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Abstract

We prove an invariance principle for the two-dimensional lattice parabolic Anderson model with small
potential. As applications we deduce a Donsker type convergence result for a discrete random polymer
measure, as well as a universality result for the spectrum of discrete random Schrodinger operators on large
boxes with small potentials. Our proof is based on paracontrolled distributions and some basic results for
multiple stochastic integrals of discrete martingales.

1 Introduction
The discrete parabolic Anderson model (PAM) is the infinite-dimensional random ODE
dpu(t,i) = Av(t,i) +v(t,i)n(E), (t,i) € [0,+00) x Z%, )

where A is the discrete Laplacian and (7(4) : i € Z%) is an i.i.d. family of random variables with sufficiently
many moments. The discrete PAM has been intensely studied in the past decades due to the fact that it is the
simplest known model that exhibits intermittency, meaning roughly speaking that the bulk of the mass of the
solution is concentrated in a few isolated islands. By now the intermittency properties of the discrete PAM are
well understood, and it is known that the solution is intermittent whenever the 7(i) are truly random, even if
they are bounded; see the surveys [[10] and [35[]. To get a better intuitive understanding of the PAM let us note
that it models a branching random walk in random environment: Place independent particles on the lattice Z%
which all follow the dynamics of a continuous-time simple random walk, independently of 7, and which at the
lattice point ¢ get killed with rate 1()~ and branch into two new particles with rate n(i)™; after the branching
the two particles follow the same dynamics, independently of each other and all other particles. Then v(t, ) is
the expected number of particles at time ¢ in location ¢, conditionally on the random environment 7). From this
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description it is intuitively convincing that v should have high peaks in the regions where the environment is
most favorable for the particles, and it should have deep valleys in between.

Therefore, we cannot expect to see a nontrivial behavior on large spatial scales. However, if we tune down
the strength of the potential 1 by considering

dyu(t,i) = Auv(t, i) + 2~ 20(t,i)n(i), (i) € [0, +o0) x Z%, 2)

then for d < 3 there is some hope to obtain a meaningful limit under the scaling (¢, z) — (¢72t,e'x) as long
as 7(0) has d/(2 — d/2) + § moments. Indeed, on a time scale of length £ =2 the simple random walk typically
explores a region of size £~ !, and we have

lim E max |52_d/217(i)]d/(2_d/2)+5] < lim Z E[|€2_d/2n(i)|d/(2_d/2)+5]

ic(—e—1 ~—1)\d
e—0 7,6( e~ le ) €_>07;e(_5717571)d

g lim 86(27d/2)EHn<0)’d/(Qfd/2)+§] =0,
e—0

so that the influence of the potential felt by a typical particle converges to zero. Hence, we may hope that the
intermittency properties of the solution do not dominate and there is a meaningful scaling limit. And indeed
a formal computation suggests that if the 7)(7) are centered (which can be always achieved by performing the
change of variables v(t) — e "0y (1)), then in dimensions d = 1,2, 3 the rescaled solution v(e~2t, e~ x)
of (2) should converge to the solution w of

Jrw(t,x) = Aw(t,z) + cw(t,x)&(z), (t,z) € Ry x RY, 3)

where 02 = Var(n(0)) and ¢ is a space white noise, that is the centered Gaussian process with covariance
E[¢(x)&(y)] = 6(x — y). Since we conjecture w to be intermittent, proving this convergence would be the first
step towards showing that the parabolic Anderson model is intermittent on the temporal scale 2 and the spatial
scale e~ whenever the potential has at least strength £2~%/2, but not if it is weaker than that.

Here we study the convergence of (I]) to (3). We focus on the case d = 2 and we consider the periodic model
onZ% = (Z/(NZ))? for N ~ £~1. As we will see the naive derivation of (3) does not give the full picture and
there are more subtle effects to take into account: In dimensions d = 2, 3 the total number of particles grows
exponentially fast and we have to look at the solution in a different scale to see a non-trivial behavior. More
precisely, for ¢ > 0 the expected number of particles at time ¢ ~2¢ will be of order e'“s with c. ~ | loge|in d = 2,
so that we should instead consider u.(t, z) := e~ *=v(e~2t,e~1z) which solves the modified equation

Opue(t, x) = A}E)eruf:‘(t> z) +us(t, x)(ne(x) — ce). “)

Here Af,, is the periodic discrete Laplacian, rescaled in such a way that it converges to the continuous periodic
Laplace operator and 7. is a rescaled version of 7 that converges to the white noise if we let e — 0. This blow-up
of the number of particles coincides nicely with the fact that the continuous equation (3) only makes sense if a
renormalization procedure is introduced. It was shown using regularity structures in [21]] and paracontrolled
distributions in [16] that if £ is a mollification of the white noise, then there exist diverging constants (cs)s~0o

such that the solution hg of
Ochs(t,x) = Ahs(t,x) + hs(t,x)({s(z) — c5) 5)
converges for § — 0 to a nontrivial limit « which solves an abstract equation of the form

Ou(t,x) = Au(t,z) + u(t,x) o () (6)



with the renormalized product being formally given by u ¢ £ = u(§ — 00). Moreover, u does not depend on the
specific mollification of the white noise, and we have

1

“ 2T

1
log(g) +0(1), (7

where only the finite part of c5 depends on the mollifier.

Our first result is that the solution . to (4) converges weakly to the solution u of (6), see Theorem [2.2]
below for a precise formulation. We are able to considerably weaken the assumptions on the potential 77 and only
require that it is given by appropriate martingale increments, and also we can replace the discrete Laplacian by
the generator of any symmetric random walk whose increments have sufficiently many moments. The proof
is based on paracontrolled distributions and a certain random operator technique developed in [[17]. The main
technical contribution of this paper is to introduce suitable martingale tools in this context, which allow to control
sufficiently many moments of the potential and some nonlinear functionals constructed from it, moment bounds
which are needed as input for the paracontrolled machinery.

As a corollary of our convergence result we show a Donsker-type invariance principle for a certain random
polymer measure, given by

_2T

Qfo(dw) = Z 1, exp ( /0 E 677(w(8))d8> P5 (dw),

where ]f”i is the law of a continuous-time random walk as above, started in =, and Z. 7 is a renormalization
constant. We show in Theorem ﬂ that the law of (536]\12 +)telo,) under @ng converges to the continuum
polymer measure which was recently constructed in [8]], a result which is universal for all appropriate random
walk dynamics and laws of potentials.

Another simple consequence of Theorem [2.2] is a universality result for the spectrum of the Anderson

Hamiltonian on a large box with a small potential. Consider the operator 772 on Z?V given by
v = —Awv + o,

where A, is the generator of a symmetric random walk with sufficiently many moments. We are interested
in the behavior of the k£ smallest eigenvalues A] < --- < A7 of JZ, where k is fixed and N — oo (and thus
e~ N=! — 0). If we had = 0, then under the scaling e 2(A$, ... , A7) the eigenvalues would converge to
the eigenvalues of the periodic Laplacian —A, given by 0,1,1,2,2,3,3,.... On the other side the minimal
eigenvalue of the operator v — cvn) clearly diverges to —oo when multiplied with e ~2 because it is simply the
minimum of e~ 1n(4), i € Z?V. So one might guess and it turns out to be true that the bottom of the spectrum of
v diverges to —oo when rescaled by a factor e =2, But what we are able to show is that a small logarithmic
shift results in a nontrivial universal limit. More precisely, we prove in Theorem that for ¢ ~ |loge| as
above we have
e 2{(AN, .. AN (1, ., D)} = (A, ..., AR)

in distribution, where (A1, , ..., Ag) are the £ minimal eigenvalues of the continuous Anderson Hamiltonian on
the two-dimensional torus which was recently constructed in [1]].

The need for renormalization is a general feature of singular SPDEs of which the 2d continuum PAM
with white noise potential is the simplest example (in fact one can transform it into a well-posed equation
by a change of variables [23]], but we will not make use of this). In recent years, following the fundamental
work of Hairer [19,20]], there has been a breakthrough in the understanding of such equations which also
include for example the (I>§ model in dimensions d = 2, 3 [[11,[21}/36], the KPZ equation [|14}|17,20,33|] and
its generalizations [7}/22}32,/37]], and the sine-Gordon equation [30]. The now available theories (regularity



structures, paracontrolled distributions, and Kupiainen’s renormalization group approach [36]) all give the
continuous dependence of the solution on some extended input, consisting of certain multilinear functionals
constructed from the noise. So a priori they are well suited for proving the convergence of microscopic models
to singular SPDEs. The main difficulty is that the theories are tailored for equations on Euclidean space (see
however [3,/4]]), so some work is necessary to apply them to lattice systems such as the discrete PAM. Here
we avoid this problem by finding a suitable extension of our lattice function to the continuous torus for which
we can still write down a closed equation, a trick that was successfully used before in many works studying
approximations of singular SPDEs [17,[24/,25.(39,/41.{43/44]]. Alternatively, it would be possible to work with
the lattice version of regularity structures that was developed by Hairer and Matetski in [26]. Once we are
in a setting where we can apply one of the available theories for singular SPDEs, the next problem is how to
control the multilinear functionals of the noise which are needed as input for the equation, and how to bound
their moments to a sufficiently high order. In the Gaussian setting all moments are comparable and therefore
it suffices to estimate the variance. However, even estimating the variance in a Gaussian setting can be tricky
and over the past years Hairer and coauthors have made tremendous progress on finding efficient ways of doing
so [7L21}[22,27,/28,31]]. In the non-Gaussian setting additional arguments are necessary, and different ways of
tackling this problem have been developed in [12,[29,30,/42]. Here we use an approach that is more closely
related the one Mourrat and Weber used in [39] and Shen and Weber used in [41]]. That is, we rely on martingale
arguments and decompose the bilinear functional to be controlled in a sum of multiple stochastic integrals.

The structure of the paper is as follows. In Section 2| we introduce our assumptions, state the convergence
result for the discrete PAM, and show how to transform the lattice equation into a continuous PDE. Section [3]
contains a short introduction to paracontrolled distributions and we briefly discuss the paracontrolled analysis
of the continuous PAM before proceeding to use the paracontrolled tools to also control the continuous PDE
derived from the lattice system. Here we obtain a pathwise convergence result under the assumption that some
bilinear functionals constructed from the potential 77 converge in the right topology. In Section 4| we use discrete
multiple stochastic integrals in order to prove the convergence of these bilinear functionals. Section [5|contains
the application to the polymer measure, and Section[6]to the spectrum of the Anderson Hamiltonian.

2 Mathematical set up

To rigorously state our convergence result we first have to introduce the required assumptions. We start by
introducing two conditions on N:

we have N = Z—W and N is odd.
€

Of course, we only assume NV to be odd for convenience since it simplifies the notation. Furthermore, we make
the following assumptions on Ay, and #:
(H,+) We have

Brvili) = [ i+ D) ®

where p is a finite signed measure on Z* with u({j}) > 0 for all j # 0, and with [, u(dj) =

S 11(d5) = [ g2l ds) = [po g1daps(dj) = 0, with [ j7u(dj) = [ j3u(dj) = 2 and with
finite sixth moment. We also require x to be radial (i.e. j — u({j}) is a radial function) and that

p({(0,1)}) > 0.

(Hppart) There exists an enumeration ¢ : {0,..., N2 — 1} — Z%; of Z3; such that (M (C(K))k<n2—1 is a family
of martingale differences (in its own filtration). Moreover, there exists M > 0 such that for all N € N and

4



allk € {0,...,N? -1}

Ellnn (C())P v (C(0), - -,n(Ck = 1) =1, Ellan (k)P v (C(0)), ..., nn (C(k = 1)) < M

for some p > 6.

Note that (H,y) is satisfied if p corresponds to the transition rates of two independent symmetric random
walks on Z that are combined into a random walk on Z? and that satisfy appropriate moment conditions. Also
(Hmart) is always satisfied if (1 (7)); n is an i.i.d. family of centered random variables with unit variance and
E[|n: (0)[+] < oc.

We consider the solution to

Oon (t,1) = (Apeon)(t, 1) + eon(t, i)y (i),  (t,4) € [0, 400) x Z3;, )

and our aim is to show that under appropriate rescaling and renormalization it converges to a continuum limit.
To even state such a convergence result, we first have to extend the rescaled solution from T3, := (¢Zy)? to
the continuous space T? := R/(27Z). While a posteriori we will obtain the same limit for all “reasonable”
functions on T? that agree with the solution in the points of the lattice T?V, there is one extension for which we
can directly write down a closed equation and with which we will work throughout. Namely, we will use the
discrete Fourier transform [24,25.39]]. For ¢: T?V — C we define

Frapk)=c> Y plel)e®0 ke,
[€]oo<N/2

where || denotes the supremum norm on Z2. Set now

Enp(z) = (2m) 2 Z ﬁT?Vw(k)e”k’x), x e T2,
[k|oo <N/2

so that Ex is the function on T? with Fourier transform .7 Ex (k) = %\T%V (k)L <n/2. k € Z*. Then
Enp(r) = ¢(x) for all z € T% and by construction £y is infinitely smooth. If ¢ is real valued, then so is
& N@-

We are now able to state the hypothesis on our initial conditions:
(Hinit) There exists # € R and p > 0 such that the initial conditions (v (i) : i € Z?V) satisfy

sup [?Ex o (/&) | maupe ) < o0
NeN ’

and such that (?€nv}(-/2))n converges in distribution in BY _ to a limit u’. Here B}  denotes a
Besov space which will be defined in Section 3| below.

Two of the most important initial conditions for the lattice parabolic Anderson model are the constant
function v?v = 1 which satisfies (Hjpjt) with 8 = 0, p = oo and uY = 1, and the Kronecker delta v?\, (i) = 0i,05
which satisfies (Hin;¢) with @ = —2, p = oo and u®(z) = §(x), where & denotes the Dirac delta in 0. The reason
for working in the scale of spaces BY' , rather than the more commonly used Bg, . is that it allows us to treat
the Dirac delta, which in dimension d is in By, 219 It would be possible to relax the conditions on the initial
condition and to allow anything with regularity better than B, i: 2/p , where p is the integrability index of our
potential. But since we do not see any application for this and since it would slightly complicate the notation we

restrict ourselves to the case u” € B} .



Let us rescale and renormalize v by setting

un(t,x) := e_tCNaevN(t/€2,x/€), (t,x) € Ry x ']I‘?V (10)
for 1
=0 Y ’ZT@O ~ log N. (11)
|k|oo <N/2

Lemma 2.1. The extension Enuy of the rescaled and renormalized process upn solves

OEnun = AN (Enun) + Tn(Enunén) — en(Enun), Enun(0) = ?Env(-/e)
with
Apla) =7 [ prepuldy. i) = Ev (/)
Myp(e) = 2m) 72 Y ®0 Zy(k),
keZ2
where

(™), = argmin{|¢| : £ = k, + jN for some j € Z} € (~N/2,N/2), r=1,2.

Proof. Start by noting that
P (AN ) = [ D () Py o),
7.2

o) AI{XV is a Fourier multiplication operator and therefore it commutes with £x. This leads to

KENun(t,2) = AN (Enun)(t, ) + En(une ' nn(-/e))(t, ) — en(Enun)(t, ).
It remains to show that for ¢, 1: T%, — C we have Ex(py) = Iy (EnpEntp), which can be verified by a
direct computation using

Tz (00)(k) = 2m)2 Y P o(0)Fp3 bk — 0); (12)
[€|oo<N/2

see also Section 8 of [17]]. O]

Theorem 2.2. Make assumptions (Hyy ), (Hmart) and (Hinit) and let T > 0. Then Enu converges in distribution
in C([0,T], B%OO) to the paracontrolled solution u of the continuous equation

Lu= (0 — A)u=uo& = u& — uoo, u(0) = ug,
where ¢ is a space white noise on T2

Proof. In Proposition we show that if (uév,gN,XN oén — cn, An) converges to (up,&, X ¢ &,0) in
EY X €L x €272 x L(EP, €2“?), then the solution uy to

duy = AN uy + T (unén) — enun, un(0) = u,

converges to u. In Corollary @I it is shown that (uO JEN, Xno&n — cn) converges to (up,&, X ¢ &) in
distribution in €Y x €< x €2%~2. Now observe that while 67 x € x €272 is not separable, the support
of (ug,&, X ¢ &,0) is contained in the closure of the smooth functions in that space, and this is a Polish
space. Therefore, we can apply the Skorokhod representation theorem to find a new probability space and new
(uo , § N, XN O 5 ~ — c¢n) with the same distribution as before and which converge almost surely. It then remains
to observe that in Lemma @.12|the convergence of A to 0 in probability in L(%67, (520‘ 2) is shown, and since
A has the same distribution as A it must also converge to 0 in probability. This concludes the proof. O




3 Paracontrolled analysis of the discrete equations

Abusing notation, we denote the extension Eyuy from now on simply by wu -, and we take the equation

Oun = ANun + Ty (unén) — enun,  un(0,2) = ud (2) (13)

with u?v =€ Nv?\,(- /) as the starting point of our analysis. We shall use the paracontrolled analysis developed
in [16] to derive a priori bounds on the solution which depend on norms of £ and uév that stay uniformly
bounded in V. This will allow us to deduce the convergence. Let us start by briefly recalling the basics of
paracontrolled distributions.

3.1 Paracontrolled distributions and the continuous PAM

Here we recall the basics of paracontrolled distributions, for an introduction see also the lecture notes [[18]], and
we sketch how to solve the continuous parabolic Anderson model in dimension 2.

Throughout, we fix a Littlewood-Paley decomposition (A;);>_1, where
Aju=pj(D)yu=F "t (p;Fu)

with p; = x if j = —1 and p; = p(277-) if j > 0, for nonnegative radial functions y, p € C*=(R%, R), where
p is supported in a ball Z = {|z| < ¢} and p is supported in an annulus &7 = {a < |z| < b} for suitable
a,b,c > 0, such that

Lox 4250 p(277-) =1and
2. supp(x) Nsupp(p(277-)) = 0 for j > 1 and supp(p(2~)) N supp(p(277-)) = 0 for all i, j > 0 with
i—jl > 1.

‘We also use the notation

Agif =D Aif
1<j
as well as K; = . ~1p; so that
Kix f=F 1 p;Zf) = Aif.

For o € R, the space ‘fpo‘ is defined as ‘(a”pa = Bgoo, where

By, = Bpy(T%) = {f € /(1) : /15, = 1271185 fll2)slen < 00},

and we write || - [z = || - [| By . We will need the following embedding theorem for Besov spaces:

Lemma 3.1. (Besov embedding) Let 1 < p; <ps < ocandl < ¢ < g < 00, and let a € R. Then thql is
continuously embedded into B;);qdz(l/ pL=1/p2),
The product of two distributions can be (at least formally) decomposed as
fg= Y AifAjg=f=<g+frg+fog.
jz—li>—-1

Here f < g is the part of the double sum with ¢ < 7 — 1, f > g is the part with ¢ > j + 1, and fog is the
“diagonal” part, where |i — j| < 1. More precisely,

j—2
f=g=g-F=)_ Y AifAjg=) AciofAjg and  fog= >  AifAg.

j>—1li=—1 i>—1 li—j|<1



We call f < g and f > g paraproducts, and f o g the resonant term. Bony’s [5]] observed that f < g (and thus
f > g) is always a well-defined distribution and the only difficulty in constructing f g for arbitrary distributions
lies in handling the diagonal term f o g.

Theorem 3.2 (Bony’s paraproduct estimates, [[17], Lemma 6.1). Letp € [1,00], 8 € Rand f,g € ./'. Then

1f <9llps S minf{| fllzellgllpe 1 lzoe llgllys ) (14)
p Bl p
and for o < 0 furthermore
If < 9llgore S mind[[ fllwg lgllyp, | Fllwellgllye }- (15)
If a+ B > 0, we also have
17 0 gllgors S min{[fllegllgllys  [1fllezllgllys}- (16)

Corollary 3.3. Letp € [1,00] and f € € and g € €2 with o + B > 0. Then the product (f,g) — fgisa
bounded bilinear map from €' x €L 1o ‘Kpaw .

The main idea of [[16] is that the paraproduct f < g is a “frequency modulation” of ¢, and thus on small scales
resembles g. By the philosophy of controlled paths [15] we should be able to control (f < g)h for some given h
provided that we have an a priori control on gh. Making these heuristics rigorous is the main achievement of

the theory of paracontrolled distributions, and doing so is possible with the help of the following commutator
estimate which is a generalization of one of the main results in [|16].

Lemma 3.4 ([40], Lemma 4.4). Define the commutator C(f,g,h) = (f <g)oh — f(goh). Then we have for
allp € [1l,00land a < 1, B,y € Rwith B+ v < 0 < a + 8 + ~y the bound

IC(f 9. 1) s S I1f

Let us define for p € [1,00] and v > 0 the space M1.LP = {v: [0,T] — .'(T?) : [vllpg e < 00}, where

a9l s Nl

lollazre = sup {lE7v @)}

)

If further @ € (0,2) and 7' > 0 we define the norm
1 £l () = max {[[t — Ol gorz e [Fpverey:
and the space £, (T') = {f: [0,T] — " : || fll zp2(ry < o0} as well as
L3 ={f: Ry =" flog € L) (T) forall T > 0}.

It will be convenient to introduce a modified paraproduct. Let ¢ € C*°(R, R, ) be nonnegative with compact
support contained in R and with total mass 1, and define for all ¢ > —1 the operator

Qi CF% > 6%, Quf(t) = /0 T (2t — 5)) f(s)ds.

We will often apply Q; and other operators on C¢” to functions f € C7¢” which we then simply extend from
[0,T] to Ry by considering f(- A T"). With the help of @Q;, we define the modified paraproduct

f=9=) (Qidciaf)Aig

2

for f,g € C'(Ry,."). If f or g has a blow-up at zero which is integrable, we still define f < ¢ in the same
way.



Lemma 3.5 ([17], Lemmas 6.4, 6.5, 6.7). Forany € R, p € [1,00], v € [0, 1), and t > 0 we have
tNf =<9®llgp S N llamyrellg@llge 17)
and for o € (0, 2) furthermore

t(f<g—f<g)t)

gors S Il lo®)llgs

as well as

L (f =9) = fF=(ZLg)®)

gori=2 S flLggpe gl

and for 6 > 0 also
1F = 9llzpery S Wl gpo o l9lleres + 129l opge)-

Finally we need the Schauder estimates for the Laplacian. We write [ f(t) = fg Pi_sf(s)ds.

Lemma 3.6 (Schauder estimates, [[17]], Lemma 6.6). Let o € (0,2), p € [1,00], and v € [0,1). Then
1Efll gy S 1l yppgn2 (18)
forall'T' > 0. If further B > —a, then
ls = Psuo| gip+arrzapy S lluollys. (19)
Foralla € R, v €[0,1), and T > 0 we have
VAl < 1 lLagigs 0)
For the remainder of this subsection we fix a € (2/3,1).

Definition 3.7. Let X € €. We define the space 9% of distributions paracontrolled by X as the set of all
(u, u™, ut) € CEY x Zla/Q’a X L0 such that

u=u" <X +uf.
ForT' > 0 we set 7%(T) = 9% |j0,1), and we define
lull 2o () = HUXH;gla/z,a(T) + HuﬁHglav?a(T)-
If X € €% and (~,11X,11ﬁ) € 7%, we write
dgar)(u, @) = |u™ - aXHgla/z,a(T) + ||uf — aﬁ\|$1a,2a(T).
Abusing notation, we will sometimes write u € 9% rather than (u,u”, ut) € D%.
For (u,u™,uf) € 2% we expand
u=u<E+u-E+utol+ WX <X —u¥<X)ot+CW¥, X, &) +u¥(X08),

and given £ € €2, the right hand side is under control provided that we can bound X o & in €292, Moreover,
in that case we have

ué —u<§€ € MO,



If now v denotes the solution to Zv = u&, v(0) = u, then we make the paracontrolled ansatz v = u < X + v*
and obtain

L= Lo — L(u<X)=uf - [Lu<X)—u<ZLX|+[u<ZLX —u=<¢.

Soif ZX — ¢ € €292 (and we will always take X = A~1(¢ — (27)72.%#£(0)) for which X — ¢ =
(2m)"2.F€(0) € C*), then we can control the right hand side in M*%>*~2, and since v#(0) = u® —
u(0) < X € €, we get from the Schauder estimates that v* € .i”la’Qa. This allows us to set up a Picard
iteration in 2§ (T') for a sufficiently small 7" > 0 and to obtain a unique solution u to our equation. Since the
equation is linear, the length 7" of the time interval does not depend on the initial condition, and iterating this
construction we obtain a unique solution u € 2% which is defined on all of R — always under the assumption
that X o £ € ‘5020‘1_2 is given. In that case the solution also depends continuously on the data (£, X, X o &, uY),
because all the operations on the right hand side of the equation are continuous.

But note that in our setting we have 2a — 2 < 0, which means that X o £ cannot be controlled using Bony’s
estimates (or other analytic tools), and we have to include it as an additional part of the data of the problem.
Moreover, so far our entire analysis was pathwise and dimension independent, but now we want to use that £ is a
space white noise in dimension 2 in order to use probabilistic estimates to bound X o £. And as it turns out is is
not possible to directly make sense of this term. Rather we have to perform a Wick renormalization and consider

Xo&=Xo&—o00=lim(ps* X)o(ps*§) — cs,
0—0
where ps = 6 2p(67 1), p is a mollifier, and (cs) a family of diverging constants such that
1 1
= —log(=)+ O(1
€= 5 Og(5)+ (1)

and only the finite contribution O(1) depends on the specific mollifier p. Thus, we obtain the following result.

Proposition 3.8 (see also Corollary 5.9 in [[16]). Let o € (2/3,1) and let (¢, X, X 0£) € €272 x €L x €272
be such that —AX = & — (2m) 2.7 £(0), and let u® € €Y. Then there exists a unique solution u € 9% to the
equation

Lu=uob =u<E+u-E+ufof+(u<X—-u=<X)ol+Cu,X,€) 4+ u(X o &), u(0) = u°.

Moreover, u depends continuously on (&, X, X o &,u%). If X o & = lims_,o(ps * X) o (ps * £) — cs, then
u = limg_,q ug, where
Lus = us(ps * &) —uscs,  us(0) = u’.

If d = 2 and € is a space white noise, then almost surely all of the above conditions are satisfied, X ¢ £ can be
chosen independently of the mollifier p, and we have

_ Z p(0k)|?
o=02m7% Y ‘|k(:|2)|:|log(5|.
kezZ2\{0}

3.2 [Estimation of the discrete operators

To extend the previous discussion to the lattice equation we will need to derive bounds on the discrete Laplacian
and its semigroup, and also on the operator 11 ;. Let us point out that all the estimates presented in this section
have already been established in [[17]], Chapter 8, in the one dimensional setting and the extension to higher
dimensions follows from the same arguments with only notational modifications which is why we omit most of
the proofs. Throughout this subsection we fix d = 2.
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Estimates for the discrete Laplacian Recall that AN o(z) = £72 [, ¢(z + €5)(dj) and let us write

so that
FAN (k) = —|k[* f (ke).F o(k).
2

Lemma 3.9. Under the hypothesis (Hyy) there exist a constant ¢y > 0 with f(x) > ¢ for all ¢ € [—m, 7]°.

Proof. Since the measure y is radial we have

[ euiai) =5 [ (@9 e eua) = [ cos((w.i)n(d),
Z2 Z2 72

and using that p has total mass zero we get

_ 1 —cos({z,5)) ..
fz) = /22\{0} BT p(dj).

Now p restricted to Z2 \ {0} is a positive measure and the integrand is nonnegative. Moreover, j is radial and
therefore 1({(1,0)}) = u({(0,1)}) > 0, which leads to

— cos(x1) — cos(x sin?(x sin’(z
fla) z 2O (0,1 = BT, g 0,1)

Now it suffices to note that for every a € (0, 7) there exists b > 0 with |sin(x)| > b|z| for all x € [—a,a]. O

Lemma 3.10 ([17], Lemma 8.4). Let u satisfy (Hyvw). Then the function

o ey 1 cos((zy) (e, y)
Jw) = j? ‘/W (@ )® =Py

is in Cy} and such that f(0) = 1.

Lemma 3.11 ([17], Lemma 8.10). Let pu satisfy (Hyw), @ <1, 3 € R, p € [1,00] and let p € €' and ) € ‘Koﬁo
Then for all § € [0,1] and N € N

2
2 ly[2p(dy)

|AN6 — Aglypas S N0l

)

While in general the semigroup generated by the discrete Laplacian ALY, does not have good regularizing
properties, we will only apply it to functions with spectral support contained in (—N/2, N/2)? where it has the
same smoothing effect as the heat flow. It is here where we will use that f(z) > c; > 0 for |z|o < 7.

Lemma 3.12 ([17], Lemma 8.11). Assume that i satisfies(Hyy ). Let « € R, 8 > 0, p € [1,00], and let € .7’
with supp (F ) C (—N/2, N/2)2. Then we have for all T > 0 uniformly int € (0, T

%o 21)

N _
e 2Rl s < 17

An interpolation argument allows to extend to LP, so that HetA%vgoH p S t2||p||_o forall a > 0
and all o with spectral support in (—N/2, N/2)2.
Corollary 3.13 ([17]], Lemma 8.12). Let 1 satisfy (Hyy). Let o € (0,2) and ¢ € €' with spectral support in
(—=N/2,N/2)% Then
N
(e~ —id)ell e S 72l llsg
Combining these estimates, we can applihe same arguments as in the continuous setting to derive analogous
3

Schauder estimates for (emi\va) as in Lemma(3.6/— of course always restricted to elements of .#’ that are spectrally
supported in (—N/2, N/2)2.
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Fourier shuffle operator Let us introduce the operator Pyu = .% ~1 (L(—ny2,n/2)2F u), for which we have
the following estimate.

Lemma 3.14 ([17], Lemma 8.7). Let v > 0, p € [1,00] and o € €. Then for any § > 0

-5
IPve = ¢llga-s S N~°(log N)? [l
As a consequence we can bound the operator I1:
Lemma 3.15 ([17], Lemma 8.8). Let o > 0, p € [1,00] and p € €. Then for any § >

435 SN (log Nl

Mne — ¢ “o-

Ifsupp(-F ) C [—cN, cN)|? for some ¢ € (0, 1), then this inequality extends to general o € R.

Remark 3.16. There exists ¢ € (0,1), independent of N, such that if supp (F1) C (—N/2,N/2)?, then
supp (F (¢ <)) C [~cN,cN)2 This means that we can always bound Ty (¢ <) — @ <1, even if the
paraproduct has negative regularity. On the other side the best statement we can make about the resonant
product is that if p and 1) are both spectrally supported in (—N/2, N/2)?, then supp (Z (¢ o)) C (=N, N)2.
A simple consequence is that if a + 3 > 0, p € €', ¢ € €2, and supp(Z ) Usupp(Fy) C (—~N/2,N/2)?,
then

ITx (09) = @pllgans—s < N (log N)?[lpllsg 9]l s

Finally we need to commute AN, with Iy, which in general is not possible but in our setting can be done
by relying on the discrete structure that is implicit in the background.
Lemma 3.17. Leta < 1, B € R, p € [1,00] and let p € G, Y € €5 have spectral support in (—N/2, N/2)2
Then for all 5 > 0

JANTIN (=) — TN (e < AN ¥,

(gﬁ

Proof. 1f g and h have spectral support in (—N/2, N/ 2)2, there are two unique lattice functions § and & such
that g = Enxg and h = Exh and therefore

AR (gh) = AR (EngEnh) = AREN(Gh) = ExAR,(Gh),
and on the other side a direct computation shows that
AN (o) = (AR -+ gAN+ 72 [ (5 + ) = DA+ 29) — Bl

We apply this with g = A<;_o¢ and h = A1) and sum over k to obtain

ANTIN (0 = 9) = TN ((Afe) <) +TIn (0 < Ale) +¢ 72 /HN[(SO(‘ +ej)— @) < (P(-+ej) —¥)]u(dj).
Combining Lemma [3.1T]and Remark [3.16] we have
TN (Ae) <)l

while the integral can be bounded by

e [ Tnltot + 2 - ) < (- + &) = w)lut)

<o / ol + ) —
< / @) s 160 S lollis 6] -

This concludes the proof. ]

a+pB—2—5
(bﬂp

llgo-tllo(-+ ) = Pl |pl(dg)
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3.3 Paracontrolled ansatz

Let now uy € C(R,, C*(T?)) solve

Lyun = Uy (unén) — enun, un(0) = ul,

where we wrote

Ly =08, — AN

Here ¢y and u; are deterministic and fixed, and we assume that they both have spectral supportin (—N/2, N/2)2.
To lighten the notation, in this subsection we shall omit the subscript N when no confusion arises, writing for
example u, &, ug instead of un, &, u?v. Note that existence and uniqueness of uy pose no problem, because we
are only working with finitely many Fourier modes and therefore our PDE is actually a linear ODE.

Let us start by making the following ansatz for u:

u=TNu® < X)+u?, (22)

where (u, uX, uf) € CE x 92”10‘/2’0‘ X fl(a+ﬁ)/2’a+ﬂ for some o € (2/3,1 — 2/p) and B € (2 — 20, ), and
X = [T BN Cn) o)
0

with (P )0 denoting the heat flow generated by AN . Using this ansatz, we get

Dnvu = Iy (u® < X) + Dy =Ty (u€) — enu
= HN(U-<€> + HN(’U,>-§) + HN<’U,O§) — CNU,

and therefore

Pyut =TIy {(u%{) — (U < LX)+ (u=E) + (uok) — cNu}
+ {TIy (v < LN X) — LTy (u™ < X)}, (23)

where we used that ITyu = u because u has spectral support in (—N/2, N/2)2. Now recall that 3 < « and
therefore Lemmas [3.3]and [3.15] show that

X X X
My (0" <2 X) = ZNIIn (0" < X)) yjorzgaro-z S 07 [l gorza o 1IX

@ .
2SS

Moreover, Zn X = & — (2m)~2.#£(0) and setting uX = u we have by Lemma and Remark

My (<€) = (u™ < LNX) +u- O pggrzgoro—2 S llull yorzgn €l

Now we plug in the paracontrolled ansatz for v and obtain u o & = (I (u < X)) o é+uf o &, and by Lemma
Ty (u? Of)HMgngﬂ—é)/z(gfaw—% S HUﬁHM(TaJrB—M/Q%fcwfsH§H%.éfz.

aslong as ¢ > 0 is small enough so that 2a-+3—20 > 2. Applying Lemma|[3.5]and twice Lemma3.15|we can also

replace Iy (IIn(u < X)) o &) with IIy (TIn(u < X)) 0 &), so that it remains to control IT i (IIx(u < X) 0 &)—

enu). So far we only reproduced the calculations of Section [3} But now we cannot simply continue in the same
way because we do not have a good enough control of I, and in particular it is not true that Iy (u < X) is
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paracontrolled by X (at least not allowing for uniform bounds in N). In [[17] an approach was developed to
tackle this problem and it turns out to be sufficient to control a certain random operator: Set

Cn(u, X, &) = (TIn(u<X))o& —u(Xof)
and

An(u) = Oy (Cn(u, X, €) — Clu, X, €)) = My ((Un(u=< X)) o€ — (u=<X)of)
= Ix(((My = (u= X))o §). (24)

Then we can expand
HN((HN(U<X) Of) — CNU) = AN(U) + HN(U(Xog — CN)),

and the second term on the right hand side can be controlled using Lemma [3.15| by

My (u(X 0 € = en))l yor2gors—2 S lullmgep 1 X 0 € = enllgaa—s.

So if we assume that Ay is a bounded linear operator from %" to %12“*2, then all the terms on the right hand
side of (23)) are under control and from here it is straightforward to show the convergence of u to the solution
u of Propositionas long as (ud,&n, Xy oén — en, AN) = (u0, &, X 0 £,0) in 60 x €2 x 62472 x
L(€?,€2°?), where L(X,Y) denotes the space of bounded linear operators from X to Y; see [[16,/17] for
similar arguments.

Proposition 3.18. Assume that (u},&én, Xy o€én — en, An) converges to (ug, &, X ¢ £,0) in 60 x €2 x
€202 x L(E7, €2 2). Then the solution uy to

Lyuy =y (unén) —evun,  un(0) = ug,
converges in C([0,T], 6Y) to the solution u of

Lu=uok, u(0) = uyp.

4 Convergence of the potential

To complete the proof of Theorem [2.2] it remains to show that the conditions of Proposition [3.18]are satisfied
under our assumptions (H,y,), (Hyart) and (Hini). This will be achieved in this section, which can be seen as the
main technical contribution of the paper, with the help of multiple stochastic integrals.

4.1 Martingale central limit theorem and convergence to the white noise

The potential is given by £y = e~ *Ennn(+/€), and therefore

FEn(k) = Lpanyoe " Frynn(k) =D anpe Y e Fny(o).
[l]oo<N/2

To prove the convergence of £ to the white noise ¢ in distribution in .%”, it suffices to show that
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in distribution in C™, for all (ki,...ky,) € R™. Using the Cramér-Wold theorem we can restrict our-
selves to studying the convergence of linear combinations of the Fourier modes, which are of the form
€D 1t<n/2(p(el) + it(e€))nn (€) for suitable real valued, smooth, and bounded functions ¢, . Apply-
ing the Cramér-Wold theorem once more, we see that it suffices to study the convergence of

NZ-1
Sy=¢ Z plelnnl) =« Z (C(k)),
[€|cc<N/2
where we recall that ¢: {0,..., N? — 1} — (—N/2, N/2)? is the enumeration under which 7 is a martingale.
Observe that under (H,5,t) We have
N2-1 NZ-1
i, 3= BllepleC(H(GRDF (€O om (6t = 1)] = Jim & 32 o*

N—oco N—>oo

k=0

= /T ] @ (x)dz.

So by the martingale central limit theorem, [6], Theorem 1, it follows that (S ) converges in distribution to a
centered normal variable with variance fT2 ©%(z)dz provided that we can show

N2
i > Ellep(eC(B)nn (SR PL gty o] = 0
k=0

for all § > 0. But since by assumption (Hya,t) the fourth moment of 7 () is uniformly bounded in NV and
£, this convergence is easily shown by an application of the Cauchy-Schwarz inequality and the dominated
convergence theorem. In conclusion, we have shown the following result.

Lemma 4.1. Assume that (ny (k) : k € (—=N/2, N/2)?) satisfies (Hart). Then

Ev(@)=em)™ > R0, 2 eT?
|k] oo, |€]lco <IN/2

converges in distribution in .’ (T?) to the white noise on T>.

Remark 4.2. Of course, the analogous statement holds in T¢ for any d.

4.2 Multiple stochastic integrals and tightness in Besov spaces

To derive tightness estimates for the area term Xy ¢ £y it will be useful to rewrite it as a second order stochastic
integral with respect to (), which is an idea that was inspired by [39]], Lemma 4.1. For the general discussion
of multiple stochastic integrals we will take our index set to be N rather than (—N/2, N/2)? in order to facilitate
the presentation.

Let (n(k) : k = 0,1,...) be a sequence of martingale differences, let n € N and let f € ¢?(N") with
f(k1,...,kn) = 0 whenever k; = k; for some i # j. Then we define

L= Y e knk) - k).

kh---,’%EN

By definition we have I,,(f) = I,,(f), where

flkr, .. k) = ~ > flolk), ... 0(kn)),



is the symmetrization of f with S,, denoting the group of permutations of {1,...,n}. Moreover,

L(f)y=nt > flki,....ka)n(k) ... n(kn).

k1<..<kn

This representation is nice, because now I, ( f ) is given as a sum of martingale increments: we have
In(f) =n! Z Infl(f('|kn))77(kn)a
kn

with . )
FClE) (K1, ooy kn—1) = f(k1y ... kn)

whenever k1 < ... < k,_1 < ky, and 0 otherwise. Therefore, I,,( f ) is a martingale transform of (Zkg n(k))

Proposition 4.3. Let p > 2, n € Nand M > 0 and let (n(k) : k = 0,1,...) be a sequence of martingale
differences with

Elln(k)[P[n(0),...,n(k —=1)] <M
for all k. Then we have for any f € (*(N") with f(ki1,...,kn) = 0 whenever k; = k; for some i # j

1Dy = BILOPLS (30 1k k)2 M7 = £y M

K yoonrkin

Proof. Let us start with n = 1. In that case the discrete time Burkholder-Davis-Gundy inequality gives

P = E[| 1 otk " =S wooem OIS . < (S )"
s(Z|f<k>|2)
k

where we used that p > 2 and therefore Minkowski’s inequality applies. Assume now the claim is shown for
n — 1. Then we apply again the Burkholder-Davis-Gundy inequality and Minkowski’s inequality to get

B, (NP = B[] 3 faa )| ] S B[( s k) Pl )™
kn kn
< (S Bl (P Plnth 7127)
kn

< (XElnaiie, DY

The induction hypothesis now yields

B FCEDI S (X 1Fhr b)) A
kn

k‘n k17~~~7kn—1

2/p

< S0 1f ke heg) P2,
from where the claim readily follows. .
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Remark 4.4. We assumed that f is real valued, but of course Proposition extends to complex valued f by
writing f = f1 + i fa for real valued f1, fo and then applying Proposition d.3|for f1 and fo separately.

The following simple observation will be used many times, which is why we formulate it as a lemma.

Lemma 4.5. Let N be odd and let k € Z2. Then

d N-1 2
Z 6i<k,6f> — H elkj(—N/2+1/2) Z ez’ekjej — H elkj(—N/Q-‘rl/Q) (N]]-k7:0) — Nd]lk:()
[loo<N/2 Jj=1 £;=0 j=1

Corollary 4.6. Assume that ny satisfies (Huyary) and define £y = e Ennn(-/e). Let n € {1,2} and
f:(Z*)"™ — C. Then

Bl Y k) (Fenlh) - Fexlh) - ELFen(h) - Fen(k))| ]

Q)p/@n) Y

SO 1l k)l

k1,....kn€EN

where we introduced the notation
En ={k€7*:|Z| < N/2}.

Remark 4.7. As the notation suggests we expect a similar bound (involving subtractions of more complicated
corrector terms than only the expectation) to hold at least for all n < p/2. But since here we only need the cases
n = 1,2 for which the proof is relatively simple, we do not study the general case.

Proof. We prove the claim for n = 2, the case n = 1 follows from similar but simpler arguments. We have

Bl 3 st k)P () Fen(hn) - Bl en (k) Zenti))| ]
k1,ko€EN

= ]:EH Z f(k].)kZ) Z 826_i<k1’641>_i<k2’862>(TIN(E]_)T]N(EQ) o (5@1742)

p/Q}
klkaGEN €1,EQGEN

<EHZ; (k ’;E f(kl,k2)526—i<k1,ah)e—i(kg,dg))nN(El)nN(@)‘p/2}
17£0s  ki1,ko€EN

SB[ Y (X ket e 1), 25

EGEN k1,k2€EN

2

and assumption (H,y) implies that (nx(¢(€))* — 1),—o . n2_1 is a martingale with

Ellnn (¢(0)? = 1”2 (nv ((0))* = 1), (v (G(£ = 1))* = 1)] < M,

so Proposition 4.3 yields

| (X st)ete ) ey - )]

(eEn  kik2€EN
E , on p/d
: ( ) Z Fky, kg)e2e ™ Whathzel) )p/ v

leEN ki,k€EN
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Similarly we get for the first term on the right hand side of
. . p/2
E H > ( > fk, kz)fzeﬂaﬂ’551)672%2’5[”>77N(51)77N(f2)‘ }

b1#4y  k1,k2€EN
2\ p/4
)

S ( Z ‘ Z f(kl,k2)€26_i<k115€1>e—i<k‘2,€€2)

l1#ly  k1,k2€EN

and in conclusion
E| Y b k) (Fen(k) Fen(ha) ~ Bk Fen(h))|]

ki,k2€EN
2\ p/4
) M

< ( Z ‘ Z f(ky, k2)52€—i(k1,€€1)e—i<k276€2>
lilo€EN k1,k2€EN
Now we expand the double sum |}, ;. a(k1, ko)|? = Zkl,k’l,kz K, a(k1, k2)a(ky, ke)*, where (-)* denotes the
complex conjugate, and then apply Lemma-to collapse the blg sum to the diagonals k1 = k] and ko = K,
which leads to

T T Tz Tz p/2 2 p/4
> Fl k) (Fen k) Fen(ke) ~ ElFen (k) Fen )| | S (D 1 kaka)?)" 0,
k1,ko€EN k1,ko€EEN
and this concludes the proof. 0
With the help of this corollary the tightness proof for the potential is quite straightforward.

Lemma 4.8. Assume that ny satisfies (Huyart). Define En = e *EnnN(-/€). Then we have forally < —1—2/p

sup B[[|€n i ]
N (oo}

< M. (26)

In particular, (£N) converges to the white noise & in distribution in 63, for all v < —1 — 2/p.

Proof. We already established the convergence of ({x) to the white noise in Lemma4.1] Once we establish (26)),

we get tightness of () in %go' forall v/ < v < —1 —2/p, from where the claimed convergence follows. But by
the Besov embedding theorem, Lemma we have [[En gz S (€8] got2/p- Letus write 8 = + 2/p. Then
b,p

EfllEntry, | = > PPE[|aknl] = Y 2”’3/ 128N () [F]da

j>—1 j=>—1
and from Corollary [4.6| we get
-2 z (k,x p 2 p/2 < 9jp
ElAién (@)l =E[| 3 @20 zev®)] ] < (D pik?)" M S 270,
keEN keEn
which multiplied with 2/P? is summable in j whenever 3 < —1. O

Next, we need to study the convergence of (Xy) and of (Xy ¢ {y). For Xy we have .F Xy (k) =
Liz0ZEn(k)/(f(ek)|k[?), from where it easily follows that (X, &y) converges jointly in distribution to
(X, €). Moreover, since £ is spectrally supported on the set (—N/2, N/2)? where f(ck) > c¢; > 0, we get

IXnlly+2 S lléw = 2m) 7 ZEn )y < lIEx

18



from where we get the tightness of (Xy) in €55 for all ¥ < —1 — 2/p. The term Xy o £y is more tricky.
There are limit theorems for polynomials of i.i.d. variables, see for example [9}[34}38]], and it should be possible
to generalize them to the case of martingale increments. However, here we can simply use a relatively cheap
diagonal sequence argument to combine the identification of the limit of (X y ¢{x) with the proof of its tightness.
This is inspired by Mourrat and Weber [39]], Theorem 6.2.

Lemma 4.9. In the setting ofLemmadeﬁne FXn (k) = Loy FEn (k) /(f(ek)|k|?) and set
Xno&n = XNoén —CN
with ¢y = (2m)~ Z|k|oo<N/2 f(ak”k'g Then we have for all v < —4/p

supmeNosNu””] <M.

Moreover, with ci; = (2) 2 Do <K /2 % we get for all N > K? and all v € (—1 — 4/p, —4/p)
SUpE[| Xy o & — (P Xy o Py — ex) ] < K770,

where Pru = ﬁ_l(]l(,K/Z,K/z)zﬁu).
Proof. Applying Lemmatogether with the fact that Z| i—jl<1 pi(k)p;(k) = 1, we get for any x € T?
_ _ Lp20 _
CN = 62(27T) 4 Z Z W€Z<kl+k2’$ E@Pi(kl)f’j(@) = E[(XN05N>($)]-
[i=31<1 loonl oo Raloo <2 TR

Similarly we obtain E[A,(Xxy 0&n)(z)] = 0 for ¢ > 0, and therefore A ey = E[A,(Xn o&n)(x)] for all
q > —landall z € T?. So if we write Ag(Xn 0 én)(%) = D4, rocrn qx(kl,kg)ygN(kl)JgN( 2), then

El|Ag(Xx o)) =E[| 3 all (kv ka)(Fen (k) Fen (ko) ~ BlFex (k) Fen (k)| ]
k1,ko€EEN
(X k) u
ki,ko€EN

by Corollary and

2
Z gy (k1 ko) |* = (2m) ™ Z pq(k1 + k2) ﬁ( Z Pi(kl)pj(k2))

k1,ka€EN ki1,k2€EN li—j]<1
Tg, 20 1
Z 2q
S ]]-|k1+k2|~2‘1 2k 4]1\kl|’\‘|k2‘ ’S Z 2 k|4 S’ L. (27)
|kl |
k1,k2€EN |k1]o0 229

If instead of X y ©&n we are considering Xy o0&y — (Prx Xy o Px&n — ¢k ), then we have two contributions:
the first one,

Xnoén — Pk XnoPrén —E[Xnoén — PrXn o Prén],

can be bounded as before: We obtain an additional factor (1, >k /2 + Lk, < k721 jko|> K /2)2 in equation ,
resulting in the improved upper bound

S al (e k)P S 22K (28)
ki,ko€EN
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for all A € [0, 1]. The second contribution (which only appears in the block ¢ = —1) is

\CK—E[PKXNOPKfNH:’(271’)_2 3 <]lk¢0_ Lizo )‘5 3 Lizo |f(ck) = fO)]

2 2 2
o, VR TR 1 TR
1
SNTY P SNTKSKE (29)
|k|oo <K /2

where we used that ¢ = 27/N and that N > K?2.
The bound now gives us

E[| Xnoen|?? 15 2PM S M
p/2,p/2 qul

for all § < 0. Combining instead (28) and (29), we get for all A, € [0, 1]

E[| Xy o &n — (P Xy o Prén — 5K)H1]73/§ ] < Z 9aBp/29aMqp/2 [r—Aap/2 ) 1

p/2,p/2 qZ—l

Setting A, = 1 for 29 < K and \; = 0 for 29 > K, we see that the right hand side is bounded by < K PE L
whenever 3 € (—1,0). The claim now follows from the Besov embedding theorem, Lemma O

Corollary 4.10. Make assumptions (Hmart), (Hrw ) and (Hinit) and let « < 1—2/p. Then (u(])V, En, XN, Xno€n)
converges jointly in distribution in 6 x €272 x €2 x €272 to (uo, &, X, X o £), where £ is a white noise,
FX(0) =0, FZX(k)=FEk)/|k|? for k # 0, and

Xof= Aim PrX oPré —cx,

for which the convergence was established in [16|, Lemma 5.7.

Proof. The moment bounds that we derived (or assumed in the case of uév ) imply the joint tightness of
(ud En, XN, Xn 0 &n) in 6P x €72 x €2 x €222, The identification of the limit points is trivial, except
in the case of (X ¢ &y ). But since

CL2 X CL D (0.0) = Qi (1) = PrpoPry — cx € €2

is a continuous function, we get that for fixed K the sequence (Qx(Xn,E&n)) converges to Qi (X,€) in
distribution. Now we simply estimate

X 0 & = X 0 €llgzn-2 < | Xn 0 &x — Qe (X 0 €n)lgzn-2 + | Qu(Xn, €n) ~ Que(X, )20
+ QK (X, &) — X ¢

20—2 .
7

For any K the middle term vanishes as N — oo, while by Lemma[4.9]the first term satisfies for some § > 0

limsup E[|| Xn o v — Qr (XN o &n)

N—oo

P ) SKTOM,

and by definition of X ¢ £ the third term on the right hand side converges to zero as K — oo. O
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4.3 Bounds on the random operator
It remains to bound the random operator
An(u) = On[(In(u< X§))oén] — Pyl(u< Xn) o &n] 30)
introduced in . Let us write < (k, £) = 3,51 X(277'k)p;(€) and Yo (K, €) = 35, _j1<; pi(k)p;(£), where
we recall that (', p) is our dyadic partition of unity. We also write k19 = k1 + ko for k1, kg € 7?2 and recall
that for k € 72
(™), = argmin{|¢| : £ = k. + jN forsome j € Z} € (~N/2,N/2),  r=1,2.

Lemma 4.11 ([17]], Lemma 10.5). The operator Ay defined in is given by

An(u)(z ZA (An(Aju)) Z/g”afyAu( )dy (31)
i,7>—1 i,>—1
with
F gz, ) (k) = Z DY (2 k, ke, ko) F Xy (K )-FE (k) (32)
k‘l,kQGEN
where

TN (s, ey, ko) = (2m) 74 5i (k)< (k, kr) x [eXC0a70™ ) oo (g — k)N Yo (R — k)Y, k)
ez<k[12]*k,90>pj(kj[12] — ]{:)1/}0(]{71 —k, k2)]1|k[12]7k:|oo<N/2]7

and where p; is a smooth function supported in an annulus 2'.</ such that p;p; = p;.

A similar representation as (31]) was derived in [17] for a similar random operator and in our case the proof
is exactly the same, which is why we do not reproduce it.

Lemma 4.12. For o € (1/2, 1) the following convergence holds in probability:

Proof. We start by splitting the operator A in two parts, Ay = A, + A%, where

- Z /11,2 E[gf?; (z,y)]Aju(y)dy (33)
2
and
N Z /T (g0 (2, y) — Elg (z, y)]) Apu(y)dy. )

To treat A% let us write g; (a: y) = g” (x,y) — E[g% (z,y)] and observe that

1A% (w)ll,

@l gp, S Y2 / 16 ) el Mg
7]

TN
< Zm o [ NG )z el
Z?J
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and therefore
BlAR ) S 2727 [ Ellal(e. )l lae (35)
7‘7

To control the expectation on the right hand side we apply the trivial bound
1
E(13: (@, )] £ Y E[F 35z, )R] < Y E [[F @Gz ) (k)] -
k k
At this stage let us observe that

1
Z (! k)2 = TN (2, ky, ko) |20
E (|75 (x, ) (k)[?] khge:EN! 5 1, k2)] Fek) 2
SO Bk k)L, olka | X e k2= o (o — k)N Yo (k1 — B)Y  Ko)
kl,kQEEN

A 2
— eHkpg—kz pj(kpg) — K)o (k1 — K, kZ)ﬂ\km]—kKN/Q ;

and the difference on the right hand side is zero unless |k1|oo ~ N so that |ky|7* ~ N=2 k|72~ for any
A > 0. Moreover, we only have to sum over |ki|oo > |k|s and the summation over ko gives O(2%) terms
which leads to

1 12 _
Z ( Z ‘Ff\;(ﬂ?v k, kmb)ﬁ%) ~ Z Ly 2J<N2 N ~2( k™ )\)1/2
Pal =t f(ek1)? [k .
< My gy g2 N IHN20001-3/2),
Plugging this back into (33) we getfor 4 > —land \/2 <1 — «

E[|| A% ] < Z2j52—ioa]121_72j§N2jN—1+/\/22i(1—>\/2) < NI+,

.3

||L((é)a (Opﬁ

Taking 8 = 2 — 2 (which is > —1 because « > 1/2), the claim follows for A?V.
To handle A}V let us remark that

Elg); (2, )]

— (2m) " zk: 5i(k)pi (k) klez];]v e ) [ (1 — B)N ) — oo (1 — e )] m J2im(y—a.k)

=: hij(y — z),
and as before we have

14N (w)

wr SO 2P g x Al S 27 i+ Al 2.

1,J 1]

Now the Parseval identity gives [|h; j * Ajul|2, = >, |.Zhi j(k)[*|.Z (Aiu)(k)|?, and

Fhig ] = | 3 k) ki) (b = R k) = ol = k)] 50,
ki€EN
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where we used that ||, < N/2 on the support of 1<(-, k1). Now we use once more that 1, ((k1 — k), k1) =
o(k1 — k, k1) unless |k1 — k|oo > N/2 and |k1| ~ N, and that there are at most N X |k|~ values of k; with
|kloo < |k1loo < N/2and |k1 — k|oo > N/2. Therefore, the sum over & is bounded by

D1 Fhij(R)PLF Qi) (k) S Linjlaicn N2 D [ F (D) (B)* S Linjloicy N 7227 Aju][72,
k |ko|~20

and now Bernstein’s inequality, Lemma 2.1 of [2]], gives
i * Agull e S Lijloic y N2 Ajullr2 S Linjloicy N 712% (| Ajul| 1.
So finally we can conclude that

E| JSNTD Y 9ifgitre),

i~jSlogy N

1AV op )

and taking § = 2a — 2 we get

1 -1 ' -1
E[HAN”L(%/{I,%B)] SN Z 2SN,
iSlogy N
which converges to zero as long as o < 1. This concludes the proof. O

5 Invariance principle for semi-discrete random polymer measures

In [8] the authors construct the continuous polymer measure with periodic white noise potential defined formally
by

Qra(dw) = Z7 ) exp ( /0 ! §(w(9)ds)Wa(w),  Zre =B, |exp ( /0 ! fwNas)], @6

where W, is the Wiener measure on C([0, T, T?) starting in « € T2. Of course, this formula does not really
make sense since £ is only a Schwartz distribution and not a function and therefore the integral fOT &(w(s))ds
is not well defined. However, it was shown in [[8] that replacing the white noise by a mollified version gives
a sequence of probability measure (Q% ) which are equivalent to the Wiener measure and that this sequence
converges in probability in the weak tobology to a measure Q7 , which does not depend on the way that we
mollified the white noise, and which is almost surely singular with respect to the Wiener measure. Moreover,
under the measures (Qr,;)cr2 the canonical process (By)ejo.7) on C([0,T], T?) is an inhomogeneous strong
Markov process with transition function

uh Tt — s, 2)

Krp(s,t)f(z) = (T —s1)

0<s<t<T, (37)
where u' and u/"T~ both satisfy the parabolic Anderson equation with initial condition given respectively by
the constant function 1 and fu'(T — t,-). More precisely

ot = Aul +ut o€, ur(0,2) = 1,

and
Opul* = Aul* +ulS o, ulH(0) = ful(s).

Now let us come back to our discrete model and write (B} );>¢ for the canonical process on the Skorokhod space
D([0, 00), Z3%;) (which is equal to the space of continuous functions from [0, 00) to Z%; because Z3; is equipped
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with the discrete topology). We write If”fvv for the law of the continuous-time random walk with generator A,
started in x € Z%V. By Donsker’s theorem we know that the law of ¢ — 5B€]\£2 , under I@’év_lx converges to the
Brownian motion on T2, started in . Our aim is to derive an analogous result for the semi-discrete polymer
measure (time is continuous, space discrete), given by

e 2T
Q%:p(dw) = Z;,}T’x exp </ 57]N(w(3))ds> Ip’iv(dw),
0

where Z;,}Tw is a constant renormalizing the mass of Q% . to 1. If we denote by (PN )xeﬂl‘% the law of the

rescaled process (5Bé\7_2t)t20 under PY, then the law of (sBéV_Qt)te[Qﬂ under @gz is given by

Q) = Zily oo | : Ex(w(s))ds ) Y (e,

where now w € D([0, 7], T%) and we recall that {5 = e~ 'Ennn (- /€), which here of course is only evaluated
in the points of T?%;, so in fact there would have been no need to apply the extension operator £y. Now we claim
that if we extend the measure QQA{ . ©0 B(D([0,T],T?)) by setting

Qb7 (A) = QN (AN D([0,T), T%)),

N P
then (Q,, ) converges in distribution in the weak topology to Q. 7.

Theorem 5.1. Make the assumptions (Hyy ) and (Hyart) and let T > 0. Let for all x € T2 and N € N the point

|z|n € T% be such that |x — |z| | < e. Then the family of probability measures (@QA{ o] JzeT? COnverges
jointly in distribution in the weak topology to (Qr ;) e

Proof. As explained in the proof of Theorem [2.2| we may assume that ({x, X, Xy © N, An) converges in
probability to (£, X, X 0&,0)in € x €2 x 62072 x L(€Q, €2 %). Let us show that then for any = € T? the
measures (@? |z| ) that are constructed from ({n, Xn, Xn © {n) as described above converge in probability
to the polymer measure Q7 ,, constructed from (£, X, X ¢ &). For this it suffices to show that every subsequence
possesses a subsequence for which the convergence holds, and in this way we may suppose that the data
(En, XN, XN ¢ &N, An) converges almost surely (because it converges in probability and thus almost surely
along a subsequence). Now we simply apply Lemma in the appendix with E = T?, Ey = T% and
Yn(7) = x for z € T%. Moreover, if YV denotes the process with law Q% e then the law of X% is @? le)
Of course, Lemma(A.T]is only formulated for temporally homogeneous Markov processes, but we can use the
standard trick of considering the couple (Y,", t)te[O,T] to obtain a temporally homogeneous process. Therefore,

we get from Lemma in the appendix that (@¥ ] ) converges weakly to Qr ., provided that
lim (K7 (s,8)f = Kr(s,)f | poo 3,y = 0 (38)
N—o0 N

forall f € C(T?,R)and 0 < s < t < T, where (KX (s,t))o<s<t<7 denotes the transition function of Y. But

by the Bayes formula we have for any f: ’JI‘?V R 0<s<t<T,and x € ']I‘?V

Eox [f(BN) 230 exp(fy En(BY)dr)|F,)
Epx (2370 exp( [y En(BY)dr)|F]

)
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where (]:t)te[o,T] is the filtration generated by BV. The deterministic factor Zg,lT . cancels, as well as the

contribution exp( f; én(BY)dr) which we can pull out of both conditional expectations. By the Markov
property of BY under ]P’iv , the remaining contribution of the denominator is then given by

oy, o ([ en(BYar)] = ukr - .8,

where we applied the Feynman-Kac formula and where

1 N, 1 1 1 1 _
Oruy = Ayuy + unén — enup, un(0) = 1.

Similarly, the remaining contribution of the numerator is

T-s t—s Tt
Epx, f(BﬁS)eXp(/O §N(B£V)dr)} = Epy [efo §N(B7]«V)d1”f(Bt]\£s>]EPgN [e)o EN(Biv)dr]}

t—s

= Epx [l OO p(BY July(T — 1, BY,)]
BS
= u?\;_t’f(t — s, Bév),

where
Oty = Al + i €n —evuyf . upf (0) = Fu(r).

Consequently the transition function (KX (s,t))o<s<t<7 of B under (Q¥ ) €2, 1S given by

T_t7f

K () ) = g

Combining this with the representation for (K7 (s,t)), the claimed convergence now follows from Proposi-
tion[3.18 O
6 Invariance principle for the spectrum of a random Schrodinger operator
In the recent paper [1]] the random Schrédinger operator with white noise potential defined formally by

H = —A+ (£ + 00)

was constructed for the first time. It was shown that it is the limit (in resolvent sense) of the sequence of operators
A = —A + & + c5, 6 > 0, where & is a mollification of the white noise and ¢5 = 5= log(+) + O(1) is the
diverging constant appearing in (7). Moreover, it was shown that the operator .7’ has a compact resolvent (in
L?(T?)) and a pure point spectrum

o(H)={A <A< <A <L

where Ay, — 400 for k — oo.
Now consider the operator .7y defined on the periodic lattice Z?\, by

He(i) = —(Apwe) (i) + ce(i)nn (i), i€ 7%,

where 7y is as in the previous sections. Given the results we derived so far it is natural to expect that the spectrum
of 7y converges to that of 7, at least when suitably rescaled and recentered. To be precise we are interested
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in the convergence at the bottom of the spectrum of 7. That is, we fix k € N and let V > k, we denote by
A{V <. <L A,iv the &k lowest eigenvalues of the operator 7%, and our aim is to show the joint convergence of
(AN, ..., Aév ). As usual in spectral analysis instead of studying this convergence directly we will prove that the
rescaled resolvent of the operator 7%y satisfies a central limit theorem which implies in particular the central
limit theorem for the eigenvalues. Indeed, let us start by observing that if eﬂ‘;v is an eigenfunction with eigenvalue
AY and &% (i) = ek (i/e) for i € T, then Exék; is an eigenfunction of the operator

Anf=—ANPNf+TN(Py(HEn), [ e LT,

with eigenvalue e ~2A%, where we recall that Py f = .# 1 (L(—ny2,n/2)27 f). Now the convergence of the

eigenvalues of this self adjoint operator is implied by the convergence of its resolvent operator (z + j{”N)*l for
z € iR\ {0}. But as we have seen previously such a convergence can only be expected to hold after a suitable
renormalization, and taking this into account we should study the operator %N +cn Py instead of %”N To prove
the convergence of its resolvent (in the operator sense) it suffices to show that g = (2 + %”N +cNPnN)™ f
converges to (z + 2#)~! f uniformly in f € L?(T?) with || f||;2 = 1. For that purpose let us start by observing
that Py g satisfies the equation

(z — AN)Pngn = Pnf — IN(Pn(gn)én) — enPrN,

whereas (1 — Py)gn = 2~ (1 — Py)f. From here the convergence of (gx) can be established in the same
manner as the convergence in Proposition [3.18] (see [1]], Proposition 4.13 and Lemma 4.15 for details on the
resolvent equation in the paracontrolled framework), and in that way we obtain the following result.

Proposition 6.1. Make assumptlons (Hyw) and (Hmart). Let o € (2/3,1 —2/p) and z € iR \ {0}. Then the
resolvent operator (z+cen+ %”N) converges in distribution in the space of bounded operators L(L?, H*) to
(z 4 52)~1

As previously discussed this immediately yields the following corollary for the eigenvalues.

Theorem 6.2. Fixk € Nandlet N > k. Let A < ... < A{CV be the k smallest eigenvalues of the operator
Hy and Ay < -+ < Ay those of F. Then for N — o the following convergence holds in distribution:

AN, A Fen(1, 1) = (Mg, Ap).

A A criterion for the weak convergence of Markov processes

Lemma A.1 ([13]], Theorem 2.11 in Chapter 4). Let E and (En)nen be metric spaces such that E is compact
and separable and assume that for all N we are given a measurable map 1y : Eny — E and a semigroup
(PN (t))iejo,1] of @ Markov process Y on Ey, such that Xy = 1N (Yn) has sample paths in D([0,T], E).
Assume also that there exists a Feller semigroup (P(t)).[o,) such that

lim [Py )7y f —anP(t)flLe =0
N—0
for every f € C(E,R), where ny: L*°(E) — L*™(EN) is defined by the relation wn f(x) = f(¢¥n(z)),

x € En. Then if Xn(0) has a limiting probability distribution v on E, the process (Xx) converges in
distribution in D([0, T}, E) to the Markov process X starting at v with semigroup (P(t)):c(o,1)-
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