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Abstract. We prove existence and uniqueness of distributional solutions to the KPZ equation
globally in space and time, with techniques from paracontrolled analysis. Our main tool for
extending the analysis on the torus to the full space is a comparison result that gives quan-
titative upper and lower bounds for the solution. We then extend our analysis to provide a
path-by-path construction of the random directed polymer measure on the real line and we
derive a variational characterisation of the solution to the KPZ equation.
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1. Introduction
In this work we solve the Kardar-Parisi-Zhang (KPZ) equation on the real line, i.e. we
construct a unique h : R≥0 × R→ R such that

(1) (∂t −
1

2
∆x)h =

1

2
(∂xh)2 + ξ, h(0) = h,

where ξ is a Gaussian space-time white noise, the generalized Gaussian process on R≥0×R
with singular covariance structure E[ξ(t, x)ξ(s, y)] = δ(t−s)δ(x−y).
TheKPZ equationwas introduced in [KPZ86] as amodel for the growth of a one-dimensional
interface that separates two two-dimensional phases of which one invades the other. The
conjecture of [KPZ86], now called strong KPZ universality conjecture, was that any (1 + 1)–
dimensional (one time and one space dimension) interface growth model that is subject to
random influences, surface tension, and lateral growth, shows the same large scale behav-
ior under the now famous 1−2−3 scaling, and that the KPZ equation provides a prototypical
example of such a model. Since then it became apparent that there is a second, weaker uni-
versality in the class of (1 + 1)–dimensional interface growth models: If the lateral growth
or the random influence is very weak, then according to the weak KPZ universality conjec-
ture the model is expected to be well approximated by the KPZ equation on large scales.
See [Qua12, Cor12, QS15] for nice introductions to these universality questions.
The difficulty with the KPZ equation is however that its solution h is not a differentiable
function in x, and therefore it is not clear how to interpret the nonlinearity (∂xh)2 on the
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right hand side of (1). This problem can be avoided by applying the Cole-Hopf transform:
The process w = eh formally solves the stochastic heat equation

(2) (∂t −
1

2
∆x)w = wξ, w(0) = eh,

which can be analyzed using Itô integration [Wal86]. This was already observed by Kar-
dar, Parisi and Zhang [KPZ86], and the first mathematically rigorous formulation is due to
Bertini, Cancrini and Jona-Lasinio [BCJL94] who simply define h = logw for the solution
w to (2), a process that is strictly positive by a strong comparison result of Mueller [Mue91].
Results such as the scaling limit proven by Bertini and Giacomin [BG97] suggested that
h is the physically relevant solution process, but nonetheless it remained unclear if and in
what sense the Cole-Hopf solution actually solves the KPZ equation.
A rigorous proof of the existence of distributional solutions to the KPZ equation on the
torus was a milestone in the theory, reached by Hairer via rough paths [Hai13] as well
as through the celebrated theory of regularity structures [Hai14, FH14]. Similar results
have been obtained by Gubinelli, Imkeller and Perkowski via paracontrolled distributions
[GIP15, GP17]. These theories were the starting point for the new research field of sin-
gular SPDEs, with many exciting developments in recent years that allow to study more
singular or quasilinear equations, with boundary conditions or on manifolds, and to derive
qualitative properties of the solutions.
At the center of the new approach to SPDEs lies the idea of expanding the solution on small
scales via the driving noise and higher order terms constructed from it. The non-linearity
is then well-defined if this is the case for the driving noise, and the solution to the equation
becomes a continuous functional of the “enhanced noise”, called model in regularity struc-
tures, i.e. the noise together with the higher order terms appearing in the expansion of the
solution. However, in many situations (including for the KPZ equation) the higher order
terms can only be constructed with the help of a suitable renormalisation, and this means
that the solution we eventually find does not solve the original equation, but a renormalised
version of it [BCCH17].
So while we now have a good understanding in what sense the Cole-Hopf solution solves the
KPZ equation and how to interpret its renormalisation, all this is restricted to the equation
on the torus or in a finite volume with boundary conditions [GH18a, CS16, GPS17]. Since
one of themain interests in the KPZ equation comes from its large scale behavior it would be
more natural to solve it onR, a space that can be arbitrarily rescaled. Using the probabilistic
notion of energy solutions [GJ14, GJ13] it is possible to give an intrinsic formulation of the
KPZ equation on R, but this is essentially restricted to stationary initial conditions [GP18].
Here we extend the perturbative approach described above, implemented in the language
of paracontrolled distributions, to develop a solution theory for the KPZ equation on R for
general initial conditions. The techniques of the perturbative approach are inspired by
the theory of rough paths [Lyo98] in the controlled path formulation of Gubinelli [Gub04],
and they rely strongly on the local sub-criticality of the equation. Sub-criticality here means
that on small scales the non-linearity is less relevant than the linear part and it guarantees
that only a finite number of the controlling terms from the expansion of the solution need
renormalisation (see Table 2). So far the vast majority of works on singular SPDEs deal
with equations in finite volume, and due to the local character of the theory it may seem
problematic to consider equations in infinite volume. But, at least on an intuitive level,
we expand the solution around every point and therefore the noise can actually control
the solution also on large spatial scales. The main difficulty with equations on unbounded
domains is not so much the lack of control as the fact that the controlling terms diverge for
|x| → ∞. The central issue is to prevent the singularities at infinity from causing explosions
in bounded domains, requiring a refined study of the solution in weighted spaces. In the
context of regularity structures, techniques for singular SPDEs in weighted spaces were
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first introduced by Hairer and Labbé [HL15, HL18] in their study of the linear rough heat
equation and the linear parabolic Anderson model on the whole Euclidean space. For non-
linear equations, a priori estimates are a natural and powerful tool and they were very
successful in the study of the Φ4

d equations in the work by Mourrat and Weber [MW17a,
MW17b], by Gubinelli and Hofmanova [GH18b], and by Barashkov and Gubinelli [BG18].
But such estimates depend strongly on the structure of the equation and this prevents the
development of a general solution theory for singular SPDEs in infinite volume.
In this work we derive a priori L∞ estimates with linear growth for the solution to the KPZ
equation on the real line. To derive these bounds we use the comparison principle and the
link between KPZ equation and stochastic heat equation through the Cole-Hopf transform.
Comparison results for the stochastic heat equation have been widely studied with prob-
abilistic techniques. But although this leads to sharp bounds for the growth at infinity,
see for example the work by Conus, Joseph and Khoshnevisan [CJK13], they address only
qualitatively the decay at infinity, a notable result being the strict positivity of the solution
proven by Mueller [Mue91]. The analytic approach to SPDEs we follow allows us to use the
full power of classical comparison results, providing us with quantitative and effective, if
not sharp, upper and lower bounds. These estimates are very weak in terms of regularity
but sufficient to avoid singularities when applying the Cole-Hopf transform, and this allows
us to lift the a priori bounds to paracontrolled topologies and to prove uniqueness. Our solu-
tion is locally 1/2−εHölder continuous in space and 1/4−ε in time, and it has linear growth
at infinity whereas its “paracontrolled” derivative may have sub-exponential growth.
We also give two alternative formulations of the KPZ equation by linking it with the random
directed polymer measure and with a variational problem. The random directed polymer
measure formally has the density

dQ
dP

=
1

Z
exp

(∫ T

0
ξ(T − t,Wt) dt

)
with respect to the Wiener measure P on C([0, T ]), where Z is a normalisation constant. On
the torus this measure was constructed by Delarue and Diel [DD16], see also [CC18], who
observed that Q formally solves the SDE with distributional drift

dXt = ∂xh(T − t,Xt)dt+ dWt,

and then proceeded to construct a unique martingale solutionX by solving the Kolmogorov
backward equation using rough path integrals. On the real line Alberts, Khanin and Quas-
tel [AKQ14] gave a different, probabilistic construction of Q, based on Kolmogorov’s exten-
sion theorem. Here we combine both approaches, which have existed independently so far,
and show that they are equivalent. We give a path-by-path construction of the random
directed polymer measure that does not depend on the statistical properties of the white
noise, but only on the “model” associated to it. We also show that the KPZ equation can be
interpreted as the value function of the stochastic control problem

h(t, x) = sup
v

Ex
[
h(γvt )−

∫ t

0
ξ(t− s, γvs ) ds− 1

2

∫ t

0
v2s ds

∣∣∣ξ],
where under Px

γvt = x+

∫ t

0
vs ds+Wt

for a Brownian motion W that is independent of ξ, a representation that was previously
derived in [GP17] for the KPZ equation on the torus.

1.1. Structure. In the first section we introduce techniques from paracontrolled calculus
for SPDEs in a weighted setting, cf. [GIP15, GP17, MP17]. Among them are the commu-
tation and product estimates from Lemmata 2.10 and 2.8, as well as tailor-made Schauder
estimates for the weighted setting, e.g. Lemma 2.14. The existence and uniqueness of
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solutions to the KPZ equation follows from a comparison result, Lemma 3.9. The lower es-
timate guarantees that the Cole-Hopf solution is the unique paracontrolled solution to the
KPZ equation and that the latter depends continuously on the parameters of the equation
(Theorem 3.18). When considering uniqueness of solutions to PDEs on the whole space it
is important to add some weight assumptions on the initial conditions. In this work we
assume roughly linear growth of the initial condition (for the precise statement see As-
sumption 3.6 and Table 2). This is imposed upon us by the Cole-Hopf transform and the
weighted Schauder estimates. Nonetheless these conditions suffice to start the equation in
the invariant measure, the two sided Brownian motion [IS13, BCFV15], and in the narrow
wedge in the formulation of [SS10].
Section 4 addresses the random directed polymer measure Q. We prove sub-exponential
moment estimates (Lemma 4.5) and we show that the polymer measure is absolutely con-
tinuous with respect to a reference measure PU which we refer to as the partial Gyrsanov
transform (cf. [GP17, Section 7]) and which is in turn singular with respect to the Wiener
measure. We conclude with two characterisations of the solution h to the KPZ equation.
The first, via the Feynman-Kac formula (Remark 4.13), states that the solution h is the free
energy associated to the measure Q. The second is a variational representation à la Boué-
Dupuis (Theorem 4.16), cf. [BD98, Ü14]. The rest of this work is dedicated to technical, yet
crucial, results. In particular (Section 5) we prove an abstract solution theorem for linear
SPDEs, which applies to all linear equations studied in [HL18, GP17, MP17].
Remark 1.1. Our approach uses the Cole-Hopf transform in several crucial steps. But we
expect that the transform can be entirely avoided by making stronger use of the variational
formulation of the KPZ equation, as soon as we can prove the following conjecture: Let, with
the notation of Section 2 below, X ∈ CC

−1/2−ε
p(ε) for all ε > 0, let (∂t − 1

2∆x)Q = ∂xX, and let
Q�X ∈ CC−εp(ε) for all ε > 0. Then we conjecture that the paracontrolled solution u to

∂tu =
1

2
∆xu+ ∂x(uX) + f, u(0) = 0,

grows sublinearly in the L∞ norm in space, provided that f does. That is, for some δ < 1

sup
t∈[0,T ]

sup
x∈R

|f(t, x)|
1 + |x|δ

<∞ ⇒ sup
t∈[0,T ]

sup
x∈R

|u(t, x)|
1 + |x|δ

<∞.

While this conjecture seems very plausible, we are at the moment not able to prove or dis-
prove it, and we leave it for future work.

2. Preliminaries
2.1. Fourier Transform. We review basic knowledge and notations regarding the Fourier
transform. We define the space of Schwartz functions S (R) as the space of smooth and
rapidly decaying functions. The dual space S ′(R) is the space of tempered distributions.
Let ϕ ∈ S (R), then we define for all ξ ∈ R:

ϕ̂(ξ) = Fϕ (ξ) =

∫
R
ϕ(x)e−ixξdx

and for ϕ ∈ S ′(R) we define the Fourier transform in the sense of distributions:
〈ϕ̂, ψ〉 = 〈Fϕ,ψ〉 = 〈ϕ,Fψ〉, ∀ψ ∈ S (R) .

For ϕ ∈ S (R)the Fourier transform has the inverse

F−1ϕ (x) =
1

2π

∫
R
ϕ(ξ)eixξdξ.

Since we will consider functions that have more than just polynomial growth at infinity, it
is necessary that we go beyond the setting of tempered distributions and consider tempered
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ultra-distributions. This theory is presented in [Tri10] or [Bjö66]. For a simple and hands-
on introduction to all the tools we need we refer to [MP17].
Consider the function

ω(x) = |x|δ, δ ∈ (0, 1)

with δ fixed once and for all. Using this weight, we define spaces of exponentially decaying
Schwartz functions and their duals as follows.

Definition 2.1. For f ∈ S (R)we define the seminorms

pα,λ(f) = sup
x∈R

eλω(x)|∂αf(x)|

πα,λ(f) = sup
x∈R

eλω(x)|∂αF (f)(x)|

for λ > 0 and α ∈ Nd, and the associated locally convex space

Sω(R)=
{
f ∈ S (R)

∣∣ pα,λ(f) <∞, πα,λ(f) <∞∀λ > 0, α ∈ Nd0
}
,

and we denote by S ′
ω(R) its dual, which we call the space of tempered ultra-distributions.

We have the inclusions
Sω(R)( S (R)( S ′(R) ( S ′

ω(R).

Finally, we can define the Fourier transform on the space of tempered ultra-distributions
just as before: For f ∈ S ′

ω(R)we set

〈Ff, ϕ〉 = 〈f,Fϕ〉, 〈F−1f, ϕ〉 = 〈f,F−1ϕ〉.

We have introduced the Fourier Transform for exponentially decaying functions so that we
can extend the Littlewood – Paley theory also to weighted functions. We now fix the weights
that we are allowed to use.

Definition 2.2. We denote by ρ(ω) the set of all measurable, strictly positive functions
z : R→ (0,∞) such that for some λ > 0 and uniformly over all x, y ∈ R

z(x)−1 . z(y)−1eλω(x−y).

If this bound holds true we say that z is ω−moderate.

The need for considering ω−moderate weights can be explained by the following calculation:
to estimate the convolution ϕ ∗ f we can compute∣∣∣∣ϕ ∗ f(x)

z(x)

∣∣∣∣ . 〈|ϕ(x− ·)eλω(x−·)|, |f(·)/z(·)|〉.

Now we can intuitively bound the last term by some weighted norm of f assuming that ϕ is
fixed and rapidly decaying.

Definition 2.3. In this work we shall consider the following two families of polynomial
(resp. exponential) weights that lie in ρ(ω),

p(a)(x) = (1 + |x|)a, a > 0,

e(l + t)(x) = exp((l + t)|x|δ), l ∈ R, t ≥ 0, δ ∈ (0, 1).

Note that we distinguish the parameters t and l because later we will consider time depen-
dent weights.
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2.2. Littlewood–Paley Theory. In this section we review the construction of weighted
Hölder–Besov spaces. For a comprehensive introduction to Littlewood–Paley theory we re-
fer to [BCD11]. For a treatment of weighted spaces we also refer to [MP17, Mar18]. Follow-
ing their constructions we fix a dyadic partition of unity generated by two smooth functions
ρ−1 and ρ, that belong to Sω(R)and are supported in a ball around the origin B and and
annulus around the origin A , respectively. We then define ρj(x) = ρ(2−jx), j ≥ 0. Now we
define the Littlewood–Paley blocks: for ϕ ∈ S ′

ω(R)and j ≥ −1 let ∆jϕ = F−1 (ρjϕ̂) .We will
use the following notation for paraproducts:

Sif =
∑
j≤i−1

∆jf, f 4 g =
∑
i

Si−1∆ig, f � g =
∑
|i−j|≤1

∆if∆jg.

Definition 2.4 (Hölder–Besov spaces). For any α ∈ R and weight function z ∈ ρ(ω) we
define the space:

C α
z =

{
ϕ ∈ S ′

ω(R)
∣∣ ‖ϕ‖Cαz =

∥∥2αj ‖∆jϕ/z‖L∞
∥∥
`∞

<∞
}
.

We denote with C α for the space C α
z with weight z = 1 and use the norm

‖f‖∞,z = sup
x∈R

∣∣∣∣f(x)

z(x)

∣∣∣∣ .
The following result is of central importance in Littlewood–Paley theory. The classical proof
can be found for example in [BCD11, Lemma 2.1]. Here we will just discuss the proof in the
weighted case. The main difference is that the inequality does not hold uniformly over all
scaling factors λ. Instead we have to assume that λ is bounded away from zero.
Proposition 2.5 (Bernstein inequality). Let B be a ball about the origin and let k ∈ N and
z ∈ ρ(ω) a weight function. Then for any λ ≥ λ0 > 0 and f ∈ L∞z we have: If supp(Ff) ⊂ λB,
then

max
|µ|=k

‖∂µf‖∞,z .λ0,k λ
k ‖f‖∞,z .

Proof. Choose a compactly supported function ψ ∈ Sω(R)with ψ = 1 on B and set ψλ(·) =
ψ(λ−1·). Then

∂µf = ∂µF−1 (ψλFf) = (2π)
d
2 f ∗ ∂µF−1ψλ.

Now it is immediate to see that F−1ψλ(x) = λdF−1ψ(λx), and hence
∂µF−1ψλ(x) = λd+|µ|∂µF−1ψ(λx).

Moreover, since z ∈ ρ(ω) there exists ν > 0 such that
1

z(x)
.
eνω(x−y)

z(y)
≤ ecω(λ(x−y))

z(y)
,

where in the last step we used that ω(x) = |x|δ, λ ≥ λ0 and c = ν/λδ0. So eventually we can
estimate:

‖∂µf‖∞,z .λ0

∥∥∥∥∫
R

ecω(λ(x−y))

z(y)

∣∣∣f(y)λd+|µ|∂µF−1ψ(λ(x− y))
∣∣∣ dy∥∥∥∥

∞

. λk ‖f‖∞,z
∥∥ecω(λ(·))∂µF−1ψ(λ(·))λd

∥∥
L1

.ψ,δ,θ,z ‖f‖∞,z λ
k

where in the last step we changed variables and used the assumption that ψ is in Sω(R)
and the growth assumptions on z to conclude that the second norm is finite uniformly over
all λ ≥ λ0. �

A classical consequence of this result is the following.
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Corollary 2.6. If f ∈ C α
z then ∂µf ∈ C

α−|µ|
z with

‖∂µf‖
C
α−|µ|
z

. ‖f‖Cαz
uniformly over all distributions f.

Moreover we can also deduce the characterisation of Hölder–Besov spaces.

Corollary 2.7 ([Mar18], Lemma 2.1.23). For any α ∈ (0,∞) \ N and z ∈ ρ(ω) we find the
equivalence between the following norms:

‖f‖Cαz � ‖f‖∞,z +
∑
k∈Nd
|k|=bαc

(
‖∂kf‖∞,z + sup

x
sup
|x−y|≤1

|∂kf(x)− ∂kf(y)|
z(x)|x− y|α−bαc

)

where with |k| we denote the `1 norm: |k| =
∑d

i=1 k
i.

We conclude this section with a first set of paraproduct estimates. For this reason we define
the “commutator” C(f, g, h) = (f 4 g) � h− f(g � h).

Lemma 2.8. Consider f ∈ C α
z1 , h ∈ C β

z2 and g ∈ C γ
z3 and let us write z = z1 · z2, where

zi ∈ ρ(ω). Then
‖f 4 g‖β,z . ‖f‖∞,z1 ‖g‖β,z2 ,

‖f 4 g‖α+β,z . ‖f‖α,z1 ‖g‖β,z2 if α < 0,

‖f � g‖α+β,z . ‖f‖α,z1 ‖g‖β,z2 if α+ β > 0.

We also have that for z = z1 · z2 · z3:
‖f 4 (g 4 h)−(fg) 4 h‖α+β,z . ‖f‖α,z1‖g‖α,z2‖h‖β,z3 if α > 0, β ∈ R,

‖C(f, g, h)‖β+γ,z . ‖f‖α,z1 ‖g‖β,z2 ‖h‖γ,z3 if α+β+γ > 0 and β+γ 6= 0.

Proof. The first three estimates are shown in [MP17, Lemma 4.2]. The estimate for the
commutator C is from [MP17, Lemma 4.4]. �

2.3. Time Dependence. Throughout this work we mostly use an arbitrary but finite time
horizon T > 0 which will be fixed from now on. When we change the time horizon we will
explicitly state it. We define L = ∂t − 1

2∆ and the associated semigroup:

Ptf(x) =

∫
R

1

(2πt)
d
2

e−
|x−y|2

2t f(y)dy.

In this section the aim is to encode the following information:
(1) Time dependent weights.
(2) Parabolic space-time regularity.
(3) Blow-up at time t = 0.

Here as before we follow the notation of [MP17]. For an arbitrary horizon Tr ≥ 0 we denote
by

X = (X(s))s∈[0,Tr]

an increasing sequence of Banach spaces. A typical example could be the sequence X(s) =
C α
e(l+s). In fact we will use only two kinds of time dependent weights, which we will refer to

through the following abuse of notation:
e(l + t)p(a) = (e(l + t)(·)p(a)(·))t∈[0,T ],

e(l + t) = (e(l + t)(·))t∈[0,T ],
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where the t on the left-hand side is only a formal way of representing time dependence.
In applications it will always be clear whether t is fixed or whether we are considering a
time-dependent weight. Now we define the following space of functions for given β ≥ 0:

M βX([T`, Tr]) =
{
f : ([T`, Tr])→ S ′

ω such that
t 7→ tβf(t) is continuous from [T`, Tr] to X(Tr) and

‖f‖M β(X) = sup
T`<t≤Tr

∥∥∥tβf(t)
∥∥∥
X(t)

<∞
}

We also write CX([T`, Tr]) for the space M 0X([T`, Tr]). Similarly we can define Hölder con-
tinuity through the following norm for α ∈ (0, 1):

‖f‖CαX([T`,Tr])
= sup

T`<t≤Tr
‖f(t)‖X(t) + sup

T`<s,t≤Tr

‖f(t)− f(s)‖X(t∨s)

|t− s|α
.

So eventually we find the parabolically scaled Hölder spaces with respect to a possibly time
dependent z and of regularity α ∈ (0, 2) with a blow-up of order β in zero and for parameters
0 ≤ T` ≤ Tr:

L β,α
z ([T`, Tr]) =

{
f : [T`, Tr]→ S ′

ω, such that

‖f‖
L β,α
z

=
∥∥∥t 7→ tβf(t)

∥∥∥
C
α
2 L∞z ([T`,Tr])

+ ‖f‖M βCαz ([T`,Tr])
< +∞

}
.

In general we omit from writing the dependence on the time interval [0, T ]. Finally, we will
write L α

z for L 0,α
z .

With these definitions at hand we are ready to go on with our theory. First, we introduce
parabolically scaled paraproducts. Let ϕ : R → R≥0 be a smooth function with compact
support and total mass 1 which is non-predictive, that is:

supp(ϕ) ⊂ [0,+∞).

Then for any continuous function f : R≥0 → X (here X is any Banach space) and i ≥ 0 we
define the operator

Qif(t) =

∫
R

22iϕ(22i(t− s))f(s ∨ 0)ds =

t∫
−∞

22iϕ(22i(t− s))f(s ∨ 0)ds.

Remark 2.9. As in [GP17, MP17] we silently identify Qif with Qi1t>0f if f has a blow-up
in zero, i.e. if f ∈M βX for β > 0.
We have suggestively called ϕ non-predictive because thanks to the condition on its support,
Qif(t) depends only on f

∣∣
[0,t]

. Now we can introduce the parabolically scaled paraproduct

f≺≺g =
∑
i

(Si−1Qif)∆ig.

With this definition at hand we obtain a second set of paraproduct estimates.
Lemma 2.10. Consider α ∈ R, γ < 0, β ≥ 0. Choose two, possibly time dependent, weights
zi : R≥0 → ρ(ω), for i = 1, 2 such that zi is pointwise increasing in time and write z(t) =
z1(t)z2(t). Then

tβ‖f≺≺g(t)‖Cα
z(t)
. ‖f‖M βL∞z1 ([0,t])

‖g(t)‖Cα
z2(t)

,

tβ‖f≺≺g(t)‖Cα+γ
z(t)
. ‖f‖M βC γz1 ([0,t])

‖g(t)‖Cα
z2(t)

.

Moreover, for α ∈ (0, 2) we find the following estimate
‖f≺≺g‖

L β,α
z
. ‖f‖

L β,δ
z1

(‖g‖CCαz2
+ ‖Lg‖CCα−2

z2
)
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for any δ > 0. Finally, we also have the following commutation results:
tβ‖(L(f≺≺g)− f≺≺(Lg))(t)‖Cα+γ−2

z(t)
. ‖f‖

L β,γ
z1

([0,t])
‖g(t)‖Cα

z2(t)
,

tβ‖(f≺≺g − f 4 g)(t)‖Cα+γ
z(t)
. ‖f‖

L β,γ
z1

([0,t])
‖g(t)‖Cα

z2(t)
.

Proof. These estimates are shown in [MP17, Lemmas 4.7 - 4.9]. �

Now we pass to a result regarding derivatives in L β,α
z spaces.

Lemma 2.11. Consider a parameter α ∈ (0, 1) and a weight z : R≥0 → ρ(ω) which is
pointwise increasing in time. Then

‖∂xf‖L β,α
z
. ‖f‖

L β,α+1
z

.

Proof. Since ‖∂xf(t)‖Cα
z(t)
. ‖f(t)‖Cα+1

z(t)
we can easily control the spatial regularity. Let us

concentrate on the time regularity. We estimate for t ≥ s:

‖∂xf(t)tβ − ∂xf(s)sβ‖∞,z(t) ≤
∞∑

j=−1
‖∂x[∆jf(t)tβ −∆jf(s)sβ]‖∞,z(t)

Now let us fix a j0 such that 2−j0 ≤ |t − s|1/2 < 2−j0+1. We will use different estimates on
small scales and on large scales. Indeed, an application of Bernstein’s inequality (Proposi-
tion 2.5) gives for the large scales

j0∑
j=−1

‖∂x[∆jf(t)tβ−∆jf(s)sβ]‖∞,z(t)

.
j0∑

j=−1
2j‖∆j [f(t)tβ−f(s)sβ]‖∞,z(t) . 2j0 |t− s|

α+1
2 ‖f‖

L β,α+1
z

,

while on small scales
∞∑

j=j0+1

‖∆j [∂xf(t)tβ−∂xf(s)sβ]‖∞,z(t) .
∞∑

j=j0+1

2−jα‖f‖
L β,α
z
. 2−j0α‖f‖

L β,α
z
.

Substituting 2−j0 ' |t− s|1/2 delivers the required result. �

We conclude the preliminaries by stating some important estimates regarding the heat
semigroup, commonly referred to as Schauder estimates. We write VT`(f)(t) = ∫ tT` Pt−sfsds.

Proposition 2.12. Fix α ∈ (0, 2) and z ∈ ρ(ω).
(1) For γ ∈ R such that β = (α+γ)/2 ∈ [0, 1) we find that:

‖P·f‖L β,α
z
. ‖f‖C−γz .

(2) If we fix also a ≥ 0 such that α+2a/δ ∈ (0, 2) and β+a/δ ∈ [0, 1) we find that:
‖VT`(f)‖

L β,α
e(l+t)

([T`,Tr])
.Th ‖f‖M βC

α+2a/δ−2
e(l+t)p(a)

([T`,Tr])

uniformly over all 0 ≤ T` < Tr ≤ Th.

Proof. These are the weighted analogues of the estimates of [GP17] or [GIP15] and can be
found as well in [MP17]. A slight difference is the dependence on the interval [T`, Tr]. Note
that VT`(f)(t) = V (f·+T`)(t−T`). Thus the proof follows by proving:

‖t 7→ (t+κ)βV (f)(t)‖L α
e(l+t)

.Th ‖(t+κ)βft‖CC
α−2−2a/δ
e(l+t)p(a)

([T`,Tr])

uniformly over κ in [0, Th]. This follows from the same calculations as in [GP17, Lemma
6.6]. �
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In the previous result the role of e(l+t) and p(a) only comes into play with the parameter a/δ.
Although this seems a minor detail in the statement, it is actually the key point that allows
us to solve linear singular SPDEs on the whole real line with exponential weights. This
approach has been developed by Hairer and Labbé in [HL15, HL18] and it is also present
in [DD16, HPP13].
In the next result we show our last product estimate. Since our definition of the L α spaces
does not allow for negative α we state in the following theorem the classical result of Young
integration with parabolic scaling.

Lemma 2.13 (Young Integration). As before let zi, i = 2 be pointwise increasing, time-
dependent weights. Conisder f ∈ L β,α

z1 and g ∈ L γ
z2 with β ∈ [0, 1) and α, γ ∈ (0, 2). If

α+γ−2 > 0, we have
f · ∂tg ∈ LL β,α+γ

z1·z2
and the following two estimates hold true:

‖V (f · ∂tg)‖
L β,α+γ−ε
z1·z2 ([0,Th])

.Th ‖f‖L β,α
z1

([0,Th])
‖g‖L γ

z2
([0,Th])

,

‖V (f · ∂tg)‖
L
β,α+γ−2a/δ−ε
e(l+t)

([T`,Tr])
.Th ‖f‖L β,α

e(l+t)
([T`,Tr])

‖g‖L γ
p(a)

([T`,Tr])

for any ε > 0 and 0 ≤ T` ≤ Tr ≤ Th.

Proof. The proof of this result is the content of Lemma D.3 and the preceding results. �

The next result shows how to interpolate between different L β,α
z spaces.

Lemma 2.14. Fix some parameters α ∈ (0, 2), β ∈ [0, 1), ε ∈ [0, α) ∩ [0, 2β] as well as a
time-dependent point-wise increasing weight z and 0 ≤ T` ≤ Tr. Then

‖f‖
L
β−ε/2,ζ
z ([T`,Tr])

. ‖f‖
L β,α
z ([T`,Tr])

.

for any ζ < α−ε. Finally, for α ∈ (0, 2), β ∈ [0, 1) and ε ∈ [0, α)

‖f‖
L β,α−ε
z ([T`,Tr])

. ‖T β` f(T`)‖Cα−ε
z(T`)

+ (Tr−T`)ε/2 ‖f‖L β,α
z ([T`,Tr])

Proof. This result is analogous to [MP17, Lemma 3.10]. We only discuss the first statement.
Note that here we allow also for ε = 2β. This is possible because, using the same arguments
as in the proof of [GP17, Lemma 6.8] we obtain the following bound (uniformly over ζ ≤
α−ε):

sup
t∈[0,T ]

‖f(t)‖
Cα−2β
z(t)

+ ‖f‖Cα/2−εL∞z . ‖f‖L β,α
z
.

However, it is a priori not clear that f : [0, T ] → C ζ
z(T ) is a continuous function. Since

we have Hölder continuity in L∞z(T ) of f and a uniform bound in C α−2β
z we can conclude by

interpolation, at the price of an arbitrarily small loss of regularity, which explains the strict
inequality ζ < α−ε. �

With these results we end our brief introduction to the theory of paracontrolled analysis
and Schauder estimates.

3. The Paracontrolled KPZ Equation
Here we briefly review the notion of paracontrolled solutions to the KPZ equation first in-
troduced in [GP17] and [GIP15]. For counting regularity we will use the index α. We will
use the index a for counting the polynomial growth of the noise at infinity and we recall that
δ ∈ (0, 1) is used in our definition of ultra-distributions. We will work under the following
standing assumptions on the parameters.
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Assumption 3.1.
2

5
< α <

1

2
, 0 ≤ a/δ < 5α−2

6

In general α ∈ (1/3, 1/2) will be sufficient. We will need some tighter control only in Section
4. We can compile the following rule-of-thumb table.

α δ a
1/2− 1− 0+

Table 1. Rule-of-thumb for the Parameters

Let us introduce the extended data for the KPZ equation. We collect in the next table all
the terms involved. Here and throughout this work we will use the notation X(·) = ∂xY

(·).

Regularity Definition

Y(θ, Y0, c , c )



Y L α
p(1+a) LY = θ

Y L 2α
p(a) LY = 1

2(∂xY )2 − c
Y L α+1

p(a) LY = ∂xY ∂xY

Y L 2α+1
p(a) LY = ∂xY � ∂xY + c

Y L 2α+1
p(a) LY = 1

2(∂xY )2 − c
∂xY � ∂xY CC 2α−1

p(a)

X CC α−1
p(a) X = ∂xY

Y L α+1
p(a) LY = ∂xY

Table 2. Extended Data of the KPZ Equation

Here we assume that θ ∈ LCα/2(R;C∞b (R)) is a (spatially) smooth noise and C∞b (R) is the
space of bounded and infinitely differentiable functions with all derivatives bounded. The
reason for assuming only distributional regularity of θ in the time variable is that we do not
want to exclude spatial mollifications of the space-time white noise, which are convenient
from a probabilistic point of view because they preserve the Markovian structure of the
equation. We solve the equations for the elements in Y(θ) by taking all initial conditions
equal to zero, except Y (0) = Y0 is assumed to be non-trivial. We are interested in starting
the KPZ equation at its invariant measure, and for that purpose it is convenient to let Y0
be of the form

Y0(x) = B(x) + Cx,

where B is a two sided Brownian motion and C ∈ R (cf. [QS15, Section 1.4]). Note that
we have added X = ∂xY to the table because we assume that it has a better behaviour at
infinity than Y . Indeed, while Y may have superlinear growth at infinity, its derivative X
is started in the invariant measure for the rough Burgers equation, which has the growth
of white noise on R, i.e. it grows less than any polynomial.
We now rigorously define the spaces of functions we will work with. For a finite collection
I of Banach spaces Yi we call product norm on×i∈I Yi the norm: ‖ · ‖×Yi = maxi∈I ‖πi(·)‖Yi
with πi being the projection on the i−th coordinate.

Definition 3.2. We shall call Y ∞kpz be the image of the map Y(θ, Y0, c , c ) in the space

L α
p(1+a) ×L 2α

p(a) ×L α+1
p(a) ×L 2α+1

p(a) ×L 2α+1
p(a) × CC 2α−1

p(a) × CC α−1
p(a)
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as we let (θ, Y0, c , c ) vary in LCα/2(R;C∞b (R)) × C∞b (R) × R × R. We define Ykpz as the
closure of the image of Y(θ, Y0, c , c ) in the above space endowed with the product norm,
which we will refer hereafter as ‖ · ‖Ykz . To any Y ∈ Ykpz we associate a distribution ξ = LY.

These tools are sufficient to define paracontrolled solutions to the KPZ equation.

Definition 3.3. We say that h is a paracontrolled solution to the KPZ equation (1) with
initial condition h ∈ C(R,R) and with external data Y ∈ Ykpz if there exists an l ∈ R such
that h is of the form:

h = Y + Y + Y + hP ,

where hP is paracontrolled by Y in the sense that

hP = h′≺≺Y + h]

with h′ in L α
e(l) and h] in L 2α+1

e(l) , and if the following conditions are satisfied:

(3)

LhP = L(Y + Y ) + (XX −X �X ) +X X +
1

2
(X )2

+ (X +X +X )∂xh
P +

1

2
(∂xh

P )2,

hP (0) = h− Y (0),

and

(4) h′ = X + ∂xh
P .

Note that all the terms involved in the last equation are well defined. In particular the
product X · ∂xhP is well defined by applying the commutation results for paraproducts that
we introduced in the preliminaries. The two crucial ingredients for this purpose are the
paracontrolled nature of hP and the fact that the resonant product ∂xY � ∂xY is given a
priori in Ykpz.
For smooth noises θ the definition amounts to h satisfying the equation

Lh =
1

2
(∂xh)2 − c + θ.

In this sense a paracontrolled solution h to the KPZ equation with white noise forcing solves

Lh =
1

2
(∂xh)�2 + ξ,

where (∂xh)�2 = “(∂xh)2−∞”, with∞ being the limit lim
n→∞

cn as some smooth noise θn con-
verges to ξ. In particular, (∂xh)�2 is a continuous functional on the space of paracontrolled
distributions.
A similar argument holds for the RHE (2). It is possible to define paracontrolled solutions
to a renormalised version of the equation:

(5) Lw = w � ξ, w(0) = w0

with w � ξ =“w(ξ −∞)” with∞ = lim c .

Definition 3.4. We say that w is a paracontrolled solution to the RHE equation (5) with
initial condition w0 of the form w0 = w0e

Y (0)+Y (0)+Y (0) with w0 ∈ C β
e(l) and external data

Y ∈ Ykpz if there exists a κ ∈ R such that w is of the form:

w = wP eY+Y +Y , wP = w′≺≺Y + Y ]
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for w′ = X wP + ∂xw
P ∈ L β̂,α−ε

e(κ) and w] ∈ L β̂,2α+1−ε
e(κ) with ε ∈ (6a/δ, 3α−1) and β̂ =

(2α+1−β)/2. and such that wP solves the equation

(6)
LwP =

[
(XX −X �X ) + L(Y +Y ) +X X +

1

2
(X )2

]
wP

+ [X+X +X ]∂xw
P

wP (0) = w0.

The existence of global in space solutions to the RHE is already established in [HL18]. In
Section 5 we review their approach and prove an existence result for the paracontrolled
setting (Proposition 5.6).
Now we briefly discuss how white noise can be lifted to extended data for the KPZ equation.

Theorem 3.5 (Renormalisation). Let ξ be a white noise on [0, T ]×R, letB be an independent
two-sided Brownian motion on R, and let C ∈ R. Then for any α < 1/2 and a > 0 (see
Table 2), (ξ,B + Cx) is almost surely associated to a Y(ξ,B + Cx) ∈ Ykpz: There exists a
sequence (ξn, Y n

0 , cn , cn ) inLCα/2(R;C∞b (R))×C∞b ×R×R such that almost surely (ξn, Y n
0 )→

(ξ,B + Cx) in the sense of distributions and such that

Yn = Y(ξn, Y n
0 , cn , cn )→ Y(ξ,B + Cx),

where the convergence is in Lp(Ω; Ykpz), for all p ∈ [1,+∞). Moreover, while ξn and Y n
0 are of

course random processes, the constants cn , cn can be chosen deterministic. Finally also the
following asymmetric product converges:

∂xY
,n � ∂xY → ∂xY � ∂xY in Lp(Ω;CC 2α−1

p(a) ).

Proof. Let ξ̃n(ψ) = ξ|[−n,n](
∑

k∈Z ψ(·, 2kn+ ·)) and Ỹ n
0 (ψ) = (B+Cx)|[−n,n](

∑
k∈Z ψ(·, 2kn+ ·))

be the (spatial) 2n-periodization of ξ and B + Cx, respectively. Let ϕ ∈ C∞c (R) be even and
such that ϕ(0) = 1 and define

ξn = ϕ(n−1∂x)ξ̃n = F−1(ϕ(n−1·)F ξ̃n), Y n
0 = ϕ(n−1∂x)Ỹ n

0 = F−1(ϕ(n−1·)F Ỹ n
0 )

as the spatial regularization of ξ̃n respectively Ỹ n
0 through the Fourier multiplier ϕ(n−1·).

It is not hard to show that (ξn, Y n
0 ) ∈ LCα/2(R;C∞b (R))×C∞b (R). In Section 9 of [GP17] the

construction of Y(ξ,B) is performed in the periodic case, and slightly adapting the argu-
ments of that paper we also obtain the convergence in our setting (for C = 0): it suffices to
change the definition of E = Z \ {0} to E = R and to replace Lp(T) by Lp(R, p(a)) for a > 1/p
in the computations following equation (84). Since p can be arbitrarily large, a > 0 can be
as small as we need.
It remains to treat the case C 6= 0. But adding Cx to Y0 only results in changing Y (t) →
Y (t) + Cx (here we used that spatial convolution with the heat kernel leaves Cx invariant,
because it is a harmonic function). Also, the approximations to Cx are smooth uniformly
in n, and therefore adding these additional terms does not change the regularities or di-
vergences. The result regarding the asymmetric resonant product follows along the same
lines: for clarity it is postponed to Lemma C.1. �

In view of this result let us fix any Y ∈ Ykpz and prove that the KPZ equation driven by Y
has a solution. We also fix a sequence (θn, Y n

0 , cn , cn ) ∈ LCα/2(R;C∞b (R)) × C∞b × R × R
such that Yn := Y(θn, Y n

0 , cn , cn )→ Y in Ykpz.

Assumption 3.6. We assume that the initial condition h for the KPZ equation is of the
form:

h− Y (0) ∈ C 2α+1
p(δ)
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and that there exists a sequence hn, Y n(0) in C∞b (R) such that:

h
n − Y n(0)→ h− Y (0) in C 2α+1

p(δ) .

Remark 3.7. The assumption on the initial condition is due to the techniques we will use.
Other than the invariantmeasure ourmethod allows also to start the equation in the narrow
wedge h(x) = Y (0)(x) = −M |x|, M > 0 [SS10], or in general C 2α+1

p(δ) perturbations of Y (0).
The study of a larger set of initial conditions is left for future work.

For the smooth data Yn and initial condition hn we can solve the KPZ equation.

Proposition 3.8. For Yn and h
n as above there exists a unique paracontrolled solution

hn to the KPZ equation as in Definition 3.3, with h, h′,n and h],n in C∞b (R) as well as in
L α+1, L α, L 2α+1, respectively.

Proof. This is a classical application of the Schauder estimates, cf. [GP17, Section 4]. Global
existence in time follows from a partial Cole-Hopf transform, since vn = eh

n−Y n solves the
linear equation

Lvn = vn
(

1

2
(∂xY

n)2−cn
)

+ ∂xv
n∂xY

n

with continuous-in-time and smooth-in-space data. �

3.1. Existence. First, we will prove an priori estimate for the smooth solutions hn(t, x) to
the KPZ equation, similar to the one from [GP17, Corollary 7.4]. Let us consider a constant
M > 0 such that

sup
n
‖Yn‖Ykpz+ sup

n
‖hn − Y n(0)‖C 2α+1

p(δ)
≤M.

Lemma 3.9. We have uniformly over n ∈ N, t ∈ [0, T ] and x ∈ R

(7) hP,n(t, x) = [hn−Y n−Y ,n−Y ,n](t, x) &M −(1+|x|)δ.

Proof. Recall that the function hP,n solves

LhP,n = L(Y ,n+ Y ,n) + (XnX ,n−Xn �X ,n) +X ,nX ,n +
1

2
(X ,n)2

+ (Xn +X ,n +X ,n)∂xh
P,n +

1

2
(∂xh

P,n)2,

hP,n(0) = h
n − Y n(0).

By comparison, e.g. [Lie96, Lemma 2.3], we see that hP,n ≥ −vn where the latter solves the
following equation:

Lvn = − [L(Y ,n+Y ,n) + (XnX ,n−Xn �X ,n) +X ,nX ,n +
1

2
(X ,n)2]

+ (Xn+X ,n+X ,n)∂xv
n,

vn(0) = − [h
n − Y n(0)].

Now we find an upper bound for vn. We consider the transformation ũn = exp(vn) which
solves the equation

Lũn = − [L(Y ,n+Y ,n) + (XnX ,n−Xn �X ,n) +X ,nX ,n +
1

2
(X ,n)2]ũn

+(Xn+X ,n+X ,n)∂xũ
n − 1

2
(∂xũ

n)2/ũn,
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with ũn(0) = exp(−[h
n−Y n(0)]). Again, by comparison it follows that ũn ≤ un with the latter

solving

Lun = − [L(Y ,n+Y ,n) + (XnX ,n−Xn �X ,n) +X ,nX ,n +
1

2
(X ,n)2]un

+ (Xn+X ,n+X ,n)∂xu
n,

with initial condition un(0) = exp(−[h
n−Y n(0)]). Up to a sign this equation is just (6).

Proposition 5.6 then implies that this equation admits a unique paracontrolled solution un
such that for a sufficiently large κ

sup
n
‖un‖L α+1

e(κ)
< +∞

We can conclude by the monotonicity of the logarithm. �

Remark 3.10. A lower bound for hn can be formally derived using the Feynman-Kac for-
mula and Jensen’s inequality as follows:

hn(t, x) = logE
[
exp

(∫ t

0
θn(t− s, x+Ws)ds

)]
≥ − logE

[
exp

(
−
∫ t

0
θn(t− s, x+Ws)ds

)]
,

whereW is a Brownian motion and we recall that θn is deterministic. We can then use the
Feynman-Kac formula once more to derive an upper bound for the expectation on the right
hand side, which leads to a lower bound for hn. Since in general θn is only a distribution
in time and also we are interested in bounds for hP,n and not for hn, we argue through the
comparison principle instead.

Remark 3.11. The previous proposition provides us with a quantitative lower bound for
the solution w to the rough heat equation (5). Lower bounds for the stochastic heat equa-
tion are classical by now. Mueller [Mue91] proved that the solutions are strictly positive
even when started in a nonnegative, nonzero initial condition, while in [CJK13] there are
tight estimates regarding an upper bound for the solution. These results already relied on
comparison principles, but only with respect to the initial condition. The difference is that
they depend on the specific probabilistic structure of the noise, while our lower bound holds
pathwise for every θn to which we can associate a sequence Yn as described above.

Now we show that the sequence hn converges to some h. In the following lemma we collect
the results regarding the rough heat equation.

Lemma 3.12. Let us consider wP,n = eh
n−Y n−Y ,n−Y ,n . There exists a κ ≥ 0 such that

wP,n → wP = we−Y−Y −Y in L α+1
e(κ) ,

where w solves the rough heat equation (5) on the entire space with initial condition w0 = eh.

Proof. The initial condition wn(0) = eh
n

is of the form wn0 e
Y n(0) with wn0 converging to w0 in

C 2α+1
e(l) , for some l ∈ R. Indeed this follows from Assumption 3.6 and Lemma A.1, since we

know that
lim
n
‖hn − Y n(0)− (h− Y (0))‖C 2α+1

p(δ)
= 0.

Thus, the first result is a consequence of Proposition 5.6. �

This lemma and the previous lower bound allow us to deduce the convergence of hn by
exploiting the continuity of the Cole-Hopf transform. A priori it is not clear why taking the
logarithm is a continuous operation, since it has a singularity in zero.
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Proposition 3.13. There exists κ ≥ 0 such that the solutions hn to the renormalised KPZ
equation driven by θn converge in L α

e(κ) to some function h: We have

(8) hP,n = hn−Y n−Y ,n−Y ,n −→ h−Y−Y −Y def
= hP in L α+1

e(κ) ,

which implies the convergence
hn −→ h in L α

e(κ).

Moreover h = log(w), wherew is the solution to the rough heat equation with initial condition
eh and hP = log(wP ). In addition, we have a sub-linear bound for hP :
(9) sup

t∈[0,T ]
‖hP (t, ·)‖L∞

p(δ)
< +∞.

Proof. First, we use the results from Lemma 3.9, so that we can find a C > 0 and an r ≤ 0
such that

wP,n(t, x) = exp(hn−Y n−Y ,n−Y ,n)(t, x) ≥ Ce(r|x|δ)
In view of this and Lemma 3.12, we can apply Lemma A.3, which guarantees that up to
choosing a larger κ

log(wP,n) −→ log(wP ) = hP in L α+1
e(κ) .

We deduce that also
hn −→ h = hP+Y+Y +Y = log(w) in L α

e(κ).

Finally, the lower bound in L∞p(δ) for hP follows from Lemma 3.9. The upper bound follows
from the monotonicity of the logarithm and the Cole-Hopf transform. �

We have found a function h which is a candidate for being a solution to the KPZ equation
on the whole real line. We have shown that h is of the form

h = Y+Y +Y +hP

with hP ∈ L α+1
e(κ) . Now we want to prove that hP is of the form

hP = h′≺≺Y + h]

with h′ ∈ L α
e(κ) and h] ∈ L 2α+1

e(κ) .We observe that hn is already paracontrolled, since we have
started with a paracontrolled solution. This allows us to control the derivative term.
Lemma 3.14 (Convergence of the Derivative Term). There exists a κ ≥ 0 such that

h′,n −→ h′
def
= X + ∂xh

P in L α
e(κ).

Proof. Equation (4) fromDefinition 3.3 and the fact that hn is a solution to the KPZ equation
tell us that

h′,n = ∂x(Y ,n + hP,n).

Now both therms on the right-hand side of this equation converge inL α
e(κ) for an appropriate

κ ≥ 0. Indeed, it follows from Proposition 3.13 that hP,n+Y ,n converges in L α+1
e(κ) . By

Lemma 2.11 this is enough to obtain convergence in L α
e(κ) of the spatial derivative. �

Now we consider the rest term h]. Here we use a different argument.
Lemma 3.15 (Convergence of the Rest Term). There exists a κ ≥ 0 such that the sequence
h],n converges to a function h] in L 2α+1

e(κ) .Moreover h] satisfies:

h] = hP − h′≺≺Y ,

as well as the equation:
(10) Lh] = Z(Y, hP , h′) +X � ∂xh

], h](0) = h− Y (0),
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where we define Z as

Z(Y, hP , h′) = L(Y +Y )+X 4X +X X +
1

2
(X )2+

1

2
(∂xh

P )2

+ (X +X )∂xh
P+X 4 ∂xh

P+X � ∂x(h′≺≺Y )

+
[
h′ 4 L(Y )−L(h′≺≺Y )

]
.

Proof. Since hn is a paracontrolled solution to theKPZ equationwe know fromDefinition 3.3
that h],n satisfies the equation

Lh],n = Z(Yn, hP,n, h′,n) +Xn � h],n, h],n(0) = h
n − Y n(0).

Now, hn − Y n(0) converges to h − Y (0) in C 2α+1
p(δ) and Yn converges to Y in Ykpz. Moreover

from the previous results we know that hP,n converges to hP in L α+1
e(κ) as well as that h′,n

converges to h′,n in L α
e(κ). At this point we can conclude by the continuous dependence on

the parameters from Proposition 5.8:
h],n → h] in L 2α+1

e(κ) ,

up to taking a larger κ, where h] is the solution to equation (10). This proves the result. �
The two lemmata above suffice to show that h is a paracontrolled solution to the KPZ equa-
tion. We collect all the information about h in the following theorem.
Proposition 3.16. For any Y ∈ Ykpz and initial condition h satisfying Assumption 3.6 the
function h constructed in Proposition 3.13 is a paracontrolled solution to the KPZ equation
as in Definition 3.3.
Proof. That h has the correct structure follows from Proposition 3.13, Lemma 3.14 and
Lemma 3.15. In addition, hP solves Equation (3), since h] solves Equation (10). �

3.2. Uniqueness. It is a rule-of-thumb that in order to obtain uniqueness for PDEs on
the entire space some growth assumptions are needed in order to avoid solutions that do
not have physical meaning. We will work under the assumption of sublinear growth in
L∞. This is mainly due to the fact that we work within the framework of the Cole-Hopf
transform. First, we show that the exponential map preserves the paracontrolled structure
of a solution.
Lemma 3.17. Consider a function hP ∈ C α+1

e(l) that is paracontrolled, in the sense that hP =

h′≺≺Y + h] with h′ ∈ L α
e(l) and h] ∈ L 2α+1

e(l) . Suppose that ‖hP ‖∞,p(δ) < +∞. Then the
exponential wP = exp(hP ) satisfies:

wP = w′≺≺Y + w]

with w′ = wPh′ ∈ L α
e(κ) and w] ∈ L 2α′+1

e(κ) for an appropriate κ ≥ 0 and any α′ < α.

Proof. It follows from the growth assumptions on hP as well as from Lemma A.2 that wP
lies in L α+1

e(κ) and wPh′ lies in L α
e(κ) for some κ large enough. We still need to show that

L(wP−w′≺≺Y ) ∈ CC 2α−1
e(κ) + L(L 2α+1

e(κ) ).

Indeed
L(wP−w′≺≺Y ) = wPL(h′≺≺Y +h]) + wP (∂xh

P )2 − w′ 4X + CC 2α−1
e(κ)

= wP (h′ 4X+CC 2α−1
e(κ) +Lh])− w′ 4X + CC 2α−1

e(κ)

= (wPh′)4X+CC 2α−1
e(κ) +wPLh] − w′ 4X + CC 2α−1

e(κ)

= wPLh] + CC 2α−1
e(κ)
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where we have applied the paraproduct estimates from Lemmata 2.10 and 2.8. Now we only
need to treat the term wPLh]. Here the only complication arises from the product wP∂th].
An application of Lemma 2.13 tells us that wP∂th] ∈ L(L 2α+1−ε

e(κ) ) for any ε > 0 and thus we
can conclude. �

Theorem 3.18. There exists a unique paracontrolled solution to the KPZ equation in the
sense of Definition 3.3, under the condition that

‖hP ‖∞,p(δ) < +∞.

In addition, for Yi ∈ Ykpz and hi satisfying Assumption 3.6 for i = 1, 2, with

‖Yi‖Ykpz , sup
n
‖hni −Y n

i (0)‖C 2α+1
p(δ)

≤M

we can estimate for some κ = κ(M) large enough:

‖hP1 −hP2 ‖L α+1
e(κ)

+ ‖h′1−h′2‖L α
e(κ)

+ ‖h]1−h
]
2‖L 2α+1

e(κ)

.M ‖Y1−Y2‖Ykpz + ‖h1−Y1(0)−(h2−Y2(0))‖C 2α+1
p(δ)

.

Finally, the function w = exp(h) is a solution to the RHE in the sense of Definition 3.4.

Proof. The existence of solution satisfying the required bound follows from Proposition 3.13.
Let us prove uniqueness. Hence suppose that h is a solution to the KPZ with ‖hP ‖∞,p(δ) <
+∞. From the previous result we deduce that indeed wP = exp(hP ) is paracontrolled. We
need to show that it solves the rough heat equation (6): since this equation has a unique
paracontrolled solution our result will follow. First, we apply the chain rule to see that

∂tw
P = wP · ∂thP , ∂2xw

P = wP · (∂2xhP + (∂xh
P )2)

with all products classically well-defined. Thus wP solves:

(∂t −
1

2
∂2x)wP = wP

[
(X +X +X ) � ∂xhP

+ L(Y + Y ) + (XX −X �X ) +X X +
1

2
(X )2

]
where we have marked the product that needs the paracontrolled structure of hP to be
well defined with the diamond symbol. In view of the fact that ∂xwP = wP∂xh

P and by
considering smooth approximations we see that:

wP (X � ∂xhP ) = X � ∂xwP

and thus wP solves Equation (6). The fact that exp(h) = w solves the RHE follows from
Proposition 3.13. Hence the local Lipschitz dependence on the parameters follows from
same property of the exponential and logarithmic map from Lemmata A.1, A.3 as well as
of the solution to the RHE (Proposition 5.6) and the solution to the Sharp equation (Propo-
sition 5.8). �

4. Polymer Measure
In this section we build the random directed polymer measure associated to white noise and
study its link to the solution h of the KPZ equation. From this point onwards we will use
arrows to denote time inversion with respect to the time horizon T , i.e. we write←−f for the
function←−f (t) = f(T−t).
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4.1. An Informal Calculation. Let us consider a formal solution to the SDE

(11) dγt = ∂x
←−
h (t, γt)dt+ dWt, γ0 = x0,

where W is a Brownian motion started in x0 ∈ R. There are two issues with this SDE.
The first is that ∂xh is only a distribution. The approaches developed by Delarue and Diel
[DD16] as well as Cannizzaro and Chouk [CC18] have tackled this aspect successfully. The
second issue is that in our setting ∂xh is of exponential growth, so a priori we would expect
that the solution γ could explode in finite time. What gives us hope is that the exponential
growth of ∂xh is mostly due to our approach through the Cole-Hopf transform.
We exploit the random directed polymer measure associated to white noise to build a weak
solution to the SDE (11), avoiding the use of h, and replacing it instead with elements of Y
up to a rest term Y R (cf. [GP17, Section 7]). In the remainder of this preamble we present
a formal calculation that explains the approach.
Consider theWienermeasure Px0 started in x0 on the space of continuous functionsC([0, T ];R).
Denote with γ the coordinate process on C([0, T ];R). We define the measure Qx0 given by
the Radon-Nikodym derivative:

(12) dQx0

dPx0
= exp

(∫ T

0
∂x
←−
h (s, γs)dγs −

1

2

∫ T

0
|∂x
←−
h |2(s, γs)ds

)
.

where h is a solution to KPZ for a (spatially) smooth noise θ ∈ LCα/2(R;C∞b (R)), with
extended data Y(θ) and with initial condition h. By Girsanov’s theorem under this measure
the coordinate process is a weak solution to the SDE (11). We can formally apply the Itô
formula to←−h :

←−
h (t, γt)−

←−
h (0, x0) = −

∫ t

0
(
1

2
|∂x
←−
h |2 + (

←−
θ −c ))(s, γs)ds+

∫ t

0
∂x
←−
h (s, γs)dγs.

Now define the random directed polymer measure Q̃x0 by:

(13) dQ̃x0

dPx0
= C exp

(∫ T

0
(
←−
θ (s, γs)−c )ds

)
,

where C > 0 is a normalizing constant. Note that unless h = 0 the polymer measure is not
exactly the measure that solves the SDE (11). Indeed:

dQx0

dPx0
= exp

(
←−
h (T, γT )−

←−
h (0, x0) +

∫ T

0
(
←−
θ (s, γs)−c )ds

)
.

Since (∂t + 1
2∆)(

←−
Y +

←−
Y ) = −(

←−
θ −c ) − 1

2 |∂x
←−
Y |2 and writing U =

←−
Y +

←−
Y we can apply

Itô’s formula to U(t, γt) and write:∫ t

0
(
←−
θ (s, γs)−c )ds =

∫ t

0
∂xU(s, γs)dγs −

∫ t

0

1

2
|∂xU |2(s, γs)ds+ Rest,

where the rest is

Rest =

∫ t

0
(
1

2
|
←−
X |2+

←−
X
←−
X )(s, γs)ds+ U

∣∣(0,x0)
(t,γt)

.

Finally, defining Y R as the solution to:

(14) (∂t −
1

2
∆)Y R =

1

2
|X |2 +XX + (X+X )∂xY

R, Y R(0) = 0,

the rest term can be rewritten as

Rest =

∫ t

0

←−
XR(s, γs)(dγs − ∂xUds) +

[
U +

←−
Y R
](0,x0)
(t,γt)

.

In this way we can do the change of measure in two steps:
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(1) We build the singular measure PUx0 with:
dPUx0
dPx0

= exp

(∫ t

0
∂xU(s, γs)dγs −

1

2

∫ t

0
|∂xU |2(s, γs)ds

)
(2) Under PU the processWt = γt−

∫ t
0 ∂xU(s, γs)ds is a B. M. started in x0, so that we can

obtain the measures Qx0 and Q̃x0 as absolutely continuous perturbations by setting

(15) dQx0

dPUx0
= exp

(∫ T

0

←−
XR(s, γs)dWs +

[←−
h − U −

←−
Y R
](T,γT )
(0,x0)

)

(16) dQ̃x0

dPUx0
=

exp

(∫ T
0

←−
XR(s, γs)dWs +

[
U +

←−
Y R
](0,x0)
(T,γT )

)
EPUx0

[
exp

(∫ T
0

←−
XR(s, γs)dWs +

[
U +

←−
Y R
](0,x0)
(T,γT )

)] .
This approach goes back to [GP17, Section 7] for the equation on the torus, but due to the
weighted spaces in which we have to work it becomes much more complicated in our setting
and actually we cannot directly make sense of (15, 16). In the next paragraphs we shall
show how to rigorously carry out the analysis and how to construct the measures PUx0 ,Qx0

and Q̃x0 via the partial Girsanov transform that we just illustrated.

4.2. A Paracontrolled Approach. In order to construct the measure PUx0 we prove the
existence of martingale solutions to the associated SDE:
(17) dγt = ∂xU(t, γt)dt+ dWt, γ0 = x0.

The essential tool for solving the martingale problem is to solve the backward Kolmogorv
equation

(18) (∂t +
1

2
∆ + ∂xU∂x)ϕτ = f, ϕτ (τ) = ϕ0, t ∈ [0, τ ],

for τ ∈ [0, T ] and a sufficiently large class of forcings f and terminal conditions ϕ0.
Remark 4.1. This approach to SDEs with singular drift was established in the work by
Delarue and Diel [DD16] who used rough path integrals (inspired by [Hai13]) to solve the
Kolmogorov equation. In contrast to our setting, the assumptions on the weight in [DD16]
do not allow linear growth for Y.This is only a technical issue, but overcoming it would result
in several lengthy calculations. Thus we prefer to follow Cannizzaro and Chouk [CC18] who
formulated the approach of Delarue and Diel in the paracontrolled framework and thereby
also extended it to higher dimensions. This suits our setting better and allows the reader
to have a complete overview and a better understanding of the techniques at work.
The first results concern the existence of solutions to the Kolmogorov equation.
Proposition 4.2. Fix any l ∈ R,Y ∈ Ykpz, τ ∈ [0, T ] as well as an initial condition ϕ0 ∈
C 2α+1
e(l) and a forcing f ∈ CC 2α−1

e(l) ([0, T ]). In this setting Equation (18) has a unique para-
controlled solution ϕτ . Moreover for any M > 0, if we denote by ϕ1

τ and ϕ2
τ the respective

solutions to the equation for two different external data Y1 and Y2, initial condition ϕ0
1 and

ϕ0
2 and forcings f1 and f2 such that

‖Yi‖Ykpz , ‖ϕ
0
i ‖C 2α+1

e(l)
, ‖fi‖CC 2α−1

e(l)
([0,T ]) ≤M,

we find that for some κ = κ(l, T ) and any ε ∈ (6a/δ+1−2α, 3α−1) :

sup
τ∈[0,T ]

‖ϕ1
τ−ϕ2

τ‖L α+1−ε
e(κ)

.M‖ϕ0
1−ϕ0

2‖C 2α+1
e(l)

+ ‖f1−f2‖CC 2α−1
e(l)

([0,T ]) + ‖Y1−Y2‖Ykpz .
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Proof. This result is a consequence of Theorem 5.5. By time reversal it suffices to solve the
equation

(∂t −
1

2
∆− ∂x(XT−τ+XT−τ )∂x)←−ϕ τ =

←−
f , ←−ϕ 0(τ) = ϕ0, t ∈ [0, τ ],

where we write ←−g (t) = g(τ−t) and the terms Xt−τ , XT−τ belong to the data YT−τ as con-
structed in Proposition B.2. We thus know that YT−τ ∈ Y ζ,b

kpz (see Definition B.1) for b = 2a

(recall that a is the polynomial growth coefficient of our data) and some ζ > 1/2−α. Then
we apply Theorem 5.5 with the coefficients chosen as follows: F (YT−τ )(u) = ∂xu and

R(YT−τ , f)(u) = −
←−
f +XT−τ∂xu+XT−τ 4 ∂xu,

where the parameter f lives in the spaceX = CC 2α−1([0, T ]).An application of the Schauder
estimates and the estimates for paraproducts shows that R and F satisfy the requirements
of Assumption 5.1. Thus we find a solution ←−ϕ τ ∈ L α+1−ε

e(κ) for any ε ∈ (6a/δ+2ζ, 3α−1),
where both the parameter κ and the estimates on the norm of the solution can be chosen
uniformly over τ as a consequence of the estimates from Theorem 5.5, since (cf. Proposition
B.2):

sup
t∈[0,T ]

‖YT−τ‖Y ζ,b
kpz

< +∞.

�

In the following we will show how to use the existence of solutions to the PDE to find unique
martingale solutions to the martingale problem (17). For technical reasons in order to
construct the polymermeasure we will need a slightly more complicated version of the space
Ykpz, in which we add as a requirement the convergence of an asymmetric product. This
convergence is guaranteed in the case of space-time white noise by the result of Theorem
3.5.

Definition 4.3. For Yn,Y ∈ Ykpz we say that Yn → Y in Y poly
kpz if the convergence holds in

Ykpz and in addition the following asymmetric resonant product converges:

∂xY
,n � ∂xY → ∂xY � ∂xY in CC 2α−1

p(a) .

Similarly, we say that Y belongs to Y poly
kpz if there exists a sequence Yn ∈ Y ∞kpz such that

Yn → Y in Y poly
kpz .

Proposition 4.4. For any x0 ∈ R and Y ∈ Y poly
kpz there exists a unique probability measure

PUx0 on C([0, T ];R) such that under this measure the coordinate process (γt)t∈[0,T ] satisfies:
(1) PUx0(γ0 = x0) = 1,

(2) for any τ ≤ T, l ∈ R and for any f in CL∞e(l)([0, τ ]) and ϕ0 in C 2α+1
e(l) the paracontrolled

solution ϕ(t, x) to Equation (18) on the interval [0, τ ] satisfies that

ϕ(t, γt)−
∫ t

0
f(s, γs)ds, t ∈ [0, τ ]

is a square integrable martingale under PUx0 , with respect to the canonical filtration.
(3) γ is a.s. ζ−Hölder continuous for any ζ < 1/2.

We split the proof of this proposition in two lemmata, which are interesting in themselves.
In the first one we derive a priori estimates for the exponential moments of a solution to the
SDE.
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Lemma 4.5. Consider anyM, l ≥ 0. Fix any x0 ∈ R and Y ∈ Y ∞kpz which has norm ‖Y‖Ykpz ≤
M . There exists a constant C = C(M, l, T ) > 0 such that the strong solution γt to the SDE
(17) with the uniformly Lipschitz drift ∂xU satisfies:

sup
0≤t≤T

Ex0
[
el|γt|

δ
]
≤ CeC|x0|δ .

Proof. Fix a terminal condition ϕ0 such that ϕ0(x) = el|x|
δ for |x| > 1 and is smooth and

bounded for |x| ≤ 1. For any τ ∈ [0, T ] and Y ∈ Ykpz with ‖Y‖Ykpz ≤ M it follows from
Proposition 4.2 that there exists a constant C = C(M, l, T ) such that the solution ϕτ to
Equation (18) with forcing f = 0 and terminal condition ϕ0 satisfies |ϕτ (t, x)| ≤ CeC|x|

δ
.

From the Itô formula and the fact that we chose a bounded noise we know that ϕτ (t, γt) is
a true martingale. Hence:

sup
τ∈[0,T ]

Ex0
[
el|γτ |

δ
]
' sup

τ∈[0,T ]
Ex0 [ϕτ (τ, γτ )] = sup

τ∈[0,T ]
ϕτ (0, γ0) ≤ CeC|x0|

δ
.

�

With this result at hand we can prove tightness and convergence for the laws of the solutions
associated to the SDE.
Lemma 4.6. Consider a sequence Yn in Y ∞kpz such that Yn → Y in Y poly

kpz . Let W be a Brow-
nian motion and γn the strong solutions to the SDE (17) driven by the smooth and bounded
drift ∂xUn. Then there exists a measure PUx0 on C([0, T ];R2) such that, denoting with (γ,W )
the canonical process on this space:

(γn,W )⇒ (γ,W )

in the sense of weak convergence of measures. The process γ is the unique martingale solution
to the martingale problem of Proposition 4.4 and it is ζ−Hölder continuous for any ζ < 1/2.
In addition, for any process Hn adapted to the filtration (Fn

t ) = σ(γns |s ≤ t) if the three
processes (γn, Hn,W ) jointly converge to (γ,H,W ), then also:

(γn, Hn,W, ∫HndW )⇒ (γ,H,W, ∫HdW )

in the sense of weak convergence on C([0, T ];R4).

Proof. We articulate the proof of this lemma as follows. First, we show tightness for the
law of γn. Then we show that the weak limits of γn are the unique martingale solution
to the given martingale problem. From this we deduce the first weak convergence result.
Finally, we address the issue with the stochastic integral. Let us denote with (Fn

t )t∈[0,T ] the
filtration generated by γn and note thatW is an Fn−Brownian motion. Also, let (Ft)t∈[0,T ]
be the canonical filtration, i.e. the one generated by the coordinate process (γt)t∈[0,T ].
Step 1. For any τ and h such that 0 ≤ τ ≤ τ+h ≤ T we consider the solution ϕnτ+h to the
Kolmogorov PDE (18) with f = 0 and ϕnτ+h(τ+h, x) = x driven by the external data Yn.
Then we see that

γnτ+h−γnτ =ϕnτ+h(τ+h, γnτ+h)−ϕnτ+h(τ, γnτ ) + ϕnτ+h(τ, γnτ )−ϕnτ+h(τ+h, γnτ )

=

∫ τ+h

τ
∂xϕ

n
τ+h(s, γns )dWs + ϕnτ+h(τ, γnτ )−ϕnτ+h(τ+h, γnτ ).

Now we can apply our uniform bound
sup
n

sup
0≤τ≤τ+h≤T

‖ϕnτ+h‖L 2α+1−ε
e(κ)

< +∞

for some κ large enough together with the result of the previous lemma to see that for any
ζ < 1:

Ex0
[
|γnτ+h − γnτ |2ζ

]
. hζ+hζ(2α+1−ε) . hζ .
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Thus an application of the Garsia-Rodemich-Rumsey inequality (cf. [GRRR70, Lemma 1.1])
tells us that:

sup
n

Ex0
[

sup
0≤s≤t

|γnt −γns |
|t− s|ζ−1/2

]
< +∞.

This is enough to ensure the tightness of the sequence Bn and also of the couple (Bn,W ),
as well as the Hölder continuity of the limiting process.
Step 2. Next we prove that all weak limit points of γn are solutions to the martingale prob-
lem of Proposition 4.4. Uniqueness of such solutions can then be proven as in [DD16, Proof
of Theorem 8]. Fix f and ϕ0 as required. Then the solutions ϕn to Equation (18) with smooth
noise θn converge to the solution ϕ in L α+1−ε

e(κ) for ε ∈ (6a/δ+1−2α, 3α−1). For fixed n we
have that

Mn
t = ϕn(t, γnt )−

∫ t

0
f(s, γns )ds =

∫ t

0
∂xϕ

n(s, γns )dWs

is a martingale with respect to the filtration (Fn
t )t∈[0,T ] (since W is an Fn−Brownian mo-

tion) and satisfies, due to our exponential bound from Lemma 4.5:

sup
n

E
[

sup
0≤t≤T0

|Mn
t |2
]
< +∞.

Hence the sequence is uniformly integrable and together with Lemma 4.5 and the Skorohod
embedding theorem this guarantees that up to taking a subsequence

Mn
t →Mt = ϕ(t, γt)−

∫ t

0
f(s, γs)ds =

∫ t

0
∂xϕ(s, γs)dW s

almost surely and in L1 and it follows the latter is a martingale with respect to the canonical
filtration (Ft)t∈[0,T ].
Step 3. By tightness we can show that along a subsequence (γnk ,W ) ⇒ (γ,W ). If we can
prove that the joint law of (γ,W ) is uniquely defined, the joint weak convergence follows.
If the drift were a smooth function we could observe that W t = γt −

∫ t
0 ∂xU(s, γs) ds, with

the right hand-side being a measurable function of the process γ. In the rough setting one
has to be more careful, since it is not clear how the last term is defined. We will show that
for a sequence of measurable functions Fn it is possible to write (γt,W t) = limn(γt, Fn(γ)).
Indeed for n ∈ N one can solve the equation

(∂t+
1

2
∆+(X+X )∂x)ϕn = Xn+X ,n, ϕn(T ) = 0.

We can subtract the term of lowest regularity to find ϕn = Y ,n + ψn with ψn solving:

(∂t+
1

2
∆+(X+X )∂x)ψn = X ,n+(X +X)X ,n, ψn(T ) = 0.

Since Yn → Y in Y poly
kpz the resonant productX�X ,n converges toX�X in CC 2α−1

p(a) . Thus
along the same lines of Theorem 5.5 it is possible to find a paracontrolled solution to the
previous equation with the structure:

ψn = (∂xψ
n +X ,n)≺≺Y + ψ],n

with ψn ∈ L α+1−ε
e(l+t) , ψ],n ∈ L 2α+1−ε

e(l+t) for any l > 0 and ε ∈ (6a/δ+1−2α, 3α−1). Moreover,
because the resonant product converges to the right limit, as n→∞ the above solutions ψn
converge in L α+1−ε

e(l+t) to the solution ψ of

(∂t+
1

2
∆+(X+X )∂x)ψ = X +(X +X)X , ψ(0) = 0.

Similarly the solutions ϕn,n to the equation

(∂t+
1

2
∆+(Xn+X ,n)∂x)ϕn,n = Xn+X ,n, ϕn,n(0) = 0.
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exhibits the same structure ϕn,n = Y ,n + ψn,n and by the Lipschitz dependence on the
parameters in Theorem 5.5 we have that ψn,n converges to ψ in L α+1−ε

e(l+t) . Along the subse-
quence (nk)k along which (γnk ,W ) converges to (γ,W ) we can now apply [KP91, Theorem
2.2] to see that

Ãnkt =

∫ t

0
(
←−
Xnk+

←−
X ,nk)(s, γnks )ds

=←−ϕ nk,nk(t, γnkt )−←−ϕ nk,nk(0, x0)−
∫ t

0
∂xϕ

nk,nk(γnks )dWs

converges to

At :=←−ϕ (t, γt)−←−ϕ (0, x0)−
∫ t

0
∂xϕ(γs)dW s.

By using ϕn instead of ϕnk,nk we find that:

At = lim
n
Ant := lim

n

∫ t

0
(
←−
Xn+

←−
X ,n)(s, γs)ds

Now since
(γ,W ) = (γ, γ−x0−A) = lim

n
(γ, γ−x0−An) = lim

n
(γ, Fn(γ))

we find the required uniqueness of the law.
Step 4. Finally, as we already noted, the convergence of the stochastic integrals along a
subsequence is a consequence of [KP91, Theorem 2.2] �

4.3. Polymer Measure. Our next aim is to construct the “full” polymer measure Qx0 . In
principle we would like to apply the fomulas (15) or (16) for the explicit Radon-Nikodym
derivative with respect to PUx0 . Unfortunately we do not have sufficient control of the growth
of XR, so we need to argue differently. Even for “smooth” noises θ in LCα/2(R;C∞b (R))
Equation (13) does not make sense, since we lack smoothness in time. Thus we follow the
calculations at the beginning of this section and define the continuum polymer measure in
the following way.

Definition 4.7. ForY inY ∞kpz and consider the solution eh to the RHE for an initial condition
eh = eY (0) · w0, with w0 ∈ C 2α+1

e(l) , l ∈ R we define:

dQx0(Y)

dPx0
= exp

(∫ T

0
(
1

2
|
←−
X |2−c )(s, γs)ds+

[←−
Y −
←−
h
](0,x0)
(T,γT )

)
·
dP
←−
X
x0

dPx0
,

where P
←−
X
x0 is the measure under which the coordinate process γ solves dγ =

←−
X (γ)+dW for

a Brownian motionW started in x0 and where Px0 is the Wiener measure.

Although the above notation suggests that we use the solution h to the KPZ equation asso-
ciated to a smooth noise, this is really just notation (which we chose because it fits the Gibbs
measure formalism). Actually the construction of the continuum random polymer measure
does not depend on the existence of the solution h: we only need to understand the solution
w = eh to the RHE with some strictly positive initial condition.
The construction of the polymer measure we review in the following is already known from
a work by Alberts, Khanin and Quastel [AKQ14]. We implement their strategy in our path-
wise setting and we link it with the approach of Delarue and Diel [DD16]. The idea is to
show convergence of the finite dimensional distributions by controlling the density of the
transition function with respect to the Lebesgue measure. Eventually a tightness result
guarantees that the limiting measure is supported in the space of continuous functions.
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Lemma 4.8. Fix x0 ∈ R,Y ∈ Ykpz and h such thatw0 = eh−Y (0) ∈ C 2α+1
e(l) for some l ∈ R. Then

we can define a measure Qx0 = Qx0(Y) on R[0,T ] through its finite dimensional distributions
as follows. For any n ∈ N and 0 = t0 ≤ t1 < . . . < tn ≤ T we define:

Qx0(γt1 = dx1, . . . , γtn = dxn) =
n∏
i=1

Z(ti−1, xi−1; ti, xi)dxi,(19)

where y 7→ Z(s, x; t, y) is the probability density

Z(s, x; t, y) = e−
←−
h (s,x)Z(s, x; t, y)e

←−
h (t,y),

where←−f (r) = f(T−r) and Z(s, x; t, y) solves:

(∂s +
1

2
∆x)Z +

←−
ξ � Z = 0, s ∈ [0, t], Z(t, x; t, y) = δ(x−y).(20)

If Y ∈ Y ∞kpz this measure coincides with the one from Definition 4.7. Moreover, if Ym → Y in
Ykpz and wm0 → w0 in C 2α+1

p(a) the measures converge weakly, i.e.:

Qx0(Ym)⇒ Qx0(Y).

Finally, for anyM, l ≥ 0 there exists a constant C = C(M, l, T ) > 0 such that:

(21) sup
0≤t≤T

EQx0

[
el|γt|

δ
]
≤ Ce−

←−
h (0,x0)eC|x0|

δ

uniformly over Y, w0 such that ‖Y‖Ykpz , ‖w0‖C 2α+1
e(l)

≤M .

Remark 4.9. The existence of solutions to equation (20) requires some additional tech-
niques which we do not introduce in this work. Indeed, a crucial tool are Hölder-Besov
spaces with integrability index p ∈ [1,∞) in order to tame the singular initial condition,
while here we only allow p =∞. The fact that there exist solutions to the above equation is
one of the main results of the work by Hairer and Labbé [HL15] (see also [GP17, Section 6]
for the periodic case or [MP17] for a similar approach to the two-dimensional parabolic
Anderson model). Hairer and Labbé show the existence of functions Z(t, x; s, y) which lie
locally in space and time in L

1/2−
p . The most important feature - and the only one we will

use - of these functions is that they are fundamental solutions to the RHE. For simplicity,
let us indicate with ∗ the contraction along a variable, so that f(∗1, . . . , ∗n)h(∗1, . . . , ∗n) =∫
dy1 · · · dynf(y1, . . . , yn)h(y1, . . . , yn).With this notation, the functionϕ(s, x) = Z(s, x; t, ∗)g(∗)

solves

(22) (∂s +
1

2
∆x)ϕ+

←−
ξ � ϕ = 0, s ∈ [0, t], ϕ(t, x) = g(x).

This equation can be solved also in our setting, as long as g ∈ C β
e(l) for β > 2α−1, following

Corollary 5.7 and the preceding discussion.
Proof of Lemma 4.8. The property highlighted in the previous remark suffices to show that
Z(s, x; t, y) is a probability distribution for any s, t, x, y and satisfies theChapman-Kolmogorv
equations. Indeed for the first property it suffices to observe that since e

←−
h solves Equation

(22) with terminal condition eh and thus

e
←−
h (s,x) = Z(s, x; t, ∗)e

←−
h (t,∗).

The Chapman-Kolmogorov equations are satisfied, since for 0 < s < r < t ≤ T :

Z(s, x; r, ∗)Z(r, ∗; t, y) = e−
←−
h (s,x)Z(s, x; r, ∗)Z(r, ∗; t, y)e

←−
h (t,y) = Z(s, x; t, y).

In particular, the Z form a consistent family of probability distributions and hence the
measure Qx0 is well-defined. Let us consider the case of spatially smooth noise. We show
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that the one-dimensional distributions described by Z coincide with those of the measure
Qx0 as from Definition 4.7: the general case follows similarly. Fix a Lipschitz function g and
0 < t ≤ T , then EQx0 [g(γt)] = u(0, x0) with

u(s, x) = e(
←−
Y −
←−
h )(s,x)EQx0

[
exp

(∫ t

s
(
1

2
|
←−
X |2−c )(r, γr)

)
· g(γt)e

−(
←−
Y −
←−
h )(t,γt)

∣∣Xs = x

]
.

Then the Feynman-Kac formula guarantees that u = e(
←−
Y −
←−
h )w with w solving

(∂s+∆x+
←−
X∂x)w = −

(1

2
|
←−
X |2−c

)
, s ∈ [0, t], w(t, x) = g(x)e−(

←−
Y −
←−
h )(t,x)

so that a simple calculation shows that e
←−
Y (s,x)w(s, x) = Z(s, x; t, ∗)e

←−
h (t,∗)g(∗). Hence the

claim follows. Let us pass to proving the convergence of the finite-dimensional distributions.
We check the convergence of

EQmx0
[g1(γt1) · · · gn(γtn)]

for all globally bounded and Lipschitz functions g, with Qm
x0 = Qx0(Ym) and 0 < t1 < . . . <

tn ≤ T . Then

EQmx0
[g1(γt1) · · ·gn(γtn)] =

= Z
m

(0, x0; t1, ∗1)g1(∗1)
n−1∏
i=1

Z
m

(ti, ∗i; ti+1, ∗i+1)gi(∗i+1)

= e−
←−
h (0,x0)Zm(0, x0; t1, ∗1)g1(∗1)

[ n−1∏
i=1

Zm(ti, ∗i; ti+1, ∗i+1)gi(∗i+1)

]
e
←−
hm(tn,∗n).

The last term in the product Zm(s, x; tn, ∗n)e
←−
hm(tn,∗n)gn(∗n) solves in (s, x) Equation (22) on

[0, tn] with terminal condition

e
←−
hm(tn,x)gn(x) = e(

←−
Y m+

←−
Y ,m+

←−
Y ,m)(tn,x)gn(x)←−w P,m(tn, x)

where we used the structure of a solution eh to the RHE. Since gn←−w P,m converges to gn←−w P

in C α+1−ε
e(κ) for any ε ∈ (6a/δ+1−2α, 3α−1) (see Proposition 5.6), Corollary 5.7 guarantees

that we have convergence of Zm(s, x; tn, ∗n)e
←−
hm(tn,∗n)gn(∗n) to Z(s, x; tn, ∗n)e

←−
h (tn,∗n)gn(∗n),

the latter solving Equation (22) on [0, tn] with terminal condition e
←−
h (tn,x)gn(x). Note that

the convergence holds in a space with an explosion at time s = tn. Since we are interested
in the value of the solution only at the time tn−1 < tn this does not play a role. In particular

Rmn (x) = e−(
←−
Y m+

←−
Y ,m+

←−
Y ,m)(tn−1,x)Zm(tn−1, x; tn, ∗n)e

←−
h (tn,∗n)gn(∗n)

converges to some Rn in C α+1−ε
e(κ) , up to taking a possibly larger κ. Now we pass to the

second-to-last term. Again

Zm(s, x; tn−1, ∗n−1)gn−1(∗n−1)e(
←−
Y m+

←−
Y ,m+

←−
Y ,m)(tn−1,∗n−1)Rmn (∗n−1)

solves in (s, x) Equation (22). Since gn−1(x)Rmn (x) converges C α+1−ε
e(κ) this solution converges

once more via Corollary 5.7 to

Z(s, x; tn−1, ∗n−1)gn−1(∗n−1)e(
←−
Y +
←−
Y +

←−
Y )(tn−1,∗n−1)Rn(∗n−1).

Iterating this procedure n times we deduce the convergence of the finite-dimensional dis-
tributions.
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For the exponential bound let us choose a smooth function ϕ such that ϕ(x) = exp(l|x|δ) for
|x| > 1 and ϕ is smooth and bounded for |x| ≤ 1. Then:

EQx0

[
el|γt|

δ
]
' EQx0

[
ϕ(γt)

]
= Z(0, x0; t, ∗1)ϕ(∗1) ≤ C(M, l, T )e−

←−
h (0,x0)eC(M,l,T )|x0|δ ,

where in the last step as before we used the bounds from Corollary 5.7. �

Now we show that the polymer measure is supported on the space of continuous functions.

Lemma 4.10. There exists a value acrit > 0 such that for Yn ∈ Y ∞kpz,Y ∈ Ykpz such that
Yn → Y in Ykpz for some a ≤ acrit (a being the growth parameter in Ykpz from Definition 3.2)
and for a sequence of initial conditions

eh
n−Y n(0) = wn0 → w0 = eh−Y (0) in C 2α+1

e(l) ,

the sequence of measures Qn
x0 is tight in C([0, T ]). Moreover any accumulation point has

paths which are almost surely ζ−Hölder continuous, for any ζ < 1/2.

Proof. We want to use the Kolmogorov criterion. For this reason we fix q > 1 and s ≤ t with
|t−s| ≤ 1 and will prove that

EQx0 (Y)
[
|γt−γs|2q

]
.M |t−s|q

uniformly over all Y ∈ Y ∞kpz and w0 = eh−Y (0) ∈ C 2α+1
e(l) such that ‖Y‖Ykpz , ‖w0‖C 2α+1

e(l)
≤ M .

Given such an estimate the tightness of the sequence as well as the Hölder continuity of
the limit points follow by an application of the Garsia-Rodemich-Rumsey inequality. To
find this estimate fix Y ∈ Ykpz and w0 = eh−Y (0) ∈ C 2α+1

e(l) and let us rewrite the expectation
through the densities:

Z(0, x0; s, ∗1)| ∗1 − ∗2 |2qZ(s, ∗1; t, ∗2)e
←−
h (t,∗2)

where eh is the solution to the RHE with initial condition eh and external data Y. Let us
proceed one integration variable at a time: we consider x1 fixed and estimate

(23) |x1− ∗2 |2qZ(s, x1; t, ∗2)e
←−
h (t,∗2).

First, we shift x1 to zero. For this purpose we introduce the notation gx1(x) = g(x+x1) and
for Y = Y (θ, Y (0), c , c ) in Y ∞kpz we write Yx1 = Y(θx1 , Y (0)x1 , c , c ), where the latter is
obtained by shifting all the extended data by x1. Hence we find the identity:

Z(Y)(s, x+x1; t, y) = Z(Yx1)(s, x; t, y−x1),

then we rewrite the term under consideration as ϕx1(r, x) = Z(Yx1)(r, x; t, ∗2)|∗2 |2qe
←−
h x1 (t,∗2),

and we aim at estimating ϕx1(s, 0) uniformly over x1. Note that ϕx1 solves Equation (22):

(∂r+
1

2
∆x)ϕx1 = −

←−
θ x1 � ϕx1 , r ∈ [0, t], ϕx1(t, x) = |x|2qe

←−
h x1 (t,x)

in the sense of Corollary 5.7. Now we exploit the parabolic scaling of the equation. Let us
define λ =

√
|t−s| and write gx1λ (r, x) = ϕx1(s+λ2r, λx) for r ∈ [0, 1], so that

(∂r+
1

2
∆x)gx1λ = −λ2

←−
θ x1s,λ � g

x1
λ , r ∈ [0, 1], gx1λ (1, x) = λ2q|x|2qe

←−
h x1 (t,λx)

where formally the term ←−θ x1s,λ should be understood as ←−θ x1s,λ(r, x) = θ(T−s−λ2r, x1+λx).

Rigorously this means that gx1λ solves Equation (22) on [0, 1] in the sense of Corollary 5.7
associated to the extended data Yx1T−t,λ(see Definition B.1 and Proposition B.2). Since eh
solve the RHE it is of the form

e
←−
h x1 (t,x) = e(Y

x1+Y ,x1+Y ,x1 )(T−t,x)wP,x1(T−t, x)
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with wP ∈ L α+1−ε
e(κ) for some κ sufficiently large, so that supt ‖wP,x1(t, ·)‖L∞

e(κ)
≤ CeC|x1|

δ for
some C(M) > 0. Hence by comparison gx1λ ≤ ψ

x1
λ , the latter being the solution to

(∂r+
1

2
∆x)ψx1λ = −λ2

←−
θ x1s,λ � ψ

x1
λ , r ∈ [0, 1],

ψx1λ (1, x) = λ2q|x|2qCeκ|x|δ+C|x1|δe(Y x1+Y ,x1+Y ,x1 )(T−t,λx).

Following the results from Corollary 5.7 the solution ψx1λ is of the form:

ψx1λ (0, 0) = λ2qeC|x1|
δ
e(Y

x1+Y ,x1+Y ,x1 )(T−s,0)ψP,x1λ (0, 0),

where we can estimate the norm of the last term:

‖ψP,x1λ ‖ . e
CT
(
1+‖Yx1T−t,λ‖Y %,b

kpz

)q1
for % ∈ (1/2−α, α] and b = 2a and some C(M) > 0. Now it follows from the definition of Yx1 ,
Definition B.1 (in particular from the fact that the norm ‖ · ‖

Y %,b
kpz

does not depend on Y , but
only on X - otherwise we would obtain linear growth in x1) and Proposition B.2 that:

sup
x1

sup
t∈[0,T )

sup
λ∈(0,1]

1

1+|x1|a
‖Yx1T−t,λ‖Y %,b

kpz
.M 1.

Now choose acrit so that acritq1 = δ : for a ≤ acrit we can conclude that up to choosing a larger
C(M) > 0:

EQnx0

[
|γt−γs|2q

]
.M λ2qZ(0, x0; s, ∗1)e(Y+Y +Y )(T−s,∗1)eC|∗1|

δ

.M |t−s|qe−
←−
h (0,x0)e(Y+Y +Y )(T−s,x0)eC̃|x0|

δ
.M,x0 |t−s|q.

This concludes the proof. �

We collect the two previous results in the following proposition.

Proposition 4.11. For any x0, l ∈ R and Y which lies in Ykpz for a ≤ acrit (see Lemma
4.10) and eh−Y (0) ∈ C 2α+1

e(l) there exists a measure Qx0 on C([0, T ];R) such that for Yn ∈ Y ∞kpz

converging Yn → Y in Ykpz and initial conditions eh
n−Y n(0) → eh−Y (0) in C 2α+1

e(l) , the polymer
measures converge weakly:

Qx0(Yn)⇒ Qx0(Y) in C([0, T ]).

In addition, under Qx0 the sample paths are a.s. ζ−Hölder continuous for any ζ < 1/2.

Now we show that the measure Qx0 we just built has a density with respect to the singular
Girsanov transform PUx0 , i.e. while we are not able to construct the measure using Equation
(15) from our formal discussion above, the equation holds a posteriori. This equation is
useful because it describes the singular part of the polymermeasure in terms of the solution
Y R to the linear equation (14), and therefore it is not necessary to understand the solution
to the KPZ equation or the RHE in order to study the polymer measure.
Recall that Y R was defined as the solution to

(∂t −
1

2
∆)Y R =

1

2
|X |2 +XX + (X+X )∂xY

R, Y R(0) = 0,

Indeed we can find a paracontrolled solution Y R of the form:

Y R = Y +Y P , Y P = Y ′≺≺Y +Y ], Y ′ = X +∂xY
P .

The equation for Y P can be solved with calculations similar to the ones leading to Proposi-
tion 5.6. Eventually we find a solution Y P ∈ L α+1

e(κ) for κ large enough.



THE KPZ EQUATION ON THE REAL LINE 29

Proposition 4.12. For any Y which lies in Y poly
kpz for a < acrit (see Lemma 4.10), the measure

Qx0 has a density with respect to the measure PUx0 which is given by:
dQx0

dPUx0
= exp

(∫ T

0

←−
XR(s, γs)dW s +

[
U+
←−
Y R−

←−
h
](0,x0)
(T,γT )

)
,

whereW is the Brownian motion started in x0 from Lemma 4.6.

Proof. Under the above hypothesis the existence of themeasureQx0 is guaranteed by Propo-
sition 4.11, while the existence of the measure PUx0 follows from Proposition 4.4. From the
computation at the beginning of this section, which lead us to Equation (15), the above de-
composition holds true at a smooth level. So for any Y ∈ Ykpz let us choose Yn ∈ Y ∞kpz such
that Yn → Y in Ykpz. For anyM ∈ N let us fix a continuous cut-off functional ηM on C([0, T ])
such that ηM (γ) = 1 if ‖γ‖∞ ≤M, and ηM (γ) = 0 if ‖γ‖∞ ≥M + 1. For any continuous and
bounded functional f on C([0, T ]) we have

EQnx0

[
f(γ)ηM (γ)

]
= EPUnx0

[
f(γ)ηM (γ)e

( ∫ T
0

←−
XR,n(s,γs)dWs+

[
Un+

←−
Y R,n−

←−
h n
](0,x0)
(T,γT )

)]
.

Now the left-hand side converges by Proposition 4.11, while the right-hand side converges
by Lemma 4.6. So we find that:

EQx0

[
f(γ)ηM (γ)

]
= EPUx0

[
f(γ)ηM (γ)e

( ∫ T
0

←−
XR(s,γs)dW s+

[
U+
←−
Y R−

←−
h
](0,x0)
(T,γT )

)]
.

Taking f ≡ 1 and sendingM →∞, we obtain from Fatou’s lemma that

exp

(∫ T

0

←−
XR(s, γs)dW s +

[
U+
←−
Y R−

←−
h
](0,x0)
(T,γT )

)
∈ L1(PUx0).

Thus we can pass to the limit overM →∞ and deduce the result by dominated convergence.
�

Remark 4.13. We have discussed the construction of the measure Qx0 . This in particular
allows us to build the measure Q̃x0 from Equation (16) by choosing h = 0. In addition, using
the fact that the Radon-Nikodym derivative integrates to 1, we find a representation for the
solution h to the KPZ equation as follows:

[h−Y−Y −Y R](T, x0) = logEPUx0

[
e
∫ T
0

←−
XR(s,γs)dW s+[h−Y (0)](γT )

]
4.4. Variational representation. Here we show that we can solve the martingale prob-
lem (11) associated to the KPZ equation, and that the solution solves a stochastic control
problem. The first step is to define martingale solutions in the paracontrolled setting. One
main difference with respect to the definition of [DD16, CC18] is that we do not directly
solve the PDE associated to the martingale problem. This is because we cannot control the
growth of the drift ∂xh at infinity sufficiently well. Instead, we solve the PDE to remove the
singular part ∂xU of the drift, and then we add the regular part ν of the drift (which later
will be a control) back by hand.
Following [GP17, Section 7] we will denote by pm the set of progressively measurable pro-
cesses on [0, T ]×C([0, T ];R). By this we mean that ν ∈ pm if for any 0 ≤ t ≤ T the restriction
of ν to times smaller than t,

ν
∣∣
[0,t]×C([0,T ];R) is B([0, t])⊗Ft −measurable,

where F = (Ft)0≤t≤T is the canonical filtration on C([0, T ];R).
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Definition 4.14. For an element ν ∈ pmwe say that a measure P on the filtered measurable
space (C([0, T ];R), (Ft)) is a martingale solution to the SDE
(24) dγt = (∂xU + νt)(t, γt)dt+ dWt, γ0 = x0,

if the following two conditions are satisfied for the coordinate process (γt):
(1) P(γ0 = x0) = 1.
(2) For any l ∈ R, τ ∈ [0, T ] and for any f in CL∞e(l)([0, τ ]), ϕ0 in C 2α+1

e(l) , let ϕ ∈ L α+1−ε
e(κ)

(see Equation (18) and Proposition 4.2) to the equation:

(25) (∂t+
1

2
∆+∂xU∂x)ϕ = f, ϕ(τ) = ϕ0.

Then the process ϕ(t, γt)−
∫ t
0 [f(s, γs)+∂xϕ(s, γs)ν(s, γ)]ds is a square integrable mar-

tingale on [0, τ ] with respect to the filtration (Ft).
This allows to show that the polymer measure solves the SDE (11).
Proposition 4.15. Consider Y ∈ Ykpz and let h be the solution to the KPZ equation from
Theorem 3.18. Under the assumptions of Proposition 4.11, the therein constructed measure
Qx0(Y) is a martingale solution to the SDE

dγt = ∂x
←−
h (s, γs)ds+ dWs, γ(0) = x0,

in the sense of the above definition, with control ν = ∂x(
←−
h−U).

Proof. Consider τ, ϕ0, f as in Definition 4.14. We need to prove that

Mt = ϕ(t, γt)−
∫ t

0
[f(s, γs)+∂xϕ(s, γs)∂x(

←−
h−U)(s, γs)]ds, t ∈ [0, τ ],

is a martingale with respect to the measure Qx0 . In fact, consider smooth data Yn ∈ Y ∞kpz
such that Yn → Y in Ykpz. Then we can find solutions ϕn to the PDE (25) with ∂xU replaced
by ∂xUn. Since Proposition 4.2 guarantees that these solutions satisfy

ϕn → ϕ in L α+1−ε
e(κ)

for a suitably chosen κ ≥ 0 and ε ∈ (6a/δ+1−2α, 3α−1), and since the uniform sub-exponential
bound (21) holds true, the process

Mn
t = ϕn(t, γt)−

∫ t

0
f(s, γs)+∂xϕ

n(s, γs)∂x(
←−
h n−Un)(s, γs)ds, t ∈ [0, τ ],

is a Qn
x0−martingale such that for a suitable C ≥ 0

sup
n

EQnx0

[
sup

0≤t≤τ

∣∣Mn
t

∣∣2] . sup
n

sup
0≤t≤τ

EQnx0

[
eC|γt|

δ
]
< +∞,

where Qn
x0 is the polymer measure associated to Yn, as in Proposition 4.11. The same

proposition guarantees that Qn
x0 ⇒ Qx0 . Hence the martingale property is preserved in

the limit. �

We conclude this section on the polymer measure with a variational characterisation of the
solution to the KPZ equation.
Theorem 4.16. Consider an extended data Y and an initial condition h which satisfies
Assumption 3.6. Let h be the paracontrolled solution to the KPZ equation from Theorem
3.18. The following representation holds true:

[h−Y − Y − Y R](T, x0) =

= sup
ν∈pm

γ∈M(ν,x0)

E
[
h(γT )− Y (0, γT ) +

1

2

∫ T

0

(
|
←−
XR|2 − |ν−

←−
XR|2(s, γs)

)
ds

]
,
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where the optimal control ν is
ν(s, γ) = ∂x(

←−
h−U)(s, γs).

Proof. We follow step by step the original proof of [GP17, Theorem 7.3]. First, let us define
hR = h−Y−Y −Y R = hP − Y P ,

which is paracontrolled in the sense that hR = ∂xh
R≺≺Y + hR,] with hR ∈ L α+1

e(κ) and hR,] ∈
L 2α+1
e(κ) for an appropriate κ ≥ 0. In addition hR is a paracontrolled solution to the equation:

LhR =
1

2
|XR|2 + (X +X +XR)∂xh

R +
1

2
(∂xh

R)2,

hR(T ) = h− Y (0),

which by reversing time we can translate into

(∂t+
1

2
∆+∂xU∂x)

←−
h R = −1

2
|
←−
XR|2−

←−
XR∂x

←−
h R−1

2
(∂x
←−
h R)2,

←−
h R(T ) = h−Y (0).

This means that if we take a martingale solution γ to the problem
dγt = (∂xU + ν)dt+ dWt,

we can use hR as a test function, according to Definition 4.14. From this point onwards
we can follow exactly the proof of [GP17] to get to the conclusion that for any ν ∈ pm and
γ ∈M(ν, x0)

←−
h R(0, x0) = E

[
h(γT )− Y (0, γT ) +

1

2

∫ T

0

(
|
←−
XR|2 − |ν−

←−
XR|2(s, γs)

)
ds

]
+ E

[∫ T

0

1

2
|ν̃(s, γ)|2ds

]
≥ sup

ν∈pm
γ∈M(ν,x0)

E
[
h(γT )− Y (0, γT ) +

1

2

∫ T

0

(
|
←−
XR|2 − |ν−

←−
XR|2(s, γs)

)
ds

]

with ν̃ = ν−
←−
XR−∂x

←−
h R = ν−∂x(

←−
h−
←−
Y −
←−
Y ), where in the last line we took the supremum

on both sides in the line above and then forgot the term with ν̃. For fixed ν equality
←−
h R(0, x0) = E

[
h(γT )− Y (0, γT ) +

1

2

∫ T

0

(
|
←−
XR|2 − |ν−

←−
XR|2(s, γs)

)
ds

]
holds only if ν̃ = 0. Thus the supremum is achieved in the polymer measure and equals←−
h R(0, x0). �

5. Linear Paracontrolled Equations in Weighted Spaces
5.1. An Abstract Solution Theorem. We consider an abstract paracontrolled equation
of the form:
(26) Lu = R(Y, ν)(u) + [F (Y)(u)]4X +X � ∂xu, u(0) = u0,

for some functionals R and F which we will specify later, and where Y ∈ Ykpz and ν is
simply an additional parameter living a Banach space X , which we add to treat certain
applications. At an intuitive level R represents a smooth rest term, 4 is the irregular part
of a product and � is the ill-posed part of a product, the latter term being the one which
requires a paracontrolled structure from the solution.
Actually it will be necessary to consider slightly more general Y, allowing for an additional
singularity: see Definition B.1 for the definition of Y ζ,b

kpz .
Now we introduce the Banach space of paracontrolled distributions that will contain the
solution to Equation (26). Consider u0 ∈ C β

e(l) for some l ∈ R and β ∈ (2α−1, 2α+1] (recall
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the regularity parameterα fromTable 2 and the preceding discussion) aswell as parameters
ε > 0, β̂ = 2α+1−β

2 , a time horizon Th ≥ 0 and Y ∈ Y ζ,b
kpz([0, Th]) for some values ζ, b ≥ 0 which

we will specify later. The parameter ε represents a small gap between the regularity of the
solution we prove and the expected maximal regularity and appears essentially to deal with
the global spatial well-posedness. The parameter β̂ quantifies the time blow-up at t = 0.
Then we introduce a subset

D(Y) ⊂ L β̂,α+1−ε
e(l+t) ([0, Th])×L β̂,α−ε

e(l+t)p(a)([0, Th])×L β̂,2α+1−ε
e(l+t) 3 (u, u′, u])([0, Th]),

which is defined by the property:

(u, u′, u]) ∈ D(Y) ⇔ u = u′≺≺Y + u], u](0) = u0.

Moreover, we endow D(Y) with the product topology and a product norm. With some abuse
of notation we write

|||u||| = ‖(u, u′, u])‖D(Y).

Since wewant to compare also paracontrolled distributions which are controlled by different
enhanced data we introduce the quantity

|||u1 : u2||| = max{‖u′1 − u′2‖L α−ε
e(l+t)p(a)

, ‖u]1 − u
]
2‖L 2α+1−ε

e(l+t)
}

for ui ∈ D(Yi). Since the proof of the solution theorem relies on a contraction argument on
a small time interval we also introduce the notation D0

S(Y) for S ≤ Th for the space D(Y)

where we replaced the time horizon Th with S.We also use the convention thatD0
0 (Y) = C β

e(l).
This is natural since we will use a fixed-point argument on small time intervals. A point
in D0

S will be an initial condition for a solution on [S, S+τ ] for small τ . If S = 0 the initial
condition is u0. Then if we fix 0 ≤ T` < Tr ≤ Th and an initial condition uT` ∈ D0

T`
(Y), we

consider the space DT`
Tr

(Y, uT`) of all functions u in D0
Tr

such that

u|[0,T`] = uT` , u′|[0,T`] = u′T` , u]|[0,T`] = u]T` .

We endow this space with the product norm on:

L β̂,α+1−ε
e(l+t) ([T`, Tr])×L β̂,α−ε

e(l+t)p(a)([T`, Tr])×L β̂,2α+1−ε
e(l+t) ([T`, Tr]).

If we do not fix any initial condition, we write DT`
Tr

(Y). Furthermore we remind the notation
Vs for the integration operator:

Vs(f)(t) =

∫ t

s
Pt−hfhdh,

where (Pt) is the semigroup generated by 1
2∆. Now we state the assumption on the coef-

ficients of the equation. As a rule-of-thumb they must be Lipschitz dependent on u and
locally Lipschitz dependent on Y ∈ Y ζ,b

kpz . Recall that X is an arbitrary Banach space, and
we write ‖ · ‖X for its norm.

Assumption 5.1 (On the parameters of the equation). Let l ∈ R, let ε ∈ [0, 3α−1), let a > 0

and ζ ≥ 0 be such that ε−6a/δ−2ζ > 0, and let b ≤ 2a and β ∈ (2α−1, 2α+1], β̂ = 2α+1−β
2

and consider 0 ≤ T` < Tr ≤ Th. Given M > 0 we consider Yi in Y ζ,b
kpz([0, Th]) as well as νi in

X and ui0 in C β
e(l) for i = 1, 2 such that:

‖νi‖X , ‖Yi‖Y ζ,b
kpz
, ‖ui0‖C β

e(l)

≤M

and we require that there exists a p ≥ 1 such that the following holds true:
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(1) There exists a γ > 0 such that for any Y, ν and T`, Tr satisfying 0 ≤ T` < Tr ≤ Th we
have that:

VT` ◦R(Y, ν) : L β̂,α+1−ε
e(l+t) ([T`, Tr])→ L β̂,2α+1−ε

e(l+t) ([T`, Tr])

is a Lipschitz function which satisfies:

‖VT`(R(Y, ν)(u))‖
L β̂,2α+1−ε
e(l+t)

([T`,Tr])

. (1+‖Y‖
Y ζ,b
kpz

+‖ν‖X )p(Tr−T`)γ(1+‖u‖
L β̂,α+1−ε
e(l+t)

([T`,Tr])
),

‖VT`(R(Y, ν)(u1))− VT`(R(Y, ν)(u2))‖
L β̂,2α+1−ε
e(l+t)

([T`,Tr])

. (1+‖Y‖
Y ζ,b
kpz

+‖ν‖X )p(Tr−T`)γ‖u1 − u2‖
L β̂,α+1−ε
e(l+t)

([T`,Tr])
,

‖VT`(R(Y1, ν1)(u1))−VT`(R(Y2, ν2)(u2))‖
L β̂,2α+1−ε
e(l+t)

([T`,Tr])

.M,|||ui|||
D
T`
Tr

‖Y1−Y2‖Y ζ,b
kpz

+ ‖ν1−ν2‖X + (Tr−T`)γ‖u1 − u2‖
L β̂,α+1−ε
e(l+t)

([T`,Tr])
.

(2) The map F (Y) : DT`
Tr

(Y)→ L β̂,α
e(l+t)p(2a) is Lipschitz (for fixed Y) and satisfies:

‖F (Y)(u)‖
L β̂,α
e(l+t)p(2a)

([T`,Tr])
. (1+‖Y‖

Y ζ,b
kpz

)p(1 + |||u|||D0
Tr

),

‖F (Y)(u1)− F (Y)(u2)‖
L β̂,α
e(l+t)p(2a)

([T`,Tr])
. (1+‖Y‖

Y ζ,b
kpz

)p|||u1−u2|||D0
Tr
,

‖F (Y1)(u1)− F (Y2)(u2)‖
L β̂,α
e(l+t)p(2a)

([T`,Tr])
.M,|||ui|||D0

Tr

‖Y1 − Y2‖Y ζ,b
kpz

+ |||u1 : u2|||D0
Tr
.

(3) The map F (Y) : L β̂,α+1−ε
e(l+t) ([T`, Tr]) → L β̂,α−ε

e(l+t)p(a)([T`, Tr]) is Lipschitz continuous (for
fixed Y) and satisfies:

‖F (Y)(u)‖
L β̂,α−ε
e(l+t)p(a)

([T`,Tr])
. (1+‖Y‖

Y ζ,b
kpz

)p(1 + ‖u‖
L β̂,α+1−ε
e(l+t)

([T`,Tr])
)

‖F (Y)(u1)−F (Y)(u2)‖
L β̂,α−ε
e(l+t)p(a)

([T`,Tr])

. (1+‖Y‖
Y ζ,b
kpz

)p‖u1−u2‖
L β̂,α+1−ε
e(l+t)

([T`,Tr])
,

‖F (Y1)(u1)−F (Y2)(u2)‖
L β̂,α−ε
e(l+t)p(a)

([T`,Tr])

.M,|||ui|||
D
T`
Tr

‖Y1−Y2‖Y ζ,b
kpz

+ ‖u1−u2‖
L β̂,α+1−ε
e(l+t)

([T`,Tr])
.

Remark 5.2. These assumptions provide a working environment that is sufficient for our
needs, and they could of course be generalized. In every point, the first two inequalities
are necessary for the fixed-point argument, and the last one to obtain the locally Lipschitz
continuous dependence of the fixed point on the parameters. Note that points (2) and (3)
are very similar, and the difference is rather subtle and of a purely technical nature: In the
first requirement we ask for more regularity, in the latter we require a better weight.

The key point in the paracontrolled approach is that the ill-posed resonant product is well
defined for paracontrolled distributions. This is the content of the next result.

Lemma 5.3 (Paracontrolled Product). Under the previous assumptions, for u in D0
Tr

(Y), and
Y ∈ Y ζ,b

kpz the following product estimate holds:

‖X � ∂xu‖M β̂+ζC 2α−1
e(l+t)p(3a)

([T`,Tr])
. (1+‖Y‖

Y ζ,b
kpz

)2|||u|||D0
Tr
.



34 NICOLAS PERKOWSKI AND TOMMASO CORNELIS ROSATI

if we consider two different enhanced data Yi ∈ Y ζ,b
kpz as well as initial conditions ui ∈ DT`

Tr
we can also bound
‖X1 � ∂xu1 −X2 � ∂xu2‖M β̂+ζC 2α−1

e(l+t)p(3a)
([T`,Tr])

.M,|||ui|||D0
Tr

‖Y1 − Y2‖Y ζ,b
kpz

+ |||u1 : u2|||D0
Tr
.

Proof. Let us prove the first estimate and assume Tr = T . We define ũ] = ∂xu
]+∂xu

′≺≺Y ∈
L β̂,2α−ε
e(l+t)p(2a), then:

X � ∂xu = u′ 4 (X � ∂xY ) + C(u′, ∂xY ,X) +X � C2(u
′, ∂xY ) +X � ũ].

with C2(u
′, ∂xY ) = u′≺≺Y −u′ 4 Y . Now we can estimate one at the time all these terms.

For the first one we have:
‖u′ 4 (X � ∂xY )‖

M β̂+ζC 2α−1
e(l+t)p(3a)

. ‖u′‖
M β̂Cα−ε

e(l+t)p(a)
‖X � ∂xY ‖M ζC 2α−1

p(b)
.

Similarly we can treat the other terms, by applying the commutation results of Lemma
2.8 to the second term and Lemma 2.10 to the third term, as well as the resonant product
estimate from Lemma 2.8 for the last term. The second estimate follows similarly. �

In view of the previous lemma, we can rigorously make sense of the equation under consid-
eration.
Definition 5.4. Under Assumption 5.1 a function u ∈ D(Y) is said to be a solution to be
a (paracontrolled) solution to Equation (26) if u′ = F (Y)(u) and if the equation is satisfied
with the last product X � ∂xu defined in the sense of Lemma 5.3.
Now we can prove the existence and uniqueness of solutions to the previous equation.
Theorem 5.5. Make Assumption 5.1 and let Y ∈ Y ζ,b

kpz . Then there exists a unique solution
to Equation (26) in the sense of Definition 5.4, and there is q ≥ 0 such that

|||u||| . e
CTh

(
1+‖Y‖

Y
ζ,b
kpz

+‖ν‖X
)q

(1+‖Y‖
Y ζ,b
kpz

+ ‖ν‖X )p+1(1+‖u0‖C β
e(l)

).

Moreover, the solution depends locally Lipschitz continuously on the parameters of the equa-
tion: for two solutions ui, i = 1, 2, associated to Yi and parameters νi we find that

|||u1 : u2||| .M,Th ‖u
1
0 − u20‖C β

e(l)

+ ‖Y1 − Y2‖Y ζ,b
kpz

+ ‖ν1−ν2‖X .

Proof. Fix 0 ≤ T` < Tr ≤ Th and uT` ∈ D0
T`

(Y). We show that the following map is a
contraction on DT`

Tr
(Y, uT`) provided that T`−Tr is small enough. For t ≥ T` we define

I (u)(t) = Pt−T`u0(T`) + VT`
(
R(Y, ν)(u) + F (Y)(u) 4X +X � ∂xu

)
(t),

I ′(u)(t) = F (Y)(u)(t),

I ](u)(t) = I (u)(t)−I ′(u)≺≺Y (t),

and I (u) = uT` on [0, T`]. By induction, we assume that if T` > 0, then uT` is a solution to
the equation on [0, T`]: in particular we will use that u′T` = F (uT`).
For the sake of brevity we will write ||| · ||| for the norm in DT`

Tr
(Y, uT`) and |||uT` ||| for the norm

of uT` in D0
T`

(Y). We show that I maps DT`
Tr

(Y, uT`) into itself, similar arguments then show
that I is a contraction on the same space. We proceed one term at a time. Let us start with
I , for which Assumption 5.1 yields

‖I (u)‖
L β̂,α+1−ε
e(l+t)

([T`,Tr])
. ‖P·−T`uT`(T`)‖L β̂,α+1−ε

e(l+t)
([T`,Tr])

+ (1+‖Y‖
Y ζ,b
kpz

+‖ν‖X )p(Tr−T`)γ
(
1+‖u‖

L β̂,α+1−ε
e(l+t)

([T`,Tr])

)
+ ‖VT`(F (Y)(u)4X)‖

L β̂,α+1−ε
e(l+t)

([T`,Tr])
+ ‖VT`(X � ∂xu1)‖

L β̂,α+1−ε
e(l+t)

([T`,Tr])
.
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Regarding the first term: if T` = 0 we bound the first term with ‖u0‖C β
e(l)

and if T` > 0 via

(T`)
−β̂|||uT` ||| by the first estimate of the Proposition 2.12. Regarding the second term we use

the second estimate of the same proposition to get:

‖VT`([F (Y)(u)4X)‖
L β̂,α+1−ε
e(l+t)

([T`,Tr])
. (Tr−T`)γ1‖F (Y)(u) 4X‖

M β̂Cα−1
e(l+t)p(2a)

([T`,Tr])

. (1+‖Y‖
Y ζ,b
kpz

)p+1(Tr−T`)γ1‖u‖
L β̂,α+1−ε
e(l+t)

([T`,Tr])

where the term (Tr−T`)γ1 is a consequence of the last estimate from Lemma 2.14 with γ1 =
(ε−4a/δ)/2 > 0. The last line follows from the third condition on F . A similar estimate
holds for the ill-posed product:

‖VT`(X� ∂xu)‖
L β̂,2α+1−ε
e(l+t)

([T`,Tr])
. (Tr−T`)γ2‖VT`(X � ∂xu)‖

L
β̂,2α+1−6a/δ−2ζ−λ
e(l+t)

([T`,Tr])

. (Tr−T`)γ2‖VT`(X � ∂xu)‖
L
β̂+ζ,2α+1−6a/δ
e(l+t)

([T`,Tr])

. (Tr−T`)γ2‖X � ∂xu‖M β̂+ζC 2α−1
e(l+t)p(3a)

([T`,Tr])
. (Tr−T`)γ2(1+‖Y‖

Y ζ,b
kpz

)2|||u|||D0
Tr

. (Tr−T`)γ2(1+‖Y‖
Y ζ,b
kpz

)2(|||uT` |||+ |||u|||),

where in the first stepwe used the last estimate fromLemma2.14with γ2 = (ε−6a/δ−2ζ−λ)/2
and λ ∈ (0, ε−6a/δ−2ζ).We chose to subtract an additional (arbitrarily small) regularity λ
in order to apply the second estimate of Lemma 2.14 in the second step and thus gain a
factor ζ in the time-explosion.
From these estimates it follows that I maps L β̂,α+1−ε

e(l+t) ([T`, Tr]) in itself. Moreover similar
calculations, based on the Lipschitz assumptions on the coefficients, show that I is a con-
traction on the same space with the initial condition u(T`) = uT`(T`) given that (Tr−T`) .
(1+‖Y‖

Y ζ,b
kpz

)−(p+1)/(γ∧γ2). Now, we can pass to estimating the derivative term. Here we use
Property (3) of Assumption 5.1 for F to estimate

‖I ′(u)‖
L β̂,α−ε
e(l+t)p(a)

([T`,Tr])
. (1+‖Y‖

Y ζ,b
kpz

)p(1+‖u‖
L β̂,α+1−ε
e(l+t)

([T`,Tr])
)

. (1+‖Y‖
Y ζ,b
kpz

)p
[
1+‖P·−T`u0(T`)‖L β̂,α+1−ε

e(l+t)
([T`,Tr])

+ ‖VT`(u
′≺≺LY )‖

L β̂,α+1−ε
e(l+t)

([T`,Tr])

+ ‖VT`(C3(u
′, Y ))‖

L β̂,α+1−ε
e(l+t)

([T`,Tr])
+ ‖u]‖

L β̂,α+1−ε
e(l+t)

([T`,Tr])

]
,

where we have written C3(u
′, Y ) = L(u′≺≺Y )−u′≺≺LY . Now we can estimate one term at

a time. The first term can be estimated, it T` = 0 with ‖u0‖C β
e(l)

, and if T` > 0 via (T`)
−β̂|||uT` |||

(since this term disappears upon taking differences we do not need a small factor in front
of it). The second one we estimate with the usual techniques:

‖VT`(u
′≺≺LY )‖

L β̂,α+1−ε
e(l+t)

([T`,Tr])
. (Tr−T`)γ1‖u′≺≺∂xX‖M β̂Cα−1

e(l+t)p(2a)
([T`,Tr])

. (Tr−T`)γ1‖Y‖Y ζ,b
kpz
|||u|||D0

Tr
= (Tr−T`)γ1‖Y‖Y ζ,b

kpz
(|||uT` |||+|||u|||).

The last two terms are more regular and can be treated via the last estimate in Lemma
2.14:

‖u]‖
L β̂,α+1−ε
e(l+t)

([T`,Tr])
. ‖T β̂` u

](T`)‖Cα+1−ε
e(l+T`)

+ (Tr−T`)α/2‖u]‖
L β̂,2α+1−ε
e(l+t)

([T`,Tr])
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as well as, by additionally applying the second-to-last estimate from Lemma 2.10:
‖VT`(C3(u

′, Y ))‖
L β̂,α+1−ε
e(l+t)

([T`,Tr])
. (T`−Tr)γ3‖VT`(C3(u

′, Y ))‖
L
β̂,2α+1−ε−4a/δ
e(l+t)

([T`,Tr])

. (T`−Tr)γ3‖C3(u
′, Y )‖

M β̂C 2α−1−ε
e(l+t)p(2a)

([T`,Tr])

. (T`−Tr)γ3‖Y ‖CCα
p(a)
‖u′‖

L β̂,α−ε
e(l+t)p(a)

([T`,Tr])
≤ (T`−Tr)γ3‖Y‖Y ζ,b

kpz
(|||uT` |||+|||u|||),

with γ3 = (α−4a/δ)/2. Eventually we find:
‖I ′(u)‖

L β̂,α−ε
e(l+t)p(a)

([T`,Tr])
. (1+‖Y‖

Y ζ,b
kpz

)p+1(1+~(T`, |||uT` |||)+(Tr−T`)γ3 |||u|||),

with ~ satisfying the bound

~(T`, |||uT` |||) .Th ‖u0‖C β
e(l)

1{T`=0} + (T`)
−β̂|||uT` |||1{T`>0}.

By linearity and the Lipschitz assumptions on F both the constant and the term ~ disappear
upon taking differences, proving that alsoI ′ is contractive for (T`−Tr) . (1+‖Y‖

Y ζ,b
kpz

)−(p+1)/γ1 .

Finally, we need to consider the paracontrolled remainder term. Since uT` is a solution to
the equation on [0, T`] we find that:
u] = P·−T`(u

](T`)) + VT`
[
R(Y, ν)(u)) +X � ∂xu+ C4(F (Y)(u), ∂xX) + C3(F (Y)(u), Y )

]
,

where C4(u
′, ∂xX) = u′≺≺∂xX−u′ 4 ∂xX. Proceeding as before we can estimate:

‖u]‖
L β̂,2α+1−ε
e(l+t)

([T`,Tr)
. (1+‖Y‖+‖ν‖X )p+1

[
1 + ~(T`, |||uT` |||) + (T`−Tr)γ‖u‖

L β̂,α+1−ε
e(l+t)

([T`,Tr])

+ (Tr−T`)γ2 |||u|||
]

+ (T`−Tr)γ2‖VT`(C4(F (Y)(u), ∂xX))‖
L
β̂,2α+1−6a/δ
e(l+t)

([T`,Tr])

+ (T`−Tr)γ2‖VT`(C3(F (Y)(u), Y ))‖
L
β̂,2α+1−6a/δ
e(l+t)

([T`,Tr])

where we used the same estimate as before for the rest term R and the ill-posed product.
Through the bounds from Lemma 2.10 for the commutators C3, C4 we can then estimate the
last two terms in the sum via

‖Y‖
Y ζ,b
kpz
‖F (Y)(u)‖

L β̂,α
e(l+t)

([T`,Tr])
. (1+‖Y‖Ykpz)

p+1|||u|||D0
Tr

where in the last step we used the second estimate on F from Assumption 5.1. Eventually
we find the following bound:

‖u]‖
L β̂,2α+1−ε
e(l+t)

([T`,Tr])
. (1+‖Y‖

Y ζ,b
kpz

+‖ν‖X )p+1(1 + |||uT` |||+ (Tr−T`)γ∧γ2 |||u|||).

Now we can conclude that for some q large enough and
T ∗ = (Tr−T`) . (1+‖Y‖

Y ζ,b
kpz

+‖ν‖X )−q

the map I is a contraction on DT`
Tr

(Y, uT`) and thus it has a unique fixed point. Since
the length T ∗ of the interval [T`, Tr] could be chosen independently of uT` , we can iterate
this procedure and concatenate the fixed points to get a solution on [0, Th]. Then the ex-
ponential bound follows immediately by observing that we need to iterate approximately
Th(1+‖Y‖

Y ζ,b
kpz

+‖ν‖X )q times the inequality

|||I (u)|||T`,Tr ≤ C(1+‖Y‖
Y ζ,b
kpz

+‖ν‖X )p+1(1+~(T`, |||I (u)|||0,T`))

≤ C(T ∗)(1+‖Y‖
Y ζ,b
kpz

+‖ν‖X )p+1(1+|||I (u)|||0,T`).

where in the last step we used that T` ≥ T ∗ so that we have a good bound on ~. The local
Lipschitz dependence on the parameters follows along the same lines. �
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This concludes our abstract existence-uniqueness result. In the remainder of the section
we will apply this to several concrete linear equations.

5.2. Rough Heat Equation. In this section we show how to solve Equation (6), which we
recall here:

LwP =
[
(XX −X �X ) + L(Y +Y ) +X X +

1

2
(X )2

]
wP

+ [X+X +X ]∂xw
P ,

wP (0) = w0.

This equation can be written in the form of Equation (26) with

R(Y)(u) =
[
X 4X +L(Y +Y )+X X +

1

2
(X )2

]
u

+X 4 ∂xu+ [X +X ]∂xu,

F (Y)(u) =X u+ ∂xu.

Our aim is clearly to apply Theorem 5.5: for this reason we have to check the requirements
from Assumption 5.1. The first step is counting the regularities. Taking away the time
derivative (which for technical reasons we treat differently we find that:

‖R(Y)(u)−∂t(Y +Y )u‖
M β̂C 2α−1

e(l+t)p(2a)
([T`,Tr])

. ‖Y‖2Ykpz‖u‖L β̂,α+1−ε
e(l+t)

([T`,Tr])

so that Proposition 2.12 applied to this term and Lemma 2.13 guarantee:
‖VT` [R(Y)(u)]‖

L β̂,ν
e(l+t)

([T`,Tr])
. (1 + ‖Y‖Ykpz)

2‖u‖
L β̂,α+1−ε
e(l+t)

([T`,Tr])

for any ν < 2α+1−4a/δ. Thus the third and fourth estimate from Lemma 2.14 then provides
the bound:

‖VT` [R(Y)(u)]‖
L β̂,2α+1−ε
e(l+t)

([T`,Tr])
. (T`−Tr)γ(1 + ‖Y‖Ykpz)

2‖u‖
L β̂,α+1−ε
e(l+t)

([T`,Tr])

for γ = (ε−4a/δ)/2. Let us pass to F . We see that if u ∈ D(Y) Lemma 2.10 implies that
∂xu ∈ L β̂,α

e(l+t)p(2a). Hence we find:

‖F (Y, u)‖
L β̂,α
e(l+t)p(2a)

(T`,Tr)
. (1+‖Y‖

Y ζ,b
kpz

)|||u|||D0
Tr

As for the second requirement we see that by Lemma 2.11 the derivative ∂xu is controlled
by

‖∂xu‖
L β̂,α−ε
e(l+t)

(T`,Tr)
. ‖u‖

L β̂,α+1−ε
e(l+t)

(T`,Tr)

hence the estimate promptly follows. The bounds for the differences follow from the bilin-
earity of R and F .
Hence applying Theorem 5.5 guarantees the following result.
Proposition 5.6. For l, ε, ζ, b, a as in the requirements of Assuption 5.1, Equation (6) admits
a unique paracontrolled solution with local Lipschitz dependence upon the parameters. That
is, for initial conditions w1

0, w
2
0 and extended data Y1,Y2 which satisfy the requirements of

Assumption 5.1, there exist respectively two unique solutions wP1 , wP2 to the RHE, that satisfy:
|||wP1 : wP2 ||| .M ‖w1

0 − w2
0‖C β

e(l)

+ ‖Y1 − Y2‖Y ζ,b
kpz
.

Moreover we can bound the norm of the solution in terms of the extended data as follows:

|||wP ||| . e
CTh

(
1+‖Y‖

Y
ζ,b
kpz

)q
(1+‖w0‖C β

e(l)

)
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for some q ≥ 0 large enough. In particular, if ζ = 0 these solutions coincide with solutions to
the RHE in the sense of Definition 3.4.

We can also solve a time-reversed version of the RHE, Equation (22). In particular, we are
also interested in uniform estimates over parabolic scaling of the equation. Consider some
Y ∈ Ykpz with ξ = LY and let us write ←−f s,λ(t, x) = f(T−s−λ2t, λx), as well as fs,λ(t, x) =
f(s+λ2t, λx). The aim is to solve the equation:

(∂t+
1

2
∆)w = −λ2

←−
ξ s,λ � w, w(τ) = w0

for some τ ∈ [0, λ−2(T−s)], where formally λ2←−ξ s,λ �w = λ2(
←−
ξ s,λ−c )w. If w0 is of the form:

w0(·) = e(
←−
Y s,λ+

←−
Y s,λ+

←−
Y s,λ)(τ,·)w0(·)

with w0 ∈ C β
e(l) for some β ∈ (2α−1, 2α+1], l ∈ R we consider solutions w of the form:

w = e
←−
Y s,λ+

←−
Y s,λ+

←−
Y s,λwP ,

with the time-reversed wPrev(t, x) = wP (τ−t, x) solving the equation

(∂t−
1

2
∆)wPrev = −

[
(Xµ,λXµ,λ−Xµ,λ �Xµ,λ) + L(Yµ,λ+Yµ,λ)

+Xµ,λXµ,λ +
1

2
(Xµ,λ)2

]
wPrev + [Xµ,λ+Xµ,λ+Xµ,λ]∂xw

P
rev,

wPrev(0) = w0.

with µ = T−s−λ2τ . This is exactly the same equation as for the paracontrolled term of
the RHE, up to translations and scaling. Following Definition 3.2 and Proposition B.2,
translating the enhanced data by a factor µ and rescaling by a factor λ gives rise to a valid
element Yµ,λof Y ζ,b

kpz for b = 2a and any ζ ∈ (1/2−α, α]. Hence the previous equation admits
a paracontrolled solution in the sense of Proposition 5.6. We collect this information in the
following result.

Corollary 5.7. For anyw0 ∈ C β
e(l), for β ∈ (2α−1, 2α+1], l ∈ R and λ ∈ [0, 1], τ ∈ [0, λ−2(T−s)],

and Y ∈ Ykpz there exists a unique paracontrolled solution wPrev to the previous equation. In
particular the following bound holds for some κ, q ≥ 0 and any ε ∈ (6a/δ+1−2α, 3α−1):

‖wP ‖
L β̂,α+1−ε
e(κ)

([0,τ ])
. e

Cτ
(
1+‖YT−s−λ2τ,λ‖Y ζ,b

kpz

)q
(1+‖w0‖C β

e(l)

).

Moreover the solution depends continuously on the parameters in the following sense: for two
different enhanced data Yi and initial conditions wi0 such that

‖Yi‖Ykpz , ‖w
i
0‖C β

e(l)

≤M

we can estimate
‖wp1−w

p
2‖L α+1−ε

e(l+t)
([0,τ ]) .M ‖w

1
0−w2

0‖C β
e(l)

+ ‖(Y1)T−s−λ2τ,λ−(Y2)T−s−λ2τ,λ‖Y ζ,b
kpz

5.3. Sharp Equation. Now we consider the “Sharp" equation, that is Equation (10):
(27) Lu = Z(Y, hP , h′) +X � ∂xu, u(0) = u0.

We do not need to look for paracontrolled solutions for this equation: it falls in the range of
Equation (26) with F = 0, and therefore we expect that the solution has a trivial paracon-
trolled structure. For the set of parameters

ν = (hP , h′) ∈X = L α+1
e(l) ×L α

e(l)
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we define
R(Y, hP , h′)(u) = Z(Y, hP , h′).

We only need to check that R satisfies the properties of Assumption 5.1. Since R is constant
in u this reduces to the first and third property. We see that:

VT`(Z(Y, hP , h′)) = Y +Y −P·−T` [(Y +Y )(T`)]+VT`(Q(Y, hP , h′))

with Q defined as

Q(Y, hP , h′) =X 4X +X X +
1

2
(X )2+

1

2
(∂xh

P )2 + (X +X )∂xh
P+X 4 ∂xh

P

+X � ∂x(h′≺≺Y ) +
[
h′ 4 L(Y )−L(h′≺≺Y )

]
.

Now in view of the regularity assumptions on the enhanced data (see Table 2) and the
paraproduct estimates from Lemmata 2.8 and 2.10 we see that:

‖Q(Y, hP , h′)‖CC 2α−1
e(2l)

. (1+‖Y‖Ykpz+‖h
P ‖L α+1

e(l)
+ ‖h′‖L α

e(l)
)4

so that an application of the Schauder estimates of Proposition 2.12 guarantees that:

‖VT`(Z(Y, hP , h′))‖L 2α+1
e(2l)

([T`,Tr])
. (1+‖Y‖Ykpz+‖h

P ‖L α+1
e(l)

+ ‖h′‖L α
e(l)

)4.

The local Lipschitz dependence on the parameters then follows similarly by multi-linearity.
Thus we can apply Theorem 5.5 and obtain the result below.

Proposition 5.8. For any l ≥ 0, u0 ∈ C 2α+1
e(2l) and Y ∈ Ykpz, (h

P , h′) ∈X there exists a κ > 2l

such that Equation (10) has a unique solution h] in L 2α+1
e(κ) . For two initial conditions ui0 and

two extended data Yi and parameters hPi , h′i where i = 1, 2, which satisfy the requirements
of Assumption 5.1, there exist respectively unique solutions h]1, h

]
2 to the equation and they

satisfy

‖h]1−h
]
2‖L 2α+1

e(κ)
.M ‖u10 − u20‖C 2α+1

e(2l)
+ ‖Y1 − Y2‖Ykpz + ‖h′1−h′2‖L α

e(l)
+ ‖hP1 −hP2 ‖L α+1

e(l)
.

Proof. Theorem 5.5 yields that the paracontrolled solution to Equation (10), which accord-
ing to the theorem has only regularity α+1−ε, has a vanishing derivative since F = 0.
Moreover Y ∈ Y ζ,b

kpz for b = a and ζ = 0. Thus applying one last time the Schauder estimates
to the solution h] give us the bounds in L 2α+1

e(κ) . �

Appendix A. Exponential and Logarithm on Weighted Hölder Spaces
Here we discuss the regularity of the exponential and logarithmic maps on weighted Hölder
spaces.

Lemma A.1. Consider any α ∈ (0, 2) \ {1} and R, l̂ ≥ 0. Then there exists an l = l(R) ≥ 0
such that the exponential function exp maps

exp :

{
f ∈ C α

e(l̂)
(Rd) s.t. ‖f‖∞,p(δ) ≤ R

}
−→ C α

e(l)(R
d).

Moreover the exponential map is locally Lipschitz continuous, i.e. for f, g in the set above
such that

‖f‖α,e(l̂), ‖g‖α,e(l̂) ≤M
we can estimate:

‖ exp(f)− exp(g)‖α,e(l) .M,R ‖f − g‖α,e(l̂).
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Proof. Due to our choice of α and the classical characterization of Besov spaces (see Corol-
lary 2.6), we need to find a bound for the uniform norm of exp(f) and, if α > 1, ∂x exp(f)
as well as for the α Hölder seminorm of exp(f) or ∂x exp(f), according to whether α < 1 or
α > 1 respectively. Regarding the first bound, since ‖f‖∞,p(δ) ≤ R it follows directly that

exp(f(x)−Rp(δ)(x)) ≤ 1,

implying that
‖exp(f)‖∞,e(R) ≤ 1.

Furthermore for any β ∈ (0, 1 ∧ α] we also have

sup
|x−y|≤1

|ef(x) − ef(y)|
e(l̃ + l̂)(x)|x− y|β

≤ sup
|x−y|≤1

ef(x)∨f(y)

e(l̃)(x)

|f(x)− f(y)|
e(l̂)(x)|x− y|β

. ‖f‖β,e(l̂)

whenever l̃ > R. Moreover exp is also locally Lipschitz continuous, since for any two func-
tions f and g as in the statement of this lemma we can write:

ef(u) − eg(u) =

∫ 1

0
exp

(
g(u) + t(f(u)−g(u))

)
(f(u)−g(u))dt

and therefore, for an appropriate choice of l̃,
‖exp(f)− exp(g)‖∞,e(l̃+l̂) .M ‖f − g‖∞,e(l̂).

The same integral remainder formula gives

|ef(x) − eg(x) − (ef(y) − eg(y))| ≤
∣∣∣∣∫ 1

0
[eg(x)+u(f−g)(x) − eg(y)+u(f−g)(y)](f−g)(x)du

∣∣∣∣
+

∣∣∣∣∫ 1

0
eg(y)+u(f−g)(y)[(f−g)(y)− (f−g)(x)]du

∣∣∣∣,
so that applying inequalities of the kind |aã − bb̃| ≤ |a − b||ã| + |ã − b̃||b| along with an
appropriate choice of l̃ leads to the bound:

sup
|x−y|≤1

|ef(x) − eg(x) − (ef(y) − eg(y))|
e(l̃ + l̂)(x)|x− y|β

.M ‖f − g‖β,e(l̂).

Finally, if α ∈ (1, 2), we can write ∂xef = ef∂xf, so that via the previous calculations and
through an application of paraproduct estimates we deduce that ∂xef lies inC α−1

e(l) for l = l̃+l̂,

along with the local Lipschitz continuity. �

The same calculations also show that the result still holds if we introduce time dependence:

Lemma A.2. Consider any α ∈ (0, 2) \ {1} and R, l̂ ≥ 0. Then there exists an l = l(R) ≥ 0
depending on R such that the exponential function maps:

exp :

{
f ∈ L α

e(l̂)
s.t. sup

0≤t≤T
‖f(t)‖∞,p(δ) ≤ R

}
−→ L α

e(l).

Moreover this function is locally Lipschitz continuous i.e. for f, g with

‖f‖L α
e(l̂)
, ‖g‖L α

e(l̂)
≤M

we can estimate:
‖ exp(f)− exp(g)‖L α

e(l)
.M,R ‖f − g‖L α

e(l̂)
.

Now we pass to a dual statement, namely the continuity of the logarithm.
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Lemma A.3. For given α ∈ (0, 2) \ {1} and r, C, l̂ ≥ 0 there exists an l = l(r) ≥ 0 depending
on r such that the logarithm maps

log : A =
{
f ∈ L α

e(l̂)

∣∣ inf
0≤t≤T

f(t, x) ≥ Ce(−r)(x)
}
−→ L α

e(l)

Furthermore this map is locally Lipschitz continuous, i.e. for f, g ∈ A with
‖f‖L α

e(l̂)
, ‖g‖L α

e(l̂)
≤M

we can estimate:
‖ log(f)− log(g)‖L α

e(l)
.M,r ‖f − g‖L α

e(l̂)
.

Proof. As before we use the classical definition of Hölder spaces and we only treat spatial
regularity, as the time regularity follows similarly. We also just discuss the local Lipschitz
continuity, since then the first statement follows by choosing g = 1. For f, g ∈ A and for all
ξ ≥ f(t, x) ∧ g(t, x) we find

1

ξ
.M e(r)(x).

Thus by the mean value theorem and for l ≥ l̂ + r:
‖[log(f(t, ·))− log(g(t, ·))]‖∞,e(l) .M ‖[f−g](t, ·)‖∞,e(l̂)

uniformly in t ∈ [0, T ]. If α > 1 we can bound also the derivative in a similar way:∥∥∥∥∂xff − ∂xg

g

∥∥∥∥
∞,e(l)

≤
∥∥∥∥∣∣∣∣ 1f

∣∣∣∣|∂xf − ∂xg|+ |∂xg|∣∣∣∣ 1

fg

∣∣∣∣|f − g|∥∥∥∥
∞,e(l)

.M ‖f − g‖α,e(l̂)

at the cost of taking a possibly larger l.
To treat the case α < 1 let |x− y| ≤ 1 and observe that

f(y)

f(x)
∨ g(y)

g(x)
.M e(l̂ + r)(x),

so we can apply again the mean value theorem to the logarithm:∣∣ log(f(x))− log(g(x))−
(

log(f(y))− log(g(y))
)∣∣

e(l)(x) |x− y|α
=

∣∣∣ log
(
f(x)
f(y)

)
− log

(
g(x)
g(y)

) ∣∣∣
e(l)(x) |x− y|α

.M
e(l̂ + r)(x)

e(l)(x)

| [(f−g)(x)− (f−g)(y)] g(y) + (f−g)(y)(g(y)− g(x))|
|f(y)g(y)| |x− y|α

.M ‖f − g‖α,e(l̂) ,

once more for an appropriate choice of l > l̂+ r. Calculations similar to the one above show
that also in the case α > 1 we can find an l such that∥∥∥∥∂xff − ∂xg

g

∥∥∥∥
α−1,e(l)

.M ‖f − g‖α,e(l̂) .

This concludes the proof. �

Appendix B. Operations on the Extended Data
Here we discuss some operations on the space of extended data, more precisely translation
and parabolic scaling. For this purpose we consider a slightly different space of external
data. In contrast to the space Ykpz we will not take into account the norm of Y , so that
we can forget about its linear growth; we will also allow some of the terms in the extended
data to have inhomogeneous initial conditions which arise from shifting the data in time;
finally we consider a small time explosion for the resonant product ∂xY �X: this also arises
naturally when shifting the data.
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DefinitionB.1. Consider ζ ∈ [0, 1), b ≥ 0 and a time horizon Th ≥ 0. Let uswriteY ζ,b
kpz([0, Th])

for the closure in
CC α−1

p(a) ([0, Th])×L 2α
p(a)([0, Th])×L α+1

p(a) ([0, Th])×L 2α+1
p(a) ([0, Th])×L 2α+1

p(a) ([0, Th])×M ζC 2α−1
p(b) ([0, Th])

of the map Y(θ, c , c ) defined on LCα/2(R;C∞b (R))× R× R by:

Y(θ, c , c ) =
(
X,Y , Y , Y , Y , ∂xY �X

)
where every tree Y • solves the same PDE as in Table 2 under the condition that

Y (0) = 0, Y (0) = 0, Y (0) = 0

implying that all other trees are allowed to have inhomogeneous initial conditions. To keep
the notation simple we omit from writing the dependence on these inhomogeneous initial
conditions. We will also sometimes omit the explicit dependence on Th and write Y ζ,b

kpz .

Next we will formulate translations and parabolic scaling operations on the extended data.
As for the scaling, we will only zoom into small scales and therefore the scaling parameter
λ will be small: λ ∈ (0, 1]. Thus, for any τ ∈ [0, T ) we write θτ,λ(t, x) = θ(τ+λ2t, λx). We
change the time horizon accordingly to Tτ,λ = λ−2(T−τ). The question we want to answer
is whether for given Y(θn) ∈ Y ∞kpz converging to Y in Ykpz we can show also the convergence
of Y(θnτ,λ) to some Yτ,λ: this is the content of the following result.

Proposition B.2. For any τ, λ as above and for everyY inYkpz and ζ ∈ (1/2−α, α] there exists
a Yτ,λ in Y ζ,2a

kpz ([0, Tτ,λ]) such that whenever θn ∈ LCα/2(R;C∞b (R)) is such that Y(θn, cn , cn )

converges to Y in Ykpz, then

Y(λ2θnτ,λ, λ
2cn , λ

2cn )→ Yτ,λ in Y ζ,2a
kpz ([0, Tτ,λ]),

where for a given smooth noise θ ∈ LCα/2(R;C∞b (R)) we define Y(λ2θτ,λ) by

Y (λ2θτ,λ)(t, x) = Y (θ)(τ+λ2t, λx)

and similarly for the elements Y (θτ,λ), Y (θτ.λ). The elements Y (θτ,λ), Y (θτ,λ), Y (θτ,λ)
on are defined respectively as the solution to

LY (θτ,λ) = ∂xY (θτ,λ)∂xY (θτ,λ), Y (θτ,λ)(0) = 0,

LY (θτ,λ) = ∂xY (θτ,λ)∂xY (θτ,λ), Y (θτ,λ)(0) = 0,

LY (θτ,λ) = ∂xY (θτ,λ), Y (θτ,λ)(0) = 0.

Furthermore we have the estimate:
sup
λ∈(0,1]

sup
τ∈[0,T )

‖Yτ,λ‖Y ζ,2a
kpz ([0,Tτ,λ])

.ζ ‖Y‖Ykpz .

Proof. We concentrate on the proof of the uniform bound. The convergence result then
follows from the fact that the rescaling operator is linear. Let us write Y •τ,λ for Y •(θτ,λ)

defined as above. Note that

Yτ,λ (t) = Λλ
[
Y (τ+λ2t)−Pλ2tY (τ)

]
and similarly for Y , where Λλ is the spatial rescaling operator with Λλf(x) = f(λx). We
can find the required bounds for Xτ,λ and for the tree terms Y •τ,λ in view of [GIP15, Lemma
A.4]. While the results from [GIP15] do not treat weighted spaces, they hold nonetheless
in the weighted setting. To see this one has to take care of the effect of rescaling, and it is
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only because we are zooming in (λ ≤ 1) that the scaling does not affect the weight. The most
complicated object that we have to consider is the ill-posed product

sup
λ∈(0,1]

sup
τ∈[0,T ]

sup
t∈[0,Tτ,λ]

tζ‖∂xYτ,λ(t) � ∂xYτ,λ(t)‖C 2α−1
p(2a)

.

First, we treat the rescaling parameter λ. Note that Yτ,λ(t) = Λλ

(
1
λYτ (λ2t)

)
with Yτ = Yτ,1.

Hence, we can write

∂xYτ,λ(t) � ∂xYτ,λ(t) = λ
[
Λλ∂xYτ (λ2t) � Λλ∂xYτ (λ2t)

]
= λΛλ

[
∂xYτ (λ2t) � ∂xYτ (λ2t)

]
+ λ Commutator ,

where “Commutator” is defined implicitly through the formula. An application of [GIP15,
Lemma B1] (taking into account the remark about the weights from above) tells us that:

λ‖ Commutator ‖C 2α−1
p(2a)

. λ2α‖∂xYτ (λ2t)‖Cα
p(a)
‖∂xYτ (λ2t)‖Cα−1

p(a)

and an application of [GIP15, Lemma A4] tells us that:

λ‖Λλ
[
∂xYτ (λ2t) � ∂xYτ (λ2t)

]
‖C 2α−1

p(2a)
. λ2α‖∂xYτ (λ2t) � ∂xYτ (λ2t)‖C 2α−1

p(2a)
.

Now we can estimate the norm of the ill-posed product uniformly by:

λ2αtζ‖∂xYτ (λ2t) � ∂xYτ (λ2t)‖C 2α−1
p(2a)

. λ2α−2ζ(λ2t)ζ‖∂xYτ (λ2t) � ∂xYτ (λ2t)‖C 2α−1
p(2a)

and since ζ ≤ α, this can be bounded uniformly over λ and t by the quantity:

sup
τ∈[0,T ]

sup
t∈[0,T−τ ]

tζ‖∂xYτ (t) � ∂xYτ (t)‖C 2α−1
p(2a)

+ ‖∂xYτ (t)‖Cα
p(a)
‖∂xYτ (t)‖Cα−1

p(a)
.

It is easy to estimate the last term uniformly over t and τ. Let us consider the first term.
Here we have to take into account that Yτ (t) = Y (τ + t) − PtY (τ), where we recall that
Pt indicates convolution with the heat kernel and that it commutes with derivatives. Since
we have no a priori estimates for Pt∂xY (τ)� ∂xYτ (t) we need to apply the usual estimates
for the resonant product. For that purpose note that

‖Pt∂xY (τ)‖
C 2ζ+α
p(a)

. t−ζ‖∂xY (τ)‖Cα
p(a)

and since 2ζ+2α−1 > 0 we can bound the norm of the ill-posed product by

‖∂xYτ (t) � ∂xY (τ+t)‖C 2α−1
p(2a)

. ‖Pt∂xY (τ)‖
C 2ζ+α
p(a)

‖∂xY (t+τ)‖CCα−1
p(a)

+ ‖∂xY � ∂xY (t+τ)‖CCα−1
p(a)
. t−ζ .

Now all the required properties follow promptly. �

Appendix C. Asymmetric Approximation of a Resonant Product
Next we prove a result which is a slightly asymmetric version of the computations in [GP17,
Section 9.5]. Indeed we show convergence of X ,n�X to X �X, that is we only regularize
one of the two factors.

Lemma C.1. Let ξ be a white noise on [0, T ] × R. Consider the sequence (ξn, Y n
0 , cn , cn ) as

in Theorem 3.5. Then for any a > 0 and α < 1/2 the resonant product

∂xY
,n � ∂xY → ∂xY � ∂xY in Lp(Ω;CC 2α−1

p(a) )

for some p = p(α, a) ∈ [1,+∞).
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Proof. Following the notation of [GP17, Section 9] we have a representation of X �X ,n via
a product of Wiener-Itô integrals as

X �X ,n(t, x) =

∫
(R×[0,T ])2

GX�X ,n
(t, x, η12)W (dη1)W (dη2)

with kernel

GX�X ,n
(t, x, η12) = eik[12]xψ0(k1, k2)Ht−s1(k1)ϕ(n−1k2)

∫
R

dσHt−σ(k2)Hσ−s2(k2).

Decomposing the above integral into different Wiener-Itô chaoses and setting η1 = (s1, k1)
and η−1 = (s1,−k1), the contribution to the chaos of order zero is given by:∫
R×R

dη1G
X�X ,n

(t, x, η1(−1)) =

∫
R×R

dη1Ht−s1(k1)ϕ(−n−1k1)
∫
R

dσHt−σ(−k1)Hσ−s1(−k1) = 0,

where we used thatHr(−k1) = −Hr(k1) and ϕ(−n−1k1) = ϕ(n−1k1) to see that the integrand
is antisymmetric under the change of variables k1 → −k1 and therefore its integral must
vanish. Hence we have to consider only the second Wiener-Itô chaos. To show convergence
of the sequence we first compute for q ≥ −1:

E
[
|∆q(X �X −X �X ,n)|2(t, x)

]
.

∫
(R×[0,T ])2

dη12|%q(k[12])GX�X ,n
(t, x, η12)|2

=

∫
dk12ds1ds2 %q(k[12])ψ0(k1, k2)

2|Ht−s1 |2(k1)(1−ϕ(n−1k2))
2
∣∣∣ ∫
R

dσHt−σ(k2)Hσ−s2(k2)
∣∣∣2

.
∫
dk12 %q(k[12])ψ0(k1, k2)

2(1−ϕ(n−1k2))
2k−22

where k[12] = k1+k2, dk12 = dk1dk2, and to obtain the inequality in the third line we have
estimated

∫ t
0 ds1 |Ht−s1 |2(k1) . 1 uniformly over k1 and∫ t

0
ds2

∣∣∣ ∫
R

dσHt−σ(k2)Hσ−s2(k2)
∣∣∣2 =

∫ t

0
ds (k22s)

2e−2sk
2
2 . k−22 .

In particular we see that the for some annulus A such that supp(%j) ⊂ Aj = 2jA we have
that k[12] ∈ Aq and ψ0(k1, k2) > 0 implies k2 ∈ Aj for j & q so that we can estimate the
integral via∫

dk[12]dk2 %q(k[12])ψ0(k[12]−k2, k2)2(1−ϕ(n−1k2))
2k−22 . 2q

∑
j&q∨(cn)

2−j . 2q−(q∨cn),

for some c > 0.
At this point it is possible to conclude, since for p such that pa > 1 and any δ > 0:

E
[
‖X �X ,n −X �X ‖p

B−κp,p (p(a))

]
=
∑
q

2−κqp
∫
R

E
[
|∆q(X � (X −X ,n))|2(t, x)

]p/2
1+|x|ap

. δ

where the last estimate holds if we choose q0 such that
∑

q≥q0 2−κqp ≤ δ and n such that
2(q0−cn)p/2 ≤ δ in order to split up the last sum at the q0-th term and to obtain two small
terms. The time regularity follows similarly, see also Section 9.5 of [GP17]. By Besov em-
bedding we find the required convergence. �
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Appendix D. Schauder Estimates
In this section we review classical Schauder theory for space-time distributions. Such re-
sults are well-known in literature: we adapt them in order to deal with time-dependent
weights and blow-ups at time t = 0. The method of proof we use is essentially the same
of [GLT06, Theorem 1], which is based on the construction of the Young integral. Such
integral is the content of the next lemma.

LemmaD.1. Let Th ≥ 0, β ∈ [0, 1), α, γ ∈ (0, 2) such that α+γ > 2.Then for f ∈ L β,α
z1 ([0, Th])

and h ∈ L γ
z2([0, Th]), where zi : R≥0 → ρ(ω) are point-wise increasing, it is possible to define

the Young integral:

It =

∫ t

0
f(r)dh(r)

such that t 7→ tβIt lies in Cγ/2L∞z1z2([0, Th]). This map is bilinear and satisfies the bound:

‖t 7→ tβIt‖Cγ/2L∞z1z2 ([0,Th]) .Th ‖f‖L β,α
z1

([0,Th])
‖h‖L γ

z2
([0,Th])

.

For f, h ∈ C∞b ([0, Th]× R;R), I is the unique map that satisfies ∂tIt = f∂th, I0 = 0.

Proof. Following the classical construction via the sewing lemma (cf. [FH14, Lemma 4.2])
we can build the integral

∫ t
s f(r)dh(r) for any t ≥ s > 0.We repeat the construction in order

to get a tight control on the singularity in zero and the weights involved. We will prove
the result for time independent weights. The general case then follows from the identity:
∫ t0 f(s)dh(s) = ∫ t0 f(s ∧ t)dg(s). Define for n ≥ 0 and tnk = k/2n

Int =

+∞∑
k=0

f(tnk+1)(h(tnk+1 ∧ t)−h(tnk ∧ t)).

unlike the more traditional integration scheme we choose a right base-point to remove some
tedious, but only technical difficulties when dealing with time blow ups. We want to esti-
mate the following quantity

∑
n≥0

sup
0≤s≤t≤T

‖tβ(In+1
t −Int )− sβ(In+1

s −Ins )‖L∞z1z2
|t−s|γ/2

.

We will treat only the case β > 0, since β = 0 follows similarly. We fix n and estimate one of
the terms above. We will divide the estimate in two parts.
Step 1. First we look on large scales, that is |t−s| > 2−n. To lighten the notation we write
gu,v = g(u)−g(v). We also write tn ( resp. tn) for the nearest left (resp. right) dyadic point
to t:

kn(t) = arg min
k|k≤2nt

|t−tnk |, tn = kn/2
n, tn = tn+1/2n.

We start by considering t ≤ 2s. in this case we will estimate the terms tβ(In+1
s,t −Ins,t) and

(tβ − sβ)(In+1
s −Ins ) separately. Let us start with the first one. Since |t−s| > 2−n we have in

particular that sn < t and a close inspection of the sums reveals that:

Int,s−In+1
t,s = fsn,sn+1hsn+1,s +

kn(t)−1∑
k=kn(s)+1

ftn+1
2k+2,t

n+1
2k+1

htn+1
2k+1,t

n+1
2k

+ ftn,tn+1htn+1,tn + ftn,tn+1ht,tn+1 .

Now if we call f(t) = tβf(t) we can write an increment of f as:

fu,v = u−βfu,v + (u−β−v−β)f(v).
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Note that f is α/2−Hölder continuous so that substituting this formula we find:

‖Int,s−In+1
t,s ‖L∞z1z2 . ‖f‖L β,α

z1
‖h‖L γ

z2

{
1

2n(α+γ)/2

[
(sn+1)−β +

kn(t)−1∑
k=kn(s)+1

(tn+1
2k+1)

−β + (tn+1)
−β
]

+
1

2n(γ/2+1)

[
(sn+1)−β−1+α/2 +

kn(t)−1∑
k=kn(s)+1

(tn+1
2k+1)

−β−1+α/2 + (tn+1)
−β−1+α/2

]}

. ‖f‖
L β,α
z1
‖h‖L γ

z2

[ kn+1(t)∑
k=kn+1(s)+1

(tn+1
k )−β

1

2(n+1)(α+γ)/2

]

.
1

2n%
‖f‖

L β,α
z1
‖h‖L γ

z2

1

2(n+1)(1−β)

[
(kn+1(t)+1)1−β − (kn+1(s)+1)1−β

]
where for the first inequality we have used that for u ≥ v we can estimate v−β−u−β ≤
(u−v)v−β−1 and for the second inequality we have used that since α/2 ≤ 1, (k/2n)−1+α/2 ≤
(1/2n)−1+α/2. In the last line, since β ∈ [0, 1), we estimated

∑b
a k
−β ≤ 2β ∫ b+1

a x−βdx for a ≥ 1
and we set % = (α+β)/2−1 > 0. Now using the assumptions on t and s we can estimate the
last quantity as follows:

tβ‖Int,s−In+1
t,s ‖L∞z1z2

|t−s|γ/2
. 2−n%tβ

((tn+1)1−β−(sn+1)1−β)

(t−s)γ/2
≤ 2−n%

(sn+1)−β(tn+1−sn+1)

(t−s)γ/2

≤ 2−n%tβ
tβ

sβ
(
|t−s|1−γ/2 + 2−n−1|t− s|−γ/2

)
. 2−n%.

now we treat the term (tβ−sβ)(In+1
s − Ins ). Here we only need to adapt the previous calcula-

tions:
‖(tβ−sβ)(In+1

s − Ins )‖L∞z1z2
|t−s|γ/2

. (t−s)1−γ/2sβ−1‖In+1
s − Ins ‖L∞z1z2(28)

. 2−n%sβ−1((sn+1)1−β−2−(n+1)(1−β)) . 2−n%

where in the last line we have estimated (sn+1)1−β ≤ s1−β + 2−(n+1)(1−β) together with the
fact that s ≥ 2−(n+1) since |t− s| > 2−n and t ≤ 2s.
We now consider t ≥ 2s. This time we will estimate the two terms tβIt and sβIs separately.
Indeed in this case we find t− s ≥ t/2 and we can estimate:
‖tβ(In+1

t −Int )− sβ(In+1
s −Ins )‖L∞z1z2

|t−s|γ/2
. t−γ/2+β‖In+1

t −Int ‖L∞z1z2+s−γ/2+β‖In+1
s −Ins ‖L∞z1z2 ,

so that similar calculations to the ones from Equation (28) pull thorough.
Step 2. Now we have to consider the small-scales case with respect to n. If |t − s| ≤ 2−n

the increment Int,s−In+1
t,s can assume only one of the following three forms according to the

position of s, tw.r.t to dyadic points, assuming s, t are not dyadic themselves (i.e. of the form
k/2n+1):

ftn,tn+1ht,s if sn+1 > t, ftn,sn+1ht,s if sn > t, sn+1 < t, ftn,tn+1ht,sn if sn+1 < t.

and these formulas can be extended continuously in the case that one or both of the points
s, t is dyadic. Here the difficulty is a formality, namely that in our notation the points
tn, tn+1 do not depend continuously on t. By continuity if is sufficient to control the Hölder
seminorm for non-dyadic points. We show how to estimate the second term. The others
follow similarly. As in the previous discussion we have:

tβ|ftn,sn+1ht,s| ≤ tβ
(
(sn+1)−β2−nα/2 + (sn+1)−β−1+α/22−n

)
|t−s|γ/2 . 2−nα/2|t−s|γ/2.
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where in the last step we used that sn+1 = tn+1 and sn+1 ≥ 2−(n+1) together with the esti-
mate tβ ≤ (tn+1)

β+2−nβ. The result regarding smooth functions follows from the properties
of the Riemann integral. �

We also need the following reformulation of [GIP15, Lemma A.8].
Lemma D.2. For α ∈ R, δ ≥ 0, t > 0 it is possible to estimate

‖(Id−Pt)u‖Cαz . t
δ/2‖u‖Cα+δz

.

Proof. For any q ≥ −1 it follows from [GIP15, Lemma A.8]:
‖(Id−Pt)∆qu‖L∞z . t

δ/2‖∆qu‖C δz . t
δ/22δq

∑
j∼q
‖∆ju‖L∞z .

The result then follows by multiplying with 2qα and summing over q. �

Finally we can prove Schauder estimates for time-dependent distributions.
Lemma D.3. For any β ∈ [0, 1), α, γ ∈ (0, 2) such that α+γ > 2 and 0 ≤ η < γ−2a/δ and
0 ≤ T` ≤ Tr ≤ Th there exists a continuous bilinear map

VT` : L β,α
e(l+t)([T`, Tr])×L γ

p(a)([T`, Tr])→ L β,η
e(l+t)([T`, Tr]),

such that
‖V (f, h)‖

L β,η
e(l+t)

([T`,Tr])
.Th ‖f‖L β,α

e(l+t)
([T`,Tr])

‖h‖L γ
p(a)

([T`,Tr])
.

Similarly, under the same assumption on β, α, γ, for given zi : R≥0 → ρ(ω) point-wise in-
creasing, i = 1, 2, we can build a map between the spaces

V : L β,α
z1 ([0, Th])×L γ

z2([0, Th])→ L β,η
z1z2([0, Th]),

such that
‖V (f, h)‖

L β,η
z1z2

([0,Th])
.Th ‖f‖L β,α

z1
([0,Th])

‖h‖L γ
z2

([0,Th])

for any 0 ≤ η < γ. For f, h ∈ C∞b ([0, T ] × R;R) the map VT` is the convolution with the heat
kernel:

VT`(f, h)(t) =

∫ t

T`

P (s−T`)fs∂shsds,

with the silent identification of V0 with V.
Proof. We prove only the result regarding exponential weights, since the second one follows
via the same calculations and is simpler. In addition, for clarity and without loss of gener-
ality we assume [T`, Tr] = [0, T ]. Let us fix f ∈ L β,α

e(l+t) and h ∈ L γ
p(a) and let X be the Young

integral from Lemma D.1: Xt = ∫ t0 fsdhs. We approximate the convolution with the heat
kernel V (f, h) in the following way:

V n
t =

b2ntc−1∑
k=3

P (t−tnk)Xtnk+1,t
n
k
.

This approximation has the advantage of simplifying our calculations, but the disadvantage
of not being continuous in time. We want to show that V n

t converges to some Vt which lies
in L β,η

e(l+t) for η < γ−2a/δ. For this reason fix κ, ε ≥ 0 small at will such that γ+κ > 2 and
ζ = (η+κ+ε)/2+a/δ < 1. We divide the proof in two steps, estimating the spatial and the
temporal regularity differently. For tn, tn, tnk , kn(t) we use the same definition as in the proof
of Lemma D.1.
Step 1. We show that for fixed t the sequence V n

t converges in C η
e(l+t). As in the previous

proof we show that: ∑
n≥0

tβ‖V n+1
t −V n

t ‖C η
e(l+t)

. ‖f‖
L β,α
e(l+t)

‖h‖L γ
p(a)
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thus deducing the existence of a limit Vt with supt∈[0,T ] t
β‖Vt‖C η

e(l+t)
. ‖f‖

L β,α
e(l+t)

‖h‖L γ
p(a)

. We
can write the difference of the increments as:

V n
t −V n+1

t =

b2ntc−1∑
k=3

(P (tn+1
2k+1−t

n+1
2k )−Id)P (t−tn+1

2k+1)Xtn+1
2k+2,t

n+1
2k+1

− P (t−tn)Xtn+1,tn1{kn+1(t)>5} − P (t−tn+1
3 )Xtn+1

4 ,tn+1
3

1{kn+1(t)=5}

Now we can estimate

‖V n
t −V n+1

t ‖C η
e(l+t)

.
b2ntc−1∑
k=3

1

2(n+1)κ/2
‖P (t−tn+1

2k+1)(Xtn+1
2k+2,t

n+1
2k+1

)‖C η+κ
e(l+t)

+
‖Xtn+1,tn‖C−ε

e(l+t)

|t−tn|(η+ε)/2
1{kn+1(t)>5} +

‖Xtn+1
4 ,tn+1

3
‖C−ε

e(l+t)

|t−tn+1
3 |(η+ε)/2

1{kn+1(t)=5}

.
b2ntc−1∑
k=3

‖Xtn+1
2k+2,t

n+1
2k+1
‖C−ε

p(a)e(l+t)

2(n+1)κ/2|t−tnk |(η+κ+ε)/2+a/δ

+
‖Xtn+1,tn‖C−ε

p(a)e(l+t)

|t−tn|(η+ε)/2+a/δ
1{kn+1(t)>5} +

‖Xtn+1
4 ,tn+1

3
‖C−ε

p(a)e(l+t)

|t−tn+1
3 |(η+ε)/2+a/δ

1{kn+1(t)=5}

where we have applied the first Schauder estimate from Proposition 2.12 and the bound
‖f‖C ν

p(a)e(l+t)
. |t−s|−a/δ‖f‖C ν

e(l+s)
, for t ≥ s. Now we have to estimate the norm of the incre-

ment. Here the time explosions come into play: we write Xu,v = u−βXu,v + (u−β−v−β)X(v),
withX(t) = tβX(t) ∈ Cγ/2L∞p(a)e(l+t) according to the result of LemmaD.1. Since v−β−u−β ≤
(u−v)v−β−1 we can estimate

‖Xtn+1
2k+2,t

n+1
2k+1
‖C−ε

p(a)e(l+t)
. (tn+1

2k+1)
−β2−(n+1)γ/2‖f‖

L β,α
e(l+t)

‖h‖L γ
p(a)

.

At this point we can conclude, since:

‖V n
t −V n+1

t ‖C η
e(l+t)

.‖f‖
L β,α
e(l+t)

‖h‖L γ
p(a)

(
2−n%

b2ntc−1∑
k=1

2−n|t−tnk |−ζ(tn+1
2k+1)

−β

+
(tn)−β2−(n+1)γ/2

|t−tn|(η+ε)/2+a/δ
1{kn+1(t)>5,tn<tn+1} +

(tn+1
3 )−β2−(n+1)γ/2

|t−tn+1
3 |(η+ε)/2+a/δ

1{kn+1(t)=5}

)
with % = (κ+γ)/2−1. Now the sum can be dominated by an integral:

b2ntc−1∑
k=3

2−n|t−tnk |−ζ(tn+1
2k+1)

−β .
∫ b2ntc
32−n

|t−s|−ζs−βds . t1−ζ−β . t−β

where we used that 2−n(tn+1
2k+1)

−β ≤ 2−n(tnk)−β ≤ 2β ∫ t
n
k+1

tnk
s−βds as well as the fact that ζ < 1.

Finally we bound the two rest terms. Under the condition tn < tn+1 we can estimate
(tn)−β2−(n+1)γ/2

|t−tn|(η+ε)/2+a/δ
. (tn)−β2−(n+1)(γ−η−ε)/2−a/δ . t−β2−n%2n(ζ−1)

since (tn/t)
−β . (1−1/t2n)−β . 2β, because kn+1(t) > 5 and thus t ≥ 2−n+2. Similarly we

can treat the last term:
(tn+1

3 )−β2−(n+1)γ/2

|t−tn+1
3 |(η+ε)/2+a/δ

. t−β2−n%2n(ζ−1).

Since % > 0 and ζ < 1 this allows to deduce the spatial regularity.
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Step 2. Now we address the temporal regularity. Our aim is to estimate:

sup
0≤s≤t≤T

‖tβVt−sβVs‖L∞
e(l+t)

|t−s|η/2
. ‖f‖

L β,α
e(l+t)

‖h‖L γ
p(a)

.

For simplicity, as there is no difference w.r.t. the previous case we omit taking care of the
norm of the functions. Let us first consider t ≥ s such that t ≤ 2s.Here we rewrite the above
quantity as:

tβVt−sβVs = tβ(Vt−P (t−s)Vs) + tβ(P (t−s)−Id)Vs − (tβ−sβ)Vs.

And we estimate all three these terms separately. The first one can be written as the limit:

Vt−P (t−s)Vs = lim
n
Wn
t,s, Wn

t,s =

bt2nc−1∑
bs2nc+1

P (t−tnk)Xtnk+1,t
n
k

since the rest terms vanish in the limit. At this point we estimateW as before:

‖Wn
t,s−Wn+1

t,s ‖L∞e(l+t) ≤
bt2nc−1∑
bs2nc+1

‖(P (tn+1
2k+1−t

n+1
2k )−Id)P (t−tn+1

2k+1)Xtn+1
2k+2,t

n+1
2k+1
‖L∞

e(l+t)

+ ‖(P (t−sn+1)Xsn,sn+1 + P (t−tn)Xtn+1,tn)1|t−s|≥2−n‖L∞e(l+t)

.
bt2nc−1∑
bs2nc+1

(tn+1
2k+1)

−β

2(n+1)(κ+γ)/2|t−tnk |κ/2+a/δ
+

(sn+1)−β

2n(γ/2−a/δ)
1|t−s|≥2−n

. 2−n%̃
(∫ t

s
u−β(t−u)−κ/2−a/δdu+ t−β|t−s|η/2

)
. 2−n%̃|t−s|η/2t−β

with %̃ = [(γ−η)/2−a/δ]∧[(κ+γ)/2−1], where we used the fact that ‖f‖C 0
z
. ‖f‖L∞z and since

t ≤ 2s and 1−κ/2−a/δ > η/2 we have estimated the integral by:∫ t

s
u−β(t−u)−κ/2−a/δdu . t−β−κ/2−a/δ+1

∫ 1

s/t
(1−u)−κ/2−a/δdu . t−β(t−s)1−κ/2−a/δ.

As for the second term since t ≤ 2s and via Lemma D.2 and the results of the first step we
estimate

‖tβ(P (t−s)−Id)Vs‖L∞
e(l+t)

. |t−s|η/2.

Finally, for the third term we estimate:

‖(tβ−sβ)Vs‖L∞
e(l+t)

. (t−s)1−µsβ−1+µ‖Vs‖L∞
e(l+t)

for any µ ∈ (0, 1). For this purpose we follow the calculations in the first step. Indeed

‖V n
t −V n+1

t ‖L∞
e(l+t)

.2−n%
∫ t

0
|t−s|−ε/2−a/δs−βds . t1−β−ε/2−a/δ

so that the result follows from the previous estimate by choosing µ = ε/2−a/δ, since 1−µ ≥
η/2. If we suppose that t > 2s we can estimate:

‖tβVt−sβVs‖L∞
(e(l+t)

|t−s|η/2
≤ sup

t
tβ−η/2‖Vt‖L∞

e(l+t)

and this quantity can be bounded via the arguments we just used. This concludes the proof.
The result regarding smooth functions follows again via Riemann integration. �
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