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Abstract

Following a hedging based approach to model free financial mathematics, we prove that
it is possible to make an arbitrarily large profit by investing in those one-dimensional paths
which do not possess local times. The local time is constructed from discrete approximations,
and it is shown that it is of finite p-variation for all p > 2. Additionally, we provide various
generalizations of Föllmer’s pathwise Itô formula.
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1 Introduction

In this paper, we use Vovk’s [Vov12] game-theoretic approach to mathematical finance to con-
struct local times for “typical price paths”. Using these local times, we derive pathwise change of
variable formulas in the spirit of Tanaka’s formula. In particular, we can integrate f(S) against
a typical price path S for any f of finite q-variation for some q < 2.

This paper is a continuation of [PP13], where we used Vovk’s approach to show that in
a multidimensional setting every typical price path has a natural Itô rough path in the sense
of Lyons [Lyo98] associated to it. Based on this, we set up a pathwise theory of integration
which was motivated by possible applications in model free financial mathematics. We also
showed that our integrals may be obtained as limit of Riemann sums, which allows for a nice
financial interpretation as profit obtained by investing. With the techniques of [PP13] we are
able to treat integrands that are not necessarily functions of the integrator. But if we want to
construct

∫
f(S) dS, then we need f ∈ C1+ε. The aim of the current paper is to show that for

one-dimensional processes this assumption can be greatly relaxed.
Our motivation comes amongst others from [DOR13], where pathwise local times and a

pathwise generalized Itô formula are used to derive arbitrage free prices for weighted variance
swaps in a model free setting. The techniques of [DOR13] allow to handle integrands in the
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Sobolev space H1. Here we extend this to not necessarily continuous integrands of finite q-
variation for some q < 2. Other motivations can be found in the survey paper [FS13] emphasizing
possible applications of pathwise integration for robust hedging or in [CJ90], where local times
appear naturally in a financial context and are used to resolve the so-called “stop-loss start-gain
paradox”.

We refer to [PP13] for a more detailed discussion of the need for pathwise stochastic integrals
in model free finance.

Plan of the paper

In Section 2 we present various extensions of Föllmer’s pathwise Itô formula under suitable
assumptions on the local time. In Section 3 we show that typical price paths possess local times
which satisfy all the assumptions of Section 2. Appendix A contains an alternative proof of our
main result, based on Vovk’s pathwise Dambis Dubins-Schwarz theorem.

2 Pathwise Tanaka formula

A first non-probabilistic approach to stochastic calculus was introduced by Föllmer in [Föl81],
where an Itô formula was developed for a class of real-valued functions with quadratic variation.
This builds our starting point for a pathwise version of Tanaka’s formula and a generalized Itô
formula, respectively. Let us start by recalling Föllmer’s definition of quadratic variation.
A partition π is an increasing sequence 0 = t0 < t1 < .... without accumulation points, possibly
taking the value ∞. For T > 0 we denote by π[0, T ] := {tj : tj ∈ [0, T ]} ∪ {T} the partition π
restricted to [0, T ], and if S : [0,∞)→ R is a continuous function we write

m(S, π[0, T ]) := max
tj∈π[0,T ]

|S(tj)− S(tj−1)|

for the mesh size of π along S on the interval [0, T ]. We denote by B([0,∞)) the Borel σ-algebra
on [0,∞).

Definition 2.1. Let (πn) be a sequence of partitions and let S ∈ C([0,∞),R) be such that
limn→∞m(S, πn[0, T ]) = 0 for all T > 0. We say that S has quadratic variation along (πn) if
the sequence of measures

µn :=
∑
tj∈πn

(S(tj+1 ∧ t)− S(tj ∧ t))2δtj , n ∈ N,

on ([0,∞),B([0,∞))) converges vaguely to a nonnegative Radon measure µ, where δt denotes
the Dirac measure at t ∈ [0,∞). We write 〈S〉t := µ([0, t]) for the “distribution function” of µ
and Q(πn) for the set of all continuous functions having quadratic variation along (πn).

We stress the fact that Q(πn) depends on the sequence (πn). For a given path S, the most
natural sequence of partitions is maybe given by the dyadic Lebesgue partition generated by
S: For each n ∈ N denote the set of dyadic points by Dn := {k2−n : k ∈ Z} and define the
sequence

tn0 := 0, tnk+1 := inf{t ≥ tnk : S(t) ∈ Dn \ S(tnk)}, k ∈ N.

We set πn := {0 = tn0 < tn1 < . . . } and write S ∈ Q if S ∈ Q(πn). Note that S may have
constant parts, so that the mesh size of πn does not necessarily converge to zero, but we always
have m(S, πn[0, T ]) ≤ 2−n.
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For k ∈ N let us write Ck = Ck(R,R) for the space of k times continuously differentiable
functions, and Ckb = Ckb (R,R) for the space of functions in Ck that are bounded with bounded
derivatives, equipped with the usual norm ‖ · ‖Ck

b
.

Föllmer provided a pathwise version of Itô’s formula for f ∈ C2 and S ∈ Q(πn).

Theorem 2.2 ([Föl81]). Let (πn) be a sequence of partitions and let S ∈ Q(πn) and f ∈ C2.
Then the pathwise Itô formula

f(S(t)) = f(S(0)) +

∫ t

0
f ′(S(s)) dS(s) +

1

2

∫ t

0
f ′′(S(s)) d〈S〉(s)

holds with∫ t

0
f ′(S(s)) dS(s) := lim

n→∞

∑
tj∈πn

f ′(S(tj))(S(tj+1 ∧ t)− S(tj ∧ t)), t ∈ [0,∞), (1)

where the series in (1) is absolutely convergent. In particular, the integral
∫ ·
0 g(S(s)) dS(s) is

defined for all g ∈ C1, and for all T > 0 the map C1
b 3 g 7→

∫ ·
0 g(S(s)) dS(s) ∈ C([0, T ],R)

defines a bounded linear operator and we have∣∣∣ ∫ t

0
g(Ss) dSs

∣∣∣ ≤ |St − S0| × ‖g‖L∞(supp(S|[0,t])) +
1

2
〈S〉t‖g′‖L∞(supp(S|[0,t]))

for all t ≥ 0, where supp(S|[0,t]]) denotes the support of S restricted to the interval [0, t].

Föllmer actually requires the mesh size maxtj∈πn,tj≤T |tj − tj−1| to converge to zero for all
T > 0, but he also considers càdlàg functions S. For continuous S, the proof only uses that
m(S, πn[0, T ]) converges to zero.

The continuity of the Itô integral is among its most important properties: if we approximate
the integrand in a suitable topology, then the approximate integrals converge in probability to
the correct limit. This is absolutely crucial in applications, for example when solving stochastic
optimization problems or SDEs. Here we are arguing for one fixed path, so the statement in
Theorem 2.2 is a natural formulation of the continuity properties in our context.

In the theory of continuous semimartingales, Itô’s formula can be extended further to a gen-
eralized Itô rule for convex functions, see for instance Theorem 6.22 in [KS88]. In the spirit of
Föllmer, a generalized Itô rule for functions in suitable Sobolev spaces was derived in the un-
published diploma thesis of Wuermli [Wue80]. We briefly recall here the idea for this pathwise
version as presented in [Wue80] or [DOR13].

Let f ′ be right-continuous and of locally bounded variation, and set f(x) :=
∫
(0,x] f

′(y) dy

for x ≥ 0 and f(x) := −
∫
(x,0] f

′(y) dy for x < 0. Then we get for b ≥ a that

f(b)− f(a) = f ′(a)(b− a) +

∫
(a,b]

(f ′(x)− f ′(a)) dx = f ′(a)(b− a) +

∫
(a,b]

(b− t) df ′(t),

where we used integration by parts, and where the integral on the right hand side is to be
understood in the Riemann-Stieltjes sense. For b < a, we get f(b) − f(a) = f ′(a)(b − a) +∫
(b,a](t− b) df ′(t). Therefore, for any S ∈ C([0,∞],R) and any partition π we have

f(S(t))− f(S(0)) =
∑
tj∈π

f ′(S(tj ∧ t))(S(tj+1 ∧ t)− S(tj ∧ t))

+

∫ ∞
−∞

∑
tj∈π

(
1LS(tj∧t),S(tj+1∧t)K(u)|S(tj+1 ∧ t)− u|

)
df ′(u), (2)
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where we used the notation

Lu, vK :=

{
(u, v], if u ≤ v,
(v, u], if u > v,

for u, v ∈ R. Let us define a discrete pathwise local time by setting

Lπt (S, u) :=
∑
tj∈π

1LS(tj∧t),S(tj+1∧t)K(u)|S(tj+1 ∧ t)− u|, u ∈ R,

and note that Lπt (S, u) = 0 for u /∈ [infs∈[0,t] S(s), sups∈[0,t] S(s)]. In the following we may omit
the S and just write Lπt (u).

Definition 2.3. Let (πn) be a sequence of partitions and let S ∈ C([0,∞),R) be such that
limn→∞m(S, πn[0, T ]) = 0 for all T > 0. A function L(S) : [0,∞) × R → R is called L2-local
time of S along (πn) if for all t ∈ [0,∞) the discrete pathwise local times Lπ

n

t (S, ·) converge
weakly in L2(du) to Lt(S, ·) as n→∞. We write LL2(πn) for the set of all continuous functions
having an L2-local time along (πn). If (πn) is the dyadic Lebesgue partition generated by
S ∈ LL2(πn), then we also write S ∈ LL2 .

Using this definition of the local time, Wuermli showed the following theorem, where we
denote by Hk = Hk(R,R) the Sobolev space of functions which are k times weakly differentiable
in L2(R,R),

Theorem 2.4 ([Wue80], Satz 9 or [DOR13], Proposition B.4). Let (πn) be a sequence of parti-
tions and let S ∈ LL2(πn). Then S ∈ Q(πn), and for every f ∈ H2 the generalized pathwise Itô
formula

f(S(t)) = f(S(0)) +

∫ t

0
f ′(S(s)) dS(s) +

∫ ∞
−∞

f ′′(u)Lt(S, u) du

holds with∫ t

0
f ′(S(s)) dS(s) := lim

n→∞

∑
tj∈πn

f ′(S(tj))(S(tj+1 ∧ t)− S(tj ∧ t)), t ∈ [0,∞).

(Note that f ′ is continuous for f ∈ H2). In particular, the integral
∫ ·
0 g(S(s)) dS(s) is defined

for all g ∈ H1, and for all T > 0, the map H1 3 g 7→
∫ ·
0 g(S(s)) dS(s) ∈ C([0, T ],R) defines a

bounded linear operator. Moreover, for A ∈ B(R) we have the occupation density formula∫
A
Lt(u) du =

1

2

∫ t

0
1A(S(s)) d〈S〉(s), t ∈ [0,∞).

In other words, for all t ≥ 0 the occupation measure of S on [0, t] is absolutely continuous with
respect to the Lebesgue measure, with density 2Lt.

Sketch of proof. Formula (2) in combination with the continuity of f and S yields

f(S(t))− f(S(0)) =
∑
tj∈πn

f ′(S(tj))(S(tj+1 ∧ t)− S(tj ∧ t))

+

∫ ∞
−∞

∑
tj∈πn

(
1LS(tj∧t),S(tj+1∧t)K(u)|S(tj+1 ∧ t)− u|

)
f ′′(u) du.

By assumption, the second term on the right hand side converges to
∫∞
−∞ f

′′(u)Lt(S, u) du as n
tends to ∞, so that also the Riemann sums have to converge.

The occupation density formula follows by approximating 1A with continuous functions.
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As already observed by Bertoin [Ber87], the key point of this extension of Föllmer’s pathwise
stochastic integral is again that it is given by a continuous linear operator on H1. Since Lt(S)
is compactly supported for all t ≥ 0, the same arguments also work for functions f that are
locally in H2, i.e. such that f |(a,b) ∈ H2((a, b),R) for all −∞ < a < b <∞.

As we make stronger assumptions on the local times L(S), it is natural to expect that we
can extend Wuermli’s generalized Itô formula to larger spaces of functions.

Definition 2.5. Let (πn) be a sequence of partitions and let S ∈ LL2(πn). We say that S has a
continuous local time along (πn) if for all t ∈ [0,∞) the discrete pathwise local times Lπ

n

t (S, ·)
converge uniformly to a continuous limit Lt(S, ·) as n → ∞ and if (t, u) 7→ Lt(S, u) is jointly
continuous. We write Lc(πn) for the set of all S having a continuous local time along (πn). If
(πn) is the dyadic Lebesgue partition generated by S ∈ Lc(πn), then we also write S ∈ Lc.

In the following theorem, BV = BV(R,R) denotes the space of right-continuous bounded
variation functions, equipped with the total variation norm.

Theorem 2.6. Let (πn) be a sequence of partitions and let S ∈ Lc(πn). Let f : R → R be ab-
solutely continuous with right-continuous Radon-Nikodym derivative f ′ of locally bounded vari-
ation. Then we have the generalized change of variable formula

f(S(t)) = f(S(0)) +

∫ t

0
f ′(S(u)) dS(u) +

∫ ∞
−∞

Lt(u) df ′(u)

for all t ∈ [0,∞), where∫ t

0
f ′(S(s)) dS(s) := lim

n→∞

∑
tj∈πn

f ′(S(tj))(S(tj+1 ∧ t)− S(tj ∧ t)), t ∈ [0,∞).

In particular, the integral
∫ ·
0 g(Ss) dSs is defined for all g of locally bounded variation, and for

all T > 0 the map BV 3 g 7→
∫ ·
0 g(S(s)) dS(s) ∈ C([0, T ],R) defines a bounded linear operator.

Proof. From (2) we get

f(S(t))− f(S(0)) =
∑
tj∈πn

f ′(S(tj))(S(tj+1 ∧ t)− S(tj ∧ t)) +

∫ ∞
−∞

Lπ
n

t (u) df ′(u)

)

for all t ≥ 0. Since Lπ
n

t converges uniformly to Lt, our claim immediately follows.

Observe that f satisfies the assumptions of Theorem 2.6 if and only if it is the difference
of two convex functions. As an immediate consequence of Theorem 2.6 we obtain a pathwise
version of the classical Tanaka formula.

Corollary 2.7. Let (πn) be a sequence of partitions and let S ∈ Lc(πn). The pathwise Tanaka-
Meyer formula

Lt(u) = (S(t)− u)− − (S(0)− u)− +

∫ t

0
1(−∞,u)(S(s)) dS(s)

is valid for all (t, u) ∈ [0,∞) × R, with the notation (· − u)− := max{0, u − ·}. The analogous
formulas for 1[u,∞)(·) and sgn(· − u) hold as well.
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At this point we see a picture emerge: the more regularity the local time has, the larger the
space of functions is to which we can extend our pathwise stochastic integral. Indeed, the previ-
ous examples are all based on duality between the derivative of the integrand and the occupation
measure. In the classical Föllmer-Itô case and for fixed time T ≥ 0, the occupation measure is
just a finite measure on a compact interval [a, b], and certainly the continuous functions belong
to the dual space of the finite measures on [a, b]. In the Wuermli setting, the occupation mea-
sure has a density in L2 and therefore defines a bounded functional on L2. If the local time is
continuous, then we can even integrate Radon measures against it.

So if we can quantify the continuity of the local time, then the dual space further increases
and we can extend the pathwise Itô formula to a bigger class of functions. To this end we
introduce for a given sequence of partitions (πn) and p ≥ 1 the set Lc,p(πn) ⊆ Lc(πn) consisting
of those S ∈ Lc(πn) for which the discrete local times (Lπ

n

t ) have uniformly bounded p-variation,
uniformly in t ∈ [0, T ] for all T > 0, i.e. for which

sup
n∈N
‖Lπn‖CTVp := sup

n∈N
sup
t∈[0,T ]

‖Lπn

t (·)‖p−var <∞

for all T > 0, where we write for any f : R→ R

‖f‖p−var := sup

{( n∑
k=1

|f(uk)− f(uk−1)|p
)1/p

: −∞ < u0 < ... < un <∞, n ∈ N
}
.

We also write Vp for the space of right-continuous functions of finite p-variation, equipped with
the maximum of the p-variation seminorm and the supremum norm.
For S ∈ Lc,p(πn) and using the Young integral it is possible to extend the pathwise Tanaka
formula to an even larger class of integrands, allowing us to integrate

∫
g(S) dS provided that

g has finite q-variation for some q with 1/p+ 1/q > 1. This is similar in spirit to the Bouleau-
Yor [BY81] extension of the classical Tanaka formula. Such an extension was previously derived
by Feng and Zhao [FZ06], Theorem 2.2. But Feng and Zhao stay in a semimartingale setting,
and they interpret the stochastic integral appearing in (4) as a usual Itô integral. Here we obtain
a pathwise integral, which is given very naturally as limit of Riemann sums.

Let us briefly recall the main concepts of Young integration. In [You36], Young showed
that the integral

∫ t
0 f dg of two functions f and g is well defined as a limit of Riemann sums

whenever f and g have finite p- respectively q-variation with 1/p + 1/q > 1 and they have no
common points of discontinuity. Of course, it is also defined whenever the Riemann-Stieltjes
integral

∫ t
0 f dg exists, and in that case the two are equal. Moreover, there is C(p, q) > 0 such

that whenever the Young integral exists, we have∣∣∣ ∫ b

a
f(s) dg(s)

∣∣∣ ≤ C(p, q)‖f‖p−var,[a,b]‖g‖q−var,[a,b] (3)

for all a < b, where we wrote ‖f‖p−var,[a,b] := ‖f |[a,b]‖p−var and similarly for g. We therefore
easily obtain the following theorem.

Theorem 2.8 (see also [FZ06], Theorem 2.2). Let p, q ≥ 1 be such that 1
p + 1

q > 1. Let (πn) be
a sequence of partitions and let S ∈ Lc,p(πn). Let f : R→ R be absolutely continuous with right-
continuous Radon-Nikodym derivative f ′ of locally finite q-variation. Then for all t ∈ [0,∞) the
generalized change of variable formula

f(S(t)) = f(S(0)) +

∫ t

0
f ′(S(s)) dS(s) +

∫ ∞
−∞

Lt(u) df ′(u) (4)

6



holds, where df ′(u) denotes Young integration and where∫ t

0
f ′(S(s)) dS(s) := lim

n→∞

∑
tj∈πn

f ′(S(tj))(S(tj+1 ∧ t)− S(tj ∧ t)), t ∈ [0,∞).

In particular, the integral
∫ ·
0 g(Ss) dSs is defined for all right-continuous g of locally finite q-

variation, and for all T > 0 the map Vq 3 g 7→
∫ ·
0 g(S(s)) dS(s) ∈ C([0, T ],R) defines a bounded

linear operator.

Proof. Observe that for finite n, formula (2) holds for Lπ
n

t and f ′, because while f ′ might
no longer be of bounded variation, the discrete local time Lπ

n

t is. Since furthermore Lπ
n

t is
piecewise smooth, there are no problems with possible common discontinuities of Lπ

n

t and f ′,
and the integral ∫ ∞

−∞
Lπ

n

t (u) df ′(u)

is given as the limit of Riemann sums. In other words, the Young integral
∫∞
−∞ L

πn

t (u) df ′(u)

exists. But then it must satisfy the bound (3). Since the p-variation of (Lπ
n

t ) is uniformly
bounded, and the sequence converges uniformly to Lt, it is easy to see that it must converge in
p′-variation for all p′ < p. Choosing such a p′ with 1/q + 1/p′ > 1 and combining the linearity
of the Young integral with the bound (3), the result follows.

Remark 2.9. Theorem 2.2 in [FZ06] states (4) under the slightly weaker assumption that
f : R → R is left-continuous and locally bounded with left-continuous and locally bounded left
derivative D−f . But absolute continuity of f is clearly necessary: Consider the path S(t) ≡ t
for t ∈ [0,∞), for which 〈S〉 ≡ 0 and thus L ≡ 0. In this case equation (4) would read as

f(t) = f(0) +

∫ t

0
D−f(u) du, t ∈ [0,∞),

a contradiction if f is not absolutely continuous.

In the following, we will show that any typical price path which might model an asset price
trajectory must be in Lc,p.

3 Local times for model free finance

3.1 Super-hedging and outer measure

In a recent series of papers [Vov11a, Vov11b, Vov12], Vovk introduced a hedging based, model
free approach to mathematical finance. Roughly speaking, Vovk considers the set of real-valued
continuous functions as price paths and introduces an outer measure on this set which is given
by the cheapest super-hedging price. A property (P) is said to hold for “typical price paths” if
it is possible to make an arbitrarily large profit by investing in the paths where (P) is violated.
We will see that in Vovk’s framework it is possible to construct continuous local times for typical
price paths, which leads to an axiomatic justification for the use of our pathwise generalized Itô
formulas from Section 2 in model free finance.

More precisely, we consider the (sample) space Ω = C([0,∞),R) of all continuous functions
ω : [0,∞) → R. The coordinate process on Ω is denoted by St(ω) := ω(t). For t ∈ [0,∞) we
define Ft := σ(Ss : s ≤ t) and we set F :=

∨
t≥0Ft. Stopping times τ and the associated

σ-algebras Fτ are defined as usual.
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A process H : Ω × [0,∞) → R is called a simple strategy if there exist stopping times 0 =
τ0(ω) < τ1(ω) < . . . such that for every ω ∈ Ω we have τn(ω) =∞ for all but finitely many n, and
Fτn-measurable bounded functions Fn : Ω→ R such that Ht(ω) =

∑
n≥0 Fn(ω)1(τn(ω),τn+1(ω)](t).

In that case the integral

(H · S)t(ω) =
∞∑
n=0

Fn(ω)[Sτn+1(ω)∧t − Sτn(ω)∧t]

is well defined for every ω ∈ Ω and every t ∈ [0,∞). Moreover, (H ·S) is asymptotically constant
so that (Hn · S)∞(ω) := limt→∞(H · S)t(ω) exists for all ω ∈ Ω.

For λ > 0 a simple strategy H is called λ-admissible if (H · S)t(ω) ≥ −λ for all t ∈ [0,∞)
and all ω ∈ Ω. The set of λ-admissible simple strategies is denoted by Hλ.

Definition 3.1. The outer measure of A ⊆ Ω is defined as the cheapest superhedging price,

P (A) := inf
{
λ > 0 : ∃ (Hn)n∈N ⊆ Hλ s.t. lim inf

n→∞
(λ+ (Hn · S)∞(ω)) ≥ 1A(ω) ∀ω ∈ Ω

}
.

Of course, it would be more natural to minimize over simple trading strategies rather than over
the limit inferior along sequences of simple strategies. But then P would not be countably
subadditive, and this would make it very difficult to work with. Let us just remark that in
the classical definition of superhedging prices in semimartingale models we work with general
admissible strategies, and the Itô integral against a general strategy is given as limit of integrals
against simple strategies. So in that sense our definition is analogous to the classical one.

A set of paths A ⊆ Ω is called a null set if it has outer measure zero. A property (P) holds
for typical price paths if the set A where (P) is violated is a null set.

The most important property of P is the following arbitrage interpretation for null sets.

Lemma 3.2 (Lemma 4 of [PP13]). A set A ⊆ Ω is a null set if and only if there exists a
sequence of 1-admissible simple strategies (Hn)n∈N ⊆ H1, such that

lim inf
n→∞

(1 + (Hn · S)∞) ≥ ∞ · 1A(ω),

where we set ∞ · 0 = 0.

In other words, a null set is essentially a model free arbitrage opportunity of the first kind,
and to only work with typical price paths is analogous to only considering models which satisfy
(NA1) (no arbitrage opportunities of the first kind). The notion (NA1) has raised a lot of interest
in recent years since it is the minimal conditions which has to be satisfied by any reasonable
asset price model; see for example [KK07, Ruf13, IP11]. If P is a probability measure on (Ω,F),
we say that S satisfies (NA1) under P if the set W∞1 := {1 +

∫∞
0 Hs dSs : H ∈ H1} is bounded

in probability, that is if limn→∞ supX∈W∞1 P(X ≥ n) = 0.

In the next proposition we collect further properties of P . For proofs (in finite time)
see [PP13].

Proposition 3.3. 1. P is an outer measure with P (Ω) = 1, i.e. P is nondecreasing, count-
ably subadditive, and P (∅) = 0.

2. An equivalent definition of P is

P (A) = inf
{
λ > 0 : ∃ (Hn)n∈N ⊆ Hλ s.t.

lim inf
n→∞

sup
t∈[0,∞)

(λ+ (Hn · S)t(ω)) ≥ 1A(ω) ∀ω ∈ Ω
}
, A ⊆ Ω.
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3. Let P be a probability measure on (Ω,F) such that the coordinate process S is a P-local
martingale, and let A ∈ F . Then P(A) ≤ P (A).

4. Let A ∈ F be a null set, and let P be a probability measure on (Ω,F) such that the
coordinate process S satisfies (NA1) under P. Then P(A) = 0.

The last statement says that every property which is satisfied by typical price paths holds
quasi-surely for all probability measures which might be of interest in mathematical finance.

Lemma 3.2 and Proposition 3.3 are originally due to Vovk, but here and in [PP13] we consider
a small modification of Vovk’s outer measure, which in our opinion has a slightly more natural
financial interpretation and with which it is easier to work.

3.2 Existence of local times for typical price paths

We are now ready to prove our main result: every typical price path has a local time which
satisfies all the requirements needed to apply our most general Itô-Tanaka formula, Theorem 2.8.

Lemma 3.4. Let π = {0 = t0 < t1 < ... < tK < tK+1 = ∞} be a partition of [0,∞) and let
S ∈ C([0,∞),R). Then we have for all t ∈ [0,∞) and all u ∈ R

Lπt (S, u) = (St − u)− − (S0 − u)− +

K∑
j=0

1(−∞,u)(Stj )[Stj+1∧t − Stj∧t], (5)

where we recall that Lπt (S, u) =
∑K

j=0 1LStj∧t,Stj+1∧tK
(u)|Stj+1∧t − u|.

Proof. This is a special case of (2), but we can also give a direct and elementary proof: For all
j = 1, ...,K, notice that

1LStj∧t,Stj+1∧tK
(u)|Stj+1∧t − u| = 1LStj∧t,Stj+1∧tK

(u)
(
(Stj+1∧t − u)+ + (Stj+1 − u)−

)
= 1(−∞,u)(Stj∧t)(Stj+1∧t − u)+ +

(
1− 1(−∞,u)(Stj∧t)

)
(Stj+1∧t − u)−

= 1(−∞,u)(Stj∧t)(Stj+1∧t − u) + (Stj+1∧t − u)−,

which leads to

Lπt (S, u) =
K∑
j=0

[
1(−∞,u)(Stj∧t)(Stj+1∧t − u) + (Stj+1∧t − u)−

]
= (StK∧t − u)− − (St0∧t − u)− +

K∑
j=0

1(−∞,u)(Stj∧t)
[
(Stj+1∧t − u) + (Stj∧t − u)−

]
= (St − u)− − (S0 − u)− +

K∑
j=0

1(−∞,u)(Stj )[Stj+1∧t − Stj∧t],

for all (t, u) ∈ [0,∞)× R.

Therefore, the construction of the stochastic integral
∫ ·
0 1(−∞,u)(Ss) dSs is equivalent to the

construction of the local time L·(S, u).
Let us introduce the dyadic Lebesgue partition generated by S: For each n ∈ N denote the

set of dyadic points by Dn := {k2−n : k ∈ Z} and define the sequence of stopping times

τn0 (ω) := 0, τnk+1(ω) := inf{t ≥ τnk (ω) : St(ω) ∈ Dn \ Sτnk (ω)(ω)}, k ∈ N. (6)
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We set πn(ω) := {0 = τn0 (ω) < τn1 (ω) < . . . }. Note that the functions τnk are stopping times
and that (πn(ω)) is increasing, i.e. for all n, k ∈ N there exists k′ such that τnk (ω) = τn+1

k′ (ω).
In the following we omit the ω and just write πn and τnk instead of πn(ω) and τnk (ω).

A key ingredient for our construction of the local time is the following analysis of the number
of interval crossings. Let Ut(ω, a, b) be the number of upcrossings of the closed interval [a, b] ⊆ R
by ω ∈ Ω during the time interval [0, t], and write Dt(ω, a, b) for the number of downcrossings.

Lemma 3.5. For typical price paths ω ∈ Ω, there exists C(ω) : (0,∞)→ (0,∞) such that

max
k∈Z

(
UnT (ω, k2−n) +Dn

T (ω, k2−n)
)
≤ CT (ω)n22n

for all n ∈ N, T > 0, where UnT (ω, u) := UT (ω, u, u + 2−n) for u ∈ R, and similarly for the
downcrossings.

Proof. Let K,T > 0. Without loss of generality we may restrict our considerations to the set
AK := {ω ∈ Ω : supt∈[0,T ] |St(ω)| < K}. Let k ∈ (−2nK, 2nK) and write u = k2−n. The
following strategy will make a large profit if UnT (u) is large: start with wealth 1, when first
hitting u invest 1/(2K) into S. When S hits −K sell and stop trading. Otherwise, when S
hits u + 2−n sell. This gives us wealth 1 + 2−n/(2K) on the set {UnT (u) ≥ 1} ∩ AK . Now we
repeat this strategy: next time we hit u, we invest our current wealth times 1/(2K) into S,
and sell when S hits u + 2−n. After n22n upcrossings of [u, u + 2−n], stop trading. On the set
{UnT (u) ≥ n22n} ∩AK we then have a wealth of(

1 +
2−n

2K

)n22n

≥ exp

(
1

4K
n2
)

for all n that are large enough. Therefore

P̄
(
{UnT (u) ≥ n22n} ∩AK

)
≤ exp

(
− n2

4K

)
for all large n. Summing over all dyadic points u = k2−n in (−K,K), we obtain

P
({

max
k∈Z

UnT (k2−n) ≥ n22n
}
∩AK

)
≤ K2n+1 exp

(
− n2

4K

)
= K exp

(
− n2

8K
+ (n+ 1) log(2)

)
for all large n. Since this is summable in n, the claimed bound for the upcrossings follows for all
typical price paths. To bound the downcrossings, it suffices to note that up- and downcrossings
of a given interval differ by at most 1.

The following construction is partly inspired by [MP10], Chapter 6.2.

Theorem 3.6. Let T > 0, α ∈ (0, 1/2) and (πn) as defined in (6). For typical price paths
ω ∈ Ω, the discrete local time Lπ

n
converges uniformly in (t, u) ∈ [0, T ] × R to a limit L ∈

C([0, T ], Cα(R)), and there exists C = C(ω) > 0 such that

||Lπn − L||L∞([0,T ]×R) ≤ C2−nα. (7)

Moreover, for all p > 2 we have supn∈N ||Lπ
n ||CTVp <∞ for typical price paths.
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Proof. By Lemma 3.4 it suffices to prove the corresponding statements with the stochastic
integrals

∫ t
0 1(−∞,u)(Ss) dSs replacing Lt(S, u). Using Lemma 3.5, we may fix K > 0 and restrict

our attention to the set

AK :=

{
ω ∈ Ω : sup

t∈[0,T ]
|St(ω)| < K and max

k∈Z

(
UnT (ω, k2−n)+DT (ω, k2−n)

)
≤ Kn22n for all n

}
.

Let u ∈ (−K,K). For every n ∈ N we approximate 1(−∞,u)(S·) by the process

Fnt (u) :=

∞∑
k=0

1(−∞,u)(Sτnk )1[τnk ,τ
n
k+1)

(t), t ≥ 0.

Then we write for the corresponding integral process

Iπ
n

t (u) :=

∞∑
k=0

1(−∞,u)(Sτnk (ω))[Sτnk+1∧t(ω)− Sτnk ∧t(ω)], t ≥ 0,

and since (πn) is increasing, we get

Iπ
n

t (u)− Iπn−1

t (u) =
∞∑
k=0

[Fnτnk
(u)− Fn−1τnk

(u)][Sτnk+1∧t − Sτnk ∧t].

By the construction of our stopping times (τnk ), we have

sup
t≥0

∣∣[Fnτnk (u)− Fn−1τnk
(u)][Sτnk+1∧t(ω)− Sτnk ∧t(ω)]

∣∣ ≤ 2−n+2.

Hence, the pathwise Hoeffding inequality, Theorem 3 in [Vov12] or Lemma 35 in [PP13], implies
for every λ ∈ R the existence of a 1-admissible simple strategy Hλ ∈ H1, such that

1 + (Hλ · S)t(ω) ≥ exp

(
λ(Iπ

n

t (u)− Iπn−1

t (u))− λ2

2
Nn
t (u, ω)2−2n+4

)
=: Eλ,nt (ω)

for all t ∈ [0, T ] and all ω ∈ Ω, where Nn
t (u) := Nn

t (u, ω) denotes the number of stopping
times τnk ≤ t with Fnτnk

(u) − Fn−1τnk
(u) 6= 0. Now observe that Fnt and Fn−1t are constant on

dyadic intervals of length 2−n, which means that we may suppose without loss of generality that
u = k2−n is a dyadic number. But we can estimateNn

T (k2−n) by the number of upcrossings of the
interval [(k−1)2−n, k2−n] plus the number of the downcrossings of the interval [k2−n, (k+1)2−n],
which means that on AK we have Nn

T (u) ≤ 2K2nn2. So considering (Hλ + H−λ)/2 for λ > 0,
we get

P

({
sup
t∈[0,T ]

|Iπn

t (u)− Iπn−1

t (u)| ≥ 2−nα
}
∩AK

)
≤ 2 exp(−λ2−nα + λ2K2−n+4n2)

for all λ, α > 0. Choose now λ = 2n/2 and α ∈ (0, 1/2). Then we get the estimate

P

({
sup
t∈[0,T ]

|Iπn

t (u)− Iπn−1

t (u)| ≥ 2−nα
}
∩AK

)
≤ 2 exp(−2n(1/2−α) + 16Kn2).

Moreover, noting that for all t > 0 the maps u 7→ Iπ
n

t (u) and u 7→ Iπ
n−1

t (u) are constant on
dyadic intervals of length 2−n and that there are 2K2n such intervals in [−K,K], we can simply
estimate

P

({
sup

(t,u)∈[0,T ]×R
|Iπn

t (u)− Iπn−1

t (u)| ≥2−nα
}
∩AK

)
≤ 2K2n × 2 exp(−2n(1/2−α) + 16Kn2)

= exp(−2n(1/2−α) + 16Kn2 + (n+ 2) log 2 + logK).
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Obviously, this is summable in n and thus the proof of the uniform convergence and of the speed
of convergence is complete.

It remains to prove the uniform bound on the p-variation norm of Iπ
n

and the Hölder
continuity of the limit. Let p > 2 and write α = 1/p, so that α ∈ (0, 1/2). First let u = k2−n ∈
(−K,K) and write v = (k + 1)2−n. Then

Iπ
n

t (v)− Iπn

t (u) =
∞∑
k=0

(Fnτnk
(v)− Fnτnk (u))(Sτnk ∧t − Sτnk−1∧t),

and similarly as before we have supt≥0 |(Fnτnk (v)−Fnτnk (u))(Sτnk ∧t−Sτnk−1∧t)| ≤ 2−n+1. On AK , the

number of stopping times (τnk )k with Fnτnk
(u) 6= Fnτnk

(v) is bounded from above by 2K2nn2 + 1,
and therefore we can estimate as before

P

({
sup
t∈[0,T ]

sup
u,v∈R:|u−v|≤2−n

|Iπn

t (v)− Iπn

t (u)| ≥ 2−nα
}
∩AK

)
≤ exp(−2n(1/2−α) + Cn2),

for some appropriate constant C = C(K) > 0.
We conclude that for typical price paths ω ∈ Ω there exists C = C(ω) > 0 such that

sup
t∈[0,T ]

sup
|u−v|≤2−n

|Iπn

t (v)− Iπn

t (u)|+ sup
t∈[0,T ]

sup
u∈R
|Iπn

t (u)− Iπn−1

t (u)| ≤ C2−nα

for all n ∈ N. Let now n ∈ N and let u, v ∈ R with 1 ≥ |u− v| ≥ 2−n. Let m ≤ n be such that
2−m−1 < |u− v| ≤ 2−m. Then

||Iπn
(v)− Iπn

(u)||∞ ≤ ||Iπ
n
(v)− Iπm

(v)||∞ + ||Iπm
(v)− Iπm

(u)||∞ + ||Iπm
(u)− Iπn

(u)||∞

≤ C

(
n∑

k=m+1

2−kα + 2−mα +
n∑

k=m+1

2−kα

)
≤ C2−mα ≤ C|v − u|α,

possibly adapting the value of C > 0 in every step. Since Iπ
n

t is constant on dyadic intervals of
length 2−n, this proves that supt∈[0,T ] ||Iπ

n

t ||p−var ≤ C. The α-Hölder continuity of the limit is
shown in the same way.

We reduced the problem of constructing L to the problem of constructing certain integrals.
In [PP13], Theorem 16, we gave a general pathwise construction of stochastic integrals. But
this result does not apply here, because in general 1(−∞,u)(S) is not càdlàg.

Remark 3.7. Theorem 3.6 gives a simple, model free proof that local times exist and have nice
properties. Let us stress again that by Proposition 3.3, all the statements of Theorem 3.6 hold
quasi-surely for all probability measures on (Ω,F) under which S satisfies (NA1).

Below, we sketch an alternative proof based on Vovk’s pathwise Dambis Dubins-Schwarz
theorem. While we are interested in a statement for typical price paths, which a priori is stronger
than a quasi sure result for all measures satisfying (NA1), the quasi-sure statement may also be
obtained by observing that every process satisfying (NA1) admits a dominating local martingale
measure, see [Ruf13, IP11]. Under the local martingale measure we can then perfom a time
change to turn the coordinate process into a Brownian motion, and then we can invoke standard
results for Brownian motion for which all statements of Theorem 3.6 except one are well known:
The only result we could not find in the literature is the uniform boundedness in p-variation of
the discrete local times.
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Remark 3.8. Note that for u = k2−n with k ∈ Z we have Lπ
n

t (u) = 2−nDt(u−2−n, u)+ε(n, t, u)
for some ε(n, t, u) ∈ [0, 2−n]. Therefore our proof also shows that the renormalized downcrossings
converge uniformly to the local time, with speed at least 2−nα for α < 1/2. Of course, for the
Brownian motion this is well known, see [CLPT81]; see also [Kho94] for the exact speed of
convergence. In the Brownian case, we actually know more: Outside of one fixed null set we
have

lim
ε→0

sup
x∈R

sup
t∈[0,T ]

|ε−1Dt(x, x+ ε)− Lt(x)| = 0

for all T > 0. It should be possible to recover this result also in our setting. It follows from
simple analytic estimates once we prove Theorem 3.6 for a sequence of partitions (π̃n) of the
following type: Let (cn) be a sequence of strictly positive numbers converging to 0, such that
cn+1/cn converges to 1. Define D̃n := {kcn : k ∈ Z}. Now define π̃n as πn, replacing Dn by
D̃n. The only problem is that then we cannot expect the sequence (π̃n) to be increasing, and
this would complicate the presentation, which is why we prefer to work with the dyadic Lebesgue
partition.

A Existence of local times via time change

A remarkable result in [Vov12] is a pathwise Dambis Dubins-Schwarz theorem, which allows to
link results for the one-dimensional Wiener process to typical price paths. This opens another
way of showing the existence of local times, which we will briefly sketch here.

For that purpose let us recall Vovk’s outer measure and relate it to ours. For λ ∈ (0,∞) we
define the set of processes

Sλ :=

{ ∞∑
k=0

Hk : Hk ∈ Hλk , λk > 0,
∞∑
k=0

λk = λ

}
.

For every G =
∑

k≥0H
k ∈ Sλ, all ω ∈ Ω, and all t ∈ [0,∞), the integral

(G · S)t(ω) :=
∑
k≥0

(Hk · S)t(ω) =
∑
k≥0

(λk + (Hk · S)t(ω))− λ

is well defined and takes values in [−λ,∞]. Vovk then defines

Q(A) := inf
{
λ > 0 : ∃G ∈ Sλ s.t. λ+ lim inf

t→∞
(G · S)t(ω) ≥ 1A(ω)∀ω ∈ Ω

}
, A ⊆ Ω.

It is fairly easy to show that P (A) ≤ Q(A) for all A ⊆ Ω, see Section 2.1 of [PP13]. In other
words, all results which hold true outside of a Q-null set are also true outside of a P -null set.

To state Vovk’s pathwise Dambis Dubins-Schwarz theorem, we need to define time-super-
invariant sets.

Definition A.1. A continuous non-decreasing function f : [0,∞) → [0,∞) satisfying f(0) = 0
is said to be a time change. A subset A ⊆ Ω is called time-superinvariant if for each ω ∈ Ω and
each time change f it is true that ω ◦ f ∈ A implies ω ∈ A.

For x ∈ R we denote by µx the Wiener measure on (Ω,F) with µx(ω(0) = x) = 1.

Lemma A.2. For every time-superinvariant set A ⊆ Ω satisfying ω(0) = x for all ω ∈ A and
µx(A) = 0, we have P (A) = 0.

Proof. Using Theorem 1 in [Vov12], we obtain P (A) ≤ Q(A) = µx(A) = 0.

13



First we investigate in the next lemma the behavior of local times under a time change.
Recall that Lc is the set of those paths S which are in Lc(πn) for the dyadic Lebesgue partition
(πn) constructed from S.

Lemma A.3. Let S ∈ Q and assume that for all t ≥ 0 the occupation measure

µt(A) =

∫ t

0
1A(S(s)) d〈S〉(s), A ∈ B(R),

is absolutely continuous with density 2Lt(S). Let f be a time change. Then S ◦ f ∈ Q and the
occupation measure of S ◦ f is absolutely continuous with density 2Lf(t)(S) for all t ≥ 0.

Proof. Recall that 〈S〉 is constructed along the dyadic Lebesgue partition, which yields 〈S◦f〉t =
〈S〉f(t)(ω). The result then follows by considering the push forward of the occupation measure
of S under f .

With the previous lemma at hand we can reduce the existence and continuity of local times
for typical price paths to the case of the Wiener process. For p ≥ 1 let us define the events

Ac := {ω ∈ Ω : S(ω) ∈ Lc} and

Ac,p := {ω ∈ Ac : u 7→ Lt(S(ω), u) has finite p-variation for all t ∈ [0,∞)}.

Theorem A.4. Typical price paths are in Ac,p for all p > 2.

Proof. Define Ωx := {ω ∈ Ω : ω(0) = x} for x ∈ R. Lemma A.2 and Lemma A.3 in combination
with classical results for the Wiener process (see [KS88], Theorem 3.6.11 or [MP10], Theo-
rem 6.19) show that typical price paths ω ∈ Ωx have an absolutely continuous occupation mea-
sure with jointly continuous density {2Lt(S, u) ; (t, u) ∈ [0,∞)× R}. In [MP10], Theorem 6.19
it is also shown that u 7→ Lt(S, u) has finite p-variation, uniformly bounded in t ∈ [0, T ], for all
T > 0, p > 2. It remains to show the uniform convergence of the discrete local times to L and
to get rid of the restriction ω ∈ Ωx.

Recall that Ut(S, a, b) and Dt(S, a, b) denote the number of up- respectively downcrossings
of the interval [a, b] completed by S up to time t. First observe that∣∣Lπn

t (S, u)− 2−nDt(S, u− 2−n, u)
∣∣ ≤ 2−n (8)

for all t ∈ [0,∞) and u ∈ Dn. For u ∈ R we define {u}n := min{k ∈ Dn : k ≥ u} and by the
triangle inequality we read

sup
(t,u)∈[0,T ]×R

∣∣Lπn

t (S, u)− Lt(S, u)
∣∣

≤ sup
(t,u)∈[0,T ]×R

∣∣Lπn

t (S, u)− Lπn

t (S, {u}n)
∣∣+ sup

(t,u)∈[0,T ]×R

∣∣Lπn

t (S, {u}n)− Lt(S, {u}n)
∣∣

+ sup
(t,u)∈[0,T ]×R

∣∣Lt(S, {u}n)− Lt(S, u)
∣∣.

Now we separately deal with the three summands. The discrete Tanaka formula (5) yields∣∣Lπn

t (S, u)− Lπn

t (S, {u}n)
∣∣ ≤ 3 · 2−n

for all (t, u) ∈ [0, T ]× R.
For the second summand we remark that the event

E :=

{
ω ∈ Ωx : lim sup

n→∞
sup

(t,u)∈[0,T ]×R

∣∣2−nDt(S, u− 2−n, u)− Lt(S, u)
∣∣ > 0 for some T ∈ [0,∞)

}
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is time-superinvariant. Therefore, it suffices to combine Theorem 2 in [CLPT81] with (8) to
obtain that the second summand converges to zero for typical price paths.
That the last summand goes to zero simply follows from the joint continuity of the occupation
density L(S) in (t, u).

Finally, we indicate how to get rid of the assumption ω ∈ Ωx for some x ∈ R. For ε > 0 it
suffices to fix a sequence of simple trading strategies (Hn) ⊂ Hε with

lim inf
n→∞

(ε+ (Hn · S)T (ω)) ≥ 1

for all ω ∈ Ω0 for which the local time does not exist. Applying these simple trading strategies
to ω − ω(0) achieves the same aim but without the restriction ω(0) = 0.

Remark A.5. 1. For Theorem A.4, the dyadic points Dn in the definition of (πn) can be
replaced by any increasing sequence of partitions (Pn) of R such that limn→∞ |Pn| = 0;
see [CLPT81].

2. While Theorem A.4 gives us the uniform convergence to a jointly continuous local time
which is of finite p-variation in u, it does not give us the uniform boundedness in p-
variation of the approximating sequence (Lπ

n
). Therefore, the results of Theorem A.4

only allow us to prove an abstract version of Theorem 2.8, where the pathwise stochastic
integral

∫ t
0 g(S(s)) dS(s) is defined by approximating g with smooth functions for which

the Föllmer-Itô formula Theorem 2.2 holds (see [FZ06] for similar arguments in a semi-
martingale context). Since we are interested in the Riemann sum interpretation of the
pathwise integral, we need Theorem 3.6 to make sure that all requirements of Theorem 2.8
are satisfied for typical price paths.
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