Paracontrolled distributions and singular diffu-
sions

N1cOLAS PERKOWSKI

Abstract
We introduce paracontrolled distribution on the example of a stochastic differential
equation with distributional drift.

These are the incomplete (in particular nearly no references!) and very unpolished
notes for a mini course taught at the HCM winter school “Recent development in
singular SPDEs” in February 2017 in Bonn. Participants may also want to consult
the notes “Lectures on singular SPDEs” with M. Gubinelli which contain much more
technical detail and also more references.

1 Motivation

1.1 Scaling limit for a random walk in a random potential

Consider a N-step simple random walk on Z¢ that is weighted by a random potential. That
is, we look at the random probability measure on (Z?)" given by

N-1
a1
= e Xi) |,
Py~ 7pnP Bkizio n(Xx)

where:
e Xj(w)=w(k) is the coordinate process,
e Z,'">0 is a normalization constant which sets the total mass of QJB\;" equal to 1,
o (n(x))yeza are i.i.d. random variables,

e Py is the distribution of a simple random walk on Z% with N steps and that starts
at Xog=0,

e (>0 is a parameter called the disorder strength.

The potential has the effect of favoring paths that spend much time near points x where
n(zx) is large. On the other hand the law of the iterated logarithm shows that Py only
gives very little mass to paths that leave the ball (—N%, N®)¢ with o >1/2. It is therefore

interesting to understand the behavior of typical trajectories under Jﬁv’". If there exists a
very favorable region where 7 is large, but it is outside of (—N®, N®)¢, will the trajectories
under ]ﬁv’" typically visit that region? Or is it too “expensive” and the trajectories will
look more or less like those under P 7 Intuitively we might picture that typical trajectories
identify the most favorable region in (—N, N)¢, taking into account both the value of 7
and the probability of visiting that region under P, and then go to that region as quickly
as possible and spend most of their time there. Obviously the behavior will also depend on
B: For 8 =0 we simply obtain the law of the random walk, while for 8> 0 the behavior
will be radically different than that of the random walk.



This model should also be compared with models for random polymers, which are of the
form

oD~ M () Prv(dw)

where Hy is a so called Hamiltonian. An important example for the Hamiltonian is

| 0, weSAW,
HN(w)_{ 00, wéSAW,

with SAW = {w € (Z9)N: Xi(w) # Xy(w) for all k # £}. In that case we obtain the self-
avoiding random walk, independently of .

For background material on random polymers see e.g. den Hollander or Caravenna, den
Hollander, Petrelis. Due to the clustering that we expect under Qﬁ;n, the trajectories may
not really resemble a polymer (which is a long chain of molecules), so it is not obvious to
me if QJB\;" is a good model for a polymer. But somtimes QJB\,’" is called a random polymer
measure.

We would like to understand how the trajectories under ]ﬁv’" look on large temporal and
spatial scales. That is, we would like to send N — 0o and rescale space as we pass to the
limit to obtain a continuous-time limiting process, maybe a diffusion. However, given the
clustering that we alluded to above we expect that on the time scale /N the trajectories will
identify the most favorable region in (—N, N)¢ and spend most of their time there. But on
the time scale 2N the trajectories will spend most their time in the most favorable region in
(—2N,2N)%, which may be not at all compatible with the one in (—N, N)¢. So there does
not seem to be a stabilization and the best we could hope for is that along subsequences
the coordinate process converges to a jump process that instantly jumps to a fixed point
and then just stays there. I am not sure if such a statement is exactly true and/or proven,
but results in that direction are well established in the context of the parabolic Anderson
model which roughly speaking descrives the transition function of Q, see the recent survey
Konig. So while the convergence statement itself is interesting, the limiting process will be
quite boring. If we want to obtain a more interesting limit we should tune down the effect
of the random potential as we pass to the limit, i.e. make the disorder strength 8 = Sy
depend on N and send it to zero as N — co. We expect that:

e Too slow convergence Sy — 0 gives the same qualitative behavior as for fixed
OBn=6>0.

e Too fast convergence Sy — 0 gives the same qualitative behavior as for Sy =0, that
is the trajectories converge to a d-dimensional Brownian motion.

e There exists (at least one) critical scaling of Sy where a phase transition occurs
between the two regimes.

Let us try to understand what the critical scaling for Sy should be. Under Py2 we have
to rescale the coordinate process X to X7¥ = N~1X |n2¢) to get a process that con-
verges to the Brownian motion. Let us also extend 7 piecewise constantly by setting
(ks or41) . x [askea+ 1)="1((K1, ..., ka)) and define n™(z) = N¥/2p(Nz), z € R%



Lemma 1. Let us interpret the map o+ fRan(x)go(x)dJ::: N () as a distribution in D',

the dual space of CZ°="D. Assume that n(0) is a centered random variable with variance 1.
Then n™ converges in distribution in D' to a centered Gaussian process (£())pecee with
covariance

E[£(@)E(P)] = (@, ¥) L2 (1)

This process is called the (space) white noise on RY

Proof. By general results (“Mitoma’s criterion”) it suffices to show that for ¢1, ..., @, € C°

the vector
</Ran(x)S01(x)dx’""[Ran(w)@n(x)dx>

converges to a multivariate centered Gaussian random variable with the covariance (1). By
taking linear combinations we can restrict our attention to the one-dimensional case, and
for p € C2° we have

/Ran(w)w(w)dwﬁN‘dZ N2n(z)p(a/N)=N""2% " n(z)e(z/N).

x€Z4 reZd

There are O(N?) values of € Z¢ for which x /N is in the support of p(z/N), so by the
central limit theorem this integral converges to a centered Gaussian random variable £(¢)
with variance E[|£(¢)[)] = ¢||%2. O

So both "V and XV converge to nontrivial limits under the above scaling. Let us see
formally how this translates for ]BVN . We have

ARy 1 R . e
D 2 :Zﬁ,ncxp 6Nkz:% n(Xk) :Zﬁ,’”exp ﬁNkZ:% n(NXN-2,)
iLeX /3 = N—d/2 N XN
_Z][f,’” p Nl;] (X N-2p)

1 B 1
:Texp<ﬁNN2 d/2/ nN(XtN)dt)
zy" 0

So if By =N%22 then formally Q?\g "I converges to the measure @ on = C([0, 1], R%)

which is given by
dQ 1 !

where IP is the Wiener measure on 2 and by a slight abuse of notation X;(w) = w(t) is
again the coordinate process. But on the other side the factor

BN :Nd/2—2



only converges to zero if d < 4, so by our formal discussion above we cannot expect this
convergence to hold if d > 4. And even for d=1,2,3 it is not at all obvious how to interpret

the integral | 01 &(Xs)ds if € is a white noise. After all the white noise is only a distribution.

For example in d =1 it is the distributional derivative of the Brownian motion and since
the Brownian motion has non-differentiable trajectories this means that £ is not a function.

Our aim for the rest of the lecture is to understand how to construct the measure @ that
we formally wrote down in (2). It turns out that depending on the dimension d the problem
is more or less difficult:

e For d =1 the random variable [ 01 £(X¢)dt is almost surely well defined and @ is
equivalent to the Wiener measure.

e For d=2,3 the random variable [ 01 £(X¢)dt is almost surely not well defined, but Q

can still be constructed and is singular to the Wiener measure. Both cases d=2,3
are conceptually similar but d =2 is technically simpler.

e For d >4 neither the random variable [ 01 €(X¢)dt nor the measure @ are well defined.

We will therefore focus on the case d=2,3. Once we understand this special case we will
also understand how to deal with d =1 and why d >4 is outside of our scope.

1.2 Brownian motion in a white noise potential
Let now PP be the Wiener measure on Q = C([0, 1], RY) with d € {1, 2, 3}, and let & be a

white noise on R%. More precisely, let (& (#)) pec=(ra) be the centered Gaussian process
with covariance

E[(@)(W)]=(p, )2, @, €CE(RY).

We would like to construct the measure

1
% —%exp</0 f(Xt)dt>,

where X¢(w)=w(s) is the coordinate process on 2. For the moment we argue formally and
pretend that ¢ is a smooth function on R?, and we would like to understand the dynamics
of X under Q. For this purpose solve the backward Cauchy problem h: [0, 1] x R¢— R,

(@+%A>h(t, 1) =4 Vh(t, D)2~ £x),  h(Lz)=0.

Then by Itd’s formula we have P-a.s.
1 1 1
0=h(1,X;)=h(0,0) +/ <8t+§A>h(t, Xp)dt + / Vh(t, X¢)d X,
0 0

—h(0,0) + /0 1(—%\Vh(t,Xt)|2—f(Xt)>dt+ /0 Tt X)X,



which is equivalent to

1 1 h(0.0) 1 e
—exp( / §(Xt)dt>— exp< / Vh(t, X)X, — - / \Vh(t,Xt)|2dt>.
Z 0 Z 0 2 0

The prefactor on the right hand side is deterministic, while for well behaved h the stochastic
exponential has expectation 1 under P. This means that the prefactor drops out and

dQ ! I
—~ —exp / Vh(t,Xt)dXt——/ [VA(t, Xp)|dt ).
dP 0 2 0

But now the Radon-Nikodym derivative is a stochastic exponential, so by Girsanov’s the-
orem the coordinate process X solves the SDE

t
X, = / Vh(s, Xo)ds + B, (3)
0

under @, where B is a Q-Brownian motion. So under the assumption that (3) has a unique
solution it is equivalent to construct @ or to solve (3) and in the following we concentrate
on the solution theory for (3). This looks like a harmless SDE, but actually h is only a
differentiable function if d=1 and in particular VA is only a distribution and not a function
in dimensions d =2, 3. So we have to understand SDEs with distributional drift. This will
require tools from functional analysis and paracontrolled distributions and will be the main
topic of these lectures.

1.3 Singular martingale problem

We now take a generic SDE X:[0, 1] — R? with distributional drift V: [0, 1] x R¢— R,
t
X,—2 +/ V(s, Xo)ds + Bi (@)
0

as our starting point, and try to develop a solution theory for such equations. Delarue and
Diel realized that if d =1 then in certain situations rough path integration can be used
to make sense of (4). This was extended to d > 1 by Cannizzaro and Chouk who replaced
rough paths by paracontrolled distributions. Since our main aim is to learn paracontrolled
distributions, we follw Cannizzaro and Chouk.

The idea is elegant and in retrospective quite simple. If V' is a nice function, then one way
of describing the law of X is through the martingale problem: The law of X is the only
probability measure on = C([0, 1], IR?) such that for all ¢ € C°([0, 1] x R%) the process

t

(P(tv Xt) - (,0(0, SU) - /0 (85 + gs)()@(Xs)dS

is a martingale, where

Gup () = 3 Ap(w) + V (5, 2)Vip(a).



If V(s) is not a nice function but only a distribution, then Gsp is well defined (we can
multiply the distribution V'(s) with the smooth function V), but Gsp is also just a
distribution and not a function because multiplying a distribution with a smooth function
leads to an object that is also just a distribution (think of multiplication with 1, the
smoothest function there is). Now we have again the problem that the integral

/ (0t G p(X.)ds

does not make any sense, so we cannot even write down the martingale problem. The idea
is therefore to find a domain of non-smooth functions ¢: [0, 1] x R — R such that

(05 + Gs)p(s) € Cy(RY)

for all s € [0, 1]. Indeed the multiplication with a non-smooth function may increase the
regularity, think of multiplying a very irregular f > 0 with 1/ f. If we also have some
continuity in s, then for such ¢ the integral |, 5(85 + Gs) (s, Xs)ds is well defined and we
can formulate the martingale problem: Q) solves the martingale problem associated to (4)
if for all ¢ in our domain the process

t

(. X1) — (0, 2) — /0 (8 + G (s, Xo)ds

is a martingale. The next question is then how to obtain the existence and uniqueness of
solutions to this martingale problem, but we will get back later to this point. For now let
us just note that if (s) is a non-smooth function, then it is not so obvious how to make
sense of V(s)V. So as a first step we need a way of multiplying distributions.

2 Products of Distributions

2.1 Distributions

We will work with tempered distributions on IR?. Recall that the Schwartz functions are

S ={pc€ C’OO(IRd, C): |l¢llk,.s < ooVk € No},
where

ok, = sup [|(1+|-[F)d*p]|Lo.
|| <k

The Schwartz distributions are the linear maps u: . — C which satisfy
lu(@)I < Cliellk,»

for some C' >0 and k € Ny. In that case we write u € .%".



Example 2. Clearly L? = LP(R%) C ./ for all p € [1, o] if we identify u € LP with the
map @+ fR Ju(z)¢(r)dx, and more generally the space of finite signed measures on (R,
#(RY)) is contained in .#”’. Another example of a tempered distribution is ¢+ 9 ¢(z) for

peNg and 2 € R% A continuous function u is in .#" if and only if it has at most polynomial
growth at infinity.

Many maps on %’ can be defined by duality: Let A: . — . be such that there exists a
linear map A': . — . which satisfies for all ¢, ¥ €.

/ (A) (@) (z)dz = / (@) (HAp) (2)dz
IRd IRd

and also for all m € Ny there exist ky, € Ng, Cp, >0 with [|["A¢||m..» < Cnll¢]lk,,,.#- Then
we define for u € .7’

(Au) () :==u(*Ap).
Example 3.
i. For e N& and A=9" we have A= (1)~

ii. For f & (C with all partial derivatives of at most polynomial growth and Ay = fp
we have A= A.

iii. For the Fourier transform

we have A= A.

iv. For the inverse Fourier transform

we have A= A.

v. For x € . and the convolution

Ap=x*p= /Rdx(' —y)e(y)dy

we have ‘Ap = (x(—-)) * . In this case one can show that y * u e C>®N.7 for all
ueS’ .

The main reason for considering test functions in . rather than in the simpler space CZ°
is that for elements of .#/ we can define the Fourier transform by duality, which is not true
for elements of (C2°)’ because C° is not closed under Fourier transformation.

Example 4. Let v €.’ and @,y € .. The following relations will be used all the time
in what follows:

o FlFu=2F u=uforallue.s;



e Parseval’s identity:

e supp(y 1) Csupp(p) +supp(y) ={x + y: x €supp(y), y € supp()}.

Note that we can only define the product uyp by duality if ¢ € C'°° with partial derivatives
of polynomial growth. If ¢ is a non-smooth function or even a distribution, then we need
other arguments.

Example 5. In d =1 we can turn % into a tempered distribution via the so called principal

value. The details of that construction are not important for us, but with it we obtain for
the Dirac delta 0 (i.e. §(¢)=(0))

0—(5><x)—(5><x)><%7é5><(xx%>—5><1—6.

This example shows that a general extension of the product uy to distributions or non-
smooth functions ¢ is not possible. Our way of overcoming this difficulty is to restrict both
u and ¢ to suitable subspaces of .#”’. The simplest solution is to require u and ¢ to have
compatible regularity. For that purpose we need to introduce regularities on distribution
spaces.

2.2 Besov spaces

To measure the regularity of distributions we first note that if u € ./ with supp(i) C K,
where K C R?% is a compact set, then there exists ¢ € C° with ¢|x=1 and therefore

u=7"Ya)=F (o) =(F L) xu.

Since .# ~1p € .7 we get u € C*. Moreover, if |z| ~ ) for all z € supp(#), then essentially
we can picture u as a sine-function with period (27A\)~!. So if ) is small, u is smooth
and oscillating very slowly but if A > 1, then wu is very wild. This suggests that smooth
functions have some decay in their Fourier transform. It turns out that measuring the size
of single Fourier coeflicients does not provide enough information and instead it is more
useful to group the different frequency ranges into blocks. More precisely, we would like
to decompose

w= 7 @)= F Mo (D + 3 (D8 = A+ Y A

7=0 7=0



Then Aju is the projection of u onto its frequencies of order ~2J. Since frequencies of

order 27 correspond to spatial scales of order 277, the sum > .« Asu provides a description

i<j
of u up to the spatial scale 277. For a smooth function u this]should already give a very
accurate picture of u, and therefore we expect A ju to rapidly decay as j— co. Measuring
the strength of that decay will provide us with a notion of regularity. But there are two
problems with the above formal decomposition: First of all it is not even well defined,
because we are multiplying 4 € .’ with non-smooth indicator functions. And even if we

could make sense of this product, for example by setting

F s gieny (1)) := F g g1 ([]) %,
then it still turns out that the operation u+— Aju is quite badly behaved. For example,
we would like to estimate ||Ajul[zr < ||y_1(]1[2j72j+1)(|’|))HL1||’LL||LP via Young’s inequality,
but the L! norm on the right hand side is infinite because while ﬁfl(ﬂ[2j,2j+1)(\-|)) eC*,

it is not in L.

Definition 6. For u €.’ and j > —1 we define the Littlewood-Paley blocks of u as

Aju=F(psi),

where (p;) C CE° is a smooth partition of unity with

p—1=Tp 1y(I:]), pj = 1i5i 0i+1)(|-]), 5 2 0.
Here we choose the p such that they sum up to 1 everywhere (“unity”) and such that the

support of pj only overlaps with the supports of pj—1 and pj41 (“smooth partition”). We
write Kj=.%"1p;, so that Aju=K;*u. We also use the notation

Agju:z Aiu, A<]'UZZ Aiu, ng:Z Ki, K<j:Z KZ
Y] i<j 1< i<j

The kernels K, Kj, K<; are all bounded in LY, uniformly in j.

It is easy to see that u= Z].>71 Aju=lim; - Agju for all u € .’ and Young’s inequality
we get uniformly in j:

1A ul[or <K prllul[or S llwllze.

As discussed above, we want to describe the regularity of u € ./ by the decay (or growth)
of A ju. For that purpose we first have to decide how to measure the size of A ju. A canonical
choice is to consider the L? norm for p € [1, oc].

Definition 7. For a € R and p, q € [1, 0] the Besov space By , is defined as

By g={ue " |lullg,, = I(27* [|Ajul[Lr) j>—1llps < 00}



So the index p describes the integrability and the index « the “regularity” (i.e. the decay
of the blocks). The index ¢ provides some fine-tuning and is not very important. By , is
always a Banach space, for all «, p, ¢. We will mostly work with p= g = oo for which we
introduce a special notation:

o __ o —
=By llla=1IlBg -

Exercise 1. Let § denote the Dirac delta, 6(¢) = ¢(0). Show that §y€ <.

If a€(0,00)\ N, then #* is the space of |« ] times differentiable functions whose partial
derivatives of order || are (a — |a|)-Hélder continuous. But for k € N the space #* is

strictly larger than CF, the space of k times continuously differentiable functions with
bounded partial derivatives of all order.

Exercise 2. Show that ||ullo < |u||g for a < 5, that |ju|r~ < ||ullo for o > 0, that
lulla S llullpe for <0, and that [|Agjulpe <279 u||q for a <O0.

We will often use these inequalities without explicitly mentioning it.

The following Bernstein inequality is very useful when dealing with functions with com-
pactly supported Fourier transform. We present the proof to show that it is not difficult
and because many proofs that we will omit later are based on similar arguments.

Lemma 8. (Bernstein inequality) Let Z be a ball, k € Ny, and 1 <p< g<oo. There exists
a constant C >0 that depends only on k, Z, p and q such that for all A\>0 and u € LP with
supp(Zu) C A\Z we have

k+d(5—2)

max |[0*u|lpe < CA o||u||Lr.

HEN:|u|=k
Proof. Let ¢ € C° with ¥ =1 on % and write 1) (z) = (A~! z). Young’s inequality gives
[0 u|La= [|0#.F =1 (xd) || Lo = [[(0#.F ~H(wbn)) * ull Lo < |O#F (W) [ o lu e,

where 1+ % = % + % Now it suffices to note that

ozl = [ jornizzduoapras )
()\ ul+dyr (8“/Rd¢)()\x)|’"dx> o
(A || +d)r—d |3“fﬂ§dlw(x)|rdx)l/r
:A‘“‘”“‘? |07 2l
1 1

The claim follows by plugging in the equality 1 — % =7 O

It follows immediately that for o € R, u € 7, and u € N¢, we have 10 ull -y S llwlla-

Another simple application is the Besov embedding theorem, whose proof we leave as an
exercise.

10



Lemma 9. (Besov embedding)

Let 1<p1<pa<oo and 1< 1 < @< 00, and let a €R. Then for all u €.’

||U||B§2j:2<1/p1—1/p2) Sllullsg, .-

The next lemma, a characterization of Besov regularity for functions that can be decom-
posed into pieces which are localized in Fourier space, will also be immensely useful. Recall
that an annulus is a set & = {x € R% a < |z| < b} for some 0 < a < b, and a ball is a set
Z={zeR%|z|<b}.

Lemma 10.

1. Let & CR% be an annulus, let o €R, and let (uj) be a sequence of smooth functions
with supp(Fu;) C 299 and such that ||u;|| o <279 for all j. Then

u=3 ujer® and [ufaS sup {27 u;] o).
i1 =zt

2. Let # CRY be a ball, let >0, and let (uj) be a sequence of smooth functions with
supp(.Fu;) C 297 and such that ||uj||p~ <279 for all j. Then

u= Z u; €7 and lulla < sup {29%uj| L=}
j>-1 jz-1

Proof. If Fu; is supported in 297, then A;u;# 0 only if 2/~ 27 and therefore

[Asullze < D Aiuj]lre < sup {28 ug|[pe} D 2790 sup {28 fuy || oo} 270
20~ k>—1 20~ k>—1

If Fu; is supported in 27.%, then A;u;# 0 only if 2/ <27, Therefore,

Aiule< 3 [Aiuslloe < sup {28 flurfle} Y 2790~ sup {28 |l L} 270,
§:29>2i k>-1 j2i0i E>—1

where in the last step we used that a > 0. O

A similar result also holds for Besov spaces B} , with general p, g € [1, 00|, but we will not
need this.

2.3 The paraproduct and the resonant term

Now that we know how to measure the regularity of distributions, let us come back to the
problem of multiplying distributions. We will follow Bony [?] who introduced paraproducts
which provide a useful tool to decompose the multiplication into simpler problems. The
usefulness of the paraproduct comes from the following simple observation:

11



Lemma 11. There exists an annulus &/ such that for all j >1 and all i< j—2
supp(-Z (AjuA ) C 294, u,veS’.
Moreover, there exists a ball Z such that for all i,j > —1 with |i —j| <1

supp(-Z (AjuA ) C 297,

Proof. This is quite simple:

supp(# (AjuA jv)) =supp(F Ajux F Aju) Csupp(F Aju) +supp(F A ju)
C2d + 2.7/ =2(2 I + )

for another annulus .«/. By our assumptions on the dyadic partition of unity we can choose
& such that 2°=J.&/ + & C & for a new annulus ./ and all i < j — 2.

If on the other side |i — j| <1, then all we can say is that supp(.# (Auljv)) C 277 for a
ball 7. 0

Intuitively, this means that multiplying Ajv, a function that lives on the spatial scale 277,
with Azu for @ < j — 2, we obtain a new function A;uA ju which still lives on the spatial
scale 277. The multiplication does not create effects on larger scales. If on the other hand
li — j|, then Aju and Aj live on the spatial scale 277, but multiplying the two together
can create effects on the scale 1. We interpret this as a resonance phenomenon.

Example 12. Below we see a slowly oscillating function u (red curve) and a fast sine
curve v (blue curve). The product uv is shown under the two curves. We see that the local
fluctuations of uv are due to v, and that u v is essentially oscillating with the same speed
as v.

Figure 1. u oscillates slowly. Figure 2. v is a fast sine curve.

Do)

Figure 3. wuwv still lives on the same scale as v.
Formally we can decompose the product uwv of two distributions as

uv = Z AjuAjv=u<v+u>v+uowv.
1,j2-1

12



Here u < v is the part of the double sum with i < j — 2, u > v is the part with ¢ > j + 2,
and wow is the “diagonal” part, where |i — j| < 1. More precisely, we define

U<V=0Vu= E AgjoulAjv and e E Ajuljv.
j>—1 i,3:li—j]<1

We call ©u<v and u > v paraproducts, and uwo v the resonant term.

Bony’s crucial observation is that v < v (and thus u > v) is always a well-defined distri-
bution. Heuristically, u < v behaves at large frequencies (i.e. small spatial scales) like v
and thus retains the same regularity, and u provides only a frequency modulation of v.
This can also be seen in Example 12 above, where the product uv is actually equal to the
paraproduct u < v because u has no rapidly oscillating components. The only difficulty
in constructing uv for arbitrary distributions lies in handling the diagonal term wu o v.
The following key estimates provide the analytically precise formulation of the preceding
heuristic discussion:

Theorem 13. (Paraproduct estimates) For any B €R and u,v € %" we have

[u=<vllgSllullz=llvles, (5)
and for a <0 furthermore

lu<vllats S llullallvls (6)
For a+ >0 we have

[uovflatp S llullalv]s. (7)

Proof. By Lemma 11 there exists an annulus ./ such that supp(.# (A¢;_suAv)) C 2/,
and for u € L* we have

IAgj—2uljvlpe <1 Ag—2ullpell Az Lo S llullzee 277 ||v]] 5.

Inequality (5) now follows from Lemma 10. The proof of (6) and (7) works in the same
way, except that for estimating uov we need a4 5 > 0 because now the terms of the series
are supported in balls and not in annuli. O

The ill-posedness of u o v for a + 8 < 0 can be interpreted as a resonance effect since
u o v contains exactly those part of the double series where u and v are in the same
frequency range. As discussed above, the paraproduct u < v can be interpreted as frequency
modulation of v.

In combination with Exercise 2 above we deduce the following simple corollary:

Corollary 14. Let u € & and v € @ with a + 3> 0. Then the product (u,v) — uv of
smooth functions can be extended to a bounded bilinear operator from & x &P to P,
While u < v, u>v, and uov depend on our specific dyadic partition of unity, the product
uv does not.

13



The condition ae+ 8 > 0 is essentially sharp:

Example 15. Let o, 3 € R and consider the functions u,(x) = n~%"* on R, and
vp(xz) =n"Pe™"® Tt is easy to see that |lu,||g— 0 and [vnll 53— 0 for all @ <o and B < 3.
Nonetheless

diverges to oo whenever o + 3 < 0, and stays constant for o+ 5 =0.

3 Not-so-singular diffusions

3.1 Domain of the generator

Equipped with these tools, we now take a new shot at constructing the diffusion X:
[0, 7] — R4

dXt:V(t,Xt)dt—f—dBt, X():SU,
with a distributional drift V € C([0, T], #~#(R%, RY)) for some > 0. That is, V() is a

vector of d distributions in #~#(RY). As discussed above, the idea is to understand the
domain of the infinitesimal generator

Guu= %Au +V(t)Vu.

For that purpose we have to find functions u with Gu € Cy(IR?). The easiest way of
guaranteeing this is to prescribe the right hand side f in Gyu= f and to solve for u. More
precisely, we will study the time-dependent problem u: [0, 7] x R — R

(8t+gt)u:fa ’LL(T):QO,

for given f € Cy([0,T] x R%) and o € #*(R?) with an a >0 to be determined. For simplicity
we will slightly abuse notation and write for all m€ N and v € R

Cr#7=C([0,T], #7(RL,R™),  |[vllcper= sup [Ju(t)]]5.

te[0,7]

Then the paraproduct estimates allow us to control VVu whenever u € C7r%® with o >
1+ /3. Indeed, then Bernstein’s inequality gives Vu € Cr¢®~! and therefore

VVullopg-s STV iiers—elVullorge 1 S IV cpg-sllullerse.

So we would like to set up a Picard iteration for u in the Banach space C7%®. Since VVu
has only regularity — 3, we need a mechanism to increase the regularity. This is provided
by the Laplacian: We have

<8t+%A>u— VVu+ f,

14



and the right hand side is in C7%~#. Since the right hand side is a second order derivative
of u, we might guess that u € Cr#?~ 8. This is indeed justified by the Schauder (heat
kernel) estimates for the semigroup generated by the Laplacian. The following statement
is correct but not totally precise because we do not explain in which sense nor in which
space we solve the equation.

Lemma 16. Let a € R and let (Py)i>0 be the semigroup generated by A /2,

Pu= ﬁ_l(eftm“wﬁ) = f_1(67t2|“|2) XU=Prru,

where p; is the Gaussian density with mean 0 and covariance t x Id. Given f € Cp¢*?2
and ¢ € €%, the unique weak solution u to

(038 Ju=r. um=4,
18
T

u(t) ZPT—tSO—/ Ps_if(s)ds, (8)

t
and we have

[ullorge S (A +T)(1f llcrge—2+ela)-

Proof. (Sketch of proof):

Let us write * for the space Fourier transform. Then our equation is equivalent to
~ 1 <~ 7 1 2 A P

with terminal condition (7', z) = ¢(z). This is an ordinary differential equation for 4(z)
that admits the explicit solution

T A
it z) = e~ T =02 () / e (0202 F () ds,
t

which is nothing but (8). To derive the estimate for ||u||c,#~ note that A ) only contains
frequencies of the order 27 and therefore formally for all v>0 and 3€R

AP || Lo = [| PA b || oo ef(ﬂ% A5 Loe
:t—w/arjv< (Vi2i)le™* (ﬁzf)Q) 1A ]| oo
St—w/Zg—j(wﬁ)Hw ||6-

This can be made rigorous by using similar arguments as in the proof of Bernstein’s
inequality. Thus, we have

1P llpy S0l
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for all v>0 and g €R. We apply this with y=0, 8=, and ¢ = ¢ to obtain

[(t= Pr—p)llcree S ll@lla-

Also,

T T T
[ Peas@as| < [ 1P lads S [l =17 ey
t t t

Of course, the right hand side is infinite because |s — ¢|~! barely fails to be integrable.
But we already see that if we wanted to regularize f by 2 — ¢ degrees of regularity, then
we would get an estimate for u. To gain two full derivatives we would have to be slightly
more careful and use two different estimates, one for s close to ¢, and one for s close toT". [

a

We argued above that for u € Cr%® with a > 1+ 3 the product VVu is well defined and
in C7¢~P. In that case the Schauder estimates give us for the solution u to

<8t+%A>v:—VVu+f, v(T) =,
the estimate

[vllcpe-e SIVVUllopg—s + 1 Fllopg—s+ 1@ ll2-p-

So if 2 — 8 =a, then we can set up a Picard iteration in the Banach space C7%® and hope
to find a unique solution u to the equation. For that to work we need that 2 — 8 >1+4 f,
le. B<1/2.

Proposition 17. Let 5<1/2 and V € Cr% P and set «=2— B. Then for all f € Cr% =P
and @ € £° there exists a unique solution u € C7&™ to the equation

<6t—|—%A)u——VVu+f, w(T) = o. (9)

Moreover, u depends continuously on (V, f, @) €Cr& =8 x Crg =8 x #°.

Proof. (Sketch of proof):
We already know that

T

I'u)=Pr_wp — /t Ps_«(—V'Vu(s) + f(s))ds

is continuous from Cr%® to itself. One can also show that for o’ < o which still satisfies
o' >1+ f and for t < T sufficiently close to T' the map T' is a contraction on C([t, T], #*’).
This gives us a unique solution u on [t,T] and with regularity %', A posteriori it is then
easy to see that u is actually in C([t,T], ) (but actually we don’t care about this very
much, % is good enough for our purposes). Because our equation is linear the length
of the interval A =T —t can be chosen in a way that only depends on V but not on the
terminal condition ¢, and therefore we can repeat the Picard iteration on [t — A, t], etc.,
to construct the unique solution u € Cp%™.

16



The solution u depends continuously on the data because all the operations in the equation
are continuous. O

3.2 Application to the Brownian motion in a white noise potential

We now know how to solve the generator equation
O+ Gou=f,  uw(l)=e,

for Qt:%A +V(t)V with V, f € Cr% =P and ¢ € #?2~F whenever > 1/2. Recall that we
want to construct the probability measure @ on C([0,7],R%) that is formally given by

T
%z%exp(/o f(Xt)dt>,

where P is the Wiener measure and ¢ is a space white noise on R%, and that this is
equivalent to solving the SDE

dX; = Vh(t, X;)dt + dB;

on [0,T], where h solves
1 1 )

So as a first step we should solve this equation which is of a similar form as (9) except that
it is slightly more complicated because it is nonlinear. To see what regularity to expect
of the solution h, let us first derive the regularity of the white noise. It turns out that the
white noise itself does not lie in any Besov space at all because it is in a sense “unbounded”
at infinity. This is a similar phenomenon as for the Brownian motion on R, which is locally
Holder continuous of order 1/2 — e but

|Bn+1 - Bn| = sup |Bn+1 - Bn| _

LT 1o

n

o

for all @ € R because the variables (By+1 — Bp)nen are independent standard Gaussians.
This difficulty can be overcome by considering weighted Besov spaces, but to keep the
presentation as simple as possible we will not do this but instead simply restrict £ to a
compact set:

Lemma 18. Let & be a space white noise on RY. By the convergence result in Lemma 1
(which can be easily lifted from convergence in D' to convergence in .#') we can assume
that & almost surely takes values in '. Moreover, for all compactly supported bounded
functions 1, for all y <—d/2, and p € [1,00) we have

E[[| € [1%] < oo
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Proof. Because we only know v € L™ it is not obvious that £ is still an element of .7’
One way to see this would be to approximate &) by ™1 as in Lemma 1. Given & with
values in .’/ we have for all p€[1,00) and all SR

E[lev 1, | -3 2% [ BIA e @Plde= 3 27 [ Bllete—)v)plda

j=>—1

The random variable &(Kj(z —-)1)) is Gaussian, and therefore its p-th moment is up to a
constant simply equal to its second moment raised to the p/2, i.e.

E[|¢(K(x — )P = E|(Kj(x — ) ) [2]P/2 = < / K-y ()|2dy)p/2
U EERT

where we used that the dyadic partition of unity K; can be chosen such that Kj;(z) =
274K 4(29x). The integral on the right hand side is only over  — B, where B is the compact
set where ¢ is supported. Using the faster-than-polynomial decay of Ky we get the bound

. , p/2 . , p/2 ,
([ J2maczvte - pPan ) s ([ tmaznpay ) g2 4 e

which leads to

Z QJBP/ — ) Pldz < Z 2]617/ 2Jdp/2 (1+|z))~4dz < Z 9Jip(B+d/2)

j=—1 j=—1 j=—1

For 8 < —d /2 the right hand side is finite and we obtain IE)[ (ES% ||I]73ﬁ } < oo. Now it suffices
p,p

to apply the Besov embedding theorem: Given v < —d /2 let p € [1, c0) be such that
v+d/p<—d/2. Then

{6 1) SB[ 16015 01| <00

Remark 19.

i. If we would not have localized by multiplying with 1 we would have only got the
estimate

| I @ =P [ (= l3a = [ (@i ) e =oc

simply because we are integrating over an infinite volume.
ii. A key tool in the proof was that for Gaussian random variables all moments are

compatible, and therefore we were able to obtain an estimate for the p-th moment
while only explicitly computing the second moment.
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Actually it is more convenient to take a periodic version of £ rather than to truncate it
outside of a compact set. More precisely, let ¢ =Ij_y; ppja, S0 € € g—d/2- (we use the

notation & ~%/?~ = U0 #~%27¢) and set

E(p) =Y vE(p(-—k2M)).

keZ

One can check that we still have £ € #~%2~, and from now on we work with this £. To
lighten the notation we still write £ though.

Now let us get back to our equation
1 1 9
<8t+§A>h— 2|Vh| £

We just saw that at best the right hand side is in C7% ~4/2= Then by the Schauder

estimates we expect h € CT%%d/Q* and thus Vh € C’Tflfd/%. But this means that Vh
has negative regularity as soon as d > 2 and therefore the product VA |? is not well defined!
But we simply ignore this problem and assume that we are given a solution h with the

natural regularity h € Cr#?~42=_ We will discuss later how to solve the equation for h
based on similar arguments that we used in the generator equation.

If he Crg? 42~ is given, then Vh e Cr#'~%?~ and d/2 —1<1/2 exactly if d <3. So
for d=1,2 we can set f=d/2— 1 —¢ for some small € >0 and a =2 — 3, and then the
arguments from Section 3.1 allow us to solve

(@—l—%A)u:—VhVu—f—f, u(T) = ¢,

for all f € Cr# P and p € ¢

Theorem 20. Let d€{1,2}, Q=C([0,T],RY) and let X be the coordinate process on €.
For any x € R? there exists a unique probability measure ©Q, on Q with Q(Xo=2)=1 and
such that for all f € Cy([0,T] x R%) and ¢ € €% the process

u(t, X¢) —u(0, x) —/0 f(s, Xs)ds

18 a martingale, where u is the solution to
(at+%A>u_—VhVu+ £ w) =g

Moreover, the coordinate process is Markovian under Q. and if p € .7 with fde(x)dx =1
and "= p"x € for p"(x) =nip(nz), then:

dQp _ 1 T

where P, is the Wiener measure with Xqg=x;

1. Qg is the weak limit of
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1. X 1s of the form
Xt:SL‘—f—At—f—Bt, (10)

where A is Qg-almost surely v-Hélder continuous for all v <1 and satisfies

¢
A= lim [ (p"*Vh)(s, Xs)ds.

n—oo J

Proof. (Sketch of proof):

The existence is shown by proving the relative compactness (tightness) of the measures
(QF)nen on Q. The initial condition is fixed as X¢ = = under all the (Q}), so by the
Kolmogorov-Chentsov criterion it suffices to prove a bound of the form

Eqp[| X — Xs[P) S [t — s|P/?

uniformly in n, for some p > 2. For that purpose we fix k € {1, ..., d} and consider the
solution u™* to

(at + %A)mk =—Vh"Vu™k 4+ Vhmk o umk(T) =0,
where Vh™* is the k-th coordinate of Vh™. With this u™* we apply Itd’s formula under Q"

t t
u"’k(t,Xt)—u”’k(s,Xs)—/ <8T+%A+Vh"V)un’k(r,Xr)dr—i—/ Vu™*(r, X,)dB,
t t
- / Vhmk(r, X,)dr + / Vurk(r, X,)dB,

t
=X} - Xk —(BF - BY +/ Vu*(r, X,)dB,.

S

If we rearrange this equation to have XF — X* on one side and all the other terms on the
other side, then we can use the regularity of u™ (which can be controlled uniformly in n)

to prove the desired uniform bound for Egnr[| Xf — XF|P]. Any limit point @, then satisfies
the characterization i., and also it is not difficult to show that it solves the martingale
problem. Moreover, actually we can show that

Eqq[l(XF — X£) — (BF = BY)IP| S|t — s,

whenever p > 1, which proves the decomposition (10) and the regularity of A under Q.

As for the uniqueness, let @, be a solution to the martingale problem, let f € Cy,([0, 7] x R?)
and consider the solution u to

<at —i—%A)u — VhVu+f,  w(T)=0.

Then

T
0=u(0,x) +/ f(s, Xs)ds + My,
0
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and taking the expectation we see that IE)QI[ | OT f(s, X s)ds] is uniquely determined by u.
This shows that the finite-dimensional marginal distributions of X under Q, are uniquely
determined, and therefore @), is unique. Moreover, if a martingale problem gives rise to
unique marginal distributions, then the coordinate process is Markovian under the solution
to the martingale problem.

It remains to show that

t
A= lim [ VA"(s, X;)ds.

n—oo J

Since A¥ is the limit of u™"(t, X;) — u™"(s, X,) — fstVum’k(r, X,)dB,, this will follow if
we can show that uniformly in all large m

t t
umvk(t,Xt)—umvk(s,Xs)—/ Vum’k(r,Xr)dBr—/ (p"* VA¥)(s, Xs)ds
0

s

} <c(n)

EQ;”[
with ¢(n) — 0 for n— oco. So consider the equation

<at + %A)unm’k = —Vh™Vu™  + pn« VAE, ™ R(T) =0, (11)

n

and note that
t k k ! k
/ (o5 VR) (s, Xs)ds = u™ ¥ (¢, X) — ™" (s, X,) — / Vu (r, X,)dB,.
0 s

Now the required bound follows from the continuous dependence of u;nk on the data:
u™k = uzk and the functions uzk and unmk are close to each other because of the

continuous dependence of (11) on the data. O

Remark 21. Here we follow Cannizzaro and Chouk, but essentially the same result was
previously shown by Flandoli, Issoglio, Russo. The difference is that Cannizzaro and Chouk
are ultimately able to pass the regularity barrier —1/2 for the distributional drift.

Assuming that we can solve the equation for h, the above arguments allow us at least to

construct the measure
dQ 1 T
dTP—?eXp</O S(Xs)ds)

for the periodized version £ of the white noise. By making the period 2M of £ larger and
larger it seems plausible that we can also take & as the white noise on all of R?, but we will
not bother with this here. What is more interesting is that in dimension d =2 the solution
h™ to

1 ni_l nij2 _ ¢n
<8t+§A>h = 5| VI[P —¢
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actually does not converge for n — co. Only after adding a large constant ¢, — oo and
modifying the equation to

<at +%A>h” =2 (VH P - €, h(T) =0,

we are able to pass to the limit. Picking up the argument from the introduction, we get
P.-a.s.

T T
O—h"(O,x)—l—/ <6t+%A>h”(t,Xt)dt+/ Vhn(t, X;)dX,
0 0

T T
:hn(o,x)JrA <—%(|Vh"(t,Xt)|2—cn)—fn(Xt)>dt—|—/0 Vh™(t, X¢)d Xy,

which is equivalent to

h"(O x)+c"T T 1 T
—exp( / (X)) dt> exp< /0 V(1 X)X, ~ 5 /0 |Vh”(t,Xt)\2dt),

ie. Zn=el"Oa) T diverges to +oo for n— oo. This indicates that Q) becomes singular
with respect to [P, in the limit n — co. Indeed, one can show that when replacing £™ by
BE™ we should replace ¢, by 32c, to obtain a nontrivial limit for ~™. But this means that
for pe(0,1)

1 T P IEIPx[eXp(prfn(Xt)dt)] _exp(h™P(0,z) + p2c,T)
pr[(z_f"p@ : (Xt)dt» ]‘ exp (P (0. 2) + peT)  exp(phn(0, ) + penT)

The first terms in the two exponentials converge to a finite limit as n — oo, but

lim exp(c,T'(p* — p)) =0,

n— o0

which proves that the Radon-Nikodym derivative dQ} /dIP, converges to zero in LP and
thus in probability. This easily implies that the limiting measure Q) is singular with respect
to IP,.

4 Quite-singular diffusions

So far we are (modulo periodization of the white noise &) able to construct the measure

Q; formally given by
dQ, 1 r

in d=1,2. The case d=3 is not contained in our arguments above because then the solution
h to

<8t+%A>h— —(%\vm? - oo> _¢, mT)=0,
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(it is also necessary to renormalize the equation in d = 3) satisfies only Vh € Crg =12~
This means that we expect u € Cr%"/?~ for the solution u to

(&—I—%A)u— =VhVu+f,  u(T)=¢,

and therefore the product VAVu is ill-defined. To deal with this case we will need para-
controlled distributions.

4.1 Paracontrolled distributions

To simplify notation we write again V instead of Vh, and we want to solve the PDE

for .Z= 0, +§A and V € Cpz—1/2~,

First, let us try to see what is the worst regularity of V' that we could possibly hope to treat,
because this will allow us to understand the concept of local subcriticality. If V € Cpg—P
and we are somehow able to make sense of the right hand side of the equation, then it is
at best in C71%~? as well. Therefore, we expect u € Cr%%~ 8 and then Vue Crg' 8. Now
if we naively apply the estimates for paraproduct and resonant term without making sure
that the resonant term is even defined, then we get the following heuristic for the regularity
of the product (Vu)V:

e If Vu has positive regularity, then (Vu)V € Cr7 5.

e But if Vu has negative regularity, i.e. if 1 — 8 < 0, then (Vu)V € Crg'—8-F =
CTgl_QB.

We see that something happens around S = 1, and for concreteness let us assume that
B8=1+4e¢. Then our original hope to have regularity 2 — 8 =1—¢ for u was too optimistic,
and we should at best expect regularity —1 — 2¢ for the right hand side of the equation,
so 1 — 2¢ for u. But then we should have (Vu)V € Cr%~!173¢, which leads us to update
our guess for the regularity of u to u € C7¢"'~¢. So we are caught in an infinite loop
where we update our guesses for the regularity of u to worse and worse spaces, ultimately
spiralling down to “Cr%~°". We say that the equation is locally supercritical for 5 > 1,
it is critical for § = 1, and it is locally subcritical for 8 < 1. Regularity structures,
paracontrolled distributions, and all the other approaches only allow us to handle locally
subcritical equations, so we definitely have to assume < 1. In the following we treat the
case f=1/2+ which corresponds to V' =Vh in d=3. Our analysis can be easily seen to
extend all the way to 5 <2/3. But to not get confused with regularity indices so much,
the case f=1/2+ is more convenient.

For pedagogical reasons it is also more convenient to write the factor V on the right hand
side in the following argumentation. The product (Vu)V can be decomposed via the
paraproduct and the resonant term as a sum of three terms

(Vu)V =(Vu) <V + (Vu) =V + (Vu)o V.
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The first two terms are well defined without a problem and only the last term is difficult
to make sense of. Let us be bold for the moment and assume that we have a way to make

sense of (Vu) oV and that this term has its natural regularity. Given V e Cr# /2~ we

expect u € Cr¢ 3/2= and Vue ¢p7"/ 2= and therefore we expect the following regularities
for the paraproducts and the resonant term:

(Vu) <V+(Vu) = V4 (Vu) oV, (12)
e s oo

but of course the last term on the right hand side is not well defined. Nonetheless we
see that the most irregular term in the decomposition of the product is the paraproduct
Vu <V, the other terms should be more regular. Now we follow a hunch and guess that
maybe also the solution wu itself is given by a paraproduct plus a more regular term. More
precisely we make the following paracontrolled Ansatz:

u=u'<H+uf

with v’ € Cp#"/?~, H € Cr#®/?>~, and uf € Cp%?~ of better regularity. We hope to gain
half a derivative, as much as in (12), but the regularity for u’ admittedly falls from the
sky at this point. Why would we hope to have a representation of w as a paraproduct
plus smoother remainder? Well, we saw in Example 12 that the paraproduct v’ < H is
a “frequency modulation” of g and looks very much like H on small scales (and thus
V(u" < H) looks like VH on small scales). But the difficulty we have with defining
(Vu) o V is exactly coming from small scale contributions of Vu and V' which in the
product create diverging resonances on large scales. So if we understand how the small
scale contributions of VH interact with those of V and that no diverging resonances
develop, then by the philosophy of controlled rough paths we might also hope that Vu has
no diverging resonances with V. More precisely, if u matches the paracontrolled Ansatz
then we can make the decomposition of the product more precise:

(Vu)V = (Vu) < V+ (Vu) = V4 (Vub) o V4 (Vu!') < H) o V+ (' < VH) o V,

———— N—— N —
—1/2— 0= 1/2— 1/2— if

“' '77

where with the notation we single out the only term which is still not well defined. To
cure this term we will need the following commutator lemma, which is the main result in
paracontrolled distributions:

Lemma 22. Assume that a€(0,1) and 3, €R are such that «+ 5+ v >0 and 5+ v <0.
Then the trilinear operator on 73, defined by

C(f,g,h)=((f=g)oh)— f(goh),

satisfies
ICC(fs 9, M)llat sty SIS llallgllsllinlly, (13)

and can thus be canonically extended to a bounded trilinear operator from €“x #Px & to
got B+,
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Remark 23. It would be more aesthetically pleasing to have the same estimate for

(f=<g)oh—f=(goh),

but sadly this is not true.

We do not give the proof here (it can be found in Paraproduct paper), but equipped with
the tools that we learned in this lecture it is not difficult at all.

Let us see what we can do with this estimate: Recall that the only term in the product
(Vu) oV that is still ill defined is (v’ < VH) oV, which we rewrite as

(W <VH)oV=C(u,VH,V)+u' (VHoV).
1/5—

The last product on the right hand side is still not well defined because VH o V' is not
well defined. However, if we assume that VH oV is extrinsically given and has its natural
regularity VH oV € Cr#°~, then u/(VX o V) is well defined and in C7#°~. To summarize
we then have the following decomposition of the product:

(Vu)V = (Vu) < V4 (Vu) = V+ (Vub) o V+ ((Vu') < H) o V+ C(u/, VH, V) +u/(VH o V).

—_——— —— N—— -~ -
—1/2— 0= 1/5— 1/5— 1/2— 0=

So far H and u’ were completely arbitrary and the only ingredient we needed was sufficient
regularity and the a priori knowledge of the product VH o V. But for this to be useful
we have to be able to set up a Picard iteration in the space of functions that oblige the
paracontrolled Ansatz. That is, we have to show that the paracontrolled Ansatz is stable
under the map u— v, where u solves

L= (Vu)V + f, v(T) =,

say for p € @2~ and f € Cy([0,T] x R?). To see the stability of the paracontrolled Ansatz,
we guess again a paracontrolled Ansatz for v, say

v=v'< H+¥,
with the same H as before and the same regularity requirements for v’ and v¥. Then we have
St= 2 — Av' <H)=(Vu)<V+R - Lv' < H),
where R € C7#°~ is a more regular remainder term. Now morally we have
L' <H)—v' < ZH e Cre°, (14)
because for example by Leibniz’s rule

AW <H)—v'<AH=Av"<H+2Vv' <VH.
0= 0=
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The problem is that .# also contains the time derivative, and of course we cannot simply
differentiate elements of C7%® in time. This is a small technical problem which does
not change the overall picture and which can be overcome by also requesting some time
regularity of v” and H, and also we need to slightly adapt the definition of the paraproduct
and introduce some smoothing in the time variable as well. For simplicity we brush this
under the carpet and pretend that (14) holds. Then we get

Pt =(Vu) <V —v' < ZH + R,

with a new R € Cr#°~. If we choose v/ = Vu and .ZH =V, then the two irregular terms
on the right hand side and we end up with a well defined equation for v¥, from where we

also learn that our guess v? € Cr%2~ was justified because R € C7r#9~ and then by the
Schauder estimate Lemma 16 v* has the right regularity as long as v#(T) € #?~. But

v (T) =v(T) = ((Vu) < H)(T) =v(T)

if we assume that H(T') =0. Therefore, it suffices to take ¢ € #2~. From here the following
result is shown by the same arguments as in Proposition 17:

Proposition 24. Let V e Cr% /2~ set SH=YV, H(T)=0, and assume HoV € Cr#°~ is
an extrinsically given distribution of the required reqularity. Then for all f € Cy([0,T] x R%)
and all o € €2~ there exists a unique paracontrolled solution uw=Vu < H +uf to

Zu=(Vu)V+f,  ul)=e,
where the product on the right hand side is interpreted as

(Vu)V = (Vu) <V + (Vu) =V +utoV+C(Vu, H,V) +Vu(Ho V).

Remark 25.

i. In the proof of Theorem 20 we needed to also take f=V" in the generator equation,
for ke{1,...,d}. Now V¥e Cr# /2~ and we cannot just add an arbitrary element

of Cr& =12~ But for f=V* we can simply replace (Vu)V by
(Vu+ep)V,

where (ex)r=1,...,d are the k-th canonical basis vectors in R<.

ii. One can show that if HoV =lim, 0 (p"* H) o (p"* V), then also

(Vu)V = lim (p"«Vu)p"«V.
n— oo

The difference to the case < 1/2 is that here this convergence may hold for one
mollifier p but fail for another p (or give another limit).

iii. Tt is not hard to see that if V € Cr%&~# and H oV € Cp&' 28, then for 8 < 2/3
everything works as above. After we cross the threshold 5=2/3 we would have to
go higher in the expansion of our solution, and it is not so obvious how to do this
in the setting of paracontrolled distributions (see however Bailleul-Bernicot).
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From here we can argue essentially as in the not-so-singular case before to obtain a version
of Theorem 20 in the three-dimensional case. Only that now different approximations £” to
& can give rise to different limits i of the A", or for some approximations the convergence
of h™ can even fail. So we have to assume that £ converges to & such that h"™ converges to
h and then H"o VA" converges to H o Vh. In this case dQ = (Z;L)_lexp(f(;[f"(Xs))d]P;‘
converges to Y, which is uniquely determined as the solution to the martingale problem.
The point ii. in Theorem 20 is also much more subtle and to have the representation
Ar=limy 0o fgpn* Vh(s, Xs)ds we need to assume that H o p"* Vh converges to HoVh
in Cr#%~. Moreover, we only get A e C%/*~([0,T], R almost surely.

4.2 A KPZ-like equation

To conclude our analysis it only remains to see that the equation for h actually has a
meaning. In d = 1 this is quite easy because then Vh is actually a function and not a
distribution, so |Vh|? poses no problem.

In d=2 we have the equation
j%z—%VhP—g, h(T) =0,
We write h=X + hg, where X solves .ZX =—¢, X(T)=0, and get
=g VA=~ L(Vhrl 4 2VheVX + VX2,

Now we saw that £ € 717, and therefore X € Or#'~ and |VX|? is not well defined. But
if it was defined, it should have regularity |VX|?€ C7#?~, as well as VX € C7r¢?~. Then
the worst term on the right hand side of the equation for hp is in C7%%~, so we guess
hr € Cr%?~. Under this condition |Vhg|? and 2VhgrVX are well defined, and it is no
problem for us to solve the equation (at least on a small time interval [t, T| because now
the equation is quadratic and therefore global existence is not so trivial any more; but
this can be dealt with and we simply ignore that problem here). So the only ingredient
we need to make sense of the equation for hg is the input |VX|2. It turns out that this
term cannot be constructed, because when squaring the distribution VX we do indeed
pick up diverging resonances in the resonant product. However, these divergences are of a
particularly simple form and it turns out that for any given approximation of the identity
(p™) there exist constants ¢, — oo that depend on (p™), but such that the limit

lim [VX"2 - ¢,

n— o0

exists in C7%"~ and does not on the specific approximation procedure; here .ZX" = p™x &,
X™(T)=0. Moreover, ¢, =lim,_,E[|VX"(t,z)|?] for all t <T and = € R? which justifies
that in Section 3.2 we replaced ¢, by 3%c, when we replaced ¢ by B¢. Then h is not the

limit of the solutions to the naive equation .Zh" = —%|Vh"\2 — p"* &, but instead we have
to consider

1
W=~ (TP = ) = 4 €
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In d = 3 things are much more complicated and in fact exactly as complicated as for the
usual KPZ equation in d =1 where the space white noise is replaced by a space-time white
noise. Here we will see the trees appear: Let again

A= |VhP— ¢ h(T)=0
and ZX =—¢, X(T)=0. Now we write again h =X + h>; and get
1
.,%21 = —§(|Vh>1|2 + 2Vh>1VX + |VX |2)

This time X € C7%"/2~ and therefore we expect [VX |2 € Cp#~'~. This is still way too
irregular, so we also take out this term: Let

XY = —%WX 2, XY(T)=0,
for which we expect XxVe Cr#'—, and write h=X + XY+ h>2 with

1
.,%22 = —5(‘Vh>1|2 + QVh>1VX + ‘VXP)
1
=5 (|Vhz2 + X" +2V (h2 + XV)VX)
:_%( [Vhsa|?+ 2VhsoV XY + VXY |2+ 2Vh2oVX +2VXVVX).
Now the most irregular term is expected to be WWXVVX € Crg~Y 2= so we take it out
as well by setting
ZX¢= —%VXVVX, X =0,

and then A>3 =X + XY+ 2x¢. At this point the use of the tree notation is hopefully quite

transparant: given two rooted binary trees 7 and 7o we write (7172) for the tree that is
obtained by joining the roots of 71 and 7 in a new root, and we set recursively

DgﬂX(ﬁQ) — _%VXTlvng

with X*®*= X. The tree notation is simply a very convenient tool to index all the objects
that have to be recursively constructed from the noise £ in order to solve the equation.

Now we could continue in the expansion of h and subtract for example 4XY{’ or XV. But
it turns out that hx3 € Cr#®/?~ and the regularity cannot be improved by a further
expansion, because in the equation for hy, there would always appear the term

Vhs,VX,

which at best can have the same regularity as X, so it should be in Cr# V2=, But then
the best regularity we can hope for is h>, € Cr#3/2~ and then the product Vh,VX is ill-
defined. So the idea is to abandon the expansion and rather make a paracontrolled ansatz
for the remainder. More precisely, we assume

h=X+XY+2XY 4 1/ < Q+nt
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with k' € Org* /2~ ke Cr%?—, and
AQ=VX, Q(TI)=0,

so Q € C7%3/?~. Then we can use the same arguments as in the generator equation to
solve our KPZ type equation based on the paracontrolled Ansatz.

The next step is then to construct the tree data (X, XV7 X\"7 X‘("7 Xv, VQ o X) from the
white noise. The higher order trees do not appear in the expansion of h, but they are
needed to make sense of the right hand side of the equation. The construction of the trees
is already quite demanding and carried out in Cannizzaro-Chouk. Not surprisingly it also
requires some renormalizations. How to do the renormalization and the stochastic esti-
mates systematically in the (here equivalent) setting of regularity structures was explained
in the lectures by Lorenzo Zambotti and Ajay Chandra.
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