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Abstract

We introduce paracontrolled distribution on the example of a stochastic di�erential
equation with distributional drift.

These are the incomplete (in particular nearly no references!) and very unpolished
notes for a mini course taught at the HCM winter school �Recent development in
singular SPDEs� in February 2017 in Bonn. Participants may also want to consult
the notes �Lectures on singular SPDEs� with M. Gubinelli which contain much more
technical detail and also more references.

1 Motivation

1.1 Scaling limit for a random walk in a random potential

Consider a N -step simple random walk on Zd that is weighted by a random potential. That
is, we look at the random probability measure on (Zd)N given by

dQN
�;�

dPN
=

1

ZN
�;�

exp

 
�
X
k=0

N¡1

�(Xk)

!
;

where:

� Xk(!)=!(k) is the coordinate process,

� ZN
�;�> 0 is a normalization constant which sets the total mass of QN

�;� equal to 1,

� (�(x))x2Zd are i.i.d. random variables,

� PN is the distribution of a simple random walk on Zd with N steps and that starts
at X0=0,

� � > 0 is a parameter called the disorder strength.

The potential has the e�ect of favoring paths that spend much time near points x where
�(x) is large. On the other hand the law of the iterated logarithm shows that PN only
gives very little mass to paths that leave the ball (¡N�;N�)d with �>1/2. It is therefore
interesting to understand the behavior of typical trajectories under QN

�;�. If there exists a
very favorable region where � is large, but it is outside of (¡N�;N�)d, will the trajectories
under QN

�;� typically visit that region? Or is it too �expensive� and the trajectories will
look more or less like those under PN? Intuitively we might picture that typical trajectories
identify the most favorable region in (¡N ; N)d, taking into account both the value of �
and the probability of visiting that region under PN, and then go to that region as quickly
as possible and spend most of their time there. Obviously the behavior will also depend on
�: For � = 0 we simply obtain the law of the random walk, while for �� 0 the behavior
will be radically di�erent than that of the random walk.
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This model should also be compared with models for random polymers, which are of the
form

1
ZN

exp(¡�HN(!))PN(d!);

where HN is a so called Hamiltonian. An important example for the Hamiltonian is

HN(!)=

�
0; ! 2 SAW;
1; !2/ SAW;

with SAW = f! 2 (Zd)N : Xk(!) =/ X`(!) for all k =/ `g. In that case we obtain the self-
avoiding random walk, independently of �.

For background material on random polymers see e.g. den Hollander or Caravenna, den
Hollander, Petrelis. Due to the clustering that we expect under QN

�;�, the trajectories may
not really resemble a polymer (which is a long chain of molecules), so it is not obvious to
me if QN

�;� is a good model for a polymer. But somtimes QN
�;� is called a random polymer

measure.

We would like to understand how the trajectories under QN
�;� look on large temporal and

spatial scales. That is, we would like to send N!1 and rescale space as we pass to the
limit to obtain a continuous-time limiting process, maybe a di�usion. However, given the
clustering that we alluded to above we expect that on the time scale N the trajectories will
identify the most favorable region in (¡N;N)d and spend most of their time there. But on
the time scale 2N the trajectories will spend most their time in the most favorable region in
(¡2N;2N)d, which may be not at all compatible with the one in (¡N;N)d. So there does
not seem to be a stabilization and the best we could hope for is that along subsequences
the coordinate process converges to a jump process that instantly jumps to a �xed point
and then just stays there. I am not sure if such a statement is exactly true and/or proven,
but results in that direction are well established in the context of the parabolic Anderson
model which roughly speaking descrives the transition function ofQN, see the recent survey
König. So while the convergence statement itself is interesting, the limiting process will be
quite boring. If we want to obtain a more interesting limit we should tune down the e�ect
of the random potential as we pass to the limit, i.e. make the disorder strength � = �N
depend on N and send it to zero as N!1. We expect that:

� Too slow convergence �N ! 0 gives the same qualitative behavior as for �xed
�N � � > 0.

� Too fast convergence �N!0 gives the same qualitative behavior as for �N=0, that
is the trajectories converge to a d-dimensional Brownian motion.

� There exists (at least one) critical scaling of �N where a phase transition occurs
between the two regimes.

Let us try to understand what the critical scaling for �N should be. Under PN2 we have
to rescale the coordinate process X to Xt

N = N¡1XbN2tc to get a process that con-
verges to the Brownian motion. Let us also extend � piecewise constantly by setting
� j[k1;k1+1)�:::�[kd;kd+1)=�((k1; :::; kd)) and de�ne �N(x)=Nd/2�(Nx), x2Rd.
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Lemma 1. Let us interpret the map ' 7!
R
Rd�

N(x)'(x)dx=: �N(') as a distribution in D 0,
the dual space of Cc

1=D. Assume that �(0) is a centered random variable with variance 1.
Then �N converges in distribution in D 0 to a centered Gaussian process (�('))'2Cc1 with
covariance

E[�(')�( )] = h';  iL2: (1)

This process is called the (space) white noise on Rd

Proof. By general results (�Mitoma's criterion�) it su�ces to show that for '1; :::; 'n2Cc1
the vector �Z

Rd
�N(x)'1(x)dx; :::;

Z
Rd
�N(x)'n(x)dx

�

converges to a multivariate centered Gaussian random variable with the covariance (1). By
taking linear combinations we can restrict our attention to the one-dimensional case, and
for '2Cc1 we haveZ

Rd
�N(x)'(x)dx'N¡d

X
x2Zd

Nd/2�(x)'(x/N)=N¡d/2
X
x2Zd

�(x)'(x/N):

There are O(Nd) values of x2Zd for which x/N is in the support of '(x/N), so by the
central limit theorem this integral converges to a centered Gaussian random variable �(')
with variance E[j�(')j2] = k'kL22 . �

So both �N and XN converge to nontrivial limits under the above scaling. Let us see
formally how this translates for QN

�N ;�. We have

dQN2
�N ;�

dPN2
=

1

ZN
�;�

exp

0@�N
X
k=0

N2¡1

�(Xk)

1A= 1

ZN
�;�

exp

0@�N
X
k=0

N2¡1

�(NXN¡2k
N )

1A
=

1

ZN
�;�

exp

0@�N
X
k=0

N2¡1

N¡d/2�N(XN¡2k
N )

1A
' 1

ZN
�;�

exp
�
�NN

2¡d/2
Z
0

1

�N(Xt
N)dt

�
:

So if �N =Nd/2¡2, then formally QN2
�N ;� converges to the measure Q on 
=C([0; 1];Rd)

which is given by

dQ
dP

=
1
Z
exp
�Z

0

1

�(Xt)dt

�
; (2)

where P is the Wiener measure on 
 and by a slight abuse of notation Xt(!) = !(t) is
again the coordinate process. But on the other side the factor

�N =N
d/2¡2
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only converges to zero if d < 4, so by our formal discussion above we cannot expect this
convergence to hold if d>4. And even for d=1;2;3 it is not at all obvious how to interpret
the integral

R
0

1
�(Xs)ds if � is a white noise. After all the white noise is only a distribution.

For example in d= 1 it is the distributional derivative of the Brownian motion and since
the Brownian motion has non-di�erentiable trajectories this means that � is not a function.

Our aim for the rest of the lecture is to understand how to construct the measure Q that
we formally wrote down in (2). It turns out that depending on the dimension d the problem
is more or less di�cult:

� For d = 1 the random variable
R
0

1
�(Xt)dt is almost surely well de�ned and Q is

equivalent to the Wiener measure.

� For d=2;3 the random variable
R
0

1
�(Xt)dt is almost surely not well de�ned, but Q

can still be constructed and is singular to the Wiener measure. Both cases d=2; 3
are conceptually similar but d=2 is technically simpler.

� For d>4 neither the random variable
R
0

1
�(Xt)dt nor the measureQ are well de�ned.

We will therefore focus on the case d=2; 3. Once we understand this special case we will
also understand how to deal with d=1 and why d> 4 is outside of our scope.

1.2 Brownian motion in a white noise potential

Let now P be the Wiener measure on 
= C([0; 1];Rd) with d 2 f1; 2; 3g, and let � be a
white noise on Rd. More precisely, let (�('))'2Cc1(Rd) be the centered Gaussian process
with covariance

E[�(')�( )]= h';  iL2; ';  2Cc1(Rd):

We would like to construct the measure

dQ
dP

=
1
Z
exp
�Z

0

1

�(Xt)dt

�
;

where Xs(!)=!(s) is the coordinate process on 
. For the moment we argue formally and
pretend that � is a smooth function on Rd, and we would like to understand the dynamics
of X under Q. For this purpose solve the backward Cauchy problem h: [0; 1]�Rd!R,

�
@t+

1
2
�

�
h(t; x)=¡1

2
jrh(t; x)j2¡ �(x); h(1; x)= 0:

Then by Itô's formula we have P-a.s.

0=h(1; X1)=h(0; 0)+

Z
0

1
�
@t+

1
2
�

�
h(t;Xt)dt+

Z
0

1

rh(t;Xt)dXt

=h(0; 0)+

Z
0

1
�
¡1
2
jrh(t;Xt)j2¡ �(Xt)

�
dt+

Z
0

1

rh(t;Xt)dXt;
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which is equivalent to

1
Z
exp
�Z

0

1

�(Xt)dt

�
=
eh(0;0)

Z
exp
�Z

0

1

rh(t;Xt)dXt¡
1
2

Z
0

1

jrh(t;Xt)j2dt
�
:

The prefactor on the right hand side is deterministic, while for well behaved h the stochastic
exponential has expectation 1 under P. This means that the prefactor drops out and

dQ
dP

= exp
�Z

0

1

rh(t;Xt)dXt¡
1
2

Z
0

1

jrh(t;Xt)j2dt
�
:

But now the Radon-Nikodym derivative is a stochastic exponential, so by Girsanov's the-
orem the coordinate process X solves the SDE

Xt=

Z
0

t

rh(s;Xs)ds+Bt (3)

under Q, where B is a Q-Brownian motion. So under the assumption that (3) has a unique
solution it is equivalent to construct Q or to solve (3) and in the following we concentrate
on the solution theory for (3). This looks like a harmless SDE, but actually h is only a
di�erentiable function if d=1 and in particularrh is only a distribution and not a function
in dimensions d=2;3. So we have to understand SDEs with distributional drift. This will
require tools from functional analysis and paracontrolled distributions and will be the main
topic of these lectures.

1.3 Singular martingale problem

We now take a generic SDE X: [0; 1]!Rd with distributional drift V : [0; 1]�Rd!Rd,

Xt=x+

Z
0

t

V (s;Xs)ds+Bt (4)

as our starting point, and try to develop a solution theory for such equations. Delarue and
Diel realized that if d = 1 then in certain situations rough path integration can be used
to make sense of (4). This was extended to d> 1 by Cannizzaro and Chouk who replaced
rough paths by paracontrolled distributions. Since our main aim is to learn paracontrolled
distributions, we follw Cannizzaro and Chouk.

The idea is elegant and in retrospective quite simple. If V is a nice function, then one way
of describing the law of X is through the martingale problem: The law of X is the only
probability measure on 
=C([0; 1];Rd) such that for all '2Cc1([0; 1]�Rd) the process

'(t;Xt)¡ '(0; x)¡
Z
0

t

(@s+ Gs)'(Xs)ds

is a martingale, where

Gs'(x)=
1
2
�'(x)+V (s; x)r'(x):
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If V (s) is not a nice function but only a distribution, then Gs' is well de�ned (we can
multiply the distribution V (s) with the smooth function r'), but Gs' is also just a
distribution and not a function because multiplying a distribution with a smooth function
leads to an object that is also just a distribution (think of multiplication with 1, the
smoothest function there is). Now we have again the problem that the integral

Z
0

t

(@s+ Gs)'(Xs)ds

does not make any sense, so we cannot even write down the martingale problem. The idea
is therefore to �nd a domain of non-smooth functions ': [0; 1]�Rd!R such that

(@s+ Gs)'(s)2Cb(Rd)

for all s 2 [0; 1]. Indeed the multiplication with a non-smooth function may increase the
regularity, think of multiplying a very irregular f > 0 with 1 / f . If we also have some
continuity in s, then for such ' the integral

R
0

t
(@s+ Gs)'(s; Xs)ds is well de�ned and we

can formulate the martingale problem: Q solves the martingale problem associated to (4)
if for all ' in our domain the process

'(t;Xt)¡ '(0; x)¡
Z
0

t

(@s+ Gs)'(s;Xs)ds

is a martingale. The next question is then how to obtain the existence and uniqueness of
solutions to this martingale problem, but we will get back later to this point. For now let
us just note that if '(s) is a non-smooth function, then it is not so obvious how to make
sense of V (s)r'. So as a �rst step we need a way of multiplying distributions.

2 Products of Distributions

2.1 Distributions

We will work with tempered distributions on Rd. Recall that the Schwartz functions are

S = f'2C1(Rd;C): k'kk;S <18k 2N0g;

where

k'kk;S = sup
j�j6k

k(1+ j�jk)@�'kL1:

The Schwartz distributions are the linear maps u:S !C which satisfy

ju(')j6Ck'kk;S

for some C > 0 and k 2N0. In that case we write u2S 0.
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Example 2. Clearly Lp = Lp(Rd) � S 0 for all p 2 [1;1] if we identify u 2 Lp with the
map ' 7!

R
Rd
u(x)'(x)dx, and more generally the space of �nite signed measures on (Rd;

B (Rd)) is contained in S 0. Another example of a tempered distribution is ' 7!@�'(x) for
�2N0d and x2Rd. A continuous function u is in S 0 if and only if it has at most polynomial
growth at in�nity.

Many maps on S 0 can be de�ned by duality: Let A:S !S be such that there exists a
linear map At:S !S which satis�es for all ';  2SZ

Rd
(A')(x) (x)dx=

Z
Rd
'(x)(tA )(x)dx

and also for all m2N0 there exist km2N0, Cm> 0 with ktA'km;S 6Cmk'kkm;S . Then
we de�ne for u2S 0

(Au)(') :=u(tA'):

Example 3.

i. For �2N0
d and A= @� we have tA=(¡1)j�j@�.

ii. For f 2C1 with all partial derivatives of at most polynomial growth and A'= f'
we have tA=A.

iii. For the Fourier transform

A'(z)=F '(z) := '̂(z) :=

Z
Rd
e¡2�ixz'(x)dx

we have tA=A.

iv. For the inverse Fourier transform

A'(z)=F ¡1'(z)=

Z
Rd
e2�ixz'(x)dx

we have tA=A.

v. For �2S and the convolution

A'= �� '=
Z
Rd
�(� ¡ y)'(y)dy

we have tA'= (�(¡�)) � '. In this case one can show that � � u 2C1\S for all
u2S 0.

The main reason for considering test functions in S rather than in the simpler space Cc1

is that for elements of S 0 we can de�ne the Fourier transform by duality, which is not true
for elements of (Cc1)0 because Cc1 is not closed under Fourier transformation.

Example 4. Let u2S 0 and ';  2S . The following relations will be used all the time
in what follows:

� F ¡1F u=FF ¡1u= u for all u2S 0;
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� Parseval's identity: Z
Rd
'(x) (x)�dx=

Z
Rd
'̂(x) ̂(x)�dx

and by extension u('�)= û('̂�);

� @�u=(¡2�ix)�u;

� u'= û � '̂;

� u � '= û'̂;

� supp(' �  )� supp(')+ supp( )= fx+ y:x2 supp('); y 2 supp( )g.

Note that we can only de�ne the product u' by duality if '2C1 with partial derivatives
of polynomial growth. If ' is a non-smooth function or even a distribution, then we need
other arguments.

Example 5. In d=1 we can turn 1

x
into a tempered distribution via the so called principal

value. The details of that construction are not important for us, but with it we obtain for
the Dirac delta � (i.e. �(')= '(0))

0= (�� x)= (�� x)� 1
x
=/ ��

�
x� 1

x

�
= �� 1= �:

This example shows that a general extension of the product u' to distributions or non-
smooth functions ' is not possible. Our way of overcoming this di�culty is to restrict both
u and ' to suitable subspaces of S 0. The simplest solution is to require u and ' to have
compatible regularity. For that purpose we need to introduce regularities on distribution
spaces.

2.2 Besov spaces

To measure the regularity of distributions we �rst note that if u 2S 0 with supp(û)�K,
where K �Rd is a compact set, then there exists '2Cc1 with 'jK�1 and therefore

u=F ¡1(û)=F ¡1('û)= (F ¡1') �u:

Since F ¡1'2S we get u2C1. Moreover, if jz j ' � for all z 2 supp(û), then essentially
we can picture u as a sine-function with period (2��)¡1. So if � is small, u is smooth
and oscillating very slowly but if �� 1, then u is very wild. This suggests that smooth
functions have some decay in their Fourier transform. It turns out that measuring the size
of single Fourier coe�cients does not provide enough information and instead it is more
useful to group the di�erent frequency ranges into blocks. More precisely, we would like
to decompose

u=F ¡1(û)=F ¡1(I[0;1)(j�j)û)+
X
j>0

1

F ¡1(I[2j;2j+1)(j�j)û)=�¡1u+
X
j=0

1

�ju:
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Then �ju is the projection of u onto its frequencies of order �2j. Since frequencies of
order 2j correspond to spatial scales of order 2¡j, the sum

P
i6j�iu provides a description

of u up to the spatial scale 2¡j. For a smooth function u this should already give a very
accurate picture of u, and therefore we expect �ju to rapidly decay as j!1. Measuring
the strength of that decay will provide us with a notion of regularity. But there are two
problems with the above formal decomposition: First of all it is not even well de�ned,
because we are multiplying û 2S 0 with non-smooth indicator functions. And even if we
could make sense of this product, for example by setting

F ¡1(I[2j ;2j+1)(j�j)û) :=F ¡1(I[2j;2j+1)(j�j)) �u;

then it still turns out that the operation u 7! �ju is quite badly behaved. For example,
we would like to estimate k�jukLp6 kF ¡1(I[2j ;2j+1)(j�j))kL1kukLp via Young's inequality,
but the L1 norm on the right hand side is in�nite because while F ¡1(I[2j;2j+1)(j�j))2C1,
it is not in L1.

De�nition 6. For u2S 0 and j>¡1 we de�ne the Littlewood-Paley blocks of u as

�ju=F ¡1(�jû);

where (�j)�Cc1 is a smooth partition of unity with

�¡1' I[0;1)(j�j); �j' I[2j ;2j+1)(j�j); j> 0:

Here we choose the � such that they sum up to 1 everywhere (�unity�) and such that the
support of �j only overlaps with the supports of �j¡1 and �j+1 (�smooth partition�). We
write Kj=F ¡1�j, so that �ju=Kj �u. We also use the notation

�6ju=
X
i6j

�iu; �<ju=
X
i<j

�iu; K6j=
X
i6j

Ki; K<j=
X
i<j

Ki:

The kernels Kj ;K<j ;K6j are all bounded in L1, uniformly in j.

It is easy to see that u=
P

j>¡1�j u= limj!1�6ju for all u2S 0 and Young's inequality
we get uniformly in j:

k�jukLp6 kKjkL1kukLp. kukLp:

As discussed above, we want to describe the regularity of u2S 0 by the decay (or growth)
of�ju. For that purpose we �rst have to decide how to measure the size of�ju. A canonical
choice is to consider the Lp norm for p2 [1;1].

De�nition 7. For �2R and p; q 2 [1;1] the Besov space Bp;q
� is de�ned as

Bp;q
� =

�
u2S 0: kukBp;q� = k(2j� k�jukLp)j>¡1k`jq<1

	
:
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So the index p describes the integrability and the index � the �regularity� (i.e. the decay
of the blocks). The index q provides some �ne-tuning and is not very important. Bp;q

� is
always a Banach space, for all �; p; q. We will mostly work with p= q=1 for which we
introduce a special notation:

C �=B1;1
� ; k�k�= k�kB1;1

� :

Exercise 1. Let � denote the Dirac delta, �(')= '(0). Show that �02C ¡d.

If �2 (0;1) nN, then C � is the space of b�c times di�erentiable functions whose partial
derivatives of order b�c are (� ¡ b�c)-Hölder continuous. But for k 2 N the space C k is
strictly larger than Cb

k, the space of k times continuously di�erentiable functions with
bounded partial derivatives of all order.

Exercise 2. Show that kuk� 6 kuk� for � 6 �, that kukL1 . kuk� for � > 0, that
kuk�. kukL1 for �6 0, and that k�6jukL1. 2¡j�kuk� for �< 0.

We will often use these inequalities without explicitly mentioning it.

The following Bernstein inequality is very useful when dealing with functions with com-
pactly supported Fourier transform. We present the proof to show that it is not di�cult
and because many proofs that we will omit later are based on similar arguments.

Lemma 8. (Bernstein inequality) Let B be a ball, k2N0, and 16 p6 q61. There exists
a constant C >0 that depends only on k, B , p and q such that for all �>0 and u2Lp with
supp(F u)��B we have

max
�2Nd:j�j=k

k@�ukLq6C�
k+d(

1

p
¡ 1

q
)kukLp:

Proof. Let  2Cc1 with  �1 on B and write  �(x)= (�¡1 x). Young's inequality gives

k@�ukLq= k@�F ¡1( �û)kLq= k(@�F ¡1( �)) �ukLq6 k@�F ¡1( �)kLrkukLp;

where 1+ 1

q
=

1

p
+

1

r
. Now it su�ces to note that

k@�F ¡1( �)kLr=
�Z

Rd
j@�(�dF Rd

¡1 (�x))jrdx
�
1/r

=

�
�(j�j+d)r

Z
Rd
j(@�F Rd

¡1 )(�x)jrdx
�
1/r

=

�
�(j�j+d)r¡d

Z
Rd
j@�F Rd

¡1 (x)jrdx
�
1/r

=�
j�j+d(1¡ 1

r
)k@�F Rd

¡1 kLr:

The claim follows by plugging in the equality 1¡ 1

r
=

1

p
¡ 1

q
. �

It follows immediately that for � 2 R, u 2 C �, and � 2 N0d, we have k@�uk�¡j�j . kuk�.
Another simple application is the Besov embedding theorem, whose proof we leave as an
exercise.
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Lemma 9. (Besov embedding)

Let 16 p16 p261 and 16 q16 q261, and let �2R. Then for all u2S 0

kuk
Bp2;q2
�¡d(1/p1¡1/p2). kukBp1;q1� :

The next lemma, a characterization of Besov regularity for functions that can be decom-
posed into pieces which are localized in Fourier space, will also be immensely useful. Recall
that an annulus is a set A = fx 2Rd: a6 jxj6 bg for some 0< a < b, and a ball is a set
B = fx2Rd: jxj6 bg.

Lemma 10.

1. Let A �Rd be an annulus, let �2R, and let (uj) be a sequence of smooth functions
with supp(F uj)� 2jA and such that kujkL1. 2¡j� for all j. Then

u=
X
j>¡1

uj 2C � and kuk�. sup
j>¡1

f2j�kujkL1g:

2. Let B �Rd be a ball, let �> 0, and let (uj) be a sequence of smooth functions with
supp(F uj)� 2jB and such that kujkL1. 2¡j� for all j. Then

u=
X
j>¡1

uj 2C � and kuk�. sup
j>¡1

f2j�kujkL1g:

Proof. If F uj is supported in 2jA , then �i uj=/ 0 only if 2i' 2j and therefore

k�iukL16
X

j:2j'2i
k�i ujkL16 sup

k>¡1
f2k�kukkL1g

X
j:2j'2i

2¡j�' sup
k>¡1

f2k�kukkL1g 2¡i�:

If F uj is supported in 2jB , then �iuj=/ 0 only if 2i. 2j. Therefore,

k�iukL16
X

j:2j&2i
k�i ujkL16 sup

k>¡1
f2k�kukkL1g

X
j:2j&2i

2¡j�' sup
k>¡1

f2k�kukkL1g 2¡i�;

where in the last step we used that �> 0. �

A similar result also holds for Besov spaces Bp;q
� with general p; q2 [1;1], but we will not

need this.

2.3 The paraproduct and the resonant term

Now that we know how to measure the regularity of distributions, let us come back to the
problem of multiplying distributions. We will follow Bony [?] who introduced paraproducts
which provide a useful tool to decompose the multiplication into simpler problems. The
usefulness of the paraproduct comes from the following simple observation:
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Lemma 11. There exists an annulus A such that for all j> 1 and all i6 j ¡ 2

supp(F (�iu�jv))� 2jA ; u; v 2S 0:

Moreover, there exists a ball B such that for all i; j>¡1 with ji¡ j j6 1

supp(F (�iu�jv))� 2jB :

Proof. This is quite simple:

supp(F (�iu�jv))= supp(F �iu �F �ju)� supp(F �iu)+ supp(F �ju)

�2iA~+ 2jA~=2j(2i¡jA~+A~)

for another annulus A~. By our assumptions on the dyadic partition of unity we can choose
A~ such that 2i¡jA~+A~�A for a new annulus A and all i6 j ¡ 2.
If on the other side ji¡ j j6 1, then all we can say is that supp(F (�iu�jv))� 2jB for a
ball B . �

Intuitively, this means that multiplying �jv, a function that lives on the spatial scale 2¡j,
with �iu for i 6 j ¡ 2, we obtain a new function �iu�jv which still lives on the spatial
scale 2¡j. The multiplication does not create e�ects on larger scales. If on the other hand
ji ¡ j j, then �iu and �j live on the spatial scale 2¡j, but multiplying the two together
can create e�ects on the scale 1. We interpret this as a resonance phenomenon.

Example 12. Below we see a slowly oscillating function u (red curve) and a fast sine
curve v (blue curve). The product uv is shown under the two curves. We see that the local
�uctuations of uv are due to v, and that u v is essentially oscillating with the same speed
as v.

Figure 1. u oscillates slowly. Figure 2. v is a fast sine curve.

Figure 3. uv still lives on the same scale as v.

Formally we can decompose the product uv of two distributions as

uv=
X

i;j>¡1
�iu�j v= u� v+ u� v+u� v:

12



Here u� v is the part of the double sum with i6 j ¡ 2, u� v is the part with i> j + 2,
and u� v is the �diagonal� part, where ji¡ j j6 1. More precisely, we de�ne

u� v= v�u=
X
j>¡1

�6j¡2u�j v and u� v=
X

i;j:ji¡j j61
�iu�j v:

We call u� v and u� v paraproducts, and u� v the resonant term.

Bony's crucial observation is that u � v (and thus u � v) is always a well-de�ned distri-
bution. Heuristically, u � v behaves at large frequencies (i.e. small spatial scales) like v
and thus retains the same regularity, and u provides only a frequency modulation of v.
This can also be seen in Example 12 above, where the product uv is actually equal to the
paraproduct u � v because u has no rapidly oscillating components. The only di�culty
in constructing uv for arbitrary distributions lies in handling the diagonal term u � v.
The following key estimates provide the analytically precise formulation of the preceding
heuristic discussion:

Theorem 13. (Paraproduct estimates) For any � 2R and u; v 2S 0 we have

ku� vk�. kukL1kvk� ; (5)

and for �< 0 furthermore

ku� vk�+�. kuk�kvk�: (6)

For �+ � > 0 we have

ku � vk�+�. kuk�kvk�: (7)

Proof. By Lemma 11 there exists an annulus A such that supp(F (�6j¡2u�jv))� 2jA ,
and for u2L1 we have

k�6j¡2u�j vkL16 k�6j¡2ukL1k�jvkL1. kukL1 2¡j�kvk�:

Inequality (5) now follows from Lemma 10. The proof of (6) and (7) works in the same
way, except that for estimating u�v we need �+ � >0 because now the terms of the series
are supported in balls and not in annuli. �

The ill�posedness of u � v for � + � 6 0 can be interpreted as a resonance e�ect since
u � v contains exactly those part of the double series where u and v are in the same
frequency range. As discussed above, the paraproduct u�v can be interpreted as frequency
modulation of v.

In combination with Exercise 2 above we deduce the following simple corollary:

Corollary 14. Let u 2 C � and v 2 C � with �+ � > 0. Then the product (u; v) 7! uv of
smooth functions can be extended to a bounded bilinear operator from C � � C � to C �^�.
While u� v, u� v, and u � v depend on our speci�c dyadic partition of unity, the product
uv does not.

13



The condition �+ � > 0 is essentially sharp:

Example 15. Let �; � 2 R and consider the functions un(x) = n¡�einx on R, and
vn(x)=n

¡�e¡inx. It is easy to see that kunk�~! 0 and kvnk�~! 0 for all �~<� and �~< �.
Nonetheless

unvn�n¡(�+�)

diverges to 1 whenever �+ � < 0, and stays constant for �+ �=0.

3 Not-so-singular di�usions

3.1 Domain of the generator

Equipped with these tools, we now take a new shot at constructing the di�usion X:

[0; T ]!Rd

dXt=V (t;Xt)dt+dBt; X0=x;

with a distributional drift V 2 C([0; T ]; C ¡�(Rd;Rd)) for some � > 0. That is, V (t) is a
vector of d distributions in C ¡�(Rd). As discussed above, the idea is to understand the
domain of the in�nitesimal generator

Gtu=
1
2
�u+V (t)ru:

For that purpose we have to �nd functions u with Gtu 2 Cb(R
d). The easiest way of

guaranteeing this is to prescribe the right hand side f in Gtu= f and to solve for u. More
precisely, we will study the time-dependent problem u: [0; T ]�Rd!R

(@t+ Gt)u= f ; u(T )= ';

for given f 2Cb([0;T ]�Rd) and '2C �(Rd) with an �>0 to be determined. For simplicity
we will slightly abuse notation and write for all m2N and 
 2R

CTC 
=C([0; T ]; C 
(Rd;Rm)); kvkCTC 
= sup
t2[0;T ]

kv(t)k
:

Then the paraproduct estimates allow us to control Vru whenever u 2 CTC � with � >
1+ �. Indeed, then Bernstein's inequality gives ru2CTC �¡1 and therefore

kVrukCTC ¡�. kV kCTC ¡�krukCTC �¡1. kV kCTC ¡�kukCTC �:

So we would like to set up a Picard iteration for u in the Banach space CTC �. Since Vru
has only regularity ¡�, we need a mechanism to increase the regularity. This is provided
by the Laplacian: We have �

@t+
1
2
�

�
u=¡Vru+ f ;

14



and the right hand side is in CTC ¡�. Since the right hand side is a second order derivative
of u, we might guess that u 2 CTC 2¡�. This is indeed justi�ed by the Schauder (heat
kernel) estimates for the semigroup generated by the Laplacian. The following statement
is correct but not totally precise because we do not explain in which sense nor in which
space we solve the equation.

Lemma 16. Let �2R and let (Pt)t>0 be the semigroup generated by �/2,

Ptu=F ¡1(e¡t2j�z j
2
û)=F ¡1(e¡t2j�z j

2
) �u= pt�u;

where pt is the Gaussian density with mean 0 and covariance t � Id. Given f 2 CTC �¡2

and '2C �, the unique weak solution u to�
@t+

1
2
�

�
u= f ; u(T )= ';

is

u(t)=PT¡t'¡
Z
t

T

Ps¡tf(s)ds; (8)

and we have

kukCTC �. (1+T )(kf kCTC �¡2+ k'k�):

Proof. (Sketch of proof):

Let us write �̂ for the space Fourier transform. Then our equation is equivalent to

@tû(t; z)=¡
1
2
�u(t; z)+ f̂ (t; z)=

1
2
j2�z j2û(t; z)+ f̂(t; z)

with terminal condition û(T ; z) = '̂(z). This is an ordinary di�erential equation for û(z)
that admits the explicit solution

û(t; z)= e¡(T¡t)2j�z j
2
'̂(z)¡

Z
t

T

e¡(s¡t)2j�z j
2
f̂(s; z)ds;

which is nothing but (8). To derive the estimate for kukCTC � note that �j only contains
frequencies of the order 2j and therefore formally for all 
> 0 and � 2R

k�jPt kL1= kPt�j kL1' e¡ct2
2jk�j kL1

=t¡
/22¡j

�¡

t
p
2j
�

e¡c

¡
t

p
2j
�
2
�
k�j kL1

.t¡
/22¡j(
+�)k k�:

This can be made rigorous by using similar arguments as in the proof of Bernstein's
inequality. Thus, we have

kPt k�+
. t¡
/2k k�
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for all 
> 0 and � 2R. We apply this with 
=0, �=�, and  = ' to obtain

k(t 7!PT¡t')kCTC �. k'k�:

Also, 



Z
t

T

Ps¡tf(s)ds






�

6
Z
t

T

kPs¡tf(s)k�ds.
Z
t

T

js¡ tj¡1kf kCTC �¡2ds:

Of course, the right hand side is in�nite because js ¡ tj¡1 barely fails to be integrable.
But we already see that if we wanted to regularize f by 2¡ " degrees of regularity, then
we would get an estimate for u. To gain two full derivatives we would have to be slightly
more careful and use two di�erent estimates, one for s close to t, and one for s close to T . �

We argued above that for u2CTC � with �> 1+ � the product Vru is well de�ned and
in CTC ¡�. In that case the Schauder estimates give us for the solution u to�

@t+
1
2
�

�
v=¡Vru+ f ; v(T )= ';

the estimate

kvkCTC 2¡�. kVrukCTC ¡�+ kf kCTC ¡�+ k'k2¡�:

So if 2¡ �=�, then we can set up a Picard iteration in the Banach space CTC � and hope
to �nd a unique solution u to the equation. For that to work we need that 2¡ � > 1+ �,
i.e. � < 1/2.

Proposition 17. Let � < 1/2 and V 2CTC ¡� and set �=2¡ �. Then for all f 2CTC ¡�

and '2C � there exists a unique solution u2CTC � to the equation�
@t+

1
2
�

�
u=¡Vru+ f ; u(T )= ': (9)

Moreover, u depends continuously on (V ; f ; ')2CTC ¡��CTC ¡�� C �.

Proof. (Sketch of proof):

We already know that

¡(u)=PT¡t'¡
Z
t

T

Ps¡t(¡Vru(s)+ f(s))ds

is continuous from CTC � to itself. One can also show that for �0< � which still satis�es
�0> 1+ � and for t<T su�ciently close to T the map ¡ is a contraction on C([t; T ];C �0).
This gives us a unique solution u on [t; T ] and with regularity C �0. A posteriori it is then
easy to see that u is actually in C([t; T ]; C �) (but actually we don't care about this very
much, C �0 is good enough for our purposes). Because our equation is linear the length
of the interval �= T ¡ t can be chosen in a way that only depends on V but not on the
terminal condition ', and therefore we can repeat the Picard iteration on [t ¡ �; t], etc.,
to construct the unique solution u2CTC �.
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The solution u depends continuously on the data because all the operations in the equation
are continuous. �

3.2 Application to the Brownian motion in a white noise potential

We now know how to solve the generator equation

(@t+ Gt)u= f ; u(T )= ';

for Gt= 1

2
�+V (t)r with V ; f 2CTC ¡� and '2C 2¡� whenever � > 1/2. Recall that we

want to construct the probability measure Q on C([0; T ];Rd) that is formally given by

dQ
dP

=
1
Z
exp
�Z

0

T

�(Xt)dt

�
;

where P is the Wiener measure and � is a space white noise on Rd, and that this is
equivalent to solving the SDE

dXt=rh(t;Xt)dt+dBt

on [0; T ], where h solves

�
@t+

1
2
�

�
h(t; x)=¡1

2
jrh(t; x)j2¡ �(x); h(T ; x)=0:

So as a �rst step we should solve this equation which is of a similar form as (9) except that
it is slightly more complicated because it is nonlinear. To see what regularity to expect
of the solution h, let us �rst derive the regularity of the white noise. It turns out that the
white noise itself does not lie in any Besov space at all because it is in a sense �unbounded�
at in�nity. This is a similar phenomenon as for the Brownian motion on R, which is locally
Hölder continuous of order 1/2¡ " but

sup
n

jBn+1¡Bnj
j(n+1)¡nj� = sup

n

jBn+1¡Bnj
1�

=1

for all �2R because the variables (Bn+1¡Bn)n2N are independent standard Gaussians.
This di�culty can be overcome by considering weighted Besov spaces, but to keep the
presentation as simple as possible we will not do this but instead simply restrict � to a
compact set:

Lemma 18. Let � be a space white noise on Rd. By the convergence result in Lemma 1
(which can be easily lifted from convergence in D 0 to convergence in S 0) we can assume
that � almost surely takes values in S 0. Moreover, for all compactly supported bounded
functions  , for all 
 <¡d/2, and p2 [1;1) we have

E[k� k

p]<1:
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Proof. Because we only know  2L1 it is not obvious that � is still an element of S 0.
One way to see this would be to approximate � by �N as in Lemma 1. Given � with
values in S 0 we have for all p2 [1;1) and all � 2R

E
h
k� k

Bp;p
�

p
i
=
X
j>¡1

2j�p
Z
Rd
E[j�j(� )(x)jp]dx=

X
j>¡1

2j�p
Z
Rd
E[j�(Kj(x¡ �) )jp]dx:

The random variable �(Kj(x¡ �) ) is Gaussian, and therefore its p-th moment is up to a
constant simply equal to its second moment raised to the p/2, i.e.

E[j�(Kj(x¡ �) )jp]'E[j�(Kj(x¡ �) )j2]p/2=
�Z

Rd
jKj(x¡ y) (y)j2dy

�
p/2

=

�Z
Rd
j2jdK0(2

jy) (x¡ y)j2dy
�
p/2
;

where we used that the dyadic partition of unity Kj can be chosen such that Kj(x) =
2jdK0(2

jx). The integral on the right hand side is only over x¡B, where B is the compact
set where  is supported. Using the faster-than-polynomial decay of K0 we get the bound�Z

Rd
j2jdK0(2jy) (x¡ y)j2dy

�
p/2
.
�Z

x¡B
j2jdK0(2jy)j2dy

�
p/2
. 2jdp/2(1+ jxj)¡d¡1;

which leads to

X
j>¡1

2j�p
Z
Rd
E[j�(Kj(x¡�) )jp]dx.

X
j>¡1

2j�p
Z
Rd
2jdp/2(1+ jxj)¡d¡1dx.

X
j>¡1

2jp(�+d/2):

For �<¡d/2 the right hand side is �nite and we obtain E
h
k� k

Bp;p
�

p
i
<1. Now it su�ces

to apply the Besov embedding theorem: Given 
 < ¡d / 2 let p 2 [1; 1) be such that

+ d/p<¡d/2. Then

E[k� k

p].E

h
k� k

Bp;p

+d/p

p
i
<1:

�

Remark 19.

i. If we would not have localized by multiplying with  we would have only got the
estimateZ

Rd
E[j�(Kj(x¡ �))jp]dx'

Z
Rd
(kKj(x¡ �)kL22 )p/2dx=

Z
Rd
(2jdkKkL22 )p/2dx=1

simply because we are integrating over an in�nite volume.

ii. A key tool in the proof was that for Gaussian random variables all moments are
compatible, and therefore we were able to obtain an estimate for the p-th moment
while only explicitly computing the second moment.
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Actually it is more convenient to take a periodic version of � rather than to truncate it
outside of a compact set. More precisely, let  = I[¡M;M ]d, so  � 2 C ¡d/2¡ (we use the
notation C ¡d/2¡=

S
">0 C ¡d/2¡"), and set

�~(')=
X
k2Z

 �('(� ¡ k2M)):

One can check that we still have �~2 C ¡d/2¡, and from now on we work with this �~. To
lighten the notation we still write � though.

Now let us get back to our equation�
@t+

1
2
�

�
h=¡1

2
jrhj2¡ �:

We just saw that at best the right hand side is in CTC ¡d/2¡. Then by the Schauder
estimates we expect h2CTC 2¡d/2¡ and thus rh2CTC 1¡d/2¡. But this means that rh
has negative regularity as soon as d>2 and therefore the product jrhj2 is not well de�ned!
But we simply ignore this problem and assume that we are given a solution h with the
natural regularity h 2 CTC 2¡d/2¡. We will discuss later how to solve the equation for h
based on similar arguments that we used in the generator equation.

If h2CTC 2¡d/2¡ is given, then rh2CTC 1¡d/2¡ and d/2¡ 1< 1/2 exactly if d < 3. So
for d= 1; 2 we can set � = d/2¡ 1¡ " for some small " > 0 and �= 2¡ �, and then the
arguments from Section 3.1 allow us to solve�

@t+
1
2
�

�
u=¡rhru+ f ; u(T )= ';

for all f 2CTC ¡� and '2C �.

Theorem 20. Let d2f1; 2g, 
=C([0; T ];Rd) and let X be the coordinate process on 
.
For any x2Rd there exists a unique probability measure Qx on 
 with Q(X0=x)=1 and
such that for all f 2Cb([0; T ]�Rd) and '2C � the process

u(t;Xt)¡u(0; x)¡
Z
0

t

f(s;Xs)ds

is a martingale, where u is the solution to�
@t+

1
2
�

�
u=¡rhru+ f ; u(T )= ':

Moreover, the coordinate process is Markovian under Qx and if �2S with
R
Rd
�(x)dx=1

and �n= �n � � for �n(x)=nd�(nx), then:

i. Qx is the weak limit of

dQx
n

dPx
=

1
Zx
nexp

�Z
0

T

�n(Xs)ds

�
;

where Px is the Wiener measure with X0= x;
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ii. X is of the form

Xt=x+At+Bt; (10)

where A is Qx-almost surely 
-Hölder continuous for all 
 < 1 and satis�es

At= lim
n!1

Z
0

t

(�n �rh)(s;Xs)ds:

Proof. (Sketch of proof):

The existence is shown by proving the relative compactness (tightness) of the measures
(Qx

n)n2N on 
. The initial condition is �xed as X0 = x under all the (Qx
n), so by the

Kolmogorov-Chentsov criterion it su�ces to prove a bound of the form

EQx
n[jXt¡Xsjp]. jt¡ sjp/2

uniformly in n, for some p > 2. For that purpose we �x k 2 f1; :::; dg and consider the
solution un;k to �

@t+
1
2
�

�
un;k=¡rhnrun;k+rhn;k; un;k(T )=0;

whererhn;k is the k-th coordinate ofrhn. With this un;k we apply Itô's formula underQx
n:

un;k(t;Xt)¡un;k(s;Xs)=

Z
s

t
�
@r+

1
2
�+rhnr

�
un;k(r;Xr)dr+

Z
s

t

run;k(r;Xr)dBr

=

Z
s

t

rhn;k(r;Xr)dr+

Z
s

t

run;k(r;Xr)dBr

=Xt
k¡Xs

k¡ (Bt
k¡Bs

k)+

Z
s

t

run;k(r;Xr)dBr:

If we rearrange this equation to have Xt
k¡Xs

k on one side and all the other terms on the
other side, then we can use the regularity of un (which can be controlled uniformly in n)
to prove the desired uniform bound for EQx

n[jXt
k¡Xs

k jp]. Any limit point Qx then satis�es
the characterization i., and also it is not di�cult to show that it solves the martingale
problem. Moreover, actually we can show that

EQx
n[j(Xt

k¡Xs
k)¡ (Bt

k¡Bs
k)jp]. jt¡ sjp;

whenever p> 1, which proves the decomposition (10) and the regularity of A under Qx.

As for the uniqueness, letQx be a solution to the martingale problem, let f 2Cb([0;T ]�Rd)
and consider the solution u to�

@t+
1
2
�

�
u=¡rhru+ f ; u(T )=0:

Then

0=u(0; x)+

Z
0

T

f(s;Xs)ds+MT ;
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and taking the expectation we see that EQx

�R
0

T
f(s; Xs)ds

�
is uniquely determined by u.

This shows that the �nite-dimensional marginal distributions of X under Qx are uniquely
determined, and therefore Qx is unique. Moreover, if a martingale problem gives rise to
unique marginal distributions, then the coordinate process is Markovian under the solution
to the martingale problem.

It remains to show that

At= lim
n!1

Z
0

t

rhn(s;Xs)ds:

Since At
k is the limit of um;k(t; Xt)¡ um;k(s; Xs)¡

R
s

trum;k(r; Xr)dBr, this will follow if
we can show that uniformly in all large m

EQx
m

�����um;k(t;Xt)¡um;k(s;Xs)¡
Z
s

t

rum;k(r;Xr)dBr¡
Z
0

t

(�n �rhk)(s;Xs)ds

����2�6 c(n)
with c(n)! 0 for n!1. So consider the equation

�
@t+

1
2
�

�
un
m;k=¡rhmrun

m;k+ �n �rhk; un
m;k(T )=0; (11)

and note that

Z
0

t

(�n �rh)(s;Xs)ds=un
m;k(t;Xt)¡un

m;k(s;Xs)¡
Z
s

t

run
m;k(r;Xr)dBr:

Now the required bound follows from the continuous dependence of un
m;k on the data:

um;k = um
m;k and the functions um

m;k and un
m;k are close to each other because of the

continuous dependence of (11) on the data. �

Remark 21. Here we follow Cannizzaro and Chouk, but essentially the same result was
previously shown by Flandoli, Issoglio, Russo. The di�erence is that Cannizzaro and Chouk
are ultimately able to pass the regularity barrier ¡1/2 for the distributional drift.

Assuming that we can solve the equation for h, the above arguments allow us at least to
construct the measure

dQ
dP

=
1
Z
exp
�Z

0

T

�(Xs)ds

�

for the periodized version � of the white noise. By making the period 2M of � larger and
larger it seems plausible that we can also take � as the white noise on all of Rd, but we will
not bother with this here. What is more interesting is that in dimension d=2 the solution
hn to �

@t+
1
2
�

�
hn=¡1

2
jrhnj2¡ �n
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actually does not converge for n!1. Only after adding a large constant cn!1 and
modifying the equation to�

@t+
1
2
�

�
hn=¡1

2
(jrhnj2¡ cn)¡ �n; hn(T )=0;

we are able to pass to the limit. Picking up the argument from the introduction, we get
Px-a.s.

0=hn(0; x)+

Z
0

T
�
@t+

1
2
�

�
hn(t;Xt)dt+

Z
0

T

rhn(t;Xt)dXt

=hn(0; x)+

Z
0

T
�
¡1
2
(jrhn(t;Xt)j2¡ cn)¡ �n(Xt)

�
dt+

Z
0

T

rhn(t;Xt)dXt;

which is equivalent to

1
Zx
nexp

�Z
0

T

�n(Xt)dt

�
=
eh

n(0;x)+cnT

Zx
n exp

�Z
0

T

rhn(t;Xt)dXt¡
1
2

Z
0

T

jrhn(t;Xt)j2dt
�
;

i.e. Zxn= eh
n(0;x)+cnT diverges to +1 for n!1. This indicates that Qx

n becomes singular
with respect to Px in the limit n!1. Indeed, one can show that when replacing �n by
��n we should replace cn by �2cn to obtain a nontrivial limit for hn. But this means that
for p2 (0; 1)

EPx

��
1

Zx
nexp

�Z
0

T

�n(Xt)dt

��p�
=

EPx

�
exp
¡R

0

T
p�n(Xt)dt

��
exp(phn(0; x)+ pcnT )

=
exp(hn;p(0; x)+ p2cnT )

exp(phn(0; x)+ pcnT )
:

The �rst terms in the two exponentials converge to a �nite limit as n!1, but

lim
n!1

exp(cnT (p2¡ p))= 0;

which proves that the Radon-Nikodym derivative dQx
n/dPx converges to zero in Lp and

thus in probability. This easily implies that the limiting measureQx is singular with respect
to Px.

4 Quite-singular di�usions

So far we are (modulo periodization of the white noise �) able to construct the measure
Qx formally given by

dQx

dPx
=

1
Zx

exp
�Z

0

T

�(Xt)dt

�
in d=1;2. The case d=3 is not contained in our arguments above because then the solution
h to �

@t+
1
2
�

�
h=¡

�
1
2
jrhj2¡1

�
¡ �; h(T )= 0;
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(it is also necessary to renormalize the equation in d= 3) satis�es only rh 2 CTC ¡1/2¡.
This means that we expect u2CTC 1/2¡ for the solution u to

�
@t+

1
2
�

�
u=¡rhru+ f ; u(T )= ';

and therefore the product rhru is ill-de�ned. To deal with this case we will need para-
controlled distributions.

4.1 Paracontrolled distributions

To simplify notation we write again V instead of rh, and we want to solve the PDE

Lu=¡(ru)V + f ; u(T )= ';

for L = @t+
1

2
� and V 2CTC ¡1/2¡.

First, let us try to see what is the worst regularity of V that we could possibly hope to treat,
because this will allow us to understand the concept of local subcriticality. If V 2CTC ¡�

and we are somehow able to make sense of the right hand side of the equation, then it is
at best in CTC ¡� as well. Therefore, we expect u2CTC 2¡� and then ru2CTC 1¡�. Now
if we naively apply the estimates for paraproduct and resonant term without making sure
that the resonant term is even de�ned, then we get the following heuristic for the regularity
of the product (ru)V :

� If ru has positive regularity, then (ru)V 2CTC ¡�.

� But if ru has negative regularity, i.e. if 1 ¡ � < 0, then (ru)V 2 CTC 1¡�¡� =
CTC 1¡2�.

We see that something happens around � = 1, and for concreteness let us assume that
�=1+ ". Then our original hope to have regularity 2¡ �=1¡ " for u was too optimistic,
and we should at best expect regularity ¡1¡ 2" for the right hand side of the equation,
so 1¡ 2" for u. But then we should have (ru)V 2 CTC ¡1¡3", which leads us to update
our guess for the regularity of u to u 2 CTC 1¡3". So we are caught in an in�nite loop
where we update our guesses for the regularity of u to worse and worse spaces, ultimately
spiralling down to �CTC ¡1�. We say that the equation is locally supercritical for � > 1,
it is critical for � = 1, and it is locally subcritical for � < 1. Regularity structures,
paracontrolled distributions, and all the other approaches only allow us to handle locally
subcritical equations, so we de�nitely have to assume � < 1. In the following we treat the
case �=1/2+ which corresponds to V =rh in d=3. Our analysis can be easily seen to
extend all the way to � < 2/3. But to not get confused with regularity indices so much,
the case �=1/2+ is more convenient.

For pedagogical reasons it is also more convenient to write the factor V on the right hand
side in the following argumentation. The product (ru)V can be decomposed via the
paraproduct and the resonant term as a sum of three terms

(ru)V =(ru)�V +(ru)�V +(ru) �V :
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The �rst two terms are well de�ned without a problem and only the last term is di�cult
to make sense of. Let us be bold for the moment and assume that we have a way to make
sense of (ru) � V and that this term has its natural regularity. Given V 2CTC ¡1/2¡ we
expect u2CTC 3/2¡ and ru2C TC 1/2¡, and therefore we expect the following regularities
for the paraproducts and the resonant term:

(ru)�V|||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
¡1/2¡

+(ru)�V|||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
0¡

+(ru) �V||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
0¡

; (12)

but of course the last term on the right hand side is not well de�ned. Nonetheless we
see that the most irregular term in the decomposition of the product is the paraproduct
ru� V , the other terms should be more regular. Now we follow a hunch and guess that
maybe also the solution u itself is given by a paraproduct plus a more regular term. More
precisely we make the following paracontrolled Ansatz:

u= u0�H + u]

with u02CTC 1/2¡, H 2CTC 3/2¡, and u]2CTC 2¡ of better regularity. We hope to gain
half a derivative, as much as in (12), but the regularity for u0 admittedly falls from the
sky at this point. Why would we hope to have a representation of u as a paraproduct
plus smoother remainder? Well, we saw in Example 12 that the paraproduct u0 � H is
a �frequency modulation� of g and looks very much like H on small scales (and thus
r(u0 � H) looks like rH on small scales). But the di�culty we have with de�ning
(ru) � V is exactly coming from small scale contributions of ru and V which in the
product create diverging resonances on large scales. So if we understand how the small
scale contributions of rH interact with those of V and that no diverging resonances
develop, then by the philosophy of controlled rough paths we might also hope that ru has
no diverging resonances with V . More precisely, if u matches the paracontrolled Ansatz
then we can make the decomposition of the product more precise:

(ru)V =(ru)�V|||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
¡1/2¡

+(ru)�V|||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
0¡

+(ru]) �V|||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
1/2¡

+((ru0)�H) �V||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
1/2¡

+(u0�rH) �V|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
!!

;

where with the notation �!!� we single out the only term which is still not well de�ned. To
cure this term we will need the following commutator lemma, which is the main result in
paracontrolled distributions:

Lemma 22. Assume that �2 (0;1) and �; 
2R are such that �+ �+ 
>0 and �+ 
<0.
Then the trilinear operator on S 3, de�ned by

C(f ; g; h)= ((f � g) �h)¡ f(g �h);

satis�es

kC(f ; g; h)k�+�+
. kf k�kgk�khk
 ; (13)

and can thus be canonically extended to a bounded trilinear operator from C ��C ��C � to
C �+�+
.
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Remark 23. It would be more aesthetically pleasing to have the same estimate for

(f � g) �h¡ f � (g �h);

but sadly this is not true.

We do not give the proof here (it can be found in Paraproduct paper), but equipped with
the tools that we learned in this lecture it is not di�cult at all.

Let us see what we can do with this estimate: Recall that the only term in the product
(ru) �V that is still ill de�ned is (u0�rH) �V , which we rewrite as

(u0�rH) �V =C(u0;rH;V )|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
1/2¡

+ u0(rH �V ):

The last product on the right hand side is still not well de�ned because rH � V is not
well de�ned. However, if we assume that rH �V is extrinsically given and has its natural
regularity rH �V 2CTC 0¡, then u0(rX �V ) is well de�ned and in CTC 0¡. To summarize
we then have the following decomposition of the product:

(ru)V =(ru)�V|||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
¡1/2¡

+(ru)�V|||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
0¡

+(ru]) �V|||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
1/2¡

+((ru0)�H) �V||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
1/2¡

+C(u0;rH;V )|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
1/2¡

+u0(rH �V )|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
0¡

:

So far H and u0 were completely arbitrary and the only ingredient we needed was su�cient
regularity and the a priori knowledge of the product rH � V . But for this to be useful
we have to be able to set up a Picard iteration in the space of functions that oblige the
paracontrolled Ansatz. That is, we have to show that the paracontrolled Ansatz is stable
under the map u 7! v, where u solves

Lv=(ru)V + f ; v(T )= ';

say for '2C 2¡ and f 2Cb([0; T ]�Rd). To see the stability of the paracontrolled Ansatz,
we guess again a paracontrolled Ansatz for v, say

v= v 0�H + v];

with the sameH as before and the same regularity requirements for v 0 and v]. Then we have

Lv]=Lv¡L (v 0�H)= (ru)�V +R¡L (v 0�H);

where R2CTC 0¡ is a more regular remainder term. Now morally we have

L (v 0�H)¡ v 0�LH 2CTC 0¡; (14)

because for example by Leibniz's rule

�(v 0�H)¡ v 0��H =�v 0�H||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
0¡

+2rv 0�rH|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
0¡

:
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The problem is that L also contains the time derivative, and of course we cannot simply
di�erentiate elements of CTC � in time. This is a small technical problem which does
not change the overall picture and which can be overcome by also requesting some time
regularity of v 0 and H , and also we need to slightly adapt the de�nition of the paraproduct
and introduce some smoothing in the time variable as well. For simplicity we brush this
under the carpet and pretend that (14) holds. Then we get

Lv]=(ru)�V ¡ v 0�LH +R~ ;

with a new R~ 2CTC 0¡. If we choose v 0=ru and LH = V , then the two irregular terms
on the right hand side and we end up with a well de�ned equation for v], from where we
also learn that our guess v] 2 CTC 2¡ was justi�ed because R~ 2 CTC 0¡ and then by the
Schauder estimate Lemma 16 v] has the right regularity as long as v](T )2C 2¡. But

v](T )= v(T )¡ ((ru)�H)(T )= v(T )

if we assume that H(T )=0. Therefore, it su�ces to take '2C 2¡. From here the following
result is shown by the same arguments as in Proposition 17:

Proposition 24. Let V 2CTC ¡1/2¡, set LH=V, H(T )=0, and assumeH �V 2CTC 0¡ is
an extrinsically given distribution of the required regularity. Then for all f 2Cb([0;T ]�Rd)

and all '2C 2¡ there exists a unique paracontrolled solution u=ru�H + u] to

Lu=(ru)V + f ; u(T )= ';

where the product on the right hand side is interpreted as

(ru)V =(ru)�V +(ru)�V + u] �V +C(ru;H; V )+ru(H �V ):

Remark 25.

i. In the proof of Theorem 20 we needed to also take f=V k in the generator equation,
for k2f1; :::; dg. Now V k2CTC ¡1/2¡ and we cannot just add an arbitrary element
of CTC ¡1/2¡. But for f =V k we can simply replace (ru)V by

(ru+ ek)V ;

where (ek)k=1;:::;d are the k-th canonical basis vectors in Rd.

ii. One can show that if H �V = limn!1 (�n �H) � (�n �V ), then also

(ru)V = lim
n!1

(�n �ru)�n �V :

The di�erence to the case � < 1/2 is that here this convergence may hold for one
molli�er � but fail for another �~ (or give another limit).

iii. It is not hard to see that if V 2 CTC ¡� and H � V 2 CTC 1¡2�, then for � < 2/3
everything works as above. After we cross the threshold �=2/3 we would have to
go higher in the expansion of our solution, and it is not so obvious how to do this
in the setting of paracontrolled distributions (see however Bailleul-Bernicot).
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From here we can argue essentially as in the not-so-singular case before to obtain a version
of Theorem 20 in the three-dimensional case. Only that now di�erent approximations �n to
� can give rise to di�erent limits h of the hn, or for some approximations the convergence
of hn can even fail. So we have to assume that �n converges to � such that hn converges to
h and then Hn �rhn converges to H �rh. In this case dQx

n=(Zx
n)¡1exp

¡R
0

T
�n(Xs)

�
dPx

n

converges to Qx which is uniquely determined as the solution to the martingale problem.
The point ii. in Theorem 20 is also much more subtle and to have the representation
At= limn!1

R
0

t
�n �rh(s;Xs)ds we need to assume that H � �n �rh converges to H �rh

in CTC 0¡. Moreover, we only get A2C3/4¡([0; T ];Rd) almost surely.

4.2 A KPZ-like equation

To conclude our analysis it only remains to see that the equation for h actually has a
meaning. In d = 1 this is quite easy because then rh is actually a function and not a
distribution, so jrhj2 poses no problem.

In d=2 we have the equation

Lh=¡1
2
jrhj2¡ �; h(T )= 0:

We write h=X +hR, where X solves LX =¡�, X(T )=0, and get

LhR=¡
1
2
jrhj2=¡1

2
(jrhRj2+2rhRrX + jrX j2):

Now we saw that � 2C ¡1¡, and therefore X 2CTC 1¡ and jrX j2 is not well de�ned. But
if it was de�ned, it should have regularity jrX j22CTC 0¡, as well as rX 2CTC 0¡. Then
the worst term on the right hand side of the equation for hR is in CTC 0¡, so we guess
hR 2 CTC 2¡. Under this condition jrhRj2 and 2rhRrX are well de�ned, and it is no
problem for us to solve the equation (at least on a small time interval [t; T ] because now
the equation is quadratic and therefore global existence is not so trivial any more; but
this can be dealt with and we simply ignore that problem here). So the only ingredient
we need to make sense of the equation for hR is the input jrX j2. It turns out that this
term cannot be constructed, because when squaring the distribution rX we do indeed
pick up diverging resonances in the resonant product. However, these divergences are of a
particularly simple form and it turns out that for any given approximation of the identity
(�n) there exist constants cn!1 that depend on (�n), but such that the limit

lim
n!1

jrXnj2¡ cn

exists in CTC 0¡ and does not on the speci�c approximation procedure; here LXn= �n� �,
Xn(T )=0. Moreover, cn= limn!1E[jrXn(t; x)j2] for all t <T and x2R2 which justi�es
that in Section 3.2 we replaced cn by �2cn when we replaced � by ��. Then h is not the
limit of the solutions to the naive equation Lhn=¡1

2
jrhnj2¡ �n � �, but instead we have

to consider

Lhn=¡1
2
(jrhnj2¡ cn)¡ �n � �
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In d= 3 things are much more complicated and in fact exactly as complicated as for the
usual KPZ equation in d=1 where the space white noise is replaced by a space-time white
noise. Here we will see the trees appear: Let again

Lh=¡1
2
jrhj2¡ �; h(T )=0

and LX =¡�, X(T )=0. Now we write again h=X +h>1 and get

Lh>1=¡
1

2
(jrh>1j2+2rh>1rX + jrX j2):

This time X 2 CTC 1/2¡ and therefore we expect jrX j2 2 CTC ¡1¡. This is still way too
irregular, so we also take out this term: Let

LX =¡1
2
jrX j2; X (T )= 0;

for which we expect X 2CTC 1¡, and write h=X +X +h>2 with

Lh>2=¡
1

2
(jrh>1j2+2rh>1rX + jrX j2)

=¡1
2

¡��rh>2+X ��2+2r
¡
h>2+X

�
rX

�
=¡1

2

¡
jrh>2j2+2rh>2rX + jrX j2+2rh>2rX +2rX rX

�
:

Now the most irregular term is expected to be 2rX rX 2CTC ¡1/2¡, so we take it out
as well by setting

LX =¡1
2
rX rX; X (T )= 0;

and then h>3=X+X +2X . At this point the use of the tree notation is hopefully quite
transparant: given two rooted binary trees �1 and �2 we write (�1�2) for the tree that is
obtained by joining the roots of �1 and �2 in a new root, and we set recursively

LX(�1�2)=¡1
2
rX�1rX�2

with X�=X. The tree notation is simply a very convenient tool to index all the objects
that have to be recursively constructed from the noise � in order to solve the equation.

Now we could continue in the expansion of h and subtract for example 4X or X . But
it turns out that h>3 2 CTC 3/2¡ and the regularity cannot be improved by a further
expansion, because in the equation for h>n there would always appear the term

rh>nrX;

which at best can have the same regularity as X, so it should be in CTC ¡1/2¡. But then
the best regularity we can hope for is h>n2CTC 3/2¡ and then the product rh>nrX is ill-
de�ned. So the idea is to abandon the expansion and rather make a paracontrolled ansatz
for the remainder. More precisely, we assume

h=X +X +2X +h0�Q+h]
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with h02CTC 1/2¡, h]2CTC 2¡, and

LQ=rX; Q(T )= 0;

so Q 2 CTC 3/2¡. Then we can use the same arguments as in the generator equation to
solve our KPZ type equation based on the paracontrolled Ansatz.

The next step is then to construct the tree data (X; X ; X ; X ; X ;rQ �X) from the
white noise. The higher order trees do not appear in the expansion of h, but they are
needed to make sense of the right hand side of the equation. The construction of the trees
is already quite demanding and carried out in Cannizzaro-Chouk. Not surprisingly it also
requires some renormalizations. How to do the renormalization and the stochastic esti-
mates systematically in the (here equivalent) setting of regularity structures was explained
in the lectures by Lorenzo Zambotti and Ajay Chandra.
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