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Abstract

We develop a discrete version of paracontrolled distributions as a tool for deriving scaling
limits of lattice systems, and we provide a formulation of paracontrolled distributions in
weighted Besov spaces. Moreover, we develop a systematic martingale approach to control
the moments of polynomials of i.i.d. random variables and to derive their scaling limits. As
an application, we prove a weak universality result for the parabolic Anderson model: We
study a nonlinear population model in a small random potential and show that under weak
assumptions it scales to the linear parabolic Anderson model.

Resumé On développe une version discréte de la théorie des distributions paracontrélées
comme outil pour dériver les limites d’échelles des modéles discrétes, et on développe une formu-
lation des distributions paracontrolées dans les espaces de Besov avec poids. En plus, on obtient
une approche martingale pour systématiquement contrdler les moments des polyndémes des vari-
ables aléatoires i.i.d., et pour dériver leur limites d’échelles. Comme application, on prouve un
résultat d’universalité faible pour le modéle parabolic d’Anderson: On étudie un modéle non-
linéaire d’une population dans un potentiel aléatoir, et on démontre sous des hypothéses faible
que le modéle converge vers le modéle parabolic d’Anderson linéaire.
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Keywords: paracontrolled distributions; scaling limits; weak universality; Bravais lattices;
Besov spaces; parabolic Anderson model

1 Introduction

Paracontrolled distributions were developed in [I8] to solve singular SPDFEs, stochastic partial
differential equations that are ill-posed because of the interplay of very irregular noise and
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nonlinearities. A typical example is the two-dimensional continuous parabolic Anderson model,
ou = Au + u€ — uoo,

where u: Ry x R? - R and £ is a space white noise, the centered Gaussian distribution whose
covariance is formally given by E[{(2)¢(y)] = 0(x — y). The irregularity of the white noise
prevents the solution from being a smooth function, and therefore the product between u and
the distribution £ is not well defined. To make sense of it we need to eliminate some resonances
between u and £ by performing an infinite renormalization that replaces u& by u§ — uco. The
motivation for studying singular SPDEs comes from mathematical physics, because they arise
in the large scale description of natural microscopic dynamics. For example, if for the parabolic
Anderson model we replace the white noise ¢ by its periodization over a given box [—L, L]?,
then it was recently shown in [I0] that the solution w is the limit of u®(t, x) = et (t/e2, z/e),
where v°: Ry x {—L/e,...,L/e}?> — R solves the lattice equation

ov® = Av® + v,

where A® is the periodic discrete Laplacian and (1())ge(—r/e,....1/}2 is an i.i.d. family of centered
random variables with unit variance and sufficiently many moments.

Results of this type can be shown by relying more or less directly on paracontrolled distri-
butions as they were developed in [I§] for functions of a continuous space parameter. But that
approach comes at a cost because it requires us to control a certain random operator, which is
highly technical and a difficulty that is not inherent to the studied problem. Moreover, it just
applies to lattice models with polynomial nonlinearities. See the discussion below for details.
Here we formulate a version of paracontrolled distributions that applies directly to functions on
Bravais lattices and therefore provides a much simpler way to derive scaling limits and never re-
quires us to bound random operators. Apart from simplifying the arguments, our new approach
also allows us to study systems on infinite lattices that converge to equations on R?, while the
formulation of the Fourier extension procedure we sketch below seems much more subtle in the
case of an unbounded lattice. Moreover, we can now deal with non-polynomial nonlinearities
which is crucial for our main application, a weak universality result for the parabolic Ander-
son model. Besides extending paracontrolled distributions to Bravais lattices we also develop
paracontrolled distributions in weighted function spaces, which allows us to deal with paracon-
trolled equations on unbounded spaces that involve a spatially homogeneous noise. And finally
we develop a general machinery for the use of discrete Wick contractions in the renormalization
of discrete, singular SPDEs with i.i.d. noise which is completely analogous to the continuous
Gaussian setting, and we build on the techniques of [6] to provide a criterion that identifies the
scaling limits of discrete Wick products as multiple Wiener-It6 integrals.

Our main application is a weak universality result for the two-dimensional parabolic Ander-
son model. We consider a nonlinear population model v®: Ry x Z? — R,

o (t, ) = AV (8, ) + F(of (¢, ) (2), (1)

where A@ is the discrete Laplacian, F' € C? has a bounded second derivative and satisfies
F(0) = 0, and (7°(x))4ez2 is an i.i.d. family of random variables with Var(n°(0)) = 2 and
E[7°(0)] = —F’(0)e%c* for a suitable sequence of diverging constants ¢ ~ |loge|. The variable
ve(t, x) describes the population density at time t in the site z. The classical example would
be F(u) = u, which corresponds to the discrete parabolic Anderson model in a small potential
n°. In that case v® describes the evolution of a population where every individual performs an
independent random walk and finds at every site x either favorable conditions if 7°(x) > 0 that
allow the individual to reproduce at rate n°(x), or non-favorable conditions if n*(z) < 0 that
kill the individual at rate —n(z). We can include some interaction between the individuals by
choosing a nonlinear function F. For example, F'(u) = u(C —u) models a saturation effect which
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limits the overall population size in one site to C' because of limited resources. In Section [5] we
will prove the following result:

Theorem (see Theorem. Assume that F' and (n°(x)) satisfy the conditions described above
and also that the p-th moment of n°(0) is uniformly bounded in € for some p > 14. Then there
exists a unique solution v° to with initial condition v¢(0,x) = 1._g, up to a possibly finite
explosion time T¢ with T¢ — o for e — 0, and uf(t,r) = e~ 20 (e~ 2t,e"1z) converges in law to

the unique solution u: Ry x R> — R of the linear continuous parabolic Anderson model
Oyu = Au + F'(0)ué — F'(0)*uoo, u(0) = 0,
where § denotes the Dirac delta.

Remark 1.1. It may appear more natural to assume that n®(0) is centered. However, we need the
small shift of the expectation away from zero in order to create the renormalization —F'(0)?*uco
in the continuous equation. Making the mean of the variables n°(x) slightly negative (assume
Flio,,) = 0 so that F'(0) = 0) gives us a slightly higher chance for a site to be non-favorable
than favorable. Without this, the population size would explode in the scale in which we look at
it. A similar effect can also be observed in the Kac-Ising/Kac-Blume-Capel model, where the
renormalization appears as a shift of the critical temperature away from its mean field value [37,
42]. Note that in the linear case F(u) = u we can always replace n° by n° + ¢ if we consider
e“tv®(t) instead. So in that case it is not necessary to assume anything about the expectation of
n®, we only have to adapt our reference frame to its mean.

Remark 1.2. The condition p > 14 might seem rather arbitrary. Roughly speaking this re-
quirement is needed to apply a form of Kolmogorov’s continuity criterion, see Remark [5.6 for
details.

Structure of the paper Below we provide further references and explain in more details where
to place our results in the current research in singular SPDEs and we fix some conventions and
notations. In Sections [2} [l we develop the theory of paracontrolled distributions on unbounded
Bravais lattices, and in particular we derive Schauder estimates for quite general random walk
semigroups. Section 5| contains the weak universality result for the parabolic Anderson model,
and here we present our general methodology for dealing with multilinear functionals of inde-
pendent random variables. The appendix contains several proofs that we outsourced. Finally,
there is a list of important symbols at the end of the paper.

Related works As mentioned above, we can also use paracontrolled distributions for functions
of a continuous space parameter to deal with lattice systems. The trick, which goes back at least
to [37] and was inspired by [29], is to consider for a lattice function u® on say {ke : —L/e <
k < L/e}? the unique periodic function Ext(u®) on (R/(2LZ))? whose Fourier transform is
supported in [—1/e,1/e]? and that agrees with v in all the lattice points. If the equation for u®
involves only polynomial nonlinearities, we can write down a closed equation for Ext(u®) which
looks similar to the equation for u® but involves a certain “Fourier shuffle” operator that is not
continuous on the function spaces in which we would like to control Ext(u®). But by introducing
a suitable random operator that has to be controlled with stochastic arguments one can proceed
to study the limiting behavior of Ext(u®) and thus of u. This argument has been applied to show
the convergence of lattice systems to the KPZ equation [21], the ®2 equation [47], and to the
parabolic Anderson model [10], and the most technical part of the proof was always the analysis
of the random operator. The same argument was also applied to prove the convergence of the
Kac-Ising / Kac-Blume-Capel model [37, 42] to the ®; / ®§ equation. This case can be handled
without paracontrolled distributions, but also here some work is necessary to control the Fourier
shuflle operator. This difficulty is of a technical nature and not inherent to the studied problems,
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and the line of argumentation we present here avoids that problem by analysing directly the
lattice equation rather than trying to interpret it as a continuous equation.

Other intrinsic approaches to singular SPDEs on lattices have been developed in the context
of regularity structures by Hairer, Matetski and Erhard [23] [I3] and in the context of the
semigroup approach to paracontrolled distributions by Bailleul and Bernicot [2], and we expect
that both of these works could be combined with our martingale arguments of Section [5| to give
an alternative proof of our weak universality result.

We call the convergence of the nonlinear population model to the linear parabolic Anderson
model a “weak universality” result in analogy to the weak universality conjecture for the KPZ
equation. The (strong) KPZ universality conjecture states that a wide class of (1+1)-dimensional
interface growth models scale to the same universal limit, the so called KPZ fixed point [36], while
the weak KPZ universality conjecture says that if we change some “asymmetry parameter” in the
growth model to vanish at the right rate as we scale out, then the limit of this family of models
is the KPZ equation. Similarly, here the influence of the random potential on the population
model must vanish at the right rate as we pass to the limit, so the parabolic Anderson model
arises as scaling limit of a family of models. Similar weak universality results have recently been
shown for other singular SPDESs such as the KPZ equation [16, 24 22] 20] (this list is far from
complete), the ®2" equations [37, 25, 42], or the (stochastic) nonlinear wave equation |17, 39].

A key task in singular stochastic PDEs is to renormalize and to construct certain a priori
ill-defined products between explicit stochastic processes. This problem already arises in rough
paths [35] but there it is typically not necessary to perform any renormalizations and general
construction and approximation results for Gaussian rough paths were developed in [15]. For
singular SPDEs the constructions become much more involved and a general construction of
regularity structures for equations driven by Gaussian noise was found only recently and is
highly nontrivial [5, 8]. For Gaussian noise it is natural to regroup polynomials of the noise
in terms of Wick products, which goes back at least to [II] and is essentially always used in
singular SPDEs, see [26, 27, [7, 21] and many more. Moreover, in the Gaussian case all moments
of polynomials of the noise are equivalent, and therefore it suffices to control variances. In the
non-Gaussian case we can still regroup in terms of Wick polynomials [37, 30, 9, 43], but a priori
the moments are no longer comparable and new methods are necessary. In [37]| the authors used
martingale inequalities to bound higher order moments in terms of variances.

In our case it may look as if there are no martingales around because the noise is constant
in time. But if we enumerate the lattice points and sum up our i.i.d. variables along this
enumeration, then we generate a martingale. This observation was used in [10] to show that for
certain polynomial functionals of the noise (“discrete multiple stochastic integrals”) the moments
are still comparable, but the approach was somewhat ad-hoc and only applied directly to the
product of two variables in “the first chaos”.

Here we develop a general machinery for the use of discrete Wick contractions in the renor-
malization of discrete, singular SPDEs with i.i.d. noise which is completely analogous to the
continuous Gaussian setting. Moreover, we build on the techniques of [6] to provide a crite-
rion that identifies the scaling limits of discrete Wick products as multiple Wiener-Itd integrals.
Although these techniques are only applied to the discrete 2d parabolic Anderson model, the
approach extends in principle to any discrete formulation of popular singular SPDESs such as the
KPZ equation or the @3 models.

1.1 Conventions and Notation

We use the common notation <, 2 in estimates to denote <, > up to a positive constant. The
symbol ~ means that both < and = hold true. For discrete indices we mean by ¢ < j that there
is a N > 0 (independent of 4,5) such that i < j + N, i.e. that 2° < 2/, and similarly for j X i
the notation 7 ~ j is shorthand for i < j and j < 4.
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We denote partial derivatives by 0% for o€ N¢ := {0, 1,2,...}? and for o = (1,—;); we write
0" = 0*. Our Fourier transform follows the convention that for f e L!'(R?)

ol (@) i= | J@e*mde,  Felf@)i= | f@)emdy,

where x + y denotes the usual inner product on R, The most relevant notations are listed in a
glossary at the end of this article.

2 Weighted Besov spaces on Bravais lattices

2.1 Fourier transform on Bravais lattices

A Bravais-lattice in d dimensions consists of the integer combinations of d linearly independent
vectors ai, ..., aq € R, that is

G:=Zar+...+Zay. (2)
Given a Bravais lattice we define the basis a1, . .., ag of the reciprocal lattice by the requirement
a;-aj = 6ij, (3)

and we set Z := Z a1+...+Zaq. However, we will mostly work with the (centered) parallelotope
which is spanned by the basis vectors a1, ..., dy:

Gi=[0.)@1 4+ [0.1)ag— 5@+ +a0) = [1/21/2)d + .+ [1/2,1/2)a.

We call QA the bandwidth or Fourier-cell of G to indicate that the Fourier transform of a map
on G lives on G, as we will see below. We also identify G ~ Rd/% and turn G into an additive
group which is invariant under translations by elements in Z.

Example 2.1. If we choose the canonical basis vectors a1 = e1,...,aq = eq, we have simply
G=2% %=z, G=T%=[-1/2,1/2)%
Compare also the left lattice in Figure [2.1]

In Figure we sketched some Bravais lattices G together with their Fourier cells Q . Note
that the dashed lines between the points of the lattice are at this point a purely artistic sup-
plement. However, they will become meaningful later on: If we imagine a particle performing
a random walk on the lattice G, then the dashed lines could be interpreted as the jumps it is
allowed to undertake. From this point of view the lines will be drawn by the diffusion operators
we introduce in Section Bl

Definition 2.2. Given a Bravais lattice G as defined in we write
G i=¢g

for the sequence of Bravais lattice we obtain by dyadic rescaling with e = 27N, N > 0. Whenever
we say a statement (or an estimate) holds for G° we mean that it holds (uniformly) for all
e=2"N N=>o.

Remark 2.3. The restriction to dyadic lattices fits well with the use of Littlewood-Paley theory
which is traditionally built from dyadic decompositions. However, it turns out that we do not
lose much generality by this. Indeed, all the estimates below will hold uniformly as soon as we
know that the scale of our lattice is contained in some interval (ci,c2) << (0,00). Therefore
it is sufficient to group the members of any positive null-sequence (€y)n>0 in dyadic intervals
[2-(N+D 2=NY) to deduce the general statement.
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Figure 1: Depiction of some Bravais lattices G with their bandwiths Q\: a square lattice, an
oblique lattice and the so called hexagonal lattice. The length of the reciprocal vectors a; is
rather arbitrary since it actually depends on the units in which we measure a;.

Given ¢ € ¢}(G) we define its Fourier transform as

Fop(a) = 1G] Y p(k)e*™,  weg, (4)
kegG
where we introduced a “normalization constant” |G| := |det (a1,...,aq)| that ensures that we

obtain the usual Fourier transform on RY as |G| tends to 0. We will also write |g| for the
Lebesgue measure of the Fourier cell G.

If we consider Fgy as a map on R?, then it is periodic under translations in X . By the
dominated convergence theorem JFg¢ is continuous, so since G is compact it is in Ll(g) =
Ll(g,dm), where dz denotes integration with respect to the Lebesgue measure. For any 1 €
LY(G) we define its inverse Fourier transform as

Folu(k) = féw(:c)emk'xdx, keg. (5)

Note that |G| = 1/|§| and therefore we get at least for ¢ with finite support félfgw = ¢. The
Schwartz functions on G are

S(9) := {go: G — C:sup(l+ |k))"|e(k)| < oo for all m e N} ,
keg

and we have Fgp € C®(G) (with periodic boundary conditions) for all ¢ € S(G), because for
any multi-index o € N the dominated convergence theorem gives

aangp |g’ Z 271'2/{3 a 72mk:p
keg
By the same argument we have }'(Jfld) € S(G) for all Y € C’OO(Q\), and as in the classical case

G = Z% one can show that Fg is an isomorphism from S(G) to C*® (é) with inverse ]-"_51. Many
relations known from the Z?-case carry over readily to Bravais lattices, e.g. Parseval’s identity

S 6l | j ()2 de (6)

keg
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(to see this check for example with the Stone-Weierstrass theorem that (|G|Y/2e2™*"),cg forms
an orthonormal basis of L?(G,dz)) and the relation between convolution and multiplication

Fg (g1 #g p2) (x) := Fg (Z Gl @1 (R)pa(- — k)) () = Fgpr(x) - Fgpa(x), (7)
keg

Fg' (vag ) ) i= 75! ( L (@)l - x]g)dZE) (k) = Fg n(k) - Fg ' oak).  (8)

where [z]g is for z € R¢ the unique element in G such that z — [2]g € Z%.
Since S(G) consists of functions decaying faster than any polynomial, the Schwartz distribu-
tions on G are the functions that grow at most polynomially,

§(G) := {f: G — C:sup(l+ |k|)™™|f(k)| < oo for some m € N} ,
keg

and f(p) := |G| Xpeg [(K)p(k) is well defined for ¢ € S(G). We extend the Fourier transform to
S'(G) by setting

(Faf) W) i= f (Fg"0) =191 2 F0)Fg (k). b (),
keg

where (...) denotes the complex conjugate. This should be read as (Fgf) () = f(Fg), which

~

however does not make any sense because for ) € C*(G) we did not define the Fourier transform
Fg1 but only fg_lw. The Fourier transform (Fgf)(v) agrees with Scj Fof(x)-¢(x)dx in case

fe8(9). It is possible to show that fe S'(G), where
S'(G) = {u: C®(G) — C : w is linear and 3C > 0,m € N s.t. |u(v)] < CW”C;H(QA)}

for \]¢\|an(§) = Dlal<m ”aaquLw(gA), and that Fg is an isomorphism from S’(G) to 5’(@) with

inverse

(Fg 'u)(@) = 1G] D ule*™ g (k). (9)

keg

As in the classical case G = 7Z it is easy to see that we can identify every f € §'(G) with a
“Dirac comb” distribution fg;, € S’'(RY) by setting

faw = 1G] Y F(R)S(- — k), (10)

keg

where 0(- — k) € &' (R%) denotes a shifted Dirac delta distribution. We can identify any element
g € S'(G) of the frequency space with an Z-periodic distribution gey; € S’(R?) by setting

Gext(p) =g (Z p(- = k)) . peSERY). (11)

ke#
If g € 8'(G) coincides with a function on G one sees that
gext () = g([2]g) (12)

where [2]g is, as above, the (unique) element [z]5 € G such that [z]g—z € Zar+... +Zag = %.

Conversely, every Z-periodic distribution g € S’(R?) can be seen as a restricted element ges €

A~

S'(G), e.g. by considering

Gres(9) == (¥ 9)(@ext) = (W - Pext)s € CP(G) (13)
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where ¢ € C®(R?) is chosen such that >}, _,%(- — k) = 1 and where we used in the second
equality the definition of the product between a smooth function and a distribution. To construct
such a v it suffices to convolve 15 with a smooth, compactly supported mollifier, and it is easy
to check that (gext)res = ¢ for all g € S'(G) and that gyes does not depend on the choice of .
This motivates our definition of the extension operator £ below in Lemma [2.6]

With these identifications in mind we can interpret the concepts introduced above as a sub-
theory of the classical Fourier analysis of tempered distributions. We will sometimes use the
following identity for f € §'(G)

(FG)ext = Fralfair) , (14)

which is easily checked using the definitions above.
Next, we want to introduce Besov spaces on G. Recall that one way of constructing Besov
spaces on R? is by making use of a dyadic partition of unity.

Definition 2.4. A dyadic partition of unity is a family (p;)j=—1 S CP(R?) of nonnegative
radial functions such that

e supp p_1 is contained in a ball around 0, supp @; is contained in an annulus around 0 for
j=0,

e pj=@o(277:) forj =0,

o X 1 pi(x) =1 for any x e RY,

o If|j—j'| > 1 we have supp p; N supp p; = &,

Using such a dyadic partition as a family of Fourier multipliers leads to the Littlewood-Paley

blocks of a distribution f € S’'(R9),

Ajf = Fgi(@j - Fralf)-

Each of these blocks is a smooth function and it represents a “spectral chunk” of the distribution.
By choice of the (¢;);j>—1 wehave f =3, | A;f in S'(R9), and measuring the explosion /decay
of the Littlewood-Paley blocks gives rise to the Besov spaces

By, (RY) = {f € SR : (274, | 12)j5-1llen < 0} (15)

In our case all the information about the Fourier transform of f € 8'(G), that is Fg f € S'(G)

Y
A

is stored in a finite bandwidth é . Therefore, it is more natural to decompose the compact set G,
so that we consider only finitely many blocks. However, there is a small but delicate problem:
We should decompose é in a smooth periodic way, but if j is such that the support of ¢;
touches the boundary of G , the function ¢; will not necessarily be smooth in a periodic sense.
We therefore redefine the dyadic partition of unity for z € G as

g\ _ | wil@), J<Jjg, 6
s { 1= % ei@), =g (16)
where j < jg :=inf{j : suppp; n oG + ). Now we set for f € S.,(G)

ATf = Fg' (e - Faf).

which is now a function defined on §. As in the continuous case we will also use the notation
Gr _ g
ij*ZKinf-
Of course, for a fixed G it may happen that Agl = Id, but if we rescale the lattice G to G,

the Fourier cell G changes to e~1G and so for £ — 0 the following definition becomes meaningful.
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Definition 2.5. Given a € R and p,q € [1,00] we define

B24(0) = {1 € S'@) 1753, @) = 127185 f |16y )=, gl < 0}

where we define the LP(G) norm by

1/p
| £lzr(g) = (lgl > |f(7~€)|p> = NG £ (17)

keg
We write furthermore C3(G) := By ,(G).

The reader may have noticed that since we only consider finitely many j = —1,...,jg (and
since A;: LP(G) — LP(G) is a bounded operator, uniformly in j, as we will see below), the two
spaces By ,(G) and LP(G) are in fact identical with equivalent norms! However, since we are
interested in uniform bounds on G¢ for ¢ — 0, we are of course not allowed to switch between
these spaces. Whenever we consider sequences G° of lattices we construct all dyadic partitions
of unity (cpjgs)j:_17..,,jgs from the same partition of unity (¢;);=—1 on RA.

With the above constructions at hand it is easy to develop a theory of paracontrolled distri-
butions on a Bravais lattice G which is completely analogous to the one on R?. For the transition
from the rescaled lattice models on G¢ to models on the Euclidean space R? we need to compare
discrete and continuous distributions, so we should extend the lattice model to a distribution in
S'(R%). One way of doing so is to simply consider the identification with a Dirac comb, already
mentioned in , but this has the disadvantage that the extension can only be controlled in
spaces of quite low regularity because the Dirac delta is quite irregular. We find the following
extension convenient:

Lemma 2.6. Let ¢ € CX(RY) be a positive function with > ¥(- — k) =1 and set
Ef = Fou (¥ FoPext ), fES(9),

where the periodic extension (-) S'(G) — S'(RY) is defined as in (TD). Then £f € C*(R?) N
S'(RY) and Ef(k) = f(k) for all ke G.

Proof. We have £f € S'(R?) because (Fgf).,, is in &’(R?), and therefore also £f = ]-"Hgdl (¢ -
(FGf)ext) € S'(RY). Knowing that £f is in §’(R?), it must be in C*(R?) as well because it has
compact spectral support by definition. Moreover, we can write for k € G

EF(K) = (Fgf)exy (W0 - 2™ 0)) = Fgf (Z (- — r)em’“'('-”) = Fgf (€™ V) = f(k),

reR
where we used the definition of (-),,, from and that k-reZforal ke Gandre . O

It is possible to show that if £2 denotes the extension operator on G¢, then the family (£%).~0
is uniformly bounded in L(By ,(G°), Bqu(Rd)), and this can be used to obtain uniform regularity
bounds for the extensions of a given family of lattice models.

However, since we are interested in equations with spatially homogeneous noise, we cannot
expect the solution to be in By, (G) for any «,p,q and instead we have to consider weighted
spaces. In the case of the parabolic Anderson model it turns out to be convenient to even allow
for subexponential growth of the form el'l” for o € (0,1), which means that we have to work on
a larger space than 8’(G), where only polynomial growth is allowed. So before we proceed let
us first recall the basics of the so called ultra-distributions on R
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2.2 Ultra-distributions on Euclidean space

A drawback of Schwartz’s theory of tempered distributions is the restriction to polynomial
growth. As we will see later, it is convenient to allow our solution to have subexponential
growth of the form eM'l” for o € (0,1) and A\ > 0. It is therefore necessary to work in a larger
space S.,(R?) 2 S'(R?), the space of so called (tempered) ultra-distributions, which has less
restrictive growth conditions but on which one still has a Fourier transform. Similar techniques
already appear in the context of singular SPDEs in [38], where the authors use Gevrey functions
that are characterized by a condition similar to the one in Definition below. Here, we
will follow a slightly different approach that goes back to Beurling and Bjorck [3], and which
mimics essentially the definition of tempered distribution via Schwartz functions. For a broader
introduction to ultra-distributions see for example [45, Chapter 6] or [3].

Let us fix, once and for all, the following weight functions which we will use throughout this
article.

Definition 2.7. We denote by
prI(x) = log(1 + |z|), wSP(z) := |z|7, 0 € (0,1).

where x € RY o € (0,1) For w e w := {wP'} U {ws | o € (0,1)} we denote by p(w) the set of
measurable, strictly positive p : R? — (0, 0) such that

p(x) < ply)e =) (18)

for some A = A(p) > 0. We also introduce the notation p(w) = |J e, P(w). The objects
p € p(w) will be called weights.

Note that the sets p(w) are stable under addition and multiplication for a fixed w € w. The
indices “pol” and “exp” of the elements in w indicate the fact that elements in p € p(wP®') are
polynomially growing or decaying while elements in p(wg *) are allowed to have subexponential
behavior. Note that

p(wP) = p(wS™)
and that
(1+ |z)* € p(wP) (19)

and eM*” e p(wP) for A € R, 0 € (0,1). The reason why we only allow for ¢ < 1 will be
explained in Remark below.
We are now ready to define the space of ultra-distributions.

Definition 2.8. We define for w € w the locally convex space
Su(RY) = {f e SR [VA>0,aeNT  pf\(f) + 7\ (f) < 0}, (20)

which is equipped with the seminorms

pEA(f) = sup M| f ()], (21)
xeR4
7%\ (f) == sup X0 Fa f ()] . (22)
zeR4

Its topological dual S:J(]Rd) is called the space of tempered ultra-distributions.

Remark 2.9. We here follow [£5, Def 6.1.2.3] and equip the dual S',(RY) with the strong
topology. The choice of the weak-* topology is however also common in the literature [1)].
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Remark 2.10. The reason why we excluded the case o = 1 for wg* in Definition s that
we want S,, to contain functions with compact support, which then allows for localization and
thus for a Littlewood-Paley theory. But if w = ws® with ¢ > 1 and f € S,,(R?) the requirement
W&A(f) < o0 implies that Fraf can be bounded by el ¢ >0, which means that f is analytic

and the only compactly supported f € S,(R?) is the zero-function f = 0.

In the case w = wy¥,0 € (0,1) the space S/, is strictly larger than &'. Indeed: ecll” €

S/ (RI\S'(RY) for o' € (0,0]. In the case w = wP® we simply have
Su(RY) = S(RY)

with a topology that can also be generated by only using the seminorms p , so that the dual
of S, (R?Y) = S(R?) is given by

SL(RY) = S'(RY).

The theory of “classical” tempered distributions is therefore contained in the framework above.
The role of the triple

D(R?) := CX(RY) < S(RY) < C*(RY)
in this theory will be substituted by spaces D, (R%), C*(R%) such that
D, (RY) < S, (RY) < CP(RY).

Definition 2.11. Let U € R? be an open set and w € w = {wP} U {ws™® |0 € (0,1)}. We define
for w = wy® the set CP(U) to be the space of f € C®(U) such that for every e > 0 and compact
K < U there exists C i > 0 such that for all o € N¢

sup 0% f| < C. g el (at)VVe . (23)

For w = wP° we set CP(U) = C*(U). We also define
D, (U) = CZ(U) n CE(U). (24)

The elements of CF(U) are called ultra-differentiable functions and the elements of the dual

space D!(R?) are called ultra-distributions.

Remark 2.12. The space D (R?) is equipped with a suitable topology [3, Section 1.6] which we
did not specify since this space will not be used in this article and is just mentioned for the sake
of completeness.

Remark 2.13. The factor a! in can be replaced by |a|! or |a|l®! [{1, Proposition 1.4.2] as
can be easily seen from a! < |a|! < d' ) and Stirlings formula.

The relation between D,,, S,,, CF and their properties are specified by the following lemma.
Lemma 2.14. Let w € w.
i) We have S,(R%) < C*(R?) and
D, (RY) = S, (RY) n CP(RY). (25)
In particular Dy,(RY) < S,(RY) € CL(RY).

ii) The space S,(RY) is stable under addition, multiplication and convolution.
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iii) The space C*(R%) is stable under addition, multiplication and division in the sense that
£/9 Loupp s € CL(RY) for f,g € CL(RY), supp f < suppg.

Sketch of the proof. We only have to prove the statements for w € {wg "~ |o € (0,1)}. Take
f € S,(RY) and e > 0. We then have for a € N?

(@) = m)l | e e Fu () dg

Using further that for A > 0 (we here follow [31, Lemma 12.7.4])
Stirlin
J|£||a —Mﬂ”dg <J plal+d=1,-r7 4. <A™ \a|/ar((|a| —|—d)/0') < g)\—lal/oc\cx||a|\a|/a,

we obtain for z € RY
0% f ()] < Cxx~lelocleljafle . xg (f).

Choosing A > 0 big enough shows that f satisfies the estimate in (with global bounds) and
thus f € CP(R?) and S, (RY) € C*(R?). In particular we get S, (R?) n CL(R?) < D, (RY). To
show the inverse inclusion consider f € D, (R?). We only have to show that TaA(f) < oo for
any A > 0 and o € N?. And indeed for x € R? with |z| > 1 (without loss of generality)ﬂ

Akck -
17| Fa f ()]

xr”’wfRdf( )| < Z

k=0

kck N N [ e okle
el F @] = 3 Y S| [ @mealee ) a
i=1k=0

o0
‘eMx'U}-Rdf Z
:
L2

||M8 w\y

&S 1rhng X
C. Z Negkek < oo

k=0

where C, C. > 0 denote as usual constants that may change from line to line and where in the
last step we chose € > 0 small enough to make the series converge; note that the bound
holds on all of R? because f is compactly supported by assumption.

The stability of Sw(]Rd) under addition, multiplication and convolution are quite easy to
check, see [3, Proposition 1.8.3].

It is straightforward to check that f-ge CX(U) for f,g € CL(U) using Leibniz’s rule. For
the stability under composition see e.g. [40), Proposition 3.1], from which the stability under
division can be easily derived. O

Many linear operations such as addition or derivation that can be defined on distributions
can be translated immediately to the space of ultra-distributions (Dw(Rd)),. We see with
that C%(R?) should be interpreted as the set of smooth multipliers for ultra-distributions in
D! (RY) and in particular for tempered ultra-distributions S, (R?) < D’,(R9). The space S/, (R?)
is small enough to allow for a Fourier transform.

Definition 2.15. For f € S/ (R?) and ¢ € S,,(RY) we set

Fraf(p) == f(Frap),

FRd (¢) == f( Rd@)

By definition ofS (RY) we have that Fga and F; ga are isomorphisms on S, (RY) which implies
that Fga and F.} gd Gre isomorphisms on S/ (RY).

'We here follow ideas from [38, Proposition A.2].
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The following lemma proves that the set of compactly supported ultra-differentiable functions
D,,(R?) is rich enough to localize ultra-distributions, which gets the Littlewood-Paley theory
started and allows us to introduce Besov spaces based on ultra-distributions in the next section.

Lemma 2.16 ([3], Theorem 1.3.7.). Let w € w. For every pair of compact sets K < K' < R?
there is a @ € Dy, (RY) such that

plk =1,  suppp S K'.

2.3 Ultra-distributions on Bravais lattices

For the discrete setup we essentially proceed as in Subsection [2.1] and define spaces

Sw(g)={fig—><c

sup )| (k)| < o for all A > 0} ,
kegG

and their duals (when equipped with the natural topology)

s;(Q)={f:G—>C

?cug e W) £ (k)| < oo for some A > 0} ,
€

with the pairing f(¢) = |G| Xeg f(k)p(k), ¢ € Swu(G). As in Subsection we can then
define a Fourier transform Fg on §,(G) which maps the discrete space S,,(G) into the space

A~

of ultra-differentiable functions S, (G) := C*(G) with periodic boundary conditions. The dual

A~

space S;,(G) can be equipped with a Fourier transform Fg ! asin (9) such that Fg, Fg ! become

A~

isomorphisms between S/, (G) and S/,(G) that are inverse to each other. For a proof of these
statements we refer to Lemma [A.1]

Performing identifications as in the case of S'(R?) we can interpret these concepts as a sub-
theory of the Fourier analysis on S’,(R?) with the only difference that we have to choose the
function v, satisfying >},._, ¥(- — k) = 1, on page|7| as an element of D, (RY), see page 16| below
for details.

2.4 Discrete weighted Besov spaces

We can now give our definition of a discrete, weighted Besov space, where we essentially proceed
as in Subsection with the only difference that p € p(w) is included in the definition and that
the partition of unity (¢;);>—1, from which (cpjg) j=—1 is constructed as on page |8, must now be
chosen in D, (R%).

Definition 2.17. Given a Bravais lattice G, parameters o € R, p,q € [1,0] and a weight
p € p(w) for w e w we define

B2(G.0) = { € SLG) [ 1fl15g, 0.0 = 12710 A9 Fl1og))i=1. s les < 0}

wheri the Lﬁftlewood—P(zley blocks (A?)jzfl,.‘.,jg are built from a dyadic partition of unity (go?)jzfl,wjg c
C2(G) on G constructed from some dyadic partition of unity (p;)j=-1 S Du(R%) on R as on
page @ If we consider a sequence G° as in Definition we take the same (pj)j>—1 < D, (RY)

to construct for all € the partitions (@?E)j=_17,,_7jga on G¢.

We write furthermore Cy(G, p) = By (G, p) and define
LG, p) = {f € Su(@) [ fLrg,p) = loflLrg) < 0},

i.e. g, g = 127129 F Log, )i e
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Remark 2.18. When we introduce the weight we have a choice where to put it. Here we set
1flzr,p) = lpflLr(g), which is analogous to [£5] or [28], but different from [38] who instead
take the LP norm under the measure p(x)dxz. For p =1 both definitions coincide, but for p = oo
the weighted L® space of Mourrat and Weber does not feel the weight at all and it coincides with
its unweighted counterpart.

Remark 2.19. The formulation of this definition for continuous spaces Bqu(Rd,p), Cg(Rd,p)
and LP(R%, p) is analogous.

We can write the Littlewood-Paley blocks as convolutions (on G):

AT f(x) = U9 5g f(x) = |G| D, W9 (x—k)f(k), xeg, (26)
keg
where ‘
P9I = }'971@?.

We also introduce the notation
99 = 3 g9
1<J

Due to our convention to only consider dyadic scalings we always have the useful property

W9 = 204G, (201) (27)
for a lattice sequence G° as in Definition @ where
-1, j=-1,
(e =130, —1<j<jg, (28)
©, J=Jjge,

and where ¢_1, ¢g, ¢ € S(R?) are Schwartz functions on R¢ with Fra®y. € Dy (RY). The
functions ¢_1, ¢o, ¢ depend on the lattice G used to construct G = £G but are independent
of €. In a way, this is a discrete substitute for the scaling one finds on R¢ for W/ := ]-'dlgoj =
274( ﬂgdl ©0)(27+) (for j = 0) due to the choice of the dyadic partition of unity in Definition . We
prove the identity , together with a similar result for ¥9 </, in Lemma below. It turns
out that is helpful in translating arguments from the continuous theory into our discrete
framework. Let us once more stress the fact that ¢¢;,_ is defined on all of R?, and therefore
actually makes sense for all z € R%. With the ¢¢jy, from Lemma this “extension” coincides

with SE(AJQ f), where the extension operator £° is defined as in Lemma below.
The following Lemma, a discrete weighted Young inequality, allows us to handle convolutions

such as .

Lemma 2.20. Given G° as in Deﬁm’tion and ® € S, (R?) for w € w we have for any § € (0,1]
with § 2 € and p € [1,00], A > 0 for ®° := §72®(571-) the bound

sup |®°(- + )| Lo (ge erw+2)) S s—d(—1/p) (29)

z€RY
where the implicit constant is independent of € > 0. In particular, H<I>5|\Lp(ga’eM) < §—d1-1/p)
and for p € p(w)
4 [
|19° #ge fllrrige,p) S Ifler(gepy: 9% %ge flliomaey < [flLeige ) s (30)

where we used in the second estimate that

x> (80 xge f)(w) = |G°| ), @& — k) f (k)

kege

can be canonically extended to RY.
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Remark 2. 21 Using § = 277 for j € {—1,...,jge} this covers in particular the functions
P9I = ]-'gs goj via .

Proof. The case p = o follows from the definition of S,(R%) and e**) < A("'%) g6 that we
only have to show the statement for p < co. And indeed we obtain

1175 e erey = D, |G (R)PP ) = 5=t S |G| @ (57 k) [Per e (Eh)

keGe keG
—dp_d 1\ poprw(6—lek) — s—d(p—1) —d_d 1
<6 el Y (G]|D(5 ek)|Pe <6 D1G16% =
keG keG
Lemma [A.2] 1

s 9 Jﬂwdz(é Riar= el ’

where we used that ® € S,,(R?) and in the application of Lemma [A.2] that for |z — y| < 1 the

quotient % is uniformly bounded. Inequality . can be proved in the same way since it

suffices to take the supremum over |z| < e.
The estimates for ®° #g- f then follow by Young’s inequality on G° and a mixed Young
inequality, Lemma @ below, applied to the right hand side of

p(a) |80 xge f(2)| < Y 1G°] p()|®° (@ — k)| - | f (k)]
kege
(*)
< 2, 1971 R0 (w — k)| p(R)|f(R)| = [X®] xge |pf|(x) -
kege
In the step (x) we used that p(z) < e?@F) p(k) for some X > 0 due to (I8). O

From Lemma ( and Remark ' we see in particular that the blocks A?e map the
space LP(G®, p) into itself for any p € [I

Lcmma 2.20]

|AS" Fllioge,p) = 199 %ge fllLo(ge p) 1f e gz p) - (31)
where the involved constant is independent of ¢ and j = —1,...,jg=. This is the discrete
analogue of the continuous version

125 fll e e py S [ f]lo(ra,p) (32)

for j = —1 (which can be proved in essentially the same manner).

As in the continuous case we can state an embedding theorem for discrete Besov spaces.
Since it can be shown exactly as its continuous (and unweighted) cousin ([I, Proposition 2.71]
or [12, Theorem 4.2.3]) we will not give its proof here.

Lemma 2.22. Given G° as in Definition[2.3 for any 1 e R, 1 < p1 < pa <00, 1 <1 < g2 < ©
and weights p1, pa with pa < p1 we have the continuous embedding (with norm of the embedding
operator independent of € € (0,1])

pl q (ge pl) Bg;,qg (ga" 102)

for ag — p% <o) — p%' If ag <y —d(1/p1 — 1/p2) and limy o p2(z)/p1(x) = 0 the embedding

18 compact.
For later purposes we also recall the continuous version of this embedding.

Lemma 2.23 ([12], Theorem 4.2.3). For any a1 € R, 1 < p; < pa < 0,1 < ¢ < ¢ < ®©
and weights p1, p2 with py < p1 we have the continuous embedding (with norm independent of
€(0,1])
Byl (RY, p1) € Bp2 (R, ps)

P1,91 P2,q2

for az < a1 —d(1/p1 — 1/p2). If aa < a1 —d(1/p1 — 1/p2) and limjy o p2(7)/p1(z) = 0 the
embedding is compact.
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The extension operator

Given a Bravais lattice G and a dyadic partition of unity (¢;)j=—1 on R? such that jg, as defined
on page E is strictly greater than 0 we construct a discrete dyadic partition of unity (gpf)
from (¢;)j=—1 as on page

We choose a symmetric function 1 € D, (R?) which we refer to as the smear function and
which satisfies the following properties:

L e (= k) =1,

2. 1 =1 on supp ¢; for j < jg,

717"'7]’9

3. (SUPW N supp (sojg)ext) \Gg#9 =j=jg.

The last property looks slightly technical, but actually only states that the support of 1 is small
enough such that it only touches the support of the periodically extended cpjg with j < jg inside

G. Using dist(égA, Uj <jg SUPP (cpjg-)ext) > 0 it is not hard to construct a function 1 as above:
Indeed choose via Lemma some 1) € D, (RY) that satisfies property 3 and 9| g = 1 and set

¥ =) e V(- — k).

The rescaled 9° := 1)(e-) satisfies the same properties on G¢ (remember that by convention
we construct the sequence (cpjg.s )j=—1,...jge from the same (¢5)j=—1). This allows us to define an
extension operator £° in the spirit of Lemma as

Ef = Fod W7 - (Foe N)ext)s [ €SL(G°),

and as in Lemma [2.6/ we can show that £ f € C¥(R?) n S (RY) and £° f|ge = f.
Using we can give a useful, alternative formulation of £° f

Ef = ﬂ@lwa *Rd .7:_1 (fgsf)ext = _1w8 *ra fdir
— Pl g £ =107 Y Frlue(-—2) f(2), (33)

2€Ge

where as in (26) we read the convolution in the second line as a function on R? using that
fﬁdlwa € S, (R%) is defined on RY. By property 3 of ¢ we also have for j < jge

AjEf =AY f (34)
Finally, let us study the interplay of £ with Besov spaces.
Lemma 2.24. For any a € R, p,q € [1,0] and p € p(w) the family of operators
E°: By y(G°, p) — By y(R% p),
defined above, is uniformly bounded in €.

Proof. We have to estimate A;E° f for j > —1. For j < jg= we can apply and together
with Lemma [2.20] to bound

|A5E Flo(ra ) = le™ (Frav)(e ™) %= A fllio(ra ) S 1A flirge) < 277 F g ,65.0)

For j > jge only j ~ jge contributes due to the compact support of 1°. By spectral support
properties we have

AESf = Aj(E°5 ). AYS)

i~jge
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From we know that A; maps LP(RY, p) into itself and we thus obtain

|A5E Fllogre,) S 15 D A Flieige S 279N Fllsg 0= »

i~jge
where we applied once more and Lemma in the second step. O
Below, we will often be given some functional F(fi,...,f,) on discrete Besov functions

taking values in a discrete Besov space X (or some space constructed from it) that satisfies a
bound of the type

HF(flﬂ"'ﬂfn)”Xgc(fla‘”afn)' (35)

We then say that the estimate has the property (£) (on X) if there is a “continuous version”
F of F' and a continuous version X of X and a sequence of constants o, — 0 such that

IESF(fr, s fn) = F(E f1uo ) le < 0e - c(f1s- -y fn) - &)

In other words we can pull the operator £° inside F' without paying anything in the limit. With
the smear function ¢ introduced above when can now also give the proof of the announced
scaling property of the functions W97,

Lemma 2.25. Let G¢ be as in Deﬁm’tion and let w e w. Let (@?5)j=_17,,_,jg5 c Dw(gAa) be a

partition of unity ofé2 as defined on page and take W97 = fgglw]ge and W9°<J .= ZKJ. W,
The extensions

e i g w9 = ol (¢8) )

ext

@57<j = 55\11g6’<j = Fﬂgdl (we ’ (Z i E)ext>
1<j

are elements of S,,(R). Moreover there are ¢_1,do, ¢, s € Dy(RY), independent of e, such
that for for j = —1,...,jge and j' =0,...,jge with (j): as in

e - (sogg)ext = 6. (277, (36)
v (X)),  =dse). (37)

The functions ¢y and ¢ have support in an annulus A < R?.
In particular we have for j = —1,...,jge and j' =0,...,jge.

ol = 210 g (27, S =20 g (27
where ¢; 1= ]:ﬂgdlavﬁi forie {—1,0,00, 3}.

Proof. Denote by (¢j)j=—1 < D,(R?) the partition of unity on R¢ from which the partitions
(gojg-s)jzfl,m,jgg are constructed. Let us recall the following facts about (¢;);j=>—1

@1 =wo(27)  forj =0, (33)
Y ei=pa@7)  forj >0 (39)

i<j’
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The second property can be seen by rewriting

Z p;=1- 2 po(27) =1- Z po(27 0+ = (1 - Z 901')(2_j,') = 1(277").

i<j’ =5 >0 >0

Recall further that ¢g has support in an annulus around 0.
To prove the claim we only have to show and . For j < jge and 0 < j' < jge we use
that by construction of cp]ge out of (¢;)j=—1 we have inside G*

W =0, D=

i<j' i<y’
so that due to property 2 and 3 of the smear function ¢ and it is enough to take
</32 =¥-1
and for j < jge by the scaling property of ¢; from (38
biiye = #5(2) € {9-1(-/2), o} -

For the construction of ¢4 a bit more work is required. Recall that by definition of our lattice
sequence G° we took a dyadic scaling € = 27 which implies in particular

27Joc = ¢ . oF (40)
for some fixed k € Z. Using once more and relation we can write for x € QAS

P @) =1— ) ¢j(x) =1-9p_1(2779z) = x(ex)
J<lJjge

for some symmetric function y € C(R?). As in let us denote for z € R? by [x] G- € G° the

unique element of G¢ for which z — [] g- € #°. One then easily checks
elz]g. = [ex]g- (41)
Applying and we obtain for z € R? that the periodic extension

(¢2.) @ =% (2lg.) = x(elalg.) = x([zalg)

Q)

A~

is the ¢ scaled version of the smooth, Z-periodic function x([]5) € CJ(G) (to see that the
composition with [-] G does not change the smoothness, note that y equals 1 on a neighborhood

of 0QA) Consequently
(o) (v5.) = (¥x(19) )
so that setting ¢o = (111)(([]3)) (27%.) with k as in finishes the proof. O

3 Discrete diffusion operators

Our aim is to analyze differential equations on Bravais lattice that are in a certain sense semi-
linear and “parabolic”, i.e. there is a leading order linear difference operator, which here we
will always take as the infinitesimal generator of a random walk on our Bravais lattice. In the
following we analyze the regularization properties of the corresponding “heat kernel”.
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3.1 Definitions

Let us construct a symmetric random walk on a Bravais lattice G° with mesh size € which can
reach every point (our construction follows [33]). First we choose a subset of “jump directions”
{g1,..., 91} < G\{0} such that Zg; +...+Zg; = G and a map «: {g1,...,91} — (0,00). We then
take as a rate for the jump from z € G° to z + £g; € G° the value x(g;)/2¢%. In other words the
generator of the random walk is

Ful) =Y "Dty + 0~ uw)). (12)
ee{tyg:}

which converges (for u € C?(R?)) pointwise to Lu = %Zé;l k(gi) gi - V?u g; as € tends to 0. In
the case G = Z¢ and k(e;) = 1/d we obtain the simple random walk with limiting generator
L= iA. We can reformulate by introducing a signed measure

z
1 1 1 1
1= £(g1) <2591 + 25—91> +...+ k() (25gz + 25—gz> — > klg:)do
izl

which allows us to write Lfu = 72 (o, u(z + ey) du(y) and Lu = % (o, y - VZuydp(y). In fact
we will also allow the random walk to have infinite range.

Definition 3.1. We write p € p(w) = p(w,G) for w € w if p is a finite, signed measure on a
Bravais lattice G such that

e (suppuy =G,

* plope =0,

e for any A > 0 we have Sg @) d|p|(z) < oo, where || is the total variation of pu,
o ((A) =pu(—A) for A< G and pu(G) =0,

where {-) denotes the subgroup generated by - in (G,+). We associate a norm on R? to € p(w)
which is given by

1
2 2
olf = 5 | e vldnty).

We also write p(w) 1=, e, ().
Lemma 3.2. The function |||, of Definition[3.1) is indeed a norm.

Proof. The homogeneity is obvious and the triangle inequality follows from Minkowski’s inequal-
ity. If ||, = 0 we have x+ g = 0 for all g € supp p. Since (supp ) = G we also have z - a; = 0
for the linearly independent vectors aq, ..., aq from , which implies x = 0. O

Given p € p(w) as in Definition we can then generalize the formulas we found above.

Definition 3.3. For w e w, u € p(w) as in Definition and G as in Definition we set
_ 2
Liu(:u) =¢ L u(x + ey) du(y)
for ue S(G°) and
1 1
(Lw) () = 5 L y- Viuydu(y) (9) = 5 L y - V2u(p) y du(y)

for u e S (RY) and ¢ € S,(RY). We write further £, 2, for the parabolic operators £ =
8t - Li and g,u = 8t - LM'
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L7, is nothing but the infinitesimal generator of a random walk with sub-exponential moments
(Lemma . By direct computation it can be checked that for G = Z¢ and with the extra
condition {y;y;du(y) = 28;; we have the identities |||, = |-| and L, = Aga. In general L, is
an elliptic operator with constant coefficients,

1 1 1:' 1 Z"
Lyu= 2Ly-V2uydﬂ(y) = 2ZL yiyj du(y) - 0%u =: 3 > jalf - 0Vu,
7 i

I I
ij ij
2H33Hi and the equivalence of norms on R?. In terms of regularity we expect therefore that L,
behaves like the Laplacian when we work on discrete spaces.

where (a!;) is a symmetric matrix. The ellipticity condition follows from the relation x«(a;)x =

Lemma 3.4. We have for a € R, pe [1,0], w € w and p € p(w), p € p(w)
HLZUHc;}ﬁ(gs,p) S HUHCg(QE,p)7

where C(G%, p) = By, (G%, p) is as in Deﬁm’tz’on and where the implicit constant is inde-
pendent of . For 0 € [0,1] we further have

1
(L5~ Lyulog-2-3 gy < < Juleg e p)

where the action of L, on u € S/ (RY) should be read as

u&mm=uG”L¢«mmw@0=uG*Lw«ﬁww@Q=w@w (43)

for v € S,,(R?), where we used the symmetry of p in the second step.

Proof. We start with the first inequality. With g9 = D i<isige: i—jl<1 V9 e §,(G) we
have by spectral support properties A]gsu e *Gge Ajggu. Via we can read ¥9°7 and
thus U9 as a smooth function in S, (RY) defined on all of R%. In this sense we read

€ —G°,j e
A%u=|g°| > T (= 2) A% u(z), (44)
z€|Ge|

as a smooth function on R? in the following. Since p integrates affine functions to zero we can
rewrite

AV LEu(z) = 72 L du(y) [AY u(z + ey) — A u(x) — V(AT u)(x) - ey]

_ L dpu(y) fol ac fol ACs y+ VAT W) (@ + eCiCoy)y-
Using and the Minkowski inequality on the support of p we then obtain
HpA]g-ELZUHLp(ge) S L du(y) Ll d¢ Jol et = ey)|y2 HP( + €C1C2y)|V2(Angu)(- + 5C1C2y)|HLp(gs) ;
where A is as in (18). By definition of p(w) and monotonicity of w € w we have

1 1 1 1
f a4 f aG f duly) [y P < f G f d@f du(y) |2 < o0
0 0 g 0 0 g

so that we are left with the task of estimating

e —G°,j €
HP(- +£0162y) V(AT u) (- + 5C1C2y)\HLp(gE) S V2T (- + 2G160) | 1 (ge ertrecrcany [ AT ullo(ge )
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where we applied and Young’s convolution inequality on G°. Due to and Lemma,
we can estimate the first factor by 272 so that we obtain the total estimate

HAJQ LZUHLP(QS,p) < 2_j(a_2)HUH(Z;;‘(QE,p)

and the first estimate follows. .
To show the second inequality we proceed essentially the same but use instead U/ =

D li—jl<1 Wi, where U/ = fﬂgdlcpj now really denotes the inverse transform of the partition

(¢;)j=—1 on all of R%. We then have A; = T« Aj, so that

1 1 . y
Aj(LE — Ly)u = L dglfo d¢s L dp(y) fRd dzy - (V20 (- + eC1loy — 2) — V2 (- — 2))y Aju(z) .

As above we can then either get 277(¢ HUHCa ge,p)» by bounding each of the two second deriva-

tives separately, or 277(@=3) EHUHCPa(gs’ p)» by exploiting the difference to introduce the third deriva-

tive. We obtain the second estimate by interpolation. O
3.2 Semigroup estimates
In Fourier space Lj, can be represented by a Fourier multiplier [ : QAE - R:

Fge(Lyu) = =1, - Fgeu,

for u € §/,(G%). The multiplier [f, is given by

. B ele2mTry 1 — cos(e2mx + y) B sin? (emz - y)
L(x) = — L = duly) = L = du(y) = 2L — = duly),  (45)

where we used that p is symmetric with 4(G) = 0 and the trigonometric identity 1—cos = 2sin?.
The following lemma shows that [, is well defined as a multiplier (i.e. I, € C2(G9)). It is
moreover the backbone of the semigroup estimates shown below.
Lemma 3.5. Let w € w and p € p(w). The function I, defined in is an element of
8.(G%) = CZ(G?) and
o if w = wy? with o € (0,1) it satisfies ]0’“[;(3:)] <5 eURI=2VO(1 1 |z 2)8lKl (BN Y for any
§>0, keN?,

o for every compact set K € R with K n % = {0}, where Z is the reciprocal lattice of the
unscaled lattice G, we have I5,(x) 2 |x]? for all x e e K.

The implicit constants are independent of €.

Proof. We start by showing |8kl2(x)| <5 eWFI=2VO(1 4 122) 61 (RN if w = WS, which implies
in particular I}, € S, @E ) in that case. The proof that [}, € S, (é? ) for € p(wP®) is again similar
but easier and therefore omitted. We study derivatives with |k| = 0,1 first. We have

2
sin®(emx » y sin?(emx - y)
i) = 2| [ UG ) < || eyt

< L () - 2] < |2,

and fori=1,...,d

ie sin(emz -y
@) < [ e D) < Ja

lema -yl
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For higher derivatives we use that dFe? ™™y = (,2me)lFlyke?m®y which gives (where C' > 0
denotes as usual a changing constant)

|%F<M<A“2d“fwwhmw><skQOkm%ak W}L&wwmw

for any A > 0. Using max=gt%e ™" = A\=%%(a/0)%7e=%7 for a > 0 we end up with

|08 (2)] < F72——C

Ikl (ko < k2
e ORI s e

)\Ikl/a A GO
and our first claim follows by choosing A7 := C /6.

It remains to show that ll‘i/||2 > 1 on e 'K, which is equivalent to l/i/||2 z 1on K. We
start by finding the zeros of Z}L which, by periodicity can be reduced to finding all x € G with
IL(x) = 0. But if I},(x) = 0, then y - € Z for any y € supp u, which yields with {supp ) = G
that we must have a;+x € Z for q; as in . But since z € Q we have © = x1a1 + ...+ 2404 With

€[-1/2,1/2) and a; as in (3). Consequently

xi=x-a;€LZn[-1/2,1/2) = {0},

and hence x = 0. Since l1 is periodic under translations in the reciprocal lattice %, its zero set
is thus precisely #. By assumptlon K n % = {0} and it remains therefore to verify ll( ) = |x)?
in an environment of 0 to finish the proof.

Note that there is a finite subset V' < supp p such that 0 € V and (V') = G, since only finitely
many y € supp u are needed to generate ay,...,aq. We restrict ourselves to V:

Li(x) =2 L sin?(ma + y)du(y) = 2 fv sin® (e« y)du(y)

For x € G\{0} small enough we can now bound §y sin®(rz-y)du(y) 2§, |z y|2du(y). The term
on the right hand side defines (the square of) a norm by the same arguments as in Lemma
and since it must be equivalent to |-|* the proof is complete. ]

Using that S, (gf ) =CF (éE ) is stable under composition with functions in C*(R%) we see
that e~ e C% (gs ) for t = 0 and can thus define the Fourier multiplier

etlin f i= Fg(e7h Fge f)

for t > 0 and f € S/,(G), which gives the (weak) solution to the problem Zg = 0, g(0) = f.
The regularizing effect of the semigroup is described in the following proposition.

Proposition 3.6. We have for a € R, >0, p e [1, 0], w € w, p € p(w) and p € p(w)
HetLifHC3+ﬁ Ge, ) ~ <t B/ Hf”ca(gs’p (46)
ek flles ge py S 21 Nioige ) o
and for a € (0,2)
(e = 1) flo(ge ) < 21 Flegge ) M&

uniformly on compact intervals t € [0,T]. The involved constants are independent of €.
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Proof. We show the claim for w = wg™® = |2]|7, 0 € (0,1) , the arguments for w = wP°! are
similar but easier. Using spectral support properties we can rewrite for j = —1,..., jge
€ t[LE —1 " 5 5
A el f = Fo. Do e Fge A f | = H(t, ) wge AT F (49)
i li—jl<1

where we set for z € G¢

Hj(t, 2) = ﬁ dy ™ > o (y)e W,

ge it Ji—jl<1

Using the smear function ¢¢ = ¢(e-) from Subsectionwe can rewrite this as an expression
that is well-defined for all x € R¢

Alta) = |

e () D0 () () - e

i li—jl<1

where (-) . is given as in and where we extended [j, (periodically) to all of R? by relation
. Consequently, we can apply Lemma to give an expression for the scaled kernel

Kyt ) = 277005 (t,27 ) = J dy 2™V (y) - e @)
Rd

where we wrote ;) = > ;. lijl<1 QVS@E (2-(=9).) with giv)@a as in Lemma Suppose we already
know that for any A > 0 and x € G° the estimate

| Ay ()| S e N 279 B2 97 iB PR P () (50)
holds. We then obtain from with @27 (z) := 209®(27z) = 209~ 2#1” the bound

|AG e fl age py < 2P0 P22 wge |AT i fl (g

and an application of Lemma shows and (for we also need ) Note that
we cheated a little bit as Lemma [2.20| actually requires ® € S,,(R%) which is not true, inspecting

however the proof of Lemma [2.20] we see that all we used was a suitable decay behavior which
is still given.

We will now show (50). Using Lemma below we can reduce this task to the simpler
problem of proving the polynomial bound for ¢ =1,...,d and ne N

2|2 Ay (t, )| S5 OO (Y0278 5 >0, (51)

with a constant C > 0 that does not depend on §. To show we assume that 27e < 1.
Otherwise we are dealing with the scale 2/ ~ ! and the arguments below can be easily
modified. Integration by parts gives

i\ H (1, )| = €

2TITY AN-€; o —tE(27)
fRddye 0 (%)6 g )(y)’

. _ j js
orei (‘p(j)e t22113 > (y)

)

< C”J dy
R4

where we used that lZ(Qj y) = 2% lfjs(y) by (45). Now we have the following estimates for k € N

\5k'ei<ﬁ(j)(y)| <s 5k<k!)1/07 ‘ék-eil/gfﬂ' (y)‘ <s 6k: (k‘!)l/a, ‘(22]'75),8/2519 (€t22j.> (lija(y»‘ <s kk/o(sk7
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where we used that ¢(;) € D,,(R%) (with bounds that can be chosen independently of j by
definition) and we applied Lemma with the assumption 2/¢ < 1 (which we need because we
only defined ZZ' for ¢’ < 1). Together with Leibniz’s and Faa-di Bruno’s formula and a lengthy
but elementary calculation follows, which finishes the proof of and .

The last estimate can be obtained as in the proof of Lemma [2I, Lemma 6.6] by using
Lemma [A-4] below. O

Lemma 3.7. Let g: R - R, 0 > 0 and B > 0. Suppose for any § > 0 there is a Cs5 > 0 such
that for all ze R*, 1 >0 andi=1,...,d

|zt9(2)| <5 6'C5(1)'° B
It then holds for any A > 0 and z € R?
l9(2)] < Be 7.

Proof. This follows ideas from [38, Proposition A.2|. Without loss of generality we can assume
|z| > 1 (otherwise we get the required estimate by taking I = 0). Recall that we have |z|! <
C! Zle |;|', where C' > 0 denotes a constant that changes from line to line and is independent
of [. Consequently, Stirling’s formula gives

© k

A Jk -
2l P
k=0 k=0

D\ kk sko k vk sko 0
< BZ &Uw][kﬂ/o < BZ ﬁkk - B Z Aok gk <\ B,

d
kck 0 )\k k

9l < Y e 3 1 lg()

k=0 1=1

M 7g(2)] =

k k
k=0 k k=0 k k=0
where we used [ko] < ko] so that [ko]lkol/7 < ([a]k;)kg;rl < CFKkF and where we chose § <
(C )\)_% in the last step. O

3.3 Schauder estimates

We will follow here closely [2I] and introduce time-weighted parabolic spaces XPT’F that interplay
nicely with the semigroup e'“n

Definition 3.8. Giveny = 0, T > 0 and an increasing family of normed spaces X = (X (8))se[0,1]
we define the space

MJX = {f: [0, 7] — X(T) [ |flpox = sup |0F@)]xq <oo},
te[0,T]

and for a > 0
C7X = {f e C([0,T], X(T) [ Iflcgx < o},

where

[ fllcax == sup [ f(t)|xq + [£(s) = F(®)lxe

te[0,T7] 0<s<t<T |s — t|™

For a lattice G, parameters v = 0,7 > 0,a = 0, p € [1,00] and a pointwise decreasing map
p: [0,T] 3t p(t) € p(w) we set

L35G = {11 10,11 = SLO) Il 0. < 2} -

where
I flergg.p = It = fO] o3 oG T [ Flmzcag.p) -
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Remark 3.9. As in Remark the definition of the continuous version ZJ’;(Rd,p) s anal-
0gous.

Standard arguments show that if X is a sequence of increasing Banach spaces with decreasing
norms, all the spaces in the previous definition are in fact complete in their (semi-)norms.
The Schauder estimates for the operator

t
I5f(t) = fo =915 £ (5) ds (52)

and the semigroup (etLi) in the time-weighted setup are summarized in the following lemma,
for which we introduce the weights

pi(x) = (1 +|z|)™" (53)
efpi(z) = e~ (HOUHED (54)

with k > 0 and [, ¢ € R. The parameter ¢ should be thought of as time. The notation .,2” 7(G,ef)
means therefore that we take the time-dependent weight (e7,,)[o,r], While e] p™ stands for the
time-dependent weight (ef,,p")se[0,7]-

Lemma 3.10. Let G¢ be as in Definition a € (0,2),y € [0,1),p e [1,:0], o € (0,1) and
T >0. If BeR is such that (a + 3)/2 € [0,1), then we have uniformly in €

s — e “f0|\g<a+ﬂ>/2a G=.ery = ol s (55)
and if kK = 0 is such that v+ k/o € [0,1), a + 2k/0 € (0,2) also
&€
U151 00ty % 1y vomi e gy - (56)

Proof. The proof is along the lines of Lemma 6.6 in [21] with the use of the simple estimate

el
K0 +t
pel+8S‘ t=s,

t — s|n/o’

which is similar to an inequality from the proof of Proposition 4.2 in [28] and the reason for
the appearance of the term 2x/0 in (the factor 2 comes from parabolic scaling). We need
v+ k/o € [0,1) so that the singularity |t — s|~Y~*/% is integrable on [0, t]. O

For the comparison of the parabolic spaces X'ng the following lemma will be convenient.

Lemma 3.11. Let G° be as in Definition [2.9 For a € (0,2), v € (0,1), e € [0, A 27), p €
[1,00], T > 0 and a pointwise decreasing Ry 3 s — p(s) € p(w) we have

”f”(g;q—f/?’a—a(gs’p) S Hf”.,s@;?(gam )
and for v € [0,1) and € € (0, a)
2
o<y S om0l O leg—gey + T zom -

All involved constants are independent of €.

Proof. The first estimate is proved as in |21, Lemma 6.8]. For v = 0 the proof of the second
inequality works as in Lemma 2.11 of [2I]. The general case follows from the fact that f € .,?p%ﬁ

if and only if t — t7f € 2. O
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4 Paracontrolled analysis on Bravais lattices

4.1 Discrete Paracontrolled Calculus
Given two distributions fi, fo € §’'(R?), Bony [4] defines their paraproduct as
frefai= ), D AL Apfa= D), SpahiApfa,
1<j2 —1<j1<ja—1 1<j2

which turns out to always be a well-defined expression. However, to make sense of the product
f1fo it is not sufficient to consider f; € fo and f1 © fo := fo @ f1, we also have to take into
account the resonant term [I§]

fl@f? = Z Ajlfl'Aj2f2v

—1<41, jo: |j1—j2|<1

which can in general only be defined under compatible regularity conditions such as f; € CS (R%),
foe Cgo(Rd) with @+ 3 > 0 (see e.g. [I] or [I8, Lemma 2.1]). If these conditions are satisfied we
decompose fifo = f1© fo+ f1 © fo + f1 © fo. Bony’s construction can easily be adapted to a
discrete and weighted setup, where of course we have no problem in making sense of pointwise
products but we are interested in uniform estimates.

Definition 4.1. Let G° be a Bravais lattice, w € w and f1, fo € S, (RY). We define the discrete
paraproduct

feffai= ), Yo AN A A= > ST R A, (57)

1<jesyjg —1sji<ya—1 1<5<dg

where the discrete Littlewood-Paley blocks A]g are constructed as in Section @ We also write

f16Y fo:= fo@Y fi. The discrete resonant term is given by

f109 foi= 3 A9 f1- 29 1. (58)

1<g1,42<4g, l1—ja|<1
If there is no risk for confusion we may drop the index G on ©, O, and ©.

In contrast to the continuous theory ©Y is well defined without any further restrictions since
it only involves a finite sum. All the estimates that are known from the continuous theory carry
over.

Lemma 4.2. Given G° as in Definition [2.4, p1,p2 € p(w) and p € [1,0] we have the bounds:

(i.) For any as € R
Ifre fQHC;jZ(ge,pl.pz) S HleLOO(gE,pl) HfZHcg?(gs,pQ) A ||f1HLP(gE,p1) Hf2Hc§o2(gs,p2) )
(1.) for any a; <0, ag € R
Ifre f2‘|cgl+a2(gsﬂp1.p2) S Hf1||c§1(ge,p1) Hf2HC§32(gg7p2) A Hf1||c§gl (G=,p1) Hf2Hc;}2(gs,p2) J
(#ii.) for any aq, s € R with ag + g > 0
1510 Folgzrres ey py S 11l ge oy Il e oy A 1fillcg ge oy Mfelcsage oy

where all involved constants only depend on G but not on . All estimates have the property
if the regularity on the left hand side is lowered by an arbitrary k > 0.
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Proof. Similarly as in the continuous case Sgs1 fi- Ags f2 is spectrally supported on a set of the

form 274 N gE where A is an annulus around 0. Slmllarly, we have for i, j with ¢ ~ j that the
function Ag fi- Ag fo is spectrally supported in a set of the form 278 n Qs where B is a ball
around 0. We glve a proof of these two facts in the appendix (Lemma . Using these two
observations the proof of the estimates in (i.)-(7.) follows along the lines of [I8, Lemma 2.1])
(which in turn is taken from [I, Theorem 2.82, Theorem 2.85]).

We are left with the task of proving the property . We show in Lemma below that
there is an N € N (independent of € and j) such that for —1 <i < j < jge — N

E(AT f1- AT fo) = A€ f1- AjE°fa. (59)
Consequently we can write

E(fred fo) = 2 &E° Sgslfl Ag€f2 = Z Sj—lgafl'Angf2+Z b Sg51f1 A fa) .

1<i<jge 1<j<jge —N joe—N<j<jge

where we used and Sf_sl = Z—lsiq’—l A?e, Sj—1 = Z—1<i<j—1 A;. On the other hand we

can write

EfLOEfo=) 8 1E - AEf =) SiaEf A fat D SiaEfi- AEfa,

1<j 1<j<jge—N j~ige

where we used in the second step that £° fa = Fra((e-) (Fge f2)ext) is spectrally supported in a
ball of size e ! a~ 279 to drop all j with j X jg-. In total we obtain

E(fre f)—Eheef= D E(ST AT ) = Y SiiEfi- AiEfs.
J~Jjge J~Jjge
Note that the two sums on the right hand side are spectrally supported in an annulus of size
2J9¢. Using Lemma the fact A;: LP(R?, p) — LP(RY, p) (by (32)) and that £°: LP(G%, p) —
LP(RY, p) (due to and Lemma [2.20), with uniform bounds, we can thus estimate

14i (£5(f1 0" f2) — E°F1 © E°fa) | poqray) < we( DIST - AY fallwge )
J~ige
) I-1E 1 A ol oqan )
J~Jge
Assume without loss of generality that the right hand side of estimate (i.) is bounded by

1. We then have using Sjgjl: L1(Ge,p) — Li(G®%, p) (by Lemma and Lemma i and
S;_1: LY(RY, p) — LI(RY, p) (by and Young’s inequality) for g € [1, 00], both with uniform
bounds,

|4 (£5(f1 €% f2) = £°[1 @ E°fo) lpp(a ) S Limjge D, 279°% S Linj 2779%02 g 27102 er,

Jj~jge

In the last step we used that 2779° ~ ¢ by definition of jg-. This shows the property for
estimate (i.). If the right hand side of estimate (7i.) is uniformly bounded by 1 we obtain the
bound

|2 (E°(f10 fo) — EFLOEf) o) S Linjge D, D, 277e127de

J~ige —1<y'<j—1

<1,

i 92— jge (a1+a2) <9 i(oq—i-ag—n)gn
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and the property for (ii.) follows. Considering case (ii.) assume once more that the right
hand side is bounded by 1. We get, by once more applying ,

([T ) —ENOEfa= Y, E(ATfi-AF fo) = Y A€ fi- ApEfo
3,3’ ~jge: li—3'I<1 3 d'Zdge: li—5'I<1
-y (SE(AJg.Efl LAY o) — AES - Aj,gfo) :
J,J'~jge:li—j'I<1
where we used in the second line that the spectral support of £° f; and of £° f5 is contained in a

ball of size e~! ~ 2/¢° to reduce the sum in the second term to j, j' ~ jge. Using then that the
terms on the right hand side are spectrally supported in a ball of size 2/ we get for i > —1

AE 07 ) = EhOER) = 3 i (€A fi- A ) = A€ - Aplfa)

Jy 3’ ~jge:li—3'1<1

so that we obtain, using once more £%: LP(G%, p) — LP(R?, p) and A;: LP(R?, p) — LP(R?, p),

|A(E(FL 0% fo) = EFL O E o) parayy S ), Ligg -2 0t
JJ ~jge:li—j'I<1

< 1i$jgs . 9~ Jge (a1+a2711)€n < 271(a1+a27.‘c)€n 7

where we chose k > 0 in the second line small enough so that a; + as — k > 0. O]

Lemma 4.3. Let G° be as in Definition[2.9, w € w and construct Littlewood-Paley blocks as in
Subsection . Let o, ¢ and EF be as in Subsection . There is a N = N(G,v) € N such
that for all e and —1 < i < j < jge — N and f1, fo € S, (G°)

ES(AY fi- AT fo) = NS fr - AjETfs.

Proof. Let us fix r. := dist(@é\e, 0) so that B(0,7:) < G*. From Lemmaand the construction
of our discrete partition of unity on page [8| we know that the spectral support of Aiga fi- Ajga fo

and the support of goigg - Fge f1 and go?a - Fge f2 are contained in a set of the form 278 n Q\a, where
B is a ball around 0. Choose N € N such that for j with —1 < j < jge — N (if any) we have
29B < 29==NB < B(0,7./4) (note that N is independent of ¢ since r. = ¢ - 2/° by the dyadic
scaling of our lattice). In particular we have 2/B < C:S, 2B A G5 = 2/B. Choose N further so
big that we have for the smear function ¢

VFlaip = (e)lp =1,  suppy n (2B +%°\{0}) =

for —1 < j < jge — N (independently of ). Choose a x € D, (RY) such that x|B(,r./4y = 1 and
x = 0 outside B(0,7./2). We can then reshape

Fral(A f1- AV fo) = 4F - (99 Fge fr 45 05 Fge fa)ext = X - (95 Fage fr %5. 05 Fae f2)ext

where we used the support properties above to replace 1 by x. Now, note that (using formal
notation to clarify the argument)

(@) - ($9Fge e &5 FarPle() = x(@) - [ (08 FoeP)(2) - (6 Foe o)z = )iz . (60)

Since only z € B(0,7./2) and z € B(0,7/4) contribute we have x — 2 € B(0, 3/4r) < G° so that
[t —z2] =z —2zin . Using that supp<p 9° U supp cpg c G we can replace cpl and <p] in
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by @i, ¢; (the dyadic partition of unity on R? from which %gf is constructed as on page ,
replace Fg- f1, Fge fo by their periodic extension and extend the integral to R? so that in total

Frab (A f1 - A9 ) (@) = x(a) - JRdm(fgefnext)(z) (95 (Fge fo)ext) (@ — 2)d2

= fRd(%wa(;rge F)ext)(2) - (99° (Fge fo)ext) (& — 2) dz
= Fra(Ai"f1 4;€° f2) (),

where we used in the second line that the support of the convolution is once more contained
in B(0,7:/4) to drop x and that ¢|9j5 = 1 to introduce smear functions in the integral. The
claim follows. O

The main observation of [18] is that if the regularity condition o + ay > 0 is not satisfied,
then it may still be possible to make sense of f1® fo as long as f1 can be written as a paraproduct
plus a smoother remainder. The main lemma which makes this possible is an estimate for a
certain “commutator”. The discrete version of the commutator is defined as

CY(f1, fo, f3) = (f1 €Y f2) @Y f3 — fi(f2 @Y f3).

If there is no risk for confusion we may drop the index G on C.

Lemma 4.4. ([19, Lemma 14]) Given pi, p2, p3 € p(w), p € [1,00] and a1, a2, a3 € R with
a1+ as +ag >0 and as + ag # 0 we have

Hcg(flvf2,f3)‘|cg2+"3(gs7p1p2p3) S [filleer ge o) 1F2llez2 (ge ooy 1 3llc23 (G ) -

Further, property holds for C' if the reqularity on the left hand side is reduced by an arbitrary
Kk > 0.

Proof. The proof of the estimates works line-by-line as in [19, Lemma 14| and the —property

follows as in Lemma [4.2] via a modification of Lemma [4.3] to three factors. O

4.2 The Modified Paraproduct

It will be useful to define a lattice version of the modified paraproduct < that was introduced in
[18] and also used in [211 [10].

Definition 4.5. Fiz a function ¢ € CF((0,00);R.) such that g p(s)ds = 1 and define

Qif(t) := Jt 2%, (2% (t — 5)) f(s v 0)ds,  i>—1.
We then set

fi<9fo = 2 Qj2Agglf1'AJg'zf2

—1<j1,J2<Jg: j1<j2—1

for f1, fa: Ry — S/(G) where this is well defined. We may drop the index G if there is no risk
for confusion.

Convention 4.6. As in [2]] we silently identify f1 in fr<fo with t — f(t)l=0 if f1 €
MICH(G, p) with ~ > 0.

Once more the translation to the continuous case fi, fo: Ry — S/ (R9) is analogous. The
modified paraproduct allows for similar estimates as in Lemma
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Lemma 4.7. Let 5 e R, pe [1,0],y € [0,1),¢t > 0, < 0 and let p1,p2: Ry — p(w) with py
pointwise decreasing. Then

t/y|‘f<g(t)HCngB(ge,pl(t)pg(t)) < Hf”/vtgc;v(ge,pl)||9(t)||cgc(gs,p2(t)) A ||f||M§ch(g€,p1)||9(t)||cg(gs7p2(t))

and
thf«g(t)Hcg(gs,pl(t)pg(t)) < “f“M;’LP(gf,pl)”g(t)”CEC(gs,p) A HfHM?LOO(gf,pl)”g(t) ”Cg(gs,pg(t)) .

Both estimates have the property if the regularity on the left hand side is decreased by an
arbitrary £ > 0.

Proof. The proof is the same as for |21, Lemma 6.4]. Property is shown as in Lemmafd.2l O

We further have an estimate in terms of the parabolic spaces .,Z; (G, p) that were introduced
in Definition [3.8

Lemma 4.8. We have for a € (0,2), p € [1,0], v € [0,1) and p1,p2: Ry — p(w), pointwise
decreasing in s, the estimate

1£<9l 76 o) = 18]t ey (Ul rcn @ o) + 1258 cpcs 2o )

for any 6 > 0 and any diffusion operator £ as in Definition . This estimate has the property
if the regularity o on the left hand side is lowered by an arbitrary x > 0.

Proof. The proof is as in [21, Lemma 6.7] and uses Lemma below. The proof of the prop-
erty is as in Lemma . O

The main advantage of the modified paraproduct < on R¢ is its commutation property with
the heat kernel 0, — A (or £, = 0 — L,) which is essential for the Schauder estimates for
paracontrolled distributions, compare also Subsection below. In the following we state the
corresponding results for Bravais lattices.

Lemma 4.9. For a € (0,2), B € R, p e [1,0], v € [0,1) and p1,p2: Ry — p(w), with p
pointwise decreasing, we have fort > 0

t7‘|(f<g - [ g)(t)"Cg+ﬂ(gs7p1(t)p2(t)) < Hf“f;f(gs,m)Hg(t)Hcgo(gs’pz(t))

and

t7] (gi(f<g) - f«fig)(t) ’|Cg+5_2(gf,p1(t)p2(t)) < HfH,sf);f(gapl)HQ(t)Hcgo(ggpQ(t)) .

where Z; = 0y — L, 1s a discrete diffusion operator as in Definition . These estimates have
the property if the regularity on the left hand side is lowered by an arbitrary k > 0.

Proof. Again we can almost follow along the lines of the proof in |21, Lemma 6.5| with the only
difference that in the derivation of the second estimate the application of the “product rule” of
<), does not yield a term —2V f<Vg but a more complex object, namely

du(y)
JRd 7 Djf<Djg. (61)

where Dj f(t,z) = f(t,z + ey) — f(t,x) and similarly for g. The bound for follows from
Lemma [£.7] once we show

D50l gepny S lellcyige.pm 181 - € (62)
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for any v € R. Note that due to Lemma [2.25] we can write
A;Dp = (B9 + 2y) = B9 ) xge g,

where W=7 = £599°7 = 294¢, s (27.) with ¢y, € S,(RY). With

1
B (@ + 2y) — B (z) = 2 f 2955, (2 (x + Cey)) dC - ye

we get by applying Lemma The proof of the property is as in Lemma and it
uses Lemma [3.4] O

5 Weak universality of PAM on R?

With the theory from the previous sections at hand we can analyze stochastic models on un-
bounded lattices using paracontrolled techniques. As an example, we prove the weak universal-
ity result for the linear parabolic Anderson model that we discussed in the introduction. For
F e C?(R;R) with F(0) = 0 and bounded second derivative we consider the equation

Ly =F) -, 0%(0) = 6] "= (63)
on Ry x G, where G < R? is a two-dimensional Bravais lattice, .ful = 0 — Lb is a discrete
diffusion operator on the lattice G as described in Definition induced by p € p(w) with
w = wy? for o € (0,1). The upper index “1” indicates that we did not scale the lattice G yet.
The family (7°(2))seg € S,,(G) consists of independent (not necessarily identically distributed)
random variables satisfying for z € G
11,

= = —c°
gl 9]
where ¢, > 0 is a constant of order O(|loge|) which we will fix in equation below. We

further assume that for every € and z € G the variable 1°(z) has moments of order p¢ > 14 such
that

E[(2)] = —F'(0)cfe?,  Var(i°(2))

sup E[Jnf () — E[ ()] €] < e¥s.

zeGe

The lower bound 14 for p¢ might seem quite arbitrary at the moment, we will explain this choice
in Remark below. Note that 7° is of order O(e) while its expectation is of order O(g?|logel),
so we are considering a small shift away from the “critical” expectation 0.

We are interested in the behavior of for large scales in time and space. Setting u®(t,z) :=
e (et e z) and & (z) := e 2(1° (e~ 'z) + F'(0)c5e?) modifies the problem to

Liu® = FE(u) (& — F'(0)cg),  w(0) =1G°| " 1.o, (64)

where u®: Ry x G5 — R is defined on refining lattices G¢ in d = 2 as in Definition [2.2] and where
F?:=¢72F(¢%). The potential (£(x))zege is scaled so that it satisfies for z € G°

e E[&(=)] =0,
o E[|€()] = |05 = [g] L2,

o sup,.g- E[|¢%(2)[P¢] < e7P¢ for some pe > 14.
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We consider £° as a discrete approximation to white noise in dimension 2. In particular, we
expect £5€° to converge in distribution to white noise on R?, and we will see in Lemma
below that this is indeed the case. In Theorem [5.13 we show that £5u® converges in distribution
to the solution w of the linear parabolic Anderson model on R?,

Lo = F O — F/(0)w),  u0) =4, (65)

where £ is white noise on R?, § is the Dirac delta distribution, “—00” denotes a renormalization
and .Z), is the limiting operator from Definition The existence and uniqueness of a solution
to were first established in [28] (for more regular initial conditions) by using a “partial Cole-
Hopf transformation” which turns the equation into a well-posed PDE. Using the continuous
versions of the objects defined in the Sections above we can modify the arguments of [18] to give
an alternative proof of their result, see Corollary below. The limit of only sees F’(0)
and forgets the structure of the non-linearity F', so in that sense the linear parabolic Anderson
model arises as a universal scaling limit.

Let us illustrate this result with a (far too simple) model: Suppose F' is of the form F(v) =
v(1 —v) and let us first consider the following ordinary differential equation on [0, T']:

o =mn-F(v), v(0) € (0,1),

for some n € R. If n > 0, then v describes the evolution of the concentration of a growing
population in a pleasant environment, which however shows some saturation effects represented
by the factor (1 — v) in the definition of F. For n < 0 the individuals live in unfavorable
conditions, say in competition with a rival species. From this perspective equation describes
the dynamics of a population that migrates between diverse habitats. The meaning of our
universality result is that if we tune down the random potential n° and counterbalance the
growth of the population with some renormalization (think of a death rate), then from far away
we can still observe its growth (or extinction) without feeling any saturation effects.

The analysis of and the study of its convergence are based on the lattice version of
paracontrolled distributions that we developed in the previous sections and it will be given in
Subsection below. In that analysis it will be important to understand the limit of £5¢° and a
certain bilinear functional built from it, and we will also need uniform bounds in suitable Besov
spaces for these objects. In the following subsection we discuss this convergence.

5.1 Discrete Wick calculus and convergence of the enhanced noise

We develop here a general machinery for the use of discrete Wick contractions in the renor-
malization of discrete, singular SPDEs with i.i.d. noise which is completely analogous to the
continuous Gaussian setting. Moreover, we build on the techniques of [6] to provide a crite-
rion that identifies the scaling limits of discrete Wick products as multiple Wiener-It6 integrals.
Our results are summarized in Lemma [5.1] and Lemma [5.4] below and although the use of these
results is illustrated only on the discrete parabolic Anderson model, the approach extends in
principle to any discrete formulation of popular singular SPDEs such as the KPZ equation or
the <I>§ models. In order to underline the general applicability of these methods we work in this
subsection in a general dimension d.

Take a sequence of scaled Bravais lattices G° in dimension d as in Definition @ As a discrete
approximation to white noise we take independent (but not necessarily identically distributed)
random variables (£°(z)) that satisfy

o E[¢(a)] =0,
. E[j&(@)2] = 167" = |67,

z€Ge

o sup,cg- E[|£5(2)P¢] < £=4/2P¢ for some pe = 2.
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Note that the family (£°(2)).ege we defined in the introduction of this Section fits into this
framework (with d = 2 and pe > 14).

Let us fix a symmetric x € D, (R?), independent of e, which is 0 on i .G and 1 outside of
% . é and define

X/i = %(Dgs)ga = ]:g_sl (lf 'fgega> .
I Iz
Let us point out that the x used in the construction of X does not depend on € and only serves
to erase the “zero-modes” of £ to avoid integrability issues. Note that Z7X} = —L] X, =
X(Dge)&E = ]-"ng (x - Fge&°) so that X is a time independent solution to the heat equation on
G¢ driven by x(Dge)&°. Our first task will be to measure the regularity of the sequences (£°),
(X},) in terms of the discrete Besov spaces introduced in Subsection For that purpose we need
to estimate moments of sufficiently high order. For discrete multiple stochastic integrals with
respect to the variables (§°(2))sege, that is for sums >, cc fz1,...,20) €5(21) .. €5(2n)
with f(z1,...,2,) = 0 whenever z; = z; for some i # j it was shown in [I0, Proposition 4.3]
that all moments can be bounded in terms of the ¢? norm of f and the corresponding moments
of the (£°(2)).ege. However, typically we will have to bound such expressions for more general
f (which do not vanish on the diagonals) and in that case we first have to arrange our random
variable into a finite sum of discrete multiple stochastic integrals, so that then we can apply [10,
Proposition 4.3| for each of them. This arrangement can be done in several ways, here we
follow [30] and regroup in terms of Wick polynomials.
Given random variables (Y (j));jes over some index set J and I = (ji,...,Jjn) € J" we set

Y =Y (j1)...Y(n) = [ Y i)
k=1

as well as Y? = 1. According to Definition 3.1 and Proposition 3.4 of [34], the Wick product
Yl can be defined recursively by Y°? := 1 and

volimyf— > E[YF].velE, (66)
o#+Ecl

For I = (j1,...,jn) € J™ we also write
Y(j)or oY (jn) =Y

By induction one easily sees that this product is commutative. In the case j; = ... = j, we may
write instead

Y (51"

Lemma 5.1 (see also Proposition 4.3 in [10]). Let G° be as in Deﬁnition and let (£5(z)) be

z€Ge
a discrete approximation to white noise as above, n = 1 and assume pg = 2n. For f € L2((G5)™)

define the discrete multiple stochastic integral w.r.t (58 (z)) by

jnf:: Z |g€|nf(zla--~7zn)£6(z1)0'-'0£€(zn)'

Z1,.00,2nEGE

It then holds for 2 < p < p¢/n

|In oy S 1F1z2¢(goym) -
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Proof. In the following we identify G with an enumeration by N so that we can write

fnf = Z r! Z |g8|nfa(zla"'7z7“) .53(21)001 Xooww X é‘a( )Qar

1<r<n,acA? 21<...<Zp

where A” := {a € N"| Y, a; = n}, f, denotes the symmetrized version of

ai X ar X
— —
Ja(Z1y ooy zr) = f(Z1, e o 21y 2y e ey 2p) - 1z vinj s
and where we used the independence of £°(z1),...,£%(2,) to decompose the Wick product (we

did not show this property, but it is not hard to derive it from the definition of ¢ we gave above).
The independence and the zero mean of the Wick products allow us to see this as a sum of nested
martingale transforms so that an iterated application of the Burkholder-Davis-Gundy inequality
and Minkowski’s inequality as in [10, Proposition 4.3] gives the desired estimate

Z IGZI™ - falz1, .y 2r) - €5(21)°™ X ... x €5(2,)°%

21<...<Zp

| It lioey s D)

1<r<n, acAn

> 20 G falz ez P T TIE ) ey

1<r<n, aeAn z1<...<zp j=1

S I a2 < 1 ey

1<r<n, a€AR z1,...,2r

Lp(P)

A

A

where we used the bound [£°(2,.)°% ||? o) S < |G%|~% which follows from (66]) and our assumption
on &°. O

As a direct application we can bound the moments of & and X ;. in Besov spaces. We also
need to control the resonant term X, ® £%, for which we introduce the renormalization constant

e [ x@)
& = LA REl (67)

which is finite for all € > 0 because @\5 is compact and x is supported away from 0. We define a
renormalized resonant product by

X, 08 =X, 08 —¢,

Remark 5.2. Since [}, ~ |-|? (Lemma together with the easy estimate lf, < |-|2) we have

¢, ~ —loge in dimension 2.
Using Lemma we can derive the following bounds.

Lemma 5.3. Let £°, X° and X}, £ be defined on G° as above with pe = 4 (where p& is as on
page and let d < 4. For pe p(w), ( <2—d/2—d/pe and k > d/ps we have

/2
B[ 1€°105 2 ge oy | + B [ 1XG 15 gy | + B [IXG ¢ €152 e oy | S 1 (63)
The implicit constant is independent of €.

Proof. Let us bound the regularity of X7. Recall that by Lemma we have the continuous

embedding (with norm uniformly bounded in ¢) Bg:pépé (Ge,p") < CS(G%,p"). To show it
is therefore sufficient to bound for f < 2 — d/2

) . 1
xe|Pe — E JpeB E e A" XE(2)|Pe

1SR s (1+ [2])rPe
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By assumption we have rpg > d and can bound »; g. [G%|(1 + |2])7"P¢ < 1 uniformly in e (for
example by Lemma E It thus suffices to derive a bound for E[|Ang ©(x)|P<], uniformly in €
and x. Note that by (7] AjgngL( ) = Doege 1G°| HF (2 —Az)fs( z) with 2 = fg}l(gofgx/lf) S0
that Lemma Parseval’s identity @ and [¢ > H2 on G (from Lemma imply

E[|A?€Xﬁ($)|p§] < H%/f(tf _ )HL2 @) < ijg(d/2f2)7
which proves the bound for Xj. The bound for £° follows from the same arguments or with
Lemma 3.4l

Now let us turn to X,  £*. A short computation shows that
E[(X; 0 &) (@)] =E[(X; - &) (@) =¢,,  xed,

and, by a similar argument as above, it suffices to bound X e £ in B’ (RZ, p?%) for

Pe/2,p¢/2
B <2 —d. We are therefore left with the task of bounding the p¢/2-th moment of

AT | D) AT XEAY ¢ —E[AY XA ¢ | (a)

li—gl<1
= DGR D IR (@ — )T (y — )T (y — 22) (€5(21)€° (22) — B[€°(21)€° (22)])
a2y fimjl<t

NG| Y NG VI R @ — ) A (x — 2) W (3 — z) | €5 (21) 0 6(22),

21,22 li—jl<1 ¥y

which with Lemma and Parseval’s identity @ can be estimated by

pe/27) H/pe
£ Z G°|? Z G| W9 K (2 — y) A (2 — 21) W9 (2 — 22) | € (21) 0 € (22)
21,22 li—j|<1
<| 2 Z|g€|wgsu’%x—y)%ff(:cle)wgfﬁj(wzﬁ
li—jl<1 ¥ 2, .,((G5)?)
= | > DGO HF (@ — ) Figey (A (x — ) @ U9 (= 1)) (€1, £3)
li—j|l<1 ¥ LZ,ZQ((QAE)Z)
= ezl T N FoeWIR (— (0 + £2)) Fge i (—1) Fge 097 (—Ly)
li—jl<1 L3, 4,((G5)?)
@I (£1)x(¢ .
-1 Y Aty (21)( g (0 ,
li—j]<1 I 2, Zz((ga) )

where in the last step we used that all considered functions are even. Since cpgs ({1 +43) =0
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unless |£,,| = 2% for m = 1 or m = 2 and since |9, lr2(ge) < 242 we get

. 950 x(l1) -
Z of (0 + 52)%;8221)3(1)%9 (£2)
li—j|<1 H Lﬁlﬁfz((ée)z)

< Z 92 @ge (6 + 52)90?6 (42) . G
li—j|=1,j2k #y,0,((G%)%)
< Z 272i2kd/22jd/2 < 2k(d72)7

li—jl=1,5%k

using d/2 — 2 < 0 in the last step. O

By the compact embedding result in Lemma [2.:23] together with Prohorov’s theorem we see
that the sequences (£°€%), (£°X ), and (£°(X [ #&7)) have convergent subsequences in distribution
— note that while the Holder space C¢(R?, p*) is not separable, all the processes above are
supported on the closure of C¢' (RY, p”“’) for (' > ¢ and K’ < K, which is a separable subspace and
therefore we can indeed apply Prohorov’s theorem. We will see in Lemma below that £5&°
converges to the white noise ¢ on R?. Consequently, the solution X o to =Ly X = x(Dg=)&°
should approach the solution of —L,X,, = x(Dga)¢ := ]:Hgdl (x Fraf), ie.

X(Dga) 1 X 0 0 1 X
E=F Fral | =K =&, K = F . (69)
(27m)? | Da SENCOE R g mTRC @)
where || - |, is defined as in Definition The limit of £°(X}, e £%) will turn out to be the
distribution

X, =

Xe€le)i= || 01— m)peg(@a) 0 g(da) ~ (X, 06 + €0 X)) ()
for ¢ € S, (R?), where the right hand side denotes the second order Wiener-Ité integral with
respect to the Gaussian stochastic measure £(dz) induced by the white noise &, compare [32,
Section 7.2]. Note that X, e £ is not a continuous functional of &, so the last convergence is
not a trivial consequence of the convergence for £°€°. To identify the limit of £5(X ¢ £%) we
could use a diagonal sequence argument that first approximates the bilinear functional by a
continuous bilinear functional as in [37, [30, 10]. Here prefer to go another route and instead
we follow [6] who provide a general criterion for the convergence of discrete multiple stochastic

integrals to multiple Wiener-1t6 integrals, and we adapt their results to the Wick product setting
of Lemma [5.1]

Lemma 5.4 (see also [6], Theorem 2.3). Let G°,n € N and (§E(z))zeg€ be as in Lemma .
Fork=0,...,n let fi € L>((G%)¥). We identify (G°)* with a Bravais lattice in k- d dimensions
via the orthogonal sum (G°)F = (—szl g < (—szl R = (RH* to define the Fourier transform
Fgeyfr € L2((§E)k) of ff. Assume that there exist gy € L*((RY)F) with \1(&)k.7:(gs)kf,§\ < gk
for all € and f, € L2(RY)*) such that lim._,o ||1(gAE)k]-"(gs)kf,§ — Frayk el r2(rayey = 0 for all
k < n. Then the following convergence holds in distribution

i A = ,;)Lw filetr- o) E(dz) 0 -0 £(da),

where £(dz1)o- - -0&(dzy) denotes the Wiener-Ité integral against the Gaussian stochastic measure
induced by the white noise & on RY.

Proof. The proof is contained in the appendix. O
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The identification of the limits of the extensions of £, X and X, e £° is then an application
of Lemma [5.4]

Lemma 5.5. In the setup of Lemma with &, X,, and X,, & defined as above and with ¢,k
as in Lemma[5.5 we have for d < 4

E¢rE CEYE € 3 € —0
(E°€5, E°X, £5(X3 0 €9)) = (& X, Xy 0 )
in distribution in CS~2(R%, p*) x CS(R?, p*) x CX2(RE, p?+).
Proof. Recall that the extension operator £° is constructed from 1 = 1 (e-) where the smear
function ¢ € D, (RY) is symmetric and satisfies 1 = 1 on some ball around 0. Since from
Lemmawe already know that the sequence (£7€%, E° X, £5( X[ 0£7)) is tight in CE2(RY, p*) x
CS(RY, p*) x CX~2(R?, p?*), it suffices to prove the convergence after testing against ¢ € S,,(R%):
(€°€° (1), -, €78 (n), E° X (Y1), E X (), E5 (X, @ E)(f1), - E5(XT, 0 £7)(fn))
e—0
- (5(901)7 cee ,§(g0n),XM(¢1), cee 7Xu(¢n)vXu b f(f1)7 Xy e §(fn)) )

and by taking linear combinations and applying Lemma we see that it suffices to establish
each of the following convergences:

EE(9) T2 E(p), EXG(p) T2 Xulp),  E(XS 0 E)(9) = Xy 0 E(p) (71)

for all p € S,,(R%). We can even restrict ourselves to those ¢ € S,,(RY) with Frap € D, (RY),
which implies supp Frap S G¢ and Fr (¢8fRd¢)  for € small enough, which we will assume

from now on. Note that supp Frap S Ge implies
Fge=(plge) = (Fra®)lge (72)

since by definition of fg_gl

T (Fra)lge) = (Fpa Frag)lge = ¢lgs -
To show the convergence of £5¢°(¢p) to £(y) note that we have from

E°E () = D197 (Fp, = Y G| Fd (4F Fra) (2 = > G lp(2)€(2)

2€Ge z€Ge 2€Ge

where we used in the first step that ¢ is symmetric and in the last step that fﬂgdl (Ve Fpap) = @
by our choice of ¢ and e. Using Lemma [5.4] and relation the convergence of £5£%(¢) to &(p)
follows.

For the limit of £ X, we use the following formula, which is derived by the same argument
as above:

EXS(p) = D) G p(21) A (22 — 21)€° (22)
21, 22€G¢

with J£; = .Fg_gl (x/1,). In view of Lemma 5.4/ it then suffices to note that

X

lu

: X
[ = Fge(pxge H7) = Fgep- lf @ FRratp

is dominated by a multiple of x/|-|? on G due to Lemma and it converges to

X
Fogpr — >
R 2m)? [
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by the explicit formula for I}, in (45)).
We are left with the convergence of the third component. Since £°€° — £ and £° X, — X,
we obtain via the —Property of the paraproduct

; Ge _ 1 —
gliI(lJ E(X, Y €)= ;%EEXE QEE =X,0¢
and similarly one gets £5(¢° @9° X ;) — £© X,,. We can therefore show instead
E° (X6 —E[XE]) (0) > (XuoE+ €0 X+ X 08)(9) - (73)
Note that we have the representations

E°(X5& —EIXSE)) (0) = D, 1G°1P0(21) 45 (21 — 22) €(21) © 6 (22)

21,22€G¢

(X o€+ 60X, + X, 00)() = ||| wlen)t2(er = 20)€(dm) 0 (dz)

with ¢ as above and Ji;o as in /.\ The (G¢)%-Fourier transform of p(21) K, (21 — 22) is
Gext (T1 — :rg)x(xg)/l;(xg) for x1, 29 € G, where Poy denotes the periodic extension from
for Fraeplg. € D,,(G%) (recall again that supp Frae = G°). We can therefore apply Lemma [5.4

since for d < 4 the function (x(z2)/I°(22))? < 1jy21/|2|* is integrable on G and thus we obtain
).

We have shown the convergence in distribution of all the components in . By Lemma
we can take any linear combination of these components and still get the convergence from the
same estimates, so that follows from the Cramér-Wold Theorem. ]

5.2 Convergence of the lattice model

We are now ready to prove the convergence of £5u° announced at the beginning of this section.
The key statement will be the a priori estimate in Lemma [5.9] The convergence of £°u® to the
continuous solution on R?, constructed in Corollary will be proven in Theorem We
first fix the relevant parameters.

Preliminaries

Throughout this subsection we use the same p € [1,00], 0 € (0,1), p € p(ws "), a polynomial

weight p* for some x > 2/pe > 1/7 and a time dependent sub-exponential weight (e, ;)se[o,7]-
We further fix an arbitrarily large time horizon 7' > 0 and require [ < —T for the parameter in
the weight ef. Then we have 1 < ¢f,, < (efﬂ)2 for any ¢ < T, which will be used to control
a quadratic term that comes from the Taylor expansion of the non-linearity F¢. We take £° as
in the beginning of this section with ps > 14 (see Remark below) and construct X;, as in
Subsection [5.I] We further fix a parameter

a€(2/3-2/3-k/o,1—2/p: —2K/0) (74)

with x/o € (2/pg, 1) small enough such that the interval is non-empty, which (as we will discuss
in the following remark) is possible since 2/pe < 1/7.

Remark 5.6 (Why 14+ moments). Let us sketch where the boundaries of the interval
come from. The parameter a will measure the reqularity of u® below. The upper boundary, that
is 1 —=2/pg —2K/0, arises due to the fact that we cannot expect u® to be better than X¢, which has
reqularity below 1 — 2/pe due to Lemma . The correction —2k/o is just the price one pays in
the Schauder estimate in Lemmafor the “weight change”. The lower bound 2/3—2/3-k/o is
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a criterion for our paracontrolled approach below to work. We increase below the regularity o of
our solutions, by subtraction of a paraproduct, to 2cc. By Lemmal[].] this allows us to uniformly
control products with £ provided

20+ (a+2k/0—2) >0,

because £° € C;ZHH/U_Z. This condition can be reshaped to o > 2/3 —2/3 - k/o, explaining the

lower bound. The interval can only be non-empty if
2/3—-2/3 - Kkj/o <1—=2/pg—2K/0c < 2/3<1—2/p:—4/3 Ko

Lemmaforces us to take k/o > 2/pg so that the the right hand side can only be true provided
2/3 <1 —2/pe —4/3-2/pe, which is equivalent to

pe > 14.

Let us mention the simple facts 2a + 2x/0,2a + 4k/0 € (0,2), a + K/, + 2K/ € (0,1) and
3a + 2k/0 — 2 > 0 which we will use frequently below.

We will assume that the initial conditions u§ are uniformly bounded in C)(G%, €f) and are
chosen such that £5u§ converges in S/, (R?) to some ug. For uf = |G| 1._¢ it is easily verified
that this is indeed the case and the limit is the Dirac delta, ug = 4.

Recall that we aim at showing that (the extension of) the solution u® to

Ziu® = F(u)(€ — F(0)c,),  u*(0) =uj = G571 (75)

converges to the solution of
Lu=F0ueg,  u0)=u=9, (76)

where u ¢ £ is a suitably renormalized product defined in Corollary below.

Our solutions will be objects in the parabolic space £ 5 which does not require continuity
at t = 0. A priori there is thus no obvious meaning for the Cauchy problems , (although
of course for we could use the pointwise interpretation). We use the common interpretation
of (75| as equations for distributions u¢,u € D (R'*2) (compare for example [44, Definition
3.3.4]) by requiring supp u®, suppu € R, x R? and

Lout = F(u®) (€ — F’(O)ci) + i ®ug,
Lyu=F(0)uel+i®u,
in the distributional sense on (—o0,T) x R?, where ® denotes the tensor product between distri-
butions. Since we mostly work with the mild formulation of these equations the distributional
interpretation will not play a crucial role. Some care is needed to check that the only distribu-
tional solutions are mild solutions, since the distributional Cauchy problem for the heat equation
is not uniquely solvable [46]. However, under generous growth conditions for w,u® for z — oo

(compare [I4]) there is a unique solution. In our case this fact can be checked by considering
the Fourier transform of u, u® in space.

A priori estimates

We will work with the following space of paracontrolled distributions.

Definition 5.7 (Paracontrolled distribution for 2d PAM). We identify a pair

(u™*,u™): [0,T] — S,(G°)°
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with u® := uE’X<Xf; + ut and introduce a norm
5 o e, X et o g, X ) et }
Hu ”9;:;@576?) : H(u y U )Hgg’g(ga’e?) : HU |‘$;¥15(g6’67) + Hu |‘$;5§+“(ga,eg) (77)

for a as above, 6 € (0,1) and v = 0, § € (0,2 — «). We denote the corresponding space by
Qgﬁ(ga, e9). If the norm is bounded for a sequence (u® = ua’X<le +uft), we say that uf
is paracontrolled by X7.

Remark 5.8. In view of Remark we can also define a continuous wversion @;’%(Rd,ef) of
the space above.

As in [21] it will be useful to have a common bound on the stochastic data: Let
ME = ”§8HC&X)+2N/072(QE7PN) V ‘|XZHCOQO+2K/U(QE7PN) Vv HXZ [} ga‘|c§oa+4n/o'72(g€7p2n) (78)

(compared to Lemma [5.3| we have { = o + 2k/0). The following a priori estimates will allow us
to set up a Picard iteration below.

Lemma 5.9 (A priori estimates). In the setup above consider v € {0, a} and ug € Cg(g*f). If

v = 0 we require further that ug € C'(G%, p) and ug = ug — F'(0)up © X5, € C3*(G%, €7 ). Define
a map

‘%E

Yoo D (G ef) 2 (X u) s (07 07F) € ZR(G7, €f)

for v = u57X<Xli + uSt with u(0) = uy via v5F := F'(0)u® and voF := v° — UE’X<XE, where
V¢ is the solution to the problem

Lo = FE(u)EE — FE (X FI(0)F (0)cs,  o°(0) = ug. (79)

The map A=, is well defined for v € {0,a} and we have the bound

,u0
[(w*X, 05 [ g g eg) < Cug + O, - T2 (Hugﬂgg;;(gs,eg) + e”\!uellij;;;(gs,eg))
for 6 € (2 —2a —2k/0,a) and some v > 0, where Cyp. = co (1 + M2) and
Cup = 1y=a o |uollcgge er)
F1ioeo (Iudlezoiar ey + 107 O)legomepy + 1 Olorap)) - (80)
for some ¢o > 0 that does not depend on &, ¢}, or ug.

Remark 5.10. The complicated formulation of 1 necessary because when we expand the
singular product on the right hand side we get

Fe(uf)eE = F'(0)(C (us, X6 + uE’X(XZ Q&) +...,

so to obtain the right renormalization we need to subtract F’(O)uE’Xcz, which is exactly what we
get if we Taylor expand the second addend on the right hand side of .

If v = v® = M5, u® is a fized point, then utX = 05X = F'(0)u and the “renormalization
term” is just F*(u®)F'(0)c;,. Moreover we have in this case

Lowt = F(u) (& - F(0)c),  u(0) = up.
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Proof. We assume for the sake of shorter formulas (1 4+ M2) < 1, the general case can be easily
included in the reasoning below. The solution to (79) can be constructed using the Green’s
function ]-"g_gle_tli and Duhamel’s principle. To uncluster the notation a bit, we will drop the
upper index € on u, v, X,, Z,,... in this proof. We show both estimates at once by denoting
by v either 0 or a.

Throughout the proof we will use the fact that

— [l i
[l 20 e oy = N5 <X+ ] g oy 5 Nl e (81

for all 8 € (0, a] which follows from Lemma In particular (with 8 = §) we have

X _ /
V51 20 ge gy = 1/ Ol oz iy = g gy

Lem. BT a—45
210w g @ep) + 6O ezaorepy) + T [ulgsgeey . (82

This leaves us with the task of estimating HvﬁH:/,,za(gs ey We split
p, T ™l

Zt = L(v — F'(0)u<X,) (83)
= F*(u)¢ — F(u” /F'(0))F'(0)c,, — F'(0).Z,(u<Y)
uX 2

= F'(0)ué — F'(0)u™c, — F'(0)Lu(u<X,) + R(u)u*¢ — R(u™ /F'(0)) (F’((g) Cu
=F’(0)[u©(£—§)+u©§—u<§+u<<§—$u(u<<Xu)+u®€ ()
+ O™, X, 6) + u™ (X, 0 8) (©)
+uf 0 ] (#)
+ R(u) - u*¢ (Ry)
~ R o)) (Ry)

U F0) Cp s WX

where € = x(D)¢ so that £, X, = £ with £ — £ € (g C5 (G5, p*) and where R(z) = &2 Sé(l -
A)F"(\e?x)d\. We have by Lemmas

=] py— < ull gz or 2 Jul s
M (G eppr) ~ 1M gn/2o(geery S 1770 (Ge o)

and further with Lemma [£.4] and Lemma [£.2]
| @ ayczesanio—2(ge eppor) = Nl g1 ge cry »
while the term @ can be bounded with Lemma by
1 1
H’U ®© g‘yM}C§a+2n/a—2(gE7€7pm) $ HU “fg&?+6(gsvef) < HUH@;/;’;"(QE,@?) )

To estimate (R,|) we use the simple bounds ||5f3,chg+ﬂ/(gE7p) < ”fHC{f(gf,p) for e R, g/ >0,
g€ [Loc], pe plw) and

-B -8B —jB
le™? fllzagep) S € Z 27921 les ey < 1 lcs g o
JIRIge
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for 5 <0, ge[1,], p€ p(w), together with the assumption F” € L* and obtain for v/ > 0

IR gy c2es2mir—2(ge ooy S I1F "eolle® P | ager o(ge ) €7 O TEOE oo gy

< HEOH_ZK/U 2”_/\/1'YLP(QE Hcha‘*Q"/" 2(ga )
< Hea/?-‘rl{/o'u“ H5a/2+fi/au“

M’Y/2L2p(ga a' M’Y/2 d/2p+v’ (gg o-)

< Hea/?-‘rl{/o'u“ Hga/Q-i-n/U (1+2 —a)uH

M7/2C1+V (ge, a)
< 63(1-%—21{/0—2(1+1/ ”u“

MYPeg(ge.eq)

< &”|ul?

j'v 5(gs a) j’Y 5((_;5 cr)

for all v € (0,3 + 2k/0 — 2(1 + /)] (which is nonempty if ¢/ is sufficiently small). Similarly we
get for v/ € (0, 9)

X X2
1B gy czevamio2(ge egpey = VF lro@ - cullew™ o age oy S culew™ [ygagann ge o

X
S 0 0B @0 g2y g oy S N ge

for all v € (0,0 — ¢/]. In total we have

+&¥|u? vH(0) = 1y—oud, + 1y—quo,

#
1L ”M%Cga+2n/072( P0G e)

G efp 7(0% )

where we used for the initial condition that by Definition [£.5] and Convention [1.6] we have
(F'(0)u<X,)(0) = F'(0)up © X for v = 0 and (F'(0)u<X,)(0) = 0 for v = o > 0. The
Schauder estimates of Lemma yield on these grounds

# v 2
19 50 gy < Trmalolegaeey + omollblegeigery + Il gige ) + < Tl o

< Ly=aluollcg(ge ey + 1y=0 (Hu(ﬂ)HCM(ga er) + [1F(0) 2o (ge ) + HUX(U)!lcg(ge,e;f))

8)/2
T(Oé / ( ge el + 9 (QE g))
where in the last step we used Lemma |3.11} Together with the claim follows. O

As we mentioned in Remark we aim at finding fixed points of .#7 ,  which is achieved
by the following Corollary.

Corollary 5.11. With the notation of Lemma choose T := % (Chy. + Cre’r(ug)) =2/ (@=9)
for a sufficiently large r(uo) > 0, depending on ug. Then the map A5, from Lemma has a
unique fized point u® = u5X<XE +ust on .@VTIOC(QE, ef). This fized point solves

Zou® = F(u®) (&5 — F'(0)¢;,), u®(0) = o, (84)

and us~ = F'(0)uf. Moreover, we have

u ||@w (g=.e7) < T(u0) -

loc
Proof. We construct the fixed point u by a Picard type iteration. To avoid notational clashes
with the initial condition ug, we start the iteration with n = —1 for which we define u®; :=
F/(O)uo<XfL+ug =up© X}, +u(ﬁ) = up for y = 0 and uZ; := 0< X} + ety for 7 = « (which is
in 9 2 (GF, € ) due to Lemma . Define recursively for n > 0 the sequence uy, 1= A5, Uy
(with us, = uy <XE +u5* to be read as a pair as in Definition . Choose now r(uo) so big
that Huil\\@;ﬁge,e?) < r(up) and such that

Cuy < =7(up)
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with Cy, as in Lemma Note that for u;,,; the constant Cy, in principle depends on u;,(0),

but in fact we can choose it independently of n since u$™ (0) = F'(0)ug for all n > —1 (by
definition of .Z%, ) and u ’ﬂ(O) = 17=0ug + 1y—qup (by Definition and Convention in

7,u0
the second term of ( .
Since T°¢ < 1 we already know for n = —1 that
HUiHWv;oc(gs,e;f) < r(uo) - (85)
We show recursively that (85]) is in fact true for any n > —1. Suppose we have already shown

the statement for n — 1, we then obtain by Lemma [5.9]

llove, grepy < Cup + ()T - Car (o) + " (r(w))?)

< T(;LO) (T100> (CM + CM c T(UO)) (UO) = T(;O) + T(;O) = r(uo).

By Lemma in the appendix inequality (85]) implies that for o/ € (0, ) and ¢’ € (0,0) there
is a subsequence (uj, )r=0, convergent in @7T1oc (G%,€f) to some u € @VTIOC (G, €7), and

HmH@;‘?mc( cer) < hmlnf s, ija (G=er) S T(u0) -
e

In particular u® is a fixed point of .Z7,  that satisfies . It remains to check uniqueness.
Choose two fixed points u®, v*, which then satisfy

1
L (uf — %) =(F*(u) — F=(v%))(&° — CZF,(O))_J F'(uf + Mo —uf))dA-(v° —u®)(&° — ¢, F'(0)).

\0 >
=7
We will use that for p € p(w) and ¢, ¢’ € R with ¢’ > ¢
, —(¢'=¢)
g ige S €€ lesige - (56)

which is an easy consequence of Definition and which we essentially already used in the
proof of Lemma In other words, we can consider our objects as arbitrarily “smooth” if we
are ready to accept negative powers of €. In particular, we can consider the initial condition
ug as paracontrolled, that is ug € Cg'(G%, ef), Uo € C2*(G*,€7) (and thus u**(0) = v=X(0) =

F'(0)ug € C;(G°,€f)), so that with Lemma we obtain uf,v¢ € 2°%._(G°, ef). Consequently,

Tloc

since also ef > 1, we get u®, v° € CTQOCL G¢) which implies that the integral term % is in

Cri0c L*(G%) and, by using once more , we can consider it as an element of C’TslocC?o(g€ ) for
any B € R. The product (v —uf)(&° —¢ F’( )) can then be estimated as in the proof of Lemma

Since multiplication by .# only contrlbutes an (e-dependent) factor we obtain for T’ < T1°¢
a bound of the form

N\ &=2
[ — UEH@E:;/(gE:e?) Se (T) 7 (955€7)

which shows |u®

702, (G4 ef) = 0 for 7" small enough. Iterating this argument gives u® = v°¢

on all of [0, T1°°]. | O

Convergence to the continuum

It is straightforward to redo our computations in the continuous linear case (i.e. F(x) = cx),
which leads to the existence of a solution to the continuous linear parabolic Anderson model
on R?, a result which was already established in [28]. Since the continuous analogue of our
approach is a one-to-one translation of the discrete statements and definitions above from G¢ to
R? we do not provide the details.
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Corollary 5.12. Let ug € CS(Rd, e?). Let & be a white noise on R?, and let %, be defined as in
Section @ Then there is a unique solution u = F'(0)u<X, + u* € ng(Rd, ef) to

ZLyu=F(0)ueg, u(0) = ug, (87)
on [0,T], where
ueli=EQutudl+ F(0)C(u, X, &) + F'(0)u (X, 0 &) +uf © &

with X, X, & as in , .

Sketch of the proof. Asin Lemmawe can build a map Ao uy: Dy (R, ef) — 757 (RY, €f) :
u=uXr<X, +ut—v=F(0)u<X, +v* via

Ly =F(0)ueg, v(0) = ug . (88)

As in Corollary there is a time 7'°¢ such that .4, ,, has a (unique) fixed point u®) =
F'(0)u® <X, + u®F in .@:’;loc (R%, e) that solves
L0 = F'(0)u@ e, uO0) = up.

on [0,7"%°¢]. Since the right hand side of is linear, this time can be chosen of the form
Tloc — %K*Q/(O‘*‘;), where K > 0 is a (random) constant that only depends on &, X, X, ¢,
but not on the initial condition. Proceeding as above but starting in u(®)(7'°¢) we can construct

amap A (o) (rioc) : .@g:;loc (R4, e7) — _@;’;loc (R%, €7) by (the continuous version of) Lemma/|5.9

and Lemma The map 4 ,,©) (1oc) has again a fixed point on [0, T'°¢] which we call u(Y).

Starting now in u(!(7'°¢) we can construct u(?) as the fixed point of M (1) (T10c) ON [0, T'o¢]
and so on. As in [2I, Theorem 6.12]) the sequence of local solutions @, W @ can be
concatenated to a paracontrolled solution u = F'(0)u< X, + uf € Dyr (R e7) on [0,T7].

To see uniqueness take two solutions u, v in @; :,Cf (R, e7) and consider h = u — v. Using

that h(0) = 0 and .Z,h = h ¢ { one derives as in Lemma
a—0)/2
HhH_@;ﬁ(Rd,eg) <C-7l HhH@;g(Rd,e;f)

so that choosing T first small enough and then proceeding iteratively yields h = 0. O
We can now deduce the main theorem of this section. The parameters are as on page

Theorem 5.13. Let ug be a uniformly bounded sequence in cg(gf, ef) such that E°uf converges
to some ug in S,,(R?). Then there are unique solutions u® € I, (G, €] ) to

Lo = Fl) (€ — EF0), w(0) = b, (39)
on [0, T¢] with random times T¢ € (0,T] that satisfy P(T¢ = T) 29 1. The sequence uf =
F'0)ut <X, + ust e @;’;‘g(gg,ef) is uniformly bounded and the extensions E°u° converge in
distribution in .@;’ff (RY, e?/), o < a, o' <o, to the solution u of the linear equation in Corollary

[2.12

Remark 5.14. Since T¢ is a random time for which it might be true that P(T® < T) > 0
the convergence in distribution has to be defined with some care: We mean by E5u® — u in
distribution that for any f € Cb(@;j’a/(ga,ef);R), we have E[f(E5u®)1pe—r] — E[f(u)] and
further P(T¢ < T) — 0.
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Proof. The local existence of a solution to is provided by Corollary Proceeding as
in the proof of Corollary we can in fact construct a sequence of local solutions (u(™),>¢
on intervals [O,Tgloc’(n)] with u*(™(0) = ua’(”_l)(TElOC’(n_l)), where we set T .= 0 and
w1 ;= ug. Due to Corollary the time Tgloc’(n) is given by

—2/(a—9)

Teloc,(n) — % (CME + CMgsur(ue,(n—l)(Teloc,(n—l)))> . (90)

Note that, in contrast to the proof of Corollary Tgloc’(n) now really depends on n and
we might have > 7. M < . Asin [21, Theorem 6.12] we can concatenate the sequence

@ 45D toa solutlon u® to which is defined up to its “blow-up” time

Tgblow—up _ Z T;OC’(TL)

nz=0
(which might be larger than 7" or even infinite). Let us set

Tblow up

T* =T A~ (91)

6—)

To show P(T¢ = T) =23 1 we prove that for any t > 0 we have P(T?°" ™" < ) — 0. By
inspecting the definition of 7(...) in the proof of Corollary [5.11] we see that given the (bounded)
sequence of initial condition ug the size of TblOW P can be controlled by the quantity M¢. More

precisely there is a deterministic, decreasing function Tsdet : Ry — R, such that
Tblow—up > Tdet(Ms)
3 = 3
and such that for any K > 0 (due to the presence of the factor £ in (90))
T (K) =9 oo . (92)

Let ¢t > 0 and K7 := sup{K > 0|T%"(K) > t}. Note that we must have K§ =29 o since
otherwise we contradict . But this already implies the desired convergence:
P(TPv = < ¢) < P(T4(MF) < t) < P(ME > KF) 570,

where we used in the last step the boundedness of the moments of M* due to Lemma

It remains to show that the extensions £°u® converge to u. By Skohorod representation we
know that £°€%, £ X}, £° (Xlioﬁa) in Lemmaconverge almost surely on a suitable probability
space. We will work on this space from now on. The application of the Skohorod representation
theorem is indeed allowed since the limiting measure of these objects has support in the closure
of smooth compactly supported functions and thus in a separable space. We can further assume
by Skohorod representation that (a.s.) T2 " — o0 so that almost surely we have T¢ = T for
all £ < ¢ with some (random) gg. Having proved that the sequence u® is uniformly bounded in
Dy (G®, € ) we know, by Lemma that E°u is uniformly bounded in 7777 (R%, e7). Due to
(the continuous version of) Lemma|A.7| there is at least a subsequence of £y that converges
to some u € .@;ﬁ(Rd, e?)(R?) in the topology of 2 T (Rd e7'). If we can show that this limit
solves ([87)) we can argue by uniqueness that (the full sequence) Eu® converges to u. We have

Longeutn = £ Lemtn = £ (P (u) (6 — i (1)), (93)

where .Z7E°u° should be read as in . Note that the left hand side of converges as

LEETUE = (L0 — L)E U + L& T 0+ L= L
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due to Lemma For the right hand side of we apply the same decomposition as in
B3)=()+ (@) + )+ (Ru)+ ([R,x). While (the extensions of) the terms (R.)),(R,x) of van-
ish as € tends to 0, we can use the property of the operators acting in the terms , ,
to identify their limits. Consider for example the product u®%: (X[ 0&%) = F'(0)u* (X &)
in whose extension we can rewrite as

Een (F/(O)UETL (Xlin ° gsn)) _ F/(O) Een (usn IS (in ° é‘En) ) (in ° é‘sn) LUt O (XZ” ° €€n))
F/(O) [gsnusn IS gsn(XZn ° é‘gn) 4 &yt gsn(XZn ° EEH) 4 Enytr o 8En(XZn ° é‘En)] + Ogn(1>7

where we applied the property of ©, 8, ® (Lemma in the second step. By continuity
of the involved operators and Lemma |[5.5) we thus obtain
lim E(F'(0)u(X;re&™)) = F'(0)[ue (X e&) +uc (Xef) +ud (X e&)] = F'(0)u(X e¢).
En—>
Proceeding similarly for all terms in the decomposition of the right hand side of one arrives
at

L= alnigo Sa".iﬂlf"ua" = lim & (F* (u®)(& — CZ"F/(O))) =F'(0)ueg,

en—0
which finishes the proof. O

Since the weights we are working with are increasing, the solutions w® and the limit w
are actually classical tempered distributions. However, since we need the S, spaces to handle
convolutions in e weighted spaces it is natural to allow for solutions in S/,. In the linear case,
F = 1d, we can allow for sub-exponentially growing initial conditions wug since the only reason
for choosing the parameter [ in the weight ef, , smaller than —T" was to be able to estimate
el < (eE’H)2 to handle the quadratic term. In this case the solution will be a genuine ultra-
distribution.

A Appendix

Results related to Section (2]
Lemma A.1. The mappings (Fg, .7-"971) defined in Subsectz’on map the spaces (Sy,(G), Su (G))

~

and (S8),(G), S.(G)) to each other.

Proof. We only consider the non-standard case w = | - |. Given f € S, (G) the sequence
Fof(@) =1G] Y, f(k)emre
keg

obviously converges to a smooth function that is periodic on G. We estimate on G (and thus by
periodicity uniformly on R%)

Pl 2 ’g‘f(k)e%mkx

keg

SN/

keg

We can use Lemma for | - [l*le=21” with @ = G and ¢ > 0 of the form ¢ = C(\) - Clol (C
denoting a positive constant that may change from line to line) which yields

o Z |g|f(k)e27rzka:

< C"C“J 1ol =l gy
keG R4
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We now proceed as in [31) Lemma 12.7.4] and estimate the integral by the I'—function

0] 0
_ o _ _ o _ — — 0
J \:c||°‘|e Ael” 4y $f plodtd=1e=Ar"q <\ O‘V"J pled+d=1e=r7qp
Rd 0 0

Stirling
<Aool +d—=1)/o) < ATlelleglel|g)lele

Since we can choose A > 0 arbitrarily large we see that indeed f € COO(Q)
For the opposite direction, f € S, (g), we use that by integration by parts |z} - ]-“ngf(z)| <

C! Supg (N f < Ol forallz€ G, 1= 0,0 =1,...,d. With Stirling’s formula and Lemma
we then obtain |Fg L£(2)| < €)#l7. This shows the statement for the pair (S,,(G), Su(G)). The
estimates above show that Fg, Fg L are in fact continuous w.r.t to the corresponding topologies
so that the statement for the dual spaces (S,(G), S,(G)) immediately follows. O

Lemma A.2. Given a lattice G as in we denote the translations of the closed parallelotope
G:=[0,1]a1+...+[0,1]ag by G := {g+ G |ge G}. Let Q< G and set Q) := Ugree. ornazg G-
If for a measurable function f : Q — Ry there exists ¢ = 1 such that for any g € Q there is a
G'(g9) € G, g € G'(g) with f(g) < c-essinf ;eq f(x) then it also holds

Gl f(9) <e-27| f(x)da
by )
Proof. Indeed

Diisw<ey | fee<ey 3| e

ge gefd g€ G'eG: geG’

<c ¥ fo x—zdcz e o = 2e | f(a)do

G gefhigeG’
where we used in (A) that the d-dimensional parallelotope has 2¢ vertices. O

Lemma A.3 (Mixed Young inequality). For f: R — C and g: G — C we set for x € R?
f g g(a) == |G| f(x — k)g(k)
keg

Then for r,p,q € [1,00] with 1+ 1/r=1/p+1/q

1-2 P
17 %6 gllr@ay < sup [ f(x =) og) - 1o ayl9lLeg)
zeR4
(with the convention 1/00 =0, 00/00 =1).
Proof. We assume p,q,r € (1,00). The remaining cases are easy to check. The proof is based
on Holder’s inequality on G with % + -+ =
r—p

1f g g(@)] < D G| (1f(x = B)Plg(R) DY - |f(x — )T g (k)| 7"
keg
Tt @ =Pl = W e O e
= L™(G) LT=r(G) L7=4(G)

1/r L, g
< (Z 911z — k>|P\g<k>|‘I) N P e

keG z'eR4

Raising this expression to the rth power and integrating it shows the claim. O
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Results related to Section [3]
Lemma A.4. For T >0, pe [1,0], p € p(w) we have uniformly in t € [0,T] and € € (0,1]

tLy,

[ Fllzeige.py = 1 lLegep) -

and for B >0
I F oo p) < 71 legoge

Proof. With the random walk (X7),er, which is generated by L;, on G¢ we can express the
semigroup as e'Xi f(z) = E[f(z + X§)], so that

()

tLg,
o= E| 22
e 1o = [

o+ XE) (- + Xf)]

LP(G*)

pz) Aw(X?)
<E ———|flzrgep) | SE ; .
[Sélgps plx + X§) e ’P)} le Wl ze(ge.p)

An application of the next lemma finishes the proof of the first estimate. The second estimate
follows as in Lemma 6.6. of [21]. O

Lemma A.5. The random walk generated by Ly, on G¢ satisfies for any A >0 and t € [0, 7]
E[e)\w(Xf)] S)\T 1.

Proof. We assume w = wy ¥, if w is of the polynomial form the proof follows by similar, but
simpler arguments. In this proof we write shorthand s = 1/0. By the Lévy-Khintchine-formula

we have E[e?WXi] = e t/e? S (=" )du(@) _ o —15(0) for o]l § € R. We want to bound first for
k=1

d
E[| X5 " + ...+ | X5 4" Z ‘59 lo—oE[e?X]] .
To this end we apply Faa-di-Brunos formula with u(v) = =, v(f) = I7,(f). Note that with

Lemma 35/ formeNand j=1,...,d

u™(0) = (~t)"
50 (0)] <5 8™ (m!)*.

Thus with A, = {(a1,...,0m) € N | 37" oy -1 = k} we get for any ¢ € (0,1]

k 10X5 k! (m) F1 (1 i “
e = 5 S]] (33%e0)
k EAm k =1 '
. oz (s—1) si-oy Stirling k~k k! m & i st (s—1)
S : H N D St B K
1<m<k, a€A,,, k lsm<k,a€An, i i=1
Sk ok ok D KLy ok =1) SUETE gk ok D (K1)°
ol a!
1sm<k, a€An, i 1<m<k, a€A,,
(a1 kE—1
< FCRERDT DT Al tT = dFCHERY D] ( )tm
’ m—1
1<m<k 1<m<k

= SPCR(ED) (1 + )P < SFOR (RN (1 + ),
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where C' > 0 denotes as usual a generic constant that changes from line to line. With \x|],§ =
lz1)% + ...+ |zgl* we get

E[|X7[k] < 0" CH (k) (1 + 0)F

and therefore, using once more Stirling’s formula and |z|* < C* - |z|F,

ee}
E[e)\'XtE'g] § 1 + E[€A|X§|01|XE|>1 2 ‘Xt ka’ ]
0 k ko 0 k sko
CF(1 + t)lkol CFeko (1 + t)ko
g1+27kk skelko)*ols <14 (1 + 1) Z—kk K<,

k=0 k=0
where in the last step we chose § > 0 small enough to make the series converge. O
Results related to Section 4]
Lemma A.6. Let G° as in Definition let w € w, and let (cpjgs)j:,17..,7jgs be a partition of

unity as on page[8 For —1 <i < j < jg= the function
AT fr - AT fre SL(G7)

is spectrally supported in a set of the form 29B N Q\E, where B is a ball around O that can be
chosen independently of i, j and €. For fi, fo € S,(G%) and 0 < j < jge the function

S f1-AY fr e 8L(G),

is spectrally supported in a set of the form 27 A N QE, where A is an annulus around 0 that can
be chosen independently of 7 and €.

Proof. We can rewrite
Fo- (A7 f1- AT o) = (] Fo-f) #g. (¢ Fo- f2)
= |, 6 R ) - (6 Foe )1 - g,

where we used formal notation in the last step and [-] ge asin . From this one sees that the

spectral support of Aigi fi- AJQE f2 is contained in

(supp¢§  + supp 4,0]95 + ) NG, (94)

where we recall that supp oY = {z € Ge | @J" (x) # 0} is a subset of (the closure of) G c RY,
while the sum of sets in the parentheses should be read as a subset of R%. Now, by the dyadic
scaling of gojga we have for all ¢ < j

supp cpigs + supp gojga < B(0, 27 b)

for some b > 0, independent of £ and j. Set: By := B(0,b) and consider first the case 2/B; =
B(0,27b) < G°. In this case we have

(supp Y™ + supp gp?s + B GE S (VB + %) NG =28 G =B

On the other hand, if 278 = B(0,27b) < G° we are in_the regime j ~ jg= and take a ball B,
around 0 such that 2/B 2 G° and hence 2785 n G° = G for all j ~ jg- (by the dyadic scaling
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of G¢ from Definition we have 299° = ¢ - ¢! 50 that we can choose By independently of ¢).
Choosing then B = By u By shows the first part of the claim.

Let us now consider Sjgjlfl . A]g-afg. With goiij_l = Zj,<j_1 cp]g,E we see as above that the
spectral support of Sng fi- A?E f2 is contained in

(supp cpiejfl + supp gojg-s +%°) N G°, (95)

We already know from above that this set is contained in a ball of size 2/ so that is enough
to show that is bounded away from 0. Since supp cpiej_l and supp cpjgg are symmetric and
disjoint, we have due to the scaling from and , which we observed in the proof of Lemma

that
dist(supp goigj_l + supp cp?s, 0) > 2a
for some a > 0 and
supp cpgaj_l + supp 4,0]96 c B(0,27 - 1), (96)

for some b’ > 0. Note, that we can choose &' > 0 small enough such that B(0, 2/¢°b') n %° = {0}.
Indeed, otherwise there are x1 € supp gpisjgrl, T9 € Supp cp]g(; such that x1 + x2 = r for some
r e #°\{0}. But from |z1| < dist(0G%,0) one sees that |zs| = |r — 21| > diam(G)/2 which
contradicts xo € supp cpjgg < G¢. This choice of the parameter b’ can be done independently of ¢
due to the dyadic scaling of our lattice (Definition [2.2)).

Consequently, there exists r > 0 such that dist(B(0,27b") + 2°\{0},0) = 27r (to see that
r > 0 is independent of &, use once more the dyadic scaling of the sequence G%). But then we
have

dist ((supp cpfj_l + supp ga?s + %) N G, 0)=(anr) 27,

which closes the proof.

Results related to Section [Bl

Proof of Lemmal[5.4. We will write shorthand )/‘% = Fge)r ff and ﬁc = Frayr [ The claimed
convergence is a consequence of the results in [6]. For z € G° let G°(z) = z + [—¢/2,¢/2)a; +

..+ [—€/2,¢/2)aq, where ay,...,aq denote the vectors that span G. For 2 € R? let [z]. be the
(unique) element in G such that = € G*([z].) and for = € (RH)* set [z]. = ([z1]., ..., [zk]e)-
We will start by showing

lim [ /5 (L) = il 2 (raysy = 0 (97)

for all k.
By Parseval’s identity we have || fZ ([-]c) = fll r2(rayry = IFrays (fi ([1e)) = fill L2 (mayr), Where
F(ray denotes the Fourier transform on (R%)* for which one easily checks that

Frap(Fi([1e) = (Fext - P

where we recall that (}E)ext is the periodic extension of the discrete Fourier transform of f; (on
(RHF) as in and where

pi(yl, ey yk) = f ledzk e—27rza(y1-zl+...+yk.zk)'
aror 19
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The function pf is uniformly bounded and tends to 1 as € goes to 0. Now we apply Parseval’s
identity, once on (R%)* and once on (G¢)¥, and obtain

J(Rd)kdxl---dka}(@)extpf)(:cl,...,xk)f= > ) P

215.-,2K€G®
—~ 2
= f/\ dz;...dxg ’f;f(l“b e ,azk)‘

and thus
2_ 7E12 €12
= | day.odae (|51 = [0°P) (@1, @)

J o dzy...dag ’((E)extps)(xlw--a$k)
(G S

Since LGy fk is uniformly in € bounded by g € L?((R%)¥) and since 1—|p|? converges pointwise

to zero, it follows from the dominated convergence theorem that 1 (GF)he o fk)ext P}, converges to
zero in L2((R%)*). Thus, we get

L ([(f)ext Pk — fullzo(maysy = M1 ey Fipk — fiell L2 mayr)
< lm [(1 g i = fe)Pil oo mayry + Mm | fe (1 = pR) |2 (aysy = 0,

where for the first term we used that pf is uniformly bounded in € and that by assumption
LGy f¢ converges to fi, in L?((R%)*) and for the second term we combined the fact that p

converges pointwise to 1 with the dominated convergence theorem. We have therefore shown
@. Note that this implies

[ £ (L)) tvinj 22120 — Frllzeay = 0 & IfE (L) Lai) 2o =250 [ 2Ray = 0. (98)

As in the proof of Lemma we identify G° with an enumeration N — G° and use the set
AF = {aeN"| Y a; = k} so that we can write

jkfli: Z 7! Z |g€| fga’zl? sy R 1_[56 Oa]a

1<r<k,acAk  z1<..<zr

where we denote as in the proof of Lemma by ffa the symmetrized restriction of fak to
(RY)". By Theorem 2.3 of [6] we see that due to the r = k term of .# f;; converges in
distribution to the desired limit, so that we only have to show that the remaining terms vanish
as € tends to 0. The idea is to redefine for fixed a € A the noise as E;(z) = £°(2)°% /r5(2) where

= /Var(€2(2)°%) - |G¢| < |G°|(1=%)/2, so that in view of [6, Lemma 2.3] it suffices to show

that
r ~ ~
DG ]G iz 2P s Y UG [ fra(zrs 2P = 0,
21<...<2p j=1 21 <. <2p
but this follows from (98)). O

Lemma A.7. Let (fn)n=0 be a sequence which is bounded in the space .,2”;7’;(9,6;’) and let

"€ (0,a) and 0’ € (0,0). There is a subsequence (fn,)r=0, convergent in prﬁ'(g,e;”), with
limit f such that

1.z g.epy < Hminf | fr 200 g .ep) (99)
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Proof. Take in the following & = %0‘/ and & = %"/ By Definition of £)5(G, e ) we know that
(gn)nzo = ((t,z) — t'yfn(t,a;))n>0 is bounded in C%/QLp(g,ef) N CrC(G,e7). Interpolation
then shows that (gn)n>0 is bounded in C’?/Zcz(g, ef) N C%CS‘(Q, ef) for some &,, 6 > 0. We
obtain by compact embedding (Lemma [2.22) for 8, € (0,4,), §; € (0,9;) the existence of a
convergent subsequence (gy, )k>0 in C’%/Cfgm(g ef) N C%Cg/(g ,e7) with some limit g. From the
convergence of g,, — g in C%/C]g;(g, ef') N C’;Sl/5 g‘/(@ef') it follows that for f :=¢t77g we have
fnk — f in gpﬂf&? (g’ 60'/).

The estimate is then just an iterative application of Fatou like arguments for the norms
from which | - | g7 (g ) is constructed. O

P, b

Glossary

) Paraproduct, either on R? or on a Bravais lattice
< Modified paraproduct
O] Resonant term, either on R? or on a Bravais lattice

. Renormalized resonant term
¢ Renormalized product for PAM (on R?)
o Wick product
[le Periodic map from R¢ to g
By, Besov space
Cy Besov space with ¢ = o
Ccr Ultra-differentiable functions @
2)r Space of paracontrolled distributions for PAM @
A?] Discrete Littlewood-Paley block [§]
&e Extension from Bravais lattices G° to R?
ey Time-dependent, sub-exponential weight
Fg Fourier transform on a Bravais lattice G
g . . oy . .
©7 (discrete) Dyadic partition unity
Ci , G¢ Bravais lattices, G° = ¢ - G denotes the scaled lattice |§|
G Fourier cell for a Bravais lattice G
Jjg The index where supp ¢; touches GQA
Iy, Fourier multiplier for the diffusion operator L7, @

LLE), .,2”,58) (discrete) Diffusion operator and its associated operator 3,55) =0 — L,(f)
L7 Parabolic space

MLX Weighted space 24]
p(w) Set of jump measures for symmetric random walks @
w Set of functions wP®!, WP that classify weights

pr Polynomial, decaying weight p*(z) = (1 + |z|)~*
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(4

Smear function

9 Fourier transform of <pj !
W9 =i Abbreviation for 3}, _, .

x Reciprocal Lattice

p(w) The set of weights, whose growth/decay is controlled by w em

S, Ultra-differentiable Schwartz functions
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