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Abstract

We present two different approaches to stochastic integration in frictionless model
free financial mathematics. The first one is in the spirit of Itô’s integral and based on
a certain topology which is induced by the outer measure corresponding to the minimal
superhedging price. The second one is based on the controlled rough path integral. We
prove that every “typical price path” has a naturally associated Itô rough path, and
justify the application of the controlled rough path integral in finance by showing that
it is the limit of non-anticipating Riemann sums, a new result in itself. Compared to
the first approach, rough paths have the disadvantage of severely restricting the space of
integrands, but the advantage of being a Banach space theory.

Both approaches are based entirely on financial arguments and do not require any
probabilistic structure.
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1 Introduction

In this paper we use Vovk’s [Vov12] game-theoretic approach to mathematical finance to
develop two different approaches to stochastic integration in frictionless model free finance.
A priori the integration problem is highly non-trivial in the model free context since we do not
want to assume any probabilistic respectively semimartingale structure. Therefore, we do not
have access to Itô integration and most known techniques completely break down. There are
only two general solutions to the integration problem in a non-probabilistic continuous time
setting that we are aware of. One was proposed by [DS14] who simply restrict themselves to
trading strategies (integrands) of bounded variation. While this already allows to solve many
interesting problems, it is not a very natural assumption to make in a frictionless market
model. Indeed, while in [DS14] a general duality approach is developed for pricing path-
dependent derivatives that are Lipschitz continuous in the supremum norm, this approach
does not allow to treat derivatives depending on the volatility.

Another interesting solution was proposed by [DOR13] (using an idea which goes back
to [Lyo95b]). They restrict the set of “possible price paths” to those admitting a quadratic
variation. This allows them to apply Föllmer’s pathwise Itô calculus [Föl81] to define pathwise
stochastic integrals of the form

∫
∇F (S)dS. In [Lyo95b] that approach was used to derive

prices for American and European options under volatility uncertainty. In [DOR13] the given
data is a finite number of European call and put prices and the derivative to be priced is
a weighted variance swap. The restriction to the set of paths with quadratic variation is
justified by referring to Vovk [Vov12], who proved that “typical price paths” (to be defined
below) admit a quadratic variation.

In our first approach we do not restrict the set of paths and work on the space Ω of d-
dimensional continuous paths (which represent the possible asset price trajectories). We follow
Vovk who introduces an outer measure on Ω. The crucial point is that this outer measure
is defined as a minimal superhedging price (in a suitable sense), and therefore has a purely
financial interpretation and does not come from an artificially imposed probabilistic structure.
Our first observation is that Vovk’s outer measure allows us to define a topology on processes
on Ω, and that the “natural Itô integral” on step functions is in a certain sense continuous
in that topology. This allows us to extend the integral to càdlàg adapted integrands, and we
call the resulting integral “model free Itô integral”. We stress that the entire construction is
based on purely financial arguments.

Let us also stress that it is the continuity of our integral which is the most important
aspect. Without reference to any topology the construction would certainly not be very
useful, since already in the classical probabilistic setting virtually all applications of the Itô
integral (SDEs, stochastic optimization, duality theory, . . . ) are based on the fact that it is
a continuous operator.
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This also motivates our second approach, which is more in the spirit of [Lyo95b, DOR13,
DS14]. While in the first approach we do have a continuous operator, it is only continuous
with respect to a sequence of pseudometrics and it seems impossible to find a Banach space
structure that is compatible with it. However, using the model free Itô integral we are able to
show that every “typical price path” has a natural Itô rough path associated to it. Since in
financial applications we can always restrict ourselves to typical price paths, this observation
opens the door for the application of the controlled rough path integral [Lyo98, Gub04] in
model free finance. Controlled rough path integration has the advantage of being an entirely
linear Banach space theory which simultaneously extends

• the Riemann-Stieltjes integral of S against functions of bounded variation which was
used by [DS14];

• the Young integral [You36]: typical price paths have finite p-variation for every p > 2,
and therefore for every F of finite q-variation for q < 2 (so that 1/p + 1/q > 1), the
integral

∫
FdS is defined as limit of non-anticipating Riemann sums;

• Föllmer’s [Föl81] pathwise Itô integral which was used by [Lyo95b, DOR13]. That this
last integral is a special case of the controlled rough path integral is, to the best of
our knowledge, proved rigorously for the first time in this paper, although also [FH14]
contains some preliminary observations in that direction.

In other words, our second approach covers all previously known techniques of integration in
model free financial mathematics, while the first approach is much more general but at the
price of leaving the Banach space world.

There is only one pitfall: the rough path integral is usually defined as a limit of com-
pensated Riemann sums which have no obvious financial interpretation. This sabotages our
entire philosophy of only using financial arguments. That is why we show that under some
weak condition every rough path integral

∫
FdS is given as limit of non-anticipating Riemann

sums that do not need to be compensated – the first time that such a statement is shown for
general rough path integrals. While this will not change anything in concrete applications, it
is of utmost importance from a philosophical point of view. Indeed, the justification for using
the Itô integral in classical financial mathematics is crucially based on the fact that it is the
limit of non-anticipating Riemann sums, even if in “every day applications” one never makes
reference to that; see for example the discussion in [Lyo95b].

Plan of the paper

Below we present a very incomplete list of solutions to the stochastic integration problem
under model uncertainty and in a discrete time model free context (both a priori much simpler
problems than the continuous time model free case), and we introduce some notations and
conventions that will be used throughout the paper. In Section 2 we briefly recall Vovk’s
game-theoretic approach to mathematical finance and introduce our outer measure. We also
construct the topology induced by the outer measure. Section 3 is devoted to the construction
of the model free Itô integral. Section 4 recalls some basic results from rough path theory,
and continues by constructing rough paths associated to typical price paths. Here we also
prove that the rough path integral is given as a limit of non-anticipating Riemann sums. We
also compare Föllmer’s pathwise Itô integral with the rough path integral and prove that the
latter is an extension of the former. Appendix A recalls Vovk’s pathwise Hoeffding inequality.
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In Appendix B we show that a result of Davie which also allows to calculate rough path
integrals as limit of Riemann sums is a special case of our results in Section 4.

Stochastic integration under model uncertainty

The first works which studied the option pricing problem under model uncertainty were
[ALP95] and [Lyo95b], both considering the case of volatility uncertainty. As described above,
[Lyo95b] is using Föllmer’s pathwise Itô integral, while in [ALP95] the problem is reduced to
the classical setting by deriving a “worst case” model for the volatility.

A powerful tool in financial mathematics under model uncertainty is Karandikar’s pathwise
construction of the Itô integral [Kar95, Bic81] which allows to construct the Itô integral of
a càdlàg integrand simultaneously under all semimartingale measures. The crucial point
that makes the construction useful is that the Itô integral is a continuous operator under
every semimartingale measure. While its pathwise definition would allow us to use the same
construction also in a model free setting, it is not even clear what the output should signify
in that case (for example the construction depends on a certain sequence of partitions and
changing the sequence will change the output). Certainly it is not obvious whether the
Karandikar integral is continuous in any topology once we dispose of semimartingale measures.
A more general pathwise construction of the Itô integral was given in [Nut12], but it suffers
from the same drawbacks with respect to applications in model free finance.

A general approach to stochastic analysis under model uncertainty was put forward in
[DM06], and it is based on quasi sure analysis. While this approach is extremely helpful when
working under model uncertainty, it also does not allow us to define stochastic integrals in a
model free context.

In a related but slightly different direction, in [CDGR11] non-semimartingale models are
studied (which do not violate arbitrage assumptions if the set of admissible strategies is
restricted). While the authors work under one fixed probability measure, the fact that their
price process is not a semimartingale prevents them from using Itô integrals, a difficulty which
is overcome by working with the Russo-Vallois integral [RV93].

Of course all these technical problems disappear if we restrict ourselves to discrete time,
and indeed in that case [BHLP13] develop an essentially fully satisfactory duality theory for
the pricing of derivatives under model uncertainty.

Notation and conventions

Throughout the paper we fix T ∈ (0,∞) and we write Ω := C([0, T ],Rd) for the space of
d-dimensional continuous paths. The coordinate process on Ω is denoted by St(ω) = ω(t),
t ∈ [0, T ]. For i ∈ {1, . . . , d}, we also write Sit(ω) = ωi(t), where ω = (ω1, . . . , ωd). The
filtration (Ft)t∈[0,T ] is defined as Ft := σ(Ss : s ≤ t), and we set F := FT . Stopping times τ
and the associated σ-algebras Fτ are defined as usually.

Unless explicitly stated otherwise, inequalities of the type Ft ≥ Gt, where F and G
processes on Ω, are supposed to hold for all ω ∈ Ω, and not modulo null sets, as it is usually
assumed in stochastic analysis.

The indicator function of a set A is denoted by 1A.
A partition π of [0, T ] is a finite set of time points, π = {0 = t0 < t1 < · · · < tm = T}.

Occasionally, we will identify π with the set of intervals {[t0, t1], [t1, t2], . . . , [tm−1, tm]}, and
write expressions like

∑
[s,t]∈π.
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For f : [0, T ] → Rn and t1, t2 ∈ [0, T ], denote ft1,t2 := f(t2) − f(t1) and define the p-
variation of f restricted to [s, t] ⊆ [0, T ] as

‖f‖p−var,[s,t] := sup

{(m−1∑
k=0

|ftk,tk+1
|p
)1/p

: s = t0 < · · · < tm = t,m ∈ N
}
, p > 0, (1)

(possibly taking the value +∞). We set ‖f‖p−var := ‖f‖p−var,[0,T ]. We write ∆T = {(s, t) :
0 ≤ s ≤ t ≤ T} for the simplex and define the p-variation of a function g : ∆T → Rn in the
same manner, replacing ftk,tk+1

in (1) by g(tk, tk+1).
For α > 0, the space Cα consists of those functions that are bαc times continuously

differentiable, with (α − bαc)-Hölder continuous partial derivatives of order bαc. The space
Cαb consists of those functions in Cα that are bounded, together with their partial derivatives,
and we define the norm ‖·‖Cαb by setting

‖f‖Cαb :=

bαc∑
k=0

‖Dkf‖∞ + ‖Dbαcf‖α−bαc,

where ‖·‖β denotes the β-Hölder norm for β ∈ (0, 1), and ‖·‖∞ denotes the supremum norm.

For x, y ∈ Rd, we write xy :=
∑d

i=1 xiyi for the usual inner product. However, often
we will encounter terms of the form

∫
SdS or SsSs,t for s, t ∈ [0, T ], where we recall that S

denotes the coordinate process on Ω. Those expressions are to be understood as the matrix
(
∫
SidSj)1≤i,j≤d, and similarly for SsSs,t. The interpretation will be usually clear from the

context, otherwise we will make a remark to clarify things.
We use the notation a . b if there exists a constant c > 0, independent of the variables

under consideration, such that a ≤ c · b, and we write a ' b if a . b and b . a. If we want to
emphasize the dependence of c on the variable x, then we write a(x) .x b(x).

We make the convention that 0/0 := 0 · ∞ := 0 and inf ∅ :=∞.

2 Superhedging and typical price paths

2.1 The outer measure and its basic properties

In a recent series of papers, Vovk [Vov08, Vov11, Vov12] has introduced a model free, hedging
based approach to mathematical finance that uses arbitrage considerations to examine which
properties are satisfied by “typical price paths”. This is achieved with the help of an outer
measure given by the cheapest superhedging price.

Recall that T ∈ (0,∞) and Ω = C([0, T ],Rd) is the space of continuous paths, with
coordinate process S, natural filtration (Ft)t∈[0,T ], and F = FT . A process H : Ω×[0, T ]→ Rd
is called a simple strategy if there exist stopping times 0 = τ0 < τ1 < . . . , and Fτn-measurable
bounded functions Fn : Ω → Rd, such that for every ω ∈ Ω we have τn(ω) = ∞ for all but
finitely many n, and such that

Ht(ω) =
∞∑
n=0

Fn(ω)1(τn(ω),τn+1(ω)](t).
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In that case, the integral

(H · S)t(ω) :=
∞∑
n=0

Fn(ω)(Sτn+1∧t(ω)− Sτn∧t(ω)) =
∞∑
n=0

Fn(ω)Sτn∧t,τn+1∧t(ω)

is well defined for all ω ∈ Ω, t ∈ [0, T ]. Here Fn(ω)Sτn∧t,τn+1∧t(ω) denotes the usual inner
product on Rd. For λ > 0, a simple strategy H is called λ-admissible if (H · S)t(ω) ≥ −λ for
all ω ∈ Ω, t ∈ [0, T ]. The set of λ-admissible simple strategies is denoted by Hλ.

Definition 2.1. The outer measure of A ⊆ Ω is defined as the cheapest superhedging price
for 1A, that is

P (A) := inf
{
λ > 0 : ∃ (Hn)n∈N ⊆ Hλ s.t. lim inf

n→∞
(λ+ (Hn · S)T (ω)) ≥ 1A(ω) ∀ω ∈ Ω

}
.

A set of paths A ⊆ Ω is called a null set if it has outer measure zero.

The term outer measure will be justified by Lemma 2.3 below. Our definition of P is
very similar to the one used by Vovk [Vov12], but not quite the same. For a discussion see
Section 2.4 below.

By definition, every Itô stochastic integral is the limit of stochastic integrals against simple
strategies. Therefore, our definition of the cheapest superhedging price is essentially the same
as in the classical setting, with one important difference: we require superhedging for all
ω ∈ Ω, and not just almost surely.

Remark 2.2 ([Vov12], p. 564). An equivalent definition of P would be

P̃ (A) := inf

{
λ > 0 : ∃ (Hn)n∈N ⊆ Hλ s.t. lim inf

n→∞
sup
t∈[0,T ]

(λ+ (Hn · S)t(ω)) ≥ 1A(ω)∀ω ∈ Ω

}
.

Clearly P̃ ≤ P . To see the opposite inequality, let P̃ (A) < λ. Let (Hn)n∈N ⊂ Hλ be a sequence
of simple strategies such that lim infn→∞ supt∈[0,T ](λ+ (Hn ·S)t) ≥ 1A, and let ε > 0. Define
τn := inf{t ∈ [0, T ] : λ+ε+(Hn ·S)t ≥ 1}. Then the stopped strategy Gnt (ω) := Hn

t (ω)1t<τn(ω)

is in Hλ ⊆ Hλ+ε and

lim inf
n→∞

(λ+ ε+ (Gn · S)T (ω)) ≥ lim inf
n→∞

1{λ+ε+supt∈[0,T ](H
n·S)t≥1}(ω) ≥ 1A(ω).

Therefore P (A) ≤ λ+ ε, and since ε > 0 was arbitrary P ≤ P̃ , and thus P = P̃ .

Lemma 2.3 ([Vov12], Lemma 4.1). P is in fact an outer measure, i.e. a nonnegative function
defined on the subsets of Ω such that

- P (∅) = 0;

- P (A) ≤ P (B) if A ⊆ B;

- if (An)n∈N is a sequence of subsets of Ω, then P (
⋃
nAn) ≤

∑
n P (An).

Proof. Monotonicity and P (∅) = 0 are obvious. So let (An) be a sequence of subsets of Ω.
Let ε > 0, n ∈ N, and let (Hn,m)m∈N be a sequence of (P (An) + ε2−n−1)-admissible simple
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strategies such that lim infm→∞(P (An) + ε2−n−1 + (Hn,m ·S)T ) ≥ 1An . Define for m ∈ N the
(
∑

n P (An) + ε)-admissible simple strategy Gm :=
∑m

n=0H
n,m. Then by Fatou’s lemma

lim inf
m→∞

( ∞∑
n=0

P (An) + ε+ (Gm · S)T

)
≥

k∑
n=0

(
P (An) + ε2−n−1 + lim inf

m→∞
(Hn,m · S)T

)
≥ 1⋃k

n=0 An

for all k ∈ N. Since the left hand side does not depend on k, we can replace 1⋃k
n=0 An

by

1⋃
n An

and the proof is complete.

Maybe the most important property of P is that there exists an arbitrage interpretation
for sets with outer measure zero:

Lemma 2.4. A set A ⊆ Ω is a null set if and only if there exists a sequence of 1-admissible
simple strategies (Hn)n ⊂ H1 such that

lim inf
n→∞

(1 + (Hn · S)T ) ≥ ∞ · 1A(ω), (2)

where we recall that by convention 0 · ∞ = 0.

Proof. If such a sequence exists, then we can scale it down by an arbitrary factor ε > 0 to
obtain a sequence of strategies in Hε that superhedge 1A, and therefore P (A) = 0.

If conversely P (A) = 0, then for every n ∈ N there exists a sequence of simple strategies
(Hn,m)m∈N ⊂ H2−n−1 such that 2−n−1 +lim infm→∞(Hn,m ·ω)T ≥ 1A(ω) for all ω ∈ Ω. Define
Gm :=

∑m
n=0H

n,m, so that Gm ∈ H1. For every k ∈ N we obtain

lim inf
m→∞

(1 + (Gm · S)T ) ≥
k∑

n=0

(2−n−1 + lim inf
m→∞

(Hn,m · S)T ) ≥ (k + 1)1A.

Since the left hand side does not depend on k, the sequence (Gm) satisfies (2).

In other words, if a set A has outer measure 0, then we can make infinite profit by investing
in the paths from A, without ever risking to lose more than the initial capital 1.

This motivates the following definition:

Definition 2.5. We say that a property (P) holds for typical price paths if the set A where
(P) is violated is a null set.

The basic idea of Vovk, which we shall adopt in the following, is that we only need to
concentrate on typical price paths. Indeed, “non-typical price path” can be excluded since
they are in a certain sense “too good to be true”: they would allow investors to realize infinite
profit while at the same time taking essentially no risk.

2.2 Arbitrage notions and link to classical mathematical finance

Before we continue, let us discuss different notions of arbitrage and argue that our outer
measure is an interesting object to study. We start by observing that P is an outer measure
which simultaneously dominates all local martingale measures on Ω.
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Propostion 2.6 ([Vov12], Lemma 6.3). Let P be a probability measure on (Ω,F), such that
the coordinate process S is a P-local martingale, and let A ∈ F . Then P(A) ≤ P (A).

Proof. Let λ > 0 and let (Hn)n∈N ⊆ Hλ be such that lim infn(λ+ (Hn · S)T ) ≥ 1A. Then

P(A) ≤ EP[lim inf
n

(λ+ (Hn · S)T )] ≤ lim inf
n

EP[λ+ (Hn · S)T ] ≤ λ,

where in the last step we used that λ+ (Hn ·S) is a nonnegative P-local martingale and thus
a P-supermartingale.

This already indicates that P -null sets are quite degenerate, in the sense that they are
null sets under all local martingale measures. However, if that was the only reason for our
definition of typical price paths, then a definition based on model free arbitrage opportunities
would be equally valid. A map X : Ω→ [0,∞) is a model free arbitrage opportunity if X is not
identically 0 and if there exists c > 0 and a sequence (Hn) ⊆ Hc such that lim infn→∞(Hn ·
S)T (ω) = X(ω) for all ω ∈ Ω. See [DH07, ABPS14] where (a similar) definition is used in the
discrete time setting.

It might then appear more natural to say that a property holds for typical price paths if
the indicator function of its complement is a model free arbitrage opportunity, rather than
working with Definition 2.5. This “arbitrage definition” would also imply that any property
which holds for typical price paths is almost surely satisfied under every local martingale
measure. Nonetheless we decidedly claim that our definition is “the correct one”. First of all
the arbitrage definition would make our life much more difficult, since it seems not very easy to
work with. But of course this is only a convenience and cannot possibly serve as justification
of our approach. Instead, we argue by relating the two notions to classical mathematical
finance.

For that purpose recall the fundamental theorem of asset pricing [DS94]: If P is a proba-
bility measure on (Ω,F) under which S is a semimartingale, then there exists an equivalent
measure Q such that S is a Q-local martingale if and only if S admits no free lunch with
vanishing risk (NFLVR). But (NFLVR) is equivalent to the two conditions no arbitrage (NA)
(intuitively: no profit without risk) and no arbitrage opportunities of the first kind (NA1)
(intuitively: no very large profit with a small risk). The (NA) property holds if for every
c > 0 and every sequence (Hn) ⊆ Hc for which limn→∞(Hn · S)T (ω) exists for all ω we have
P(limn→∞(Hn · S)T < 0) > 0 or P(limn→∞(Hn · S)T = 0) = 1. The (NA1) property holds if
{1 + (H · S)T : H ∈ H1} is bounded in P-probability, i.e. if

lim
c→∞

sup
H∈H1

P(1 + (H · S)T ≥ c) = 0.

Strictly speaking this is (NA1) with simple strategies, but as observed by [KP11] (NA1) and
(NA1) with simple strategies are equivalent; see also [IP11]. In the case of continuous S, the
equivalence of (NA1) and (NA1) with simple strategies had previously been shown by [Ank05],
Corollary 8.3.2, although here the result is formulated in a slightly different language.

Now the arbitrage definition of typical price paths corresponds to (NA), while our defini-
tion corresponds to (NA1):

Propostion 2.7. Let A ∈ F be a null set, and let P be a probability measure on (Ω,F) such
that the coordinate process satisfies (NA1). Then P(A) = 0.
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Proof. Let (Hn)n∈N ⊆ H1 be such that 1 + lim infn(Hn · S)T ≥ ∞ · 1A. Then for every c > 0

P(A) = P
(
A ∩

{
lim inf
n→∞

(Hn · S)T > c
})
≤ sup

H∈H1

P({(H · S)T > c}).

By assumption, the right hand side converges to 0 as c→∞ and thus P(A) = 0.

Remark 2.8. Proposition 2.7 is actually a consequence of Proposition 2.6, because if S
satisfies (NA1) under P, then there exists a dominating measure Q � P, such that S is a
Q-local martingale. See [Ruf13] for the case of continuous S, and [IP11] for the general case.

The crucial point is now that (NA1) is the essential property which every sensible market
model has to satisfy, whereas (NA) is nice to have but not strictly necessary. Indeed, (NA1) is
equivalent to the existence of an unbounded utility function such that the maximum expected
utility is finite [KK07, IP11]. (NA) is what is needed in addition to (NA1) in order to obtain
equivalent local martingale measures. But there are perfectly viable models which violate
(NA), for example the three dimensional Bessel process. By working with the arbitrage
definition of typical price paths, we would in a certain sense ignore these models.

2.3 A topology on path-dependent functionals

It will be very useful to introduce a topology on functionals on Ω. For that purpose let us
identify X,Y : Ω → R if X = Y for typical price paths. Clearly this defines an equivalence
relation, and we write L0 for the space of equivalence classes. We then introduce the analog
of convergence in probability in our context: (Xn) converges in outer measure to X if

lim
n→∞

P (|Xn −X| > ε) = 0 for all ε > 0.

We follow [Vov12] in defining an expectation operator. If X : Ω→ [0,∞], then

E[X] := inf
{
λ > 0 : ∃ (Hn)n∈N ⊆ Hλ s.t. lim inf

n→∞
(λ+ (Hn · S)T (ω)) ≥ X(ω)∀ω ∈ Ω

}
.

In particular, P (A) = E[1A]. The expectation E is countably subadditive, monotone, and
positively homogeneous. It is an easy exercise to verify that

d(X,Y ) := E[|X − Y | ∧ 1]

defines a metric on L0.

Lemma 2.9. The distance d metrizes the convergence in outer measure. More precisely, a
sequence (Xn) converges to X in outer measure if and only if limn d(Xn, X) = 0. Moreover,
(L0, d) is a complete metric space.

Proof. The arguments are the same as in the classical setting. Using subadditivity and
monotonicity of the expectation operator, we have

εP (|Xn −X| ≥ ε) ≤ E[|Xn −X| ∧ 1] ≤ P (|Xn −X| > ε) + ε

for all ε ∈ (0, 1], showing that convergence in outer measure is equivalent to convergence with
respect to d.
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As for completeness, let (Xn) be a Cauchy sequence with respect to d. Then there exists
a subsequence (Xnk) such that d(Xnk , Xnk+1

) ≤ 2−k for all k, so that

E
[∑

k

(|Xnk −Xnk+1
| ∧ 1)

]
≤
∑
k

E[|Xnk −Xnk+1
| ∧ 1] =

∑
k

d(Xnk , Xnk+1
) <∞,

which means that (Xnk) converges for typical price paths. Define X := lim infkXnk . Then
we have for all n and k

d(Xn, X) ≤ d(Xn, Xnk) + d(Xnk , X) ≤ d(Xn, Xnk) +
∑
`≥k

d(Xn` , Xn`+1
) ≤ d(Xn, Xnk) + 2−k.

Choosing n and k large, we see that d(Xn, X) tends to 0.

2.4 Relation to Vovk’s outer measure

Our definition of the outer measure P is not exactly the same as Vovk’s [Vov12]. We find our
definition more intuitive and it also seems to be easier to work with. However, since we rely
on some of the results established by Vovk, let us compare the two notions.

For λ > 0, Vovk defines the set of processes

Sλ :=

{ ∞∑
k=0

Hk : Hk ∈ Hλk , λk > 0,

∞∑
k=0

λk = λ

}
.

For every G =
∑

k≥0H
k ∈ Sλ, every ω ∈ Ω and every t ∈ [0, T ], the integral

(G · S)t(ω) :=
∑
k≥0

(Hk · S)t(ω) =
∑
k≥0

(λk + (Hk · S)t(ω))− λ

is well defined and takes values in [−λ,∞]. Vovk then defines for A ⊆ Ω the cheapest
superhedging price as

Q(A) := inf
{
λ > 0 : ∃G ∈ Sλ s.t. λ+ (G · S)T ≥ 1A

}
.

This definition corresponds to the usual construction of an outer measure from an outer
content (i.e. an outer measure which is only finitely subadditive and not countably subad-
ditive); see [Fol99], Chapter 1.4, or [Tao11], Chapter 1.7. Here, the outer content is given
by the cheapest superhedging price using only simple strategies. It is easy to see that P is
dominated by Q:

Lemma 2.10. Let A ⊆ Ω. Then P (A) ≤ Q(A).

Proof. Let G =
∑

kH
k, with Hk ∈ Hλk and

∑
k λk = λ, and assume that λ+ (G · S)T ≥ 1A.

Then (
∑n

k=0H
k)n∈N defines a sequence of simple strategies in Hλ, such that

lim inf
n→∞

(
λ+

(( n∑
k=0

Hk
)
· S
)
T

)
= λ+ (G · S)T ≥ 1A.

So if Q(A) < λ, then also P (A) ≤ λ, and therefore P (A) ≤ Q(A).
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Corollary 2.11. For every p > 2, the set Ap := {ω ∈ Ω : ‖S(ω)‖p−var = ∞} has outer
measure zero, that is P (Ap) = 0.

Proof. Theorem 1 of Vovk [Vov08] states that Q(Ap) = 0, so P (Ap) = 0 by Lemma 2.10.

It is a remarkable result of [Vov12] that if Ω = C([0,∞),R) (i.e. if the asset price process
is one-dimensional), and if A ⊆ Ω is “invariant under time changes” and such that S0(ω) = 0
for all ω ∈ A, then A ∈ F and Q(A) = P(A), where P denotes the Wiener measure. This can
be interpreted as a pathwise Dambis Dubins-Schwarz theorem.

3 Model free Itô integration

The present section is devoted to the construction of a model free Itô integral. The main
ingredient is a (weak) type of model free Itô isometry, which allows us to estimate the integral
against a step function in terms of the amplitude of the step function and the quadratic
variation of the price path. Based on the topology introduced in Section 2.3, it is then easy
to extend the integral to càdlàg integrands by a continuity argument.

Since we are in an unusual setting, let us spell out the following standard definitions:

Definition 3.1. A process F : Ω × [0, T ] → Rd is called adapted if the random variable
ω 7→ Ft(ω) is Ft-measurable for all t ∈ [0, T ].
The process F is said to be càdlàg if the sample path t 7→ Ft(ω) is càdlàg for all ω ∈ Ω.

To prove our weak Itô isometry, we will need an appropriate sequence of stopping times:
Let ω = (ω1, . . . , ωd) ∈ Ω and n ∈ N. For each i = 1, . . . , d define inductively

σn,i0 (ω) := 0, σn,ik+1(ω) := inf
{
t ≥ σn,ik : |ωi(t)− ωi(σn,ik )| ≥ 2−n

}
, k ∈ N.

Since we are working with continuous paths and we are considering entrance times into closed
sets, the maps (σn,i) are indeed stopping times, despite the fact that (Ft) is neither complete
nor right-continuous. Denote πn,i := {σn,ik : k ∈ N}. To obtain an increasing sequence of
partitions, we take the union of the (πn,i), that is we define σn0 := 0 and then

σnk+1(ω) := min

{
t > σnk (ω) : t ∈

d⋃
i=1

πn,i(ω)

}
, k ∈ N, (3)

and we write πn := {σnk : k ∈ N} for the corresponding partition.

Lemma 3.2 ([Vov11], Theorem 4.1). For typical price paths ω ∈ Ω, the quadratic variation
along (πn,i(ω))n∈N exists. That is,

V n,i
t (ω) :=

∞∑
k=0

(
ωi(σn,ik+1 ∧ t)− ω

i(σn,ik ∧ t)
)2
, t ∈ [0, T ], n ∈ N,

converges uniformly to a function 〈Si〉(ω) ∈ C([0, T ],R) for all i ∈ {1, . . . , d}.

For later reference, let us estimate Nn
t := max{k ∈ N : σnk ≤ t}, the number of stopping

times σnk 6= 0 in πn with values in [0, t]:

11



Lemma 3.3. For all ω ∈ Ω, n ∈ N, and t ∈ [0, T ], we have

2−2nNn
t (ω) ≤

d∑
i=1

V n,i
t (ω) =: V n

t (ω).

Proof. For i ∈ {1, ..., d} define Nn,i
t := max{k ∈ N : σn,ik ≤ t}. Since ωi is continuous, we

have |ωi(σn,ik+1)− ωi(σn,ik )| = 2−n as long as σn,ik+1 ≤ T . Therefore, we obtain

Nn
t (ω) ≤

d∑
i=1

Nn,i
t (ω) =

d∑
i=1

Nn,i
t (ω)−1∑
k=0

1

2−2n

(
ω(σn,ik+1)− ω(σn,ik )

)2 ≤ 22n
d∑
i=1

V n,i
t (ω).

We will start by constructing the integral against step functions, which are defined simi-
larly as simple strategies, except possibly unbounded: A process F : Ω× [0, T ]→ Rd is called
a step function if there exist stopping times 0 = τ0 < τ1 < . . . , and Fτn-measurable functions
Fn : Ω → Rd, such that for every ω ∈ Ω we have τn(ω) = ∞ for all but finitely many n, and
such that

Ft(ω) =

∞∑
n=0

Fn(ω)1[τn(ω),τn+1(ω))(t).

For notational convenience we are now considering the interval [τn(ω), τn+1(ω)) which is closed
on the right hand side. This allows us define the integral

(F · S)t :=
∞∑
n=0

FnSτn∧t,τn+1∧t =
∞∑
n=0

FτnSτn∧t,τn+1∧t, t ∈ [0, T ].

The following lemma will be the main building block in the construction of our integral.

Lemma 3.4 (Model free Itô isometry). Let a > 0 and let F be a step function. Then for all
a, b, c > 0 we have

P
(
{‖(F · S)‖∞ ≥ ab

√
c} ∩ {‖F (ω)‖∞ ≤ a} ∩ {〈S〉T ≤ c}

)
≤ 2 exp(−b2/(2d)),

where the set {〈S〉T ≤ c} should be read as {〈S〉T = limn V
n
T exists and satisfies 〈S〉T ≤ c}.

Proof. Assume Ft =
∑∞

n=0 Fn1[τn,τn+1)(t) and set τa := inf{t > 0 : |Ft| ≥ a}. Let n ∈ N and
define ρn0 := 0 and then for k ∈ N

ρnk+1 := min
{
t > ρnk : t ∈ πn ∪ {τm : m ∈ N}

}
,

where we recall that πn = {σnk : k ∈ N} is the n-th generation dyadic partition generated by
S. For t ∈ [0, T ], we have (F · S)τa∧t =

∑
k FρnkSτa∧ρ

n
k∧t,τa∧ρ

n
k+1∧t, and by the definition of

πn(ω) and τa we get
sup
t∈[0,T ]

∣∣FρnkSτa∧ρnk∧t,τa∧ρnk+1∧t
∣∣ ≤ a√d2−n.

Hence, the pathwise Hoeffding inequality, Lemma A.1 in Appendix A, yields for every λ ∈ R
the existence of a 1-admissible simple strategy Hλ,n ∈ H1 such that

1 + (Hλ,n · S)t ≥ exp

(
λ(F · S)τa∧t −

λ2

2
(N

(ρn)
t + 1)2−2na2d

)
=: Eλ,nτa∧t

12



for all t ∈ [0, T ], where

N
(ρn)
t := max{k : ρnk ≤ t} ≤ Nn

t +N
(τ)
t := Nn

t + max{k : τk ≤ t}.

By Lemma 3.3, we have Nn
t ≤ 22nV n

t , so that

Eλ,nτa∧t ≥ exp

(
λ(F · S)t −

λ2

2
V n
T a

2d− λ2

2
(N

(τ)
T + 1)2−2na2d

)
.

If now ‖(F · S)‖∞ ≥ ab
√
c, ‖F (ω)‖∞ ≤ a and 〈S〉T ≤ c, then

lim inf
n→∞

sup
t∈[0,T ]

Eλ,nt + E−λ,nt

2
≥ 1

2
exp

(
λab
√
c− λ2

2
ca2d

)
.

The argument inside the exponential is maximized for λ = b/(a
√
cd), in which case we obtain

1/2 exp(b2/(2d)). The statement now follows from Remark 2.2.

Of course, we did not actually establish an isometry but only an upper bound for the
integral. But this estimate is the key ingredient which allows us to extend the model free
Itô integral to more general integrands, and it is this analogy to the classical setting that the
term “model free Itô isometry” alludes to.

Let us extend the topology of Section 2.3 to processes: we identify X,Y : Ω× [0, T ]→ Rm
if for typical price paths we have Xt = Yt for all t ∈ [0, T ], and we write L0([0, T ],Rm) for the
resulting space of equivalence classes which we equip with the distance

d∞(X,Y ) := E[‖X − Y ‖∞ ∧ 1].

Ideally, we would like the stochastic integral on step functions to be continuous with
respect to d∞. However, using Proposition 2.6 it is easy to see that P (‖((1/n) ·S)‖∞ > ε) = 1
for all n ∈ N and ε > 0. This is why we also introduce for c > 0 the pseudometric

dc(X,Y ) := E[(‖X − Y ‖∞ ∧ 1)1〈S〉T≤c] ≤ d∞(X,Y ),

and then

dcpct(X,Y ) :=
∞∑
n=1

2−nd2n(X,Y ) ≤ d∞(X,Y ).

For step functions F,G, we get from Lemma 3.4

dc((F · S), (G · S)) ≤ P ({‖((F −G) · S)‖∞ ≥ ab
√
c} ∩ {‖F −G‖∞ ≤ a} ∩ {〈S〉T ≤ c})

+
dc(F,G)

a
+ ab
√
c

≤ 2 exp
(
− b2

2d

)
+
dc(F,G)

a
+ ab
√
c

whenever a, b > 0. Setting a =
√
dc(F,G) and b =

√
d| log a|, we deduce that

dc((F · S), (G · S)) . (1 +
√
c)dc(F,G)1/2−ε (4)

for all ε > 0, and in particular

dcpct((F · S), (G · S)) .
∞∑
n=1

2−n/2d2n(F,G)1/2−ε . d∞(F,G)1/2−ε.
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Theorem 3.5. Let F be an adapted, càdlàg process with values in Rd. Then there exists∫
FdS ∈ L0([0, T ],R) such that for every sequence of step functions (Fn) with limn d∞(Fn, F ) =

0 we have limn dcpct((F
n · S),

∫
FdS) = 0. The integral process

∫
FdS is continuous for typ-

ical price paths, and there exists a representative
∫
FdS which is adapted, although it may

take the values ±∞.We usually write
∫ t

0 FsdSs :=
∫
FdS(t), and we call

∫
FdS the model

free Itô integral of F with respect to S.
The map F 7→

∫
FdS is linear, satisfies

dcpct

(∫
FdS,

∫
GdS

)
. d∞(F,G)1/2−ε

for all ε > 0, and the model free Itô isometry extends to this setting:

P
({
‖
∫
FdS‖∞ ≥ ab

√
c
}
∩ {‖F‖∞ ≤ a} ∩ {〈S〉T ≤ c}

)
≤ 2 exp(−b2/(2d))

for all a, b, c > 0.

Proof. Everything follows in a straightforward way from (4) in combination with Lemma 2.9.
We have to use the fact that F is adapted and càdlàg in order to approximate it uniformly
by step functions.

Another simple consequence of the model free Itô isometry is a strengthened version of
Karandikar’s [Kar95] pathwise Itô integral.

Corollary 3.6. In the setting of Theorem 3.5, let (Fm)m∈N be a sequence of step functions
with ‖Fm(ω) − F (ω)‖∞ ≤ cm for all ω ∈ Ω and all m ∈ N. Then for typical price paths ω
there exists a constant C(ω) > 0 such that∥∥∥(Fm · S)(ω)−

∫
FdS(ω)

∥∥∥
∞
≤ C(ω)cm

√
logm (5)

for all m ∈ N. So, if (cm
√

logm) converges to 0, then for typical price paths (Fm ·S) converges
to
∫
FdS.

Proof. For c > 0 the model free Itô isometry gives

P

({
‖(Fm · S)−

∫
FdS‖∞ ≥ cm

√
4d logm

√
c

}
∩ {〈S〉T ≤ c}

)
≤ 1

m2
.

Since this is summable in m, the claim follows from Borel Cantelli (which only requires
countable subadditivity).

Remark 3.7. The speed of convergence (5) is better than the one that can be obtained using
the arguments in [Kar95], where the summability of (cm) is needed.

4 Rough path integration for typical price paths

Our second approach to model free stochastic integration is based on the rough path integral,
which has the advantage of being a continuous linear operator between Banach spaces. The
disadvantage is that we have to restrict the set of integrands to those “locally looking like S”,
modulo a smoother remainder. Our two main results in this section are that every typical
price path has a naturally associated Itô rough path, and that the rough path integral can be
constructed as limit of Riemann sums.

Let us start by recalling the basic definitions and results of rough path theory.

14



4.1 The Lyons-Gubinelli rough path integral

Here we follow more or less the lecture notes [FH14], to which we refer for a gentle introduction
to rough paths. More advanced monographs are [LQ02, LCL07, FV10]. The main difference
to [FH14] in the derivation below is that we use p-variation to describe the regularity, and not
Hölder continuity, because it is not true that all typical price paths are Hölder continuous.
Also, we make an effort to give reasonably sharp results, whereas in [FH14] the focus lies
more on the pedagogical presentation of the material. We stress that in this subsection we
are merely collecting classical results.

Definition 4.1. A control function is a continuous map c : ∆T → [0,∞) with c(t, t) = 0 for
all t ∈ [0, T ] and such that c(s, u) + c(u, t) ≤ c(s, t) for all 0 ≤ s ≤ u ≤ t ≤ T .

Observe that if f : [0, T ] → Rd satisfies |fs,t|p ≤ c(s, t) for all (s, t) ∈ ∆T , then the p-
variation of f is bounded from above by c(0, T ).

Definition 4.2. Let p ∈ (2, 3). A p-rough path is a map S = (S,A) : ∆T → Rd × Rd×d such
that Chen’s relation

Si(s, t) = Si(s, u) + Si(u, t) and Ai,j(s, t) = Ai,j(s, u) +Ai,j(u, t) + Si(s, u)Sj(u, t)

holds for all 1 ≤ i, j ≤ d and 0 ≤ s ≤ u ≤ t ≤ T and such that there exists a control function
c with

|S(s, t)|p + |A(s, t)|p/2 ≤ c(s, t)

(in other words S has finite p-variation and A has finite p/2-variation). In that case we call
A the area of S.

Remark 4.3. Chen’s relation simply states that S is the increment of a function, that
is S(s, t) = S(0, t) − S(0, s) =: S(t) − S(s), and that for all i, j there exists a function
f i,j : [0, T ] → R such that Ai,j(s, t) = f i,j(t) − f i,j(s) − Si(s)Sjs,t. Indeed, it suffices to set

f i,j(t) = Ai,j(0, t) + Si(0)Sj0,t.

Remark 4.4. The (strictly speaking incorrect) name “area” stems from the fact that if S is
smooth and two-dimensional and if

Ai,j(s, t) =

∫ t

s

∫ r2

s
dSi(r1)dSj(r2) =

∫ t

s
Sis,r2dSj(r2),

then the antisymmetric part of A(s, t) corresponds to the algebraic area enclosed by the curve
(S(r))r∈[s,t]. It is a deep insight of Lyons [Lyo98], proving a conjecture of Föllmer, that the
area is exactly the additional information which is needed to solve differential equations driven
by S in a pathwise continuous manner, and to construct stochastic integrals as continuous
maps. Actually, [Lyo98] solves a much more general problem and proves that if the driving
signal is of finite p-variation for some p > 1, then it has to be equipped with the iterated
integrals up to order bpc − 1 to obtain a continuous integral map. The for us relevant case
p ∈ (2, 3) was already treated in [Lyo95a].

Example 4.5. If S is a continuous semimartingale and if we set S(s, t) = Ss,t as well as

Ai,j(s, t) =

∫ t

s

∫ r2

s
dSi(r1)dSj(r2) =

∫ t

s
Sis,r2dSj(r2),
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where the integral can be understood either in the Itô or in the Stratonovich sense, then almost
surely S = (S,A) is a p-rough path for all p ∈ (2, 3). This is shown in [CL05], and we will
give a simplified model free proof below (indeed we will show that every typical price path is
a p-rough path for all p ∈ (2, 3), from where the statement about continuous semimartingales
easily follows).

From now on we fix p > 2 and we assume that S is a p-rough path. Gubinelli [Gub04]
observed that for every rough path there is a naturally associated Banach space of integrands,
the space of controlled paths. Heuristically, a path F is controlled by S, if it locally “looks
like S”, modulo a smooth remainder. The precise definition is:

Definition 4.6. Let q > 0 be such that 2/p+ 1/q > 1. Let F : [0, T ]→ Rn and F ′ : [0, T ]→
Rn×d. We say that the pair (F, F ′) is controlled by S if the derivative F ′ has finite q-variation,
and the remainder RF : ∆T → Rn, defined by

RF (s, t) = Fs,t − F ′sSs,t,

has finite r-variation for 1/r = 1/p+ 1/q. In this case, we write (F, F ′) ∈ C q
S = C q

S (Rn), and
define

‖(F, F ′)‖C qS := ‖F ′‖q−var + ‖RF ‖r−var.

Equipped with the norm |F0|+ |F ′0|+ ‖(F, F ′)‖C qS , the space C q
S is a Banach space.

Naturally, the function F ′ should be interpreted as the derivative of F with respect to S.
The reason for considering couples (F, F ′) and not just functions F is that the smoothness
requirement on the remainder RF usually does not determine F ′ uniquely for a given path F .
For example, if F and S both have finite r-variation rather than just finite p-variation, then
for every F ′ of finite q-variation we have (F, F ′) ∈ C q

S .
Note that we do not require F or F ′ to be continuous. We will point out in Remark 4.10

below why this does not pose any problem.
To gain a more “quantitative” feeling for the condition on q, let us assume for the moment

that we can choose p > 2 arbitrarily close to 2 (which is the case in the example of a continuous
semimartingale rough path). Then 2/p+ 1/q > 1 as long as q > 0, so that the derivative F ′

may essentially be as irregular as we want. The remainder RF has to be of finite r-variation
for 1/r = 1/p + 1/q, so in other words it should be of finite r-variation for some r < 2 and
thus slightly more regular than the sample path of a continuous local martingale.

Example 4.7. Let ε ∈ (0, 1] be such that (2+ε)/p > 1. Let ϕ ∈ C1+ε
b and define Fs := ϕ(Ss)

and F ′s := ϕ′(Ss). Then (F, F ′) ∈ C
p/ε
S : Clearly F ′ has finite p/ε-variation. For the remainder,

we have

|RF (s, t)|p/(1+ε) = |ϕ(St)− ϕ(Ss)− ϕ′(Ss)Ss,t|p/(1+ε) ≤ ‖ϕ‖C1+ε
b

c(s, t),

where c is a control function for S. As the image of the continuous path S is compact, it is
not actually necessary to assume that ϕ is bounded. We may always consider a C1+ε function
ψ of compact support, such that ψ agrees with ϕ on the image of S.

This example shows that in general RF (s, t) is not a path increment of the form RF (s, t) =
G(t)−G(s) for some function G defined on [0, T ], but really a function of two variables.
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Example 4.8. Let G be a path of finite r-variation for some r with 1/p+ 1/r > 1. Setting
(F, F ′) = (G, 0), we obtain a controlled path in C q

S , where 1/q = 1/r − 1/p. In combination
with Theorem 4.9 below, this example shows in particular that the controlled rough path
integral extends the Young integral and the Riemann-Stieltjes integral.

The basic idea of rough path integration is that if we already know how to define
∫
SdS,

and if F looks like S on small scales, then we should be able to define
∫
FdS as well. The

precise result is given by the following theorem:

Theorem 4.9 (Theorem 4.9 in [FH14], see also [Gub04], Theorem 1). Let q be such that
2/p+ 1/q > 1. Let (F, F ′) ∈ C q

S . Then there exists a unique function
∫
FdS ∈ C([0, T ],Rn)

which satisfies∣∣∣ ∫ t

s
FudSu − FsSs,t − F ′sA(s, t)

∣∣∣ . ‖S‖p−var,[s,t]‖RF ‖r−var,[s,t] + ‖A‖p/2−var,[s,t]‖F ′‖q−var,[s,t]

for all (s, t) ∈ ∆T . The integral is given as limit of the compensated Riemann sums∫ t

0
FudSu = lim

m→∞

∑
[s1,s2]∈πm

[
Fs1Ss1,s2 + F ′s1A(s1, s2)

]
, (6)

where (πm) is any sequence of partitions of [0, t] with mesh size going to 0.
The map (F, F ′) 7→ (G,G′) := (

∫
FudSu, F ) is continuous from C q

S to C p
S and satisfies

‖(G,G′)‖C pS . ‖F‖p−var + (‖F ′‖∞ + ‖F ′‖q−var)‖A‖p/2−var + ‖S‖p−var‖RF ‖r−var.

Remark 4.10. To the best of our knowledge, there is no publication in which the controlled
path approach to rough paths is formulated using p-variation regularity. The references on
the subject all work with Hölder continuity. But in the p-variation setting, all the proofs work
exactly as in the Hölder setting, and it is a simple exercise to translate the proof of Theorem 4.9
in [FH14] (which is based on Young’s maximal inequality which we will encounter below) to
obtain Theorem 4.9.

There is only one small pitfall: We did not require F or F ′ to be continuous. The rough
path integral for discontinuous functions is somewhat tricky, see [Wil01]. But here we do not
run into any problems, because the integrand S = (S,A) is continuous. The construction based
on Young’s maximal inequality works as long as integrand and integrator have no common
discontinuities, see the Theorem on page 264 of [You36].

If now ϕ ∈ C1+ε
b for some ε > 0, then using a Taylor expansion one can show that there

exist p > 2 and q > 0 with 2/p + 1/q > 0, such that (F, F ′) 7→ (ϕ(F ), ϕ′(F )F ′) is a locally
bounded map from C p

S to C q
S . Combining this with the fact that the rough path integral is a

bounded map from C q
S to C p

S , it is not hard to prove the existence of solutions to the rough
differential equation

dXt = ϕ(Xt)dSt, X0 = x0, (7)

t ∈ [0, T ], where X ∈ C p
S ,
∫
ϕ(Xt)dSt denotes the rough path integral, and S is a typical price

path. Similarly, if ϕ ∈ C2+ε
b , then the map (F, F ′) 7→ (ϕ(F ), ϕ′(F )F ′) is a locally Lipschitz

continuous from C p
S to C q

S , and this yields the uniqueness of the solution to (7) – at least
among the functions in the Banach space C p

S . See Section 5.3 of [Gub04] for details.
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A remark is in order about the stringent regularity requirements on ϕ. In the classical Itô
theory of SDEs, the function ϕ is only required to be Lipschitz continuous. But to solve a
Stratonovich SDE, we need better regularity of ϕ. This is natural, because the Stratonovich
SDE can be rewritten as an Itô SDE with a Stratonovich correction term: the equations

dXt = ϕ(Xt) ◦ dWt and

dXt = ϕ(Xt)dWt +
1

2
ϕ′(Xt)ϕ(Xt)dt

are equivalent (where W is a standard Brownian motion, dWt denotes Itô integration, and
◦dWt denotes Stratonovich integration). To solve the second equation, we need ϕ′ϕ to be
Lipschitz continuous, which is always satisfied if ϕ ∈ C2

b . But rough path theory cannot
distinguish between Itô and Stratonovich integrals: If we define the area of W using Itô
(respectively Stratonovich) integration, then the rough path solution of the equation will
coincide with the Itô (respectively Stratonovich) solution. So in the rough path setting,
the function ϕ should satisfy at least the same requirements as in the Stratonovich setting.
The regularity requirements on ϕ are essentially sharp, see [Dav07], but the boundedness
assumption can be relaxed, see [Lej12]. See also Section 10.5 of [FV10] for a slight relaxation
of the regularity requirements in the Brownian case.

Of course, the most interesting result of rough path theory is that the solution to a rough
differential equation depends continuously on the driving signal. This is a consequence of the
following observation:

Propostion 4.11 (Proposition 9.1 of [FH14]). Let p > 2 and q > 0 with 2/p + 1/q > 0.
Let S = (S,A) and S̃ = (S̃, Ã) be two rough paths of finite p-variation, let (F, F ′) ∈ C q

S and
(F̃ , F̃ ′) ∈ C q

S̃
, and let (s, t) ∈ ∆T . Then for every M > 0 there exists CM > 0 such that∥∥∥∫ ·

0
FsdSs −

∫ ·
0
F̃sdS̃s

∥∥∥
p−var

≤ CM
(
|F0 − F̃0|+ |F ′0 − F̃ ′0|+ ‖F ′ − F̃ ′‖q−var

+ ‖RF −RF̃ ‖r−var + ‖S − S̃‖p−var + ‖A− Ã‖p/2−var

)
,

as long as

max{|F ′0|+ ‖(F, F ′)‖C qS , |F̃
′
0|+ ‖(F̃ , F̃ ′)‖C q

S̃
, ‖S‖p−var, ‖A‖p/2−var, ‖S̃‖p−var, ‖Ã‖p/2−var} ≤M.

In other words, the rough path integral depends on integrand and integrator in a locally
Lipschitz continuous way, and therefore it is no surprise that the solutions to differential
equations driven by rough paths depend continuously on the signal.

4.2 Typical price paths as rough paths

Our second approach to stochastic integration in model free financial mathematics is based
on the rough path integral. Here we show that for every typical price path, the pair (S,A) is
a p-rough path for all p ∈ (2, 3), where

A(s, t) =

∫ t

s
Ss,rdSr :=

∫ t

s
Ss,r ⊗ dSr :=

(∫ t

s
SirdS

j
r − SisS

j
s,t

)
1≤i,j≤d

.

The main ingredient in the proof will be our speed of convergence (5).
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Theorem 4.12. For (s, t) ∈ ∆T , ω ∈ Ω, and i, j ∈ {1, . . . , d} define

Ai,js,t(ω) :=

∫ t

s
SirdS

j
r(ω)− Sis(ω)Sjs,t(ω) :=

∫ t

0
SirdS

j
r(ω)−

∫ s

0
SirdS

j
r(ω)− Sis(ω)Sjs,t(ω).

Let p > 2. Then for typical price paths, A = (Ai,j)1≤i,j≤d has finite p/2-variation, and in
particular S = (S,A) is a p-rough path.

Proof. Define the dyadic stopping times (τnk )n,k∈N by τn0 := 0 and

τnk+1 := inf{t ≥ τnk : |St − Sτnk | = 2−n},

and set Snt :=
∑

k Sτnk 1[τnk ,τ
n
k+1)(t), so that ‖Sn − S‖∞ ≤ 2−n. Accorcing to (5), for typical

price paths ω there exists C(ω) > 0 such that∥∥∥(Sn · S)(ω)−
∫
SdS(ω)

∥∥∥
∞
≤ C(ω)2−n

√
log n.

Fix such a typical price path ω, which is also of finite q-variation for all q > 2 (recall from
Corollary 2.11 that this is satisfied by typical price paths). Let us show that for such ω, the
process A is of finite p/2-variation for all p > 2.

We have for (s, t) ∈ ∆T , omitting the argument ω of the processes under consideration,

|As,t| ≤
∣∣∣ ∫ t

s
SrdSr − (Sn · S)s,t

∣∣∣+ |(Sn · S)s,t − SsSs,t|

≤ C(ω)2−n
√

log n+ |(Sn · S)s,t − SsSs,t| .ε C(ω)2−n(1−ε) + |(Sn · S)s,t − SsSs,t|

for every n ∈ N, ε > 0. The second term on the right hand side can be estimated, using an
argument based on Young’s maximal inequality (see [LCL07], Theorem 1.16), by

max{2−nc(s, t)1/q, (#{k : τnk ∈ [s, t]})1−2/qc(s, t)2/q + c(s, t)2/q}, (8)

where c(s, t) is a control function with |Ss,t|q ≤ c(s, t) for all (s, t) ∈ ∆T . Indeed, if there exists
no k with τnk ∈ [s, t], then |(Sn · S)s,t − SsSs,t| ≤ 2−nc(s, t)1/q, using that |Ss,t| ≤ c(s, t)1/q.
This corresponds to the first term in the maximum in (8).

Otherwise, note that at the price of adding c(s, t)2/q to the right hand side, we may
suppose that s = τnk0 for some k0. Let now τnk0 , . . . , τ

n
k0+N−1 be those (τnk )k which are in [s, t).

Without loss of generality we may suppose N ≥ 2, because otherwise (Sn · S)s,t = SsSs,t.
Abusing notation, we write τnk0+N = t. The idea is now to successively delete points (τnk0+`)
from the partition, in order to pass from (Sn · S) to SsSs,t. By super-additivity of c, there
must exist ` ∈ {1, . . . , N − 1}, for which

c(τnk0+`−1, τ
n
k0+`+1) ≤ 2

N − 1
c(s, t).

Deleting τnk0+` from the partition and subtracting the resulting integral from (Sn · S)s,t, we
get

|Sτnk0+`−1
Sτnk0+`−1,τ

n
k0+`

+ Sτnk0+`
Sτnk0+`,τ

n
k0+`+1

− Sτnk0+`−1
Sτnk0+`−1,τ

n
k0+`+1

|

= |Sτnk0+`−1,τ
n
k0+`

Sτnk0+`,τ
n
k0+`+1

| ≤ c(τnk0+`−1, τ
n
k0+`+1)2/q ≤

( 2

N − 1
c(s, t)

)2/q
.
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Successively deleting all the points except τnk0 = s and τnk0+N = t from the partition gives

|(Sn · S)s,t − SsSs,t| ≤
N∑
k=2

( 2

k − 1
c(s, t)

)2/q
. N1−2/qc(s, t)2/q,

and therefore (8). Now it is easy to see that #{k : τnk ∈ [s, t]} ≤ 2nqc(s, t) (compare also the
proof of Lemma 3.3), and thus

|As,t| .ε C(ω)2−n(1−ε) + max{2−nc(s, t)1/q, (2nqc(s, t))1−2/qc(s, t)2/q + c(s, t)2/q}
= C(ω)2−n(1−ε) + max{2−nc(s, t)1/q, 2−n(2−q)c(s, t) + c(s, t)2/q}. (9)

This holds for all n ∈ N, ε > 0, q > 2. Let us suppose for the moment that c(s, t) ≤ 1 and let
α > 0 to be determined later. Then there exists n ∈ N for which 2−n−1 < c(s, t)1/α(1−ε) ≤ 2−n.
Using this n in (9), we get

|As,t|α .ε,ω,α c(s, t) + max
{
c(s, t)1/(1−ε)c(s, t)α/q, c(s, t)(2−q)/(1−ε)+α + c(s, t)2α/q

}
= c(s, t) + max

{
c(s, t)

q+α(1−ε)
q(1−ε) , c(s, t)

2−q+α(1−ε)
1−ε + c(s, t)2α/q

}
.

We would like all the exponents in the maximum on the right hand side to be larger or equal
to 1. For the first term, this is satisfied as long as ε < 1. For the third term, we need α ≥ q/2.
For the second term, we need α ≥ (q − 1− ε)/(1− ε). Since ε > 0 can be chosen arbitrarily
close to 0, it suffices if α > q − 1. Now, since q > 2 can be chosen arbitrarily close to 2, we
see that α can be chosen arbitrarily close to 1. In particular, we may take α = p/2 for any
p > 2, and we obtain

|As,t|p/2 .ω,δ c(s, t)(1 + c(s, t)δ) ≤ c(s, t)(1 + c(0, T )δ)

for a suitable δ > 0.
It remains to treat the case c(s, t) > 1, for which we simply estimate

|As,t|p/2 .p

∥∥∥∫ ·
0
SrdSr

∥∥∥p/2
∞

+ ‖S‖p∞ ≤
(∥∥∥∫ ·

0
SrdSr

∥∥∥p/2
∞

+ ‖S‖p∞
)
c(s, t).

So for every interval [s, t] we can estimate |As,t|p/2 .ω,p c(s, t), and the proof is complete.

Remark 4.13. To the best of our knowledge, this is one of the first times that a non-geometric
rough path is constructed in a non-probabilistic setting, and certainly we are not aware of any
works where rough paths are constructed using financial arguments.

We also point out that, thanks to Proposition 2.6, we gave a simple, model free, and
pathwise proof for the fact that a local martingale together with its Itô integral defines a
rough path. While this seems intuitively clear, the only other proof that we are aware of is
somewhat involved: it relies on a strong version of the Burkholder-Davis-Gundy inequality, a
time change, and Kolmogorov’s continuity criterion; see [CL05] or Chapter 14 of [FV10].

The following auxiliary result will allow us to obtain the rough path integral as a limit of
Riemann sums, rather than compensated Riemann sums which are usually used to define it.
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Lemma 4.14. Let (cn)n∈N be a sequence of positive numbers such that (cεn
√

log n) converges
to 0 for all ε > 0. For n ∈ N define τn0 := 0 and τnk+1 := inf{t ≥ τnk : |St − Sτnk | = cn},
k ∈ N, and set Snt =

∑
k Sτnk 1[τnk ,τ

n
k+1)(t). Then for typical price paths, ((Sn · S)) converges

uniformly to
∫
SdS. Moreover, for p > 2 and for typical price paths there exists a control

function c = c(p, ω) such that

sup
n

sup
k<`

|(Sn · S)τnk ,τ
n
`

(ω)− Sτnk (ω)Sτnk ,τ
n
`

(ω)|p/2

c(τnk , τ
n
` )

≤ 1.

Proof. The uniform convergence of ((Sn · S)) to
∫
SdS follows from Corollary 3.6. For the

second claim, fix n ∈ N and k < ` such that τn` ≤ T . Then

|(Sn · S)τnk ,τ
n
`
− Sτnk Sτnk ,τn` | .

∥∥∥(Sn · S)−
∫ ·

0
SsdSs

∥∥∥
∞

+
∣∣∣Aτnk ,τn` ∣∣∣

.ω cn
√

log n+ vp/2(τnk , τ
n
` )2/p .ε c

1−ε
n + vp/2(τnk , τ

n
` )2/p, (10)

where ε > 0 and the last estimate holds by our assumption on the sequence (cn), and where

vp/2(s, t) := ‖A‖p/2p/2−var,[s,t] for (s, t) ∈ ∆T . Of course, this inequality only holds for typical
price paths and not for all ω ∈ Ω.

On the other side, the same argument as in the proof of Theorem 4.12 (using Young’s
maximal inequality and successively deleting points from the partition) shows that

|(Sn · S)τnk ,τ
n
`
− Sτnk Sτnk ,τn` | . c2−q

n vq(τ
n
k , τ

n
` ), (11)

where vq(s, t) := ‖S‖qq−var,[s,t] for (s, t) ∈ ∆T .
Let us define the control function c̃ := vq + vp/2. Take α > 0 to be determined below. If

cn > c̃(s, t)1/α(1−ε), then we use (11) and the fact that 2− q < 0, to obtain

|(Sn · S)τnk ,τ
n
`
− Sτnk Sτnk ,τn` |

α . (c̃(τnk , τ
n
` ))

2−q
(1−ε) vq(τ

n
k , τ

n
` )α ≤ c̃(τnk , τn` )

2−q+α(1−ε)
(1−ε) .

The exponent is larger or equal to 1 as long as α ≥ (q − 1− ε)/(1− ε). Since q and ε can be
chosen arbitrarily close to 2 and 0 respectively, we can take α = p/2, and get

|(Sn · S)τnk ,τ
n
`
− Sτnk Sτnk ,τn` |

p/2 . c̃(τnk , τ
n
` )(1 + c̃(0, T )δ)

for a suitable δ > 0.
On the other side, if cn ≤ c̃(s, t)1/α(1−ε), then we use (10) to obtain

|(Sn · S)τnk ,τ
n
`
− Sτnk Sτnk ,τn` |

α . c̃(τnk , τ
n
` ) + c̃(τnk , τ

n
` )2α/p,

so that also in this case we may take α = p/2, and thus we have in both cases

|(Sn · S)τnk ,τ
n
`
− Sτnk Sτnk ,τn` |

p/2 ≤ c(τnk , τn` ),

where c is a suitable (ω-dependent) multiple of c̃.
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4.3 The rough path integral as limit of Riemann sums

Theorem 4.12 shows that we can apply the controlled rough path integral in model free
financial mathematics, since every typical price path is a rough path. But there remains a
philosophical problem: As we have seen in Theorem 4.9, the rough path integral

∫
FdS is

given as limit of the compensated Riemann sums∫ t

0
FsdSs = lim

m→∞

∑
[r1,r2]∈πm

[
Fr1Sr1,r2 + F ′r1A(r1, r2)

]
,

where (πm) is an arbitrary sequence of partitions of [0, t] with mesh size going to 0. The
term Fr1Sr1,r2 has an obvious financial interpretation as profit made by buying Fr1 units of
the traded asset at time r1 and by selling them at time r2. However, for the “compensator”
F ′r1A(r1, r2) there seems to be no financial interpretation, and therefore it is not clear whether
the rough path integral can be understood as profit obtained by investing in S.

However, we observed in Section 3 that along suitable stopping times (τnk )n,k, we have∫ t

0
SsdSs = lim

n→∞

∑
k

Sτnk Sτ
n
k ∧t,τ

n
k+1∧t.

By the philosophy of controlled paths, we expect that also for F which looks like S on small
scales we should obtain ∫ t

0
FsdSs = lim

n→∞

∑
k

Fτnk Sτ
n
k ∧t,τ

n
k+1∧t,

without having to introduce the compensator F ′τnk
A(τnk ∧t, τnk+1∧t) in the Riemann sum. With

the results we have at hand, this statement is actually relatively easy to prove. Nonetheless,
it seems not to have been observed before.

For the remainder of this section we fix S ∈ C([0, T ],Rd), and we work under the following
assumption:

Assumption (rie). Let πn = {0 = tn0 < tn1 < · · · < tnNn = T}, n ∈ N, be a given sequence of
partitions such that sup{|Stnk ,tnk+1

| : k = 0, . . . , Nn − 1} converges to 0, and let p ∈ (2, 3). Set

Snt :=

Nn−1∑
k=0

Stnk1[tnk ,t
n
k+1)(t).

We assume that the Riemann sums (Sn · S) converge uniformly to
∫
SdS, and that there

exists a control function c for which

sup
(s,t)∈∆T

|Ss,t|p

c(s, t)
+ sup

n
sup

0≤k<`≤Nn

|(Sn · S)tnk ,t
n
`
− StnkStnk ,tn` |

p/2

c(tnk , t
n
` )

≤ 1. (12)

Remark 4.15. The “coarse-grained” regularity condition (12) has recently been independently
rediscovered in [Kel14]; see also [GIP14].

Our proof that the rough path integral is given as limit of Riemann sums is somewhat in-
direct. We translate everything from Itô type integrals to related Stratonovich type integrals,
for which the convergence follows from the continuity of the rough path integral, Proposi-
tion 4.11. Then we translate everything back to our Itô type integrals. To go from Itô to
Stratonovich, we need the quadratic variation:
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Lemma 4.16. Under Assumption (rie), let 1 ≤ i, j ≤ d, and define

〈Si, Sj〉t := SitS
j
t − Si0S

j
0 −

∫ t

0
SirdS

j
r −

∫ t

0
SjrdS

i
r.

Then 〈Si, Sj〉 is a continuous function and

〈Si, Sj〉t = lim
n→∞

〈Si, Sj〉nt = lim
n→∞

Nn−1∑
k=0

(Sitnk+1∧t
− Sitnk∧t)(S

j
tnk+1∧t

− Sjtnk∧t). (13)

The sequence (〈Si, Sj〉n)n is of uniformly bounded total variation, and in particular 〈Si, Sj〉
is of bounded variation. We write 〈S〉 = 〈S, S〉 = (〈Si, Sj〉)1≤i,j≤d, and call 〈S〉 the quadratic
variation of S.

Proof. The function 〈Si, Sj〉 is continuous by definition. The specific form (13) of 〈Si, Sj〉
follows from two simple observations:

SitS
j
t − Si0S

j
0 =

Nn−1∑
k=0

(
Sitnk+1∧t

Sjtnk+1∧t
− Sitnk∧tS

j
tnk∧t

)
for every n ∈ N, and

Sitnk+1∧t
Sjtnk+1∧t

− Sitnk∧tS
j
tnk∧t

= Sitnk∧t
Sjtnk∧t,t

n
k+1∧t

+ Sjtnk∧t
Sitnk∧t,t

n
k+1∧t

+ Sitnk∧t,t
n
k+1∧t

Sjtnk∧t,t
n
k+1∧t

,

so that the convergence in (13) is a consequence of the convergence of (Sn · S) to
∫
SdS.

To see that 〈Si, Sj〉 is of bounded variation, note that

Sitnk∧t,t
n
k+1∧t

Sjtnk∧t,t
n
k+1∧t

=
1

4

((
(Si + Sj)tnk∧t,t

n
k+1∧t

)2
−
(

(Si − Sj)tnk∧t,tnk+1∧t

)2
)

(read 〈Si, Sj〉 = 1/4(〈Si+Sj〉−〈Si−Sj〉)). In other words, the n-th approximation of 〈Si, Sj〉
is the difference of two increasing functions, and its total variation is bounded from above by

Nn−1∑
k=0

((
(Si + Sj)tnk ,t

n
k+1

)2
+
(

(Si − Sj)tnk ,tnk+1

)2
)

. sup
m

Nm−1∑
k=0

(
(Sitmk ,t

m
k+1

)2 + (Sjtmk ,t
m
k+1

)2
)
.

Since the right hand side is finite, also the limit 〈Si, Sj〉 is of bounded variation.

Given the quadratic variation, the existence of the Stratonovich integral is straightforward:

Lemma 4.17. Under Assumption (rie), define S̃n|[tnk ,tnk+1] as the linear interpolation of Stnk
and Stnk+1

for k = 0, . . . Nn − 1. Then (
∫
S̃ndS̃n) converges uniformly to∫ t

s
Sr ◦ dSr :=

∫ t

s
SrdSr +

1

2
〈S〉s,t. (14)

Moreover, setting Ãn(s, t) :=
∫ t
s S̃

n
s,rdS̃

n
r for (s, t) ∈ ∆T , we have supn ‖Ãn‖p/2−var <∞.
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Proof. Let n ∈ N and k ∈ {0, . . . , Nn − 1}. Then for t ∈ [tnk , t
n
k+1] we have

S̃nt = Stnk +
t− tnk

tnk+1 − tnk
Stnk ,t

n
k+1

,

so that ∫ tnk+1

tnk

S̃nr dS̃nr = StnkSt
n
k ,t

n
k+1

+
1

2
Stnk ,t

n
k+1

Stnk ,t
n
k+1

, (15)

from where the uniform convergence and the representation (14) follow by Lemma 4.16.
To prove that Ãn has uniformly bounded p

2 -variation, consider (s, t) ∈ ∆T . If there exists
k such that tnk ≤ s < t ≤ tnk+1, then we estimate

|Ãn(s, t)|p/2 =
∣∣∣ ∫ t

s
S̃ns,rdS̃

n
r

∣∣∣p/2 ≤ ∣∣∣ ∫ t

s
(r − s)

|Stnk ,tnk+1
|2

|tnk+1 − tnk |2
dr
∣∣∣p/2

=
1

2p/2
|t− s|p

|Stnk ,tnk+1
|p

|tnk+1 − tnk |p
≤ |t− s|
|tnk+1 − tnk |

‖S‖pp−var,[tnk ,t
n
k+1]. (16)

Otherwise, let k0 be the smallest k such that tnk ∈ (s, t), and let k1 be the largest such k. We
decompose

Ãn(s, t) = Ãn(s, tnk0) + Ãn(tnk0 , t
n
k1) + Ãn(tnk1 , t) + S̃ns,tnk0

S̃ntnk0 ,t
n
k1

+ S̃ns,tnk1
S̃ntnk1 ,t

.

We get from (15) that

|Ãn(tnk0 , t
n
k1)|p/2 . |(Sn · S)tnk0 ,t

n
k1
− Stnk0Stnk0 ,tnk1 |

p/2 + (〈S〉ntnk0 ,tnk1 )p/2,

where 〈S〉n denotes the n-th approximation of the quadratic variation. By (12) and Lemma 4.16,
there exists a control function c̃ so that the right hand side is bounded from above by c̃(tnk0 , t

n
k1

).

Combining this with (16) and a simple estimate for the terms S̃ns,tnk0
S̃ntnk0 ,t

n
k1

and S̃ns,tnk1
S̃ntnk1 ,t

,

we deduce that ‖Ãn‖p/2−var . c̃(0, T ) + ‖S‖2p−var, and the proof is complete.

We are now ready to prove the main result of this section.

Theorem 4.18. Under Assumption (rie), let q > 0 be such that 2/p + 1/q > 1. Let
(F, F ′) ∈ C q

S be a controlled path such that F is continuous. Then the rough path integral∫
FdS which was defined in Theorem 4.9 is given by

∫ t

0
FsdSs = lim

n→∞

Nn−1∑
k=0

FtnkSt
n
k∧t,t

n
k+1∧t,

where the convergence is uniform in t.

Proof. For n ∈ N define F̃n as the linear interpolation of F between the points in πn. Then
(F̃n, F ′) is controlled by S̃n: Clearly ‖F̃n‖q−var ≤ ‖F‖q−var. The remainder R̃n

F̃n
of F̃n with

respect to S̃n is given by R̃n
F̃n

(s, t) = F̃ns,t−F ′sS̃ns,t for (s, t) ∈ ∆T . We need to show that R̃n
F̃n

has finite r-variation for 1/r = 1/p+ 1/q.
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If tnk ≤ s ≤ t ≤ tnk+1, we have

|R̃n
F̃n

(s, t)|r =
∣∣∣ t− s
tnk+1 − tnk

Ftnk ,t
n
k+1
− F ′s

t− s
tnk+1 − tnk

Stnk ,t
n
k+1

∣∣∣r
≤
∣∣∣ t− s
tnk+1 − tnk

∣∣∣r(‖RF ‖r−var,[tnk ,t
n
k+1] + ‖F ′‖r/qq−var,[tnk ,s]

‖S‖r/pp−var,[tnk ,t
n
k+1]

)
≤ |t− s|
|tnk+1 − tnk |

(
‖RF ‖r−var,[tnk ,t

n
k+1] + ‖F ′‖q−var,[tnk ,t

n
k+1] + ‖S‖p−var,[tnk ,t

n
k+1]

)
, (17)

where in the last step we used that 1/r = 1/p+ 1/q, and thus r/q + r/p = 1.
Otherwise, there exists k ∈ {1, . . . , Nn − 1} with tnk ∈ (s, t). Let k0 and k1 the smallest

and largest such k, respectively. Then

|R̃n
F̃n

(s, t)|r .r |R̃nF̃n(s, tnk0)|r+ |R̃n
F̃n

(tnk0 , t
n
k1)|r+ |R̃n

F̃n
(tnk1 , t)|

r+ |F ′s,tnk0St
n
k0
,tnk1
|r+ |F ′s,tnk1St

n
k1
,t|r.

Now R̃n
F̃n

(tnk0 , t
n
k1

) = RF (tnk0 , t
n
k1

), and therefore we can use (17), the assumption on RF , and
the fact that 1/r = 1/p+ 1/q (which is needed to treat the last two terms on the right hand
side), to obtain

‖R̃n
F̃n
‖r−var .r ‖RF ‖r−var + ‖F ′‖q−var + ‖S‖p−var.

On the other side, since F and RF are continuous, (F̃n, R̃n
F̃n

) converges uniformly to (F,RF ).
Now for continuous functions, uniform convergence with uniformly bounded p-variation im-
plies convergence in p′-variation for every p′ > p. See Exercise 2.8 in [FH14] for the case of
Hölder continuous functions.

Thus, using Lemma 4.17, we see that if p′ > p and q′ > q are such that 2/p′+1/q′ > 0, then
((S̃n, Ãn)n) converges in (p′, p′/2)-variation to (S,A◦), where A◦(s, t) = A(s, t) + 1/2〈S〉s,t.
Similarly, ((F̃n, F ′, R̃n

F̃n
)) converges in (q′, p′, r′)-variation to (F, F ′, RF ), where 1/r′ = 1/p′+

1/q′.
Proposition 4.11 now yields the uniform convergence of

∫
F̃ndS̃n to

∫
F ◦dS, by which we

denote the rough path integral of the controlled path (F, F ′) against the rough path (S,A◦).
But for every t ∈ [0, T ] we have

lim
n→∞

∫ t

0
F̃ns dS̃ns = lim

n→∞

∑
k:tnk+1≤t

1

2
(Ftnk + Ftnk+1

)Stnk ,t
n
k+1

= lim
n→∞

( ∑
k:tnk+1≤t

FtnkSt
n
k ,t

n
k+1

+
1

2

∑
k:tnk+1≤t

Ftnk ,t
n
k+1

Stnk ,t
n
k+1

)
.

Using that F is controlled by S, it is easy to see that the second term on the right hand side
converges uniformly to 1/2

∫ t
0 F
′
sd〈S〉s, t ∈ [0, T ]. Thus, the Riemann sums

∑
k FtnkSt

n
k∧·,t

n
k+1∧·

converge uniformly to
∫
F ◦ dS − 1/2

∫
F ′d〈S〉, and from the representation of the rough

path integral as limit of compensated Riemann sums (6), it is easy to see that
∫
F ◦ dS =∫

FdS + 1/2
∫
F ′d〈S〉, which completes the proof.

Theorem 4.18 is reminiscent of Föllmer’s pathwise Itô integral [Föl81]. Föllmer assumes
that the quadratic variation 〈S〉 of S exists along a given sequence of partitions and is con-
tinuous, and uses this to prove an Itô formula for S: if F ∈ C2, then

F (St) = F (S0) +

∫ t

0
∇F (Ss)dSs +

1

2

∫ t

0
D2F (Ss)d〈S〉s, (18)
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where the integral
∫ ·

0∇F (Ss)dSs is given as limit of Riemann sums along that same sequence
of partitions.

Friz and Hairer [FH14] observe that if for p ∈ (2, 3) the function S is of finite p-variation
and 〈S〉 is an arbitrary continuous function of finite p/2-variation, then setting

Sym(A)(s, t) :=
1

2
(Sis,tS

j
s,t + 〈S〉s,t)

one obtains a “reduced rough path” (S,Sym(A)). They continue to show that if F is controlled
by S with symmetric derivative F ′, then it is possible to define the rough path integral

∫
FdS.

This is not surprising since then we have F ′sAs,t = F ′sSym(A)s,t for the compensator term in
the definition of the rough path integral. They also derive an Itô formula for reduced rough
paths, which takes the same form as (18), except that now

∫
∇F (S)dS is a rough path integral

(and therefore defined as limit of compensated Riemann sums).
So both the assumption and the result of [FH14] are slightly different from the ones

in [Föl81], and while it seems intuitively clear, it is still not shown rigorously that Föllmer’s
pathwise Itô integral is a special case of the rough path integral. We will now show that
Föllmer’s result is a special case of Theorem 4.18. For that purpose we only need to prove
that Föllmer’s condition on the convergence of the quadratic variation is a special case of the
assumption in Theorem 4.18, at least as long as we only need the symmetric part of the area.

Definition 4.19. Let f ∈ C([0, T ],R) and let πn = {0 = tn0 < tn1 < · · · < tnNn = T}, n ∈ N
be such that sup{|ftnk ,tnk+1

| : k = 0, . . . , Nn − 1} converges to 0. We say that f has quadratic
variation along (πn) in the sense of Föllmer if the sequence of discrete measures (µn) on
([0, T ],B[0, T ]), defined by

µn :=

Nn−1∑
k=0

|ftnk ,tnk+1
|2δtnk , (19)

converges weakly to a non-atomic measure µ. We write [f ]t for the “distribution function” of µ
(in general µ will not be a probability measure). The function f = (f1, ..., fd) ∈ C([0, T ],Rd)
has quadratic variation along (πn) in the sense of Föllmer if this holds for all f i and f i + f j ,
1 ≤ i, j ≤ d. In this case, we set

[f i, f j ]t :=
1

2
([f i + f j ]t − [f i]t − [f j ]t), t ∈ [0, T ].

Lemma 4.20 (see also [Vov11], Proposition 6.1). Let p ∈ (2, 3), and let S = (S1, ..., Sd) ∈
C([0, T ],Rd) have finite p-variation. Let πn = {0 = tn0 < tn1 < · · · < tnNn = T}, n ∈ N, be a
sequence of partitions such that sup{|Stnk ,tnk+1

| : k = 0, . . . , Nn − 1} converges to 0. Then the
following conditions are equivalent:

1. The function S has quadratic variation along (πn) in the sense of Föllmer.

2. For all 1 ≤ i, j ≤ d, the discrete quadratic variation

〈Si, Sj〉nt :=

Nn−1∑
k=0

Sitnk∧t,t
n
k+1∧t

Sjtnk∧t,t
n
k+1∧t

converges uniformly in C([0, T ],R) to a limit 〈Si, Sj〉.
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3. For Sn,i :=
∑Nn−1

k=0 Sitnk
1[tnk ,t

n
k+1), i ∈ {1, . . . , d}, n ∈ N, the Riemann sums (Sn,i · Sj) +

(Sn,j · Si) converge uniformly to a limit
∫
SidSj +

∫
SjdSi. Moreover, the symmetric

part of the approximate area,

Sym(An)i,j(s, t) =
1

2

(
(Sn,i·Sj)s,t+(Sn,j ·Si)s,t−SisS

j
s,t−SjsSis,t

)
, 1 ≤ i, j ≤ d, (s, t) ∈ ∆T ,

has uniformly bounded p/2-variation along (πn), in the sense of (12).

If these conditions hold, then [Si, Sj ] = 〈Si, Sj〉 for all 1 ≤ i, j ≤ d.

Proof. Assume 1. and note that

Sitnk∧t,t
n
k+1∧t

Sjtnk∧t,t
n
k+1∧t

=
1

2

(
((Si + Sj)tnk∧t,t

n
k+1∧t)

2 − (Sitnk∧t,t
n
k+1∧t

)2 − (Sjtnk∧t,t
n
k+1∧t

)2
)
.

Thus, the uniform convergence of 〈Si, Sj〉n and the fact that 〈Si, Sj〉 = [Si, Sj ] follow once we
show that Föllmer’s weak convergence of the measures (19) implies the uniform convergence of
their distribution functions. But since the limiting distribution is continuous by assumption,
this is a standard result.

Next, assume 2. The uniform convergence of the Riemann sums (Sn,i · Sj) + (Sn,j · Si) is
shown as in Lemma 4.16. To see that Sym(An) has uniformly bounded p/2-variation along
(πn), note that for 0 ≤ k ≤ ` ≤ Nn and 1 ≤ i, j ≤ d we have

|(Sn,i · Sj)tnk ,tn` + (Sn,j · Si)tnk ,tn` − S
i
sS

j
tnk ,t

n
`
− SjsSitnk ,tn` |

p/2 = |Sitnk ,tn` S
j
tnk ,t

n
`
− 〈Si, Sj〉ntnk ,tn` |

p/2

≤ ‖S‖p−var,[tnk ,t
n
` ] + ‖〈Si, Sj〉n‖1−var,[tnk ,t

n
` ].

That ‖〈Si, Sj〉n‖1−var is uniformly bounded in n is shown in Lemma 4.16.
That 3. implies 1. is also shown in Lemma 4.16.

Remark 4.21. With Theorem 4.18 we can only derive an Itô formula for F ∈ C2+ε, since
we are only able to integrate ∇F (S) if ∇F ∈ C1+ε. But this only seems to be due to the fact
that our analysis is not sharp. We expect that typical price paths have an associated rough
path of finite 2-variation, up to logarithmic corrections. For such rough paths, the integral
extends to integrands F ∈ C1, see Chapter 10.5 of [FV10]. For typical price paths (but not
for the area), it is shown in [Vov12], Section 4.3, that they are of finite 2-variation up to
logarithmic corrections.

A Pathwise Hoeffding inequality

In the construction of the pathwise Itô integral for typical price processes we needed the
following result, a pathwise formulation of the Hoeffding inequality which is due to Vovk.
Here we present a slightly adapted version.

Lemma A.1 ([Vov12], Theorem A.1). Let (τn)n∈N be a strictly increasing sequence of stopping
times with τ0 = 0, such that for every ω ∈ Ω we have τn(ω) = ∞ for all but finitely many
n ∈ N. Let for n ∈ N the function hn : Ω → Rd be Fτn-measurable, and suppose that there
exists a Fτn-measurable bounded function bn : Ω→ R, such that

sup
t∈[0,T ]

|hn(ω)Sτn∧t,τn+1∧t(ω)| ≤ bn(ω) (20)
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for all ω ∈ Ω. Then for every λ ∈ R there exists a simple strategy Hλ ∈ H1 such that

1 + (Hλ · S)t ≥ exp

(
λ
∞∑
n=0

hnSτn∧t,τn+1∧t −
λ2

2

Nt∑
n=0

b2n

)
for all t ∈ [0, T ], where Nt := max{n ∈ N : τn ≤ t}.

Proof. Let λ ∈ R. The proof is based on the following deterministic inequality: if (20) is
satisfied, then for all ω ∈ Ω and all t ∈ [0, T ] we have that

exp

(
λhn(ω)Sτn∧t,τn+1∧t(ω)− λ2

2
b2n(ω)

)
− 1

≤ exp

(
−λ

2

2
b2n(ω)

)
eλbn(ω) − e−λbn(ω)

2bn(ω)
hn(ω)Sτn∧t,τn+1∧t(ω)

=: fn(ω)Sτn∧t,τn+1∧t(ω). (21)

This inequality is shown in (A.1) of [Vov12]. We define Hλ
t :=

∑
n Fn1(τn,τn+1](t), with Fn

that have to be specified. We choose F0 := f0, which is bounded and Fτ0-measurable, and on
[0, τ1] we obtain

1 + (Hλ · S)t ≥ exp

(
λh0Sτn∧t,τn+1∧t −

λ2

2
b20

)
.

Observe also that 1 + (Hλ · S)τ1 = 1 + f0Sτ0,τ1 is bounded, because by assumption h0Sτ0,τ1 is
bounded by the bounded random variable b0.

Assume now that Fk has been defined for k = 0, . . . ,m− 1, that

1 + (Hλ · S)t ≥ exp

(
λ
∞∑
n=0

hnSτn∧t,τn+1∧t −
λ2

2

Nt∑
n=0

b2n

)
for all t ∈ [0, τm], and that 1 + (Hλ · S)τm is bounded. We define Fm := (1 + (Hλ · S)τm)fm,
which is Fτm-measurable and bounded. From (21) we obtain for t ∈ [τm, τm+1]

1 + (Hλ · S)t = 1 + (Hλ · S)τm + (1 + (Hλ · S)τm)fmSτm∧t,τm+1∧t

≥ (1 + (Hλ · S)τm) exp

(
λhmSτm∧t,τm+1∧t −

λ2

2
b2m

)
≥ exp

(
λ

∞∑
n=0

hnSτn∧t,τn+1∧t −
λ2

2

Nt∑
n=0

b2n

)
,

where the last step follows from the induction hypothesis. From the first line of the last
equation we also obtain that 1 + (Hλ · S)τm+1 is bounded because fmSτm,τm+1 is bounded for
the same reason that f0Sτ0,τ1 is bounded.

B Davie’s criterion

It was already observed by Davie [Dav07] that in certain situations the rough path integral
can be constructed as limit of Riemann sums and not just compensated Riemann sums. Davie
shows that under suitable conditions, the usual Euler scheme (without “area compensation”)
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converges to the solution of a given rough differential equation. But from there it is easily
deduced that then also the rough path integral is given as limit of Riemann sums. Here we
show that Davie’s criterion implies our assumption (rie).

Let p ∈ (2, 3) and let S = (S,A) be a 1/p-Hölder continuous rough path, that is |Ss,t| .
|t − s|1/p and |A(s, t)| . |t − s|2/p. Write α := 1/p and let β ∈ (1 − α, 2α). Davie assumes
that there exists C > 0 such that the area process A satisfies∣∣∣∣ `−1∑

j=k

A(jh, (j + 1)h)

∣∣∣∣ ≤ C(`− k)βh2α, (22)

whenever 0 < k < ` are integers and h > 0 such that `h ≤ T . Under these conditions,
Theorem 7.1 of [Dav07] implies that for F ∈ Cγ with γ > p and for tnk = kT/n, n, k ∈ N, the
Riemann sums

n−1∑
k=0

F (Stnk )Stnk∧t,t
n
k+1∧t, t ∈ [0, T ],

converge uniformly to the rough path integral. But it can be easily deduced from (22) that
the area process A is given as limit of non-anticipating Riemann sums along (tn)n. Indeed,
letting h = T/n,∣∣∣∣ ∫ t

0
SsdSs −

n−1∑
k=0

StnkSt
n
k∧t,t

n
k+1∧t

∣∣∣∣ =

∣∣∣∣ n−1∑
k=0

(∫ tnk+1∧t

tnk∧t
SsdSs − Stnk∧tStnk∧t,tnk+1∧t

)∣∣∣∣
=

∣∣∣∣ n−1∑
k=0

A(tnk ∧ t, tnk+1 ∧ t)
∣∣∣∣ ≤ ∣∣∣∣ bt/hc−1∑

k=0

Akh,(k+1)h

∣∣∣∣+ |A(bt/hc, t)|

. Cbt/hcβh2α + h2α‖A‖2α . Cth2α−β + h2α‖A‖2α.

Since β < 2α, the right hand side converges to 0 as n goes to ∞ (and thus h goes to 0).
Futhermore, (22) implies the “uniformly bounded p/2-variation” condition (12):∣∣∣∣(Sn · S)tnk ,t

n
`
− StnkStnk ,tn`

∣∣∣∣ ≤ ∣∣∣∣ ∫ tn`

tnk

SsdSs − StnkStnk ,tn`

∣∣∣∣+

∣∣∣∣ `−1∑
j=k

(∫ tnj+1

tnj

SsdSs − Stnj Stnj ,tnj+1

)∣∣∣∣
≤ ‖A‖2α|tn` − tnk |2α +

∣∣∣∣ `−1∑
j=k

Atnk ,t
n
k+1

∣∣∣∣ ≤ ‖A‖2α|tn` − tnk |2α + C(`− k)βh2α

≤ ‖A‖2α|tn` − tnk |2α + C|tn` − tnk |2α.
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driven by Lévy processes, Rev. Mat. Iberoamericana 17 (2001), no. 2, 295–329.
MR 1891200 (2003h:60102)

[You36] Laurence C. Young, An inequality of the Hölder type, connected with Stieltjes
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