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Abstract

We develop a discrete version of paracontrolled distributions as a tool for deriving scaling
limits of lattice systems, and we provide a formulation of paracontrolled distributions in
weighted Besov spaces. Moreover, we develop a systematic martingale approach to control
the moments of polynomials of i.i.d. random variables and to derive their scaling limits. As
an application, we prove a weak universality result for the parabolic Anderson model: We
study a nonlinear population model in a small random potential and show that under weak
assumptions it scales to the linear parabolic Anderson model.

Resumé On développe une version discrète de la théorie des distributions paracontrôlées
comme outil pour dériver les limites d’échelles des modèles discrètes, et on développe une formu-
lation des distributions paracontrôlées dans les espaces de Besov avec poids. En plus, on obtient
une approche martingale pour systématiquement contrôler les moments des polynômes des vari-
ables aléatoires i.i.d., et pour dériver leur limites d’échelles. Comme application, on prouve un
résultat d’universalité faible pour le modèle parabolic d’Anderson: On étudie un modèle non-
linéaire d’une population dans un potentiel aléatoir, et on démontre sous des hypothèses faible
que le modèle converge vers le modèle parabolic d’Anderson linéaire.

MSC: 60H15, 60F05, 30H25

Keywords: paracontrolled distributions; scaling limits; weak universality; Bravais lattices;
Besov spaces; parabolic Anderson model

1 Introduction

Paracontrolled distributions were developed in [18] to solve singular SPDEs, stochastic partial
differential equations that are ill-posed because of the interplay of very irregular noise and
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nonlinearities. A typical example is the two-dimensional continuous parabolic Anderson model,

Btu “ ∆u` uξ ´ u8,

where u : R` ˆ R2 Ñ R and ξ is a space white noise, the centered Gaussian distribution whose
covariance is formally given by Erξpxqξpyqs “ δpx ´ yq. The irregularity of the white noise
prevents the solution from being a smooth function, and therefore the product between u and
the distribution ξ is not well defined. To make sense of it we need to eliminate some resonances
between u and ξ by performing an infinite renormalization that replaces uξ by uξ ´ u8. The
motivation for studying singular SPDEs comes from mathematical physics, because they arise
in the large scale description of natural microscopic dynamics. For example, if for the parabolic
Anderson model we replace the white noise ξ by its periodization over a given box r´L,Ls2,
then it was recently shown in [10] that the solution u is the limit of uεpt, xq “ e´c

εtvεpt{ε2, x{εq,
where vε : R` ˆ t´L{ε, . . . , L{εu2 Ñ R solves the lattice equation

Btv
ε “ ∆εvε ` εvεη,

where ∆ε is the periodic discrete Laplacian and pηpxqqxPt´L{ε,...,L{εu2 is an i.i.d. family of centered
random variables with unit variance and sufficiently many moments.

Results of this type can be shown by relying more or less directly on paracontrolled distri-
butions as they were developed in [18] for functions of a continuous space parameter. But that
approach comes at a cost because it requires us to control a certain random operator, which is
highly technical and a difficulty that is not inherent to the studied problem. Moreover, it just
applies to lattice models with polynomial nonlinearities. See the discussion below for details.
Here we formulate a version of paracontrolled distributions that applies directly to functions on
Bravais lattices and therefore provides a much simpler way to derive scaling limits and never re-
quires us to bound random operators. Apart from simplifying the arguments, our new approach
also allows us to study systems on infinite lattices that converge to equations on Rd, while the
formulation of the Fourier extension procedure we sketch below seems much more subtle in the
case of an unbounded lattice. Moreover, we can now deal with non-polynomial nonlinearities
which is crucial for our main application, a weak universality result for the parabolic Ander-
son model. Besides extending paracontrolled distributions to Bravais lattices we also develop
paracontrolled distributions in weighted function spaces, which allows us to deal with paracon-
trolled equations on unbounded spaces that involve a spatially homogeneous noise. And finally
we develop a general machinery for the use of discrete Wick contractions in the renormalization
of discrete, singular SPDEs with i.i.d. noise which is completely analogous to the continuous
Gaussian setting, and we build on the techniques of [6] to provide a criterion that identifies the
scaling limits of discrete Wick products as multiple Wiener-Itô integrals.

Our main application is a weak universality result for the two-dimensional parabolic Ander-
son model. We consider a nonlinear population model vε : R` ˆ Z2 Ñ R,

Btv
εpt, xq “ ∆pdqvεpt, xq ` F pvεpt, xqqηεpxq, (1)

where ∆pdq is the discrete Laplacian, F P C2 has a bounded second derivative and satisfies
F p0q “ 0, and pηεpxqqxPZ2 is an i.i.d. family of random variables with Varpηεp0qq “ ε2 and
Erηεp0qs “ ´F 1p0qε2cε for a suitable sequence of diverging constants cε „ | log ε|. The variable
vεpt, xq describes the population density at time t in the site x. The classical example would
be F puq “ u, which corresponds to the discrete parabolic Anderson model in a small potential
ηε. In that case vε describes the evolution of a population where every individual performs an
independent random walk and finds at every site x either favorable conditions if ηεpxq ą 0 that
allow the individual to reproduce at rate ηεpxq, or non-favorable conditions if ηεpxq ă 0 that
kill the individual at rate ´ηεpxq. We can include some interaction between the individuals by
choosing a nonlinear function F . For example, F puq “ upC´uq models a saturation effect which
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limits the overall population size in one site to C because of limited resources. In Section 5 we
will prove the following result:

Theorem (see Theorem 5.13). Assume that F and pηεpxqq satisfy the conditions described above
and also that the p-th moment of ηεp0q is uniformly bounded in ε for some p ą 14. Then there
exists a unique solution vε to (1) with initial condition vεp0, xq “ 1¨“0, up to a possibly finite
explosion time T ε with T ε Ñ8 for εÑ 0, and uεpt, xq “ ε´2vεpε´2t, ε´1xq converges in law to
the unique solution u : R` ˆ R2 Ñ R of the linear continuous parabolic Anderson model

Btu “ ∆u` F 1p0quξ ´ F 1p0q2u8, up0q “ δ,

where δ denotes the Dirac delta.

Remark 1.1. It may appear more natural to assume that ηεp0q is centered. However, we need the
small shift of the expectation away from zero in order to create the renormalization ´F 1p0q2u8
in the continuous equation. Making the mean of the variables ηεpxq slightly negative (assume
F |r0,8q ě 0 so that F 1p0q ě 0) gives us a slightly higher chance for a site to be non-favorable
than favorable. Without this, the population size would explode in the scale in which we look at
it. A similar effect can also be observed in the Kac-Ising/Kac-Blume-Capel model, where the
renormalization appears as a shift of the critical temperature away from its mean field value [37,
42]. Note that in the linear case F puq “ u we can always replace ηε by ηε ` c if we consider
ectvεptq instead. So in that case it is not necessary to assume anything about the expectation of
ηε, we only have to adapt our reference frame to its mean.

Remark 1.2. The condition p ą 14 might seem rather arbitrary. Roughly speaking this re-
quirement is needed to apply a form of Kolmogorov’s continuity criterion, see Remark 5.6 for
details.

Structure of the paper Below we provide further references and explain in more details where
to place our results in the current research in singular SPDEs and we fix some conventions and
notations. In Sections 2- 4 we develop the theory of paracontrolled distributions on unbounded
Bravais lattices, and in particular we derive Schauder estimates for quite general random walk
semigroups. Section 5 contains the weak universality result for the parabolic Anderson model,
and here we present our general methodology for dealing with multilinear functionals of inde-
pendent random variables. The appendix contains several proofs that we outsourced. Finally,
there is a list of important symbols at the end of the paper.

Related works As mentioned above, we can also use paracontrolled distributions for functions
of a continuous space parameter to deal with lattice systems. The trick, which goes back at least
to [37] and was inspired by [29], is to consider for a lattice function uε on say tkε : ´L{ε ď
k ď L{εu2 the unique periodic function Extpuεq on pR{p2LZqq2 whose Fourier transform is
supported in r´1{ε, 1{εs2 and that agrees with uε in all the lattice points. If the equation for uε

involves only polynomial nonlinearities, we can write down a closed equation for Extpuεq which
looks similar to the equation for uε but involves a certain “Fourier shuffle” operator that is not
continuous on the function spaces in which we would like to control Extpuεq. But by introducing
a suitable random operator that has to be controlled with stochastic arguments one can proceed
to study the limiting behavior of Extpuεq and thus of uε. This argument has been applied to show
the convergence of lattice systems to the KPZ equation [21], the Φ4

3 equation [47], and to the
parabolic Anderson model [10], and the most technical part of the proof was always the analysis
of the random operator. The same argument was also applied to prove the convergence of the
Kac-Ising / Kac-Blume-Capel model [37, 42] to the Φ4

2 / Φ6
2 equation. This case can be handled

without paracontrolled distributions, but also here some work is necessary to control the Fourier
shuffle operator. This difficulty is of a technical nature and not inherent to the studied problems,
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and the line of argumentation we present here avoids that problem by analysing directly the
lattice equation rather than trying to interpret it as a continuous equation.

Other intrinsic approaches to singular SPDEs on lattices have been developed in the context
of regularity structures by Hairer, Matetski and Erhard [23, 13] and in the context of the
semigroup approach to paracontrolled distributions by Bailleul and Bernicot [2], and we expect
that both of these works could be combined with our martingale arguments of Section 5 to give
an alternative proof of our weak universality result.

We call the convergence of the nonlinear population model to the linear parabolic Anderson
model a “weak universality” result in analogy to the weak universality conjecture for the KPZ
equation. The (strong) KPZ universality conjecture states that a wide class of (1+1)-dimensional
interface growth models scale to the same universal limit, the so called KPZ fixed point [36], while
the weak KPZ universality conjecture says that if we change some “asymmetry parameter” in the
growth model to vanish at the right rate as we scale out, then the limit of this family of models
is the KPZ equation. Similarly, here the influence of the random potential on the population
model must vanish at the right rate as we pass to the limit, so the parabolic Anderson model
arises as scaling limit of a family of models. Similar weak universality results have recently been
shown for other singular SPDEs such as the KPZ equation [16, 24, 22, 20] (this list is far from
complete), the Φ2n

d equations [37, 25, 42], or the (stochastic) nonlinear wave equation [17, 39].
A key task in singular stochastic PDEs is to renormalize and to construct certain a priori

ill-defined products between explicit stochastic processes. This problem already arises in rough
paths [35] but there it is typically not necessary to perform any renormalizations and general
construction and approximation results for Gaussian rough paths were developed in [15]. For
singular SPDEs the constructions become much more involved and a general construction of
regularity structures for equations driven by Gaussian noise was found only recently and is
highly nontrivial [5, 8]. For Gaussian noise it is natural to regroup polynomials of the noise
in terms of Wick products, which goes back at least to [11] and is essentially always used in
singular SPDEs, see [26, 27, 7, 21] and many more. Moreover, in the Gaussian case all moments
of polynomials of the noise are equivalent, and therefore it suffices to control variances. In the
non-Gaussian case we can still regroup in terms of Wick polynomials [37, 30, 9, 43], but a priori
the moments are no longer comparable and new methods are necessary. In [37] the authors used
martingale inequalities to bound higher order moments in terms of variances.

In our case it may look as if there are no martingales around because the noise is constant
in time. But if we enumerate the lattice points and sum up our i.i.d. variables along this
enumeration, then we generate a martingale. This observation was used in [10] to show that for
certain polynomial functionals of the noise (“discrete multiple stochastic integrals”) the moments
are still comparable, but the approach was somewhat ad-hoc and only applied directly to the
product of two variables in “the first chaos”.

Here we develop a general machinery for the use of discrete Wick contractions in the renor-
malization of discrete, singular SPDEs with i.i.d. noise which is completely analogous to the
continuous Gaussian setting. Moreover, we build on the techniques of [6] to provide a crite-
rion that identifies the scaling limits of discrete Wick products as multiple Wiener-Itô integrals.
Although these techniques are only applied to the discrete 2d parabolic Anderson model, the
approach extends in principle to any discrete formulation of popular singular SPDEs such as the
KPZ equation or the Φ4

d models.

1.1 Conventions and Notation

We use the common notation À, Á in estimates to denote ď, ě up to a positive constant. The
symbol « means that both À and Á hold true. For discrete indices we mean by i À j that there
is a N ě 0 (independent of i, j) such that i ď j `N , i.e. that 2i À 2j , and similarly for j Á i;
the notation i „ j is shorthand for i À j and j À i.
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We denote partial derivatives by Bα for α P Nd :“ t0, 1, 2, . . . ud and for α “ p1i“jqj we write
Bi “ Bα. Our Fourier transform follows the convention that for f P L1pRdq

FRdfpyq :“

ż

Rd
fpxqe´2πıx‚y dx, F´1

Rd fpxq :“

ż

Rd
fpyqe2πıx‚y dy ,

where x ‚ y denotes the usual inner product on Rd. The most relevant notations are listed in a
glossary at the end of this article.

2 Weighted Besov spaces on Bravais lattices

2.1 Fourier transform on Bravais lattices

A Bravais-lattice in d dimensions consists of the integer combinations of d linearly independent
vectors a1, . . . , ad P Rd, that is

G :“ Z a1 ` . . .` Z ad . (2)

Given a Bravais lattice we define the basis pa1, . . . ,pad of the reciprocal lattice by the requirement

pai ‚ aj “ δij , (3)

and we set R :“ Zpa1`. . .`Zpad. However, we will mostly work with the (centered) parallelotope
which is spanned by the basis vectors pa1, . . . ,pad:

pG :“ r0, 1qpa1 ` . . .` r0, 1qpad ´
1

2
ppa1 ` . . .` padq “ r´1{2, 1{2qpa1 ` . . .` r´1{2, 1{2qpad .

We call pG the bandwidth or Fourier-cell of G to indicate that the Fourier transform of a map
on G lives on pG, as we will see below. We also identify pG » Rd{R and turn pG into an additive
group which is invariant under translations by elements in R.

Example 2.1. If we choose the canonical basis vectors a1 “ e1, . . . , ad “ ed, we have simply

G “ Zd , R “ Zd , pG “ Td “ r´1{2, 1{2qd .

Compare also the left lattice in Figure 2.1.

In Figure 2.1 we sketched some Bravais lattices G together with their Fourier cells pG. Note
that the dashed lines between the points of the lattice are at this point a purely artistic sup-
plement. However, they will become meaningful later on: If we imagine a particle performing
a random walk on the lattice G, then the dashed lines could be interpreted as the jumps it is
allowed to undertake. From this point of view the lines will be drawn by the diffusion operators
we introduce in Section 3.

Definition 2.2. Given a Bravais lattice G as defined in (2) we write

Gε :“ εG

for the sequence of Bravais lattice we obtain by dyadic rescaling with ε “ 2´N , N ě 0. Whenever
we say a statement (or an estimate) holds for Gε we mean that it holds (uniformly) for all
ε “ 2´N , N ě 0.

Remark 2.3. The restriction to dyadic lattices fits well with the use of Littlewood-Paley theory
which is traditionally built from dyadic decompositions. However, it turns out that we do not
lose much generality by this. Indeed, all the estimates below will hold uniformly as soon as we
know that the scale of our lattice is contained in some interval pc1, c2q ĂĂ p0,8q. Therefore
it is sufficient to group the members of any positive null-sequence pεnqně0 in dyadic intervals
r2´pN`1q, 2´N q to deduce the general statement.
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Figure 1: Depiction of some Bravais lattices G with their bandwiths pG: a square lattice, an
oblique lattice and the so called hexagonal lattice. The length of the reciprocal vectors pai is
rather arbitrary since it actually depends on the units in which we measure ai.

Given ϕ P `1pGq we define its Fourier transform as

FGϕpxq :“ |G|
ÿ

kPG
ϕpkqe´2πık‚x, x P pG, (4)

where we introduced a “normalization constant” |G| :“ |det pa1, . . . , adq | that ensures that we
obtain the usual Fourier transform on Rd as |G| tends to 0. We will also write |pG| for the
Lebesgue measure of the Fourier cell pG.

If we consider FGϕ as a map on Rd, then it is periodic under translations in R. By the
dominated convergence theorem FGϕ is continuous, so since pG is compact it is in L1ppGq :“
L1ppG, dxq, where dx denotes integration with respect to the Lebesgue measure. For any ψ P
L1ppGq we define its inverse Fourier transform as

F´1
G ψpkq :“

ż

pG
ψpxqe2πık‚xdx, k P G. (5)

Note that |G| “ 1{|pG| and therefore we get at least for ϕ with finite support F´1
G FGϕ “ ϕ. The

Schwartz functions on G are

SpGq :“

"

ϕ : G Ñ C : sup
kPG
p1` |k|qm|ϕpkq| ă 8 for all m P N

*

,

and we have FGϕ P C8ppGq (with periodic boundary conditions) for all ϕ P SpGq, because for
any multi-index α P Nd the dominated convergence theorem gives

BαFGϕpxq “ |G|
ÿ

kPG
ϕpkqp´2πıkqαe´2πık‚x.

By the same argument we have F´1
G ψ P SpGq for all ψ P C8ppGq, and as in the classical case

G “ Zd one can show that FG is an isomorphism from SpGq to C8ppGq with inverse F´1
G . Many

relations known from the Zd-case carry over readily to Bravais lattices, e.g. Parseval’s identity
ÿ

kPG
|G| ¨ |ϕpkq|2 “

ż

pG
|pϕpxq|2 dx (6)
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(to see this check for example with the Stone-Weierstrass theorem that p|G|1{2e2πık¨qkPG forms
an orthonormal basis of L2ppG, dxq) and the relation between convolution and multiplication

FG pϕ1 ˚G ϕ2q pxq :“ FG
˜

ÿ

kPG
|G|ϕ1pkqϕ2p¨ ´ kq

¸

pxq “ FGϕ1pxq ¨ FGϕ2pxq, (7)

F´1
G

´

ψ2 ˚
pG ψ2

¯

pkq :“ F´1
G

ˆ
ż

pG
ψ1pxqψ2pr¨ ´ xs

pGqdx

˙

pkq “ F´1
G ψ1pkq ¨ F´1

G ψ2pkq. (8)

where rzs
pG is for z P Rd the unique element in pG such that z ´ rzs

pG P R.
Since SpGq consists of functions decaying faster than any polynomial, the Schwartz distribu-

tions on G are the functions that grow at most polynomially,

S 1pGq :“

"

f : G Ñ C : sup
kPG
p1` |k|q´m|fpkq| ă 8 for some m P N

*

,

and fpϕq :“ |G|řkPG fpkqϕpkq is well defined for ϕ P SpGq. We extend the Fourier transform to
S 1pGq by setting

pFGfqpψq :“ f
´

F´1
G ψ

¯

“ |G|
ÿ

kPG
fpkqF´1

G ψpkq, ψ P C8ppGq,

where p. . .q denotes the complex conjugate. This should be read as pFGfqpψq “ fpFGψq, which
however does not make any sense because for ψ P C8ppGq we did not define the Fourier transform
FGψ but only F´1

G ψ. The Fourier transform pFGfqpψq agrees with
ş

pG FGfpxq ¨ ψpxq dx in case
f P SpGq. It is possible to show that pf P S 1ppGq, where

S 1ppGq :“ tu : C8ppGq Ñ C : u is linear and DC ą 0,m P N s.t. |upψq| ď C}ψ}
Cmb p

pGqu

for }ψ}
Cmb p

pGq :“
ř

|α|ďm }B
αψ}

L8p pGq, and that FG is an isomorphism from S 1pGq to S 1ppGq with
inverse

pF´1
G uqpϕq :“ |G|

ÿ

kPG
upe2πık‚p¨qqϕpkq. (9)

As in the classical case G “ Z it is easy to see that we can identify every f P S 1pGq with a
“Dirac comb” distribution fdir P S 1pRdq by setting

fdir “ |G|
ÿ

kPG
fpkqδp¨ ´ kq, (10)

where δp¨ ´ kq P S 1pRdq denotes a shifted Dirac delta distribution. We can identify any element
g P S 1ppGq of the frequency space with an R-periodic distribution gext P S 1pRdq by setting

gextpϕq :“ g

˜

ÿ

kPR

ϕp¨ ´ kq

¸

, ϕ P SpRdq . (11)

If g P S 1ppGq coincides with a function on pG one sees that

gextpxq “ gprxs
pGq (12)

where rxs
pG is, as above, the (unique) element rxs

pG P
pG such that rxs

pG´x P Zpa1` . . .`Zpad “ R.
Conversely, every R-periodic distribution g P S 1pRdq can be seen as a restricted element gres P

S 1ppGq, e.g. by considering

grespϕq :“ pψ ¨ gqpϕextq “ gpψ ¨ ϕextq, ϕ P C8ppGq (13)
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where ψ P C8c pRdq is chosen such that
ř

kPR ψp¨ ´ kq “ 1 and where we used in the second
equality the definition of the product between a smooth function and a distribution. To construct
such a ψ it suffices to convolve 1

pG with a smooth, compactly supported mollifier, and it is easy
to check that pgextqres “ g for all g P S 1pGq and that gres does not depend on the choice of ψ.
This motivates our definition of the extension operator E below in Lemma 2.6.

With these identifications in mind we can interpret the concepts introduced above as a sub-
theory of the classical Fourier analysis of tempered distributions. We will sometimes use the
following identity for f P S 1pGq

pFGfqext “ FRdpfdirq , (14)

which is easily checked using the definitions above.
Next, we want to introduce Besov spaces on G. Recall that one way of constructing Besov

spaces on Rd is by making use of a dyadic partition of unity.

Definition 2.4. A dyadic partition of unity is a family pϕjqjě´1 Ď C8c pRdq of nonnegative
radial functions such that

• suppϕ´1 is contained in a ball around 0, suppϕj is contained in an annulus around 0 for
j ě 0 ,

• ϕj “ ϕ0p2
´j ¨q for j ě 0 ,

• ř

jě´1 ϕjpxq “ 1 for any x P Rd ,

• If |j ´ j1| ą 1 we have suppϕj X suppϕj1 “ H ,

Using such a dyadic partition as a family of Fourier multipliers leads to the Littlewood-Paley
blocks of a distribution f P S 1pRdq,

∆jf :“ F´1
Rd pϕj ¨ FRdfq.

Each of these blocks is a smooth function and it represents a “spectral chunk” of the distribution.
By choice of the pϕjqjě´1 we have f “

ř

jě´1∆jf in S 1pRdq, and measuring the explosion/decay
of the Littlewood-Paley blocks gives rise to the Besov spaces

Bαp,qpRdq “
!

f P S 1pRdq : }p2jα}∆jf}Lpqjě´1}`q ă 8

)

. (15)

In our case all the information about the Fourier transform of f P S 1pGq, that is FGf P S 1ppGq,
is stored in a finite bandwidth pG. Therefore, it is more natural to decompose the compact set pG,
so that we consider only finitely many blocks. However, there is a small but delicate problem:
We should decompose pG in a smooth periodic way, but if j is such that the support of ϕj
touches the boundary of pG, the function ϕj will not necessarily be smooth in a periodic sense.
We therefore redefine the dyadic partition of unity for x P pG as

ϕGj pxq “

"

ϕjpxq, j ă jG ,
1´

ř

jăjG
ϕjpxq, j “ jG ,

(16)

where j ď jG :“ inftj : suppϕj X B pG ‰ Hu. Now we set for f P S 1ωpGq

∆Gj f :“ F´1
G pϕ

G
j ¨ FGfq ,

which is now a function defined on G. As in the continuous case we will also use the notation
SGj f “

ř

iăj ∆
G
i f .

Of course, for a fixed G it may happen that ∆G´1 “ Id, but if we rescale the lattice G to εG,
the Fourier cell pG changes to ε´1

pG and so for εÑ 0 the following definition becomes meaningful.
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Definition 2.5. Given α P R and p, q P r1,8s we define

Bαp,qpGq :“
!

f P S 1pGq | }f}Bαp,qpGq “ }p2
jα}∆Gj f}LppGqqj“´1,...,jG}`q ă 8

)

,

where we define the LppGq norm by

}f}LppGq :“

˜

|G|
ÿ

kPG
|fpkq|p

¸1{p

“ }|G|1{pf}`p . (17)

We write furthermore Cαp pGq :“ Bαp,8pGq.

The reader may have noticed that since we only consider finitely many j “ ´1, . . . , jG (and
since ∆j : LppGq Ñ LppGq is a bounded operator, uniformly in j, as we will see below), the two
spaces Bαp,qpGq and LppGq are in fact identical with equivalent norms! However, since we are
interested in uniform bounds on Gε for ε Ñ 0, we are of course not allowed to switch between
these spaces. Whenever we consider sequences Gε of lattices we construct all dyadic partitions
of unity pϕG

ε

j qj“´1,...,jGε from the same partition of unity pϕjqjě´1 on Rd.
With the above constructions at hand it is easy to develop a theory of paracontrolled distri-

butions on a Bravais lattice G which is completely analogous to the one on Rd. For the transition
from the rescaled lattice models on Gε to models on the Euclidean space Rd we need to compare
discrete and continuous distributions, so we should extend the lattice model to a distribution in
S 1pRdq. One way of doing so is to simply consider the identification with a Dirac comb, already
mentioned in (10), but this has the disadvantage that the extension can only be controlled in
spaces of quite low regularity because the Dirac delta is quite irregular. We find the following
extension convenient:

Lemma 2.6. Let ψ P C8c pRdq be a positive function with
ř

kPR ψp¨ ´ kq ” 1 and set

Ef :“ F´1
Rd

`

ψ ¨ pFGfqext

˘

, f P S 1pGq,

where the periodic extension p¨qext : S 1ppGq Ñ S 1pRdq is defined as in (11). Then Ef P C8pRdq X
S 1pRdq and Efpkq “ fpkq for all k P G.

Proof. We have Ef P S 1pRdq because pFGfqext is in S 1pRdq, and therefore also Ef “ F´1
Rd pψ ¨

pFGfqextq P S 1pRdq. Knowing that Ef is in S 1pRdq, it must be in C8pRdq as well because it has
compact spectral support by definition. Moreover, we can write for k P G

Efpkq “ pFGfqext pψ ¨ e
2πık‚p¨qq “ FGf

˜

ÿ

rPR
ψp¨ ´ rqe2πık‚p¨´rq

¸

“ FGfpe2πık‚p¨qq “ fpkq ,

where we used the definition of p¨qext from (11) and that k ‚ r P Z for all k P G and r P R.

It is possible to show that if Eε denotes the extension operator on Gε, then the family pEεqεą0

is uniformly bounded in LpBαp,qpGεq,Bαp,qpRdqq, and this can be used to obtain uniform regularity
bounds for the extensions of a given family of lattice models.

However, since we are interested in equations with spatially homogeneous noise, we cannot
expect the solution to be in Bαp,qpGq for any α, p, q and instead we have to consider weighted
spaces. In the case of the parabolic Anderson model it turns out to be convenient to even allow
for subexponential growth of the form e|¨|

σ for σ P p0, 1q, which means that we have to work on
a larger space than S 1pGq, where only polynomial growth is allowed. So before we proceed let
us first recall the basics of the so called ultra-distributions on Rd.
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2.2 Ultra-distributions on Euclidean space

A drawback of Schwartz’s theory of tempered distributions is the restriction to polynomial
growth. As we will see later, it is convenient to allow our solution to have subexponential
growth of the form eλ|¨|

σ for σ P p0, 1q and λ ą 0. It is therefore necessary to work in a larger
space S 1ωpRdq Ě S 1pRdq, the space of so called (tempered) ultra-distributions, which has less
restrictive growth conditions but on which one still has a Fourier transform. Similar techniques
already appear in the context of singular SPDEs in [38], where the authors use Gevrey functions
that are characterized by a condition similar to the one in Definition 2.11 below. Here, we
will follow a slightly different approach that goes back to Beurling and Björck [3], and which
mimics essentially the definition of tempered distribution via Schwartz functions. For a broader
introduction to ultra-distributions see for example [45, Chapter 6] or [3].

Let us fix, once and for all, the following weight functions which we will use throughout this
article.

Definition 2.7. We denote by

ωpolpxq :“ logp1` |x|q, ωexp
σ pxq :“ |x|σ, σ P p0, 1q .

where x P Rd, σ P p0, 1q For ω P ω :“ tωpolu Y tωexp
σ |σ P p0, 1qu we denote by ρpωq the set of

measurable, strictly positive ρ : Rd Ñ p0,8q such that

ρpxq À ρpyqeλωpx´yq (18)

for some λ “ λpρq ą 0. We also introduce the notation ρpωq :“
Ť

ωPω ρpωq. The objects
ρ P ρpωq will be called weights.

Note that the sets ρpωq are stable under addition and multiplication for a fixed ω P ω. The
indices “pol” and “exp” of the elements in ω indicate the fact that elements in ρ P ρpωpolq are
polynomially growing or decaying while elements in ρpωexp

σ q are allowed to have subexponential
behavior. Note that

ρpωpolq Ď ρpωexp
σ q

and that

p1` |x|qλ P ρpωpolq (19)

and eλ|x|
σ
P ρpωexp

σ q for λ P R, σ P p0, 1q. The reason why we only allow for σ ă 1 will be
explained in Remark 2.10 below.

We are now ready to define the space of ultra-distributions.

Definition 2.8. We define for ω P ω the locally convex space

SωpRdq :“ tf P SpRdq | @λ ą 0, α P Nd pωα,λpfq ` π
ω
α,λpfq ă 8u , (20)

which is equipped with the seminorms

pωα,λpfq :“ sup
xPRd

eλωpxq|Bαfpxq| , (21)

πωα,λpfq :“ sup
xPRd

eλωpxq|BαFRdfpxq| . (22)

Its topological dual S 1ωpRdq is called the space of tempered ultra-distributions.

Remark 2.9. We here follow [45, Def. 6.1.2.3] and equip the dual S 1ωpRdq with the strong
topology. The choice of the weak-* topology is however also common in the literature [1].
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Remark 2.10. The reason why we excluded the case σ ě 1 for ωexp
σ in Definition 2.7 is that

we want Sω to contain functions with compact support, which then allows for localization and
thus for a Littlewood-Paley theory. But if ω “ ωexp

σ with σ ě 1 and f P SωpRdq the requirement
πω0,λpfq ă 8 implies that FRdf can be bounded by e´c|x|, c ą 0 , which means that f is analytic
and the only compactly supported f P SωpRdq is the zero-function f “ 0.

In the case ω “ ωexp
σ , σ P p0, 1q the space S 1ω is strictly larger than S 1. Indeed: ec|¨|σ

1

P

S 1ωpRdqzS 1pRdq for σ1 P p0, σs. In the case ω “ ωpol we simply have

SωpRdq “ SpRdq

with a topology that can also be generated by only using the seminorms pωα,λ so that the dual
of SωpRdq “ SpRdq is given by

S 1ωpRdq “ S 1pRdq .

The theory of “classical” tempered distributions is therefore contained in the framework above.
The role of the triple

DpRdq :“ C8c pRdq Ď SpRdq Ď C8pRdq

in this theory will be substituted by spaces DωpRdq, C8ω pRdq such that

DωpRdq Ď SωpRdq Ď C8ω pRdq .

Definition 2.11. Let U Ď Rd be an open set and ω P ω “ tωpoluYtωexp
σ |σ P p0, 1qu. We define

for ω “ ωexp
σ the set C8ω pUq to be the space of f P C8pUq such that for every ε ą 0 and compact

K Ď U there exists Cε,K ą 0 such that for all α P Nd

sup
K
|Bαf | ď Cε,K ε

|α|pα!q1{σ . (23)

For ω “ ωpol we set C8ω pUq “ C8pUq. We also define

DωpUq “ C8ω pUq X C
8
c pUq . (24)

The elements of C8ω pUq are called ultra-differentiable functions and the elements of the dual
space D1ωpRdq are called ultra-distributions.

Remark 2.12. The space D1ωpRdq is equipped with a suitable topology [3, Section 1.6] which we
did not specify since this space will not be used in this article and is just mentioned for the sake
of completeness.

Remark 2.13. The factor α! in (23) can be replaced by |α|! or |α||α| [41, Proposition 1.4.2] as
can be easily seen from α! ď |α|! ď d|α|α! and Stirlings formula.

The relation between Dω,Sω, C8ω and their properties are specified by the following lemma.

Lemma 2.14. Let ω P ω.

i) We have SωpRdq Ď C8ω pRdq and

DωpRdq “ SωpRdq X C8c pRdq . (25)

In particular DωpRdq Ď SωpRdq Ď C8c pRdq.

ii) The space SωpRdq is stable under addition, multiplication and convolution.
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iii) The space C8ω pRdq is stable under addition, multiplication and division in the sense that
f{g ¨ 1supp f P C

8
ω pRdq for f, g P C8ω pRdq, supp f Ď

˝
supp g.

Sketch of the proof. We only have to prove the statements for ω P tωexp
σ |σ P p0, 1qu. Take

f P SωpRdq and ε ą 0. We then have for α P Nd

Bαfpxq “ p2πıq|α|
ż

Rd
e2πıx‚ξ ξαFRdfpξq dξ

Using further that for λ ą 0 (we here follow [31, Lemma 12.7.4])
ż

|ξ||α|e´λ|ξ|
σ
dξ À

ż 8

0
r|α|`d´1e´λr

σ
dr À λ´|α|{σΓ

`

p|α| ` dq{σ
˘

Stirling
À λ´|α|{σC |α||α||α|{σ,

we obtain for x P Rd

|Bαfpxq| À Cλλ
´|α|{σC |α||α||α|{σ ¨ πω0,λpfq .

Choosing λ ą 0 big enough shows that f satisfies the estimate in (23) (with global bounds) and
thus f P C8ω pRdq and SωpRdq Ď C8ω pRdq. In particular we get SωpRdq X C8c pRdq Ď DωpRdq. To
show the inverse inclusion consider f P DωpRdq. We only have to show that πωα,λpfq ă 8 for
any λ ą 0 and α P Nd. And indeed for x P Rd with |x| ě 1 (without loss of generality)1

|eλ|x|
σFRdfpxq| ď

8
ÿ

k“0

λk

k!
|x|σk|FRdfpxq| ď

8
ÿ

k“0

λkCk

k!
|x|rσks|FRdfpxq|

ď

d
ÿ

i“1

8
ÿ

k“0

λkCk

k!
|xi|

rσks|FRdfpxq| “
d
ÿ

i“1

8
ÿ

k“0

λkCk

k!

ˇ

ˇ

ˇ

ż

e2πıξBrσkseifpξq dξ
ˇ

ˇ

ˇ

(23) & Stirling
ď Cε

8
ÿ

k“0

λkCkεk ă 8

where C,Cε ą 0 denote as usual constants that may change from line to line and where in the
last step we chose ε ą 0 small enough to make the series converge; note that the bound (23)
holds on all of Rd because f is compactly supported by assumption.

The stability of SωpRdq under addition, multiplication and convolution are quite easy to
check, see [3, Proposition 1.8.3].

It is straightforward to check that f ¨ g P C8ω pUq for f, g P C8ω pUq using Leibniz’s rule. For
the stability under composition see e.g. [40, Proposition 3.1], from which the stability under
division can be easily derived.

Many linear operations such as addition or derivation that can be defined on distributions
can be translated immediately to the space of ultra-distributions

`

DωpRdq
˘1. We see with (24)

that C8ω pRdq should be interpreted as the set of smooth multipliers for ultra-distributions in
D1ωpRdq and in particular for tempered ultra-distributions S 1ωpRdq Ď D1ωpRdq. The space S 1ωpRdq
is small enough to allow for a Fourier transform.

Definition 2.15. For f P S 1ωpRdq and ϕ P SωpRdq we set

FRdfpϕq :“ fpFRdϕq,

F´1
Rd fpϕq :“ fpF´1

Rd ϕq.

By definition of SωpRdq we have that FRd and F´1
Rd are isomorphisms on SωpRdq which implies

that FRd and F´1
Rd are isomorphisms on S 1ωpRdq.

1We here follow ideas from [38, Proposition A.2].
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The following lemma proves that the set of compactly supported ultra-differentiable functions
DωpRdq is rich enough to localize ultra-distributions, which gets the Littlewood-Paley theory
started and allows us to introduce Besov spaces based on ultra-distributions in the next section.

Lemma 2.16 ([3], Theorem 1.3.7.). Let ω P ω. For every pair of compact sets K Ĺ K 1 Ď Rd
there is a ϕ P DωpRdq such that

ϕ|K “ 1 , suppϕ Ď K 1 .

2.3 Ultra-distributions on Bravais lattices

For the discrete setup we essentially proceed as in Subsection 2.1 and define spaces

SωpGq “
"

f : G Ñ C
ˇ

ˇ

ˇ

ˇ

sup
kPG

eλωpkq|fpkq| ă 8 for all λ ą 0

*

,

and their duals (when equipped with the natural topology)

S 1ωpGq “
"

f : G Ñ C
ˇ

ˇ

ˇ

ˇ

sup
kPG

e´λωpkq|fpkq| ă 8 for some λ ą 0

*

,

with the pairing fpϕq “ |G|řkPG fpkqϕpkq, ϕ P SωpGq. As in Subsection 2.1 we can then
define a Fourier transform FG on S 1ωpGq which maps the discrete space SωpGq into the space
of ultra-differentiable functions SωppGq :“ C8ω p

pGq with periodic boundary conditions. The dual
space S 1ωppGq can be equipped with a Fourier transform F´1

G as in (9) such that FG ,F´1
G become

isomorphisms between S 1ωpGq and S 1ωppGq that are inverse to each other. For a proof of these
statements we refer to Lemma A.1.

Performing identifications as in the case of S 1pRdq we can interpret these concepts as a sub-
theory of the Fourier analysis on S 1ωpRdq with the only difference that we have to choose the
function ψ, satisfying

ř

kPR ψp¨ ´ kq “ 1, on page 7 as an element of DωpRdq, see page 16 below
for details.

2.4 Discrete weighted Besov spaces

We can now give our definition of a discrete, weighted Besov space, where we essentially proceed
as in Subsection 2.1 with the only difference that ρ P ρpωq is included in the definition and that
the partition of unity pϕjqjě´1, from which pϕGj qjě´1 is constructed as on page 8, must now be
chosen in DωpRdq.

Definition 2.17. Given a Bravais lattice G, parameters α P R, p, q P r1,8s and a weight
ρ P ρpωq for ω P ω we define

Bαp,qpG, ρq :“
!

f P S 1ωpGq | }f}Bαp,qpG,ρq :“ }p2jα}ρ ¨∆Gj f}LppGqqj“´1,...,jG}`q ă 8

)

,

where the Littlewood-Paley blocks p∆Gj qj“´1,...,jG are built from a dyadic partition of unity pϕGj qj“´1,...,jG Ď

C8ω p
pGq on pG constructed from some dyadic partition of unity pϕjqjě´1 Ď DωpRdq on Rd as on

page 8. If we consider a sequence Gε as in Definition 2.2 we take the same pϕjqjě´1 Ď DωpRdq
to construct for all ε the partitions pϕG

ε

j qj“´1,...,jGε on pGε.
We write furthermore Cαp pG, ρq “ Bαp,8pG, ρq and define

LppG, ρq :“ tf P SωpGq | }f}LppG,ρq :“ }ρf}LppGq ă 8u ,

i.e. }f}Bαp,qpG,ρq “ }p2
jα}∆Gj f}LppG,ρqqj}`q .
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Remark 2.18. When we introduce the weight we have a choice where to put it. Here we set
}f}LppG,ρq “ }ρf}LppGq, which is analogous to [45] or [28], but different from [38] who instead
take the Lp norm under the measure ρpxqdx. For p “ 1 both definitions coincide, but for p “ 8
the weighted L8 space of Mourrat and Weber does not feel the weight at all and it coincides with
its unweighted counterpart.

Remark 2.19. The formulation of this definition for continuous spaces Bαp,qpRd, ρq, Cαp pRd, ρq
and LppRd, ρq is analogous.

We can write the Littlewood-Paley blocks as convolutions (on G):

∆Gj fpxq “ ΨG,j ˚G fpxq “ |G|
ÿ

kPG
ΨG,jpx´ kqfpkq , x P G , (26)

where
ΨG,j :“ F´1

G ϕGj .

We also introduce the notation

ΨG,ăj :“
ÿ

iăj

ΨG,j .

Due to our convention to only consider dyadic scalings we always have the useful property

ΨG
ε,j “ 2jdφxjyεp2

j ¨q (27)

for a lattice sequence Gε as in Definition 2.2, where

xjyε “

$

’

&

’

%

´1, j “ ´1,

0, ´1 ă j ă jGε ,

8, j “ jGε ,

(28)

and where φ´1, φ0, φ8 P SpRdq are Schwartz functions on Rd with FRdφxjyε P DωpRdq. The
functions φ´1, φ0, φ8 depend on the lattice G used to construct Gε “ εG but are independent
of ε. In a way, this is a discrete substitute for the scaling one finds on Rd for Ψj :“ F´1

Rd ϕj “

2jdpF´1
Rd ϕ0qp2

j ¨q (for j ě 0) due to the choice of the dyadic partition of unity in Definition 2.4. We
prove the identity (27), together with a similar result for ΨG,ăj , in Lemma 2.25 below. It turns
out that (27) is helpful in translating arguments from the continuous theory into our discrete
framework. Let us once more stress the fact that φxjyε is defined on all of Rd, and therefore (26)
actually makes sense for all x P Rd. With the φxjyε from Lemma 2.25 this “extension” coincides
with Eεp∆Gj fq, where the extension operator Eε is defined as in Lemma 2.24 below.

The following Lemma, a discrete weighted Young inequality, allows us to handle convolutions
such as (26).

Lemma 2.20. Given Gε as in Definition 2.2 and Φ P SωpRdq for ω P ω we have for any δ P p0, 1s
with δ Á ε and p P r1,8s, λ ą 0 for Φδ :“ δ´dΦpδ´1¨q the bound

sup
xPRd

}Φδp¨ ` xq}LppGε,eλωp¨`xqq À δ´dp1´1{pq . (29)

where the implicit constant is independent of ε ą 0. In particular, }Φδ}LppGε,eλωq À δ´dp1´1{pq

and for ρ P ρpωq

}Φδ ˚Gε f}LppGε,ρq À }f}LppGε,ρq, }Φδ ˚Gε f}LppRd,ρq À }f}LppGε,ρq , (30)

where we used in the second estimate that

x ÞÑ pΦδ ˚Gε fqpxq “ |Gε|
ÿ

kPGε
Φδpx´ kq fpkq

can be canonically extended to Rd.
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Remark 2.21. Using δ “ 2´j for j P t´1, . . . , jGεu this covers in particular the functions
ΨG

ε,j “ F´1
Gε ϕ

Gε
j via (27).

Proof. The case p “ 8 follows from the definition of SωpRdq and eλωpkq ď eλωpδ
´1kq, so that we

only have to show the statement for p ă 8. And indeed we obtain

}Φδ}
p
LppGε,eλωq “

ÿ

kPGε
|Gε||Φδpkq|pepλωpkq “ δ´dpεd

ÿ

kPG
|G||Φpδ´1εkq|pepλωpεkq

ď δ´dpεd
ÿ

kPG
|G||Φpδ´1εkq|pepλωpδ

´1εkq À δ´dpp´1q
ÿ

kPG
|G|δ´dεd 1

1` |δ´1εk|d`1

Lemma A.2
À δ´dpp´1q

ż

Rd
dz pδ´1εqd

1

1` |δ´1εz|d`1
À δ´dpp´1q ,

where we used that Φ P SωpRdq and in the application of Lemma A.2 that for |x ´ y| À 1 the
quotient 1`|δ´1εx|

1`|δ´1εy|
is uniformly bounded. Inequality (29) can be proved in the same way since it

suffices to take the supremum over |x| À ε.
The estimates for Φδ ˚Gε f then follow by Young’s inequality on Gε and a mixed Young

inequality, Lemma A.3 below, applied to the right hand side of

ρpxq |Φδ ˚Gε fpxq| ď
ÿ

kPGε
|Gε| ρpxq|Φδpx´ kq| ¨ |fpkq|

p‹q

À
ÿ

kPGε
|Gε| eλωpx´kq |Φδpx´ kq| ¨ ρpkq|fpkq| “ |eλωΦ| ˚Gε |ρf |pxq .

In the step p‹q we used that ρpxq À eλωpx´kq ρpkq for some λ ą 0 due to (18).

From Lemma 2.20 ( and Remark 2.21) we see in particular that the blocks ∆G
ε

j map the
space LppGε, ρq into itself for any p P r1,8s:

}∆G
ε

j f}LppGε,ρq “ }Ψ
Gε,j ˚Gε f}LppGε,ρq

Lemma 2.20
À }f}LppGε,ρq , (31)

where the involved constant is independent of ε and j “ ´1, . . . , jGε . This is the discrete
analogue of the continuous version

}∆jf}LppRd,ρq À }f}LppRd,ρq (32)

for j ě ´1 (which can be proved in essentially the same manner).
As in the continuous case we can state an embedding theorem for discrete Besov spaces.

Since it can be shown exactly as its continuous (and unweighted) cousin ([1, Proposition 2.71]
or [12, Theorem 4.2.3]) we will not give its proof here.

Lemma 2.22. Given Gε as in Definition 2.2 for any α1 P R, 1 ď p1 ď p2 ď 8, 1 ď q1 ď q2 ď 8

and weights ρ1, ρ2 with ρ2 À ρ1 we have the continuous embedding (with norm of the embedding
operator independent of ε P p0, 1s)

Bα1
p1,q1pGε, ρ1q Ď Bα2

p2,q2pGε, ρ2q

for α2 ´
d
p2
ď α1 ´

d
p1
. If α2 ă α1 ´ dp1{p1 ´ 1{p2q and lim|x|Ñ8 ρ2pxq{ρ1pxq “ 0 the embedding

is compact.

For later purposes we also recall the continuous version of this embedding.

Lemma 2.23 ([12], Theorem 4.2.3). For any α1 P R, 1 ď p1 ď p2 ď 8, 1 ď q1 ď q2 ď 8

and weights ρ1, ρ2 with ρ2 À ρ1 we have the continuous embedding (with norm independent of
ε P p0, 1s)

Bα1
p1,q1pR

d, ρ1q Ď Bα2
p2,q2pR

d, ρ2q

for α2 ď α1 ´ dp1{p1 ´ 1{p2q. If α2 ă α1 ´ dp1{p1 ´ 1{p2q and lim|x|Ñ8 ρ2pxq{ρ1pxq “ 0 the
embedding is compact.
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The extension operator

Given a Bravais lattice G and a dyadic partition of unity pϕjqjě´1 on Rd such that jG , as defined
on page 8, is strictly greater than 0 we construct a discrete dyadic partition of unity pϕGj q´1,...,jG

from pϕjqjě´1 as on page 8.
We choose a symmetric function ψ P DωpRdq which we refer to as the smear function and

which satisfies the following properties:

1.
ř

kPR ψp¨ ´ kq “ 1,

2. ψ “ 1 on suppϕj for j ă jG ,

3.
´

suppψ X supp
´

ϕGj

¯

ext

¯

zpG ‰ ∅ ñ j “ jG .

The last property looks slightly technical, but actually only states that the support of ψ is small
enough such that it only touches the support of the periodically extended ϕGj with j ă jG inside
pG. Using distpB pG,ŤjăjG

supp pϕGj qextq ą 0 it is not hard to construct a function ψ as above:
Indeed choose via Lemma 2.16 some ψ̃ P DωpRdq that satisfies property 3 and ψ̃|

pG “ 1 and set
ψ :“ ψ̃{

ř

kPR ψ̃p¨ ´ kq.
The rescaled ψε :“ ψpε¨q satisfies the same properties on Gε (remember that by convention

we construct the sequence pϕG
ε

j qj“´1,...,jGε from the same pϕjqjě´1). This allows us to define an
extension operator Eε in the spirit of Lemma 2.6 as

Eεf :“ F´1
Rd pψ

ε ¨ pFGεfqextq, f P S 1ωpGεq,

and as in Lemma 2.6 we can show that Eεf P C8ω pRdq X S 1ωpRdq and Eεf |Gε “ f .
Using (14) we can give a useful, alternative formulation of Eεf

Eεf “ F´1
Rd ψ

ε ˚Rd F´1
Rd pFGεfqext “ F´1

Rd ψ
ε ˚Rd fdir

“ F´1
Rd ψ

ε ˚Gε f “ |Gε|
ÿ

zPGε
F´1
Rd ψ

εp¨ ´ zq fpzq , (33)

where as in (26) we read the convolution in the second line as a function on Rd using that
F´1
Rd ψ

ε P SωpRdq is defined on Rd. By property 3 of ψ we also have for j ă jGε

∆jEεf “ Eε∆G
ε

j f (34)

Finally, let us study the interplay of Eε with Besov spaces.

Lemma 2.24. For any α P R, p, q P r1,8s and ρ P ρpωq the family of operators

Eε : Bαp,qpGε, ρq ÝÑ Bαp,qpRd, ρq ,

defined above, is uniformly bounded in ε.

Proof. We have to estimate ∆jEεf for j ě ´1. For j ă jGε we can apply (34) and (33) together
with Lemma 2.20 to bound

}∆jEεf}LppRd,ρq “ }ε´dpFRdψqpε
´1¨q ˚Gε ∆

Gε
j f}LppRd,ρq À }∆

Gε
j f}LppGε,ρq À 2´jα}f}Bαp,qpGε,ρq

For j ě jGε only j „ jGε contributes due to the compact support of ψε. By spectral support
properties we have

∆jEεf “ ∆jpEε
ÿ

i„jGε

∆G
ε

i fq
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From (32) we know that ∆j maps LppRd, ρq into itself and we thus obtain

}∆jEεf}LppRd,ρq À }Eε
ÿ

i„jGε

∆G
ε

i f}LppGε,ρq À 2´jGεα}f}Bαp,qpGε,ρq ,

where we applied once more (33) and Lemma 2.20 in the second step.

Below, we will often be given some functional F pf1, . . . , fnq on discrete Besov functions
taking values in a discrete Besov space X (or some space constructed from it) that satisfies a
bound of the type

}F pf1, . . . , fnq}X ď cpf1, . . . , fnq. (35)

We then say that the estimate (35) has the property pEq (on X) if there is a “continuous version”
F of F and a continuous version X of X and a sequence of constants oε Ñ 0 such that

}EεF pf1, . . . , fnq ´ F pEεf1, . . . , Eεfnq}X ď oε ¨ cpf1, . . . , fnq . (E)

In other words we can pull the operator Eε inside F without paying anything in the limit. With
the smear function ψ introduced above when can now also give the proof of the announced
scaling property (27) of the functions ΨG

ε,j .

Lemma 2.25. Let Gε be as in Definition 2.2 and let ω P ω. Let pϕG
ε

j qj“´1,...,jGε Ď DωppGεq be a
partition of unity of xGε as defined on page 8 and take ΨG

ε,j “ F´1
Gε ϕ

Gε
j and ΨG

ε,ăj :“
ř

iăj ΨG
ε,i.

The extensions

Ψ̃ε,j :“ EεΨGε,j “ F´1
Rd pψ

ε ¨

´

ϕG
ε

j

¯

ext
q

Ψ̃ε,ăj :“ EεΨGε,ăj “ F´1
Rd

´

ψε ¨
´

ÿ

iăj

ϕG
ε

i

¯

ext

¯

are elements of SωpRdq. Moreover there are φ̌´1, φ̌0, φ̌8, φ̌Σ P DωpRdq, independent of ε, such
that for for j “ ´1, . . . , jGε and j1 “ 0, . . . , jGε with xjyε as in (28)

ψε ¨
´

ϕG
ε

j

¯

ext
“ φ̌xjyεp2

´j ¨q , (36)

ψε ¨
´

ÿ

iăj1

ϕG
ε

i

¯

ext
“ φ̌Σp2

´j1 ¨q . (37)

The functions φ̌0 and φ̌8 have support in an annulus A Ď Rd.
In particular we have for j “ ´1, . . . , jGε and j1 “ 0, . . . , jGε.

Ψ̃ε,j “ 2jd ¨ φxjyεp2
j ¨q , Ψ̃ε,ăj1 “ 2j

1d ¨ φΣp2
j1 ¨q

where φi :“ F´1
Rd φ̌i for i P t´1, 0,8, Σu.

Proof. Denote by pϕjqjě´1 Ď DωpRdq the partition of unity on Rd from which the partitions
pϕG

ε

j qj“´1,...,jGε are constructed. Let us recall the following facts about pϕjqjě´1

ϕj “ ϕ0p2
´j ¨q for j ě 0, (38)

ÿ

iăj1

ϕi “ ϕ´1p2
´j1 ¨q for j1 ě 0. (39)
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The second property can be seen by rewriting
ÿ

iăj1

ϕi “ 1´
ÿ

lěj1

ϕ0p2
´l¨q “ 1´

ÿ

l1ě0

ϕ0p2
´pj1`l1q¨q “

´

1´
ÿ

l1ě0

ϕl1
¯

p2´j
1

¨q “ ϕ´1p2
´j1 ¨q .

Recall further that ϕ0 has support in an annulus around 0.
To prove the claim we only have to show (36) and (37). For j ă jGε and 0 ď j1 ď jGε we use

that by construction of ϕG
ε

j out of pϕjqjě´1 we have inside pGε

ϕG
ε

j “ ϕj ,
ÿ

iăj1

ϕG
ε

i “
ÿ

iăj1

ϕi

so that due to property 2 and 3 of the smear function ψε and (39) it is enough to take

φ̌Σ “ ϕ´1

and for j ă jGε by the scaling property of ϕj from (38)

φ̌xjyε :“ ϕjp2
j ¨q P tϕ´1p¨{2q, ϕ0u .

For the construction of φ8 a bit more work is required. Recall that by definition of our lattice
sequence Gε we took a dyadic scaling ε “ 2´N which implies in particular

2´jGε “ ε ¨ 2k (40)

for some fixed k P Z. Using once more (39) and relation (40) we can write for x P pGε

ϕG
ε

jGε
pxq “ 1´

ÿ

jăjGε

ϕjpxq “ 1´ ϕ´1p2
´jGεxq “ χpεxq

for some symmetric function χ P C8ω pRdq. As in (12) let us denote for x P Rd by rxs
pGε P

pGε the
unique element of pGε for which x´ rxs

pGε P Rε. One then easily checks

εrxs
pGε “ rεxs pG . (41)

Applying (12) and (41) we obtain for x P Rd that the periodic extension
´

ϕG
ε

jGε

¯

ext
pxq “ ϕG

ε

jGε
prxs

pGεq “ χpεrxs
pGεq “ χprεxs

pGq

is the ε scaled version of the smooth, R-periodic function χpr¨s
pGq P C

8
ω p

pGq (to see that the
composition with r¨s

pG does not change the smoothness, note that χ equals 1 on a neighborhood
of B pG). Consequently

ψpε¨q
´

ϕG
ε

jGε

¯

ext
“

´

ψχpr¨s
pGq
¯

pε¨q ,

so that setting φ̌8 “
´

ψχpr¨s
pGq
¯

p2´k¨q with k as in (40) finishes the proof.

3 Discrete diffusion operators

Our aim is to analyze differential equations on Bravais lattice that are in a certain sense semi-
linear and “parabolic”, i.e. there is a leading order linear difference operator, which here we
will always take as the infinitesimal generator of a random walk on our Bravais lattice. In the
following we analyze the regularization properties of the corresponding “heat kernel”.
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3.1 Definitions

Let us construct a symmetric random walk on a Bravais lattice Gε with mesh size ε which can
reach every point (our construction follows [33]). First we choose a subset of “jump directions”
tg1, . . . , glu Ď Gzt0u such that Zg1` . . .`Zgl “ G and a map κ : tg1, . . . , glu Ñ p0,8q. We then
take as a rate for the jump from z P Gε to z ˘ εgi P Gε the value κpgiq{2ε2. In other words the
generator of the random walk is

Lεupyq “ ε´2
ÿ

ePt˘giu

κpeq

2
pupy ` εeq ´ upyqq , (42)

which converges (for u P C2pRdq) pointwise to Lu “ 1
2

řl
i“1 κpgiq gi ‚∇2u gi as ε tends to 0. In

the case G “ Zd and κpeiq “ 1{d we obtain the simple random walk with limiting generator
L “ 1

2d∆. We can reformulate (42) by introducing a signed measure

µ “ κpg1q

ˆ

1

2
δg1 `

1

2
δ´g1

˙

` . . .` κpglq

ˆ

1

2
δgl `

1

2
δ´gl

˙

´

l
ÿ

i“1

κpgiqδ0 ,

which allows us to write Lεu “ ε´2
ş

Rd upx ` εyqdµpyq and Lu “ 1
2

ş

Rd y ‚∇2u y dµpyq. In fact
we will also allow the random walk to have infinite range.

Definition 3.1. We write µ P µpωq “ µpω,Gq for ω P ω if µ is a finite, signed measure on a
Bravais lattice G such that

• xsuppµy “ G,

• µ|t0uc ě 0,

• for any λ ą 0 we have
ş

G e
λωpxq d|µ|pxq ă 8, where |µ| is the total variation of µ,

• µpAq “ µp´Aq for A Ď G and µpGq “ 0,

where x¨y denotes the subgroup generated by ¨ in pG,`q. We associate a norm on Rd to µ P µpωq
which is given by

}x}2µ “
1

2

ż

G
|x ‚ y|2dµpyq .

We also write µpωq :“
Ť

ωPω µpωq.

Lemma 3.2. The function ‖¨‖µ of Definition 3.1 is indeed a norm.

Proof. The homogeneity is obvious and the triangle inequality follows from Minkowski’s inequal-
ity. If }x}µ “ 0 we have x ‚ g “ 0 for all g P suppµ. Since xsuppµy “ G we also have x ‚ ai “ 0
for the linearly independent vectors a1, . . . , ad from (2), which implies x “ 0.

Given µ P µpωq as in Definition 3.1 we can then generalize the formulas we found above.

Definition 3.3. For ω P ω, µ P µpωq as in Definition 3.1 and Gε as in Definition 2.2 we set

Lεµupxq “ ε´2

ż

G
upx` εyq dµpyq

for u P S 1ωpGεq and

pLµuq pϕq :“
1

2

ż

G
y ‚∇2u y dµpyq pϕq :“

1

2

ż

G
y ‚∇2upϕq y dµpyq

for u P S 1ωpRdq and ϕ P SωpRdq. We write further L ε
µ ,Lµ for the parabolic operators L ε

µ “

Bt ´ L
ε
µ and Lµ “ Bt ´ Lµ.
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Lεµ is nothing but the infinitesimal generator of a random walk with sub-exponential moments
(Lemma A.5). By direct computation it can be checked that for G “ Zd and with the extra
condition

ş

yiyjdµpyq “ 2 δij we have the identities ‖¨‖µ “ |¨| and Lµ “ ∆Rd . In general Lµ is
an elliptic operator with constant coefficients,

Lµu “
1

2

ż

G
y ‚∇2u y dµpyq “

1

2

ÿ

i,j

ż

G
yiyj dµpyq ¨ Biju “:

1

2

ÿ

i,j

aµij ¨ B
iju ,

where paµijq is a symmetric matrix. The ellipticity condition follows from the relation x ‚ paµijqx “

2}x}2µ and the equivalence of norms on Rd. In terms of regularity we expect therefore that Lεµ
behaves like the Laplacian when we work on discrete spaces.

Lemma 3.4. We have for α P R, p P r1,8s, ω P ω and µ P µpωq, ρ P ρpωq

}Lεµu}Cα´2
p pGε,ρq À }u}Cαp pGε,ρq ,

where Cαp pGε, ρq “ Bαp,8pGε, ρq is as in Definition 2.17, and where the implicit constant is inde-
pendent of ε. For δ P r0, 1s we further have

}pLεµ ´ Lµqu}Cα´2´δ
p pRd,ρq À εδ}u}Cαp pRd,ρq ,

where the action of Lεµ on u P S 1ωpRdq should be read as

pLεµuqpϕq “ u

ˆ

ε´2

ż

G
ϕp¨ ` εyqdµpyq

˙

“ u

ˆ

ε´2

ż

G
ϕp¨ ´ εyqdµpyq

˙

“ upLεµϕq (43)

for ϕ P SωpRdq, where we used the symmetry of µ in the second step.

Proof. We start with the first inequality. With Ψ
Gε,j

:“
ř

´1ďiďjGε : |i´j|ď1 ΨG
ε,i P SωpGεq we

have by spectral support properties ∆G
ε

j u “ Ψ
Gε,j

˚Gε ∆
Gε
j u. Via (27) we can read ΨG

ε,j and

thus Ψ
j,Gε as a smooth function in SωpRdq defined on all of Rd. In this sense we read

∆G
ε

j u “ |Gε|
ÿ

zP|Gε|
Ψ
Gε,j
p¨ ´ zq∆G

ε

j upzq , (44)

as a smooth function on Rd in the following. Since µ integrates affine functions to zero we can
rewrite

∆G
ε

j L
ε
µupxq “ ε´2

ż

G
dµpyq r∆G

ε

j upx` εyq ´∆
Gε
j upxq ´∇p∆G

ε

j uqpxq ¨ εys

“

ż

G
dµpyq

ż 1

0
dζ1

ż 1

0
dζ2 y ‚∇2p∆G

ε

j uqpx` εζ1ζ2yqy.

Using (18) and the Minkowski inequality on the support of µ we then obtain

}ρ∆G
ε

j L
ε
µu}LppGεq À

ż

G
dµpyq

ż 1

0
dζ1

ż 1

0
dζ2e

λωpεζ1ζ2yq|y|2
›

›

›
ρp¨ ` εζ1ζ2yq|∇2p∆G

ε

j uqp¨ ` εζ1ζ2yq|
›

›

›

LppGεq
,

where λ is as in (18). By definition of µpωq and monotonicity of ω P ω we have
ż 1

0
dζ1

ż 1

0
dζ2

ż

G
dµpyq |y|2eλωpεζ1ζ2yq ď

ż 1

0
dζ1

ż 1

0
dζ2

ż

G
dµpyq |y|2eλωpyq ă 8

so that we are left with the task of estimating
›

›

›
ρp¨ ` εζ1ζ2yq|∇2p∆G

ε

j uqp¨ ` εζ1ζ2yq|
›

›

›

LppGεq
À }∇2Ψ

Gε,j
p¨ ` εζ1ζ2q}L1pGε,eλωp¨`εζ1ζ2qq }∆

Gε
j u}LppGε,ρq ,
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where we applied (44) and Young’s convolution inequality on Gε. Due to (27) and Lemma 2.20
we can estimate the first factor by 2j2 so that we obtain the total estimate

}∆G
ε

j L
ε
µu}LppGε,ρq À 2´jpα´2q}u}Cαp pGε,ρq

and the first estimate follows.
To show the second inequality we proceed essentially the same but use instead Ψ

j
“

ř

i: |i´j|ď1 Ψi, where Ψj “ F´1
Rd ϕj now really denotes the inverse transform of the partition

pϕjqjě´1 on all of Rd. We then have ∆j “ Ψ
j
˚∆j , so that

∆jpL
ε
µ ´ Lµqu “

ż 1

0
dζ1

ż 1

0
dζ2

ż

G
dµpyq

ż

Rd
dz y ‚ p∇2Ψ

j
p¨ ` εζ1ζ2y ´ zq ´∇2Ψ

j
p¨ ´ zqqy ∆jupzq .

As above we can then either get 2´jpα´2q}u}Cαp pGε,ρq, by bounding each of the two second deriva-
tives separately, or 2´jpα´3qε}u}Cαp pGε,ρq, by exploiting the difference to introduce the third deriva-
tive. We obtain the second estimate by interpolation.

3.2 Semigroup estimates

In Fourier space Lεµ can be represented by a Fourier multiplier lεµ : pGε Ñ R:

FGεpLεµuq “ ´lεµ ¨ FGεu ,

for u P S 1ωpGεq. The multiplier lεµ is given by

lεµpxq “ ´

ż

G

eıε2πx‚y

ε2
dµpyq “

ż

G

1´ cospε2πx ‚ yq

ε2
dµpyq “ 2

ż

G

sin2pεπx ‚ yq

ε2
dµpyq , (45)

where we used that µ is symmetric with µpGq “ 0 and the trigonometric identity 1´cos “ 2 sin2.
The following lemma shows that lεµ is well defined as a multiplier (i.e. lεµ P C

8
ω p

xGεq). It is
moreover the backbone of the semigroup estimates shown below.

Lemma 3.5. Let ω P ω and µ P µpωq. The function lεµ defined in (45) is an element of
SωpxGεq “ C8ω p

xGεq and
• if ω “ ωexp

σ with σ P p0, 1q it satisfies |Bklεµpxq| Àδ εp|k|´2q_0p1 ` |x|2qδ|k|pk!q1{σ for any
δ ą 0, k P Nd,

• for every compact set K Ď Rd with K XR “ t0u, where R is the reciprocal lattice of the
unscaled lattice G, we have lεµpxq ÁK |x|2 for all x P ε´1K.

The implicit constants are independent of ε.

Proof. We start by showing |Bklεµpxq| Àδ εp|k|´2q_0p1` |x|2qδ|k|pk!q1{σ if ω “ ωexp
σ , which implies

in particular lεµ P SωpxGεq in that case. The proof that lεµ P SωpxGεq for µ P µpωpolq is again similar
but easier and therefore omitted. We study derivatives with |k| “ 0, 1 first. We have

|lεµpxq| “ 2

ˇ

ˇ

ˇ

ˇ

ż

G

sin2pεπx ‚ yq

ε2
dµpyq

ˇ

ˇ

ˇ

ˇ

À

ˇ

ˇ

ˇ

ˇ

ż

G

sin2pεπx ‚ yq

|επx ‚ y|2
|x ‚ y|2dµpyq

ˇ

ˇ

ˇ

ˇ

À

ż

G
|y|2d|µ|pyq ¨ |x|2 À |x|2,

and for i “ 1, . . . , d

|Bilεµpxq|| À

ż

G

| sinpεπx ‚ yq|

|επx ‚ y|
|x||y|2d|µ|pyq À |x| .
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For higher derivatives we use that Bkxeı2πεx
‚y “ pı2πεq|k|ykeı2πεx‚y which gives (where C ą 0

denotes as usual a changing constant)

|Bklεµpxq| ď ε|k|´2C |k|
ż

G
|y||k|d|µ|pyq ď ε|k|´2C |k|max

tě0
pt|k|e´λt

σ
q

ż

G
eλ|y|

σ
dµpyq

for any λ ą 0. Using maxtě0 t
ae´λt

σ
“ λ´a{σpa{σqa{σe´a{σ for a ą 0 we end up with

|Bklεµpxq| À ε|k|´2 1

λ|k|{σ
C |k||k||k|{σ À ε|k|´2 1

λ|k|{σ
C |k|pk!q1{σ ,

and our first claim follows by choosing λ1{σ :“ C{δ.
It remains to show that lεµ{|¨|2 Á 1 on ε´1K, which is equivalent to l1µ{|¨|2 Á 1 on K. We

start by finding the zeros of l1µ which, by periodicity can be reduced to finding all x P pG with
l1µpxq “ 0. But if l1µpxq “ 0, then y ‚ x P Z for any y P suppµ, which yields with xsuppµy “ G
that we must have ai ‚x P Z for ai as in (2). But since x P pG we have x “ x1â1` . . .`xdâd with
xi P r´1{2, 1{2q and âi as in (3). Consequently

xi “ x ‚ ai P ZX r´1{2, 1{2q “ t0u ,

and hence x “ 0. Since l1µ is periodic under translations in the reciprocal lattice R, its zero set
is thus precisely R. By assumption K XR “ t0u and it remains therefore to verify l1µpxq Á |x|2

in an environment of 0 to finish the proof.
Note that there is a finite subset V Ď suppµ such that 0 P V and xV y “ G, since only finitely

many y P suppµ are needed to generate a1, . . . , ad. We restrict ourselves to V :

l1µpxq “ 2

ż

G
sin2pπx ‚ yqdµpyq ě 2

ż

V
sin2pπx ‚ yqdµpyq

For x P pGzt0u small enough we can now bound
ş

V sin2pπx ‚ yqdµpyq Á
ş

V |x ‚ y|2dµpyq. The term
on the right hand side defines (the square of) a norm by the same arguments as in Lemma 3.2,
and since it must be equivalent to |¨|2 the proof is complete.

Using that SωpxGεq “ C8ω p
xGεq is stable under composition with functions in C8ω pRdq we see

that e´tl
ε
µ P C8ω p

xGεq for t ě 0 and can thus define the Fourier multiplier

etL
ε
µf :“ F´1

Gε pe
´tlεµFGεfq

for t ě 0 and f P S 1ωpGεq, which gives the (weak) solution to the problem L ε
µg “ 0, gp0q “ f .

The regularizing effect of the semigroup is described in the following proposition.

Proposition 3.6. We have for α P R, β ě 0, p P r1,8s, ω P ω, µ P µpωq and ρ P ρpωq

}etL
ε
µf}Cα`βp pGε,ρq À t´β{2}f}Cαp pGε,ρq , (46)

}etL
ε
µf}Cβp pGε,ρq

À t´β{2}f}LppGε,ρq , (47)

and for α P p0, 2q

}petL
ε
µ ´ Idqf}LppGε,ρq À tα{2}f}Cαp pGε,ρq , (48)

uniformly on compact intervals t P r0, T s. The involved constants are independent of ε.
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Proof. We show the claim for ω “ ωexp
σ “ |x|σ, σ P p0, 1q , the arguments for ω “ ωpol are

similar but easier. Using spectral support properties we can rewrite for j “ ´1, . . . , jGε

∆G
ε

j e
tLεµf “ F´1

Gε

¨

˝

ÿ

i: |i´j|ď1

ϕG
ε

i e
´tlεµ ¨ FGε∆G

ε

j f

˛

‚“ Kjpt, ¨q ˚Gε ∆
Gε
j f , (49)

where we set for z P Gε

Kjpt, zq :“

ż

pGε
dy e2πız‚y

ÿ

i: |i´j|ď1

ϕG
ε

i pyqe
´tlεµpyq.

Using the smear function ψε “ ψpε¨q from Subsection 2.4 we can rewrite this as an expression
that is well-defined for all x P Rd

Kjpt, xq :“

ż

Rd
dy e2πıx‚y ψεpyq

ÿ

i: |i´j|ď1

`

ϕG
ε

i

˘

ext
pyq ¨ e´tl

ε
µpyq ,

where p¨qext is given as in (12) and where we extended lεµ (periodically) to all of Rd by relation
(45). Consequently, we can apply Lemma 2.25 to give an expression for the scaled kernel

Kpjqpt, xq :“ 2´jdKjpt, 2
´jxq “

ż

Rd
dy e2πıx‚yϕpjqpyq ¨ e

´tlεµp2
jyq ,

where we wrote ϕpjq “
ř

i: |i´j|ď1 φ̌xiyεp2
´pi´jq¨q with φ̌xiyε as in Lemma 2.25. Suppose we already

know that for any λ ą 0 and x P Gε the estimate

|Kpjqpt, xq| Àλ e
´λ|x|σ2´jβt´β{2 “: 2´jβt´β{2Φpxq (50)

holds. We then obtain from (49) with Φ2´j pxq :“ 2jdΦp2jxq “ 2jde´λ|2
jx|σ the bound

}∆G
ε

j e
tLεµf}LppGε,ρq À 2´jβt´β{2}Φ2´j ˚Gε |∆

Gε
j e

tLεµf |}LppGε,ρq

and an application of Lemma 2.20 shows (46) and (47) (for (47) we also need (31)). Note that
we cheated a little bit as Lemma 2.20 actually requires Φ P SωpRdq which is not true, inspecting
however the proof of Lemma 2.20 we see that all we used was a suitable decay behavior which
is still given.

We will now show (50). Using Lemma 3.7 below we can reduce this task to the simpler
problem of proving the polynomial bound for i “ 1, . . . , d and n P N

tβ{2|xi|
n|Kpjqpt, xq| Àδ δ

nCnpn!q1{σ2´jβ, δ ą 0, (51)

with a constant C ą 0 that does not depend on δ. To show (51) we assume that 2jε ď 1.
Otherwise we are dealing with the scale 2j « ε´1 and the arguments below can be easily
modified. Integration by parts gives

|xi|
n|Kpjqpt, xq| “ Cn

ˇ

ˇ

ˇ

ˇ

ż

Rd
dy e2πıx‚y Bn¨ei

´

ϕpjq e
´tlεµp2

j ¨q
¯

pyq

ˇ

ˇ

ˇ

ˇ

ď Cn
ż

Rd
dy

ˇ

ˇ

ˇ

ˇ

Bn¨ei

ˆ

ϕpjqe
´t22j l2

jε
µ

˙

pyq

ˇ

ˇ

ˇ

ˇ

,

where we used that lεµp2jyq “ 22jl2
jε
µ pyq by (45). Now we have the following estimates for k P N

|Bk¨eiϕpjqpyq| Àδ δ
kpk!q1{σ, |Bk¨ei lε2

j

µ pyq| Àδ δ
k pk!q1{σ,

ˇ

ˇ

ˇ
p22jtqβ{2Bk

´

et2
2j ¨
¯

`

l2
jε
µ pyq

˘

ˇ

ˇ

ˇ
Àδ k

k{σδk ,
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where we used that ϕpjq P DωpRdq (with bounds that can be chosen independently of j by
definition) and we applied Lemma 3.5 with the assumption 2jε ď 1 (which we need because we
only defined lε1µ for ε1 ď 1). Together with Leibniz’s and Faà-di Bruno’s formula and a lengthy
but elementary calculation (51) follows, which finishes the proof of (46) and (47).

The last estimate (48) can be obtained as in the proof of Lemma [21, Lemma 6.6] by using
Lemma A.4 below.

Lemma 3.7. Let g : Rd Ñ R, σ ą 0 and B ą 0. Suppose for any δ ą 0 there is a Cδ ą 0 such
that for all z P Rd, l ě 0 and i “ 1, . . . , d

|zligpzq| Àδ δ
lC lδpl!q

1{σB .

It then holds for any λ ą 0 and z P Rd

|gpzq| Àλ Be
´λ|z|σ .

Proof. This follows ideas from [38, Proposition A.2]. Without loss of generality we can assume
|z| ą 1 (otherwise we get the required estimate by taking l “ 0). Recall that we have |z|l ď
C l

řd
i“1 |zi|

l, where C ą 0 denotes a constant that changes from line to line and is independent
of l. Consequently, Stirling’s formula gives

|eλ|z|
σ
gpzq| “

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“0

λk

k!
|z|σkgpzq

ˇ

ˇ

ˇ

ˇ

ˇ

À

8
ÿ

k“0

λkCk

kk
|z|rkσs |gpzq| À

8
ÿ

k“0

λkCk

kk

d
ÿ

i“1

|z
rkσs

i gpzq|

À B
8
ÿ

k“0

λkCkδkσ

kk
rkσsrkσs{σ À B

8
ÿ

k“0

λkCkδkσ

kk
kk “ B

8
ÿ

k“0

λkCkδkσ Àλ B ,

where we used rkσs ď krσs so that rkσsrkσs{σ ď prσskq
kσ`1
σ À Ckkk and where we chose δ ă

pC λq´
1
σ in the last step.

3.3 Schauder estimates

We will follow here closely [21] and introduce time-weighted parabolic spaces L γ,α
p,T that interplay

nicely with the semigroup etL
ε
µ .

Definition 3.8. Given γ ě 0, T ą 0 and an increasing family of normed spaces X “ pXpsqqsPr0,T s
we define the space

Mγ
TX :“

#

f : r0, T s Ñ XpT q

ˇ

ˇ

ˇ

ˇ

ˇ

}f}Mγ
TX
“ sup

tPr0,T s
}tγfptq}Xptq ă 8

+

,

and for α ą 0

CαTX :“
 

f P Cpr0, T s, XpT qq
ˇ

ˇ }f}CαTX ă 8
(

,

where

}f}CαTX :“ sup
tPr0,T s

}fptq}Xptq ` sup
0ďsďtďT

}fpsq ´ fptq}Xptq

|s´ t|α
.

For a lattice G, parameters γ ě 0, T ą 0, α ě 0, p P r1,8s and a pointwise decreasing map
ρ : r0, T s Q t ÞÑ ρptq P ρpωq we set

L γ,α
p,T pG, ρq :“

!

f : r0, T s Ñ S 1ωpGq
ˇ

ˇ

ˇ
}f}L γ,α

p,T pG,ρq
ă 8

)

,

where
}f}L γ,α

p,T pG,ρq
:“ }t ÞÑ tγfptq}

C
α{2
T LppG,ρq ` }f}M

γ
T Cαp pG,ρq

.
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Remark 3.9. As in Remark 2.19 the definition of the continuous version L γ,α
p,T pR

d, ρq is anal-
ogous.

Standard arguments show that ifX is a sequence of increasing Banach spaces with decreasing
norms, all the spaces in the previous definition are in fact complete in their (semi-)norms.

The Schauder estimates for the operator

Iεµfptq “

ż t

0
ept´sqL

ε
µfpsq ds (52)

and the semigroup petL
ε
µq in the time-weighted setup are summarized in the following lemma,

for which we introduce the weights

pκpxq “ p1` |x|q´κ (53)

eσl`tpxq “ e´pl`tqp1`|x|q
σ

(54)

with κ ą 0 and l, t P R. The parameter t should be thought of as time. The notation L γ,α
p,T pG, eσl q

means therefore that we take the time-dependent weight peσl`tqtPr0,T s, while e
σ
l p

κ stands for the
time-dependent weight peσl`tp

κqtPr0,T s.

Lemma 3.10. Let Gε be as in Definition 2.2, α P p0, 2q, γ P r0, 1q, p P r1,8s, σ P p0, 1q and
T ą 0. If β P R is such that pα` βq{2 P r0, 1q, then we have uniformly in ε

}s ÞÑ esL
ε
µf0}L pα`βq{2,α

p,T pGε,eσl q
À }f0}C´βp pGε,eσl q

, (55)

and if κ ě 0 is such that γ ` κ{σ P r0, 1q, α` 2κ{σ P p0, 2q also

}Iεµf}L γ,α
p,T pGε,e

σ
l q
À }f}Mγ

T C
α`2κ{σ´2
p pGε,eσl pκq

. (56)

Proof. The proof is along the lines of Lemma 6.6 in [21] with the use of the simple estimate

pκeσl`s À
eσl`t

|t´ s|κ{σ
, t ě s,

which is similar to an inequality from the proof of Proposition 4.2 in [28] and the reason for
the appearance of the term 2κ{σ in (56) (the factor 2 comes from parabolic scaling). We need
γ ` κ{σ P r0, 1q so that the singularity |t´ s|´γ´κ{σ is integrable on r0, ts.

For the comparison of the parabolic spaces L γ,α
p,T the following lemma will be convenient.

Lemma 3.11. Let Gε be as in Definition 2.2. For α P p0, 2q, γ P p0, 1q, ε P r0, α ^ 2γq, p P
r1,8s, T ą 0 and a pointwise decreasing R` Q s ÞÑ ρpsq P ρpωq we have

}f}
L
γ´ε{2,α´ε
p,T pGε,ρq À }f}L

γ,α
p,T pGε,ρq

,

and for γ P r0, 1q and ε P p0, αq

}f}L γ,α´ε
p,T pGε,ρq À 1γ“0}fp0q}Cα´εp pGε,ρq ` T

ε{2}f}L γ,α
p,T pGε,ρq

.

All involved constants are independent of ε.

Proof. The first estimate is proved as in [21, Lemma 6.8]. For γ “ 0 the proof of the second
inequality works as in Lemma 2.11 of [21]. The general case follows from the fact that f P L γ,α

p,T

if and only if t ÞÑ tγf P L 0,α
p,T .
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4 Paracontrolled analysis on Bravais lattices

4.1 Discrete Paracontrolled Calculus

Given two distributions f1, f2 P S 1pRdq, Bony [4] defines their paraproduct as

f1 4 f2 :“
ÿ

1ďj2

ÿ

´1ďj1ăj2´1

∆j1f1 ¨∆j2f2 “
ÿ

1ďj2

Sj2´1f1 ¨∆j2f2 ,

which turns out to always be a well-defined expression. However, to make sense of the product
f1f2 it is not sufficient to consider f1 4 f2 and f1 5 f2 :“ f2 4 f1, we also have to take into
account the resonant term [18]

f1 � f2 :“
ÿ

´1ďj1, j2: |j1´j2|ď1

∆j1f1 ¨∆j2f2 ,

which can in general only be defined under compatible regularity conditions such as f1 P Cα8pRdq,
f2 P Cβ8pRdq with α`β ą 0 (see e.g. [1] or [18, Lemma 2.1]). If these conditions are satisfied we
decompose f1f2 “ f1 4 f2 ` f1 5 f2 ` f1 � f2. Bony’s construction can easily be adapted to a
discrete and weighted setup, where of course we have no problem in making sense of pointwise
products but we are interested in uniform estimates.

Definition 4.1. Let Gε be a Bravais lattice, ω P ω and f1, f2 P S 1ωpRdq. We define the discrete
paraproduct

f1 4G f2 :“
ÿ

1ďj2ďjG

ÿ

´1ďj1ăj2´1

∆Gj1f1 ¨∆
G
j2
f2 “

ÿ

1ďjďjG

SGj´1f1 ¨∆jf2 , (57)

where the discrete Littlewood-Paley blocks ∆Gj are constructed as in Section 2. We also write
f1 5G f2 :“ f2 4G f1. The discrete resonant term is given by

f1 �G f2 :“
ÿ

1ďj1,j2ďjG , |j1´j2|ď1

∆Gj1f1 ¨∆
G
j2
f2 . (58)

If there is no risk for confusion we may drop the index G on 4, 5, and �.

In contrast to the continuous theory �G is well defined without any further restrictions since
it only involves a finite sum. All the estimates that are known from the continuous theory carry
over.

Lemma 4.2. Given Gε as in Definition 2.2, ρ1, ρ2 P ρpωq and p P r1,8s we have the bounds:

(i.) For any α2 P R

}f1 4 f2}Cα2p pGε,ρ1¨ρ2q À }f1}L8pGε,ρ1q }f2}Cα2p pGε,ρ2q ^ }f1}LppGε,ρ1q }f2}Cα28 pGε,ρ2q ,

(ii.) for any α1 ă 0, α2 P R

}f1 4 f2}Cα1`α2p pGε,ρ1¨ρ2q
À }f1}Cα1p pGε,ρ1q }f2}Cα28 pGε,ρ2q ^ }f1}Cα18 pGε,ρ1q }f2}Cα2p pGε,ρ2q ,

(iii.) for any α1, α2 P R with α1 ` α2 ą 0

}f1 � f2}Cα1`α2p pGε,ρ1¨ρ2q
À }f1}Cα1p pGε,ρ1q }f2}Cα28 pGε,ρ2q ^ }f1}Cα1p pGε,ρ1q }f2}Cα28 pGε,ρ2q ,

where all involved constants only depend on G but not on ε. All estimates have the property (E)
if the regularity on the left hand side is lowered by an arbitrary κ ą 0.
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Proof. Similarly as in the continuous case SG
ε

j´1f1 ¨∆
Gε
j f2 is spectrally supported on a set of the

form 2jAX pGε, where A is an annulus around 0. Similarly, we have for i, j with i „ j that the
function ∆G

ε

i f1 ¨∆
Gε
j f2 is spectrally supported in a set of the form 2jB X pGε, where B is a ball

around 0. We give a proof of these two facts in the appendix (Lemma A.6). Using these two
observations the proof of the estimates in (i.)-(iii.) follows along the lines of [18, Lemma 2.1])
(which in turn is taken from [1, Theorem 2.82, Theorem 2.85]).

We are left with the task of proving the property (E). We show in Lemma 4.3 below that
there is an N P N (independent of ε and j) such that for ´1 ď i ď j ď jGε ´N

Eεp∆Gεi f1 ¨∆
Gε
j f2q “ ∆iEεf1 ¨∆jEεf2 . (59)

Consequently we can write

Eεpf1 4G
ε
f2q “

ÿ

1ďjďjGε

Eε
`

SG
ε

j´1f1 ¨∆
Gε
j f2

˘

“
ÿ

1ďjďjGε´N

Sj´1Eεf1 ¨∆jEεf2 `
ÿ

jGε´NăjďjGε

Eε
`

SG
ε

j´1f1 ¨∆
Gε
j f2

˘

,

where we used (59) and SG
ε

j´1 “
ř

´1ďiăj´1∆
Gε
i , Sj´1 “

ř

´1ďiăj´1∆i. On the other hand we
can write

Eεf1 4 Eεf2 “
ÿ

1ďj

Sj´1Eεf1 ¨∆jEεf “
ÿ

1ďjďjGε´N

Sj´1Eεf1 ¨∆jEεf2 `
ÿ

j„jGε

Sj´1Eεf1 ¨∆jEεf2 ,

where we used in the second step that Eεf2 “ FRdpψpε¨q pFGεf2qextq is spectrally supported in a
ball of size ε´1 « 2jGε to drop all j with j Á jGε . In total we obtain

Eεpf1 4G
ε
f2q ´ Eεf1 4 Eεf2 “

ÿ

j„jGε

Eε
`

SG
ε

j´1f1 ¨∆
Gε
j f2

˘

´
ÿ

j„jGε

Sj´1Eεf1 ¨∆jEεf2 .

Note that the two sums on the right hand side are spectrally supported in an annulus of size
2jGε . Using Lemma 2.24, the fact ∆i : L

ppRd, ρq Ñ LppRd, ρq (by (32)) and that Eε : LppGε, ρq Ñ
LppRd, ρq (due to (33) and Lemma 2.20), with uniform bounds, we can thus estimate

}∆i

`

Eεpf1 4G
ε
f2q ´ Eεf1 4 Eεf2

˘

}LppRd,ρq À 1i„jGε

´

ÿ

j„jGε

}SG
ε

j´1f1 ¨∆
Gε
j f2}LppGε,ρq

`
ÿ

j„jGε

}Sj´1Eεf1 ¨∆jEεf2}LppRd,ρq

¯

.

Assume without loss of generality that the right hand side of estimate (i.) is bounded by
1. We then have using SG

ε

j´1 : LqpGε, ρq Ñ LqpGε, ρq (by Lemma 2.25 and Lemma 2.20) and
Sj´1 : LqpRd, ρq Ñ LqpRd, ρq (by (39) and Young’s inequality) for q P r1,8s, both with uniform
bounds,

}∆i

`

Eεpf1 4G
ε
f2q ´ Eεf1 4 Eεf2

˘

}LppRd,ρq À 1i„jGε
ÿ

j„jGε

2´jα2 À 1i„jGε2
´jGεα2 À 2´ipα2´κqεκ .

In the last step we used that 2´jGε « ε by definition of jGε . This shows the property (E) for
estimate (i.). If the right hand side of estimate (ii.) is uniformly bounded by 1 we obtain the
bound

}∆i

`

Eεpf1 4G
ε
f2q ´ Eεf1 4 Eεf2

˘

}LppRd,ρq À 1i„jGε
ÿ

j„jGε

ÿ

´1ďj1ăj´1

2´j
1α12´jα2

À 1i„jGε2
´jGε pα1`α2q À 2´ipα1`α2´κqεκ
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and the property (E) for (ii.) follows. Considering case (iii.) assume once more that the right
hand side is bounded by 1. We get, by once more applying (59),

Eεpf1 �G
ε
f2q ´ Eεf1 � Eεf2 “

ÿ

j, j1„jGε : |j´j1|ď1

Eεp∆Gεj f1 ¨∆
Gε
j1 f2q ´

ÿ

j, j1ÁjGε : |j´j1|ď1

∆jEεf1 ¨∆j1Eεf2

“
ÿ

j, j1„jGε : |j´j1|ď1

´

Eεp∆Gεj f1 ¨∆
Gε
j1 f2q ´∆jEεf1 ¨∆j1Eεf2

¯

,

where we used in the second line that the spectral support of Eεf1 and of Eεf2 is contained in a
ball of size ε´1 « 2jGε to reduce the sum in the second term to j, j1 „ jGε . Using then that the
terms on the right hand side are spectrally supported in a ball of size 2j we get for i ě ´1

∆ipEεpf1 �G
ε
f2q ´ Eεf1 � Eεf2q “

ÿ

j, j1„jGε : |j´j1|ď1

1iÀj

´

Eεp∆Gεj f1 ¨∆
Gε
j1 f2q ´∆jEεf1 ¨∆j1Eεf2

¯

,

so that we obtain, using once more Eε : LppGε, ρq Ñ LppRd, ρq and ∆i : L
ppRd, ρq Ñ LppRd, ρq,

}∆ipEεpf1 �G
ε
f2q ´ Eεf1 � Eεf2q}LppRd,ρq À

ÿ

j,j1„jGε : |j´j1|ď1

1iÀj ¨ 2
´pjα1`j1α2q

À 1iÀjGε ¨ 2
´jGε pα1`α2´κqεκ À 2´ipα1`α2´κqεκ ,

where we chose κ ą 0 in the second line small enough so that α1 ` α2 ´ κ ą 0.

Lemma 4.3. Let Gε be as in Definition 2.2, ω P ω and construct Littlewood-Paley blocks as in
Subsection 2.4. Let ψ, ψε and Eε be as in Subsection 2.4. There is a N “ NpG, ψq P N such
that for all ε and ´1 ď i ď j ď jGε ´N and f1, f2 P S 1ωpGεq

Eεp∆Gεi f1 ¨∆
Gε
j f2q “ ∆iEεf1 ¨∆jEεf2 .

Proof. Let us fix rε :“ distpB pGε, 0q so that Bp0, rεq Ď pGε. From Lemma A.6 and the construction
of our discrete partition of unity on page 8 we know that the spectral support of ∆G

ε

i f1 ¨∆
Gε
j f2

and the support of ϕG
ε

i ¨FGεf1 and ϕG
ε

j ¨FGεf2 are contained in a set of the form 2jBX pGε, where
B is a ball around 0. Choose N P N such that for j with ´1 ď j ď jGε ´ N (if any) we have
2jB Ď 2jGε´NB Ď Bp0, rε{4q (note that N is independent of ε since rε “ c ¨ 2jGε by the dyadic
scaling of our lattice). In particular we have 2jB Ď pGε, 2jB X pGε “ 2jB. Choose N further so
big that we have for the smear function ψε

ψε|2jB “ ψpε¨q|2jB “ 1 , suppψε X p2jB `Rεzt0uq “ ∅

for ´1 ď j ď jGε ´N (independently of ε). Choose a χ P DωpRdq such that χ|Bp0,rε{4q “ 1 and
χ “ 0 outside Bp0, rε{2q. We can then reshape

FRdEεp∆G
ε

i f1 ¨∆
Gε
j f2q “ ψε ¨ pϕGεi FGεf1 ˚

pGε ϕ
Gε
j FGεf2qext “ χ ¨ pϕGεi FGεf1 ˚

pGε ϕ
Gε
j FGεf2qext ,

where we used the support properties above to replace ψε by χ. Now, note that (using formal
notation to clarify the argument)

χpxq ¨ pϕGεi FGεf1 ˚
pGε ϕ

Gε
j FGεf2qextpxq “ χpxq ¨

ż

pGε
pϕGεi FGεf1qpzq ¨ pϕ

Gε
j FGεf2qprx´ zsqdz . (60)

Since only x P Bp0, rε{2q and z P Bp0, rε{4q contribute we have x´ z P Bp0, 3{4rq Ď pGε so that
rx ´ zs “ x ´ z in (60). Using that suppϕG

ε

i Y suppϕG
ε

j Ď pGε we can replace ϕG
ε

i and ϕG
ε

j in
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(60) by ϕi, ϕj (the dyadic partition of unity on Rd from which ϕG
ε

j is constructed as on page 8),
replace FGεf1, FGεf2 by their periodic extension and extend the integral to Rd so that in total

FRdEεp∆G
ε

i f1 ¨∆
Gε
j f2qpxq “ χpxq ¨

ż

Rd
pϕipFGεf1qextqpzq ¨ pϕjpFGεf2qextqpx´ zqdz

“

ż

Rd
pϕiψ

εpFGεf1qextqpzq ¨ pϕjψ
εpFGεf2qextqpx´ zqdz

“ FRdp∆iEεf1∆jEεf2qpxq ,

where we used in the second line that the support of the convolution is once more contained
in Bp0, rε{4q to drop χ and that ψε|2jB “ 1 to introduce smear functions in the integral. The
claim follows.

The main observation of [18] is that if the regularity condition α1 ` α2 ą 0 is not satisfied,
then it may still be possible to make sense of f1�f2 as long as f1 can be written as a paraproduct
plus a smoother remainder. The main lemma which makes this possible is an estimate for a
certain “commutator”. The discrete version of the commutator is defined as

CGpf1, f2, f3q :“ pf1 4G f2q�G f3 ´ f1pf2 �G f3q .

If there is no risk for confusion we may drop the index G on C.

Lemma 4.4. ([19, Lemma 14]) Given ρ1, ρ2, ρ3 P ρpωq, p P r1,8s and α1, α2, α3 P R with
α1 ` α2 ` α3 ą 0 and α2 ` α3 ‰ 0 we have

}CGpf1, f2, f3q}Cα2`α3p pGε,ρ1ρ2ρ3q
À }f1}Cα1p pGε,ρ1q}f2}Cα28 pGε,ρ2q}f3}Cα38 pGε,ρ3q .

Further, property (E) holds for C if the regularity on the left hand side is reduced by an arbitrary
κ ą 0.

Proof. The proof of the estimates works line-by-line as in [19, Lemma 14] and the (E)-property
follows as in Lemma 4.2 via a modification of Lemma 4.3 to three factors.

4.2 The Modified Paraproduct

It will be useful to define a lattice version of the modified paraproduct ăă that was introduced in
[18] and also used in [21, 10].

Definition 4.5. Fix a function ϕ P C8c pp0,8q;R`q such that
ş

R ϕpsqds “ 1 and define

Qifptq :“

ż t

´8

22idϕp22ipt´ sqqfps_ 0qds, i ě ´1 .

We then set

f1ăăGf2 :“
ÿ

´1ďj1,j2ďjG : j1ăj2´1

Qj2∆
G
j1
f1 ¨∆

G
j2
f2

for f1, f2 : R` Ñ S 1ωpGq where this is well defined. We may drop the index G if there is no risk
for confusion.

Convention 4.6. As in [21] we silently identify f1 in f1ăăf2 with t ÞÑ fptq1tą0 if f1 P

Mγ
TCαp pG, ρq with γ ą 0.

Once more the translation to the continuous case f1, f2 : R` Ñ S 1ωpRdq is analogous. The
modified paraproduct allows for similar estimates as in Lemma 4.2.
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Lemma 4.7. Let β P R, p P r1,8s, γ P r0, 1q, t ą 0, α ă 0 and let ρ1, ρ2 : R` Ñ ρpωq with ρ1

pointwise decreasing. Then

tγ}făăgptq}Cα`βp pGε,ρ1ptqρ2ptqq À }f}M
γ
t Cαp pGε,ρ1q}gptq}Cβ8pGε,ρ2ptqq

^ }f}Mγ
t Cα8pGε,ρ1q}gptq}Cβp pGε,ρ2ptqq

and

tγ}făăgptq}Cβp pGε,ρ1ptqρ2ptqq
À }f}Mγ

t L
ppGε,ρ1q}gptq}Cβ8pGε,ρq

^ }f}Mγ
t L
8pGε,ρ1q}gptq}Cβp pGε,ρ2ptqq

.

Both estimates have the property (E) if the regularity on the left hand side is decreased by an
arbitrary κ ą 0.

Proof. The proof is the same as for [21, Lemma 6.4]. Property (E) is shown as in Lemma 4.2.

We further have an estimate in terms of the parabolic spaces L γ,α
p,T pG, ρq that were introduced

in Definition 3.8.

Lemma 4.8. We have for α P p0, 2q, p P r1,8s, γ P r0, 1q and ρ1, ρ2 : R` Ñ ρpωq, pointwise
decreasing in s, the estimate

}făăg}L γ,α
p,T pGε,ρ1ρ2q

À }f}
L γ,δ
p,T pGε,ρ1q

p}g}CT Cα8pGε,ρ2q ` }L
εg}CT Cα´2

8 pGε,ρ2qq

for any δ ą 0 and any diffusion operator L ε
µ as in Definition 3.3. This estimate has the property

(E) if the regularity α on the left hand side is lowered by an arbitrary κ ą 0.

Proof. The proof is as in [21, Lemma 6.7] and uses Lemma 4.9 below. The proof of the prop-
erty (E) is as in Lemma 4.2.

The main advantage of the modified paraproduct ăă on Rd is its commutation property with
the heat kernel Bt ´ ∆ (or Lµ “ Bt ´ Lµ) which is essential for the Schauder estimates for
paracontrolled distributions, compare also Subsection 5.2 below. In the following we state the
corresponding results for Bravais lattices.

Lemma 4.9. For α P p0, 2q, β P R, p P r1,8s, γ P r0, 1q and ρ1, ρ2 : R` Ñ ρpωq, with ρ1

pointwise decreasing, we have for t ą 0

tγ}pfăăg ´ f 4 gqptq}Cα`βp pGε,ρ1ptqρ2ptqq À }f}L
γ,α
p,t pGε,ρ1q}gptq}Cβ8pGε,ρ2ptqq

and

tγ}pL ε
µ pfăăgq ´ făăL ε

µgqptq}Cα`β´2
p pGε,ρ1ptqρ2ptqq À }f}L

γ,α
p,t pGε,ρ1q}gptq}Cβ8pGε,ρ2ptqq

.

where L ε
µ “ Bt ´ L

ε
µ is a discrete diffusion operator as in Definition 3.3. These estimates have

the property (E) if the regularity on the left hand side is lowered by an arbitrary κ ą 0.

Proof. Again we can almost follow along the lines of the proof in [21, Lemma 6.5] with the only
difference that in the derivation of the second estimate the application of the “product rule” of
L ε
µ does not yield a term ´2∇făă∇g but a more complex object, namely

ż

Rd

dµpyq

ε2
Dε
yfăăDε

yg , (61)

where Dε
yfpt, xq “ fpt, x ` εyq ´ fpt, xq and similarly for g. The bound for (61) follows from

Lemma 4.7 once we show

}Dε
yϕ}Cγ´1

p pGε,ρ1q À }ϕ}C
γ
p pGε,ρ1q |y| ¨ ε (62)
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for any γ P R. Note that due to Lemma 2.25 we can write

∆jD
y
εϕ “

´

Ψ̃ε,jp¨ ` εyq ´ Ψ̃ε,j
¯

˚Gε ϕ ,

where Ψ̃ε,j “ EεΨGε,j “ 2jdφxjyεp2
j ¨q with φxjyε P SωpRdq. With

Ψ̃ε,jpx` εyq ´ Ψ̃ε,jpxq “ 2j
ż 1

0
2jdφxjyεp2

jpx` ζεyqqdζ ¨ yε

we get (62) by applying Lemma 2.20. The proof of the property (E) is as in Lemma 4.2 and it
uses Lemma 3.4.

5 Weak universality of PAM on R2

With the theory from the previous sections at hand we can analyze stochastic models on un-
bounded lattices using paracontrolled techniques. As an example, we prove the weak universal-
ity result for the linear parabolic Anderson model that we discussed in the introduction. For
F P C2pR;Rq with F p0q “ 0 and bounded second derivative we consider the equation

L 1
µ v

ε “ F pvεq ¨ ηε, vεp0q “ |G|´11¨“0 (63)

on R` ˆ G, where G Ď R2 is a two-dimensional Bravais lattice, L 1
µ “ Bt ´ L1

µ is a discrete
diffusion operator on the lattice G as described in Definition 3.3, induced by µ P µpωq with
ω “ ωexp

σ for σ P p0, 1q. The upper index “1” indicates that we did not scale the lattice G yet.
The family pηεpzqqzPG P S 1ωpGq consists of independent (not necessarily identically distributed)
random variables satisfying for z P G

Erηεpzqs “ ´F 1p0qcεµε2 , Var
`

ηεpzq
˘

“
1

|Gε| “
1

|G| ε
2 ,

where cεµ ą 0 is a constant of order Op| log ε|q which we will fix in equation (67) below. We
further assume that for every ε and z P G the variable ηεpzq has moments of order pξ ą 14 such
that

sup
zPGε

E
“

|ηεpzq ´ Erηεpzqs|pξ
‰

À εpξ .

The lower bound 14 for pξ might seem quite arbitrary at the moment, we will explain this choice
in Remark 5.6 below. Note that ηε is of order Opεq while its expectation is of order Opε2| log ε|q,
so we are considering a small shift away from the “critical” expectation 0.

We are interested in the behavior of (63) for large scales in time and space. Setting uεpt, xq :“
ε´2vεpε´2t, ε´1xq and ξεpxq :“ ε´2pηεpε´1xq ` F 1p0qcεµε

2q modifies the problem to

L ε
µu

ε “ F εpuεqpξε ´ F 1p0qcεµq, uεp0q “ |Gε|´11¨“0 , (64)

where uε : R`ˆGε Ñ R is defined on refining lattices Gε in d “ 2 as in Definition 2.2 and where
F ε :“ ε´2F pε2¨q. The potential pξεpxqqxPGε is scaled so that it satisfies for z P Gε

• Erξεpzqs “ 0,

• E
“

|ξεpzq|2
‰

“ |Gε|´1 “ |G|´1ε´2,

• supzPGε E r|ξεpzq|pξ s À ε´pξ for some pξ ą 14.
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We consider ξε as a discrete approximation to white noise in dimension 2. In particular, we
expect Eεξε to converge in distribution to white noise on R2, and we will see in Lemma 5.5
below that this is indeed the case. In Theorem 5.13 we show that Eεuε converges in distribution
to the solution u of the linear parabolic Anderson model on R2,

Lµu “ F 1p0qupξ ´ F 1p0q8q, up0q “ δ, (65)

where ξ is white noise on R2, δ is the Dirac delta distribution, “´8” denotes a renormalization
and Lµ is the limiting operator from Definition 3.3. The existence and uniqueness of a solution
to (65) were first established in [28] (for more regular initial conditions) by using a “partial Cole-
Hopf transformation” which turns the equation into a well-posed PDE. Using the continuous
versions of the objects defined in the Sections above we can modify the arguments of [18] to give
an alternative proof of their result, see Corollary 5.12 below. The limit of (64) only sees F 1p0q
and forgets the structure of the non-linearity F , so in that sense the linear parabolic Anderson
model arises as a universal scaling limit.

Let us illustrate this result with a (far too simple) model: Suppose F is of the form F pvq “
vp1´ vq and let us first consider the following ordinary differential equation on r0, T s:

Btv “ η ¨ F pvq, vp0q P p0, 1q ,

for some η P R. If η ą 0, then v describes the evolution of the concentration of a growing
population in a pleasant environment, which however shows some saturation effects represented
by the factor p1 ´ vq in the definition of F . For η ă 0 the individuals live in unfavorable
conditions, say in competition with a rival species. From this perspective equation (63) describes
the dynamics of a population that migrates between diverse habitats. The meaning of our
universality result is that if we tune down the random potential ηε and counterbalance the
growth of the population with some renormalization (think of a death rate), then from far away
we can still observe its growth (or extinction) without feeling any saturation effects.

The analysis of (64) and the study of its convergence are based on the lattice version of
paracontrolled distributions that we developed in the previous sections and it will be given in
Subsection 5.2 below. In that analysis it will be important to understand the limit of Eεξε and a
certain bilinear functional built from it, and we will also need uniform bounds in suitable Besov
spaces for these objects. In the following subsection we discuss this convergence.

5.1 Discrete Wick calculus and convergence of the enhanced noise

We develop here a general machinery for the use of discrete Wick contractions in the renor-
malization of discrete, singular SPDEs with i.i.d. noise which is completely analogous to the
continuous Gaussian setting. Moreover, we build on the techniques of [6] to provide a crite-
rion that identifies the scaling limits of discrete Wick products as multiple Wiener-Itô integrals.
Our results are summarized in Lemma 5.1 and Lemma 5.4 below and although the use of these
results is illustrated only on the discrete parabolic Anderson model, the approach extends in
principle to any discrete formulation of popular singular SPDEs such as the KPZ equation or
the Φ4

d models. In order to underline the general applicability of these methods we work in this
subsection in a general dimension d.

Take a sequence of scaled Bravais lattices Gε in dimension d as in Definition 2.2. As a discrete
approximation to white noise we take independent (but not necessarily identically distributed)
random variables

`

ξεpzq
˘

zPGε that satisfy

• Erξεpxqs “ 0,

• E
“

|ξεpxq|2
‰

“ |Gε|´1 “ |G|´1ε´d,

• supzPGε E r|ξεpzq|pξ s À ε´d{2¨pξ for some pξ ě 2.
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Note that the family pξεpzqqzPGε we defined in the introduction of this Section fits into this
framework (with d “ 2 and pξ ą 14).

Let us fix a symmetric χ P DωpRdq, independent of ε, which is 0 on 1
4 ¨

pG and 1 outside of
1
2 ¨

pG and define

Xε
µ :“

χ

lεµ
pDGεqξ

ε :“ F´1
Gε

ˆ

χ

lεµ
¨ FGεξε

˙

.

Let us point out that the χ used in the construction of Xε
µ does not depend on ε and only serves

to erase the “zero-modes” of ξε to avoid integrability issues. Note that L ε
µX

ε
µ “ ´LεµX

ε
µ “

χpDGεqξ
ε “ F´1

Gε pχ ¨ FGεξεq so that Xε
µ is a time independent solution to the heat equation on

Gε driven by χpDGεqξε. Our first task will be to measure the regularity of the sequences pξεq,
pXε

µq in terms of the discrete Besov spaces introduced in Subsection 2.4. For that purpose we need
to estimate moments of sufficiently high order. For discrete multiple stochastic integrals with
respect to the variables pξεpzqqzPGε , that is for sums

ř

z1,...,znPGε fpz1, . . . , znq ξ
εpz1q . . . ξ

εpznq
with fpz1, . . . , znq “ 0 whenever zi “ zj for some i ‰ j it was shown in [10, Proposition 4.3]
that all moments can be bounded in terms of the `2 norm of f and the corresponding moments
of the pξεpzqqzPGε . However, typically we will have to bound such expressions for more general
f (which do not vanish on the diagonals) and in that case we first have to arrange our random
variable into a finite sum of discrete multiple stochastic integrals, so that then we can apply [10,
Proposition 4.3] for each of them. This arrangement can be done in several ways, here we
follow [30] and regroup in terms of Wick polynomials.

Given random variables pY pjqqjPJ over some index set J and I “ pj1, . . . , jnq P Jn we set

Y I “ Y pj1q . . . Y pjnq “
n
ź

k“1

Y pjkq

as well as Y ∅ “ 1. According to Definition 3.1 and Proposition 3.4 of [34], the Wick product
Y ˛I can be defined recursively by Y ˛∅ :“ 1 and

Y ˛I :“ Y I ´
ÿ

∅‰EĂI
ErY Es ¨ Y ˛ IzE . (66)

For I “ pj1, . . . , jnq P Jn we also write

Y pj1q ˛ ¨ ¨ ¨ ˛ Y pjnq :“ Y ˛I .

By induction one easily sees that this product is commutative. In the case j1 “ . . . “ jn we may
write instead

Y pj1q
˛n .

Lemma 5.1 (see also Proposition 4.3 in [10]). Let Gε be as in Definition 2.2 and let
`

ξεpzq
˘

zPGε be
a discrete approximation to white noise as above, n ě 1 and assume pξ ě 2n. For f P L2ppGεqnq
define the discrete multiple stochastic integral w.r.t

`

ξεpzq
˘

by

Inf :“
ÿ

z1,...,znPGε
|Gε|n fpz1, . . . , znq ξ

εpz1q ˛ . . . ˛ ξ
εpznq .

It then holds for 2 ď p ď pξ{n

}Inf}LppPq À }f}L2ppGεqnq .
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Proof. In the following we identify Gε with an enumeration by N so that we can write

Inf “
ÿ

1ďrďn, aPAnr

r!
ÿ

z1ă...ăzr

|Gε|nf̃apz1, . . . , zrq ¨ ξ
εpz1q

˛a1 ˆ . . .ˆ ξεpzrq
˛ar ,

where Anr :“ ta P Nr|
ř

i ai “ nu, f̃a denotes the symmetrized version of

fapz1, . . . , zrq :“ fp

a1ˆ
hkkkkikkkkj

z1, . . . , z1, . . . ,

arˆ
hkkkkikkkkj

zr, . . . , zrq ¨ 1zi‰zj @i‰j ,

and where we used the independence of ξεpz1q, . . . , ξ
εpzrq to decompose the Wick product (we

did not show this property, but it is not hard to derive it from the definition of ˛ we gave above).
The independence and the zero mean of the Wick products allow us to see this as a sum of nested
martingale transforms so that an iterated application of the Burkholder-Davis-Gundy inequality
and Minkowski’s inequality as in [10, Proposition 4.3] gives the desired estimate

}Inf}
2
LppPq À

ÿ

1ďrďn, aPAnr

›

›

›

›

›

ÿ

z1ă...ăzr

|Gε|n ¨ f̃apz1, . . . , zrq ¨ ξ
εpz1q

˛a1 ˆ . . .ˆ ξεpzrq
˛ar

›

›

›

›

›

2

LppPq

À
ÿ

1ďrďn, aPAnr

ÿ

z1ă...ăzr

|Gε|2n ¨ |f̃apz1, . . . , zrq|
2 ¨

r
ź

j“1

}ξεpzjq
˛aj}2LppPq

À
ÿ

1ďrďn, aPAnr

ÿ

z1,...,zr

|Gε|n|f̃apz1, . . . , zrq|
2 ď }f}2L2ppGεqnq ,

where we used the bound }ξεpzrq˛aj}2LppPq À |Gε|´aj which follows from (66) and our assumption
on ξε.

As a direct application we can bound the moments of ξε and Xε
µ in Besov spaces. We also

need to control the resonant term Xε
µ� ξε, for which we introduce the renormalization constant

cεµ :“

ż

xGε

χpxq

lεµpxq
dx , (67)

which is finite for all ε ą 0 because xGε is compact and χ is supported away from 0. We define a
renormalized resonant product by

Xε
µ ‚ ξ

ε :“ Xε
µ � ξε ´ cεµ .

Remark 5.2. Since lεµ « |¨|2 (Lemma 3.5 together with the easy estimate lεµ À |¨|2) we have
cεµ « ´ log ε in dimension 2.

Using Lemma 5.1 we can derive the following bounds.

Lemma 5.3. Let ξε, Xε and Xε
µ ‚ ξ

ε be defined on Gε as above with pξ ě 4 (where pξ is as on
page 33) and let d ă 4. For µ P µpωq, ζ ă 2´ d{2´ d{pξ and κ ą d{pξ we have

E
”

}ξε}
pξ
Cζ´2pGε,pκq

ı

` E
”

}Xε
µ}
pξ
CζpGε,pκq

ı

` E
”

}Xε
µ ‚ ξ

ε}
pξ{2

C2ζ´2pGε,p2κq

ı

À 1 . (68)

The implicit constant is independent of ε.

Proof. Let us bound the regularity of Xε
µ. Recall that by Lemma 2.22 we have the continuous

embedding (with norm uniformly bounded in ε) Bζ`d{pξpξ,pξ pGε, pκq Ď CζpGε, pκq. To show (68) it
is therefore sufficient to bound for β ă 2´ d{2

E
„

}Xε
µ}
pξ

Bβpξ,pξ pG
ε,pκq



“
ÿ

´1ďjďjGε

2jpξβ
ÿ

zPGε
|Gε|Er|∆Gεj Xε

µpzq|
pεs

1

p1` |z|qκpξ
.
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By assumption we have κpξ ą d and can bound
ř

zPGε |Gε|p1` |z|q´κpξ À 1 uniformly in ε (for
example by Lemma A.2). It thus suffices to derive a bound for Er|∆G

ε

j X
ε
µpxq|

pεs, uniformly in ε
and x. Note that by (7) ∆G

ε

j X
ε
µpxq “

ř

zPGε |Gε|K ε
j px ´ zqξεpzq with K ε

j “ F´1
Gε pϕ

Gε
j χ{l

ε
µq so

that Lemma 5.1, Parseval’s identity (6) and lεµ Á |¨|2 on pGε (from Lemma 3.5) imply

Er|∆G
ε

j X
ε
µpxq|

pξ s À }K ε
j px´ ¨q}

pξ
L2pGεq À 2jpξpd{2´2q ,

which proves the bound for Xε
µ. The bound for ξε follows from the same arguments or with

Lemma 3.4.
Now let us turn to Xε

µ ‚ ξ
ε. A short computation shows that

ErpXε
µ � ξεqpxqs “ ErpXε

µ ¨ ξ
εqpxqs “ cεµ, x P Gε ,

and, by a similar argument as above, it suffices to bound Xε
µ ‚ ξ

ε in Bβpξ{2,pξ{2pR
d, p2κq for

β ă 2´ d. We are therefore left with the task of bounding the pξ{2-th moment of

∆G
ε

k

¨

˝

ÿ

|i´j|ď1

∆G
ε

i X
ε
µ∆
Gε
j ξ

ε ´ Er∆G
ε

i X
ε
µ∆
Gε
j ξ

εs

˛

‚pxq

“
ÿ

z1,z2,y

|Gε|3
ÿ

|i´j|ď1

ΨG
ε,kpx´ yqK ε

i py ´ z1qΨ
Gε,jpy ´ z2q pξ

εpz1qξ
εpz2q ´ Erξεpz1qξ

εpz2qsq

“
ÿ

z1,z2

|Gε|2
¨

˝

ÿ

|i´j|ď1

ÿ

y

|Gε|ΨGε,kpx´ yqK ε
i px´ z1qΨ

Gε,jpx´ z2q

˛

‚ξεpz1q ˛ ξ
εpz2q ,

which with Lemma 5.1 and Parseval’s identity (6) can be estimated by

E

»

—

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

z1,z2

|Gε|2
¨

˝

ÿ

|i´j|ď1

|Gε|ΨGε,kpx´ yqK ε
i px´ z1qΨ

Gε,jpx´ z2q

˛

‚ξεpz1q ˛ ξ
εpz2q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pξ{2
fi

ffi

fl

2{pξ

À

›

›

›

›

›

›

ÿ

|i´j|ď1

ÿ

y

|Gε|ΨGε,kpx´ yqK ε
i px´ z1qΨ

Gε,jpx´ z2q

›

›

›

›

›

›

L2
z1,z2

ppGεq2q

“

›

›

›

›

›

›

ÿ

|i´j|ď1

ÿ

y

|Gε|ΨGε,kpx´ yqFpGεq2
`

K ε
i px´ ¨q bΨG

ε,jpx´ ¨q
˘

p`1, `2q

›

›

›

›

›

›

L2
`1,`2

pp pGεq2q

“

›

›

›

›

›

›

e´2πıp`1``2q¨x
ÿ

|i´j|ď1

FGεΨG
ε,kp´p`1 ` `2qqFGεK ε

i p´`1qFGεΨG
ε,jp´`2q

›

›

›

›

›

›

L2
`1,`2

pp pGεq2q

“

›

›

›

›

›

›

ÿ

|i´j|ď1

ϕG
ε

k p`1 ` `2q
ϕG

ε

i p`1qχp`1q

lεµp`1q
ϕG

ε

j p`2q

›

›

›

›

›

›

L2
`1,`2

pp pGεq2q

,

where in the last step we used that all considered functions are even. Since ϕG
ε

k p`1 ` `2q “ 0
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unless |`m| Á 2k for m “ 1 or m “ 2 and since }ϕGεm }L2pGεq À 2md{2, we get
›

›

›

›

›

›

ÿ

|i´j|ď1

ϕG
ε

k p`1 ` `2q
ϕG

ε

i p`1qχp`1q

lεµp`1q
ϕG

ε

j p`2q

›

›

›

›

›

›

L2
`1,`2

pp pGεq2q

À
ÿ

|i´j|ě1,jÁk

2´2i
›

›

›
ϕG

ε

k p`1 ` `2qϕ
Gε
j p`2q

›

›

›

L2
`1,`2

pp pGεq2q

À
ÿ

|i´j|ě1,jÁk

2´2i2kd{22jd{2 À 2kpd´2q,

using d{2´ 2 ă 0 in the last step.

By the compact embedding result in Lemma 2.23 together with Prohorov’s theorem we see
that the sequences pEεξεq, pEεXε

µq, and pEεpXε
µ‚ξ

εqq have convergent subsequences in distribution
– note that while the Hölder space CζpRd, pκq is not separable, all the processes above are
supported on the closure of Cζ1pRd, pκ1q for ζ 1 ą ζ and κ1 ă κ, which is a separable subspace and
therefore we can indeed apply Prohorov’s theorem. We will see in Lemma 5.5 below that Eεξε
converges to the white noise ξ on Rd. Consequently, the solution Xε

µ to ´LεµXε
µ “ χpDGεqξ

ε

should approach the solution of ´LµXµ “ χpDRdqξ :“ F´1
Rd

`

χFRdξ
˘

, i.e.

Xµ “
χpDRdq

p2πq2}DRd}
2
µ

ξ “ F´1
Rd

ˆ

χ

p2πq2} ¨ }2µ
FRdξ

˙

“ K 0
µ ˚ ξ, K 0

µ :“ F´1
Rd

χ

p2πq2‖¨‖2µ
. (69)

where } ¨ }µ is defined as in Definition 3.1. The limit of EεpXε
µ ‚ ξ

εq will turn out to be the
distribution

Xµ ‚ ξpϕq :“

ż

Rd

ż

R2

K 0
µ pz1 ´ z2qϕpz1qξpdz1q ˛ ξpdz2q ´ pXµ 4 ξ ` ξ 4Xµqpϕq (70)

for ϕ P SωpRdq, where the right hand side denotes the second order Wiener-Itô integral with
respect to the Gaussian stochastic measure ξpdzq induced by the white noise ξ, compare [32,
Section 7.2]. Note that Xµ ‚ ξ is not a continuous functional of ξ, so the last convergence is
not a trivial consequence of the convergence for Eεξε. To identify the limit of EεpXε

µ ‚ ξ
εq we

could use a diagonal sequence argument that first approximates the bilinear functional by a
continuous bilinear functional as in [37, 30, 10]. Here prefer to go another route and instead
we follow [6] who provide a general criterion for the convergence of discrete multiple stochastic
integrals to multiple Wiener-Itô integrals, and we adapt their results to the Wick product setting
of Lemma 5.1.

Lemma 5.4 (see also [6], Theorem 2.3). Let Gε, n P N and
`

ξεpzq
˘

zPGε be as in Lemma 5.1.
For k “ 0, . . . , n let f εk P L

2ppGεqkq. We identify pGεqk with a Bravais lattice in k ¨ d dimensions
via the orthogonal sum pGεqk “ Àk

i“1 Gε Ď
Àk

i“1 Rd “ pRdqk to define the Fourier transform
FpGεqkf εk P L2ppxGεqkq of f εk . Assume that there exist gk P L2ppRdqkq with |1

pxGεqkFpGεqkf εk | ď gk

for all ε and fk P L2ppRdqkq such that limεÑ0 }1pxGεqkFpGεqkf εk ´ FpRdqkfk}L2ppRdqkq “ 0 for all
k ď n. Then the following convergence holds in distribution

lim
εÑ0

n
ÿ

k“0

Ikf
ε
k “

n
ÿ

k“0

ż

pRdqk
fkpz1, . . . , zkq ξpdz1q ˛ ¨ ¨ ¨ ˛ ξpdzkq ,

where ξpdz1q˛¨ ¨ ¨˛ξpdzkq denotes the Wiener-Itô integral against the Gaussian stochastic measure
induced by the white noise ξ on Rd.

Proof. The proof is contained in the appendix.
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The identification of the limits of the extensions of ξε, Xε
µ and Xε

µ ‚ ξ
ε is then an application

of Lemma 5.4.

Lemma 5.5. In the setup of Lemma 5.3 with ξ, Xµ and Xµ ‚ ξ defined as above and with ζ, κ
as in Lemma 5.3 we have for d ă 4

pEεξε, EεXε
µ, EεpXε

µ ‚ ξ
εqq

εÑ0
ÝÑ pξ,Xµ, Xµ ‚ ξq

in distribution in Cζ´2pRd, pκq ˆ CζpRd, pκq ˆ C2ζ´2pRd, p2κq.

Proof. Recall that the extension operator Eε is constructed from ψε “ ψpε¨q where the smear
function ψ P DωpRdq is symmetric and satisfies ψ “ 1 on some ball around 0. Since from
Lemma 5.3 we already know that the sequence pEεξε, EεXε

µ, EεpXε
µ‚ξ

εqq is tight in Cζ´2pRd, pκqˆ
CζpRd, pκqˆC2ζ´2pRd, p2κq, it suffices to prove the convergence after testing against ϕ P SωpRdq:

pEεξεpϕ1q, . . . , Eεξεpϕnq, EεXε
µpψ1q, . . . , EεXε

µpψnq, EεpXε
µ ‚ ξ

εqpf1q, . . . , EεpXε
µ ‚ ξ

εqpfnqq

εÑ0
Ñ pξpϕ1q, . . . , ξpϕnq, Xµpψ1q, . . . , Xµpψnq, Xµ ‚ ξpf1q, . . . , Xµ ‚ ξpfnqq ,

and by taking linear combinations and applying Lemma 5.4 we see that it suffices to establish
each of the following convergences:

Eεξεpϕq εÑ0
ÝÑ ξpϕq, EεXε

µpϕq
εÑ0
ÝÑ Xµpϕq, EεpXε

µ ‚ ξ
εqpϕqq

εÑ0
Ñ Xµ ‚ ξpϕq (71)

for all ϕ P SωpRdq. We can even restrict ourselves to those ϕ P SωpRdq with FRdϕ P DωpRdq,
which implies suppFRdϕ Ď pGε and F´1

Rd pψ
εFRdϕq “ ϕ for ε small enough, which we will assume

from now on. Note that suppFRdϕ Ď pGε implies

FGεpϕ|Gεq “ pFRdϕq| pGε (72)

since by definition of F´1
Gε

F´1
Gε ppFRdϕq| pGεq “ pF

´1
Rd FRdϕq|Gε “ ϕ|Gε .

To show the convergence of Eεξεpϕq to ξpϕq note that we have from (33)

Eεξεpϕq “
ÿ

zPGε
|Gε| pF´1

Rd ψ
ε ˚ ϕqpzqξεpzq “

ÿ

zPGε
|Gε|F´1

Rd pψ
εFRdϕqpzqξ

εpzq “
ÿ

zPGε
|Gε|ϕpzqξεpzq

where we used in the first step that ψε is symmetric and in the last step that F´1
Rd pψ

εFRdϕq “ ϕ
by our choice of ϕ and ε. Using Lemma 5.4 and relation (72) the convergence of Eεξεpϕq to ξpϕq
follows.

For the limit of EεXε
µ we use the following formula, which is derived by the same argument

as above:

EεXε
µpϕq “

ÿ

z1, z2PGε
|Gε|2 ϕpz1qK

ε
µ pz2 ´ z1qξ

εpz2q

with K ε
µ “ F´1

Gε pχ{l
ε
µq. In view of Lemma 5.4 it then suffices to note that

f̂ ε :“ FGεpϕ ˚Gε K ε
µ q “ FGεϕ ¨

χ

lεµ

(72)
“ FRdϕ ¨

χ

lεµ

is dominated by a multiple of χ{|¨|2 on xGε due to Lemma 3.5, and it converges to

FRdϕ ¨
χ

p2πq2‖¨‖2µ
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by the explicit formula for lεµ in (45).
We are left with the convergence of the third component. Since Eεξε Ñ ξ and EεXε

µ Ñ Xµ

we obtain via the (E)-Property of the paraproduct

lim
εÑ0
EεpXε

µ 4
Gε ξεq “ lim

εÑ0
EεXε

µ 4 Eεξε “ Xµ 4 ξ

and similarly one gets Eεpξε 4Gε Xε
µq Ñ ξ 4Xµ. We can therefore show instead

Eε
`

Xε
µξ
ε ´ ErXε

µξ
εs
˘

pϕq Ñ pXµ ‚ ξ ` ξ 4Xµ `Xµ 4 ξqpϕq . (73)

Note that we have the representations

Eε
`

Xε
µξ
ε ´ ErXε

µξ
εs
˘

pϕq “
ÿ

z1,z2PGε
|Gε|2ϕpz1qK

ε
µ pz1 ´ z2q ξ

εpz1q ˛ ξ
εpz2q ,

pXµ ‚ ξ ` ξ 4Xµ `Xµ 4 ξqpϕq “

ż

R2

ż

R2

ϕpz1qK
0
µ pz1 ´ z2q ξpdz1q ˛ ξpdz2q

with K ε
µ as above and K 0

µ as in (69). The pGεq2-Fourier transform of ϕpz1qK ε
µ pz1 ´ z2q is

ϕ̂extpx1 ´ x2qχpx2q{l
ε
µpx2q for x1, x2 P xGε, where ϕ̂ext denotes the periodic extension from (12)

for FRdϕ| pGε P DωppGεq (recall again that suppFRdϕ Ď pGε). We can therefore apply Lemma 5.4
since for d ă 4 the function pχpx2q{l

εpx2qq
2 À 1|x|Á1{|x|

4 is integrable on xGε and thus we obtain
(73).

We have shown the convergence in distribution of all the components in (71). By Lemma 5.4
we can take any linear combination of these components and still get the convergence from the
same estimates, so that (71) follows from the Cramér-Wold Theorem.

5.2 Convergence of the lattice model

We are now ready to prove the convergence of Eεuε announced at the beginning of this section.
The key statement will be the a priori estimate in Lemma 5.9. The convergence of Eεuε to the
continuous solution on R2, constructed in Corollary 5.12, will be proven in Theorem 5.13. We
first fix the relevant parameters.

Preliminaries

Throughout this subsection we use the same p P r1,8s, σ P p0, 1q, µ P µpωexp
σ q, a polynomial

weight pκ for some κ ą 2{pξ ą 1{7 and a time dependent sub-exponential weight peσl`tqtPr0,T s.
We further fix an arbitrarily large time horizon T ą 0 and require l ď ´T for the parameter in
the weight eσl . Then we have 1 ď eσl`t ď pe

σ
l`tq

2 for any t ď T , which will be used to control
a quadratic term that comes from the Taylor expansion of the non-linearity F ε. We take ξε as
in the beginning of this section with pξ ą 14 (see Remark 5.6 below) and construct Xε

µ as in
Subsection 5.1. We further fix a parameter

α P p2{3´ 2{3 ¨ κ{σ, 1´ 2{pξ ´ 2κ{σq (74)

with κ{σ P p2{pξ, 1q small enough such that the interval is non-empty, which (as we will discuss
in the following remark) is possible since 2{pξ ă 1{7.

Remark 5.6 (Why 14` moments). Let us sketch where the boundaries of the interval (74)
come from. The parameter α will measure the regularity of uε below. The upper boundary, that
is 1´2{pξ´2κ{σ, arises due to the fact that we cannot expect uε to be better than Xε, which has
regularity below 1´ 2{pξ due to Lemma 5.3. The correction ´2κ{σ is just the price one pays in
the Schauder estimate in Lemma 3.10 for the “weight change”. The lower bound 2{3´2{3 ¨κ{σ is
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a criterion for our paracontrolled approach below to work. We increase below the regularity α of
our solutions, by subtraction of a paraproduct, to 2α. By Lemma 4.2 this allows us to uniformly
control products with ξε provided

2α` pα` 2κ{σ ´ 2q ą 0 ,

because ξε P Cα`2κ{σ´2
pκ . This condition can be reshaped to α ą 2{3 ´ 2{3 ¨ κ{σ, explaining the

lower bound. The interval (74) can only be non-empty if

2{3´ 2{3 ¨ κ{σ ă 1´ 2{pξ ´ 2κ{σ ô 2{3 ă 1´ 2{pξ ´ 4{3 ¨ κ{σ

Lemma 5.3 forces us to take κ{σ ą 2{pξ so that the the right hand side can only be true provided
2{3 ă 1´ 2{pξ ´ 4{3 ¨ 2{pξ, which is equivalent to

pξ ą 14 .

Let us mention the simple facts 2α` 2κ{σ, 2α` 4κ{σ P p0, 2q, α` κ{σ, α` 2κ{σ P p0, 1q and
3α` 2κ{σ ´ 2 ą 0 which we will use frequently below.

We will assume that the initial conditions uε0 are uniformly bounded in C0
ppGε, eσl q and are

chosen such that Eεuε0 converges in S 1ωpR2q to some u0. For uε0 “ |Gε|´11¨“0 it is easily verified
that this is indeed the case and the limit is the Dirac delta, u0 “ δ.

Recall that we aim at showing that (the extension of) the solution uε to

L ε
µu

ε “ F puεqpξε ´ F 1p0qcεµq, uεp0q “ uε0 “ |Gε|´11¨“0 (75)

converges to the solution of

Lµu “ F 1p0qu � ξ, up0q “ u0 “ δ , (76)

where u � ξ is a suitably renormalized product defined in Corollary 5.12 below.
Our solutions will be objects in the parabolic space L α,α

p,T which does not require continuity
at t “ 0. A priori there is thus no obvious meaning for the Cauchy problems (75), (76) (although
of course for (75) we could use the pointwise interpretation). We use the common interpretation
of (75, 76) as equations for distributions uε, u P D1ωpR1`2q (compare for example [44, Definition
3.3.4]) by requiring suppuε, suppu Ď R` ˆ R2 and

L ε
µu

ε “ F puεqpξε ´ F 1p0qcεµq ` δ b u
ε
0 ,

Lµu “ F 1p0qu � ξ ` δ b u0 ,

in the distributional sense on p´8, T qˆR2, where b denotes the tensor product between distri-
butions. Since we mostly work with the mild formulation of these equations the distributional
interpretation will not play a crucial role. Some care is needed to check that the only distribu-
tional solutions are mild solutions, since the distributional Cauchy problem for the heat equation
is not uniquely solvable [46]. However, under generous growth conditions for u, uε for x Ñ 8

(compare [14]) there is a unique solution. In our case this fact can be checked by considering
the Fourier transform of u, uε in space.

A priori estimates

We will work with the following space of paracontrolled distributions.

Definition 5.7 (Paracontrolled distribution for 2d PAM). We identify a pair

puε,X , uε,7q : r0, T s Ñ S 1ωpGεq2
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with uε :“ uε,XăăXε
µ ` u

ε,7 and introduce a norm

}uε}
Dγ,δ
p,T pGε,e

σ̃
l q

:“ }puε,X , uε,7q}
Dγ,δ
p,T pGε,e

σ̃
l q

:“ }uε,X}
L
γ{2,δ
p,T pGε,eσ̃l q

` }uε,7}
L γ,δ`α
p,T pGε,eσ̃l q

(77)

for α as above, σ̃ P p0, 1q and γ ě 0, δ P p0, 2 ´ αq. We denote the corresponding space by
Dγ,δ
p,T pGε, eσ̃l q. If the norm (77) is bounded for a sequence puε “ uε,XăăXε

µ`u
ε,7qε we say that uε

is paracontrolled by Xε
µ.

Remark 5.8. In view of Remark 3.9 we can also define a continuous version Dγ,δ
p,T pR

d, eσ̃l q of
the space above.

As in [21] it will be useful to have a common bound on the stochastic data: Let

Mε :“ }ξε}Cα`2κ{σ´2
8 pGε,pκq _ }X

ε
µ}Cα`2κ{σ

8 pGε,pκq _ }X
ε
µ ‚ ξ

ε}C2α`4κ{σ´2
8 pGε,p2κq (78)

(compared to Lemma 5.3 we have ζ “ α` 2κ{σ). The following a priori estimates will allow us
to set up a Picard iteration below.

Lemma 5.9 (A priori estimates). In the setup above consider γ P t0, αu and u0 P C0
ppGεq. If

γ “ 0 we require further that u0 P Cαp pGε, ρq and u70 :“ u0 ´ F
1p0qu0 4Xε

µ P C2α
p pGε, eσl q. Define

a map

M ε
γ,u0 : Dγ,α

p,T pGε, eσl q Q puε,X , uε,7q ÞÝÑ pvε,X , vε,7q P Dγ,α
p,T pGε, eσl q

for uε “ uε,XăăXε
µ ` u

ε,7 with uεp0q “ u0 via vε,X :“ F 1p0quε and vε,7 :“ vε ´ vε,XăăXε
µ, where

vε is the solution to the problem

L ε
µv

ε :“ F εpuεqξε ´ F εpuε,X{F 1p0qqF 1p0qcεµ, vεp0q “ u0 . (79)

The map M ε
γ,u0 is well defined for γ P t0, αu and we have the bound

}pvε,X , vε,7q}Dγ,α
p,T pGε,e

σ
l q
ď Cu0 ` CMε ¨ T

pα´δq{2
´

}uε}Dγ,α
p,T pGε,e

σ
l q
` εν}uε}2Dγ,α

p,T pGε,e
σ
l q

¯

for δ P p2´ 2α´ 2κ{σ, αq and some ν ą 0, where CMε “ c0 p1`M
2
ε q and

Cu0 “ 1γ“α c0 }u0}C0ppGε,eσl q

` 1γ“0 c0

´

}u70}C2αp pGε,eσl q ` }u
ε,Xp0q}Cαp pGε,eσl q ` }u

ε,7p0q}C2αp pGε,eσl q

¯

, (80)

for some c0 ą 0 that does not depend on ξε, cεµ or u0.

Remark 5.10. The complicated formulation of (79) is necessary because when we expand the
singular product on the right hand side we get

F εpuεqξε “ F 1p0qpCpuε,X , Xε
µ, ξ

εq ` uε,XpXε
µ � ξεqq ` . . . ,

so to obtain the right renormalization we need to subtract F 1p0quε,Xcεµ, which is exactly what we
get if we Taylor expand the second addend on the right hand side of (79).

If uε “ vε “ M ε
γ,u0u

ε is a fixed point, then uε,X “ vε,X “ F 1p0quε and the “renormalization
term” is just F εpuεqF 1p0qcεµ. Moreover we have in this case

L ε
µu

ε “ F εpuεqpξε ´ F 1p0qcεµq , uεp0q “ u0 .
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Proof. We assume for the sake of shorter formulas p1`M2
ε q À 1, the general case can be easily

included in the reasoning below. The solution to (79) can be constructed using the Green’s
function F´1

Gε e
´tlεµ and Duhamel’s principle. To uncluster the notation a bit, we will drop the

upper index ε on u, v, Xµ, Lµ, . . . in this proof. We show both estimates at once by denoting
by γ either 0 or α.

Throughout the proof we will use the fact that

}u}
L
γ{2,α
p,T pGε,eσl q

“ }uXăăXµ ` u
7}

L
γ{2,α
p,T pGε,eσl q

À }u}
Dγ,β
p,T pGε,e

σ
l q

(81)

for all β P p0, αs which follows from Lemma 4.8. In particular (with β “ δ) we have

}vX}
L
γ{2,α
p,T pGε,eσl q

“ }F 1p0qu}
L
γ{2,α
p,T pGε,eσl q

(81)
À }u}

Dγ,δ
p,T pGε,e

σ
l q

Lem. 3.11
À 1γ“0p}u

Xp0q}Cαp pGε,eσl q ` }u
7p0q}C2αp pGε,eσl qq ` T

α´δ
2 }u}Dγ,α

p,T pGε,e
σ
l q
. (82)

This leaves us with the task of estimating }v7}L γ,2α
p,T pGε,eσl q

. We split

Lµv
7 “ Lµpv ´ F

1p0quăăXµq (83)

“ F εpuqξ ´ F εpuY {F 1p0qqF 1p0qcµ ´ F
1p0qLµpuăăY q

“ F 1p0quξ ´ F 1p0quXcµ ´ F
1p0qLµpuăăXµq `Rpuqu

2ξ ´RpuX{F 1p0qq
puXq2

F 1p0q
cµ

“ F 1p0qru4 pξ ´ ξ̄q ` u4 ξ̄ ´ uăăξ̄ ` uăăξ̄ ´LµpuăăXµq ` u5 ξ (4)

` CpuX , Xµ, ξq ` u
XpXµ ‚ ξq (�)

` u7 � ξs (7)

`Rpuq ¨ u2ξ (Ru)

´RpuX{F 1p0qq
puXq2

F 1p0q
cµ , (RuX )

where ξ “ χpDqξ so that LµXµ “ ξ̄ with ξ ´ ξ̄ P
Ş

βPR C
β
8pGε, pκq and where Rpxq “ ε2

ş1
0p1´

λqF 2pλε2xqdλ. We have by Lemmas 4.2, 4.9

}(4)}Mγ
T C

2α`2κ{σ´2
p pGε,eσl pκq

À }u}
L
γ{2,α
p,T pGε,eσl q

(81)

À }u}
Dγ,δ
p,T pGε,e

σ
l q

and further with Lemma 4.4 and Lemma 4.2

}(�)}Mγ
T C2α`4κ{σ´2pGε,eσl p2κq

À }u}
Dγ,δ
p,T pGε,e

σ
l q
,

while the term (7) can be bounded with Lemma 4.2 by

}u7 � ξ}Mγ
T C

2α`2κ{σ´2
p pGε,eσl pκq

À }u7}
L γ,α`δ
p,T pGε,eσl q

ď }u}
Dγ,δ
p,T pGε,e

σ
l q
.

To estimate (Ru) we use the simple bounds }εβ1f}Cβ`β1q pGε,ρq À }f}Cβq pGε,ρq
for β P R, β1 ą 0,

q P r1,8s, ρ P ρpωq and

}ε´βf}LqpGε,ρq À ε´β
ÿ

jÀjGε

2´jβ}f}Cβq pGε,ρq
À }f}Cβq pGε,ρq
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for β ă 0, q P r1,8s, ρ P ρpωq, together with the assumption F 2 P L8, and obtain for ν 1 ą 0

}(Ru)}Mγ
T C

2α`2κ{σ´2
p pGε,eσl pκq

À }F 2}8}ε
α`2κ{σu2}MγLppGε,eσl q }ε

2´pα`2κ{σqξ}L8pGε,pκq

À }εα`2κ{σu2}Mγ
TL

ppGε,peσl q2q
}ξ}Cα`2κ{σ´2

8 pGε,pκq

À }εα{2`κ{σu}2
Mγ{2

T L2ppGε,eσl q
À }εα{2`κ{σu}2

Mγ{2
T C

d{2p`ν1
p pGε,eσl q

ď }εα{2`κ{σu}2
Mγ{2

T C
1`ν1
p pGε,eσl q

À }εα{2`κ{σ´p1`ν
1´αqu}2

Mγ{2
T Cαp pGε,e

σ
l q

À ε3α`2κ{σ´2p1`ν1q}u}2
Dγ,δ
p,T pGε,e

σ
l q
ď εν}u}2

Dγ,δ
p,T pGε,e

σ
l q

for all ν P p0, 3α` 2κ{σ´ 2p1` ν 1qs (which is nonempty if ν 1 is sufficiently small). Similarly we
get for ν 1 P p0, δq

}(RuX )}Mγ
T C

2α`2κ{σ´2
p pGε,eσl pκq

À }F 2}L8pRq ¨ cµ}εu
X}2
Mγ{2

T L2ppGε,eσl q
À cµ}εu

X}2
Mγ{2

T C
1`ν1
p pGε,eσl q

À ε2pδ´ν1q| logpεq|}uX}2
Mγ{2

T CδppGε,e
σ
l q
À εν}u}2

Dγ,δ
p,T pGε,e

σ
l q

for all ν P p0, δ ´ ν 1s. In total we have

}Lµv
7}Mγ

T C
2α`2κ{σ´2
p pGε,eσl pκq

À }u}
Dγ,δ
p,T pGε,e

σ
l q
` εν}u}2

Dγ,δ
p,T pGε,e

σ
l q
, vε,7p0q “ 1γ“0u

7
0 ` 1γ“αu0 ,

where we used for the initial condition that by Definition 4.5 and Convention 4.6 we have
pF 1p0quăăXµqp0q “ F 1p0qu0 4 X for γ “ 0 and pF 1p0quăăXµqp0q “ 0 for γ “ α ą 0. The
Schauder estimates of Lemma 3.10 yield on these grounds

}v7}L γ,2α
p,T pGε,eσl q

À 1γ“α}u0}C0ppGε,eσl q ` 1γ“0}u
7
0}C2αp pGε,eσl q ` }u}Dγ,δ

p,T pGε,e
σ
l q
` εν}u}2

Dγ,δ
p,T pGε,e

σ
l q

À 1γ“α}u0}C0ppGε,eσl q ` 1γ“0

´

}u70}C2αp pGε,eσl q ` }u
7p0q}C2αp pGε,eσl q ` }u

Xp0q}Cαp pGε,eσl q

¯

` T pα´δq{2p}u}Dγ,α
p,T pGε,e

σ
l q
` εν}u}2Dγ,α

p,T pGε,e
σ
l q
q ,

where in the last step we used Lemma 3.11. Together with (82) the claim follows.

As we mentioned in Remark 5.10 we aim at finding fixed points of M ε
γ,a0 which is achieved

by the following Corollary.

Corollary 5.11. With the notation of Lemma 5.9 choose T loc
ε :“ 1

2 pCMε`CMεε
νrpu0qq

´2{pα´δq

for a sufficiently large rpu0q ą 0, depending on u0. Then the map M ε
γ,u0 from Lemma 5.9 has a

unique fixed point uε “ uε,XăăXε
µ ` u

ε,7 on Dγ,α
p,T loc

ε
pGε, eσl q. This fixed point solves

L ε
µu

ε “ F εpuεqpξε ´ F 1p0qcεµq , uεp0q “ u0 , (84)

and uε,X “ F 1p0quε. Moreover, we have

}uε}Dγ,α

p,T loc
ε
pGε,eσl q

ď rpu0q .

Proof. We construct the fixed point uε by a Picard type iteration. To avoid notational clashes
with the initial condition u0, we start the iteration with n “ ´1 for which we define uε´1 :“

F 1p0qu0ăăXε
µ`u

7
0 “ u04Xε

µ`u
7
0 “ u0 for γ “ 0 and uε´1 :“ 0ăăXε

µ`e
tLεµu0 for γ “ α (which is

in Dγ,α
p,T pGε, eσl q due to Lemma 3.10). Define recursively for n ě 0 the sequence uεn :“ M ε

γ,u0u
ε
n´1

(with uεn “ uε,Xn ăăXε
µ ` u

ε,7
n to be read as a pair as in Definition 5.7). Choose now rpu0q so big

that }uε´1}Dγ,α
p,1 pGε,eσl q

ď rpu0q and such that

Cu0 ď
1

2
rpu0q
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with Cu0 as in Lemma 5.9. Note that for uεn`1 the constant Cu0 in principle depends on uεnp0q,
but in fact we can choose it independently of n since uε,Xn p0q “ F 1p0qu0 for all n ě ´1 (by
definition of M ε

γ,u0) and uε,7n p0q “ 1γ“0u
7
0 ` 1γ“αu0 (by Definition 4.5 and Convention 4.6) in

the second term of (80).
Since T loc

ε ď 1 we already know for n “ ´1 that

}uεn}Dγ,α

p,T loc
ε
pGε,eσl q

ď rpu0q . (85)

We show recursively that (85) is in fact true for any n ě ´1. Suppose we have already shown
the statement for n´ 1, we then obtain by Lemma 5.9

}uεn}Dγ,α

p,T loc
ε
pGε,eσl q

ď Cu0 ` pT
loc
ε q

α´δ
2 ¨ CMεprpu0q ` ε

ν prpu0qq
2q

ď
rpu0q

2
` pT loc

ε q
α´δ
2 pCMε ` CMεε

ν rpu0qq ¨ rpu0q “
rpu0q

2
`
rpu0q

2
“ rpu0q .

By Lemma A.7 in the appendix inequality (85) implies that for α1 P p0, αq and σ1 P p0, σq there
is a subsequence puεnkqkě0, convergent in Dγ,α1

p,T loc
ε
pGε, eσ1l q to some uε P Dγ,α

p,T loc
ε
pGε, eσl q, and

}uε}Dγ,α

p,T loc
ε
pGε,eσl q

ď lim inf
kÑ8

}uεnk}Dγ,α

p,T loc
ε
pGε,eσl q

ď rpu0q .

In particular uε is a fixed point of M ε
γ,u0 that satisfies (84). It remains to check uniqueness.

Choose two fixed points uε, vε, which then satisfy

L ε
µ pu

ε ´ vεq“pF εpuεq ´ F εpvεqqpξε ´ cεµF
1p0qq“

ż 1

0
F 1puε ` λpvε ´ uεqqdλ

looooooooooooooomooooooooooooooon

“:F

¨pvε ´ uεqpξε ´ cεµF
1p0qq .

We will use that for ρ P ρpωq and ζ, ζ 1 P R with ζ 1 ě ζ

}f}Cζ
1

p pGε,ρq
À ε´pζ

1´ζq}f}CζppGε,ρq
, (86)

which is an easy consequence of Definition 2.17 and which we essentially already used in the
proof of Lemma 5.9. In other words, we can consider our objects as arbitrarily “smooth” if we
are ready to accept negative powers of ε. In particular, we can consider the initial condition
u0 as paracontrolled, that is u0 P Cαp pGε, eσl q, u

7
0 P C2α

p pGε, eσl q (and thus uε,Xp0q “ vε,Xp0q “

F 1p0qu0 P Cαp pGε, eσl q), so that with Lemma 5.9 we obtain uε, vε P D0,α
p,T loc

ε
pGε, eσl q. Consequently,

since also eσl ě 1, we get uε, vε P CT loc
ε
L8pGεq which implies that the integral term F is in

CT loc
ε
L8pGεq and, by using once more (86), we can consider it as an element of CT loc

ε
Cβ8pGεq for

any β P R. The product pvε´uεqpξε´ cεµF 1p0qq can then be estimated as in the proof of Lemma
5.9. Since multiplication by F only contributes an (ε-dependent) factor we obtain for T 1 ď T loc

ε

a bound of the form

}uε ´ vε}D0,α

p,T 1
pGε,eσl q

Àε pT
1q
α´δ
2 }uε ´ vε}D0,α

p,T 1
pGε,eσl q

,

which shows }uε´ vε}D0,α

p,T 1
pGε,eσl q

“ 0 for T 1 small enough. Iterating this argument gives uε “ vε

on all of r0, T loc
ε s.

Convergence to the continuum

It is straightforward to redo our computations in the continuous linear case (i.e. F pxq “ cx),
which leads to the existence of a solution to the continuous linear parabolic Anderson model
on R2, a result which was already established in [28]. Since the continuous analogue of our
approach is a one-to-one translation of the discrete statements and definitions above from Gε to
Rd we do not provide the details.
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Corollary 5.12. Let u0 P C0
ppRd, eσl q. Let ξ be a white noise on R2, and let Lµ be defined as in

Section 3. Then there is a unique solution u “ F 1p0quăăXµ ` u
7 P Dα,α

p,T pR
d, eσl q to

Lµu “ F 1p0qu � ξ, up0q “ u0 , (87)

on r0, T s, where

u � ξ :“ ξ 4 u` u4 ξ ` F 1p0qCpu,Xµ, ξq ` F
1p0qu pXµ ‚ ξq ` u

7 � ξ

with Xµ, Xµ ‚ ξ as in (69), (70).

Sketch of the proof. As in Lemma 5.9 we can build a map Mα,u0 : Dα,α
p,T pR

d, eσl q Ñ Dα,α
p,T pR

d, eσl q :

u “ uXµăăXµ ` u
7 ÞÑ v “ F 1p0quăăXµ ` v

7 via

Lµv :“ F 1p0qu � ξ , vp0q “ u0 . (88)

As in Corollary 5.11 there is a time T loc such that Mα,u0 has a (unique) fixed point up0q “
F 1p0qup0qăăXµ ` u

p0q,7 in Dα,α
p,T locpRd, eσl q that solves

Lµu
p0q “ F 1p0qup0q � ξ , up0qp0q “ u0 .

on r0, T locs. Since the right hand side of (88) is linear, this time can be chosen of the form
T loc “ 1

2 K
´2{pα´δq, where K ą 0 is a (random) constant that only depends on ξ,Xµ, Xµ ‚ ξ,

but not on the initial condition. Proceeding as above but starting in up0qpT locq we can construct
a map M0,up0qpT locq : D0,α

p,T locpRd, eσl q Ñ D0,α
p,T locpRd, eσl q by (the continuous version of) Lemma 5.9

and Lemma 4.9. The map M0,up0qpT locq has again a fixed point on r0, T locs which we call up1q.
Starting now in up1qpT locq we can construct up2q as the fixed point of M0,up1qpT locq on r0, T

locs

and so on. As in [21, Theorem 6.12]) the sequence of local solutions up0q, up1q, up2q, . . . can be
concatenated to a paracontrolled solution u “ F 1p0quăăXµ ` u

7 P Dα,α
p,T pR

d, eσl q on r0, T s.
To see uniqueness take two solutions u, v in Dα,α

p,T pR
d, eσl q and consider h “ u ´ v. Using

that hp0q “ 0 and Lµh “ h � ξ one derives as in Lemma 5.9

}h}Dα,α
p,T pRd,e

σ
l q
ď C ¨ T pα´δq{2 }h}Dα,α

p,T pRd,e
σ
l q

so that choosing T first small enough and then proceeding iteratively yields h “ 0.

We can now deduce the main theorem of this section. The parameters are as on page 38.

Theorem 5.13. Let uε0 be a uniformly bounded sequence in C0
ppGε, eσl q such that Eεuε0 converges

to some u0 in S 1ωpR2q. Then there are unique solutions uε P Dα,α
p,T εpGε, eσl q to

L ε
µu

ε “ F εpuεqpξε ´ cεµF
1p0qq, uεp0q “ uε0, (89)

on r0, T εs with random times T ε P p0, T s that satisfy PpT ε “ T q
εÑ0
ÝÑ 1. The sequence uε “

F 1p0quεăăXµ ` uε,7 P Dα,α
p,T εpGε, eσl q is uniformly bounded and the extensions Eεuε converge in

distribution in Dα,α1

p,T pR
d, eσ

1

l q, α
1 ă α, σ1 ă σ, to the solution u of the linear equation in Corollary

5.12.

Remark 5.14. Since T ε is a random time for which it might be true that P pT ε ă T q ą 0
the convergence in distribution has to be defined with some care: We mean by Eεuε Ñ u in
distribution that for any f P CbpD

α,α1

p,T pGε, eσl q;Rq, we have ErfpEεuεq1T ε“T s Ñ Erfpuqs and
further PpT ε ă T q Ñ 0.
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Proof. The local existence of a solution to (89) is provided by Corollary 5.11. Proceeding as
in the proof of Corollary 5.12 we can in fact construct a sequence of local solutions puε,pnqqně0

on intervals r0, T loc,pnq
ε s with uε,pnqp0q “ uε,pn´1qpT

loc,pn´1q
ε q, where we set T loc,p´1q

ε :“ 0 and
uε,p´1q :“ u0. Due to Corollary 5.11 the time T loc,pnq

ε is given by

T loc,pnq
ε :“

1

2

´

CMε ` CMεε
νr
`

uε,pn´1qpT loc,pn´1q
ε q

˘

¯´2{pα´δq
. (90)

Note that, in contrast to the proof of Corollary 5.12, T loc,pnq
ε now really depends on n and

we might have
ř

ně0 T
loc,pnq
ε ă 8. As in [21, Theorem 6.12] we can concatenate the sequence

uε,p0q, uε,p1q, . . . to a solution uε to (89) which is defined up to its “blow-up” time

T blow´up
ε “

ÿ

ně0

T loc,pnq
ε

(which might be larger than T or even infinite). Let us set

T ε :“ T ^
T blow´up
ε

2
. (91)

To show PpT ε “ T q
εÑ0
ÝÑ 1 we prove that for any t ą 0 we have PpT blow´up

ε ă tq Ñ 0. By
inspecting the definition of rp. . .q in the proof of Corollary 5.11 we see that given the (bounded)
sequence of initial condition uε0 the size of T blow´up

ε can be controlled by the quantity M ε. More
precisely there is a deterministic, decreasing function T det

ε : R` Ñ R` such that

T blow´up
ε ě T det

ε pM εq

and such that for any K ą 0 (due to the presence of the factor εν in (90))

T det
ε pKq

εÑ0
ÝÑ 8 . (92)

Let t ą 0 and Kε
t :“ suptK ą 0 |T det

ε pKq ě tu. Note that we must have Kε
t
εÑ0
ÝÑ 8 since

otherwise we contradict (92). But this already implies the desired convergence:

PpT blow´up
ε ă tq ď PpT det

ε pM εq ă tq ď PpM ε ě Kε
t q

Kε
tÑ8
ÝÑ 0 ,

where we used in the last step the boundedness of the moments of M ε due to Lemma 5.3.
It remains to show that the extensions Eεuε converge to u. By Skohorod representation we

know that Eεξε, EεXε
µ, EεpXε

µ‚ξ
εq in Lemma 5.5 converge almost surely on a suitable probability

space. We will work on this space from now on. The application of the Skohorod representation
theorem is indeed allowed since the limiting measure of these objects has support in the closure
of smooth compactly supported functions and thus in a separable space. We can further assume
by Skohorod representation that (a.s.) T blow´up

ε Ñ8 so that almost surely we have T ε “ T for
all ε ď ε0 with some (random) ε0. Having proved that the sequence uε is uniformly bounded in
Dα,α
p,T εpGε, eσl q we know, by Lemma 2.24, that Eεuε is uniformly bounded in Dα,α

p,T εpR
d, eσl q. Due to

(the continuous version of) Lemma A.7 there is at least a subsequence of Eεnuεn that converges
to some u P Dα,α

p,T pR
d, eσl qpRdq in the topology of Dα,α1

p,T pR
d, eσ

1

l q. If we can show that this limit
solves (87) we can argue by uniqueness that (the full sequence) Eεuε converges to u. We have

L εn
µ Eεnuεn “ EεnL εn

µ uεn “ EεnpF εnpuεnqpξεn ´ cεnµ F 1p0qqq , (93)

where L ε
µEεuε should be read as in (43). Note that the left hand side of (93) converges as

L ε
µEεnuεn “ pL εn

µ ´LµqEεnuεn `LµEεnuεn εnÑ0
ÝÑ 0`Lµu “ Lµu
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due to Lemma 3.4. For the right hand side of (93) we apply the same decomposition as in
(83)=(4)+(�)+(7)+(Ru)+(RuX ). While (the extensions of) the terms (Ru),(RuX ) of (83) van-
ish as ε tends to 0, we can use the property (E) of the operators acting in the terms (4), (�),
(7) to identify their limits. Consider for example the product uε,X

ε
µpXε

µ ‚ ξ
εq “ F 1p0quεpXε

µ ‚ ξ
εq

in (�) whose extension we can rewrite as

Eεn
`

F 1p0quεnpXεn
µ ‚ ξεnq

˘

“ F 1p0q Eεn
`

uεn 4 pXεn
µ ‚ ξεnq ` uεn 5 pXεn

µ ‚ ξεnq ` uεn � pXεn
µ ‚ ξεnq

˘

(E)
“ F 1p0q

“

Eεnuεn 4 EεnpXεn
µ ‚ ξεnq ` Eεnuεn 5 EεnpXεn

µ ‚ ξεnq ` Eεnuεn � EεnpXεn
µ ‚ ξεnq

‰

` oεnp1q ,

where we applied the property (E) of 4, 5, � (Lemma 4.2) in the second step. By continuity
of the involved operators and Lemma 5.5 we thus obtain

lim
εnÑ0

Eεn
`

F 1p0quεnpXεn
µ ‚ ξεnq

˘

“ F 1p0q
“

u4 pX ‚ ξq ` u5 pX ‚ ξq ` u� pX ‚ ξ
˘

s “ F 1p0qupX ‚ ξq .

Proceeding similarly for all terms in the decomposition of the right hand side of (93) one arrives
at

Lµu “ lim
εnÑ0

EεnL εn
µ uεn “ lim

εnÑ0
EεnpF εnpuεnqpξεn ´ cεnµ F 1p0qqq “ F 1p0qu � ξ ,

which finishes the proof.

Since the weights we are working with are increasing, the solutions uε and the limit u
are actually classical tempered distributions. However, since we need the Sω spaces to handle
convolutions in eσl weighted spaces it is natural to allow for solutions in S 1ω. In the linear case,
F “ Id, we can allow for sub-exponentially growing initial conditions u0 since the only reason
for choosing the parameter l in the weight eσl`t smaller than ´T was to be able to estimate
eσl`t ď pe

σ
l`tq

2 to handle the quadratic term. In this case the solution will be a genuine ultra-
distribution.

A Appendix

Results related to Section 2

Lemma A.1. The mappings pFG ,F´1
G q defined in Subsection 2.3 map the spaces pSωpGq, SωppGqq

and pS 1ωpGq, S 1ωppGqq to each other.

Proof. We only consider the non-standard case ω “ | ¨ |σ. Given f P SωppGq the sequence

FGfpxq “ |G|
ÿ

kPG
fpkqe2πıkx

obviously converges to a smooth function that is periodic on pG. We estimate on pG (and thus by
periodicity uniformly on Rd)

ˇ

ˇ

ˇ

ˇ

ˇ

Bα
ÿ

kPG
|G|fpkqe2πıkx

ˇ

ˇ

ˇ

ˇ

ˇ

Àλ

ÿ

kPG
|G||k||α|e´λ|k|σ

We can use Lemma A.2 for | ¨ ||α|e´λ|¨|σ with Ω “ G and c ą 0 of the form c “ Cpλq ¨ C |α| (C
denoting a positive constant that may change from line to line) which yields

ˇ

ˇ

ˇ

ˇ

ˇ

Bα
ÿ

kPG
|G|fpkqe2πıkx

ˇ

ˇ

ˇ

ˇ

ˇ

Àλ C
|α|

ż

Rd
|x||α|e´λ|x|

σ
dx



A APPENDIX 47

We now proceed as in [31, Lemma 12.7.4] and estimate the integral by the Γ´function
ż

Rd
|x||α|e´λ|x|

σ
dx À

ż 8

0
r|α|`d´1e´λr

σ
dr Àλ λ

´|α|{σ

ż 8

0
r|α|`d´1e´r

σ
dr

À λ´|α|{σΓpp|α| ` d´ 1q{σq
Stirling
À λ´|α|{σC |α||α||α|{σ .

Since we can choose λ ą 0 arbitrarily large we see that indeed f P C8ω ppGq.
For the opposite direction, f P SωppGq, we use that by integration by parts |zli ¨ F´1

G fpzq| À

C l sup
pGpB

iqlf À C lεlll{σ for all z P G, l ě 0, i “ 1, . . . , d. With Stirling’s formula and Lemma 3.7
we then obtain |F´1

G fpzq| À eλ|z|
σ . This shows the statement for the pair pSωpGq, SωppGqq. The

estimates above show that FG ,F´1
G are in fact continuous w.r.t to the corresponding topologies

so that the statement for the dual spaces pS 1ωpGq, S 1ωppGqq immediately follows.

Lemma A.2. Given a lattice G as in (2) we denote the translations of the closed parallelotope
G :“ r0, 1sa1` . . .`r0, 1sad by G :“ tg`G | g P Gu. Let Ω Ď G and set Ω :“

Ť

G1PG, G1XΩ‰HG
1 .

If for a measurable function f : Ω Ñ R` there exists c ě 1 such that for any g P Ω there is a
G1pgq P G, g P G1pgq with fpgq ď c ¨ ess inf xPG1fpxq then it also holds

ÿ

gPΩ

|G|fpgq ď c ¨ 2d
ż

Ω
fpxqdx .

Proof. Indeed
ÿ

gPΩ

|G|fpgq ď c
ÿ

gPΩ

ż

G1pgq
fpxqdx ď c

ÿ

gPΩ

ÿ

G1PG: gPG1

ż

G1pgq
fpxqdx

ď c
ÿ

G1ĎΩ

ÿ

gPΩ:gPG1

ż

G1
fpxqdx

p4q
“ 2dc

ÿ

G1PΩ

ż

G1
fpxqdx “ 2dc

ż

Ω
fpxqdx ,

where we used in p4q that the d-dimensional parallelotope has 2d vertices.

Lemma A.3 (Mixed Young inequality). For f : Rd Ñ C and g : G Ñ C we set for x P Rd

f ˚G gpxq :“
ÿ

kPG
|G|fpx´ kqgpkq

Then for r, p, q P r1,8s with 1` 1{r “ 1{p` 1{q

}f ˚G g}LrpRdq ď sup
xPRd

}fpx´ ¨q}
1´ p

r

LppGq ¨ }f}
p
r

LppRdq}g}LqpGq

(with the convention 1{8 “ 0, 8{8 “ 1).

Proof. We assume p, q, r P p1,8q. The remaining cases are easy to check. The proof is based
on Hölder’s inequality on G with 1

r `
1
rp
r´p

` 1
rq
r´q

“ 1

|f ˚G gpxq| ď
ÿ

kPG
|G| p|fpx´ kq|p|gpkq|qq1{r ¨ |fpx´ kq| r´pr |gpkq| r´qr

Hölder
ď

›

›

›
p|fpx´ ¨q|p|gp¨q|qq1{r

›

›

›

LrpGq
¨ }|fpx´ ¨q|

r´p
r }

L
rp
r´p pGq

¨ }|gp¨q|
r´q
r }

L
rq
r´q pGq

ď

˜

ÿ

kPG
|G|p|fpx´ kq|p|gpkq|q

¸1{r

sup
x1PRd

}fpx1 ´ ¨q}
r´p
r

LppGq}g}
r´q
r

LqpGq .

Raising this expression to the rth power and integrating it shows the claim.
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Results related to Section 3

Lemma A.4. For T ě 0, p P r1,8s, ρ P ρpωq we have uniformly in t P r0, T s and ε P p0, 1s

}etL
ε
µf}LppGε,ρq À }f}LppGε,ρq ,

and for β ą 0

}etL
ε
µf}LppGε,ρq À t´β{2}f}C´βp pGε,ρq .

Proof. With the random walk pXε
t qtPR` which is generated by Lεµ on Gε we can express the

semigroup as etL
ε
µfpxq “ Erfpx`Xε

t qs, so that

}ρetL
ε
µf}LppGεq “

›

›

›

›

E
„

ρp¨q

ρp¨ `Xε
t q
ρp¨ `Xε

t qfp¨ `X
ε
t q

›

›

›

›

LppGεq

ď E
„

sup
xPGε

ρpxq

ρpx`Xε
t q
}f}LppGε,ρq



À EreλωpX
ε
t qs}f}LppGε,ρq

An application of the next lemma finishes the proof of the first estimate. The second estimate
follows as in Lemma 6.6. of [21].

Lemma A.5. The random walk generated by Lεµ on Gε satisfies for any λ ą 0 and t P r0, T s

EreλωpX
ε
t qs Àλ,T 1 .

Proof. We assume ω “ ωexp
σ , if ω is of the polynomial form the proof follows by similar, but

simpler arguments. In this proof we write shorthand s “ 1{σ. By the Lévy-Khintchine-formula
we have EreıθXε

t s “ e´t{ε
2
ş

Gp1´e
ıθεxqdµpxq

“ e´tl
ε
µpθq for all θ P R. We want to bound first for

k ě 1

Er|Xε
t,1|

k ` . . .` |Xε
t,d|

ks “

d
ÿ

j“1

ˇ

ˇ

ˇ
Bkθj |θ“0EreıθX

ε
t s

ˇ

ˇ

ˇ
.

To this end we apply Faá-di-Brunos formula with upvq “ e´tv, vpθq “ lεµpθq. Note that with
Lemma 3.5 for m P N and j “ 1, . . . , d

upmqp0q “ p´tqm

|Bmθjvp0q| Àδ δ
mpm!qs.

Thus with Am,k “ tpα1, . . . , αmq P Nm |
řm
i“1 αi ¨ i “ ku we get for any δ P p0, 1s

ˇ

ˇ

ˇ
Bkθj |θ“0EreıθX

ε
t s

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

1ďmďk, αPAm,k

k!

α!
upmqp0q

m
ź

i“1

ˆ

1

i!
Biθjvp0q

˙αi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Àδ

ÿ

1ďmďk, αPAm,k

k!

α!
tm

m
ź

i“1

pi!qαips´1qδi¨αi
Stirling
ď δkCk

ÿ

1ďmďk, αPAm,k

k!

α!
tm

m
ź

i“1

Ciαiiiαips´1q

iďmďk
ď δkCk

ÿ

1ďmďk, αPAm,k

k!

α!
tmkkps´1q

Stirling
ď δkCk

ÿ

1ďmďk, αPAm,k

pk!qs

α!
tm

pα!q´1ď1
ď δkCkpk!qs

ÿ

1ďmďk

|Am,k| t
m “ δkCkpk!qs

ÿ

1ďmďk

ˆ

k ´ 1

m´ 1

˙

tm

“ δkCkpk!qstp1` tqk´1 ď δkCkpk!qsp1` tqk ,
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where C ą 0 denotes as usual a generic constant that changes from line to line. With |x|kk :“
|x1|

k ` . . .` |xd|
k we get

Er|Xε
t |
k
ks À δkCkpk!qsp1` tqk

and therefore, using once more Stirling’s formula and |x|k À Ck ¨ |x|kk,

Ereλ|X
ε
t |
σ
s À 1` Ereλ|X

ε
t |
σ
1|Xε

t |ě1s ď 1`
8
ÿ

k“0

λk

k!
Er|Xε

t |
rkσss

À 1`
8
ÿ

k“0

Ckp1` tqrkσs

kk
δrkσsrkσsrkσss À 1` p1` tq

8
ÿ

k“0

Ckδkσp1` tqkσ

kk
kk À 1 ,

where in the last step we chose δ ą 0 small enough to make the series converge.

Results related to Section 4

Lemma A.6. Let Gε as in Definition 2.2, let ω P ω, and let pϕG
ε

j qj“´1,...,jGε be a partition of
unity as on page 8. For ´1 ď i ď j ď jGε the function

∆G
ε

i f1 ¨∆
Gε
j f2 P S 1ωpGεq

is spectrally supported in a set of the form 2jB X pGε, where B is a ball around 0 that can be
chosen independently of i, j and ε. For f1, f2 P S 1ωpGεq and 0 ă j ď jGε the function

SG
ε

j´1f1 ¨∆
Gε
j f2 P S 1ωpGεq ,

is spectrally supported in a set of the form 2jAX pGε, where A is an annulus around 0 that can
be chosen independently of j and ε.

Proof. We can rewrite

FGε
`

∆G
ε

i f1 ¨∆
Gε
j f2

˘

“ pϕG
ε

i FGεfq ˚ pGε pϕ
Gε
j FGεf2q

“

ż

pGε
pϕG

ε

i FGεfqpzq ¨ pϕG
ε

j FGεf2qpr¨ ´ zs
pGεqdz ,

where we used formal notation in the last step and r¨s
pGε as in (8). From this one sees that the

spectral support of ∆G
ε

i f1 ¨∆
Gε
j f2 is contained in

psuppϕG
ε

i ` suppϕG
ε

j `Rεq X pGε , (94)

where we recall that suppϕG
ε

i “ tx P pGε |ϕGεi pxq ‰ 0u is a subset of (the closure of) pGε Ď Rd,
while the sum of sets in the parentheses should be read as a subset of Rd. Now, by the dyadic
scaling of ϕG

ε

j we have for all i ď j

suppϕG
ε

i ` suppϕG
ε

j Ď Bp0, 2j bq

for some b ą 0, independent of ε and j. Set: B1 :“ Bp0, bq and consider first the case 2jB1 “

Bp0, 2jbq Ď pGε. In this case we have

psuppϕG
ε

i ` suppϕG
ε

j `Rεq X pGε Ď p2jB1 `Rεq X pGε “ 2jB1 X pGε “ 2jB1 .

On the other hand, if 2jB1 “ Bp0, 2jbq Ĺ pGε we are in the regime j „ jGε and take a ball B2

around 0 such that 2jB2 Ě pGε and hence 2jB2 X pGε “ pGε for all j „ jGε (by the dyadic scaling
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of Gε from Definition 2.2 we have 2jGε “ c ¨ ε´1 so that we can choose B2 independently of ε).
Choosing then B “ B1 Y B2 shows the first part of the claim.

Let us now consider SG
ε

j´1f1 ¨∆
Gε
j f2. With ϕG

ε

ăj´1 :“
ř

j1ăj´1 ϕ
Gε
j1 we see as above that the

spectral support of SG
ε

j f1 ¨∆
Gε
j f2 is contained in

psuppϕG
ε

ăj´1 ` suppϕG
ε

j `Rεq X pGε , (95)

We already know from above that this set is contained in a ball of size 2j so that is enough
to show that (95) is bounded away from 0. Since suppϕG

ε

ăj´1 and suppϕG
ε

j are symmetric and
disjoint, we have due to the scaling from (38) and (39), which we observed in the proof of Lemma
2.25, that

distpsuppϕG
ε

ăj´1 ` suppϕG
ε

j , 0q ě 2ja

for some a ą 0 and

suppϕG
ε

ăj´1 ` suppϕG
ε

j Ď Bp0, 2j ¨ b1q , (96)

for some b1 ą 0. Note, that we can choose b1 ą 0 small enough such that Bp0, 2jGε b1qXRε “ t0u.
Indeed, otherwise there are x1 P suppϕG

ε

ăjGε´1, x2 P suppϕG
ε

jGε
such that x1 ` x2 “ r for some

r P Rεzt0u. But from |x1| ă distpB pGε, 0q one sees that |x2| “ |r ´ x1| ą diamppGεq{2 which
contradicts x2 P suppϕG

ε

j Ď pGε. This choice of the parameter b1 can be done independently of ε
due to the dyadic scaling of our lattice (Definition 2.2).

Consequently, there exists r ą 0 such that distpBp0, 2jb1q ` Rεzt0u, 0q “ 2jr (to see that
r ą 0 is independent of ε, use once more the dyadic scaling of the sequence Gε). But then we
have

dist
`

psuppϕG
ε

ăj´1 ` suppϕG
ε

j `Rεq X pGε, 0
˘

ě pa^ rq ¨ 2j ,

which closes the proof.

Results related to Section 5

Proof of Lemma 5.4. We will write shorthand xf εk :“ FpGεqkf εk and pfk :“ FpRdqkfk. The claimed
convergence is a consequence of the results in [6]. For z P Gε let Gεpzq “ z ` r´ε{2, ε{2qa1 `

. . .` r´ε{2, ε{2qad, where a1, . . . , ad denote the vectors that span G. For x P Rd let rxsε be the
(unique) element in Gε such that x P Gεprxsεq and for x P pRdqk set rxsε “ prx1sε, . . . , rxksεq.
We will start by showing

lim
εÑ0

}f εkpr¨sεq ´ fk}L2ppRdqkq “ 0 (97)

for all k.
By Parseval’s identity we have }f εkpr¨sεq´fk}L2ppRdqkq “ }FpRdqkpf εkpr¨sεqq´ pfk}L2ppRdqkq, where

FpRdqk denotes the Fourier transform on pRdqk for which one easily checks that

FpRdqkpf εkpr¨sεqq “ pxf εkqext ¨ p
ε
k,

where we recall that pxf εkqext is the periodic extension of the discrete Fourier transform of f εk (on
pRdqk) as in (12) and where

pεkpy1, . . . , ykq “

ż

G1p0qk

dz1 . . . dzk
|G1|k

e´2πıεpy1‚z1`¨¨¨`yk‚zkq.
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The function pεk is uniformly bounded and tends to 1 as ε goes to 0. Now we apply Parseval’s
identity, once on pRdqk and once on pxGεqk, and obtain

ż

pRdqk
dx1 . . . dxk

ˇ

ˇ

ˇ

`

pxf εkqext p
ε
˘

px1, . . . , xkq
ˇ

ˇ

ˇ

2
“

ÿ

z1,...,zkPGε
|Gε|k|f εkpz1, . . . , zkq|

2

“

ż

ypGεqk
dx1 . . . dxk

ˇ

ˇ

ˇ

xf εkpx1, . . . , xkq
ˇ

ˇ

ˇ

2

and thus
ż

ppxGεqkqc
dx1 . . . dxk

ˇ

ˇ

ˇ

`

pxf εkqext p
ε
˘

px1, . . . , xkq
ˇ

ˇ

ˇ

2
“

ż

ypGεqk
dx1 . . . dxk

`

|xf εk |
2p1´ |pε|2

˘

px1, . . . , xkq .

Since 1
pxGεqk

xf εk is uniformly in ε bounded by gk P L2ppRdqkq and since 1´|pε|2 converges pointwise

to zero, it follows from the dominated convergence theorem that 1
ppxGεqkqcp

xf εkqext p
ε
k converges to

zero in L2ppRdqkq. Thus, we get

lim
εÑ0

}pxf εkqext p
ε
k ´

pfk}L2ppRdqkq “ lim
εÑ0

}1
pxGεqk

xf εkp
ε
k ´

pfk}L2ppRdqkq

ď lim
εÑ0

}p1
pxGεqk

xf εk ´
pfkqp

ε
k}L2ppRdqkq ` lim

εÑ0
} pfkp1´ p

ε
kq}L2ppRdqkq “ 0,

where for the first term we used that pεk is uniformly bounded in ε and that by assumption
1
pxGεqk

xf εk converges to pfk in L2ppRdqkq and for the second term we combined the fact that pεk
converges pointwise to 1 with the dominated convergence theorem. We have therefore shown
(97). Note that this implies

}f εkpr¨sεq1@i‰j rzisε‰rzjsε ´ fk}L2pRdq Ñ 0 & }f εkpr¨sεq1Di‰j rzisε“rzjsε}L2pRdq Ñ 0 . (98)

As in the proof of Lemma 5.1 we identify Gε with an enumeration N Ñ Gε and use the set
Akr “ ta P Nr |

ř

i ai “ ku so that we can write

Ikf
ε
k “

ÿ

1ďrďk, aPAkr

r!
ÿ

z1ă...ăzr

|Gε|kf̃kε,apz1, . . . , zrq ¨
r
ź

j“1

ξεpzjq
˛aj ,

where we denote as in the proof of Lemma 5.1 by f̃kε,a the symmetrized restriction of fkε to
pRdqr. By Theorem 2.3 of [6] we see that due to (98) the r “ k term of Ikf

ε
k converges in

distribution to the desired limit, so that we only have to show that the remaining terms vanish
as ε tends to 0. The idea is to redefine for fixed a P Akr the noise as ξεjpzq “ ξεpzq˛aj{rεj pzq where
rεj pzq :“

a

Varpξεpzq˛aj q ¨ |Gε| À |Gε|p1´ajq{2, so that in view of [6, Lemma 2.3] it suffices to show
that

ÿ

z1ă...ăzr

|Gε|r
r
ź

j“1

rεj pzjq
2 ¨ |f̃ εk,apz1, . . . , zrq|

2 À
ÿ

z1ă...ăzr

|Gε|k ¨ |f̃ εk,apz1, . . . , zrq|
2 Ñ 0 ,

but this follows from (98).

Lemma A.7. Let pfnqně0 be a sequence which is bounded in the space L γ,α
p,T pG, eσl q and let

α1 P p0, αq and σ1 P p0, σq. There is a subsequence pfnkqkě0, convergent in L γ,α1

p,T pG, eσ
1

l q, with
limit f such that

}f}L γ,α
p,T pG,e

σ
l q
ď lim inf

kÑ8
}fnk}L γ,α

p,T pG,e
σ
l q

(99)
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Proof. Take in the following α̃ “ α`α1

2 and σ̃ “ σ`σ1

2 . By Definition of L γ,α
p,T pG, eσl q we know that

pgnqně0 :“
`

pt, xq ÞÑ tγfnpt, xq
˘

ně0
is bounded in C

α{2
T LppG, eσl q X CTCαp pG, eσl q. Interpolation

then shows that pgnqně0 is bounded in Cα̃{2T Cδxp pG, eσl q X CδtT Cα̃p pG, eσl q for some δx, δt ą 0. We
obtain by compact embedding (Lemma 2.22) for δ1x P p0, δxq, δ1t P p0, δtq the existence of a
convergent subsequence pgnkqkě0 in Cα1T C

δ1x
p pG, eσ1l q XC

δ1t
T Cα

1

p pG, eσ
1

l q with some limit g. From the

convergence of gnk Ñ g in Cα1T C
δ1x
p pG, eσ1l q X C

δ1t
T Cα

1

p pG, eσ
1

l q it follows that for f :“ t´γg we have
fnk Ñ f in L γ,α1

p,T pG, eσ
1

l q.
The estimate (99) is then just an iterative application of Fatou like arguments for the norms

from which } ¨ }L γ,α
p,T pG,ρq

is constructed.

Glossary

4 Paraproduct, either on Rd or on a Bravais lattice 26
ăă Modified paraproduct 29
� Resonant term, either on Rd or on a Bravais lattice 26
‚ Renormalized resonant term 34
� Renormalized product for PAM (on R2) 44
˛ Wick product 33
r¨s

pG Periodic map from Rd to pG 7

Bαp,q Besov space 13

Cαp Besov space with q “ 8 13
C8ω Ultra-differentiable functions 11

Dγ,α
p,T Space of paracontrolled distributions for PAM 40

∆G
j Discrete Littlewood-Paley block 8

Eε Extension from Bravais lattices Gε to Rd 16
eσl Time-dependent, sub-exponential weight 25

FG Fourier transform on a Bravais lattice G 6
ϕG
j (discrete) Dyadic partition unity 8

G, Gε Bravais lattices, Gε “ ε ¨ G denotes the scaled lattice 5
pG Fourier cell for a Bravais lattice G 5

jG The index where supp ϕj touches B pG 8

lεµ Fourier multiplier for the diffusion operator Lεµ 21
L
pεq
µ , L

pεq
µ (discrete) Diffusion operator and its associated operator L

pεq
µ “ Bt ´ L

pεq
µ 19

L γ,α
p,T Parabolic space 24

Mγ
TX Weighted space 24

µpωq Set of jump measures for symmetric random walks 19

ω Set of functions ωpol, ωexp
σ that classify weights 10

pκ Polynomial, decaying weight pκpxq “ p1` |x|q´κ 25
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ψ Smear function 16
ΨG,j Fourier transform of ϕG

j 14
ΨG,ăj Abbreviation for

ř

iăj ΨG,i 14

R Reciprocal Lattice 5
ρpωq The set of weights, whose growth/decay is controlled by ω P ω 10

Sω Ultra-differentiable Schwartz functions 10
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