that:

P( lim e (u(t), ¢) = o0c) >0

Theorem 2.21. Let i, be an SBM in static random environment. Then for almost all wP € QP
the process i, (WP, -) is super-exponentially persistent.

The result follows from Corollary [5.7] and the preceding discussion.

3. DISCRETE AND CONTINUOUS PAM & ANDERSON HAMILTONIAN

We discuss the existence of solutions to PAM in the discrete and continuous setting and
the interplay between the two.
Recall that the regularity parameter o from Assumption satisfies:

(8) a€(l,2)ind=1, ac(3,1)ind=2

3.1. Spatially Global Solutions. Here we review some results from [MP17] regarding the
solution of the PAM on the whole space (see also [HL15|), and regarding the convergence of
lattice models to the PAM. We take an initial condition wgy € (ﬁpg(Rd,e(l)) and a forcing f €
MG, (R%, e(1)), and consider the generalized equation

(9) dw=Aw+E&w+ f,  w(0)=wo
and its discrete counterpart
(10) Jw™ = (A" + EHw" + ", w™(0) = wy.

To motivate the constraints on the parameters appearing in the proposition below, let us
first formally discuss the solution theory in d = 1. Under Assumption it follows from the
Schauder estimates in [MP17, Lemma 3.10] that the best regularity we can expect at a fixed
time is w(t) € GNEHEDN@F2)(R ¢(k)) for some k € R. In fact we lose a bit of regularity, so
let ¥ < a be “large enough” (we will see soon what we need from 1) and assume that ( +2 > 9
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and ap + 2 > 9. Then we expect w(t) € €Y (R, e(k)), and the Schauder estimates suggest the
blow-up v = max{(¥ + ¢ — ()+/2,7} for some ¢ > 0, which has to be in [0,1) to be locally
integrable, so in particular 9 € [0,1). If ¥ + o — 2 > 0 (which is possible because in d = 1 we
have 2a — 2 > 0), then the product w(t)¢ is well defined and in €*~2(R, e(k)p(a)), so we can set
up a Picard iteration. The loss of control in the weight (going from e(k) to e(k)p(a)) is handled
by introducing time-dependent weights so that w(t) € €7 (R% e(l+1)). In the setting of singular
SPDEs this idea was introduced by Hairer-Labbé [HL15], and it induces a small loss of regularity
which explains why we only obtain regularity ¥ < « for the solution and the additional +¢/2 in
the blow-up 7.

In two dimensions the white noise is less regular and we no longer have 2a — 2 > 0, and
therefore we have to use paracontrolled analysis to solve the equation. The solution lives in a
space of paracontrolled distributions, and now we take ¥ > 0 such that ¥ +2a —2 > 0.

and to solve the equation in that space we need additional regularity requirements for the
initial condition wy and for the forcing f. More precisely, we need to be able to multiply (Pywg)&
and (fg P,_sf(s)ds)¢, and therefore we require now also (+2+4(a—2) > 0 and ap+2+(a—2) > 0,
ie. (,ag > —a.

We do not provide the details of the construction and refer to [MP17] instead, where the two-
dimensional case is worked out (the one-dimensional case follows from similar, but much easier
arguments).

Proposition 3.1. Consider a as in , anyT >0, p € [1,400], 1 € R and 9, , v, ap satisfying:

2—o, ), d=1,
11) 9 9—2) V (— 0,1 9—2) V (—
Y 6{<z—2a,a>, g=g ZOBVED wElD a>@-2Ya)
and let wi € ‘Kpg(Zﬁ,e(l)) and f" € MOC(ZL, e(l)) such that

EMwi — wo, in G5 (R e(l)),  E"f" = fin ME(RY, e(1)).

Then under Assumption there exist unique (paracontrolled) solutions w™,w to Equation ((10))
and (9). Moreover, for all v > (9—C)+/2V v and for all | > I4+T, the sequence w™ is uniformly
bounded in £ (Z2, e(l)):

Slip ‘|wn‘|$,7’19(2,‘i,e([)) S Slrle [Jwg

ws@e) TSP N Laroso g e

where the proportionality constant depends on the time horizon T and the norms of the objects
in Assumption [2.5. Moreover

E"w" — w in fp%ﬂ(Rd, e(l)).

Remark 3.2. For most applications the integrability parameter p = 400 is sufficient. In this
work, p < oo is only required for the construction of the Green function associated to PAM.
Indeed the Dirac measure &g lies in €~ (RY, e(1)) for any | € R. This means that ( = —d, and in
d =1 we can choose 9 small enough such that holds, which allows us to solve the PAM @
in dimension d = 1 with initial condition dg. But in d = 2 this is not sufficient, so we use instead
that dp € (ﬁg(lfp)/p(]l%d,e(l)) for p € [1,00] and any | € R, so that for p € [1,2) the conditions
in (11) are satisfied.

Notation 3.3. We write
t t
t'—>Tt"w6L+/ ds T}  f2, t»—>Ttwo+/ ds Ty—sfs
0 0

for the solution to Equation (10) and @, respectively.

Proposition can roughly speaking be interpreted as the convergence of the semigroup asso-
ciated to the discrete Anderson hamiltonian 2" = A"+ to that of the continuous Anderson
hamiltonian # = A+¢, since formally T = " and T; = . We are also interested in the
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martingale problem based on 7, and therefore we need to rigorously construct 7. This is a bit
subtle, because smooth functions are not in its domain. In finite volume and d = 1 Fukushima-
Nakao [FNTT7| use Dirichlet forms for the construction, while the two-dimensional case in finite
volume is studied by Allez-Chouk [AC15], who use paracontrolled distributions and the resolvent
equation. In infinite volume the resolvent equation is problematic though, because we expect the
spectrum of .7 to be unbounded from above. Hairer-Labbé [HL18| suggest a construction based
on spectral calculus by setting . = t~!log T}, but this gives insufficient information about the
domain. And constructing an infinitesimal generator of the semigroup (73) is also quite subtle,
since due to the time-dependent weights 7; maps € (R%, e(1)) to <" (R%, e(I+t)), and therefore
it does not define a continuous semigroup in a Banach space. Therefore, we take an ad-hoc
approach here which is sufficient for our purpose.

Let us first treat the case d = 1. Then & € € 2(R, p(a)) for all @ > 0 by assumption, where
a € (1,3). In particular, #u = (A+&)u is well defined for all u € €V (R, e(l)) with ¥ > 2—a
and [ € R, and u € € 2(R,e(l)p(a)). Our aim is to identify a subset of €7 (R, (1)) on which
v is even a continuous function. We can do this by defining for ¢t > 0

A= /OtTSuds.
Then Ayu € €°(R, e(I+t)), and by definition
A = /t HT,uds = /t OsTsuds = Tyu—u € ‘Kﬂ(R, e(l +1)).
Moreover, ' '

t+1/n 1/n
lim n(Tl/n—id)Atu = lim n(/ Ty ds —/ Tsuds> = Twu—u = 3 Au,
t 0

n—00 n—o0
where the convergence is in €7 (R, e(I+t+¢)) for arbitrary € > 0. Therefore, we define
D ={Awu:ueC R, el),l eR,tel0,T]}
Since for u € €”(R, e(l)) the map (¢ — Tyu)ep,) is continuous in € (R, e(I+¢)) we can find for

all u € €Y (R,e(l)) a sequence {u™} ey C Py such that |Ju™—u @9 (R,e(i4e)) — 0 for all € > 0.
Indeed, it suffices to set u™ = m~1'A,,~1u. The same construction also works for J#" instead of
H.

In the two-dimensional case (A+&)u would be well defined whenever v € €°(R2, (1)) with
B >2—afor ac (%, 1). But in this space it seems impossible to find a domain that is mapped
to continuous functions. And also (A+¢&)u is not the right object to look at, we have to take
the renormalization into account and should think of # = A+£—oco. So we first need an

appropriate notion of paracontrolled distributions u for which can define JZu as a distribution.
As in Proposition we let ¥ € (2—2¢, o).

Definition 3.4. We say that u™ (resp. u) is paracontrolled if u € €7 (R?,e(l)) for some l € R,
and

W =u—ue X € €T (R? e(l)),
where we recall that X = (—A)"'x(D)¢ is defined in Assumption . For paracontrolled u we
set
Hu=AN+EQu+ul+ut0&+Cru, X, &) +u(X o),
where Cy is defined in Lemma [1.3.  The same lemma also shows that Fu is a well defined
distribution in € 2(R?, e(l)p(a)).

The operator 7; maps paracontrolled distributions to paracontrolled distributions, and there-
fore the same arguments as in one dimension allow us to find a domain %, such that for all para-
controlled u € €?(R?, e(1)) there exists a sequence {u™} ey C Py with [u"™ —ullgo @2 e(14e)) =
0 for all ¢ > 0. For general u € ¥Y(R2,e(l)) and ¢ > 0 we can find a paracontrolled v €
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€V (R?,e(l)) 9 (R2,e(14+¢)) < €, because Tyu is paracontrolled for all ¢ > 0 and con-
verges to u in €Y(R2, e(l+¢)) as t — 0. Thus, we have established the following result:
g ) ) g

Lemma 3.5. Make Assumption and let ¥ be as in Proposition[3.1. There exists a domain
Dy C Uier €°(R%, (1)) such that #u = limyn(Ty),—id)u € €7(R?, e(l+e)) for all u €
Dy NE° (R, e(1)) and € > 0 and such that for all u € €7 (R%, e(l)) there exists a sequence
{utmen C Do with [|[u™ —ullgo 2 c4e)) — 0 for all € > 0. The same is true for the discrete
operator A" (with R? replaced by 72 ).

3.2. Bounded Domains with Dirichlet Boundary Conditions. We will discuss the results
of [CvZ19], in order to solve PAM with Dirichlet boundary conditions both on a discrete and a
continuous box. We fix the size of the box to be an arbitrary L € N and define N = 2L. The
main result here will be the analog of Proposition with Dirichlet boundary conditions. We
study the equation:

Ow(t, x) = Aw(t, x)+E(z)w(t, z)+f(t, ), (t,z) € (0,T) x (0, L)%,
w(0,x) = wo(z), w(t,z) = 0 on (0,T] x 9|0, L]%.

We consider n € NU {oo}, and for n = oo we find ourselves in the continuous case, which

studied in [CvZI9]. We write A,, for the lattice 2(Z¢ N [0, Ln]%) (resp. A = [0, L] if n = c0).

Similarly, we call ©, the lattice = (Z%N [—22, &1) / with opposite boundaries identified

n
(resp. T4 if n = oo) and define the “dual lattice” (where the Fourier transform lives) =, =

(24 [ 552, BMY) Jo ) (vesp. 2% if n = 00) as well as ZF = 4(29 N[0, Ln]?), (resp. %Ng)
and 027 ={k e = : k; =0 for some i € {1,...,d}}.

The idea of [CyZ19] in the case n = oo is to consider suitable even and odd extensions of
functions on A,, to periodic functions on ©,,, and then to work with the usual tools from periodic
paracontrolled distributions on ©,,. So for u: A,, — R we define

(12)

Moyu: ©, — R, ITyu(q o x) Hq u(x
[Meu: 0, — R, Meu(qox) = u(m),

where x € Ay, q € {—1, 1}d and we define the component-wise product q oz = (q;z;)i=1,..,
well as the total product [[q = H?Zl q;. We can interpret a function on ©,, as being defined on
the whole Z¢ by extending it periodically and thus in principle we would be in the same setting
as in Section [3.I] But it is convenient to make use of the periodic structure, and to work with a

discrete periodic Fourier transform, defined for ¢: ©,, — R by

1 — 4TI —
Fo,pk) = d > pla)e PR ke 5,

:L‘GC"‘)n

As in [CvZ19] we have a periodic, a Dirichlet and a Neumann basis, which we indicate with:
{ertrez,s {0k} ezt ozt > {0k} ezt Tespectively. Here ey is the classmal Fourier basis:

errL(:r,k) a
ep(r) = ———, sothat Fo,p(k)=N2(p,e), k€=,
N2
the Dirichlet basis consists of sine functions,
1 d
0 (z) = — H2sin(27rki:ri), ke=h\ o=t
2 =1

and the Neumann basis of cosine functions

n,(z) = N— HQI Lki=01/2 cos(2mk;a;), kezl.
2 =1
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We will not work with the explicit expressions for 0; and ng, and instead mostly rely on the
following alternative characterization:

Remark 3.6. For k € = define vy, = 9~ #{ihi=0}/2 " Thepn we have:

Moe =t > a-eqons Vk € 24\ 0=,
ge{—1,1}4

Ileng = v Z ok Vk € E:
qE{—l,l}d

Notation 3.7. The following results will be stated for distributions. In the discrete case of course
any distribution is a function. Thus for L € {0,n} and n < co we write:

A (ANn) = span {l}k.

For n = co we define distributions via formal Fourier series:
A0, L)Y = {Z arly ok < C(A+|K|7), for some C,y > O} .
k

In both cases the range of k depends implicitly on the choice of | (and n).

Now we want to introduce Littlewood-Paley blocks on the lattice, in order to control products
between distributions on A, uniformly in n. First, let us recall the notion of a Fourier multiplier.
Consider a function ot: Zf — R. Then for ¢ € ./ (A;) we define:

ZG Spa [k:

Upon extending ¢ in an even or odd fashion we recover the classical notion of Fourier multiplier
(namely on a torus: o(D)y = ﬁgj (0%, ¢)),
IL,(c"(D)¢) = (Heo™) (D)o, I (c " (D)) = (eo™) (D).

Remark 3.8. We are particularly interested in radial Fourier multipliers o. Since radial func-
tions are even, we can replace both o+ I,0" with o.

Fix a dyadic partition of the unity {g;};>—1 and j, as in Section so as to define for
¢ € A (An):

Alp = 0j(D)yp for j < jn, A} p= <1— > Qj(D)> .
—1<j<jn

In view of the previous calculations this is coherent with our original definition on the lattice,
in the sense that:

I, (A%p) = ATy,  T(A}p) = Ay, —1<j < jn.

We then define Dirichlet and Neumann Besov spaces via the following norms:

el g (a,) = Mol B (0,) = 127 1A TToul Lo,)illenc<sn)  w € sPaN{Ok}pemtyoms
lull e (a,) = IMeullpg 0. = 1% [ A et 1o@,))illes(<jn)s € span{ng}y s,
and for brevity we write €3,(An) = Bi%(Ay,) and G (An) = BYso(Ay) for 1€ {n,0}. We also
write [[ullzea,) = [Houllrr(e,) and [[ullzza,) = [[Heulrro,). Moreover, we do not explicitly

include the lattice in the notation, whenever it is clear from the context on which lattice we are.
The last ingredient for multiplication in our spaces is the following identity for the extension of
products of functions:

e (py) = Mepller), o (1)) = Topllet).
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To solve equations with Dirichlet boundary conditions, we are interested in the Laplace op-
erator with Dirichlet boundary conditions. For n < oo and ¢: A,, — R we define this operator
as

Ayp(z) =n? Z (p()—p(x)) + Z —p(z) | Lia,\00,3(2)-
y?é’\éf\’n ?Jzér(;%n

Define also the domain
Dom(Ay) ={¢: An = R : ¢ =0o0n dAn} = span{op}; =i o=t

and note that on this domain the identity Af¢ = (A™I,p)|a, holds true.
A direct computation (Remark in combination with [MP17, Section 3|) then shows that
we can represent the Laplacian with Dirichlet boundary conditions as a Fourier multiplier:

d
Ao = 1"(k)0g, I"(k) = ZQnQ(cos (2mkj/n)—1).
j=1
Note that " is an even function in k, so all the remarks from the previous discussion apply. The
Laplacian with Neumann boundary conditions we simply define as

Al i= (A"MLp) |,

By the same argument as in the Dirichlet case, this as well can be represented via a Fourier
multiplier, with the same ["". We will use the following notations for the parabolic operators:

= O—AL, £ =0—A7, £ =0,—A".

For n = oo we use the classical Laplacian: the boundary condition is encoded in the domain.
We write A for the Laplacian on .#/([0, L]¢). The next result follows from [MP17, Lemma 3.4]
by even or odd extension.

Lemma 3.9. For a € R,p € [1,00],0 € [0,1] and [ € {d,n} we can estimate:
A7

—5
Pligezn, S el any  IAT=20@lge2-50 oy S lellige o.030)

where we slightly abuse notation by defining Al for distributions in %’([O,L]d) via the same
formula (which makes sense, because translations are well defined on distributions).

We introduce Dirichlet and Neumann extension operators as follows:
&= E"(Ilu Eiu = E"(Ileu)

}[0 L] for n < oc.

)‘[O,L]d’
These functions are well-defined since for fixed n the extension &,(-) is a smooth function.

Moreover a simple calculation shows that
(13) I, (&5'u) = &M (Iu), I (& u) = & (Mew).

In the following we will use the notation AZ;p = 3. ; A%, and we introduce the parabolic

j<t
spaces 37’ and A “"50;) with the same definitions as in Section (1, mutatis mutandis. The
cons1stency between the lattice and the continuous space is then stated in terms of an extension
property. Consider a Banach space X C .#/([0, L]%) (resp. X; C C([0,T7], 7/ ([0,L]%))) for [ €
{o,n} which possesses discrete approximations X[* C “#/(Ay,) (resp. X[* C C([0,T], 7/ (Ayn)))-
Similarly, consider a functional F which has discrete approximations F”: For concreteness let
us write F'*° instead of F' and X instead of X;. In this setting, suppose that we are given a
bound:

[E™ (s yum) llxp S lluallxp - llumllxn ¥noe NU{oo}.
We then say that F satisfies the (&)-Property if

|6 )= F(E - ) 0 S (el - )
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for some e(n) — 0 as n — oo and a continuous function c.
We also need to consider a sort of space-time paraproduct, so let § € C2°((0,00)) be such that
Jo 0(s)ds =1 and define for ¢ > —1 as in [MP17, Definition 4.5]

Qiu(t) = /t 229(2%(t — s))u(s v 0) ds.

— 00

As in [GIP15, MP17] we silently identify u with ¢+ 1550 u(t) if u € .27 X for some X.

Lemma 3.10. Consider n € NU{oo}. We define the following paraproducts for u,v,w: A, = R
(depending also on time in case of the parabolically scaled paraproduct < ):

uUv = E A _ju Afv, u®uv = g Alu Al'v, u=<v = E Qi(AZ,_ju) Ajv
1<i<jn li—jl<1 1<i<jn

as well as the following operators, which we call the “paracontrolled operators” because they form
the backbone of paracontrolled analysis:

Ci(u,v,w) = (uQv) Qw—u-(vOw), Colu,v) =u<w—uw, Cs(u,v) =Ly (u<v)—u<Lhv.

For pe[l,400],y€10,1),, 5,0 € R we can bound such terms uniformly in n as follows:

luevligg, S llulzlivlee,  luvlgars Sllullgs llvlls, if B<0,
lu © vllgars S llullys 1ol if a+B >0,
lu=<vll.oree S lullgvizlivlloss, llu=vll yogors S llull 4gp Ivllose, if B<0,
lu=vllgge S llull s (lvllose HLrvlloga-2), if 0, € (0,2).

And for the paracontrolled operators we find:

HCl(uavvw) %gi‘s S ||u (ffp”v ?ﬁ?”w €3> 'Lf O(+6+(5 > 07 a+0 7& 07
1C2(u V)| rgors < Mlull gsllvlles if B€(0,2),
13,0 g2 5 Wil gl ¥ 5e0.2).

and similar bounds hold if we consider (n,n) or (n,0) instead of (d,n) boundary conditions, or
if we move the integrability constant p from one function to the other. Moreover, all estimates
satisfy the (&)-Property if the reqularity on the left hand side is lowered by an arbitrary amount.

Proof. All the proofs follow via even or odd extension from [MP17, Lemmata 4.2, 4.3, 4.4, 4.7,
4.8, 4.9]. 0

With the help of the above paraproduct estimates, we can solve PAM with Dirichlet boundary
conditions . We essentially follow verbatim the construction of [MP17], except that things
are slightly simpler now because we do not have to work with weights. Let us start with the
analytical assumption on the stochastic data. A deterministic Neumann environment is just a
sequence of functions £": A,, — R, for n € N.

In the following assumption we shift A, to be centered around the origin and identify it with
a subset of [~L/2, L/2]¢. This is convenient because later we want to interpret processes on A,
as “restrictions” of processes on Z& to (large) boxes centered around the origin.

Assumption 3.11 (Deterministic Neumann environment). Let £" be a deterministic Neumann
environment and let X™ be the solution to the equation —A} X = x(D)&", where x is the same
cut-off function as in Assumption[2.3 Consider once more a regularity parameter

(14) a€(l,3)ind=1, ae(3,1)ind=2.
We assume that the following holds:
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(i) There exists € € (o0 € 2([—L/2, L/2]%) such that:

a>0 “n

sup 1€" lgo—2(a,,) < +00 and &'E" — & in CO2([—L/2,L/2]Y).

(ii) For any e > 0 we can bound:

sup =€ e n,y + 5P Y20 <) + 5up In~Y2E7 [ 2 0a, < +o0
n n n

Moreover, there exists a v > 0 such that
éan”n_d/%ff_ — v, EMTY2E = 2 in E5 ().

(iii) If d = 2 there exists a sequence ¢, € R such that n_d/2cn — 0 and distributions X,, X o0&
in €([~L/2,L/2]%) and €2°72([~L/2,L/2]%) respectively, sucht that:

e (an) + S0P (X © 8" —enllgaz(y,) < Ho0

sup || X
n
and EPXT — X in €2 ([-L/2,L/2)%), &7 (XPOE") —cn) — Xnof in 6207 2([-L/2,L/2)%).
Under this assumption we get the following “Dirichlet version” of Proposition
Proposition 3.12. Consider « as in (14), any T > 0, p € [1,400] and 9, (,y0, oo satisfying:

(15) 0 € {EZ:;{;QL’) Ty (EDV(a),  welD, > -2V (-a)

and let wy € Cfasp(/\n) and f* € M"C; ) (An) such that
EMwl — wo in Cyy([~L/2,L/2)Y),  E"f" = fin AE(~L/2,L/2)").
Let w™: [0,T] x A,, = R be the unique solution to the finite-dimensional linear ODE:
(16) O™ = (Ay +&EHw™ + [T, w™(0) = wy, w(t,x) =0 Y(t,z) € (0,T] x OA,.

Then under Assumption there exist a unique (paracontrolled in d = 2) solution w to the
equalion

(17) Oww = DNpw + Ew + f, w(0) = wo, w(t,z) =0 Y(t,z) € (0,T] x d[—L/2,L/2]%,
and for all v > (9—)+/2 V o the sequence w™ is uniformly bounded in .,%Tf(l\n):

sup [l oo,y S sUP I lise (x50 1" Lo (an:

where the proportionality constant depends on the time horizon T and the magnitude of the norms
wn Assumption [3.11. Moreover,

EMw™ = w in L ((-L/2,L/2)%).

Proof. Note that solving Equation (16)) (resp. (17)) is equivalent to solving on the discrete (resp.
continuous) torus ©,, the equation:

O™ = A" "+ (EM) "+, f, w"(0) = Hywo,

and then restricting the solution to the cube A,, i.e. w" = @"|y,, and W™ = H,w™. In view
of Assumption and the estimates of Lemma this equation can be solved via Schauder
estimates and (in dimension d = 2) paracontrolled theory following the arguments of [MP17]
(without considering weights). From the arguments of the same article we can also deduce the
convergence of the extensions. O

As on the full space, we also use the Anderson hamiltonian 4 with Dirichlet boundary
conditions. The domain and spectral decomposition for this operator are constructed in [CvZ19]
with the help of the resolvent equation. Unlike J# the operator % has a compact resolvent and
thus a discrete spectrum that is bounded from above, and based on that we easily obtain the
following result:
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Notation 3.13. We write J4", 7 for the operators Ay+&"—cplig—gy and Ay+§—00lg_9)
respectively. Furthermore, we write:

t t
s T ul 4 / ds T/ f%,  tes TPup+ / ds TP . fs
0 0

for the solutions to Equation and respectively. Then we have Ttn’D = et and TP =
t
e,

4. THE ROUGH SUPER-BROWNIAN MOTION

4.1. Scaling Limit of Branching Random Walks in Random Environment. In this sec-
tion we consider a deterministic environment, that is a sequence {£" },en satisfying Assumption
to which we associate the Markov process p" as in Definition Our aim is to prove that
the sequence u™ is weakly converging, the limit depending on the value of p. This section is
divided in two parts. First, we prove a tightness result for the sequence p™ in D([0, T; .4 (RY))
for o > d/2. Then, we prove uniqueness in law of the limit points and thus deduce the weak
convergence of the sequence. Recall that for u € .#Z(R%) and ¢ € Cy(R?) we use both the
notation (u, ) and p(p) for the integration of ¢ against the measure pu.

Remark 4.1. For any ¢ € L>=(Z%;¢e(l)), for some | € R:
(18) My#(s) = p"(s)(Ti 5 0) = T}"¢(0)

is a centered martingale on [0,t] with predictable quadratic variation given by:
S

M) = [ (oL ol 0 NI )
0

Sketch of proof. This follows from the definition of the generator of the process, by using Dynkin’s
formula. We first apply the martingale problem to u — Fi (u(p)), where Fi (z) = (zAK)V(—K).
Sending K — oo and using that the solution to the discrete PAM with compactly supported
initial condition is in C([0, T], L>(Z<, e(—k))) for all k, T > 0 by Proposition , we obtain that

t
L1 = 1 () il (o) /0 LAY ds, 20,

is a martingale with predictable quadratic variation
t
@)= [ )T Pl ?) d.
0

This extends to time-dependent functions by an approximation argument (via time discretiza-
tion), for which the martingale becomes

12 (1))t ((0)) /0 1Dy (8)+ A7 (5)) ds.

Now it suffices to use that 0,17 ;o = =T . U

For the remainder of this section we assume that o > d/2. To prove the tightness of the
measure-valued process we use the following auxiliary result, which gives the tightness of the
real-valued processes {t — p"(t)(¢) }nen-

Lemma 4.2. For any | € R and ¢ € C®(R%,¢e(1)) the processes {t +— u™(t)()nen form a tight
sequence in D([0,4+00); R).

Proof. Choose 0 < ¥ < 2 according as in Proposition [3.1] In the following computation & € R
may change from line to line, but it is uniformly bounded for [ € R and T > 0 varying in a
bounded set.
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We apply [EK86, Theorem 3.8.8]. For this purpose, let (.#");>0 be the natural filtration
induced by p™ and let us start by bounding the following conditional expectation for 0 < ¢ <
t+h < T

E[|u" (t+h) ()= 1" (0)(0) P17] = B[|M5 (t+h) = M55 (0)+u" (0) (T o—0) P77

t+h
gs@ E[/t dr p"(r) (n*9|V”T£~_h_T(p|2 + ”79|§g|(Tﬁ-h—r¢)2) g;tn] I h19|,u"(t)(6k|m| )’2

t+h
= [ a0 (T T T ) ) R

t+h
S [ A @@ ot ) o
t

(19) S A= (B)(eHlel) 4 7 (1) (eHlel) P

for any ¢ > 0. Here we have first used that, applying Proposition together with the results of

Lemmata , as well as the fourth estimate in Lemma the term n= ¢V}, of?

converges to zero in €V (Z%, e(2(14+t+h—r))) for 0 < 9 < 9—1+0/2 (we can choose ¥ suffi-
ciently large so that the latter quantity is positive). Thus Proposition gives the bound for
T (ne|V™T} ,_ ¢|*). Moreover, since according to Assumption for o > 2/d the term

n=2|¢"| is bounded in € ~¢(Z<, p(a)) whenever ¢ > 0, it follows with the same arguments as
before that the quantity s — T2 (n 2| |(T} ),_,#)?) is bounded in MEECH (2L e(k)) for any
£/2 < ¢ < 1. As for the last addend, we simply used that s — TP € Z7(Z2,e(1)).

To apply [EK86, Theorem 3.8.8] we have to multiply two increments of u™(¢) on [t—h, h] and
on [t,t+h]. We use the previous computation to bound:

E[(Iu" (t+h) () =" () (@) A 11" (1) (0) —p" (t=h)(9)| A 1)?]
< E[lu" (t+h) (@) =1 () ()P |1 (1) (0) — 1" (t=h) ()]
(20) S E[(hl_cu”(t)(ek'”g) + B () ()P " () (0) — 1" (E=h) ()]

Note that we voluntarily dropped the square in the second term. Now we treat one addend at
a time. For the first one we compute

E [ (017 [ () () =" (t=) ()
< B[ (11 (6) (€17 = (1= 1) (1) [ (=) (1717 | (1) ()~ (=) ()
< (WO 4 h?) 4 (RO=O/ 24 p2/2) < p1=0O/2 4 py0/2

by the Cauchy-Schwarz inequality together with and the moment bound for u?(ekmd)
that is shown in Lemma As for the second term in (20)), we similarly bound:

E [u”(t)(e'““”'U)IQIM”(t)(sO)—u”(t—h)(w)l

S E[Ju" ()1 4 PR 1" (1) (0) - (1) ()] /2 < hA-O2 4 p0/2,

Together with Young’s inequality for products, this yields the following bound for the expres-
sion on the left hand side of ([20)):

E[(|u"(t+0) (@) =" (6) ()| A 1P (I (8) (9) =" (t=h) ()] A 1)*] S B3O 2072,
Since ¥ > % and ¢ > 0 is arbitrary, the right hand side is < h? for some 6 > 1.
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Hence we can apply [EK86L Theorem 3.8.8] with 8 = 4, which in turn implies that the tightness
criterion of Theorem 3.8.6 (b) of the same book is satisfied. This concludes the proof of tightness

for {t — u"(t)(¢) tnen. O

As a consequence, we find tightness of the process p™ in the space of measures.
Corollary 4.3. The processes {t — " (t)}nen form a tight sequence in D(]0, +00); .4 (R?)).

Proof. We apply Jakubowski’s criterion |[DP12) Theorem 3.6.4]. We first need to verify the
compact containment condition. For that purpose note that for all [ > 0 and R > 0 the set

Kp={ne.#®R | ue"") <R}

is compact in .#(R?). Since the processes u™(e!*”) are tight by Lemma we find for all
[,T,e >0 an R(e) such that

supp( sup_ n(t)(eT7) > R<s>) <,
n te[0,T]

which is the required compact containment condition.

Second we note that the space C°(R?) is closed under addition and the maps y {1(9)}pecoe rey
separate points in .#(R?%). Since Lemma shows that ¢ — p"(t)(p) is tight for any ¢ €
C>®(R?), we can conclude.

]

Lemma 4.4. Any limit point of the sequence {t — p"(t)}nen is supported in the space of
continuous function C([0, +oo); # (R?)). Furthermore any such limit point ju satisfies condition

(13) of Definition with

)0, if 0> d/2,
2w, ifo=d/2.

Proof. Step 1. We show the continuity of an arbitrary limit point g Consider ¢ € C2°(R?). We
prove that the one-dimensional projection ¢ — (u(t), ) is continuous almost surely. Choosing
a countable separating set of smooth functions the continuity of u follows. Note that for ¢ €
C>®(R%) and T > 0 we get (T ¢)eeiomll. d o(—)) from Proposition

Now we apply a Burkholder-Davis-Gundy inequality that bounds cadlag martingales in terms
of their predictable quadratic variation and the supremum of their jumps (Lemma B.1 of [MW17]):
forany p>2and 0 <t <t+ h <T we have

E[|1 (t+ 1) (@)~ (0)(@)[F] < E[[i"(t+5) (@) (T[] +E[ 1 () (Tho— )]
=E[| M5 (t+h) — M5 @) PI+E[| 0" ()(T7 o—¢)|"]
t+h p/2
5@“/ dr () (VT ol Ol (T )?) ]

t+h t+h
+E[ sup  [AMETP] + el g4 o !h!W”EHu ®) )P,
t<r<t+h

where A, M = M(r)—M(r—) is the jump at time r. Since the functions 7}'¢ are bounded
uniformly in n € N and ¢ € [0, 7], we can estimate the jump term by n~P¢, up to a multiplicative
constant. The expectation in the last addend is controlled with Lemma [D.I] We are left with
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p/Q]

t+h
S !h”/z_l/t dr B[ (r) (08 T + 000 (Th0)?) 7]

the most complicated term, for which we estimate

t+h
E H J AR OIC e R oy

t+h
SIPet [ ar e S
t

for any v € (0,1), where in the last step we applied the second estimate of Lemma . Passing
to the limit (with Fatou’s inequality), we find E[|p(t+h)(¢)—pn(t)(9)|"] < |h[P/2=7 for arbitrarily
small v > 0. It thus follows from Kolmogorov’s continuity criterion that this process is almost
surely continuous.

Step 2. We fix a limit point g and study the required martingale property. For f, g as
required, observe that ¢ = ¢o|ze is uniformly bounded in €0 (Z%;e(l)) for any (o > 0 and
I € R, and similarly f" = f|z4 is uniformly bounded in C({0, t]; €4(Z%)), with an application of
Lemma Hence by Proposition the discrete solutions ¢} to

sy + "oy = [, oy (t) = o

converge in .Z?(R% e(1)) to ¢¢, up to choosing a possibly larger I. At the discrete level we find
that

MEOI () = (u"(s),@?(s))—/os dr (" (r), f*(r)), s €01

is a square-integrable martingale. Moreover this martingale is bounded in L? uniformly over
n, since the second moment can be bounded via the initial value and the predictable quadratic
variation by

t
B sup (M7 P9)] [0 2 )+ [ ar T2 (9" 0) P 4+ n I (1))

s<t

and the latter quantity is uniformly bounded in n. This is sufficient to deduce that M, 0f i
a martingale w.r.t. its own filtration, but we want to prove that in fact it is a .% —martingale.

Since by assumption Mfo’f’n converges to the continuous process Mfo’f, we get from [EKS86,
Theorem 3.7.8] that for 0 < s < r <t and for bounded and continuous ®: D([0, s]; .#Z) — R

E[®(suljo.q) (MF* (r) = ME (s))] = i E[® (" |j0,4) (M () = MF""(5))] = 0.

From here we easily deduce the martingale property of M, o.f,

Step 3. We show that Mfo’f has the correct quadratic variation, which should be given as the
limit of

M7 = [ ) (A O+ o ))
We only treat the case o = d/2, the case o > d/2 follows by similar but easier arguments

because then we can use Lemmato gain some regularity from the factor n%/2-¢, so that then
=21 |52 (24 p(a)) cOnverges to zero for some e > 0 and for all a > 0.

First we assume, leaving the proof for later, that for any sequence {¢" },,en with limy, ||y
0 for some a > 0 and all € > 0 the following convergence holds true:

(21) E[sup } o

s<t

/0 S dr () (87 ()

¢ == (R,p(a)) —
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By Assumption we can apply this result to ¥ = n7¢|¢"|-2v, and deduce that along a
subsequence we have the following weak convergence in D([0, ¢]; R):

(Mol — (Mol — (MpeT)” — /0 dr ulr)(2v( (7).

Note also that the limit lies in C([0,¢]; R). If the martingales on the left-hand side are uniformly
bounded in L? we can deduce as before that the limit is an L?—martingale, and conclude that

Moy, = / " dr () (2 (r).
0

As for the uniform bound in L2, note that it follows from Lemma that

sup sup E[[Mfo’f’n\4(s)] < +o0.
n 0<s<t

For the quadratic variation term we can estimate:

E[J (M), 2] < s /0 dr E[|u"(r) (n= V"0 (r) 2 + n €| (3 (r))2) 7],

and the right hand side can be bounded via the second estimate of Lemma [D.T

Thus, we are left with proving Equation . By introducing the martingale from Equa-
tion we find that

E[lu" (r) (" (of (m)?)P] < 1T [e" (€7 ())?]17(0)
+/O dq Ty (=0 V" [T [0 (7 ()] + n o€ [T g [0 (7 (r)])?) (0).

We start with the first term. For any sufficiently small € > 0 and some [ > 0 as well as for
¥ € (0,) (cf. Proposition [3.1]), we have that

1Ty [™ (27 (M) g0 @aeqry S @ T 2™ g2 24 p(a)) -
It follows that we can bound:
7" [wn(SO?(T))Q} %(0) S T‘Qan”\I%—s(sz;p(a»-

Now we pass to the first term in the integral. Let us assume that 1—d/4 < ¥ < 1—¢, since we
can take € small enough such that the two bounds are feasible. We then apply Lemmata [1.2

to obtain that:
- n n n n 2
=4 [T [" (0 ()] |

so that we can overall estimate:

/0 " dg T (e |V T [ (e )] 0)

r _ n
fi‘)f(z;‘i;p(a))/o dq (r—q) (+e) Sl H?ﬁ*(li;p(a))'

Following the same steps, in view of Assumption [2.3] we can treat similarly the second term in
the integral (we now use the same parameter € both for the regularity of n=2|"| and of y"):

In=ele™ (T3 1" (7 (r))?])?

so that we can estimate:

2
¢=¢(2¢;p(a))’

@O/ (Zg e (2)) S (r—q)" T ||ym

S "

q—(ﬁ+e) ||¢n

2
G—e (@i e(2)p(a)) S I~ 22 p(a)

n?

r

/0 dg T2 (|| (T 1" (27 (r)*DP) (0) £ 112 e /0 dg (r—q)~ "9~

L Sy

2 2
¢ —¢(2¢;p(a)) ¢ —¢(2¢;p(a))’
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since 1—9 > €. Overall, we conclude that
E[l1"(r) (6" (07 ()?) ] S 18" 12 ey
Integrating over r proves . ([

Our first main result, the law of large numbers, is now an easy consequence.

Proof of Theorem [2.10, Recall that now we assume p > d/2. In view of Corollary we can
assume that along a subsequence p™ = p in distribution in the space D([0, +-00);.# (R%)). To
show that u™ = w it thus suffices to prove that © = w. And indeed the previous lemma shows
that for ¢ € C®(RY) the process s — u(s)(Ti_s0)—Typ(0) is a continuous square-integrable
martingale with vanishing quadratic variation. Hence it is constantly zero and thus u(t)(¢) =
Tip(0) = (T300)(p) almost surely for each fixed ¢ > 0. Note that T'd is well-defined, as explained
in Remark Since p is continuous, the identity holds almost surely for all ¢ > 0. The
identity u(t) = Ty then follows by choosing a countable separating set of smooth functions in
C2(RY). O

Now we pass to the case o = d/2. To deduce weak convergence of the sequence u™ we have to
complete the last step of our program, namely prove that the distribution of the limit points is
uniquely characterized. This is the content of the next results.

First, we introduce a duality principle for the Laplace transform of our measure-valued process.
For this reason we have to study Equation @ We will consider mild solutions, i.e. ¢ solves @
if and only if

o0 =Tugo =5 [ ds Tres(olo)?)

We shall denote such solution via ¢(t) = Uypg, which is justified by the following existence and
uniqueness result:

Proposition 4.5. Let T,k > 0, lo < —T and oo € C®(R%,e(lp)) with g > 0. Forl =1y +T
and 9 as in Proposz'tion there is a unique mild solution ¢ € L7 (R%,e(l)) to Equation (6):

K
Op = %¢—§<p2, ©(0) = ¢o.

We write Uypo := p(t) and we have the following bounds:

CI{T: 00 (e
0 < Uppo < Typo, H{UtSOO}te[O,T]||$19(Rd,e(l)) S e I{Tepo}eero,mllcr (R, e(1))

Proof. We define the map .#(¢)) = ¢, where ¢ is the solution to
K
Op = (H=50)¢,  9(0) = ¢o.

If lo < =T, then (Tipo)iejo,r) € LY(R?, e(1)) for I = Iy + T, and thus a slight adaptation of the
arguments leading to Proposition shows that .# satisfies
I LR o) » LR D), NI W)gomacn S T IoreEeaw
for some C' > 0. Moreover, for positive 1 this map satisfies the a priori bound:
0 <7 (¢)(t) < Tyepo,

so in particular ||Z(¥)[lcreemacqy) < {Tip0}teo,1)llcroe meeq))- We define % = Ty and then

mfl)

iteratively o™ = & (p for m > 1. Hence our a priori bounds guarantee that

Cl{Tewo}ticio,mll ¢ poo re e
sup [|¢™ || o ma ey S € teloTlloreo®dew,
m

By compact embedding of .Z7(R%, e(1)) C L¢(R9, e(l')) for ¢ <9, I’ < I we obtain convergence
of a subsequence in the latter space. The regularity ensures that the limit point is indeed a
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solution to Equation @ The uniqueness of such a fixed-point follows from the fact that the
difference z = p—1) of two solutions ¢ and ¢ solves the well posed linear equation:

Oz = (H+5(+1)z 2(0) =0,
and thus z = 0. U
We proceed by proving some implications between the properties (i) — (éii) of Definition 2.11]
Lemma 4.6. In Definition the following implications hold between the three properties:
(i) = (7), (ii) < (ii7).
Proof. (ii) = (i): Consider U.¢g as in point (i) of Definition which is well defined in view

of Proposition . An application of It6’s formula together with property (ii) guarantees that
for any F € C*(R), and for f(r) = 5(Us—rp0)*:

F({u(t), po)) :F(<M(3)aUt—sSOO>)+/ dr F'({u(r), Us—repo) ) (pu(r), f (7))

S

5 [P Ui 4017 [ F (Gl Vi) a7 ),

where d(Mf°7f>r = {u(r), K(Us—ro)?) dr. Since the function F(x) = e~ is bounded for positive
x, we deduce property (i) from this.

(13) = (ii): Let p € Zypand t >0 and let 0 =t <t} < ... <t} =t n €N, be a sequence
of partitions of [0, ] with maxg<, 1 A} := maxp<,1(tf,—t}) — 0. Then

n—1
(u(t),0) = (0), ) = > [(((tis1) 0y = (u(ty) Tape)) + (u(ty), Tape—9)]
k=0
n—1
Tarp—p
0 n 0 n n n :
= 3 [V ()= MED () + AL{R(), —)].
k=0
We start by studying the second term on the right hand side:
n—1 n—1 n—1
n oy LARPTS n oy LARPTY B
ZAMM(%), 27n> = ZAk<M(tk)7 '“Ain—c%”@ + ZAkW(tk)y%@
k=0 k k=0 k k=0

n—1
=: Ro+ ) AR(ult}), 2 p).
k=0

By continuity of p the second term on the right hand side converges almost surely to the Rie-
mann integral f(f(u(r),jfw} dr. Moreover, from the characterization (i) we get Elu(s)(¢)] =
(1(0),Ts%)) and

Elu(s)(#9)°] S (n(0), (Ts('9))*) + /08 dr (T, (Ts—r 7 0)?),

which is uniformly bounded in s € [0,¢]. So the sequence is uniformly integrable and converges
also in L' and not just almost surely. Moreover,

n—1

E[IRall S D AR (o, Tip (1A ™ (Tagp—p) = ¢))),
k=0

and since maxkgn,l(AZ)*l(TAzap—gp) converges to #p in €7 (R%, e(1)) for some I € Rand ¥ > 0
(so in particular uniformly), it follows from Proposition and the assumption (pg,e(l)) < oo



A ROUGH SUPER-BROWNIAN MOTION 27

for all I € R that E[|R,|] — 0. Thus, we showed that

n—1

Lf = (u(t), @) — (u(0), ) - /0 (u(r), p) dr = lim > (ME? (1) Mg (1)),
k=0

and the convergence is in L. By taking partitions that contain s € [0,¢) and using the martingale
property of M we get E[L?(t)|.Z,] = L#(s), i.e. L? is a martingale. By the same arguments
that we used to show the uniform integrability above, L¥(t) is square integrable for all ¢ > 0.
To derive the quadratic variation we use again a sequence of partitions containing s € [0,¢) and
obtain

E[L# (1)~ L? (s 2] = E[(L7(t)~L7(s M%}

0 my)2
= lim Z E[( tk:-H) Mé+1(tk)) EA
k:t k+1>3
i tk+1 2
—im Y Ex / dr (u(r). (Tig, )| 2]

k:t£+1>s k
= td 7.
K r{pu(r), o) | Fs |-

Since the process r [; dr (u(r), ¢?) is increasing and predictable, it must be equal to (L#).
(131) = (i1): Let t > 0, pg € Dy, and let f: [0,t] = P, be a piecewise constant function (in
time). We write ¢ for the solution to the backward equation

(O0s+7)p = f, ©(t) = o,

which is given by ¢(s) = Ti_spo + fst T,_sf(r)dr. Note that by assumption ¢(r) € Z, for all
r<t For0<s<tlet 0=t <t} <...<t) =3s,n &N, bea sequence of partitions of
[0, s] with maxg<, 1 A} := maxg<p,—1(t};—t;) — 0. Similarly to the computation in the step
“(i) = (11)” we can decompose:

n—1
(), 2(5)) — {110, 0(0)) = 3 [((t o), 0 (H8 o))t 0(E2 1)) — (D), () — (4 1))]
]::(1) v
_ [LwaHn( D=L+ [ dr (ulr), £ + R
k=0 tz
with
n—1 t2+1
=y [ dr[< (1), A Q1)) E2), (A]) ™ (Tag— i) p(171))
k=0 "tk

) Ty )~ (), f<r>>] |

By similar arguments as in the step (i) = (iii) we see that R, converges to zero in L', and
therefore s — (u(s), p(s))—(1(0), ©(0))— [y dr (u(r), f(r)) is a martingale. Square integrability
and the right form of the quadratic variation are shown again by similar arguments as before.
By density of 2, it follows that M, of is a martingale on [0, ¢] with the required quadratic
variation for any @o € C°(RY) and f € C([0,t]; € (R%)) for ¢ > 0. This concludes the proof. [

Characterization (¢) of Definition enables us to deduce the uniqueness in law and then to
conclude the proof of the equivalence of the different characterizations in Definition [2.11]
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Proof of Lemma[2.13 First, we claim that property (i) of Definition [2.11] gives uniqueness in
law for the stochastic process . Indeed, we have for 0 < s <t and ¢ € C°(R?) with ¢ >0

E[e%u(t)w ‘gg] — o~ (1(s),Ut—s9)

For s = 0 we can use the Laplace transform and the linearity of ¢ — (u(t), @) to deduce that the
law of ({u(t),01),. .., {u(t),vn)) is uniquely determined by (i) whenever ¢1,...,p, € C2(RY)
are positive functions. By density of C2°(R?) this shows that the law of u(t) is unique. We then
see inductively that the finite-dimensional distributions of p = {u(t)}+>0 are unique, and thus
that the law of u is unique.

It remains to show the implication (i) = (i7) to conclude the proof of the equivalence of the
characterizations in Definition [2.11] But this is now immediate, because we showed in Lemma .4
that there exists a process satisfying (i), and in Lemma we showed that then it must also
satisfy (7). And since we just saw that there is uniqueness in law for processes satisfying (7)
and since property (i7) only depends on the law and it holds for one process satisfying (i), it
must hold for all processes satisfying (i) (strictly speaking Lemma only gives the existence
for k = 2v € (0, 1], but see Section 4.2| below for general k). O

Now the convergence of the sequence {u"},cn is an easy consequence:

Proof of Theorem [2.10} This follows from the characterization of the limit points from Lemmal4.4]
together with the uniqueness result from Lemma [2.12
]

4.2. Mixing with a classical Superprocess. In Section we constructed the rSBM of
parameter Kk = 2v, for v defined via Assumption This leads to the restriction v € (0, %]
This section is devoted to constructing the rSBM for arbitrary x > 0. We do so by means of an
interpolation between the rSBM and a Dawson-Watanabe superprocesses (cf. [Eth00, Chapter
1]). Let ¥ be the generating function of a discrete finite positive measure U(s) = >, <, prs”
and &7 a controlled random environment associated to a parameter v = E[®]. We consider the

quenched generator:

Ly () = 3 e+ | o (FOP )~ F) (@) ()l O~ F (0]

z€Zd y~x

+ (€)= (WP @) [F (") =F ()] +n? Y pilF (") =F(n)]
k>0

with the notation n"*(y) = (n(y)+klgy(y))+, for & > —1. The rigorous derivation of this
operator as the generator of a Markov process follows analogously to the results in Section [A]

Assumption 4.7 (On the Moment generating function). We study the process associated to
the generator fg’wp under the assumption that W'(1) = 1 (critical branching, i.e. the expected
number of offsprings in one branching/killing event is 1) and we write 0> = W"(1) for the variance
of the offspring distribution.

Now we introduce the associated process. The construction of the process 4" is analogous to
the case without W, which is treated in Appendix [A]

Definition 4.8. Let ¢ > d/2 and let U be a moment generating function satisfying the previous
assumptions. Consider a controlled random environment §, associated to a parameter v € (0, %]

Let P" = PP x P**" be the measure on QP x D([0,4+00); E) such that for fived wP € O, under

the measure P the canonical process on D([0, +00); E) is the Markov process ty (WP, -) started
P

in Uy (0) = [n®]1goy(x) associated to the generator Ly ™" defined as above. To Uy we associate
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the measure valued process

(@ t),0) = Y (WPt 2)p() [n?) ™!

zeZd

for any bounded p: 7Z¢ — R. With this definition [y takes values in QP x D([0, T); # (RY)) with
the law induced by P".

Remark 4.9. As in Remark we see that for ¢ € L¥(Z%,e(l)) with | € R the process
M"#(s) := g"(s) (T} 30)—T7'(0) is a martingale with predictable quadratic variation:

S
(M%) = /0 dr @ (r) (e |V o + (n9l€l [+0%) (T ,0)).
In view of this Remark, we can follow the discussion of Section to deduce the following

result (cf. Corollary [2.16)).

Proposition 4.10. The sequence of measures P" as in Definition [{.8 converge weakly as mea-
sures on QP X ]D)([O T); 4 (RY) to the measure PP x P<" associated to a rSBM of parameter

K= l{g }2V—|-O' in the sense of Theorem and Corollary . In short, we write f, — 1,

In particular the rSBM is also the scaling limit of critical branching random walks whose
branching rates are perturbed by small random potentials.
5. PROPERTIES OF THE ROUGH SUPER-BROWNIAN MOTION

5.1. Scaling Limit as SPDE in d=1. In this section we characterize the rough super-Brownian
motion in dimension d = 1 as the solution to the SPDE ([7):

Oppap(t, ) = %wpﬂp(tvx)+ ropp(t, :c)é(t, ), (t,z) € [0,T] xR

in the sense of Definition .18 The first result in this direction states that the random measure
tp admits a density with respect to the Lebesgue measure.

Lemma 5.1. Let p be a one-dimensional rough super-Brownian motion of parameter v. For any
B<1/2, pe[l,2/(f+1)) and |l € R, we have:

P
Bl 071,52, @ er) < %

Proof. Let t > 0 and ¢ € CX(RY). By point (i) of Definition the process M7 (s) =
(u(s), T— 5<p> <,u(0) Ttg0> s € [0,¢], is a continuous square-integrable martingale with quadratic
variation ( = [ (u(r), (Ti—rp)?). With the help of the moment estimates of Lemma
which by Fatou s lemma also hold for the limit p of the {u™}, we can extend this martingale
property to ¢ € €V (R, e(k)) for arbitrary k € R and 9 > 0. In particular, for such ¢ we get

Bl0). o) SE[ [ n0). (Tiero)?) @] + (T2 Oa = [ (B0 dr + (T (0),

and thus for ¢ = K;(- — z)

E[llu)]l Zzw/ (1), K;(z —-))?]e 2 dg

(22) <ZW / [ / (T K (= )2)(0) dr + (T K (w — ))2(0) | e~ 211" .

We start by proving that for any £ > 0 we can bound || K;(x—-)

" = Mep@ewy) S 2% M7 Indeed,
using that K; is an even function and writing K;—; = 2(’_3)dK0(22_J-) x Ko if 4,5 > 0 and
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appropriately adapted if i = —1 or j = —1:

HAz(K](JJ — ))e(k)HLl(R) = 1{|i*j|§1} /Rd |Kz * K](J,‘ _ y)|€7k|y|0 dy
- 1{Iijl<1}/ ’f(z‘—j(y)\e*kuffng dy
R4

2% k =3 o _Llx|o
S Li-gl<y /Rd K (y)|eM? 77 =klzl” gy

||

—k
S Lji—ji<ye ™

where in the last step we used that |K;_;(y)| < e 2*¥7 and 2777 <29 < 2.

Now, for ¢ < 0 satisfying the assumptions of Proposition [3.1]and for p € [1, c0] and sufficiently
small € > 0:

T Ki(x — )| < |W|T:K;(x — - 1,
I = ety S W=l e

To control the first term on the right hand side of , we apply this with p = 2 and obtain for
te]0,T] and ¢ > —1/2

/ To((Ty 5 ( — ))2)(0) dr < / 1T (T K — ))?)
0 0

< 9iC (=15 =2)/2 —kla|”

~

%e (Re(2k+T)) A7

LT (R e(2k+T)) dr

t . x —_— 2
< /0 1T (Th B (2 — ))?)

_ 142e
< / (T ()
0

@5 (Roe(2k)) A7

t _142¢
S /0 1 T K (2 = s meny) 7

t
< / r= S (90 (¢ — (€~ 3290 /20 Klal")2 g,
0
~ 22j4672k|x|”t17¥+C*%72E — 92jC ,—2k|z|7 ;C—3¢

where we used that fg r=(t —r)Pdr ~ t17¢P for a, 8 < 1. The second term on the right
hand side of is bounded by
(T ks (z = ))*(0) < (TiK(x — )
S K (@ — ) ?ggo(R,e(kJrT))
< 22th471725672k|w\”‘

%, (R,e(2k+2T))

Note that this estimate is much worse than the first one (because ¢ € [0, 7] is bounded above).

We plug both those estimates into and set ( = —f — ¢ and k > —I to obtain for § < 1/2
and for [ € R

2 < —B—1-3¢
E[||M(t)||3572(e(l))] ~ 13 .
So finally for p € [1,2)

T T
E[|l = [ E[lu)]" dt s / (A789% gy,
|:HMHLp([ovT];Bg,Q(Rae(l)))] /0 |:HIU/< )”35,2(8(1))] ~ 0 2

and now it suffices to note that there exists ¢ > 0 with (=8 — 1 — 3¢)8 < —1 if and only if
p<2/(B+1).
O

Corollary 5.2. In the setting of Proposition we have almost surely \/u € L*([0,T]; L*(R, e(l)))
for all T >0 andl € R.
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Proof of Theorem[2.19 We follow the same approach as Konno and Shiga [KS88]. First, consider
a probability space (QP, %P PP) supporting a sequence of controlled random environments. If
k € (0,1) we additionally assume that v = k/2, for v as in Assumption , and let y, be the
limit of the discrete processes j; as derived in Theorem and Corollary If Kk > 1 we
consider the process fi,; constructed in Sectionfor an appropriate moment generating function
U, such that 02 = U”(1) = k—2up, and for some 1y € (0,1/2) and a random environment &"
satisfying Assumption with v = 1. We then work with its limit fi,, described in Proposition

In both cases, we have constructed a process, which we denote with p,, on the space
(2 x D0, T]; A (R)), F, P x B"),

with .# being the product sigma algebra. Enlarging the probability space, we can moreover
assume that the process is defined on

(P x Q,FP @ .F, PP x P)

such that the probability space (,.%,P) supports a space-time white noise £ which is indepen-
dent of £&. More precisely, we are given a map

E: QP xQ— (R x [0,T])

which has the law of space-time white noise and does not depend on QP, i.e. £(wP,w) = £(w).
For wP € QP let {ﬂfp}te[oﬂ be the usual augmentation of the (random) filtration generated
by p(wP,-) and £. For almost all wP € QP the collection of martingales

t LP(WPt),  te[0,T], ¢ € Dyur,

defines a (random) worthy orthogonal martingale measure M (wP, dt, dz) in the sense of [Wal86],
with quadratic variation

Q(A X B x [s,t]) = /t,u(r)(Aﬂ B)dr

for all Borel sets A, B C R (first we define Q(¢ X 9 X [s,t]) = f;(,u(r), o) dr for p, ¢ € D pur,
then we use Lemma with p =1 and § € (0,1/2) to extend the quadratic variation and the
martingales to indicator functions of Borel sets). We can thus build a space-time white noise 13
by defining for ¢ € L?([0,T] x R):

/ (WP, ds, da)p(s, z) ::/ M(w?, ds, dx)M
[0.T]xR 0,T]xR

1 wP,s,x
/J,(wp,S,.I) {n(w?,s,z)>0}

+ / £(ds, dz)p(s, )1 (wr,s,0)=0} -
[0,T]xR

By taking conditional expectations with respect to (P we see that §~ and &P are independent.
Moreover, it is straightforward to see that any solution to the SPDE is a rSBM of parameter

v = /2. Uniqueness in law of the latter then implies uniqueness in law of the solution to the

SPDE. 0

5.2. Persistence. In this section we study the persistence of the SBM in static random envi-
ronment u, and we prove Theorem i.e. that u, is super-exponentially persistent. We work
with a slightly modified controlled random environment {{}},en which we build in Lemma
and assume that p, is given as limit of branching random walks, as in Corollary [2.16] Since
persistence is a property that only depends on the distribution and there is uniqueness in law
for p1,, this assumption does not restrict the validity of our arguments.

In the next section we rigorously construct for L > 0 a killed SBM in static random envi-
ronment p, where particles are killed once they leave the box (—L/2, L/2)4, and we couple p5

with p, so that almost surely u£ < pp for all L € 2N (see Proposition and Corollary |5.20)).
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In this section we prove that given a nonzero positive ¢ € C°(R%) and A > 0, for almost all w?
there exists L = L(wP) with

(23) P( lim e () (WP, t,+), p) = 00) > 0.

t—o00
This implies Theorem [2.21]

The reason for working with uﬁ is that the spectrum of the Anderson Hamiltonian on the space
of bounded volume (—L/2, L/2)¢ is discrete, and its highest eigenvalue almost surely becomes
bigger than A for L — oo. Given this information, the proof of follows from a simple
martingale convergence argument, see Corollary below.

Remark 5.3. For simplicity we only treat the case of (killed) rSBM with parameter v € (0,1/2].
For greater values of v we additionally need to mix the process with a Dawson-Watanabe super-
process as in Section after which we can follow the same arguments to show persistence.

Let us write A\(wP, L) for the largest eigenvalue of the Anderson Hamiltonian %“f with Dirich-
let boundary conditions on (—L/2,L/2)% We will use the following results.

Lemma 5.4 (Lemmata 2.3 and 4.1, [Cheld]). In dimension d = 1 there exists a constant ¢; > 0
such that for almost all WP € QP:

AwP, L)

lim 22
L oo log(L)2/3 “

Lemma 5.5 (Theorem 10.1, [CvZ19|). In dimension d = 2 there exists a constant ca > 0 such
that for almost all WP € QP:
AMwP, L)

L5 o log(L) -

Lemma 5.6. The operator %”D"JLP admits an eigenfunction ey 1) associated to A(wP, L), such
that ex(wr.)(z) > 0 for all x € (—%, L),

Proof. For ¢, € L2((—%, L)) we write ¢ > ¢ if ¢(z) — p(x) > 0 for Lebesgue-almost all z

and we write ¢ > ¢ if ¥(x) — p(z) > 0 for Lebesgue-almost all . By the strong maximum

principle of [CEGIT, Theorem 5.1] (which easily extends to our setting, see Remark 5.2 of the
apwP

same paper) we know that for the semigroup TtD’L’wp = %L of the PAM we have TtD’L’wpgo >0

0,L,wP L L\d
T; ).

whenever ¢ > 0 and ¢ # 0; we even get @(x) > 0 for all = in the interior (-5, 35

So by a consequence of the Krein-Rutman theorem, see [Dei85] Theorem 19.3], there exists an
eigenfunction ey(,» 1) > 0. And since ey 1) = e_t)‘(wp’L)Tta’L’wpe/\(wpyL), we have ey(», 1) (7) >

0 for all z € (—%, L)d. O

These results allow us to conclude the following.

Corollary 5.7. Letd < 2 and A > 0 and let u, be an SBM in static random environment, coupled

for all L € 2N to a killed SBM in static random environment u£ on [—%, %]d with ,uI];J < pp (as
described in Corollary . For almost all WP € QPa there exists an Lo(wP) > 0 such that for
all L > Lo(wP) the killed SBM u]f(wp, ) satisfies (23). In particular, for almost all wP € QP the

process (WP, -) is super-exponentially persistent.

Proof. In view of Lemmas and [p.5] for almost all w? € OF we can choose Lg(wP) such that
the largest eigenvalue of the Anderson Hamiltonian A(wP, L) is bigger than A for all L > Ly(wP).
Now we fix wP such that the above holds true and thus drop the index p (i.e.: we will use a purely
deterministic argument). We also fix some L > Lo(wP) and write A; instead of A(wP, L) for the
largest eigenvalue. Finally, let e; be the strictly positive eigenfunction with H€1‘|L2((_%7§)d) =1

associated to A\1. By Proposition we find for 0 < s < t:
B[ (8), el F] = (uE(8), T ex) = (1), = Mrey),
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and thus the process F(t) = (u”, e *tte;), t > 0, is a martingale. Moreover, the variance of this
martingale is bounded uniformly in ¢. Indeed:

E[|E(t)-E(0)?] ~ /0 dr T2 (e 7)) (0) < /0 dr e <1,

where we used that as a consequence of Proposition we have e; € €V((—%, £)?) for some
admissible ¥ > 0, and therefore

T (e e1)?)(0) < [lelloce ™ T} (e e1)(0) = [ler]|oce ™ e1(0) S e M.

It follows that E(t) converges almost surely and in L? to a random variable E(co) > 0 as
t — oo, and since E[E(c0)] = E(0) = €1(0) > 0 we know that E(oo) is strictly positive with
positive probability. For ¢ > 0 nonzero with support in [~L/2, L/2]? we get by projecting on
the eigenspaces:

e MU (), ) = (e1,9) X, ast— oo,
so that we get from the strict positivity of e; and from the fact that A > A

P( Jim e (u (1), ¢) = o0) > P(X > 0) > 0.
]

Remark 5.8. The connection of extinction or persistence to the largest eigenvalue of the Hamil-
tonian in a branching particle system is reminiscent of conditions appearing in the theory of
multi-type Galton-Watson processes: See for example [Har02), Section 2.7]. The above proof via
the martingale argument can be traced back at least to Everett and Ulam, as explained in [Har51]
Theorem 7b].

5.3. Killed rfSBM. Here we introduce the killed rSBM on a box of size L € 2N, and we couple
it with the “usual” rfSBM. The killed rSBM will also be the scaling limit of branching random
walks, but now we kill all particles that leave the box. Throughout this section we work under
the assumption that o = d/2.

In Section we considered the PAM on a box with Dirichlet Boundary conditions. Recall
that to simplify the calculations, we chose the box to be of the form [0, L]¢ first, but later
shifted it to [~L/2, L/2]¢. Here we will only consider [~L/2, L/2]? and the associated lattice
approximation AL = {z € Z¢ : z € [-L/2,L/2]%}.

Let us start by showing that a random environment gives rise to deterministic environments

satisfying both Assumption and Assumption

Lemma 5.9. Given a random environment {{EZ(x)}erz tnen satisfying Assumption there
exists a probability space (QF, FP,PP) supporting random variables {{&} ()} ezd tnen such that
Jor all n € N we have £'(-) = €"(-) in distribution. In addition, there exists a null set N C QP
such that for any WP & N:

(1) {{& (WP, 2)}pezd tnen is a deterministic environment satisfying Assumption with ¢, =
kn (cf. Equation () and v = E[(®)4].

(2) for all L € 2N the restriction {{&,(wp,T)}zear tnen of the above sequence to AL is a
deterministic Neumann environment satisfying Assumption with ¢, = Kk, and v =
E[(®)+]-

and such that £" = ¢, = v =0 on the null set N.

Proof. The proof of the first point is already contained in Lemma The proof of the second
statement follows from Proposition and Lemma O

Notation 5.10. We call a sequence of random variables {£] }nen which satisfy conditions (1)
and (2) of Lemma a controlled random Neumann environment, and we define the effective
potential via:

& (WP, @) = & (WP, ) —cn (wWF) 1 {a=2)-
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Let us introduce the discrete space EL = {77 € NO " n(x) =0,Vz € 6A7LL}

Definition 5.11. Fix an averaging parameter o > d/2 and a controlled random Neumann en-
vironment &. Let u, be the (random) Markov process from Definition . The process uy,
corresponds to an (unlabelled) BRWRE, which can be constructed from an underlying labelled
BRWRE X} (see Remarkfor a rigorous definition,).

We build X;}’L by killing (i.e. setting to the cemetery state A) a particle in X} as soon as it

reaches the boundary ONL. We then build the process uZ’L taking values in E* by disregarding
the labels of the process XIT,L’L, That s, if at time t, Xg’L(t) has N (t) particles at positions

Yt 1),..., Y (¢, N()), then:
uZ’L(t,J:) =#{ie{l,...,N(@)} : Y'(t,i)=x}.
The following result is now easy to verify.

Lemma 5.12. For any wP? € QP the process uZ’L(wp, -) is a Markov process taking values in
D([0, +00); EL), associated to the generator L} : Co(EF) — Cyo(EL) defined via:

L Ey = Y [Zn )~ (1)

xeA,e\aAL zey
H(E) 4 (WP, ) [F(™F)=F(n)] + (&) (WP, ) [F (") =F(n)] |,

where for n € E* we define any( ) = n(2)—1=ay +1my, ygonry and n** is defined in the
same way as forn e K = (NO")O.
Remark 5.13. Eztending uy’ by 0 to 74 \ AL, we find:
uZ’L(wp,t,af) <y (WPt 7), V(wP,t,z) € QP x R>g X R
Consider now the random measure associated to this process:
(24) () = 3 Ut (WP, 2 (),
xeAL

and fix one realization of the noise wP. As before, we drop all dependence on the index p to
underline that we are working with a deterministic (Neumann) environment. We also write
M ([—L)2, L/2]%) for the set of all finite positive measure on [—L/2, L/2]%.

Remark 5.14. When studying the convergence of the process u™~, special care has to be taken
with regard to what happens on the boundary of the box. Indeed a function ¢ € C>([—L/2,L/2]%)
(i.e. smooth in the interior with all derivatives continuous on the entire box) is not smooth in

the scale of spaces B;,’ff‘] for 1€ {0,n}, since it does not satisfy the required boundary conditions:
a priori it only lies in the above space for a = 0 and any value of p, q.

For this reason we consider a weaker kind of convergence for the processes ™% than one might
expect. We write

'%OL = (%((_L/27 L/2)d)7 TU)
of finite positive measures on (—L/2,L/2)? endowed with the vague topology 7, (cf. [DP12]
Section 3]), i.e. u® — pin AL if
pHp) = plp),  VoeX

where X can be chosen to be either the space C>°((—L/2, L/2)%) or the space Co((—L/2, L/2)%)
of continuous functions which vanish on the boundary of the box (the latter is a Banach space,
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when endowed with the uniform norm). The reason why this topology is convenient is that sets
of the form Kp C 4L

Krp={pe .y : p(l) <R}

are compact. In this setting it is also important to remark the following embedding, which follows
from a short calculation.

Remark 5.15. For a > 0 there is a continuous (in the sense of Banach spaces) embedding
5 ([=L/2,L/2)%) = Co((—L/2, L/2)%).
Now we can pass to study the convergence of the killed process.
Lemma 5.16. We can bound the mass of the killed process locally uniformly in time:

sup E[ sup p™"(t)(1)] < +oo,
n t€[0,T]

as well as the mass of the semigroup:

sup sup ||77°1]oe < 400.
n t€[0,T]
Proof. The first bound follows from comparison with the process on the whole real line. The
second bound follows from the first. The second bound follows from Proposition because
the antisymmetric extension of 1 is in L*°: we have [II,1(-)| = 1.
O

Lemma 5.17. The sequence {t — p™L(t)}nen is tight in the space D(Rso; #L). Any limit
point u lies in C(Rso; AEL).

Proof. We want to apply Jakubowski’s tightness criterion [DP12 Theorem 3.6.4]. The se-
quence ™" satisfies the compact containment condition in view of Lemma The tightness
thus follows if we prove that the sequence {t — u"(t)(¢)}nen is tight in D(]0, T];R) for any
0 € OX((—L/2,L/2)%). Here we follow the calculation of Lemma , using the results from
Section on the PAM with Dirichlet boundary conditions. The continuity of the limit points
is shown as in Lemma O

We will characterize the limit points of {™},cn in a similar way as the rough super-Brownian
motion, and for that purpose we need to solve the following equation:

Lemma 5.18. For T > 0 and pg € C°((—L/2, L/2)%) with pg > 0 and 9 as in Pmpositz'on
there exists a unique (paracontrolled in d = 2) solution p € LY ([~L/2,L/2]%) to

(25) 8t<)0 = ’%90_1/3027 30(0) = ¥o0, QO(ZL/,{D) = 07 V(t,x) € (07T] X a[_L/QvL/2]d7
and the following bounds hold:

0
0< SO(t) < TtDQDOa H‘p”ﬁff([—L/ZL/Q]d) S GC”{Tt ‘PO}tE[O,T]||CLOO([7L/2,L/2]d)‘
The proof is analogous to the one of Proposition except that here we do not need to
consider weights. As in Section we thus arrive at the following description of the limit points

of {,Un’L}nGI\F

Proposition 5.19. For any deterministic Neumann environment {{"}nen satisfying Assump-
tion @ there exists pt € C(Rso; ML) such that for o = d/2 we have p™* — pl in distribution
in D(Rso; #F). The process pl is the unique (in law) process in C(Rsq; #F) which satis-
fies one (and then all) of the following equivalent properties with .# = {F}i>0 being the usual
augmentation of the filtration generated by u”.
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(i) For anyt >0 and pg € CX((—L/2,L/2)%), 00 > 0 and for Uy the solution to Equation
with initial condition pg the process

NFO(s) = e (UL sv0), s €0,
is a bounded continuous .% —martingale.
(i3) For any t >0 and pg € C((—L/2,L/2)%) and f € C([0,t]; Co((—L/2,L/2)%)), and for
¢ solving
Osor + H00 = f, s € [O,t], th(t) = Yo
a1t holds that

MO (5) = (i (), e(5))— {00, 2(0)) — / dr (u"(r), f(r), s €01

s a continuous square-integrable # —martingale with quadratic variation

gty = [ " dr (i (), (o))
0

(111) For any ¢ € Dy the process:

L2(t) = (uE (), @) — (60, 9)— /O dr (i (r), Hag),  te0.T]

is a continuous F —martingale, square-integrable on [0,T] for all T > 0, with quadratic
variation

(L), = 2 /0 ar (uk(r), o).

Proof. The proof is almost identical to the one of Theorem The main difference is that
here we only test against functions with zero boundary conditions and thus use the results from
Section 0

We call the above process the killed rough super-Brownian motion (killed tSBM) on (—%, £)4.

Note that we can interpret the killed rSBM as an element of C(Rxo;.#(R?)) by extending it
by zero, i.e. ul(t, A) = p*(t, AN (—~L/2,L/2)?) for any measurable A C R?. This allows us to
couple infinitely many killed rSBMs with a rSBM on R? so that they are ordered in the natural
way.

Corollary 5.20. For any deterministic Neumann environment {£"}nen satisfying conclusions
(1) and (2) of Lemma there exists a process (p, u?, pt,...) € C(Rso;. 4 (RN (equipped
with the product topology) such that p is an rSBM and p' is a killed rSBM for all L € 2N (all
associated to the environment {"}nen), and such that almost surely

for all t > 0 and all Borel sets A C R

Proof. The construction ([24) of u® and p™” based on the labelled particle system gives us a
coupling (u™, u™2, u™*,...) such that almost surely

un’2(t,A) < ,u”’4(t,A) <. < Mn(t,A)

for all t > 0 and all Borel sets A C R, where as above we extend p™% to R? by setting it to
519

zero outside of (—%, %)d. By Theorem respectively Proposition we get tightness of the

finite-dimensional projections (u™, u™2, ..., u™%) for L € 2N, and this gives us tightness of the
whole sequence in the product topology. Moreover, for any subsequential limit (u, p2, u#,...) we
know that u is an rSBM and p” is a killed rSBM on (—%, %)d.

It is however a little subtle to obtain the ordering , because we only showed tightness in
the vague topology on //d; for the ™" component. So we introduce suitable cut-off functions to

show that the ordering is preserved along any (subsequential) limit: Let x™ € C>°((—L/2, L/2)9),
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x™ > 0 such that x™ = 1 on a sequence of compact sets K™ which increase to (—L/2, L/2)? as
m — co. Note that on compact sets the sequence p™% converges weakly (and not just vaguely).
We then estimate (in view of Remark [5.13)) for ¢ € Cy(R?) with ¢ > 0:

(), ) = lim (u"(t),0-x™) = lim lim (g™(8),0-x™) < lim (u(t), ¢ X™) = (u(t), ),

and similarly we get (u”(t), @) < (u%(t),¢) for L < L'. Since a signed measure that has a
positive integral against every positive continuous function must be positive, our claim follows.
0

APPENDIX A. CONSTRUCTION OF THE MARKOV PROCESS

This section is dedicated to a rigorous construction of the BRWRE. For simplicity and without
loss of generality we will work with n = 1. Since the space N%d is harder to deal with and we
do not need it, we consider the countable subspace F = (N%d) 0 of functions 7: Z¢ — Ny with
n(z) = 0, except for finitely many = € Z%. We endow E with the following distance:

d(n, ') = In(x)—n'(z)],
x€Z4

under which F is a discrete and hence locally compact separable metric space. Recall that we are
given a probability space (0P, ZP, PP) with a random potential &,: QP x Z¢ — R. Recall also that
we write 2 ~ y with z,y € Z%, |z—y| = 1, and n*7Y(2) = n(2)+ (11 (2) =123 (2)) L y(2)>1) and
"t (2) = (n(z) £ L23(2))+, as well as ()4 = max{0,-} and (-)- = max{0, —}. Furthermore,
let Cy(E) be the Banach space of continuous and bounded functions on E, endowed with the
supremum norm.

Lemma A.l. Assume that for any wP € QF the potential &,(wP) is uniformly bounded and
consider m € E. There exists a unique probability measure Pr on Q@ = QP x D([0, +00); E)
endowed with the product sigma algebra, such that Py is of the form PP x PY"  with P<" being the
unique measure on D([0, +00); E) under which the canonical process u is a Markov jump process

with uw(0) = 7 whose generator is given by L*": (L") — Cy(E):

LUFY ) =Y 0 [Z (F(™")=F(n))

(27) YA y~z

+ (&) + (WP, ) [F (") =F ()] +(&) - (W, 2)[F(n" )= F(n)] |,
where the domain 2(L*") is the set of functions F € Cy(E) such that the right-hand side of
Equation lies in Cp(F).

Proof. First, let us construct the process for fixed w? € QP. This follows via a classical construc-
tion. Indeed, let us consider the modified generator

wP — T
Lt = z%Z:d Zzezd n:(2d+[&p| (WP, 2))

. [Z (FOFY)—F(n) + (€)+ (P, 2) [F () —F ()] + (&) (P ) [F (")~ F ()]

Y~

This is the generator associated to a discrete time Markov chain Y on E. We turn this Markov
chain to a Markov jump process u as in [EK86, Equation (4.2.3)], with

Am) = na(2d+|&| (P, 2)).

z€Z4
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In order for this process to be defined for all times we need to verify that

1
Z NY5) = 400, a.s..
keN

This is the case, since by assumption &, is bounded and thus

1 1 1
2NV R T V) S 2ok = T

keN keN keN

with ¢ = Y (). It follows via classical calculations that Z“* is the generator associated to
the process u. This allows us to define for fixed w? the unique measure x(w?, ) on D(]0, +00); E),
which is associated to the law of the process we just described. To define the measure P, we have
to show that « is a Markov kernel. This amounts to proving measurability in the w? coordinate.
But x depends continuously on &, which we can verify for example by coupling the processes for
&y and &, through a construction based on Poisson jumps at rate K > [|€,leo; [|€p]loo and then
rejecting the jumps if an independent uniform [0, K| variable is not in [0, |, (x)|] respectively in
[0, |€,(x)]]. Since &, is measurable in wP, also & is measurable in w?.

O

In the previous result, we have constructed the random Markov process under the assumption
that the random potential is bounded. Now we extend the result to allow sub-polynomial growth.

Lemma A.2. Assume that for all wP € QP the potential &(wP) lies in (o L>(Z%, p(a)) and
consider m € E. There exists a unique probability measure Pr on Q = QP x D([0, +00); E)
endowed with the product sigma algebra, such that Py is of the form PP x P<" | with P<" being the
unique measure on D([0, +00); E) under which the canonical process u is a Markov jump process

with w(0) = m whose generator is given by L*": (L") — Cy(E), with L*" and 2(L*")

defined as in the previous result.

Proof. Let us fix w? € QP. Consider the Markov jump processes u” started in 7 with generator
L%k associated to the uniformly bounded noise 55(3}) = (&(x) AN k) V (—k) whose existence
follows from the previous result. The sequence {uk}keN is tight (this follows as in Lemma
and Corollary , keeping n fixed but letting k vary) and converges weakly to a Markov process
u. Indeed, for k, R € N let 7% be the first time with supp(u® (7)) ¢ Q(R), where Q(R) is the
square of radius R around the origin, and let 7 be the corresponding exit time for u. Then we
get for all k,1 > max,cqr) [§p(2)|, for all T > 0, and all F' € Cy(D([0, TT; E)):

E[F((Uk(t))te[o,T])1{T§§T}] = E[F((ul(t))tE[O,T])1{T§%§T}] = E[F((u(?))iep,1) {rr<}]);

where we used that the exit time 7 is continuous because E is a discrete space. Moreover,
from the tightness of {uf}ren it follows that for all ¢ > 0 and T > 0 there exists R € N
with IP’(TE < T) < e. This proves the uniqueness in law and that u is the limit (rather than
subsequential limit) of {u*}ren. Similarly we get the Markov property of u from the Markov
property of the {u*}ren and from the convergence of the transition function of u* as k — oo.
It remains to verify that #“" is the generator of u. But for large enough R we have P¥" (15 <
h) = O(h?) as h — 07, because on the event {rgp < h} at least two transitions must have
happened (recall that 7 is compactly supported). We can thus compute for any F € Cy(E):

5" [F(u(h)] = B [F(u*(h)] + O(h?).

The result on the generator then follows from the previous lemma. As before, we now have
a constructed a collection of probability measures k(w?,-) as the limit of the Markov kernels
k¥ (wP, ). Since measurability is preserved when passing to the limit, we can again construct the
measure P, on the whole space €.

O
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We introduced the BRWRE without keeping track of the individual particles (all particles are
identical and only their position matters). Sometimes it is also useful to consider a labelled pro-
cess, which distinguishes individual particles and lives in a much larger (although still countable)
space and which can be constructed using similar arguments to the unlabelled case. We thus
introduce the space Elap, = | ],,cn(ZTU{A})™, where | | denotes the disjoint union, endowed with
the discrete topology. Here A is a cemetery state. Moreover, for n € Ej,, we write dim(n) = m
if p e (ziu{Ap™

Remark A.3. Assume that for all wP € QP the potential &,(wP) lies in (), L®(Z%, p(a)) and
consider an initial condition X (0) € Ejan. We can construct a (random) Markov jump process
X on By, via the following generator:

dim(n)

ZEE = Y Ly (n) [ S (P F (@)

i=1 Yy~
+ (€M) (WP, m) (F () =F () +(€") = (w”, m) (F (") =F () |,

where 07" = 1;(1=1 (7)) +y1y (7) and 07" = 10510 dim()) ()1 Laimen 41y (4) as well as
77;’ = n;(1-14(4))+A1(j), and where F is such that the right hand-side is bounded. We
then find that the process

u(t,z) = #{i € {i,...,dim(X(¥))} : Xi(t) =}
has the same law P<" as the process introduced in Lemma with m(x) = u(0, ).
APPENDIX B. SOME ESTIMATES FOR THE RANDOM NOISE

In this section we prove parts of Lemma [2.4] ie. that a random environemnt satisfying
Assumption [2.1] gives rise to a deterministic environment satisfying Assumption

Lemma B.1. Let a,e,q >0 and b > d/2. Under Assumption we can bound

Slrllp E’\nfd/z(ﬁgh gg—s(zg“p(a)) +E“nid/z(gg)-l-H%Q(ngp(b)) < +o00,

and the same holds if we replace (§7)+ with |€)]. Furthermore, for v = E[®.], the following
convergences hold true in distribution in €~¢(R%, p(a)):

ET ) — v, EMT P — 2w,

Proof. We prove the result only for ({})+, since then we can treat (§;)- by considering —¢£7
(note that —® is still a centered distribution). Start by noting that

Ellln= (&) 10zt pay) = D 0 Elln™ (€)1 1 p(a) (@) SE[I‘PQ]/ (1+Jy[)~" dy,
/3 R4
which is finite whenever aq > d. From here the uniform bound on the expectations follows by
Besov embedding.
Now we pass to the convergence result. The uniform bound guarantees tightness of the se-
quence é"”n_d/Q(fg)Jr in €7¢(R%,p(a)), for any £,a > 0 and we are left with proving that the
weak limit is v. Using the spatial independence of {; we can compute for any ¢ € %, with

supp(-Fpap) C nT:

E[(6"n (&)1, ¢)] = E[( > el g "””*‘”)ﬂ

zEZLL

~p 2 Z o(x)? = 0(n9).

x€ZY
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This proves that v is indeed the limit. O
The following result is a simpler variant of [MP17, Lemma 5.5] for the case d = 1.
Lemma B.2. Fiz £" satisfying Assumption d=1,a,q>0 and o < 2—d/2. We have:

SITJLPE[IKS %H(Zz,p(a))

} < 400, EMEY — &p,

where &, is a white noise on R and the convergence holds in distribution in €°*~2(R%, p(a)).

Proof. The uniform bound follows along the lines of [MP17, Lemma 5.5|. This guarantees the
tightness of the sequence. Convergence follows by an application of the central limit theorem.
O

APPENDIX C. STOCHASTIC ESTIMATES UNDER DIRICHLET BUNDARY CONDITIONS

The following bounds are essentially an adaptation of [CGP17, Section 4.2] to the Dirichlet
boundary condition setting (see also [CvZ19| for the spatially continuous setting). Our aim is to
prove the following proposition. Fix a box of size L € N and assume the box is given by [0, L]?
(the same results hold for any integer translation of this box, mutatis mutandis). Recall the
notation and constructions from Section as well as the definition of k,, from Equation .

Proposition C.1. Fir a sequence & satisfying Assumption and consider the restriction
HE& () }een, tnen. The following bounds and convergences (all of which are to be understood in
distribution) hold true for any o < 2—d/2:

o Let &, be space white noise on [0, L]¢, then:

SWEG llgeay )] <005 &&= & in 6070, L)%).

o In dimension d = 2, for X! = %((%))
Equation ({)) we have:

sup B[] X! [l

& and Xy = ASIX(D)E, (with the same X as in

ay + 1(X2 © ) —Rullgaazy, ) < +o00

and there exists a random distribution X, o &, € €2%72([0, L]%) such that
VXY = Xn in 60, L)), ENXT O & —kn) = Xn o0&, in 607%([0, L]Y),

Proof. Step 1. First, we establish all uniform bounds. We will derive only bounds in spaces of
the kind B;jg (A,,) for appropriate 5 and any p sufficiently large. The results on the Holder scale
then follow by Besov embedding. Also, in order to avoid confusion and for clarity, we will omit
the subindices p,n in the noise terms.

Recall that with N = 2L we have ©,, = *(Zd Nn[— ]\;", NQ”] )/N with opposite boundaries
identified (resp. T% if n = oo) and Z, = + (29N [ 22, 22)9) /o (resp. +Z% if n = o) as
well as = = +(Z9N [0, Ln]?), (resp. +Ng). We write sums as discrete integrals against scaled
measures Wlth the following definitions:

/n da f(z) =) féff) /_ dk f(k) = > J;f,’? /{_1,1}d dg fa)= > f(@)

€O, qe{-1,1}4

For ki, ks € E, and q1,q2 € {—1,1}¢ we moreover adopt the notation: ko) = ki+ke, quo =
qi1+q2 and (qo k)[12] = (1 0 k1+q2 o ko. Let us start with the first estimate. We have:

Elll€" I pa2na,) = > 2(a_2)jp/e dz E[|A;TE" P (2)]

—1<5<jn
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Since the integral over ©,, is bounded, it suffices to derive a uniform bound for E[|A;I1.£"|P(z)]
in n,z. Let us thus rewrite:

ATLE ) = / dk R (k) Fo T1LE (k)

/ 4 / dq v 229 g, (k) (€7, ny) = T1A€" (),
=t {-1.1}4

where we have used that Zg, (k) = N (¢, ex). By enumerating =, we can consider the integral
as a sum of martingale increments. Indeed, a simple calculation shows that the {(£",ng)}r are
independent centered normal random variables with variance 1. Hence we can estimate for p > 2
with the discrete time Burkholder-Davis-Gundy inequality and Minkowski’s inequality:

2] S (/_+ dk Q?(k)E[(f”,nk)p]?)Q < 2idp/2

L, kg m)?

E[|A " (2)[P] S E [

This provides an estimate on the regularity of the required order. The bound for X" follows
along the same lines.
Let us pass to a bound for the resonant product. Here we first compute:

AT (" © X™)(x)
= / dqie dkio ]\fdyk1 ,/k2627rb(x,(t10k)[12]>_
({~1,1}4xEH)2
X (k2)
1" (k2)
- / dqi2 dkio 1{k17ék2}Nde1Vk2 e2mu(@,(40k)[12)) .
({—1,1}d><5;)2

0;((a 0 k)g)tbo(ki, kz) (€7 ngy (€7 nky)

x(k2)

0;((a 0 k)pg)tbo(ki, k2)l”(k‘ )

(€", 0 ) (€7, ng,) + Diag

where Diag indicates the integral over the set {k; = ko}. The first term can be bounded by
generalizing the martingale inequality argument we used for A;II.£"(z) to multiple discrete
stochastic integrals, see [CGP17, Proposition 4.3]. We can thus bound for arbitrary ¢ € N:

E[|A;([e (" © X™)(2)—rn) "]

s [/ dqi2 dk12

For the first term on the right hand side we have:

/ dqi2 dki2

({-1 l}dXHn)

= / dk12

n

ideyi(d— d—
N Z/ dk1z Ljty iy iy Lppapoo 270 S ) 20920070 < oW(072),
i>j—LY —n 4

0;((q 0 k)pg)tbo(k1, ko) icl E[(€",n¢)?]* + E[| Diag —1(;—_1y5a"].

o~
—~
7
N
~

0;((a 0 k)piz W k1, ko)

o~
—
=
N
~

0j(kpg))vo(k1, k2) ii
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which is of the required order (and we used that d < 4). Let us pass to the diagonal term. We
first smuggle in the expectation of Diag:

E[| Diag —E[Diag]|’] =

' / dgio dk 1/,362“<x’q[12]°k> 0;(dpg o k) >,<L
{-1,1}9) (k)

where we have lost the factor N¢ due to the normalization of the integral in k and n(k) =
(€7 )2 =E[(€7,n;)?] = (€",n1,)2—1 is sequence of centered i.i.d random variables. Therefore,
we can use the same martingale argument as above to bound the integral by:

2 2 2

. . k 2\ 2

EnDlag—E[Dlagms( / ak / daz o5(apay o )| | XL E[In(k)\p]p>
=t ({~1,134)2 (k)

1 p/2 X L d
< ( / dx) < 9i(d—4) _ 9i(3-2)
veRd: g2 |T]*

whenever d < 4, which is even better than the bound for the off-diagonal terms. We are hence
left with a last, deterministic term:

0 x (k)
dC|12 dk 1/2627n<$q (2] k) ( 12 k‘) — 1 i——1YKn.
/an({ 1,142 f[iz) © l”(k‘) {j }hn
We split up this sum in different terms according to the relative value of q1,q2. If g1 = —qo
(there are 2¢ such terms) the sum does not depend on z and it disappears for j > 0. Let us

assume j = —1: We are then left with the constant:

2 X(k) -~ x(k)
2d/zt dk v kl"(k) —ﬁn_/En dk Sy~

Note that the sum on the left-hand side diverges logarithmically in n and we now show how to
renormalize with k,. Let us recall the definition of k, and to clarify our computation let us also
introduce an auxiliary constant &, (it differs fron the previous integrand only on the boundary):

} B[ ()
/T Wy / I Ty

where 7, = 2-#{i ki=tn}/2 - por ¢ € R4,y > 0, let us indicate with Q*(x) € T% the box
QMx) ={y € T¢: |y—2|o <7/2} (| |oo being the maximum of the component-wise distances
in T?). Then note that we can bound uniformly over n and N:

x(k) 2 X / x +K)  x(k)
/ g L, @ kzn(@‘ 2 / R zn(k)‘
LN U ((C I W (O SR A |
& N(”Ndk = st @R ) < N(“Ndk - ) S

"‘fn_"_fn‘ =

where we have used that d = 2, |I"(9)| = [9]? on [-n/2,n/2]? as well as |[VI"(9)| < |0] on
[—n/2,m/2]%. Similar calculations show that the difference converges: lim, oo kin—FRn € R. We

are now able to estimate:
x(k)
dk — Kn,
/ (k) "

where we used that the sum on the boundary 0Z,, converges to zero and is thus uniformly bounded
in n. For the same reason, the above difference converges to the limit lim,, oo Kn—kn € R.

For all other possibilities of q1, g2 we will show convergence in a distributional sense. If q; = q2
we have:

S 14 |Rp—kn| S1

k
‘/ﬁ_F dk V%e%u(a:,quk)Qj(Qk,) X )

< 9i(d=2)
i k)’ :
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Finally, if only one of the two components of qi, qo differs (let us suppose it is the first one) we
find ( with z = (21, 22) and k = (k1, k2)):

k) 0j(2k2) ;
dk 2 2m2$2k2 (2% X( < J < 97€
lln Ve o)y <\ S Ezmwle <

k1>1 ka>1

for any € > 0, up to choosing 6 € (1/2,1) sufficiently close to 1/2.

Step 2. Now we briefly address the convergence in distribution. Clearly the previous calcu-
lations and compact embeddings of Holder-Besov spaces guarantee tightness of the sequences
&> Xy and XU © §—ky, in the respective spaces for any a < 2—d/2. We have to uniquely iden-
tify the distribution of any limit point. For &,, X! the limit points are Gaussian and uniquely
identified as white noise &, and A 1x(D)£p respectively. The resonant product requires more
care, but we can use the same arguments as in [MP17, Section 5.1]. O

Lemma C.2. In the same setting as above, we have that for any e > 0 and v = E[(®)4]:

S%DE[Hn_d/Q(fg)—l-H%‘;E(An) + Hn_d/Q(fthm(An)} < +o0,

as well as:
Ern (e, < v in G5 (0, L)),
Proof. This result is analogous to Lemma O

APPENDIX D. MOMENT ESTIMATES

Here we derive uniform bounds for the moments of the processes {1 },en. As a convention, in
the following we will write E and P for the expectation and the probability under the distribution
of u". For different initial conditions n € E we will write E,, ;.

Lemma D.1. Let for all n € N the process {u"(t)}+>0 be as in Definition and consider
©": Z& — R with " > 0 and ¢, T > 0. If for all n € N we have @™ = Plga with ¢ € E2(R%, e(1))
for some l € R, then

sup sup E[|u"(t)(¢™)]?] < +o0.
n tel0,T

Gc(Ri e(l)) < 100, we can bound for
any v € (0,1):

sup sup B [|u"(t)(¢")]7] < +o0.
n te€l0,7]

Proof. We prove the second estimate (for uniformly bounded [|¢" |4 ga ), since the first
estimate is similar but easier (Lemma below controls [[¢" (|49 (z4 o)) for all ¢ < 2 in that
case). Also, we assume without loss of generality that ¢ > 2. As usual, we use the convention
of freely increasing the value of [ in the exponential weight. Let us start by recalling that
E[u"(t)(¢™)] = T{¢™(0). Moreover, via the assumption on the regularity, Proposition
guarantees that for any v € (0, 1) there exists ¢ = (7, ¢) > 0 such that

sup ||t = 130" || gv/ae (24 e(ry) < +00-
n

By the triangle inequality it thus suffices to prove that for any v > 0:
sup sup tVE[|u"(t)(¢")=T7'¢"(0)]] < +oo.

n te[0,T]

Note that we can interpret the particle system u™ as the superposition of |n?| independent
particle systems, each started with one particle in zero; we write v = ul' +- - -+u’[‘ne I To lighten
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the notation we assume that n¢ € N. We then apply Rosenthal’s inequality, [Pet95, Theorem 2.9|
(recall that ¢ > 2) and obtain
q
> (@), ") -1 )] |
k=1

E[|u"(t)(¢™) =T (0)|]
SH 3B (0 )T O o (B0 )T 0]
_ k=1

:E[ )
<n~ (q 1)IEJH( 1), ™M) + (n_@EU(U?(t)vSDn)F])q/z +n St T

q
2

Spnug'y/q e Zd e(l))

for the same € > 0 and [ € R as above. The two scaled expectations are of the same form, in the
second term we simply have ¢ = 2. To control them, we define for p € N the map

mi () = PR [l (1), 7))

As a consequence of Kolmogorov’s backward equation each mg’ff solves the discrete PDE (see
also Equation (2.4) in [ABMY00]):

p—1
Oymb (t, ) = A" mD3 () + n= () 4 () ) <€)mgﬁ(t,x)mgnl’n(t,x)7
i=1
with initial condition m:'(0,z) = ng(l_p)]gon(:nﬂp. We claim that this equation has a unique
son, such that for all v > 0 there exists ¢ = £(y,p) > 0
with sup,, ||mia e (74 < 00. Once this is shown, the proof is complete. We proceed by
n [1100n [l.272 (2 e(l))

(paracontrolled ind= 2) solution m

induction over p. For p = 1 we simply have mZ’nl (t,z) = T'¢"™(x). For p > 2 we use that by
Lemma we have Hng(lfp)\go”(x)\p\\gn(zgye(l)) — 0 for some k > 0 and we assume that the
induction hypothesis holds for all p’ < p. Since it suffices to prove the bound for small v > 0, we
may assume also that x > v. We choose then « < v such that for some (v, p) > 0:

l n
'n mp

sup < 400.

M G0 ) (L (1)

Since by Assumption Hnig(fg)_l,_Hcg—s(Z’;i“p(a)) is uniformly bounded in n for all €,a > 0, the
above bound is sufficient to control the product:

z:m pzn

Now the claimed bound for m 7 follows from an application of Proposmon E For non-integer
q we simply use interpolation between the bounds for p < g < p’ with p,p’ € N.

sup
n

< +00.
MY = (Z4 e (1))

O

APPENDIX E. BESOV SPACES

Here we prove some results concerning discrete and continuous Besov spaces. First, we show
that restricting a function to the lattice preserves its regularity.

Lemma E.1. Let ¢ € €%(R?) for « € Rug \N. Then Plza € € (Z%) and

poczs) S ¢llga@e.

sup H‘P‘Zﬁ
neN

For the extension of ¢|za we have & (plza) — ¢ in PR for all B < a.
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Proof. Let us call 9" = ¢|;a. We have to estimate the norm [|A}¢" || o0 (z4), and for that purpose
we consider the cases j < j, and j = j, separately. In the first case we have for z € Z¢

A" (@) = K+ () = Agp(a)

where we used that since supp(o;) C n(—1/2,1/2)¢ the discrete and the continuous convolutions
coincide. Therefore:

[AF Pl Lo zg) < 1AGll Lo ray < 2l

As for j = jn, we have ¢} (-) = 1—x(277».) where y € .7, is one of the two functions generating

the dyadic partition of unity, a symmetric smooth function such that y = 1 in a ball around

the origin. By construction we have ¢} (v) =1 for = near the boundary of n(-1/2, 1/2)?, and

therefore supp(x(2777-)) C n(—1/2,1/2)%. Let us define ¢, = %, 1x(27".) = 9’Hgdlx(2*jn-).
Then

G-

7 0 (@) = Fatha(0) = X277 0) = 1,
x€Z%
and for every monomial M of strictly positive degree we have, since 1, is an even function,
Z n_dq/;n(x)M(x) = (tn #n M)(0) = (¢ x M)(0) = yR—dl(X(2—jn')deM)(0) = M(0),
x€ZY

where we used that the Fourier transform of a polynomial is supported in 0. Thus we get for
r € Z4 with the usual multi-index notation:

A3, (2) = ()=t 0 9)(0) =~ 0 (000} 3 gr0Rela)—a)t ) )
1<k

and as above we can replace the discrete convolution %, with a convolution on R?. Moreover,
since ¢ € €*(R?) and o > 0 is not an integer, we can estimate

o) 3 e o)
: L

0< k<[]

S |y|a||<P”<ga(Rd),
(R?)

and from here the estimate for the convolution holds by a scaling argument. The convergence
then follows by interpolation. O

The following result shows that multiplying a function on Z¢ by n™" for some & > 0 gains
regularity and gives convergence to zero under a uniform bound for the norm.

Lemma E.2. Consider z € p(w) and p € [1,00],a € R and a sequence of functions f" €
G (L, 2) with uniformly bounded norm.:

sup || " lga zd ) < +oc.
n

Then for any k > 0 the sequence n™" f™ is bounded in ‘fpo‘J““(Zg, z):

sup |[n~ " f" otr(zd 2) < sup [ f" (24 2)
n n

and n="E™ f converges to zero in %I?(Rd, z) for any B < a + k.

Proof. This is a simple consequence of the definition of the Besov spaces on Z%. Indeed we have
to consider only the Littlewood-Paley blocks up to an order j, ~ logs(n). Hence for j < j, and
e>0:

2j(o¢+n—e)n—n < 2jan—5'

Thus the claim follows from the definition of the Besov norm. O

Now we study the action of discrete gradients. We write 6! (72, 2;RY) for the space of maps
¢: 74 — R? such that each component lies in ‘Kp‘l(Zﬁ, z) with the naturally induced norm.
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Lemma E.3 ([MP17|, Lemma 3.4). The discrete gradient (V");(x) = n(p(z+e;/n)—p(z)) for
i=1,...,d (with {e;}; being the standard basis in R?) and the discrete Laplacian

d
Amp(z) =n? Y (p(a+e;/n)—20(x)+p(z—ei/n))
i=1
are bounded linear maps
V602, ) - 60N (20, 5 RY), 19" lls 20 ey < Nl
n. o (r7d a—2 (rpd n
A" C (L, 2) = € (L, 2), A%

5 (Zg,2)

go-2zd 2y S llwe (e 2

for all « € R and p € [1,00|, where the two estimates hold uniformly in n € N.

Proof. The only nontrivial statement is that the bounds hold uniformly in n. For A™ (and more
generally for generators of symmetric random walks) this is shown in [MP17, Lemma 3.4|. The
argument for the gradient V" is essentially the same but slightly easier. O
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