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1 Introduction

The celebrated Kardar-Parisi-Zhang (KPZ) equation is the stochastic PDE

∂th = ∆h+ |∂xh|2 + ξ (1)

for h : R+ × R → R, where ξ is a space-time white noise, i.e. the centered Gaussian field
(ξ(ϕ))ϕ∈C∞c (R+,R) with covariance

E[ξ(ϕ)ξ(ψ)] = 〈ϕ,ψ〉L2 .

This is formally equivalent to E[ξ(s, x)ξ(t, y)] = δ(t− s)δ(x− y), where δ is the Dirac delta,
although of course ξ cannot be evaluated pointwise. But this explains the name “white noise”:
The Fourier transform of the Dirac delta is the constant function 1. This means that ξ “excites
all frequencies equally”, just like white light is the superposition of all colors.

The KPZ equation appears in the mathematical description of growing interfaces [KPZ86],
you might for example imagine the interface between a growing colony of bacteria and its
environment. The problem is that the equation is badly ill posed: We expect that at a fixed
time t > 0 the solution h(t, ·) is a 1/2− κ Hölder continuous function for any κ > 0, but not
more regular than that (there is a simple powercounting argument to deduce this, but since
regularity theory is not the focus of the lecture we will not discuss it). In particular h is far
from being differentiable, and while ∂xh still makes sense as a Schwartz distribution, it is not
clear how to even interpret the square |∂xh|2.

There is however a cheap solution: Pretend for the moment that h is a smooth function
and consider w = exp(h) (the so called Cole-Hopf transformation of h). Then

(∂t −∆)w = w(∂t −∆)h− w|∂xh|2 = wξ, (2)

which is a perfectly well posed SPDE. Indeed, one way of obtaining a space-time white noise
ξ is to start with a centered Gaussian process W indexed by the Borel sets A ⊂ R+×R+ with
finite Lebesgue measure, such that cov(W (A)W (B)) = λ(A ∩ B), where λ is the Lebesgue
measure. For such a “Gaussian measure” we can use approximation by step functions to
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construct for any ϕ ∈ L2(R+,R) the integral
∫
ϕ(t, x)W (dt,dx) as a centered Gaussian ran-

dom variable, and it is easy to see that ξ(ϕ) :=
∫
ϕ(t, x)W (dt,dx) defines a space-time white

noise. Moreover, using the martingale property of t 7→
∫
1[0,t](s)ϕ(s)W (ds, dx) and a suit-

able version of the Ito isometry we can extend the integral from deterministic integrands to
“adapted” integrands. From here we can apply the variation of constants formula: If ξ was a
smooth function, then we would expect that

w(t, x) =

∫
R
p(t, y)w0(y)dy +

∫ t

0

∫
R
p(t− s, x− y)w(s, y)ξ(s, y)dyds,

where

p(t, x) =
1√
4πt

e−|x|
2/4t

is the fundamental solution for the heat equation. Of course ξ is not a smooth function, but
now we can interpret the integral involving ξ in terms of our stochastic integral and require
that

w(t, x) =

∫
R
p(t, y)w0(y)dy +

∫
[0,t]×R

p(t− s, x− y)w(s, y)W (ds, dy),

which is a perfectly well posed equation that can be solved by a Picard iteration. This is the
approach of [Wal86].

Since w = eh, we could then consider logw and see whether it solves the KPZ equation
in any meaningful sense. There are two problems with that: First we need w to be strictly
positive to even apply the logarithm. But for nonnegative non-zero initial conditions this
is indeed the case, as was shown by [Mue91]. The second, much more substantial problem
is that to write down the dynamics for logw we need t 7→ w(t, x) to be a semimartingale,
otherwise we cannot apply Itô’s formula. But this is not the case! While t 7→ w(t, x) is
continuous, one can show that it has infinite quadratic variation. So while now we have a
candidate solution h to the KPZ equation, we do not have any equation that we could write
down for this candidate...

What we can do is to regularize the equation for w by mollifying the noise: Let ρ ∈ C∞c
be a symmetric positive mollifier, i.e. ρ > 0 and

∫
R ρ(x)dx = 1. Set ρε(x) = ε−1ρ(ε−1x) and

(formally) ξε(t, x) :=
∫
R ρ

ε(x− y)ξ(t, y)dy. Then the equation

∂tw
ε = ∆wε + wεξε, wε(0) = w0

also has a unique solution, and now the solution is infinitely smooth in the space variable, a
semimartingale in the time variable, and it solves the equation classically (without going to
the variation of constants formula). Moreover, if w0 > 0 and w0 6= 0, then wε(t, x) > 0 for all
t > 0 and x ∈ R and therefore we can apply Itô’s formula to hε = logwε:

dhε(t, x) =
1

wε(t, x)
dwε(t, x)− 1

2

1

wε(t, x)2
d〈wε(·, x)〉t

=
∆wε(t, x)

wε(t, x)
dt+ ξε(t, x)dt− 1

2
‖ρε‖2L2dt

=

{
∆hε(t, x) + |∂xhε(t, x)|2 − 1

2ε
‖ρ‖2L2

}
dt+ ξε(t, x)dt,
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where we used formal notation ξε(t, x)dt to denote the martingale term. Bertini and Gia-
comin [BG97] showed that for ε → 0, wε converges to w, so at least formally h = logw
solves

∂th = ∆h+ |∂xh|2 −∞+ ξ,

where −∞ denotes the limit of 1
2ε‖ρ‖

2
L2 for ε→ 0. So if we want to solve the equation for h,

we need to consider a renormalization. But actually it is still very unclear what the equation
for h is, we only showed that h is the limit of solutions hε to “renormalized approximate
equations”.

It took 25 years from the introduction of the equation by the physicists Kardar, Parisi
and Zhang until it could be mathematically rigorously formulated for the first time by Hairer
[Hai13]. Hairer analyzed the regularity of the equation very carefully and performed an
asymptotic expansion (for small times) of the solution around the solution to the linearized
equation. He then derived an explicit equation for the remainder in this asymptotic equation
(which is more regular than the solution itself) and solved this equation with the help of
rough path integrals. This approach is nearly completely deterministic, it applies to a wide
class of equations, and it lead to the new field of singular SPDEs and new techniques such
as regularity structures [Hai14] or paracontrolled distributions [GIP15]. In these lectures I
want to present an alternative, probabilistc approach that only applies to the stationary KPZ
equation and which is very powerful for deriving this equation as scaling limit of interacting
particle systems.

2 Energy solutions to Burgers equation

Everything in this section goes back to [GJ14, GJ13, GP18] .

2.1 Definition and basic properties

Energy solutions provide a probabilistic notion of solution to the KPZ equation and they
go back to Gonçalves, Jara, and Gubinelli [GJ14, GJ13]. Since they are based on stationar-
ity and since the invariant measures of the KPZ equation have infinite mass (the measures∫
RWy,λdy, where Wy,λ = law

((
y +

√
1/2Bx + λx

)
x∈R

)
for a two-sided Brownian motion B

are invariant), it is easier to work instead with the derivative u = ∂xh of the KPZ equation.
This derivative formally solves the conservative stochastic Burgers equation (in the following
simply “Burgers equation”)

∂tu = ∆u+ ∂xu
2 + ∂xξ. (3)

Indeed, since the derivative ∂x

(
y +

√
1/2Bx + λx

)
does not depend on the starting point y,

we would expect that u is invariant under the law of
√

1/2η+λ, where η is a white noise on R,
i.e. the derivative of the Brownian motion (exercise: convince yourself that the distributional
derivative of the Brownian motion defines indeed a white noise).

We will take this formal observation as the starting point of our definition of (stationary)
energy solutions. For simplicity we will always take λ = 0, and in these notes we will work
with the equation on the torus T = R/Z, i.e. formally u : R+ × T→ R, although everything
extends to R and this only makes some technical details slightly more complicated. Also, to
simplify our life we want to get rid of the factor

√
1/2 in front of the white noise. We can do
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that by changing the parameters in the equation and considering instead

∂tu = ∆u+ ∂xu
2 +
√

2∂xξ, (4)

which is formally invariant under the law of η. For simplicity we also restrict our attention
to (probabilistically) weak solutions, although the arguments below actually also allow us to
deal with strong solutions.

In the following we write S ′ = S ′(T) for the space of Schwartz distributions on T, i.e.
the dual space of C∞(T). The difficulty in defining solutions to (4) is that ut will only be a
distribution and not a function, so there is no canonical way to make sense of the nonlinearity
∂xu

2
t . A cheap way out is to define ∂xu

2 through a limiting procedure. We say that ρ is a
mollifier if ρ ∈ C∞(R)∩L1(R) and

∫
ρ(x)dx = 1. In that case we define the rescaled mollifier

ρn(x) = nρ(nx), and for u ∈ S ′(T) we set

(u ∗ ρ)(x) :=
∑
k∈Z

u(ρ(x+ k − ·)),

which defines an element of C∞(T). One can also show that u = limn→∞ u ∗ ρn for any
mollifier ρ. Before we get to our first definition, note that if ξ is a space-time white noise and
ϕ ∈ C∞(T), then ∫ t

0
(∂xξ)(s, ϕ)ds := ξ(1[0,t] ⊗ (−∂xϕ)), t > 0,

is a continuous martingale with quadratic variation ‖∂xϕ‖2L2t.

Definition 1 A martingale solution to the conservative stochastic Burgers equation (4) is a
stochastic process u with trajectories in C(R+,S ′(T)) for which there exists a mollifier ρ such
that for all ϕ ∈ C∞(T) the process

Mt(ϕ) = ut(ϕ)− u0(ϕ)−
∫ t

0
us(∆ϕ)ds− lim

n→∞

∫ t

0

∫
T
∂x(us ∗ ρn)2(x)ϕ(x)dxds

= ut(ϕ)− u0(ϕ)−
∫ t

0
us(∆ϕ)ds+ lim

n→∞

∫ t

0
(us ∗ ρn)2(∂xϕ)ds

is a continuous martingale with quadratic variation 〈M(ϕ)〉t = 2‖∂xϕ‖2L2t. We say that u is
a stationary martingale solution if for all t > 0 the map ϕ 7→ ut(ϕ) defines a white noise.

It is relatively easy to see that martingale solutions exist, at least stationary ones. The
challenge is to prove uniqueness (in law), which is difficult because we have virtually no
control of the nonlinear part of the dynamics. On the state space of u the nonlinearity is not
continuous, let alone locally Lipschitz-continuous, and therefore the usual arguments break
down. But recall that u has a very specific structure because u = ∂xh and h = logw and the
equation for w is well posed. So we could try to map two martingale solutions u1 and u2 to
w1 and w2 and to use the well-posedness of the equation for w to deduce that w1 and w2 have
the same law, and thus u1 and u2 have the same law.

But we already discussed above that we need a suitable Itô formula to carry out this
program. And it seems hopeless to derive such a formula for martingale solutions, because
we know nothing about the behavior of limn→∞

∫ t
0 (us ∗ ρn)2(∂xϕ)ds as a function of t, and in

particular t 7→ ut(ϕ) is not necessarily a semimartingale. So we need to refine our definition.
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Recall that a stochastic process A with trajectories in C(R+,R) is of zero quadratic variation
if

lim
n→∞

∑
tj∈πn

|Atj+1∧t −Atj∧t|2 = 0

whenever (πn) is a sequence of partitions of R+ such that the mesh size (locally) converges
to zero, and the convergence is uniformly on compacts in probability. In that case we also
say that A has “zero energy”. The following definition is due to [GoncalvesJara] (in slightly
modified form).

Definition 2 A martingale solution to (4) is called an energy solution if for all ϕ ∈ C∞(T)
the process

At(ϕ) := − lim
n→∞

∫ t

0
(us ∗ ρn)2(∂xϕ)ds, t > 0,

has zero quadratic variation. Similarly we define stationary energy solutions.

It might seem more natural to require that t 7→ At(ϕ) has finite variation: After all, it
should represent a drift term. But the spatial irregularity is so bad for this term that “we
need to trade a bit of time regularity in order to control it in the space variable” (we will
understand later what is meant by that), and it seems impossible to construct martingale
solutions for which A(ϕ) is of finite variation. But this is no problem: If A(ϕ) has zero
quadratic variation, then u(ϕ) is a Dirichlet process, i.e. the sum of a local martingale and
a zero quadratic variation process. And as Föllmer [Föl81] showed when he introduced his
“pathwise Itô calculus”, for Dirichlet processes we still have the same Itô formula as for
semimartingales.

Of course, this only gives us an Itô formula for u(ϕ) and not for u(x) (which is not even
well defined). So we need to mollify u, apply the Cole-Hopf transformation to it, and take
the mollification away, hoping to show that the limit solves the stochastic heat equation (2).
Let therefore

unt (x) := (ut ∗ ρn)(x) = ut (ρnx) ,

where ρn(y) =
∑

k∈Z ρ
n(y + k) is the periodization of ρn and where we write

fx(y) := f(x− y)

for all f : T → R. The process un has trajectories in C(R+, C
∞(T)) and we can apply Itô’s

formula to it. But to obtain a candidate hn for an approximate solution to the KPZ equation,
we should integrate un in the space variable. On the torus there is a quite canonical way of
constructing an anti-derivative: We define the Fourier transform of u ∈ S ′(T) as

û(k) := Fu(k) := u(e−2πik·),

which can be shown to grow at most polynomially in k. If conversely f : Z→ C is a sequence
of numbers that grows at most polynomially, then we set

F−1f(ϕ) :=
∑
k∈Z

f(k)

∫
e2πikxϕ(x)dx,

which is well defined because with integration by parts we see that

sup
k

∣∣∣∣(2πik)α
∫
e2πikxϕ(x)dx

∣∣∣∣ = sup
k

∣∣∣∣∫ ∂αe2πikxϕ(x)dx

∣∣∣∣ 6 ‖∂αϕ‖L1 <∞
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for all α ∈ Nd0. Since F(∂xu)(k) = 2πikû(k), we set for u ∈ S ′(T)

Iu = F−1

(
1k 6=0

2πik
û

)
,

which satisfies ∂xIu = F−1(1k 6=0û) = u−
∫
T u(x)dx by definition. We then define

hnt (x) := Iunt (x) = ut (Ixρnx) = ut(Θ
n
x),

where

Θn(x) =
∑
k 6=0

e2πikx

2πik
Fρn(k)

satisfies ∂xΘn = ρn −Fρn(0) = ρn − 1 and
∫
T Θn(x)dx = 0. In particular, we have

dhnt (x) = ut(∆Θn
x)dt+ dAt(Θ

n
x) + dMt(Θ

n
x),

and since ∆yΘ
n
x(y) = ∆yΘ

n(x− y) = ∆xΘn
x(y) we get

dhnt (x) = ∆hnt (x)dt+ dAt(Θ
n
x) + dMt(Θ

n
x),

where M(Θn
x) is continuous martingale with quadratic variation

d〈M(Θn
x)〉t = d〈hn(x)〉t = 2‖∂yΘn

x‖2L2dt = 2 ‖ρnx − 1‖2L2 dt = 2 ‖ρn − 1‖2L2 dt.

Note that by definition of Θn we would expect limn→∞ h
n
t = h̃t := ht −

∫
T ht(y)dy, where h

solves the KPZ equation

ht(ϕ) = h0(ϕ) +

∫ t

0
hs(∆ϕ)ds+ lim

n→∞

∫ t

0

(
|∂xh ∗ ρn|2 − ‖ρn‖2L2

)
(ϕ)ds+Nt(ϕ)

=: h0(ϕ) +

∫ t

0
hs(∆ϕ)ds+

∫ t

0
(∂xhs)

�2(ϕ)ds+Nt(ϕ)

where ‖ρn‖2L2 is a renormalization constant that we already encountered when applying Ito’s
formula to the solution w of the stochastic heat equation, where N(ϕ) is a continuous mar-
tingale with quadratic variation 2t‖ϕ‖2L2 , and where (∂xhs)

�2 denotes a renormalized square.

Thus, we would expect that w̃t := eh̃t = wt exp
(∫

T ht(y)dy
)

satisfies a slight perturbation of
the stochastic heat equation (2) (note that the process exp

(∫
T ht(y)dy

)
does not depend on

the space variable!). So let us proceed and apply Ito’s formula to wnt (x) := exp(hnt (x)):

dwnt (x) = wnt (x)dhnt (x) +
1

2
wnt (x)d〈hn(x)〉t

= wnt (x)
(

∆hnt (x)dt+ dAt(Θ
n
x) + dMt(Θ

n
x) + ‖ρn − 1‖2L2 dt

)
= ∆wnt (x)dt+ wnt (x)dMt(Θ

n
x) + wnt (x)

(
−
(
|∂xhnt (x)|2 − ‖ρn − 1‖2L2

)
dt+ dAt(Θ

n
x)
)

= ∆wnt (x)dt+ wnt (x)dMt(Θ
n
x) + wnt (x)

(
−
(
|ut (ρnx − 1)|2 − ‖ρn − 1‖2L2

)
dt+ dAt(Θ

n
x)
)
,

where we used that hn and wn are smooth functions in x and therefore the chain rule yields
∆wn = wn∆hn + wn|∂xhn|2. On a purely formal level this does not look bad: Formally

At(Θ
n
x) = −

∫ t

0
u2
s(∂yΘ

n
x)ds =

∫ t

0
u2
s(∂xΘn

x)ds =

∫ t

0
u2
s (ρnx − 1) ds→

∫ t

0

(
u2
s(x)−

∫
T
u2
s(y)dy

)
ds,
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and since
∫
T ρ

n(y)dy = 1 we get

−
∫ t

0

(
|us (ρnx − 1)|2 − ‖ρn − 1‖2L2

)
ds = −

∫ t

0

(
us (ρnx)

2 −
∫
T
us (ρn(y))

2
dy

)
−
∫ t

0

(
−2us (ρnx) +

∫
y
us(y)dy + 1

)
ds

−
∫ t

0

(∫
T
us (ρn(y))

2
dy − ‖ρn‖2L2

)
ds

−→ −
∫ t

0

(
us(x)2 −

∫
T
us(y)2dy

)
−
∫ t

0

(
−2us(x) +

∫
y
us(y)dy + 1

)
ds

−
∫ t

0

∫
T
u�2s (y)dyds,

where ∫ t

0

∫
T
u�2s (y)dyds = lim

n→∞

∫ t

0

(∫
T
us (ρn(y))

2
dy − ‖ρn‖2L2

)
ds

denotes the integral of the renormalized square. The most singular contributions thus formally
cancel each other. In fact it is not difficult to derive the following result:

Proposition 1 Let u be an energy solution to Burgers equation and set for ϕ ∈ C∞(T)

Rnt (ϕ) :=

∫ t

0

∫
T

dxϕ(x)wns (x)

(
dAs(Θ

n
x)−

(
us (ρnx)

2 −
∫
T
us (ρn(y))

2
dy

)
ds− 1

12
ds

)
(5)

and

Qnt :=

∫ t

0

(∫
T
us (ρn(y))

2
dy − ‖ρn‖2L2

)
ds. (6)

Assume that for all ϕ ∈ C∞(T) the process Rn(ϕ) converges to zero uniformly on compacts in
probability, and that Qn converges uniformly on compacts in probability to a process of zero
quadratic variation. Assume furthermore that for all T > 0

sup
t∈[0,T ],x∈T

E[eut(Θx)] <∞,

where Θx := limn→∞Θn
x. Then u is equal in distribution to ∂x logw+

∫
T u0(y)dy, where w is

the unique-in-law martingale solution to the stochastic heat equation (2) with initial condition
w0 = eu0(Θx).

Proof This is a simple application of Ito’s formula, see Appendix A of [GP18]. Actually
we also need a uniform control of the p-variation of Rn for some p > 2 and we need Qn to
converge in q-variation for some q < 2 in order to control the integral

∫ t
0 w

n
s (ϕ)dQns . Also the

definition of Rn is not quite correct and 1/12 should be replaced by Kn ∈ R with Kn → 1/12.
To simplify the presentation we ignore these subtleties here. 2
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Remark 1 The constant 1/12 that we subtract in the definition of Rn appears somewhat
unexpectedly. But if we do not subtract it, then we will not be able to show that Rn converges
to zero. This shows that the “FB solution h to the KPZ equation” (see [energy-uniqueness] for
the definition) satisfies h = logw, where w solves not (2) but the slightly modified equation

∂tw = ∆w + w

(
ξ +

1

12

)
.

The constant 1/12 (which becomes 1/24 if we adapt the parameters in the equation to the
popular choice ∂th = 1

2∆h+ 1
2 |∂xh|

�2 + ξ) appears in many results about the KPZ equation.

We would like to apply this result to prove the uniqueness of energy solutions. The
difficulty is that for a general energy solution we have no control of Rn and Qn. We thus
need more structure. This is the subject of the next section.

2.2 Forward-backward solutions

Recall that we have to show that Rn converges to zero, where

Rnt (ϕ) =

∫ t

0

∫
T

dxϕ(x)wns (x)

(
dAs(Θ

n
x)−

(
us (ρnx)

2 −
∫
T
us (ρn(y))

2
dy

)
ds− 1

12
ds

)
= lim

m→∞

∫ t

0

∫
T

dxϕ(x)eus(Θn
x)

(
us (ρm)

2
(∂xΘn

x)−
(
us (ρnx)

2 −
∫
T
us (ρn(y))

2
dy

)
− 1

12

)
ds

=: lim
m→∞

Rn,mt (ϕ).

We also have to show that Qnt =
∫ t

0

(∫
T us (ρn(y))

2
dy − ‖ρn‖2L2

)
ds converges. Both Rn,m(ϕ)

and Qn are additive functionals of u, i.e. processes of the form

Rn,mt (ϕ) =

∫ t

0
Fn,m(us)ds, Qnt (ϕ) =

∫ t

0
Gn(us)ds

for suitable Fn,m, Gn : S ′ → R. We should therefore find a class of energy solutions for
which we can control additive functionals. Note that since the space-time white noise has
independent increments we would expect the solution u to Burgers equation to be a Markov
process. So let us first see review some classical tools for controlling additive functionals of
Markov processes:

LetX be a Markov process with values in a Polish state space E and denote its infinitesimal
generator by L. Let F ∈ dom(L) be such that also F 2 ∈ dom(L). Then by Dynkin’s formula

MF
t = F (Xt)− F (X0)−

∫ t

0
LF (Xs)ds

defines a martingale with predictable quadratic variation

〈MF 〉t =

∫ t

0
(LF 2 − 2FLF )(Xs)ds.

In particular, we can rewrite∫ t

0
(−LF )(Xs)ds = F (X0)− F (Xt) +MF

t , (7)
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and we can make two observations here: First, this representation gains regularity. Think for
example of the generator of a diffusion, L = b(x)∂x + 1

2σ
2(x)∂xx. Then (LF 2 − 2FLF )(x) =

(σ(x)∂xF (x))2 involves only the first derivative of F and the boundary terms F (X0)−F (Xt)
involve no derivatives of F , while −LF depends on the second derivative of F . By rewriting
the additive functional in this way (assuming that our function is of the form −LF ) we thus
got rid of one derivative! Note however that we achieve this by treating the finite variation
additive functional as if it was a martingale, which in general only has finite p-variation for
p > 2; in other words we gave up time regularity to gain space regularity.

Unfortunately this representation is not quite sufficient for us, because the “generator”
of Burgers equation would also contain the term A, and given G : S ′ → R it seems difficult
to solve the equation −LF = G (however this is to be interpreted in the first place). We
therefore need a slightly more sophisticated argument: Assume now that X is a stationary
Markov process with initial distribution µ, and that L is the infinitesimal generator of X
on L2(µ) (this is defined like the usual infinitesimal operator on Cb(E), except that now the
semigroup only has to be differentiated in L2(µ)). We write L∗ for the L2(µ)-adjoint of X,
and we note that for all T > 0 the process (X̂t := XT−t)t∈[0,T ] is a stationary Markov process

with generator L∗. The easiest way to see this is to first show that the semigroup of X̂ is the
adjoint of the semigroup of X.

Assume now that F ∈ dom(L)∩dom(L∗) and also that F 2 ∈ dom(L)∩dom(L∗). Then (7)
holds, and for the same reason also∫ t

0
(−L∗F )(Xs)ds =

∫ T

T−t
(−LF )(X̂s)ds = F (X̂T−t)− F (X̂T ) + M̂F

T − M̂F
T−t, (8)

where M̂F is a martingale in the filtration generated by X̂ (the backward filtration of X) with
predictable quadratic variation 〈MF 〉t =

∫ t
0 (L∗F 2− 2FL∗F )(Xs)ds. Since F (X̂T−t) = F (Xt)

and F (X̂T ) = F (X0), we can add (7) and (8) and obtain∫ t

0
(−2LSF )(Xs)ds =

∫ t

0
(−L∗F − LF )(Xs)ds = MF

t + M̂F
T − M̂F

T−t,

where LS := 1
2(L+ L∗) is the symmetric part of L. This new representation of our additive

functional has two main advantages compared to the previous one: It does not involve any
more boundary terms, and now we need to solve the equation −LSF = G, and as we will see
(or rather postulate) below, the symmetric part of the generator does not involve the process
A. Moreover, we got rid of the boundary terms and can now directly apply martingale
inequalities to our additive functional.

We cannot directly apply these arguments for energy solutions of the stochastic Burgers
equation, because a priori do not know if the energy solution is a Markov process, and we
have no idea about its infinitesimal generator. So we need to find a new notion of solution,
where we can proceed as above. This definition was found by [GJ13]:

Definition 3 A stationary energy solution to (4) is called a forward-backward solution (also
FB-solution) if additionally for all times T > 0 also the process ût := uT−t is an energy
solution to

∂tû = ∆û− ∂xû2 +
√

2∂xξ̂,

where ξ̂ is a space-time white noise that is adapted to the backward filtration (the one generated
by û), and with the obvious adaptation of the definition to this equation with opposite sign of
the nonlinearity. In that case we get for the nonlinearity Â of û that Ât = −(AT −AT−t).

9



Remark 2 In the literature FB-solutions are also called energy solutions. I use a separate
name here for pedagogical reasons.

Intuitively, this definition says that the Burgers nonlinearity is antisymmetric in L2(µ),
where µ is the law of the white noise, and the linear part of the equation is symmetric. By
the considerations above this suggests that we should be able to control additive functionals
of FB-solutions in terms of the generator of the linear dynamics, which we understand much
better than the nonlinear part!

In the following result we will need the notion of a cylinder function, which is just a
function F : S ′ → R of the form F (u) = f(u(ϕ1), . . . , u(ϕm)), where f ∈ C2(Rm,R) is such
that ∂αf grows at most polynomially whenever |α| 6 2, and where ϕ1, . . . , ϕm ∈ C∞(T).

Lemma 1 (Itô trick) Let u be a FB-solution to Burgers equation. Let F be a cylinder
function and define

LSF (u) :=

m∑
i=1

∂if(u(ϕ1), . . . , u(ϕn))u(∆ϕi) +

m∑
i,j=1

∂ijf(u(ϕ1), . . . , u(ϕn))〈∂xϕi, ∂xϕj〉L2

and

E(F (u)) := 2

∫ ∣∣∣∣∣
n∑
i=1

∂if(u(ϕ1), . . . , u(ϕn))∂xϕi(x)

∣∣∣∣∣
2

dx.

Then we have for all p > 1

E
[
sup
t6T

∣∣∣∣∫ t

0
LSF (us)ds

∣∣∣∣p] . T p/2E[E(F (u0))p/2].

Proof We apply Ito’s formula to F (ut) and obtain

F (ut) = F (u0) +

∫ t

0
LSF (us)ds+

∫ t

0

m∑
i=1

∂if(us(ϕ1), . . . , us(ϕn))dAs(ϕi) +MF
t ,

where MF is a continuous martingale with quadratic variation

〈MF 〉t = 2

∫ t

0

m∑
i,j=1

∂if(us(ϕ1), . . . , us(ϕn))∂jf(us(ϕ1), . . . , us(ϕn))〈∂xϕi,∂xϕj〉ds =

∫ t

0
EF (us)ds.

Similarly, we have

F (ûT ) = F (ûT−t) +

∫ T

T−t
LSF (ûs)ds+

∫ T

T−t

m∑
i=1

∂if(ûs(ϕ1), . . . , ûs(ϕn))dÂs(ϕi) + M̂F
T − M̂F

T−t

= F (ut) +

∫ t

0
LSF (us)ds−

∫ t

0

m∑
i=1

∂if(us(ϕ1), . . . , us(ϕn))dAs(ϕi) + M̂F
T − M̂F

T−t,

and 〈M̂F 〉t =
∫ t

0 EF (ûs)ds. Thus∫ t

0
LSF (us)ds = −1

2
(MF

t + M̂F
T − M̂F

T−t),

10



and the claimed bound follows from the Burkholder-Davis-Gundy inequality together with
the stationarity of u. 2

To apply this result, we must be able to solve the Poisson equation LSF = G. This
is actually not as hopeless as it may seem, since LS allows for a simple description when
we combine it with the Wiener-Ito chaos decomposition in L2(µ). To introduce the chaos
decomposition, let us first define the Hermite polynomials

Hn(x) := ex
2/2(−1)n∂nxe

−x2/2.

By induction we see that Hn is a degree n polynomial with term of leading order xn. If X is
a standard normal variable, then Hn(X) and Hm(X) are orthogonal for n 6= m, and

E[Hn(X)2] =
1√
2π

∫
R
Hn(x)(−1)n∂nxe

−x2/2dx

=
1√
2π

∫
R
∂nxHn(x)e−x

2/2dx

=
1√
2π

∫
R
n!e−x

2/2dx = n!,

where we used that Hn is a degree n polynomial with leading coefficient 1.
Let η be a white noise on T. For ϕ ∈ C∞(T) with ϕ 6= 0 and n > 1 we define

Wn(ϕ⊗n)(η) := ‖ϕ‖nL2Hn

(
η(ϕ)

‖ϕ‖L2

)
,

and Wn(0⊗n) := 0, which satisfies

E[|Wn(ϕ⊗n)|2] = n!‖ϕ‖2nL2 = n!‖ϕ⊗n‖2L2 ,

and by polarization also E[Wn(ϕ⊗n)Wn(ψ⊗n)] = n!〈ϕ⊗n, ψ⊗n〉L2 . Through the explicit mul-
tilinear polarization formula

Wn(ϕ1 ⊗ . . .⊗ ϕn) :=
1

2nn!

∑
ε1,...,εn=±1

ε1 . . . εnWn((ε1ϕ1 + · · ·+ εnϕn)⊗n).

we obtain a unique extension of the map Wn from functions of the form ϕ⊗n to ϕ1⊗ . . .⊗ϕn
as a symmetric multilinear form, and then we still have

E[|Wn(ϕ1 ⊗ . . .⊗ ϕn)|2]

=
1

22n(n!)2

∑
ε1,ε′1,...,εn,ε

′
n=±1

ε1 . . . εnε
′
1 . . . ε

′
nn!〈(ε1ϕ1 + · · ·+ εnϕn)⊗n, (ε′1ϕ1 + · · ·+ ε′nϕn)⊗n〉L2

= n!‖ ˜ϕ1 ⊗ . . .⊗ ϕn‖2L2 =: n!‖ϕ1 ⊗ . . .⊗ ϕn‖2L2
s
,

where

˜ϕ1 ⊗ . . .⊗ ϕn(x1, . . . , xn) :=
1

n!

∑
σ∈Sn

ϕ1(xσ(1)) . . . ϕn(xσ(n))

is the symmetrization of ϕ1⊗. . .⊗ϕn, with the symmetric group Sn. By the triangle inequality
we have

‖ϕ1 ⊗ . . .⊗ ϕn‖L2
s

= ‖ ˜ϕ1 ⊗ . . .⊗ ϕn‖L2 6 ‖ϕ1 ⊗ . . .⊗ ϕn‖L2 .
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By linearity we can extend Wn as a linear map on linear combinations of such functions,
which are dense in L2. The isometry property above thus allows us to extend Wn to all of
L2(Tn), and we have

E[Wn(ϕn)Wm(ϕm)] = δm,nm!〈ϕn, ϕm〉L2
s(Tm), ϕn ∈ L2

s(Tn), ϕm ∈ L2
s(Tm),

where
〈ϕn, ϕm〉L2

s(Tm) := 〈ϕ̃n, ϕ̃m〉L2

for the symmetrizations ϕ̃n and ϕ̃m of ϕn and ϕm. The space {Wn(ϕn) : ϕn ∈ L2
s(Tm)} is

called the n-th homogeneous chaos, and by construction it is a closed subspace of L2(µ). One
can show that any F ∈ L2(µ) has a representation, the so called chaos expansion, of the form

F =

∞∑
n=0

Wn(ϕn)

with ϕn ∈ L2(Tn), where W0(ϕ0) := ϕ0, and that

‖F‖2L2(µ) =

∞∑
n=0

n!‖ϕn‖2L2
s(Tn).

Indeed, the space H ⊂ L2(µ) of all functions with a chaos expansion is closed, and it contains
all polynomials in variables η(ϕ1), . . . , η(ϕm) with m ∈ N and ϕ1, . . . , ϕm ∈ C∞(T). By Stone-
Weierstraß it also contains all compactly supported continuous functions in these variables,
and then it follows from the monotone class theorem that any F that is orthogonal to H must
be zero.

Moreover, if we identify functions f, g ∈ L2(Tn) whenever f̃ = g̃, then the equivalence
class of the kernel ϕn in the chaos expansion is unique.

Lemma 2 The operator LS is closable in L2(µ). We denote the closure also by LS, and its
domain is

dom
(
LS
)

=

{
F =

∞∑
n=0

Wn(ϕn) :
∞∑
n=0

n!‖∆ϕn‖2L2 <∞

}
,

where ∆ϕn :=
∑n

i=1 ∂iiϕn and the derivatives are taken in the weak sense. For F =
∑∞

n=0Wn(ϕn) ∈
dom

(
LS
)

we have

LSF =
∞∑
n=0

Wn(∆ϕn).

Moreover,

E[E(Wn(ϕn))] = 2n!
n∑
i=1

‖∂iϕn‖2L2 .

Proof It is easy to check that LS is a closed operator in L2(µ), essentially because ∆ is a
closed operator in L2(Tn) with domain H2(Tn), the L2 Sobolev space of twice differentiable
functions. So we only have to show that LS extends LS . We first show that for ϕ ∈ C∞(T)
with ‖ϕ‖L2 = 1 we have

LSWn(ϕ⊗n) = LSHn(η(ϕ)) = H ′n(η(ϕ))η(∆ϕ) +H ′′n(η(ϕ))‖∂xϕ‖2L2

= H ′n(η(ϕ))η(∆ϕ)−H ′′n(η(ϕ))〈ϕ,∆ϕ〉L2 .
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Below we will show that H ′n = nHn−1 and thus also H ′′n = n(n− 1)Hn−2, and also that

nHn−1(η(ϕ))η(∆ϕ) = nWn(ϕ⊗n−1 ⊗∆ϕ) + n(n− 1)Wn−2(ϕ⊗n−2)〈ϕ,∆ϕ〉L2

= Wn(∆ϕ⊗n) + n(n− 1)Hn−2(η(ϕ))〈ϕ,∆ϕ〉L2 .

Therefore, LSWn(ϕ⊗n) = Wn(∆ϕ⊗n). But as we saw above, linear combinations (in n and
ϕ) of Hn(η(ϕ)) with ‖ϕ‖L2 = 1 are dense in L2(µ), and therefore we obtain for all cylinder
functions F with chaos expansion F =

∑
nWn(ϕn) that LS acts as LSF =

∑
nWn(∆ϕn).

Consider now E(Hn(η(ϕ))) for ϕ ∈ C∞(T) with ‖ϕ‖L2 = 1:

E[E(Hn(η(ϕ)))] = 2

∫
E[|H ′n(η(ϕ))∂xϕ(x)|2]dx

= 2

∫
E[|nHn−1(η(ϕ))∂xϕ(x)|2]dx

= 2n!n‖∂xϕ‖2L2

= 2n!
n∑
i=1

‖∂iϕ⊗n‖2L2 .

Since Wn is a linear continuous functional, we get by polarization, linearity and continuity:

E[E(Wn(ϕn))] = 2n!

n∑
i=1

‖∂iϕn‖2L2

for all symmetric ϕn ∈ L2(Tn). 2

In the following we omit the line above LS and simply write LS and dom(LS). In the
proof we used the following auxiliary result:

Lemma 3 Chaos expansion and Hermite polynomials have the following properties:

H ′n(x) = nHn−1(x)

and
Wn(ϕ⊗n)W1(ψ) = Wn+1(ϕ⊗n ⊗ ψ) + nWn−2(ϕ⊗n−2)〈ϕ,ψ〉L2 .

Proof Note that for k > 0 we have

1√
2π

∫
R
H ′n(x)Hk(x)e−x

2/2dx =
1√
2π

∫
R
∂xHn(x)(−1)k∂kx(e−x

2/2)dx

=
1√
2π

∫
R
∂k+1
x Hn(x)e−x

2/2dx = δk,n−1n!,

and since (k!)−1/2Hk is an orthonormal basis in L2((2π)−1/2e−x
2/2) we get H ′n = nHn−1. For

the second statement see [Nua06, Proposition 1.1.2]. 2

As an application, let us look at the Burgers drift. Recall that our definition of martingale
solutions depends on a specific mollifier that is used to construct the nonlinearity. But for
FB-solutions the specific mollifier does in fact not matter, and any mollifier will lead to the
same limit: Let δ ∈ C∞c (R) with

∫
R δ(x)dx = 1 and consider∫ t

0

∫
T
∂xus

(
δnx
)2
ϕ(x)dxds.
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Our aim is to show that this converges to At(ϕ). For that purpose note that

∫
T
∂xus

(
δnx
)2
ϕ(x)dx =

∫
T
∂x

∥∥δnx∥∥2

L2 H2

(
us
(
δnx
)∥∥δnx∥∥L2

)
+

∫
T

∣∣∣∣∣∑
k

δn(x+ k − y)

∣∣∣∣∣
2

dy

ϕ(x)dx

=

∫
T
∂x

∥∥δnx∥∥2

L2 H2

(
us
(
δnx
)∥∥δnx∥∥L2

)
+

∫
T

∣∣∣∣∣∑
k

δn(k − y)

∣∣∣∣∣
2

dy

ϕ(x)dx

=

∫
T
∂x

(∥∥δnx∥∥2

L2 H2

(
us
(
δnx
)∥∥δnx∥∥L2

))
ϕ(x)dx

= −
∫
T

∥∥δnx∥∥2

L2 H2

(
us
(
δnx
)∥∥δnx∥∥L2

)
∂xϕ(x)dx

= −
∫
T
W2

(
δnx
⊗2
)

(us)∂xϕ(x)dx

= W2

(
−
∫
T
δnx
⊗2
∂xϕ(x)dx

)
(us),

where in the last step we used that W2 is linear and continuous in L2(T2) by construction.
Combining the representation with the Itô trick and the representation of the generator that
we found before, it is not difficult to derive the following result:

Lemma 4 (Burgers nonlinearity) Let u be a FB-solution to Burgers equation. The pro-
cess A satisfies for all δ ∈ C∞c with

∫
R δ(x)dx = 1, for all T > 0 and all ϕ ∈ C∞(T)

lim
n→∞

E

[
sup
t6T

∣∣∣∣∫ t

0

∫
T
∂xus

(
δnx
)2
ϕ(x)dx−At(ϕ)

∣∣∣∣2
]

= 0.

Proof (Sketch of proof)
By definition of A we have∫ t

0

∫
T
∂xus

(
δnx
)2
ϕ(x)dx−At(ϕ)At(ϕ) =

∫ t

0

∫
T
∂xus

(
δnx
)2
ϕ(x)dx+ lim

m→∞

∫ t

0
(us ∗ ρm)2(∂xϕ)ds

= lim
m→∞

∫ t

0
W2

(
−
∫
T

(
δnx
⊗2 − ρmx

⊗2
)
∂xϕ(x)dx

)
(us)ds.

To apply the Itô trick, we see from Lemma 2 that we need to solve

∆Φm,n(y1, y2) = −
∫
T

(
δnx (y1, y2)− ρmx (y1, y2)

)
∂xϕ(x)dx =: Ψm,n(y1, y2).

Since the right hand side satisfies

FΨm,n(0, 0) =

∫
T2

Ψm,n(y1, y2)dy1dy2 = 0,

this equation is easy to solve with the help of Fourier coordinates: simply set

FΦm,n(k1, k2) = − FΨm,n(k1, k2)

|2πk1|2 + |2πk2|2
.
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The Itô trick then gives

E

[
sup
t6T

∣∣∣∣∫ t

0
W2(Ψm,n)(us)ds

∣∣∣∣2
]
. TE[E(W2(Φm,n))(u0)]

'
2∑
i=1

‖∂iΦm,n‖2L2

=
∑
k∈Z2

(|2πk1|2 + |2πk2|2)|FΦm,n(k1, k2)|2

=
∑
k∈Z2

|FΨm,n(k1, k2)|2

|2πk1|2 + |2πk2|2
.

To go further, we need to compute FΨm,n(k1, k2):

FΨm,n(k1, k2) = −
∫
T2

e−2πi(k1y1+k2y2)

∫
T

(
δnx (y1)δnx (y2)− ρmx (y1)ρmx (y2)

)
∂xϕ(x)dxdy1dy2

= −
∫
T

(
Fδnx (k1)Fδnx (k2)−Fρmx (k1)Fρmx (k2)

)
∂xϕ(x)dx,

and

Fδnx (k1) =

∫
T
e−2πik1y

∑
`

δn(x− y + `)dy

=
∑
`

∫
T
e−2πik1(y−`)δn(x− (y − `))dy

=

∫
R
e−2πik1ynδ(n(x− y))dy

= e−2πik1xFRδ

(
−k1

n

)
,

where FR is the Fourier transform on R. Thus

FΨm,n(k1, k2) =

(
FRρ

(
−k1

n

)
FRρ

(
−k2

n

)
−FRδ

(
−k1

n

)
FRδ

(
−k2

n

))
F(∂xϕ)(k1 + k2).

From here the claim follows after a lengthy but elementary computation: subtract and add 1
inside the bracket to gain a factor (|k1|+ |k2|)αn−α for α ∈ (0, 1) and use that F(∂xϕ)(k1 +k2)
decays faster than polynomially in (k1 + k2). We need this decay to make the series finite,
because

∑
k∈Z2\{0}(|2πk1|2 + |2πk2|2)−1 =∞. See [GP18, Proposition 3.15] for details. 2

Recall that our aim is to prove the convergence of the additive functionals

Rn,mt =

∫ t

0

∫
T

dxϕ(x)eus(Θn
x)

(
us (ρm)

2
(∂xΘn

x)−
(
us (ρnx)

2 −
∫
T
us (ρn(y))

2
dy

)
− 1

12

)
ds

and

Qnt =

∫ t

0

(∫
T
us (ρn(y))

2
dy − ‖ρn‖2L2

)
ds.
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The process Qn looks very much like the Burgers drift and can be controlled by similar
arguments. However, the integrand for Rn,m does not have a finite chaos expansion because
it contains eus(Θn

x). By working with the Wick exponential it should still possible to derive the
explicit chaos expansion of the integrand and to control Rn,m using similar arguments as for
the Burgers drift. But we prefer to take another, less explicit and maybe less computationally
intense approach.

Note that in the proof of Lemma 4 we first solved the Poisson equation LSΦm,n = Ψm,n,
but the bound we derived using the Itô trick only involved FΨm,n and not the solution Φm,n

itself. This can be generalized as follows: We define for F ∈ L2(µ) the “H1 norm” (strictly
speaking this is only a seminorm on the subspace of L2 where it is finite)

‖F‖21 := E[E(F )(η)] ∈ [0,∞]

and by duality the “H−1 norm”

‖F‖−1 = sup
G:‖G‖161

E[F (η)G(η)] ∈ [0,∞].

Note that ‖F‖−1 =∞ whenever E[F (η)] 6= 0 because constant functions G satisfy ‖G‖1 = 0
(because then LSG = 0). With the help of the H−1 norm we can estimate the additive
functional

∫ ·
0 F (us)ds without first solving the Poisson equation:

Lemma 5 (Kipnis-Varadhan inequality) Let F ∈ L2(µ) be such that ‖F‖−1 <∞. Then

E

[
sup
t6T

∣∣∣∣∫ t

0
F (us)ds

∣∣∣∣2
]
. T‖F‖2−1.

Proof Since LS is the generator of a contraction semigroup (TSt )t>0 on L2(µ) (the semigroup
associated to the linear SPDE ∂tX = ∆X +

√
2∂xξ), we can solve the resolvent equation for

λ > 0 and any right hand side:

(λ− LS)Gλ = F ⇔ Gλ =

∫ ∞
0

e−λtTSt Fdt.

Indeed, at least formally we get from an integration by parts

−LSGλ = −
∫ ∞

0
e−λt∂tT

S
t Fdt = F +

∫ ∞
0

(−λ)e−λtTSt Fdt = F − λGλ.

We want to apply to the Itô trick to −LSGλ, which requires a bound on ‖Gλ‖21. But

‖Gλ‖21 ' E[Gλ(η)(−LS)Gλ(η)]

= E[Gλ(η)(−LS)Gλ(η)]

= E[Gλ(η)F (η)]− λE[|Gλ(η)|2]

6 ‖F‖−1‖Gλ‖1 − λ‖Gλ‖2L2(µ),

and therefore ‖Gλ‖1 6 ‖F‖−1. Plugging this into the inequality above, we also get

λ‖Gλ‖2L2(µ) 6 ‖F‖
2
−1.
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Therefore, applying the Itô trick and using that us is for all times a white noise,

E

[
sup
t6T

∣∣∣∣∫ t

0
F (us)ds

∣∣∣∣2
]
. E

[
sup
t6T

∣∣∣∣∫ t

0
λGλ(us)ds

∣∣∣∣2
]

+ E

[
sup
t6T

∣∣∣∣∫ t

0
−LSGλ(us)ds

∣∣∣∣2
]

. T 2E[|λGλ(u0)|2] + T‖Gλ‖21
6 T 2λ2‖Gλ‖2L2(µ) + T‖F‖2−1

6 (T 2λ+ T )‖F‖2−1.

As λ > 0 was arbitrary, it now suffices to send λ→ 0. 2

To apply this result we need to test the integrand of Rn,m against a test function and
to control the expectation in terms of the H1 norm of the test function. We can do this by
representing the H1 norm in terms of the Malliavin derivative (if you are familiar with the
Malliavin derivative have a look at the definition of E and rewrite it in terms of the Malliavin
derivative) and by applying integration by parts with respect to the white noise measure.
Like that we finally obtain the following result:

Theorem 1 Let u be a FB-solution. Then the conditions of Proposition 1 are satisfied and
in particular the distribution of u is unique.

This is carried out in [GP18], here we do not go further into detail and instead look at an
application of energy solutions.

3 Application: scaling limits

One reason why KPZ and Burgers equation are so popular is that they arise as universal
scaling limits of (1 + 1)–dimensional interface growth models (one time dimension, one space
dimension) in the so called weakly asymmetric regime. This is known as the weak KPZ
universality conjecture, although by now the convergence has been established for so many
models that it is more of a result than a conjecture. As the name suggests, there also is
a (strong) KPZ universality conjecture, which claims that all (1 + 1)–dimensional interface
growth models with some qualitative assumptions show the same large scale behavior as the
KPZ equation. This is a very active field of research and there are many indications that
the conjecture is true, although rigorous proofs exist so far almost exclusively for the one-
dimensional marginal distributions (like a central limit theorem at fixed times rather than
Donsker’s invariance principle for the entire process), and they mostly rely on good algebraic
properties of the models (they work for “stochastically integrable” models).

Energy solutions / FB solutions are a good tool for proving the convergence of Markovian
interface growth models to Burgers equation (and also to the KPZ equation) because their
martingale description is very reminiscent of the martingale problem description of a Markov
process. However, since FB-solutions also require stationarity and an explicit decomposition
of the generator into symmetric and antisymmetric part, we need to know the invariant
measure of our Markov process explicitly in order to apply them. Luckily there are many
interesting models for which this is the case, see e.g. [GJ14, GJS15, DGP17, GP16]. Here I
will focus on the relatively simple weakly asymmetric simple exclusion process, for which the
convergence was already shown by Bertini and Giacomin [BG97] who implemented a Cole-
Hopf transform for this process. Instead of following their approach, we will use FB-solutions
to prove the convergence.
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Let n ∈ N and set Zn = Z/(nZ) and define pn : Zn → [0, 1] by

pn(k) =


1
2(1− n−1/2), k = −1,
1
2(1 + n−1/2), k = 1,
0, else .

So pn is the jump probability of a weakly asymmetric random walk on Zn, and setting

qn(k, `) =

{
pn(`− k), ` 6= k,
−
∑

m pn(m) ` = k,

we obtain the transition rates of a continuous time random walk. Note that −
∑

m pn(m) =
−1. We consider independent particles on Zn that all follow the continuous time random
walk with transition rates qn, but that are not allowed to hop on top of each other (there
is an exclusion rule). The resulting process is called the weakly asymmetric simple exclusion
process (WASEP) and if we do not care about the individual particles but only about their
joint configuration, then the state space of the process can be chosen as Sn = {0, 1}Zn , where
for η ∈ Sn we have η(k) = 1 if there is a particle at site k, and η(k) = 0 otherwise. Note that
Sn is finite, so we are dealing with a continuous time Markov chain on a finite state space.
Its infinitesimal generator or Q-matrix acts on f : Sn → R as follows:

Lnf(η) =
∑
k,`∈Zn

η(k)(1− η(`))pn(`− k)(f(ηk,`)− f(η)),

where

ηk,`(m) =


η(`), m = k,
η(k), m = `,
η(m), else,

is the configuration with the occupation status at sites k and ` exchanged. The factor η(k)(1−
η(`))pn(`− k) in the generator is equal to pn(`− k) exactly if there is a particle in k and no
particle in `, so only in that case the particle in k is trying to move to the empty site ` with
rate pn(`− k). Otherwise this factor is 0 and nothing changes.

One can show that for all ρ ∈ [0, 1] the product Bernoulli measure

µnρ ({η}) = ρ
∑

k∈Zn η(k)(1− ρ)
∑

k∈Zn (1−η(k))

is invariant for the WASEP (this is a good exercise!). In the following we will consider the
stationary WASEP (ηnt )t>0 on Zn with initial distribution ηn0 ∼ µn1/2 (which we denote by µn

in the following) and we will show, following the approach developed by [GoncalvesJara], that
under the right rescaling it converges to a FB-solution of Burgers equation. The restriction
to ρ = 1/2 is for convenience, the same works for all ρ ∈ (0, 1), but for ρ = 1/2 some things
simplify.

Next, let us identify the symmetric part of the generator and the antisymmetric part, to
understand how the process behaves under time reversal:

Lemma 6 The symmetric and antisymmetric part of Ln in L2(µn) are, respectively

LnSf(η) =
1

2

∑
k∈Zn

(f(ηk,k+1)− f(η)),

LnAf(η) =
n−1/2

2

∑
k∈Zn

[η(k)− η(k + 1)](f(ηk,k+1)− f(η)).
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Moreover, the time reversed process is again a WASEP, only that the asymmetry is in the
opposite direction.

Proof Let f, g : Sn → R. Since ηk,` has the same distribution as η under µn, we get

E[fLng] =
∑
k,`∈Zn

∫
f(η)η(k)(1− η(`))pn(`− k)(g(ηk,`)− g(η))µn(dη)

=
∑
k,`∈Zn

[∫
f(η`,k)η`,k(k)(1− η`,k(`))pn(`− k)g(η)µn(dη)

−
∫
f(η)η(k)(1− η(`))pn(`− k)g(η)µn(dη)

]
.

Now we use that η`,k(k) = η(`) and η`,k(`) = η(k) and exchange the names of the summation
variables k and ` to obtain

E[fLng] =
∑
k,`∈Zn

[∫
f(η`,k)η(`)(1− η(k))pn(`− k)g(η)µn(dη)

−
∫
f(η)η(k)(1− η(`))pn(`− k)g(η)µn(dη)

]
=
∑
k,`∈Zn

∫
η(k)(1− η(`))pn(k − `)(f(ηk,`)− f(η))g(η)µn(dη)

=
∑
k,`∈Zn

∫
η(k)(1− η(`))p∗n(`− k)(f(ηk,`)− f(η))g(η)µn(dη),

where we used that∑
k,`∈Zn

η(k)(1− η(`))(pn(`− k)− pn(k − `)) =
∑
k,`∈Zn

η(k)(pn(`− k)− pn(k − `))

=
∑
k∈Zn

η(k)(1− 1) = 0,

and where

p∗n(k) = pn(−k) =


1
2(1 + n−1/2), k = −1,
1
2(1− n−1/2), k = 1,
0, else .

So Ln,∗ is defined as Ln, only with p∗n instead of pn, and therefore

LnSf(η) =
1

2
(Ln + Ln,∗)f(η) =

∑
k,`∈Zn

η(k)(1− η(`))pn,S(`− k)(f(ηk,`)− f(η)),

where

pn,S(k) =
1

2
(pn(k) + p∗n(k)) =

{
1
2 , k ∈ {−1, 1},
0, else .
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Since pn,S(k) = pn,S(−k) and ηk,` = η`,k, we get

LnSf(η) =
1

2

∑
k,`∈Zn

[η(k)(1− η(`)) + η(`)(1− η(k))]pn,S(`− k)(f(ηk,`)− f(η))

=
1

2

∑
k,`∈Zn

pn,S(`− k)(f(ηk,`)− f(η))

=
1

2

∑
k∈Zn

[
1

2
(f(ηk,k+1)− f(η)) +

1

2
(f(ηk,k−1)− f(η))

]
=

1

2

∑
k∈Zn

(f(ηk,k+1)− f(η)),

where we used that η(k)(1 − η(`)) + η(`)(1 − η(k)) = 1 whenever η(k) 6= η(`), and that
otherwise f(ηk,`)− f(η) = 0. Similarly, the antisymmetric part of the generator is

LnAf(η) =
1

2
(Ln − Ln,∗)f(η) =

∑
k,`∈Zn

η(k)(1− η(`))pn,A(`− k)(f(ηk,`)− f(η)),

=
n−1/2

2

∑
k∈Zn

η(k)(1− η(k + 1))(f(ηk,k+1)− f(η))

− n−1/2

2

∑
k∈Zn

η(k)(1− η(k − 1))(f(ηk,k−1)− f(η))

=
n−1/2

2

∑
k∈Zn

[η(k)(1− η(k + 1))− η(k + 1)(1− η(k))](f(ηk,k+1)− f(η))

=
n−1/2

2

∑
k∈Zn

[η(k)− η(k + 1)](f(ηk,k+1)− f(η)),

where

pn,A(k) =
1

2
(pn(k)− p∗n(k)) =


−n−1/2

2 , k = −1,
n−1/2

2 , k = 1,
0, else,

(and of course this is no longer a transition probability). 2

To understand the behavior of the WASEP on large scales, we rescale space to bring Zn
into the torus T. We are interested in the invariant measure, and using the (proof of) the
weak law of large numbers it is easy to see that

lim
n→∞

1

n

∑
k∈Zn

ηnt (k)ϕ

(
k

n

)
=

1

2

∫
T
ϕ(x)dx

for all t > 0 and ϕ ∈ C∞(T) (even for all ϕ ∈ C(T)), where the factor 1/2 is the occupation
density of µn. We want to show that on an appropriate time scale (the one under which
each randomly walking particle would converge to a Brownian motion if it was not for the
exclusion rule) the fluctuations around the density 1/2 converge to Burgers equation. So we
set

Ynt (ϕ) =
1

n

∑
k∈Zn

n1/2

(
ηnn2t(k)− 1

2

)
ϕ

(
k

n

)
= n−1/2

∑
k∈Zn

(
ηnn2t(k)− 1

2

)
ϕ

(
k

n

)
.
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Since for fixed t > 0 the variables (ηnn2t(k)−1/2)k∈Zn are i.i.d., centered, and have variance 1/4,
we get from the (Lindeberg) central limit theorem that Ynt (ϕ) converges to a N (0, ‖ϕ‖2L2/4)
variable. In other words, for all times t > 0 the limit of Ynt is 1/2 times a white noise. So we
see that we are definitely in a different parameter range than in the previous chapters. But
this is no problem, we could have easily adapted the arguments to prove the uniqueness of
FB-solutions with general parameters.

Obviously Yn ∈ D(R+,S ′(T)), where D is the Skorohod space, equipped with the Skoro-
hod topology (see e.g. [EK86]). We want to prove tightness of Yn and that every limiting
point is supported in C(R+,S ′(T)) and is a FB-solution of Burgers equation. For proving
tightness it suffices to show that (Ynt (ϕ))t>0 is tight for all ϕ ∈ C∞(T) [Mit83], and we get
from the martingale problem for ηn:

Ynt (ϕ)− Yn0 (ϕ) =

∫ n2t

0
LnFn,ϕ(ηns )ds+Mn,ϕ

n2t

=

∫ t

0
n2LnFn,ϕ(ηnn2s)ds+Mn

t (ϕ),

where

Fn,ϕ(η) = 2n−1/2
∑
k∈Zn

(
η(k)− 1

2

)
ϕ

(
k

n

)
and

Mn
t = Mn,ϕ

n2t

is a martingale in the filtration generated by (ηnn2t)t>0, which is the same as the filtration
generated by Yn. Note that

Fn,ϕ(η`,`+1)− Fn,ϕ(η) = n−1/2
∑
k∈Zn

(
η`,`+1(k)− 1

2

)
ϕ

(
k

n

)
− n−1/2

∑
k∈Zn

(
η(k)− 1

2

)
ϕ

(
k

n

)

= n−1/2

∑
k∈Zn

(
η(k)− 1

2

)
ϕ

(
k

n

)

+

((
η(`+ 1)− 1

2

)
−
(
η(`)− 1

2

))
ϕ

(
`

n

)
+

((
η(`)− 1

2

)
−
(
η(`+ 1)− 1

2

))
ϕ

(
`+ 1

n

)

−
∑
k∈Zn

(
η(k)− 1

2

)
ϕ

(
k

n

)
= −n−1/2

((
η(`+ 1)− 1

2

)
−
(
η(`)− 1

2

))(
ϕ

(
`+ 1

n

)
− ϕ

(
`

n

))
.
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We decompose the drift into its symmetric and antisymmetric part:

LnSFn,ϕ(η) =
1

2

∑
`∈Zn

(Fn,ϕ(η`,`+1)− Fn,ϕ(η))

= −n
−1/2

2

∑
`∈Zn

((
η(`+ 1)− 1

2

)
−
(
η(`)− 1

2

))(
ϕ

(
`+ 1

n

)
− ϕ

(
`

n

))

=
n−1/2

2

∑
`∈Zn

(
η(`)− 1

2

)[(
ϕ

(
`+ 1

n

)
− ϕ

(
`

n

))
−
(
ϕ

(
`

n

)
− ϕ

(
`− 1

n

))]
=

1

2
n−1/2

∑
`∈Zn

(
η(`)− 1

2

)
n−2∆nϕ

(
`

n

)
,

where

∆nϕ(x) = n2

(
ϕ

(
x+

1

n

)
+ ϕ

(
x− 1

n

)
− 2ϕ(x)

)
is the discrete Laplacian, rescaled so that it converges to the continuous Laplacian as n→∞.
Therefore, ∫ n2t

0
LnSFn,ϕ(ηns )ds =

1

2

∫ t

0
Yns (∆nϕ)ds,

which already looks good. For the antisymmetric part we get

LnAFn,ϕ(η) =
n−1/2

2

∑
`∈Zn

[η(`)− η(`+ 1)](Fn,ϕ(η`,`+1)− Fn,ϕ(η))

=
n−1

2

∑
`∈Zn

[η(`)− η(`+ 1)]

((
η(`+ 1)− 1

2

)
−
(
η(`)− 1

2

))(
ϕ

(
`+ 1

n

)
− ϕ

(
`

n

))

= −n
−1

2

∑
`∈Zn

(η̄(`+ 1)− η̄(`))2

[
ϕ

(
`+ 1

n

)
− ϕ

(
`

n

)]

= −n
−1

2

∑
`∈Zn

(
1

4
− 2η̄(`)η̄(`+ 1) +

1

4

)[
ϕ

(
`+ 1

n

)
− ϕ

(
`

n

)]
= n−1

∑
`∈Zn

η̄(`)η̄(`+ 1)

[
ϕ

(
`+ 1

n

)
− ϕ

(
`

n

)]
= n−2

∑
`∈Zn

η̄(`)η̄(`+ 1)∇nϕ
(
`

n

)
= n−2

∑
`∈Zn

η̄(`)η̄(`+ 1)∇nϕ
(
`

n

)

where the contribution from the two 1/4 terms vanishes because it is a telescope sum with
periodic boundary conditions, where η̄(k) = η(k) − 1

2 , and where we used that η̄(k)2 = 1/4
for all k (it is here that we need ρ = 1/2, all other steps work for general ρ ∈ (0, 1)), and

∇nϕ(x) = n

(
ϕ

(
x+

1

n

)
− ϕ(x)

)
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is the discrete derivative, rescaled so that it converges to the continuous one. Therefore,

Ynt (ϕ)− Yn0 (ϕ) =
1

2

∫ t

0
Yns (∆nϕ)ds+Ant (ϕ) +Mn

t (ϕ),

where

Ant (ϕ) =

∫ t

0

∑
`∈Zn

η̄nn2s(`)η̄
n
n2s(`+ 1)∇nϕ

(
`

n

)
ds

=

∫ t

0
n−1

∑
`∈Zn

[n1/2η̄nn2s(`)][n
1/2η̄nn2s(`+ 1)]∇nϕ

(
`

n

)
ds.

By Dynkin’s formula, the martingale Mn(ϕ) has predictable quadratic variation

〈Mn(ϕ)〉t =

∫ t

0
[n2Ln(Fn,ϕ)2(ηnn2s)− 2Fn,ϕ(ηnn2s)n

2LnFn,ϕ(ηnn2s)]ds,

where we already computed LnFn,ϕ(η) and where by the same arguments

(Fn,ϕ)2(η`,`+1)− (Fn,ϕ)2(η) =

n−1/2
∑
k∈Zn

η̄`,`+1(k)ϕ

(
k

n

)2

−

n−1/2
∑
k∈Zn

η̄(k)ϕ

(
k

n

)2

= n−1

∑
k∈Zn

η̄(k)ϕ

(
k

n

)
− (η̄(`+ 1)− η̄(`))

(
ϕ

(
`+ 1

n

)
− ϕ

(
`

n

))2

− n−1

∑
k∈Zn

η̄(k)ϕ

(
k

n

)2

= −2n−1(η̄(`+ 1)− η̄(`))

(
ϕ

(
`+ 1

n

)
− ϕ

(
`

n

)) ∑
k∈Zn

η̄(k)ϕ

(
k

n

)

+ n−1(η̄(`+ 1)− η̄(`))2

(
ϕ

(
`+ 1

n

)
− ϕ

(
`

n

))2

and thus

LnS(Fn,ϕ)2(η) = −1

2

∑
`∈Zn

2n−1(η̄(`+ 1)− η̄(`))

(
ϕ

(
`+ 1

n

)
− ϕ

(
`

n

)) ∑
k∈Zn

η̄(k)ϕ

(
k

n

)

+
1

2

∑
`∈Zn

n−1(η̄(`+ 1)− η̄(`))2

(
ϕ

(
`+ 1

n

)
− ϕ

(
`

n

))2

= n−5/2
∑
`∈Zn

η̄(`)∆nϕ

(
`

n

)
Fn,ϕ(η) +

n−3

2

∑
`∈Zn

(η̄(`+ 1)− η̄(`))2

(
∇nϕ

(
`

n

))2

= 2Fn,ϕ(η)LnSFn,ϕ(η) +
n−3

2

∑
`∈Zn

(η̄(`+ 1)− η̄(`))2

(
∇nϕ

(
`

n

))2

,
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while

LnA(Fn,ϕ)2 = −n
−1/2

2

∑
`∈Zn

[η(`)− η(`+ 1)]2n−1(η̄(`+ 1)− η̄(`))

×
(
ϕ

(
`+ 1

n

)
− ϕ

(
`

n

)) ∑
k∈Zn

η̄(k)ϕ

(
k

n

)

+
n−1/2

2

∑
`∈Zn

[η(`)− η(`+ 1)]n−1(η̄(`+ 1)− η̄(`))2

(
ϕ

(
`+ 1

n

)
− ϕ

(
`

n

))2

= n−2
∑
`∈Zn

(η̄(`+ 1)− η̄(`))2∇nϕ
(
`

n

)
n−1/2

∑
k∈Zn

η̄(k)ϕ

(
k

n

)

− n−7/2

2

∑
`∈Zn

(η̄(`+ 1)− η̄(`))3

(
∇nϕ

(
`

n

))2

= 2Fn,ϕ(η)LnAFn,ϕ(η)− n−7/2

2

∑
`∈Zn

(η̄(`+ 1)− η̄(`))3

(
∇nϕ

(
`

n

))2

.

So overall

d〈Mn(ϕ)〉t = [n2Ln(Fn,ϕ)2(ηnn2t)− 2Fn,ϕ(ηnn2t)n
2LnFn,ϕ(ηnn2t)]dt

=
n−1

2

∑
`∈Zn

(η̄(`+ 1)− η̄(`))2[1− n−1/2(η̄(`+ 1)− η̄(`))]

(
∇nϕ

(
`

n

))2

dt.

Note that ∫
(η̄(`+ 1)− η̄(`))2µn(dη) =

1

4
− 0 +

1

4
=

1

2
,

and that (η̄(`+1)− η̄(`))2 and (η̄(k+1)− η̄(k))2 are independent whenever |k−`| > 1. Based
on all these observations, the following lemma is fairly easy to show:

Lemma 7 The processes
1

2

∫ ·
0
Yns (∆nϕ)ds, Mn(ϕ)

are tight in D(R+,R) and their limit points are all supported in C(R+,R). If Yn converges in
distribution in D(R+,S ′(T)) along a subsequence to some Y, then 1

2

∫ ·
0 Y

n
s (∆nϕ)ds converges

along the same subsequence to 1
2

∫ ·
0 Y(∆ϕ)ds. Moreover, Mn(ϕ) converges in distribution to

a continuous martingale M(ϕ) with quadratic variation

〈M(ϕ)〉t =
1

4

∫
T
|∂xϕ(x)|2dx.

To conclude the proof, we only have to study what happens with An. This is much more
complicated, and [GJ14] developed new techniques to deal with that term. Note that

Ant (ϕ) =

∫ t

0
n−1

∑
`∈Zn

[n1/2η̄nn2s(`)][n
1/2η̄nn2s(`+ 1)]∇nϕ

(
`

n

)
ds

=

∫ t

0
n−1

∑
`∈Zn

Yns
(
`

n

)
Yns
(
`+ 1

n

)
∇nϕ

(
`

n

)
ds
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“looks” very much like the square of Yn integrated against ∂xϕ, but of course evaluating
Yn pointwise is not a continuous operation in S ′(T), and neither is taking the product. We
therefore want to approximate the ill-defined functional by a well defined functional: If we
could show tightness of An(ϕ) and that uniformly in n

E

∣∣∣∣∣∣Ant (ϕ)−Ans (ϕ)−
∫ t

s
n−1

∑
`∈Zn

Yns
(
δε

(
`

n
− ·
))2

∇nϕ
(
`

n

)
ds

∣∣∣∣∣∣
2 6 Cε(t− s), (9)

then we would get from Fatou’s lemma that any limit point A(ϕ) has to satisfy

E

[∣∣∣∣At(ϕ)−As(ϕ)−
∫ t

s

∫
T
Ys(δε(x− ·))2∂xϕ(x)ds

∣∣∣∣2
]
6 Cε(t− s).

If δε is an approximation of the identity, then we could conclude that any limit point Y is a
martingale solution to

∂tY =
1

2
∆u− ∂xu2 +

1

2
∂xξ.

But actually the quantitative estimate for A is also sufficient to see that the quadratic variation
of A must be zero, so we even get an energy solution. Moreover, we already computed the
symmetric and antisymmetric part of the generator and saw that the time-reversed process
is a WASEP with opposite sign of the asymmetry, and therefore Y is even an FB-solution.

To prove (9) we use again the Itô trick, as in the previous chapter. Then we can either
solve the corresponding Poisson equation, which is possible because we have a chaos expansion
for our product Bernoulli invariant measure, or we can use the Kipnis-Varadhan approach and
estimate the H−1 norm. This is the approach taken by [GJ14], who replace Yns (`)Yns (` + 1)
by the product of averages over successively larger boxes (the boxes double in size in each

step) and write the difference Ant (ϕ)− Ans (ϕ)−
∫ t
s n
−1
∑

`∈Zn
Yns
(
δε
(
`
n − ·

))2∇nϕ ( `n) ds as
a telescope sum and estimate each term using H−1 techniques.

References

[BG97] Lorenzo Bertini and Giambattista Giacomin. Stochastic Burgers and KPZ equations
from particle systems. Comm. Math. Phys., 183(3):571–607, 1997.

[DGP17] Joscha Diehl, Massimiliano Gubinelli, and Nicolas Perkowski. The Kardar-Parisi-
Zhang equation as scaling limit of weakly asymmetric interacting Brownian motions.
Comm. Math. Phys., 354(2):549–589, 2017.

[EK86] Stewart N. Ethier and Thomas G. Kurtz. Markov processes: Characterization and
convergence. John Wiley & Sons, 1986.
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