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Abstract

We introduce an approach to study certain singular PDEs which is based on techniques

from paradifferential calculus and on ideas from the theory of controlled rough paths. We
illustrate its applicability on some model problems like differential equations driven by frac-
tional Brownian motion, a fractional Burgers type SPDE driven by space-time white noise,
and a non-linear version of the parabolic Anderson model with a white noise potential.
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1 Introduction

In this paper we introduce the notion of paracontrolled distribution and show how to use it
to give a meaning to and solve partial differential equations involving non-linear operations
on generalized functions. More precisely, we combine the idea of controlled paths, introduced
in [Gub04], with the paraproduct introduced by Bony [Bon81] and the related paradifferential
calculus, in order to develop a non-linear theory for a certain class of distributions.

The approach presented here works for generalized functions defined on an index set of
arbitrary dimension and constitutes a flexible and lightweight generalization of Lyons’ rough
path theory [Lyo98]. In particular it allows to handle problems involving singular stochastic
PDEs which were substantially out of reach with previously known methods.

In order to set the stage for our analysis let us list some of the problems which are amenable
to be analyzed in the paracontrolled framework:

1. The rough differential equation (RDE) driven by a d-dimensional Gaussian process X:
Ou(t) = F(u(t))0 X (1),

where F': R" — E(Rd,R”) is a smooth vector-field . Typically, X will be a Brownian mo-
tion or a fractional Brownian motion with Hurst exponent H € (0,1). The paracontrolled
analysis works up to H > 1/3. While we do not have any substantial new results for this
problem, it is a useful pedagogical example on which we can easily describe our approach.

2. Generalizations of Hairer’s Burgers-like SPDE (BURGERS):
Lu=G(u)0yu+¢&.

Here u: Ry x T — R", where T = (R/27Z) denotes the torus, L = 9; + (—=A)?, where
—(—A)? is the fractional Laplacian with periodic boundary conditions and we will take o >
5/6, and £ is a space-time white noise with values in R™. Moreover, G: R" — L(R",R")
is a smooth field of linear transformations.

3. A non-linear generalization of the parabolic Anderson model (PAM):

Lu= F(u)og,



where u: Ry x T? - R, L = 9; — A is the parabolic operator corresponding to the heat
equation, and where £ is a random potential which is sampled according to the law of
the white noise on T? and is therefore independent of the time variable. We allow for
a general smooth function F: R — R, the linear case F(u) = u corresponding to the
standard parabolic Anderson model. The symbol ¢ stands for a renormalized product
which is necessary to have a well defined problem.

4. The one-dimensional periodic Kardar—Parisi-Zhang equation (KPZz):
Lh = “(0:h)*" +¢,

where u: Ry xT — R, L = §; — A, and where ¢ is a space-time white noise. Here “(9,h)?”
denotes the necessity of an additive renormalization in the definition of the square of the
distribution d,h.

5. The three-dimensional, periodic, stochastic quantization equation for the (¢)§ euclidean
quantum field (sQ):

A
L¢ — LLI(¢)377 +‘£;

where ¢: Ry xT3 = R, L = 9;— A, £ is a space-time white noise, and where “(¢)3” denotes
a suitable renormalization of a cubic polynomial of ¢ and X is the coupling constant of the
scalar theory.

In this paper we will consider in detail the three cases RDE, BURGERS, PAM. In all cases
we will exhibit a space of paracontrolled distributions where the equations are well posed (in a
suitable sense), and admit a global solution which is unique. The three-dimensional stochastic
quantization equation sqQ is studied by R. Catellier and K. Chouk in [CC13] by applying the
paracontrolled technique. The paracontrolled analysis of KPz will be presented elsewhere [GP14].

The kind of results which will be obtained below can be exemplified by the following state-
ment for RDEs. Below ¢’ = BS, , stands for the Holder-Besov space of index a on R. Given two
distributions f € € and g € €? with a + 8 > 0 we can always consider a certain distribution
f o g which is obtained via a bilinear operation of f,g and which belongs to €.

Theorem 1.1. Let £ : [0,1] — R” be a continuous function and F : RY — L(R™,R?) be a family
of smooth vector-fields. Let u : [0,1] — R? be a solution of the Cauchy problem

Opu(t) = F(u(t))&(t),  u(0) = uo,

where ug € R, Let 9 be a solution to 0;9 = & and let RE = (£,9 0 €). Then for all o € (1/3,1)
there exists a continuous map ¥ : R? x €971 x €271 — € such that u = ¥(ug, RE) for all
¢ € C([0,1];RY).

In particular, this theorem provides a natural way of extending the solution map to data &
which are merely distributions in €*~!. It suffices to approximate £ by a sequence of smooth
functions (£) converging to & in €1, and to prove that the “lifted” sequence (RE™) converges
to some limit in €' x ¥?*~1. The uniqueness of this limit is not guaranteed however, and
each possible limit will give rise to a different notion of solution to the RDE, just like in standard
rough path theory.

The space X obtained by taking the closure in €' x €2~ of the set of all elements of the
form R¢ for smooth & replaces the space of (geometric) rough paths, and the above theorem is
a partial restatement of Lyons’ continuity result: namely that the (It6) solution map ¥, going



from data to solution of the differential equation, is a continuous map from the rough path
space X to €*. The space X is fibered over €*~1. It allows us to equip the driving distribution
with enough information to control the continuity of the solution map to our RDE problem —
and as we will see below, also the continuity of the solution maps to suitable PDEs. In various
contexts the space X can take different forms, and in general it does not seem to have the rich
geometrical and algebraic structure of standard rough paths.

The verification that suitable approximations (£") are such that their lifts (R{™) converge in
¢~ x €?*~! depends on the particular form of £. In the case of £ being a Gaussian stochastic
process (like in all our examples above), this verification is the result of almost sure convergence
results for elements in a fixed chaos of an underlying Gaussian process, and the proofs rely on
elementary arguments on Gaussian random variables.

Even in the case of RDEs, the paracontrolled analysis leads to some interesting insights. For
example, we have that a more general equation of the form

Opu(t) = F(u(t)&(t) + F'(u(®) F(ut))n(t),  u(0) = uo,

where n € C([0,1];R™ x R™), has a solution map which depends continuously on (£,49 o £ +
n) € €1 x €?*~1. The remarkable fact here is that the solution map depends only on the
combination ¥ o £ + 7 and not on each term separately. Such structural features of the solution
map, which can be easily seen using the paracontrolled analysis, are very important in situations
where renomalizations are needed, as for example in the PAM model. In the RDE context we
can simply remark that setting n = —1 o ¢, the solution map becomes a continuous function of
£ € €271, without any further requirement on the bilinear object ¥ o £&. Thus, the equation

Opu(t) = F(u(t)&(t) — F'(u(t) F(u(t) (@ 0 &)(t),  u(0) = uo,

can be readily extended to any € € ¥€“~! by continuity. In that sense, this equation should
be interpreted as a deterministic version of an It6 stochastic differential equation where, at the
price of a modification of standard rules of calculus, we are able to solve more general problems
than in the Stratonovich setting.

We remark that, even if only quite implicitly, paraproducts have been already exploited in the
rough path context in the work of Unterberger on the renormalization of rough paths [Unt10a,
Unt10b], where it is referred to as “Fourier normal-ordering”, and in the related work of Nualart
and Tindel [NT11].

In this paper we construct weak solutions for the SPDEs under consideration. For an ap-
proach using mild solutions see [Perl4]. See also [GIP14], where we use the decomposition of
continuous functions in a certain Fourier series and similar ideas as developed below, in order
to give a new and relatively elementary approach to rough path integration.

Relevant literature. Before going into the details, let us describe the context of our study.
Consider for example the RDE problem above. Schwartz’ theory of distributions gives a robust
framework for defining linear operations on irregular generalized functions. But when trying to
handle non-linear operations, we quickly run into problems. For example, in Schwartz’ theory,
it is not possible to define the product F(u)d; X (t) in the case where X is the sample path of
a Brownian motion. The standard analysis of this difficulty goes as follows: X is an a—Holder
continuous process for any a < 1/2, but not better. The solution u has to have the same
regularity, which is transferred to F'(u) if F' is smooth. In this situation, the product F'(u)d;X
corresponds to the product of an a—Hdlder continuous function with the distribution ;X which
is of order o — 1. A well known result of analysis (see Section 2.1 below) tells us that a necessary
condition for this product to be well defined is that the sum of the orders is positive, that is



2a—1 > 0, which is barely violated in the Brownian setting. This is the classical problem which
motivated 1t6’s theory of stochastic integrals.

Itd’s integral has however quite stringent structural requirements: an “arrow of time” (i.e.
a filtration and adapted integrands), a probability measure (it is defined as L?-limit), and
L?-orthogonal increments of the integrator (the integrator needs to be a (semi-) martingale).

If one or several of these assumptions are violated, then Lyons’ rough path integral [Lyo98,
LQ02, LCLO7, FV10] can be an effective alternative. For example, it allows to construct pathwise
integrals for, among other processes, fractional Brownian motion, which is not a semimartingale.

In the last years, several other works applied rough path techniques to SPDEs. But they
all relied on special features of the problem at hand in order to apply the integration theory
provided by the rough path machinery.

A first series of works attempts to deal with “time”-like irregularities by adapting the stan-
dard rough path approach:

— Deya, Gubinelli, Lejay, and Tindel [GLT06, Gub12, DGT12] deal with SPDEs of the form
Lu(t,z) = o(u(t,z))n(t, z),

where x € T, L = 0, — A, the noise 7 is a space-time Gaussian distribution (for example
white in time and colored in space), and o is some non-linear coefficient. They interpret
this as an evolution equation (in time), taking values in a space of functions (with respect
to the space variable). They extend the rough path machinery to handle the convolution
integrals that appear when applying the heat flow to the noise.

— Friz, Caruana, Diehl, and Oberhauser [CF09, CFO11, FO11, DF12] deal with fully non-
linear stochastic PDEs with a special structure. Among others, of the form

atu(t7 .iL') = F(u, Oru, aazcu) + O'(t, x)&ru(ta x)n(t%

where the spatial index x can be multidimensional, but the noise n only depends on time.
Such an SPDE can be reinterpreted as a standard PDE with random coeflicients via a
change of variables involving the flow of the stochastic characteristics associated to o.
This flow is handled using usual rough path results for RDEs.

— Teichmann [Teill] studies semilinear SPDEs of the form
(0r = A)u(t, ) = o (u)(t, )n(t, z),

where A is a suitable linear operator, in general unbounded, and ¢ is a general non-linear
operation on the unknown u which however should satisfy some restrictive conditions. The
SPDE is transformed into an SDE with bounded coefficients by applying a transformation
based on the group generated by A on a suitable space.

The “arrow of time” condition of Itd’s integral is typically violated if the index is a spatial
variable and not a temporal variable. Another series of works applied rough path integrals to
deal with situations involving irregularities in the “space” directions:

— Bessaih, Gubinelli, and Russo [BGR05] and Brzezniak, Gubinelli, and Neklyudov [BGN13|
consider the vortex filament equation which describes the (approximate) motion of a closed
vortex line z(t,-) € C(T,R?) in an incompressible three-dimensional fluid:

dx(t, o) = ™) (x(t, o)), u® ) (y) = /T K(y — z(t,0))8,x(t, 0)do,
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where K : R? — L(R3,R?) is a smooth antisymmetric field of linear transformations of R3.
In the modeling of turbulence it is interesting to study this equation with initial condition
x(0,-) sampled according to the law of the three-dimensional Brownian bridge. In this
case, the regularity of z(¢,0) with respect to o is no better than Brownian for any positive
time, and thus the integral in the definition of the velocity field u*(t) is not well defined.
Rough path theory allows to make sense of this integral and then of the equation.

— Hairer, Maas, and Weber [Haill, HW13, Hail3, HMW12] build on the insight of Hairer
that rough path theory allows to make sense of SPDEs which are ill-defined in standard
function spaces due to spatial irregularities. Hairer and Weber [HW13] extend the BURG-
ERS type SPDE that we presented above to the case of multiplicative noise. Hairer, Maas,
and Weber [HMW12] study approximations to this equation, where they discretize the
spatial derivative as Oyu(t,x) ~ 1/e(u(t,z 4+ ) — u(t,x)). They show that in the limit
€ — 0, the approximation may introduce a Stratonovich type correction term to the equa-
tion. Finally, Hairer [Hail3] uses this approach to define and solve for the first time the
Kardar—Parisi-Zhang (KPZ) equation, an SPDE of one spatial index variable that de-
scribes the random growth of an interface. The KPZ equation was introduced by Kardar,
Parisi, and Zhang [KPZ86], and prior to Hairer’s work it could only be solved by apply-
ing a spatial transform (the Cole-Hopf transform) which had the effect of linearizing the
equation.

Alternative approaches. In all the papers cited above, the intrinsic one-dimensional nature
of rough path theory severely limits possible improvements or applications to other contexts.
To the best of our knowledge, the first attempt to remove these limitations is the still unpub-
lished work by Chouk and Gubinelli [CG13], extending rough path theory to handle (fractional)
Brownian sheets (Gaussian two-parameter stochastic processes akin to (fractional) Brownian
motion).

In the recent paper [Hail4], Hairer has introduced a theory of regularity structures with the
aim of giving a more general and versatile notion of regularity. Hairer’s theory is also inspired
by the theory of controlled rough paths, and it can also be considered a generalization of it
to functions of a multidimensional index variable. The crucial insight is that the regularity of
the solution to an equation driven by — say — Gaussian space-time white noise should not be
described in the classical way. Usually we say that a function is smooth if it can be approximated
around every point by a polynomial of a given degree (the Taylor polynomial). Since the solution
to an SPDE does not look like a polynomial at all, this is not the correct way of describing its
regularity. We rather expect that the solution locally looks like the driving noise (more precisely
like the noise convoluted with the Green kernel of the linear part of the equation; so in the case
of RDEs the time integral of the white noise, i.e. the Brownian motion). Therefore, in Hairer’s
theory a function is called smooth if it can locally be well approximated by this convolution (and
higher order terms depending on the noise). Hairer’s notion of smoothness induces a natural
topology in which the solutions to semilinear SPDEs depend continuously on the driving signal.
This approach is very general, and allows to handle more complicated problems than the ones
we are currently able to treat in the paracontrolled approach. If there is a merit in our approach,
then its relative simplicity, the fact that it seems to be very adaptable so that it can be easily
modified to treat problems with a different structure, and that we make the connection between
harmonic analysis and rough paths.

Plan of the paper. Section 2 develops the calculus of paracontrolled distributions. In Sec-
tion 3 we solve ordinary differential equations driven by suitable Gaussian processes such as
the fractional Brownian motion with Hurst index H > 1/3. In Section 4 we solve a fractional



Burgers type equation driven by white noise, and in Section 5 we study a non-linear version of
the parabolic Anderson model. In Appendix A we recall the main concepts of Littlewood-Paley
theory and of Bony’s paraproduct, and Appendix B contains a commutator estimate between
paraproduct and time integral. We stress the fact that this paper is mostly self-contained, and
in particular we will not need any results from rough path theory and just basic elements of the
theory of Besov spaces.

Acknowledgments. The main part of the research was carried out while N.P. was employed
by Humboldt-Universitat zu Berlin. During an Oberwolfach workshop in the summer of 2012,
M. Hairer discussed with one of us (M.G.) his approach to extend rough path theory and M.G.
would like to thank M. Hairer for suggesting the application to the two-dimensional non-linear
parabolic Anderson model discussed in this paper.

Notation and conventions. Throughout the paper, we use the notation a < b if there exists
a constant ¢ > 0, independent of the variables under consideration, such that a < c¢- b, and we
write a ~ b if a < b and b < a. If we want to emphasize the dependence of ¢ on the variable
x, then we write a(x) <, b(z). For index variables i and j of Littlewood-Paley decompositions
(see below) we write i < j if 2¢ < 27, so in other words if there exists N € N, independent of j,
such that i < 7+ N, and we write i ~ j if i < j and j < 4.

An annulus is a set of the form &7 = {x € R? : @ < |z| < b} for some 0 < a < b. A ball is a
set of the form % = {x € R?: |z| < b}. T = R/(27Z) denotes the torus.

The Holder-Besov space Bg‘om(Rd,R”) for € R will be denoted by ¢, equipped with
the norm |[|-|lo = [|[|Bs, .- The local space €2, consists of all v which satisfy gu € € for
every infinitely differentiable @ of compact support. Given two Banach spaces X,Y we denote
by L£(X,Y) the Banach space of linear maps from X to Y, endowed with the operator norm
Il z(x,y)- More generally, given k € N and Banach spaces X1, ..., X, we write LE(X] x ... x
X, Y) for the space of k-linear maps from X3 x ... x X to Y, and [|-[|zr(x, x...x x,,v) for the
operator norm. We denote by C(X,Y) the Banach space of continuous maps from X to Y,
endowed with the supremum norm |[|-||¢(x,y). We write CrY = C([0,T],Y) for the space of
continuous maps from [0,7] to Y, equipped with the supremum norm |-[|c,y. If @ € (0,1),
then we also define C}Y as the space of a-Hélder continuous functions from [0, 7] to Y, endowed

with the seminorm
Ifllsy = sup WD =SBy
T .

o<s<t<T [t —s]®
If fis a map from A C R to the linear space Y, then we write fs; = f(t) — f(s), so that
I fllegy = supocscicr lfsully /1t = s|%. For f & LP(T) we write [|f (@)} g = Jp |/ (2)[Pdz.

For a multi-index pn = (p1, ..., fta) € N we write |p| = p1+. . .4 g and 9# = 9lH JOk1 ... o,
DF or F' denote the total derivative of F. For k € N we denote by D*F the k-th order
derivative of F. For a > 0, C& = C&(R%, R") is the space of || times continuously differentiable
functions, bounded with bounded partial derivatives, and with (o — |«])-Hdélder continuous
partial derivatives of order |a], equipped with its usual norm |[|-[|ce. We also write 9, for the

partial derivative in direction z, and if F: R x R¢ — R™, then we write D, F (¢, z) for its spatial
derivative in the point (t,2) € R x R%.

The space of real valued infinitely differentiable functions of compact support is denoted by
2(R?) or 9. The space of Schwartz functions is denoted by . (R?) or .#. Its dual, the space
of tempered distributions, is .#/(R%) or .. If u is a vector of n tempered distributions on R¢,
then we write u € .7/(R%,R"). The Fourier transform is defined with the normalization

Fu(z) =u(z) = /Rd e U5y (z)d,
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so that the inverse Fourier transform is given by .# ~lu(z) = (27)~%Zu(—z). If ¢ is a smooth
function, such that ¢ and all its partial derivatives are at most of polynomial growth at infinity,
then we define the Fourier multiplier ¢(D) by ¢(D)u = #Z~1(¢.Zu) for any u € .#’. More
generally, we define ¢(D)u by this formula whenever the right hand side makes sense. The
scaling operator A on .’ is defined for A > 0 by Ayu = u(\.).

Throughout the paper, (x,p) will denote a dyadic partition of unity, and (Aj);>—1 will
denote the Littlewood-Paley blocks associated to this partition of unity, i.e. A_; = x(D) and
A; = p(279D) for j > 0. We will often write p;, by which we mean x if j = —1, and we mean

p(277-) if j > 0. We also use the notation S; = Dicj i

2 Paracontrolled calculus

2.1 Bony’s paraproduct

Paraproducts are bilinear operations introduced by Bony [Bon81] in order to linearize a class of
non-linear PDE problems. In this section we will introduce paraproducts to the extent of our
needs. We will be using the Littlewood-Paley theory of Besov spaces. The reader can peruse
Appendix A, where we summarize the basic elements of Besov space theory and Littlewood-Paley
decompositions which will be needed in the remainder of the paper.

One of the simplest situations where paraproducts appear naturally is in the analysis of the
product of two Besov distributions. In general, the product fg of two distributions f € ¥ and
g € €7 is not well defined unless a + 3 > 0. In terms of Littlewood-Paley blocks, the product
fg can be (at least formally) decomposed as

fa=> > AifDjg=f<g+f-g+fog

j>—1i>—1

Here f < g is the part of the double sum with ¢ < j — 1, and f > ¢ is the part with ¢ > j + 1,
and f o g is the “diagonal” part, where |i — j| < 1. More precisely, we define

=2
f=g=g=f=> Y AifAjg and fog= > AifAyg

j=—1i=-—1 li—jI<1

We also introduce the notation
fr9=f>9g+fog

This decomposition behaves nicely with respect to Littlewood—Paley theory. Of course, it de-
pends on the dyadic partition of unity used to define the blocks A;, and also on the particular
choice of the pairs (7,j) in the diagonal part. Our choice of taking all (7,7) with |i — j| < 1
into the diagonal part corresponds to property iii. in the definition of dyadic partition of unity
in Appendix A, where we assumed that supp(p(2=%)) Nsupp(p(277-)) = 0 for |i — j| > 1. This
means that every term in the series

j—2
f<g= Z Z AifAjg = Z Sj—lfAjg

jz—li=—1 jz—1

has a Fourier transform which is supported in a suitable annulus, and of course the same holds
true for f > g. On the other side, every term in the diagonal part f o g has a Fourier transform
that is supported in a ball. We call f < g and f > g paraproducts, and f o g the resonant term.

Bony’s crucial observation is that f < ¢ (and thus f > g) is always a well-defined distribution.
In particular, if & > 0 and 8 € R, then (f,g9) — f < g is a bounded bilinear operator from



€ x €° to €P. Heuristically, f < g behaves at large frequencies like ¢ (and thus retains the
same regularity), and f provides only a modulation of g at larger scales. The only difficulty in
defining fg for arbitrary distributions lies in handling the diagonal term f o g. The basic result
about these bilinear operations is given by the following estimates.

Lemma 2.1 (Paraproduct estimates, [Bon81]). For any 8 € R we have

If < glls s [1fllz=llglls, (1)
and for a < 0 furthermore
If < glla+s Sap 1fllallglls- (2)
For a+ 8 > 0 we have
1f ° glla+s Sap [1fllallglls- (3)

Proof. Observe that there exists an annulus &/ such that S;_1 fA;g has Fourier transform sup-
ported in 2/.%7, and that for f € L> we have

1Sj-1fAjgllzee < 1Sj-1fllr=lAjgllre < [ fllz=27"llglls-

On the other side, if @« < 0 and f € €<, then

1Si—1f8gllee < D A f el Ajglize S Iflallglls > 277 < || fllallgll g2,

i<j—2 i<j—2

By Lemma A.3, we thus obtain (1) and (2). To estimate f o g, observe that the term u; =
A;f ZHF jl<1 A;g has Fourier transform supported in a ball 274, and that

luilizee SNA;Flle > 1Al S lallglls2 @i,

ili—jl<1

So if a4+ > 0, then we can apply the second part of Lemma A.3 to obtain that fog = 2]271 uj
is an element of ¥**# and that equation (3) holds. O

A natural corollary is that the product fg of two elements f € € and g € €7 is well defined
as soon as a + 3 > 0, and that it belongs to €7, where v = min{«, 5, a + 5}.

2.2 Paracontrolled distributions and RDEs

Consider the RDE
atu = F(“’)é? U(O) = Uuop, (4)

where ug € R%, u: R — R% is a continuous vector valued function, d; is the time derivative,
£:R — R" is a vector valued distribution with values in €*~! for some o € (1/3,1), and
F:R? — L£(R™,R?) is a family of vector fields on R?. A natural approach is to understand this
equation as limit of the classical ODEs

ot = F(u®)E, u®(0) = uo, (5)

for a family of smooth approximations (£%) of & such that €5 — ¢ in €~ ! as ¢ — 0. In order to
pass to the limit, we are looking for a priori estimates on u® which require only a control on the
€1 norm of .

To avoid cumbersome notation, we will work at the level of equation (4) for smooth &, where
it should be understood that our aim is to obtain a priori estimates for the solution, in order



to safely pass to the limit and extend the solution map to a larger class of data. The natural
regularity of u is ¢, since u should gain one derivative with respect to F'(u)¢, which will not
behave better than ¢, and will therefore be in €.

We use the paraproduct decomposition to write the right hand side of (4) as a sum of the
three terms

F(u) <&+ F(u)o &+ F(u) - ¢ (6)
a—1 2a0—1 2a—1

(where the quantity indicated by the underbrace corresponds to the expected regularity of each
term). Note however that unless 2a — 1 > 0, the resonant term F'(u) o £ cannot be controlled
using only the ¥*norm of u and the €% !-norm of £. If F is at least in C?, we can use a
paralinearization result (see Lemma 2.7 below) to rewrite this term as

F(u)o& = F'(u)(uo &) +Ir(u,), (7)

where the remainder IIp(u, ) is well defined under the condition 3ac — 1 > 0, provided that
u € € and £ € € L. In this case it belongs to €3*~!. The difficulty is now localized in the
linearized resonant product u o £. In order to control this term, we would like to exploit the
fact that the function u is not a generic element of €“ but that it has a specific structure, since
its derivative Jyu has to match the paraproduct decomposition given in (6). Thus, we postulate
that the solution w is given by the following paracontrolled ansatz:

w=u" <09+,

where u?, 9 € € and the remainder u! is in €2®. This decomposition allows for a finer analysis
of the resonant term u o £. Indeed, we have

uof=(u’ <) ol+utot=u’(Wof)+C’v,& +ulok, (8)

where the commutator is defined by C(u?,9,£) = (u’ < ¥9) 0 & — u¥ (¥ 0 £). Observe now that
the term u! o & does not pose any further problem, as it is bounded in €3*~!. Moreover, we
will show that the commutator is a bounded multilinear function of its arguments as long as
the sum of their regularities is strictly positive, see Lemma 2.4 below. By assumption, we have
3a— 1> 0, and therefore C(u”,9, &) € €3*~1. The only problematic term which remains to be
handled is thus 9 o . Here we need to make the assumption that 9 o & € €2*~! in order for
the product u” (9 o £) to be well defined. That assumption is not guaranteed by the analytical
estimates at hand, and it has to be added as a further requirement. Granting this, we have
obtained that the right hand side of equation (4) is well defined and a continuous function of
(u, u?”, ub,9,€,90).

The paracontrolled ansatz and the Leibniz rule for the paraproduct now imply that (4) can
be rewritten as

O = p(u’ <9 +uf) = G’ <9+ u’ < 9 + uf = F(u) < €+ F(u) o€+ F(u) = €.
If we choose ¥ such that 9,1 = & and we set u¥ = F(u), then we can use (7) and (8) to obtain

the following equation for the remainder uf:
Oyt = F'(u)F(u)(9 0 &) + F(u) = & — (9, F(u) < 1)
+ F'(u)C(F(u),9,€) + F'(u) (v 0 &) + T (u, &).
Together with the equation u = F(u) < ¢ + u*, this completely describes the solution and
allows us to obtain an a priori estimate on u in terms of (ug, ||€|la—1, ||¥ © &||2a—1). With this
estimate at hand, it is now easy to show that if F' € C’g’, then v depends continuously on the

data (ug, &, 0 &), so that we can pass to the limit in (5) and make sense of the solution to (4)
also for irregular £ € ¥~ ! as long as o > 1/3.
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2.3 Commutator estimates and paralinearization

In this section we prove some lemmas which will allow us to perform algebraic computations
with the paraproduct and the resonant term, thus justifying the analysis of the previous section.

Lemma 2.2 (see also Lemma 2.97 of [BCD11]). Let f € €% for o € (0,1), and let g € L.
For any 7 > —1 we have

1145, Alallze = 185(fg) = fAjgllzee S 27 fllallgllzoe.

This commutator lemma is easily proven by writing A; = p;(D) as a convolution operator,
and using the embedding of €“ in the space of Holder continuous functions.

Lemma 2.3. Assume that o € (0,1) and B € R, and let f € €~ and g € €°. Then
Aj(f < g) = fAjg+ Ri(f.9),
for all j > —1, with a remainder R;(f,g) which satisfies | R;(f,9)|l~ < 277 fllallglls-

Proof. Note that f < g =), f < Ajg, and that the Fourier transform of f < A;g is supported
in an annulus of the form 2°.c7. Hence, we have A;(f < A;g) # 0 only if j ~ i, which leads to

Aj(f=9) =D Ai(F < Dig) =D Aj(fAig) = D A(f = A

IR IR IR
=D fAdig = 3 (85, flAig = > A
IR IR 1:~]

where we recall that [A;, f]A;g = Aj(fA;g) — fAjA;g denotes the commutator. The sum over i
with i ~ j can be chosen to encompass enough terms so that Ajg =5 .. - A;jA;g, and therefore
we conclude that

1A;(f < g) = FA gl < D A, FlAigllze — Y I1A(f = Aig)l e

[Ra] R ]

R

We apply Lemma 2.2 to each term of the first sum, and the paraproduct estimates to each term
of the second sum, to obtain

1A;(f < g) — FAjglle < 277D Fllallgll -

Using this result, it is easy to prove our basic commutator lemma.

Lemma 2.4. Assume that a € (0,1) and 8,y € R are such that « ++~v >0 and 4+ v < 0.
Then for smooth f,g, h, the trilinear operator

C(f,g:h) = ((f <g)oh)— f(goh)

allows for the bound
1C(f, 9, P)llatsy S [1f llallglisllplly-
Thus, C can be uniquely extended to a bounded trilinear operator in L£3 (%a XEP <6, %a+5+7).
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Proof. Let f, g, h be smooth functions and write

C(f.g.h)=((f <g)oh) = flgoh)= D > [Ai(Acf < g)Ajh — ApfAigAsh).

Jk>—114:]i—j|<1

Observe that for fixed k, the term Agf < g has a Fourier transform supported outside of a ball
28 %. Thus, we have Aj(Agf < g) = 1;>1Ai(Agf < g). We can therefore apply Lemma 2.3 to
obtain

Cf.gh) = > Y [Lizk(AcfAig+ Ri(Axf,9)Ajh — ApfAigAjh]
Jk=>—14: ‘z 71<1
= > Y [LizkRilArf,9)Ajh — Lick NARfAigAjh] (9)

5 k=>—14:]i—5|<1

for some fixed N € N. We treat the two sums separately. First observe that for fixed k, the
term prl Zi:”fﬂgl 1ici—NArfA;gA;h has a Fourier transform which is supported in a ball
2k 7. Moreover,

k—N
S L nAfAgAR| <27 flla S 27 g n
i==1ii—j|<1 Lo i=—1

= 27 MO flalgls Al

where in the second step we used that § 4+« < 0. Since o + f + v > 0, the estimate for the
second series in (9) follows from Lemma A.3.

For the first series, recall that R;(Axf,9) = Ai(Axf < g) — ApfA;g. So for fixed j, the
Fourier transform of »7, - Zz‘:|z‘—j\<1 1>, Ri(Arf,9)Ajh is supported in ball 2/ . Further-
more, Lemma 2.3 yields

Z Z 1>k Ri(Arf, 9)Ajh

k=—14:|i—j|<1
§ : 9- i(a+p)
i:li—jI<1

> R (ZAkf g>A h

i:]i—j|<1 ki

oo

> Akf

k<i

S 277 flallgllsllR

so that the claimed bound for ||C(f, g, h)||a+p+~ follows from another application of Lemma A.3.

Now we can uniquely extend C' to a bounded trilinear operator on the closure of the smooth
functions in €% x €% x €7. Unfortunately, this is a strict subset of €% x €° x €7. But we
obtain similar bounds for C' acting on €% x €% x € for o/ € (0,1) and 3,+ € R, such that
o <a, B <B,7 <7 and o/ + 5 +~ > 0. Since €* x €8 x €7 is contained in the closure of
the smooth functions in €% x €7 x €7, the extension of C to € x €8 x €7 is unique. [

Remark 2.5. The restriction 5+ < 0 is not problematic. If 5+~ > 0, then (f < g) o h can be
treated with the usual paraproduct estimates, without the need of introducing the commutator.
If B+~ = 0, then we can apply the commutator estimate with 7/ < ~ sufficiently close to v such
that a« + 84+~ > 0.

Our next result is a simple paralinearization lemma for non-linear operators.

Lemma 2.6 (see also [BCD11], Theorem 2.92). Let o € (0,1), 8 € (0,a|, and let F € C;Jrﬂ/a.
There exists a locally bounded map Rp: € — €17 such that

F(f)=F'(f) < f+ Rr(f) (10)
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for all f € €“. More precisely, we have

IRE (D)ot s S IF | guesra(d+ [ £1559).
If F e C’f +B/a; then Rp is locally Lipschitz continuous:

1RF(f) = BE()llats S IFg2rara L+ flla+ lglla) 77N — gl

Proof. The difference F(f) — F'(f) < f is given by

Rp(f) =F(f) = F'(f) < f = D _IAF(f) = SiaF'(HAS] = Y i,

i>—1 i>—1

and every u; is spectrally supported in a ball 2¢4. For i < 1, we simply estimate |u;| =~ <
||FHC§ (14| f|la)- Fori > 1 we use the fact that f is a bounded function to write the Littlewood-
Paley projections as convolutions and obtain

ui(x) = / Ki(e — y)Keir(z — 2)[F(f(y)) — F'(£(2)) f ()] dyd=
- / Ki(x - y)Keia(z — 2)F(f(y) — F(f(2)) — F(F(2)(f(y) — £(2)))dydz,

where K; = Z'p;, Key_q = > j<i—1 K, and where we used that J Ki(y)dy = pi(0) = 0 for
i>0and [ Koi1(z)dz =1 for i > 1. Now we can apply a first order Taylor expansion to F
and use the 3/a-Holder continuity of F” in combination with the a~Holder continuity of f, to
deduce

ui(z)] S HFHC;w/aIIfIIiW/a / [Ki(e = y)Kcima(z —2)| x |z — y* T dydz

SIFl ol P2,

Therefore, the estimate for Ry (f) follows from Lemma A.3. The estimate for Rp(f) — Rr(g) is
shown in the same way. O

Let g be a distribution belonging to €? for some 3 < 0. Then the map f — f o g behaves,
modulo smoother correction terms, like a derivative operator:

Lemma 2.7. Let a € (0,1), 8 € (0,a], v € R be such that o+ 3+~ > 0 but o+ < 0. Let
Fe C;JFWOC. Then there exists a locally bounded map Ip: € x €7 — €*PHY such that

F(f)og=F'(f)(fog)+Tr(fg) (11)

for all f € € and all smooth g. More precisely, we have

ITTr(Fs llatpey S I grare (L + LFIEE ) gl
If F e C’g+5/a, then g is locally Lipschitz continuous:

HLr (£, 9) = Wp(u, )llatpey S I1F Nl garore (L4 (1 flla + lull) 7+ [0l ) (UL = ulla + [lg = v]l-)-
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Proof. Just use the paralinearization and commutator lemmas above to deduce that

I(f,9)=F(f)og—F'(f)(fog)=Rr(f)og+ (F'(f) < flog—F(f)(fog)
= Rp(f)og+C(F'(f), f.9),

so that the claimed bounds easily follow from Lemma 2.4 and Lemma 2.6. ]
Besides this sort of chain rule, we also have a Leibniz rule for f — fog:

Lemma 2.8. Let a € (0,1) and v < 0 be such that 2a.+ v > 0 but a + v < 0 Then there exists
a bounded trilinear operator Il : €% x €% x €7 — €**17, such that

(fu)og= fluog)+u(fog)+Ik(f,ug)
for all f,u € €“(R) and all smooth g.

Proof. 1t suffices to note that fu = f <u+ f > u+ f ou, which leads to

Hx(f,u,g):(fu)og—f(uog)+u(fog):C(f,u,g)—i—C(u,f,g)—i—(fou)og

O
3 Rough differential equations
Let us now resume the analysis of Section 2.2. We want to study the RDE
Ou=F(u)§,  u(0)=uo, (12)

where ug € R%, u: R — R? is a continuous vector valued function, £: R — R" is a vector valued
distribution with values in €~ for some a € (1/3,1), and F: R? — L£(R",R?) is a family of
vector fields on RY.

In order to obtain concrete estimates, we have to localize the equation. Therefore, we
introduce a smooth cut-off function ¢ with support on [—2, 2], which is equal to 1 on [—1, 1] and
modify the equation as

Ou = pF (u)€, u(0) = up.

In the regular setting, if w is solution to this equation, it is also a solution of the original
equation on [—1, 1], and thus it is sufficient to study the last equation for local bounds. To avoid
problems with the fact that the paraproduct is a (mildly) non-local operation, we modify the
paracontrolled ansatz as follows:

u=@(F(u) < 9)+u (13)
If Fe C’g, an easy computation gives

O = pF (w)€ — (80) (F(u) < 9) — (0 F (u) < 9) — p(F(u) <€)
= ¢ [(F(u) = &) + F'(w)((u = uo) 0 §) + Ip, (u — uo, &) — (BeF (u) < 9]
— (Orp) (F(u) < 9),

where we set F,,(x) = F(ug + x) and used that (F,,) (z — ug) = F'(x) for all z € R%. We
subtract the contribution of the initial condition, because this will eventually allow us to solve
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the equation on a small interval whose length does not depend on ug. If we plug in the modified
paracontrolled ansatz for u, then F’(u)((u — ug) o §) becomes

F'(u)((u —uo) 0 €) = F'(w)((¢(F(u) < 9)) 0 &) + F'(u)((u — up) 0 &).
For the first term on the right hand side we can further use that
(p(F(u) <0)) 0 & = p((F(u) <) 0&) + (F(u) < I)(p o) +1lx(p, F(u) < 9,8,

where we recall that I was defined in Lemma 2.8. So finally, an application of our commutator
lemma yields

Ot = ¢ |(F(u) = €) + g, (u—uo,&) + F'(u)((uf — ug) 0 &) + (F(u) < 9)(p o &)

+ 1L (¢, F(u) < 0,8) + 9C(F(u), 9, €) + F'(w)pF (u)(d 0 §) — (O F (u) < 1)
— (Orp) (F(u) < 9)
= p®F — (Brp)(F(u) < 9), (14)

where ®? is defined to be the term in the square large brackets. Let us summarize our observa-
tions so far.

Lemma 3.1. Let £ be a smooth path, let ¥ be such that 0,9 =&, and let F' € CE. Then u solves
the ODE
Ou = pF(u)§,  u(0) = uo,

if and only if u = @(F(u) < 9) 4+ u®, where ut solves
Ot = p®F — (Bep)(F(u) < 0),  u*(0) = ug — (F(u) < 9)(0),
and where ® is defined in (14). Moreover, for a € (1/3,1/2) we have the estimate
19#]l20—1 S CrCe(1 + lu = uolla + lu — o3 + [|u = uo]l2a),
where

Ce = llglla—1 + 19]la + 19 0 El2a—1 + [Ollallélla-1  and  Cr=[Fllcz + | F]Z,-

The estimate for ®* follows from a somewhat lengthy but elementary calculation based on
the decomposition (14), where we estimate the L> norm rather than the ¢?*~! norm for each
term where this is possible.

Plugging in the correct initial condition for uf leads to

() = o — (Fu) < 9)(0) + /0 Dyt (s)ds

= up — (F(u) < 9)(0) +/ (p®%)(s)ds —/O (0s0) (s)(F'(u) < 0)(s)ds.

0

Now ¢ is compactly supported, and therefore Lemma A.10 gives estimates for the integrals
appearing on the right hand side in terms of distributional norms of the integrands, and we
obtain the bound

[uf — uoll2a S 1 F () < I2a-1 + [ ®H|2a—1 S CrCe(1+ [lu — uglla + lu —uolZ + [[u* — uoll2q)-
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Using that u = p(F(u) < 9) + u*, we moreover have
lu —wolla S 1Fllzeo 1920 + |u* — uollza-

From these two estimates we deduce that if C'r is small enough (depending only on C¢ but not
on |ug|), then ||uf||l2o < |ug| 4+ 1. This is the required uniform estimate on the problem.
Similarly we can show that if F € C3 and if ||F ||C§, is small enough, then the map

(u07 ga 197 6 © 19) = (uv uﬁ)

is locally Lipschitz continuous from €1 x € x €21 x R4 to €% x €%*~!. To summarize:

Lemma 3.2. Let a > 0 and let ||FHC§ be small enough (depending on a). Let &, 9, and ¢ be
smooth functions with & = 0,9 and such that ¢ has compact support. If « > 1/3 and

max{[[{lla—1, |9l 1§ © 201, [l€llcr} < a, (15)
then for every ug € R? there exists a unique global solution u to
Oru = F(u)§, u(0) = uo.

For fized ¢ and F, the solution u depends in a Lipschitz continuous way on (ug,§,9,€ o 9)
satisfying (15).

In order to ensure that || F HC? is small enough we can use a dilation argument. Recall that the
scaling operator Ay is defined for A > 0 by Ayu = u(\-). If we let u* = Ayu and € = A172A\¢
for A > 0, then u* solves

ot = XNUF (uM)er, u(0) = ug.

The rescaling of £€* is chosen so that its € norm is uniformly bounded by that of £ as A — 0.
Indeed, Lemma A.4 yields

1M a1 = A AN a1 S 1+ A Ella-1 S [€]la

for A < 1. If moreover we let 9% = A=¥Ay0, then |9 0 Mlaa—1 < |9 0 €ll2act + [|9]lallélla1
by Lemma B.1 in Appendix B below. Thus, we deduce from Lemma 3.2 that for every ¢ of
compact support there exists A > 0, such that for all ug € R% we have a unique global solution
u to

ot = EAYF (uM)E, u(0) = ug.

The rescaled problem is equivalent to the original one upon the change F — A*F, £ — ¢ and
Yo&— 9ot Soif we set u = A,—1u”, then u is the unique global solution to

Ou = prF(u)g, u(0) = uo,

where we set p)(t) = ¢(t/A). In particular, if ¢ =1 on [—1, 1], then u is the unique solution to
the original RDE in the interval [—A, A]. Since A can be chosen independently of ug, we can now
iterate on intervals of length 2\, and obtain a global solution u € €.

This analysis can be summarized in the following statement.

Theorem 3.3. Let a > 1/3. Assume that (§%)e>0 s a family of smooth functions with values
in R™, (u§) is a family of initial conditions in R?, and F is a family of C’g vector fields on
R?. Suppose that there exist ug € R, € € €1 and n € €** ' such that (ug, &8,0°, (V5 0 £9))
converges to (ug,&,9,n) in €21 x €% x €21, where 9 and 9 are solutions to O9° = &° and
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Oy = &, respectively. Let for € > 0 the function u® be the unique global solution to the Cauchy
problem
O’ = F(u®)E°, u®(0) = ug.

Then there exists u € 60, such that u® — w in 65, as € — 0. The limit u depends only on

(uo,&,9,m), and not on the approzimating family (uf, &5, 0%, (V¢ 0 £°)).

Proof. The only point which remains to be shown is the convergence of (u®) to u in 4%,. A
priori, we only know that for sufficiently small A > 0, the solutions @¢ to 9yu® = @) F(u°)& with
u(0) = ug converge, as € — 0, in €% to a unique limit @. But since ¢ = 1 on [—\, \], we
have 4°[[_) ) = u®[[—x,n- So if we define u|[_y ) = @[y ), then u[_, ) does not depend on @,.
Moreover, for every 1 € 2 with support contained in [—\, A], we also have that |[¢(u® — u)||a
converges to zero as € — 0. Now we can iterate this construction of u on intervals of length 2\.
We end up with a distribution u € %/, which only depends on (ug, F,&,9,n), but not on ¢y
or on the approximating sequence (ug, &%, 9°,£% 0 9%).~0. If ¥ € 2, then it can be written as a
finite sum of smooth functions with support contained in intervals of length 2, and therefore
Yu = lim._, Yu®, where convergence takes places in €. 0

Remark 3.4. By Lemma 2.7, it suffices if F' € C’gﬂj/a for some 8 > 0 with 2a+ 8 > 1 to obtain
existence and uniqueness solutions. If we only suppose F € C*t8/® and not that F and its
derivatives are bounded, we still obtain local existence and uniqueness of solutions. In that case
we may consider a function G' € Cg /% that coincides with F' on {lz] < a} for some a > |ug.
The Cauchy problem

o = G(v)&, v(0) = uyp,

then has a unique global solution in the sense of Theorem 3.3. If we stop v upon leaving the set
{|z| < a}, we obtain a local solution to the RDE with vector field F.

3.1 Interpreting our RDE solutions

So far we showed that under the assumptions of Theorem 3.3 there exists a unique limit u of the
solutions to the regularized equations, which does not depend on the particular approximating
sequence. In that sense, one may formally call u the unique solution to

Ou = F(u)€, u(0) = up.

But u is actually a weak solution to the equation if we interpret the product F'(u)§ appropriately.
Below we will introduce a map which extends the pointwise product F'(u)¢ from smooth £ to
£ € €1 by a continuity argument. But first we present an auxiliary result which shows that
the considered topologies and operators do not depend on the particular dyadic partition of
unity that we use to describe them.

Lemma 3.5. Let o, € R. Let (x,p) and (x,p) be two dyadic partitions of unity and let
(<,>,0) and (=,>=,9) denote paraproducts and resonant term defined in terms of (x,p) and
(X, p), respectively. Then

(u,v) = (U<V—uU <V, UV —UDT V, U=V —U = V)
is a bounded bilinear operator from € x €° to (€“+°)3.

Proof. The statement for (u,v) — (u < v —u < v) (and thus for (u,v) — (u = v —u = v))
is shown in Bony [Bon81], Theorem 2.1. But for smooth functions v and v we have uov =
uv —u < v — u = v, and similarly for u 6 v. Thus, the bound on u o v — u o v follows from the
bounds on v < v —u < v and on u = v —u = v in combination with a continuity argument. [J
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Our commutator lemma states that if the product go h is given, then we can unambiguously
make sense of the product (f < g) o h for suitable f. This leads us to the following definition.

Definition 3.6. Let o € R, 8 > 0, and let v € €. A pair of distributions (u,u’) € €~ x €
18 called paracontrolled by v if
w=u—u <veEt’

In that case we abuse notation and write u € 2° = 25 (v), and we define the norm

lullgs = I1/lls + [lu[las.

According to Lemma 3.5, the space 2° does not depend on the specific partition of unity
used to define it. To construct the product F(u)£, we could now show that smooth F' preserve
the paracontrolled structure of u. This can be achieved by combining Lemma 2.6 with another
commutator lemma (Theorem 2.3 in [Bon81]). But we do not need the full strength of that
result, let us just show that if u is paracontrolled by ¥ and F' is smooth enough, then F'(u)¢ is
well defined.

Theorem 3.7. Let o € (0,1), B € (0,a], v < 0 be such that a + 8+~ > 0. Let F € C1t#/«
and let v € €%, w € €7, n € €7 be such that there exist sequences of smooth functions (v,),
(wy), converging to v and w respectively, such that (vy, o wy,) converges to n. Then

PP(0) 3 u— Flu)w = F(u) = w4+ F(u) < w~+ Op(u, w) + F'(u)(uf o w) (16)
+ F'(uw)C (', v,w) + F'(u)u'n € €7

defines a locally Lipschitz continuous function. If w is a smooth function and n = v o w, then
F(u)w is simply the pointwise product.

The product F(u)w does not depend on the specific dyadic partition used to construct it: if
(=,>,0) denote paraproducts and resonant term defined in terms of another partition unity, if

f=n+v<w+v=w—v < w—0v = w,

and @ = u' X v, then F(u)w is equal to the right hand side of (16) if we replace every operator
by the corresponding operator defined in terms of (<, >=,9), and we replace uf by @f andn by 7.

Proof. The local Lipschitz continuity of the product follows from its definition in combination
with Lemma 2.4, Lemma 2.7, and the paraproduct estimates Lemma 2.1.
If w is smooth and n = v o w, then

F'(uw)C (W, v,w) + F'(u)u'n = F'(u)((u' < v) ow),
and therefore
5 (u, w) + F'(w)(uf o w) + F'(u)C(u, v, w) + F'(u)u'n = p(u,w) + F'(u)(uow) = F(u) o w,

which shows that we recover F(u) < w+ F(u) = w + F(u) o w, i.e. the pointwise product.
It remains to show that F'(u)w does not depend on the specific dyadic partition of unity. By
continuity of the operators involved, we have

Fluyw = lim [F(u) < wp + F(u) = wp + p(u, wy) + F (u) (uf 0 w,)

4 PO, 1) + (i (00 )|

— lim [F(u)wn + F'(w) (W < (vn — v)) o wn)]

n—o0
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Assume now that we defined F'(u) - w in terms of another partition of unity, as described above.
Then Lemma 3.5 implies the convergence of (v, & wy,) to 77 in €*T7, and therefore

F(u)-w= lim [F(u)wn FF () (W =2 (vn —0)) B wy)].

n—o0

Another application of Lemma 3.5 then yields F(u)w = F(u) - w. O

Remark 3.8. If in the setting of Theorem 3.7 we let & = v+ f for some f € €**#, then we have
PP (v) = 2P(0), and it is easy to see that if we set 7 = n+ fow, 4* = u — v’ < ¥, and define

e

F(u)w like F(u)w, with o, %, i replacing uf, v, n, then F(u)w = F(u)w.

With this product operator at hand, it is relatively straightforward to show that if ¢ has
compact support (which in general is necessary to have u € €“ and not just in €2.), then
the solution u that we constructed in Theorem 3.3 is the unique element of 2% which solves
Ou = F(u)€, u(0) = up, in the weak sense. Remark 3.8 explains why we did not fix the initial
condition 9¥(0) in Theorem 3.3: it is of no importance whatsoever.

3.2 Alternative approach

We briefly describe an alternative approach to RDEs which avoids the paracontrolled ansatz. The
idea is to control uo ¢ directly by exploiting that u solves the differential equation dyu = F'(u)€.
Indeed, let as above 1 be a solution to 9y} = £ and observe that the Leibniz rule yields

uol=uod =0 (uo) —duod =0(uov)— (F(u)) od.
Now the second term on the right hand side can be rewritten as

(F(u)f)od = (F(u) <& o+ (Fu)o&)od+ (F(u) = &) ot
=F(u)(£09) + C(F(u),&9) + (F'(u)(uo&)) o +Up(u,&) o + (F(u) = &) o 9.
Combining these two equations, we see that
uol=®— (F'(u)(uof)) o, where
® =0 (uod) — F(u)(§od) — C(F(u),§ ) — p(u,§) 0¥ — (F(u) = &) o 0.

This is an implict equation for u o & which can be solved by fixed point methods. For example,
it is easy to obtain the estimate

[uo&ll2a—1 S [|®ll2a—1 + CFllu o &llaa—1[7a

and if C'r is small enough this leads to ||u o &|laa—1 < ||Pll2a—1. Moreover, we have ||®|laa—1 <
Ce[l|lulla + Cr(1 + ||lul|o)?). These estimates can be reinjected into the equation

Ou=Fu)é=F(u) <&+ F(u)(uof) + Fu) = £+ R(F'(u),u,§)

to obtain a local estimate for w.

3.3 Structure of solutions to RDEs

In this section, we would like to discuss how the combination of analytic and algebraic require-
ments generate very interesting phenomena in the context of irregular PDEs. We will discuss
only the simple case of RDEs but similar considerations apply also to the other models. These
remarks are intentionally sketchy and have only a heuristic purpose, we plan to come back to
them more systematically in a further publication.
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The stable form of an RDE. As we have seen, the solution to the RDE (12) for smooth &
can be understood as a regular function of (ug, £,90&) € R x €1 (R, R") x €2~ (R, R" x R"),
where 1 is a solution to 9y = £. Let us denote this function by u = ¥(ug, &, ¥0§). The structure
of the solution which we derived above shows that for n € €?*~!, the RDE

0w = F(v)§ + F'(v)F(v)n,  v(0) = uo, (17)
has a solution which can be obtained from the same map by replacing ¥ o £ with ¥ o & + 1, i.e.
v = W(ug,&,9 0 & +17).

Moreover, the solution v depends continuously on the data ¥ o £ + 1 € €2~ . First note that
this regularity hypothesis concerns only the combination 9 o £ + 1, and second note that many
equations share a similar structure and one can pass from solutions of one equation to solutions
of other equations via a transformation of the (extended) data of the problem.

For many reasons, all these differential equations should be considered to be the same object,
especially when dealing with data of low regularity. To understand this point of view, consider
two different families (£%).s0 and (£%)eso of smooth functions, such that both converge to ¢ in
% “~1. The corresponding solutions (u¢) and (@) to equation (12) are given by u® = W (ug, £5,9°0
€9) and @€ = W(ug, &%, 0° 0 €°). Let us take the limit as ¢ — 0 and assume that 9 o €& — ¢ in
%22=1 and also that ¢ 0 €& — 9 in €21, where ¥ £ 4J. This could happen in principle, and it
is not difficult to find specific and relevant examples of this multiplicity of limits. Of course, we
have

ﬁaoga_&aogazﬂaga_&aée_ﬁa_<§a_0a>_§a+1§a_<éa+,l§a>_ée'

Since (¥°) and (¥F) both converge to ¥, where 8y = ¢, we deduce from the continuity of the
paraproduct that all the terms on the right hand side cancel, except the first two, and we remain
with

=99 = lim (7€ — 9°€°).

lim
n—oo
Incidentally, this line of reasoning also shows that if the limit exists, it does not depend on the
particular Littlewood-Paley decomposition we use to compute it. From the continuity of W it
moreover follows that u® — w and @° — @ where u = ¥(ug, §, ) and @ = ¥(up, &, ¥ + n). That
is, different approximations of the same equation could lead to different equations in the limit.
In particular, if £ is smooth enough (but (£°) does not converge to £ in a space of sufficiently
high regularity), we can interpret u as a classical solution to a differential equation, and in this
case v’ will solve a modified equation.

Rough paths as a transformation group. We can therefore identify €%~ x €?*~! with
a transformation group (Ty.g) s gega-1xg20-1, which acts on solutions to ODEs via

Ty,g¥(uo,&m) = U(uo, § + fyn+dof+Pol+ Qo f+g)

where ® solves 0;® = f. In particular, W(ug,§, 1) = T¢ y—9oe ¥ (uo,0,0). The neutral element is
To,0 and the group operation is Ty Ty oo = T4 fr g4+47, 0 that the group is abelian. A simple
distance is given by

AT T g) = d(Ti—prg—g. To0) = | = Fllac1 +lg— g + (@2 = @) o (f — f')||l2a-1,

where ® and @ are the definite integrals with ®(0) = ®'(0) = 0 of f and f’ respectively.
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Geometric conditions. Note that if Jg and J4 denote respectively the projections onto
symmetric and antisymmetric tensors, then for smooth &, 9 we have

Js(90&) = Jg(¥ 0 8y9) = %atjsw o),

where the right hand side is now well defined for all 9 € ¥* and defines a distribution in ¢2*1.
So for any family £ — € in €*~! we have that

Js(9° 0 ) = %atjsws 0 ¥F) = %@JS(QS‘ )

as ¢ — 0, and only the antisymmetric part J4(9° o £) could feature multiple accumulation
points. To highlight the geometric meaning of the symmetric and antisymmetric parts of ¢ o £
we can submit the RDE to a nontrivial transformation given by the application of a smooth
diffeomorphism ¢: R? — R?. If v is a solution to the RDE dyu = F(u)&, then v = ¢(u) solves

O = ¢'(u)Opu = ¢' (u) F(u)§,
i.e. an RDE with vector field (¢'F) o ¢~1. We have
0d(Ty,gu) = ¢ (Tr.gu)0n(Tygu) = ¢'(Tyqu)(F(Tygu)(§ + f) + F'(Tygu)F (Tygu)g).

On the other hand, we obtain for T v = T 4¢(u) that

0 Tygv = ((¢'F) 0 ¢~ )(Tygv)(€ + f) + DI('F) 0 o~ ") (Tygv)((¢'F) 0 6~1) (Ty00)g,

and we have D((¢/F)o¢p™!) = ((¢"F+¢'F')op1)(¢') L op~!, where we slightly abuse notation
by writing ¢! for the inverse function of ¢ and (¢')~! for the inverse matrix of ¢’. Thus, we
obtain

0Ttg0 = ($'F) 0 6™ ) (Tg0) (€ + f) + (¢"FF + ¢'F'F) 0 671) (T} 4v)g,

so that ¢(Tf4u) = Ty 4(¢(u)) only if (¢" FF)(¢~1 (T} 4v))g = 0. If this holds for all F and ¢, then
the symmetric part Jgg of g must be 0. In this sense, T, acts geometrically only if Jgg = 0.

3.4 Connections to rough paths and existence of the area

We saw in the previous section that the solution u to an RDE of the form dyu = F(u)¢ depends
on the driving signal in a continuous way, provided that we not only keep track of £ but also
of ¥ o £&. From the theory of rough paths it is well known that the same holds true if we keep
track of ¥ and its iterated integrals [ [7* dY(r1)dd(r2). But in fact the convergence of (¥° o £%)
is equivalent to the convergence of the iterated integrals [ [ d¥=dve:

Corollary 3.9. Let (u®,v%).>0 be a family of smooth functions on R. Define for every e > 0
the “area”

t 9
A= / / dus (r1)dv®(ra), s<teR.

Let a, € (0,1) with a + 3 < 1 and let u € €*,v € €8, n € €*TP~L. Then (uf, v, u o Op°)
converges to (u,v,m) in €% x 6P x €*TP=1 if and only if (u,v%) converges to (u,v) in € x €7,

and if moreover

Agy — AS

lim sup % =0, (18)
e=0 \ ser |s—t|<1 |t — 3]

where we set Ag; = f;(n + (u < Ow) + (u = Ow))(r)dr — u(s)(v(t) — v(s)) for s,t € R.
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Proof. First suppose that (u®, v, uf o 9;v°) converges to (u,v,n) in € x €8 x €*+P~1 and let
s,t € R with |s — t| < 1. We have

At — A5y = /t(n +u = 0w — u® o O — ut = O (r)dr
+/ ((u® —u) < ) (r)dr — (u® —u)(s)(v°(t) — v°(s))
+/ (u < 0x(v° = v))(r)dr — (u)(s)((v° —v)(t) — (v° —v)(s)).  (19)

The first term on the right hand side can be estimated with the help of Lemma A.10, which
allows us to bound increments of the integral in terms of Besov norms of the integrand. We get

t
/ (n+u > 0w — uf 0 Opv® — u® = Op°)(r)dr

S (ln = 0 8% ot + lu — w[lallOpwllg—1 + [0 llallBe(v° = v)llg-1)]t — s[**7,

using also the paraproduct estimates. Since ||0¢(v — v)||g—1 S [|[v® — v||3, the right hand side
goes to zero if we divide it by [t — s|**? and let € — 0.

The second term on the right hand side of (19) can be estimated using Lemma B.2, which
roughly states that time integral and paraproduct commute with each other, at the price of
introducing a smoother remainder term:

/ ((u =) < Ov™)(r)dr — (u — w)(s)(v*(t) = v°(s))| S [t = 5|7 u” — ullallv®]l3,

The third term on the right hand side of (19) is of the same type as the second term, and
therefore the convergence in (18) follows.

Conversely, assume that (u®,v®) converges to (u,v) in €® x €7, and that the convergence
in (18) holds. It follows from the representation (19) and the convergence of (u®, v¢) to (u,v) in
€™ x €, that also

) ‘ fst(n —ufo &mﬂ(r}dr!
lim sup e = 0.
€0 \ s£teR,|s—t<1 |t — s

Due to the restriction |s — t| < 1, it is not entirely obvious that this implies the convergence of
uf o 9,v° to n in €P~1. However, here we can use an alternative characterization of Besov
spaces in terms of local means. Let k and k be infinitely differentiable functions on R with
support in (—1,1), such that Fk°(0) # 0, and such that there exists § > 0 with Fk(z) # 0 for
all 0 < |z| < . Then an equivalent norm on €**t5~1(R) is given by

|w|atp—1 =~ max {Hko e, sup 2/ (e FA=1) 127 )5 (27.) w||Loo},
Jjz

see [Tri06], Theorem 1.10. Let us write f = [;(n — u® 0 9,v°)(r)dr and let t € R and j > 0.
Then

27K(27) % () (1) = 2%

/R (Ok) (2 (t — $))(F(1) — £(s))ds

5 22]’/ ‘(8tk>(2j(t o S))Ht— 8’a+’8d3 sup |f(b) - f(a)’ < 2—j(a+,8—1) sup |f(b) - f(a)’
R

a—bj<1 [0 — a8~ a—bj<1 [b—alotF
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where we used that [, 9;k(t)dt = 0, and that k is supported in (—1,1). Similarly, we obtain

1f(b) = fla)| _ £ (b) = f(a)]

b—al*t? g b—altP

K0 5 (D) (8)] < / OOt — )|t — 5|7 Bds sup
R

la—b|<1
from where the convergence of u¢ o 9;v° to 1 in €*+#~1 follows. O

Corollary 3.10. Let X be an n—dimensional centered Gaussian process with independent com-
ponents and measurable trajectories, whose covariance function satisfies for some H € (1/4,1)
the inequalities

E[| X, —Xs|2] < |t—s|2H and
IE[(Xorr — Xo)(Xer — X0)]| S |t — 5277207 (20)

for all s,t € R and all v € [0,|t — s|). Then pX € €% for all « < H and all ¢ € D, and there
exists n € €271 such that for every ¢ € % with [dt =1 and for every § > 0 we have

Lm P ([[9° + (0X) = (pX)[la + [I(7 % (X)) 0 0e(¥° ¢ (pX)) = nllg20-1 > 8) =0,

where we define 1° = e 1ap(e71).

Proof. Since ¢ is smooth and of compact support, it is easy to see that also the Gaussian
process pX satisfies the covariance condition (3.10), and using Gaussian hypercontractivity we
obtain E[|p(t)X; — (s)Xs|?P] < |t — s|?HP for all p > 1. Using the fact that X has measurable
trajectories, we can apply this estimate to show that E[HgoXH%pg , |]<ooforalp>1, a<H.
Now it suffices to apply Besov embedding, Lemma A.2, to obtaizﬁ Zhat pX € 6.

Moreover, ¢ X has compact support. So by Theorem 15.45 of [FV10], for every p > 1, the
iterated integrals fst J7? dy© « (9 X)(r1)dy® « (9X)(r2) converge in LP in the sense of (18). The
statement then follows from Corollary 3.9. O

Remark 3.11. The proof of Corollary 3.9 actually shows more than the equivalence of the con-
vergence of A¢ and of u o 9;v°: it shows that the norm of (u® o 9,v° — n) can be controlled by a
polynomial of the norms of (A° — A), (u® —u), and (v —v). So in fact we have LP—convergence
in Corollary 3.10, and not just convergence in probability. Alternatively, the LP—convergence is
obtained from the convergence in probability because we are considering random variables living
in a fixed Gaussian chaos, see Theorem 3.50 of [Jan97].

Combining Corollary 3.10 with Theorem 3.3, we obtain the following corollary:

Corollary 3.12. Let X be a n—dimensional centered Gaussian process satisfying the conditions
of Corollary 3.9 for some H > 1/3, and let ¢ € P and F € C’g. Then there exists a unique
solution u to

0w = F(u)0(¢X), u(0) = up,

in the following sense: If € . with [¢dt =1 and if for e > 0 the function u® solves
ou® = F(u®)0(pX)*, u(0) = uyp,

where (pX)® = e () x (pX), then u converges to u in probability in €% for all o < H.
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4 Rough Burgers equation
Fix now ¢ > 5/6 and consider the following PDE on [0,7] x T for some fixed T' > 0:
Lu = G(u)0zu + &, u(0) = wo, (21)

where L = 0; + (—A)? and up € € for a suitable . We would like to consider solutions u in
the case of a distributional £, and in particular we want to allow £ to be a typical realization
of a space-time white noise. We will see below that in this case the solution ¥ to the linear
equation LY = &, ¥(0) = 0, belongs (locally in time) to €(T) for any oo < o —1/2, but it is not
better than that. This is also the regularity to be expected from the solution u of the non-linear
problem (21), and so for o < 1 the term G(u(t))0,u(t) is not well defined since G(u(t)) € €*(T)
and O, u(t) € € 1(T), and the sum of their regularities fails to be positive.

For o = 1, this equation has been solved by Hairer [Haill], who used rough path integrals
to define the product G(u)d,u. In the following, we will show how to solve the equation using
paracontrolled distributions.

While in general it is possible to set up the equation in a space-time Besov space, the fact
that the distribution £ (which is a genuine space-time distribution) enters the problem linearly
allows for a small simplification. Indeed, if we let w = u — ¥, then w solves the PDE

Lw = G(9 + w)0, (9 + w), (22)

which can be studied as an evolution equation for a continuous function of time with values in
a suitable Holder-Besov space:

Recall that for 7> 0 and B € R we defined the spaces Cr%” = C([0, T], €7 (T¢,R")) with
norm [|ul|cs = supgeser ||u(s)|g. By the regularity theory for L we expect w € Cpg* 1127
whenever G(¥ + w)9,(9 + w) € Cr€*~! (at least in the sense of uniform estimates as the

regularization goes to zero). The paraproduct allows us to decompose the right hand side
of (22) as

G+ w)0,(V+w) =GV +w) < 9,9+ G0+ w) 009 + GV 4+ w) = 0,9 + GV + w)ow,

where we have expanded only the term containing 0,1 since the one linear in 9,w is well defined
under the hypothesis that w € C7€*~1729. Note that here we only let the paraproduct act on
the spatial variables, i.e. G(9 4+ w) < 9,0 should really be understood as

s GO +w(t)) < 89(t),

an element of Cr%“~'. A simple modification of the proof of Lemma 2.6 shows that, for
a € (0,1/2), we have

IG(W+w) = G'(0+w) < V|20 S [Gllez A+ I9II2) A+ [w]2a) S 1G]z A+ ID12) 1+ [[wlla-1+20),

where we used that a — 1 + 20 > 2q, which holds because o < 0 — 1/2 < 20 — 1. The linear
dependence on the norm of w will be crucial for obtaining global solutions. We can now rewrite

G +w) 00,0 = (G +w) — G' (0 +w) < 0) 00,0+ C(G'(0+w), 9, 0,9) + G (I +w) (1 0 ,0).

So if we assume that (9 0 9,19) € Cr€?*~1, then we have a well behaved representation of the
resonant term G (¥ 4+ w) o 99, and

IG(W + w) 0 0Il|2a—1 S G llez (1 + [912) (1 + [[wllamt+20) [0z a1 + [G"(9 + w) [l O3
G (0 + w)llall9 © 0pdl20-1 S CaCo(1 + [wlla-1420),  (23)
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where we set

Co=|Gllcz  and  Cy= sup (1L+[[9(t)]la)’(1 + [[0(2) 0 0xd(t)]l20-1).

te[0,T)
Let us now define
O =G +w)0Y =G +w) <00+ G+ w) > 0,9 + G(I 4+ w) o0 0,9,
so that (23) and the paraproduct estimates yield
1®lla—1 S CaCs(1 + wlla-1+20), (24)
and w satisfies Lw = ® + G(¥ + w)d,w. So if we denote by (P;);>0 the semigroup generated by

—(—=A)7, then

w(t) = Pug —I—/O P,_s®(s)ds —i—/o P,_s(G(I(s) + w(s))0zw(s))ds, (25)

where we assumed that (0) = 0. Applying the Schauder estimates for the fractional Laplacian
(Lemma A.9 and Lemma A.7) to (25), we obtain for all £ > 0 that

[w(t)lla1s20 = ’Ptuo—k /O P y®(s)ds + /0 Py (G(9(s) + w(s))dpw(s))ds

a—1420

< et (Juolla + sup (527 0(5) o)
seg|0,

FIG((s) + w(s))dpw(s)| Lo
+ C/o )

(t — 5)(@—1+20)/(20) ds,

where ¢ > 0 is a generic constant whose value may change in every step. But now recall from
(24) that ||®(s)|la—1 S CaCy(1 + |w(s)||a—1+25). Moreover, if we choose o € (1/3,0 — 1/2)
close enough to o — 1/2, then a + 20 — 2 > 0 (recall that ¢ > 5/6), and therefore

IG(9(s) + w(s))ew(s)| e S NGl Lo |0zw(s) a—2120 S NGl Loe lw($)]la—1+20-
Thus, we get for all ¢t € [0,T] that

(D w(t) a-1120) < €lluolla + cCoCa(1 + Sl[gp](s(%‘”/(%)HW(S)Hafuza))
se|0,t

1-1/(20) ! 1-1/(20) ds
+cCqt (s [w(s)lla+1)
0

(t — 5)(@—1420)/(20) §1-1/(20)

Since (o« — 14 20)/(20) < 1, we have

t
tl—l/(ZU)/ ds < l=(a=1420)/(20) < 1
0 (t _ S)(a—l+20‘)/(20‘)81—1/(20') ~ ~

for t € [0,T]. Putting everything together, we conclude that

(P w()[la1420) < cl|uglla + cCoCal(l + Sl[lp](s(%*l)/@")Hw(S)Ha—1+2a))-
s€(0,t

In order to turn this into a bound on ||w| ¢ ge-14+20, We use again a scaling argument. We
extend the scaling transformation to the time variable in such a way that it leaves the operator
L invariant. More precisely, for A > 0 we set Ayu(t,z) = u(\?7t,Az), so that LAy = A29A,\L.
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Now let v = Ayu, w = Ayw, and ¥* = Ay0. Note that u: [0,7/X*°] x Ty — R, where
Ty = R/(2rA71Z) is a rescaled torus, and that w* solves the equation

Luw® = A2 AyLw = A2 A\ (@ + G(w + 9)d,w) = N2 A\® + N7 1G(w + 02) 9w
The same derivation as above shows that
[AA®(8) a1 = IGOE) + w () A(0:0) (B)la—1 S CaCpr (1 + W (t)la-1+20),
where we get using Lemma A.4 and Lemma B.1

Cyr = sup (1+ [[92()]|a)? (1 + [[9* 0 Ax(9:9) (1) 2a—1) S A2*71CF < ATC3
t€[0,T]

as long as A € (0,1]. Thus, we finally conclude that

(Y CO M (B)la-1420) < el Ayuolla + X eCHCG(1+ Sl[lp](s(%_l)/(z”)HwA(S)IIa—Hzo))
s€(0,t

< clluolla + A2 1eC3CE(1 + sup (827D [ () [ac1520))
s€(0,t]
for all A € (0,1]. Since 20 —1 > 0, we get for small enough A > 0, depending only on Cy and
Cg but not on ug, that

sup (¢ C7) [ (#) [l a-1120) < 2(clluo]la + 1)
te[0,7

But u = Ay-1 (w* + 9*), and therefore

sup [Ju(t)]la Sx [luoll + Co.
te[0,A297]
This provides the key ingredient for obtaining a uniform estimate on the full time interval [0, T,
and then the existence of global solutions to the Burgers equation.
Uniqueness in the space of solutions u with decomposition u = 9 + w with w € Cp €112
can be handled easily along the lines above, and we obtain the following result:

Theorem 4.1. Let 0 > 5/6, a € (1/3,0 —1/2), let T > 0, and assume that (§)e>0 is a family
of smooth functions on [0,T] x T with values in R™, and G € C3(R™ L(R",R"™)). Suppose
that there exist 9 € C7€ and n € Cr€**~! such that (9%, (95 o 9,9°)) converges to (V,n)
in Cr€*1 x Or€?*~1, where ¥° are solutions to LY° = £ and ¥¢(0) = 0, and where L =
O + (—A)?. Let for e > 0 the function u® be the unique global solution to the Cauchy problem

Lu® = G(u®)0zu + &, u®(0) = uo,

where uy € €%. Then there exists u € C7E“ such that u® — w in CpE€“. The limit u depends
only on (up,9,n), and not on the approzimating family (9, (9° o 0,9°)).

Remark 4.2. As for RDEs, the limit u of the regularized solutions u® actually solves the equation
Lu = G(u)0zu + &, u(0) = up

in the weak sense as long as we interpret the product G(u)dyu correctly. According to Re-
mark 3.8, it is not important that ©(0) = 0, and we could consider any other initial condition
in 9(0) € € for some v € R to obtain the same solution u. However, of course the right choice
of ¥(0) may facilitate the proof of existence and uniqueness of paracontrolled solutions.

Remark 4.3. Of course, the solution u to the fractional Burgers type equation also depends
continuously on the initial condition ug.
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4.1 Construction of the area

It remains to show that if £ is a space-time white noise, then the solution 9 to L9 = &, 9¥(0) = 0,
is in C7¢® for all & < 0 —1/2, and that the area ¥ 09,1 is in Cr%?*~!. Some general results on
the existence of the area for Gaussian processes indexed by a one-dimensional spatial variable are
shown in [FGGR12]. However, in the present setting it is relatively straightforward to construct
the area “by hand”, using Fourier analytic methods.

In this section, we use .# to denote the spatial Fourier transform, i.e. Fu(t,:)(k) =
fﬂ. e_’kmu(t, z)dz. Recall that F¢ is a complex valued, centered Gaussian space-time distri-
bution, whose covariance is formally given by

E[FE (t,)(k)FE" (¢, )(K)] = 2mLiy Lppd(t — )

for i,4 € {1,...,n}, t,t' € [0,T], k,k' € Z, where § denotes the Dirac delta If (P)eo =
(e7t*7(D))s=0 denotes the semigroup generated by —(—A)?, then 9(t,z) fo (P_s€)(x)ds,
t € [0, 7], from where a straightforward calculation yields the followmg result:

Lemma 4.4. The spatial Fourier transform %9 of ¥ is a complez-valued Gaussian process with
zero mean and covariance

27 Lj—in Lpp (710 IR — o= (H)IRETY f(9)k27), | #£ 0,

ELF0(t,) (k) F07 (¢, ) (k)] = {%1,‘/1“% N k=0

for i,i" € {1,...,n}, kK € Z, and t,t' € [0,T]. As a consequence, E[ﬁﬂi}t(O)W] =

27—y Lp—o|t — |, and for k #0

E[F0. (k) FOL (k)] = mLimy Lpmpr (2 — €720 — o207 9o =2Mt=slb™ 4 9o (sHOIKEy g 20

where we write F9, (k) = FO'(t,-)(k) — FV0'(s,-) (k) for all 0 < s <t <T. In particular,
[ELF 0, (k) F 0%, (R)]| S [t — Ik 72700 (26)

for all 6 € [0,1] and all k # 0.

Our first concern is to study the Holder-Besov regularity of the process 9.

Lemma 4.5. For any a < 0 —1/2 and any p > 1, the process ¥ satisfies

Eth”IéT(ga(T)] < o0.

Proof. Let s,t € [0,7] and ¢ > 0. The case £ = 0 can be treated using essentially the same
arguments, except that then we need to distinguish the cases k = 0 and k # 0, where k is the
argument in the Fourier transform. Using Gaussian hypercontractivity ([Jan97], Theorem 3.50),
we obtain for p > 1 that

(| Acds.l Topmy) Sp IENAD st (@) P11} . (27)

Using Fourier inversion and Lemma 4.4, we have

E[ A ()2 = 27) 2 S pulk)pelk ) EFITELF, (k) T ()]
kk'€Z
S RAEN =P RO S s ST [RPED < ¢ — g[i2f0-200-0)

kezZ kesupp(pe)
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for all 6 € (0,1]. Hence, we obtain from (27) that

o1\ P
B[19(t,) = 905, )%y m) S D LOPEINAD o) S 3 207 (It = sfP2240/2-001-))

>-1 >—1

for any o € Rand any p > 1. For a < 0—1/2 there exists § € (0, 1] small enough so that the series
converges. Since we can choose p arbitrarily large, Kolmogorov’s continuity criterion implies that
¥ has a continuous version with E[W||2CPTB§ , (T)] < oo for all @« < o —1/2. Now we use again
that p can be chosen arbitrarily large, so th;‘é fc7he Besov embedding theorem, Lemma A.2, shows
that this continuous version takes its values in Cr%*(T) for all « < o — 1/2. O

Next, we construct the area ¢ o 9,1.

Lemma 4.6. Define

0 09,0 = (9* 0 0 ) 1<k pcn = ( > MiAjax@ :
1<k f<n

li—jl<1

Then almost surely ¥ o 9,9 € Cr€?*~YH(T;R™") for all o < o — 1/2. Moreover, if ¢ € .7 is
such that [(z)dz =1 and 9° = © x, where ° = e 1ap(e 1), then we have for all p > 1 that

tim E[[[§ 0 0,0° 9 0 0,92, 0] = 0. (28)

Proof. Without loss of generality we can argue for 9! 0 9,92. The case 9! 0 9,9! is easy, because
Leibniz’ rule yields 9! o 9,91 = 19, (91 o 91).

Let ¢ € N. Note that if ¢ is smaller than ¢ — N for a suitable N, and if |i — j| < 1, then
Ap(AifAjg) = 0 for all f,g € .. Hence, the projection of ¥ o 9,9 onto the (~th dyadic
Fourier block is given by

A0 00:0%) = > Ap(A'N;097) = D Ly Ag(AWA;0L9?).

li—jl<1 li—jl<1

To avoid case distinctions, we only argue for £ > N, so that we can always assume 7,5 > 0. The
case £ < N can be handled using essentially the same arguments.
We can apply Gaussian hypercontractivity to obtain

E[[[(Ae(9" 0 0:0% = 91 0 0:0%)) s o )

T (29)

<[el
L5(T)

T

D i (A A 20,0 — A A 0,077 () s

li—jl<1

where we write 91 = ¢ x ¥ and similarly for ¥%°.
Let us start by estimating

?

2
Z Lo<i A(AD' (8, ) A0, 07 , — A0 (E, ')Ajaxﬁgf)(fﬂ) ]
i=j<1

= Y Ll EIAUAD (1) A 0,9%, — AV (1) A,0,9%) ()

i—j|<1 i —j'|<1
J J

X Ap(Ap9L(t, )Ny 9,02, — A9V (t, ) A; 0,027 ) (2)]. (30)

28



Taking the infinite sums outside of the expectation can be justified a posteriori, because for
every finite partial sum we will obtain a bound on the L?norm below, which does not depend
on the number of terms that we sum up. The Gaussian hypercontractivity (29) then provides a
uniform LP—bound for all p > 2, which implies that the squares of the partial sums are uniformly
integrable, and thus allows us to exchange summation and expectation.

Recall that % (uv)(k) = (2m)" 1>, Fu(k)Fv(k — k'), and F(9,u)(k) = 1kF (u)(k), and
therefore

A (A'ﬁl( .)A 0 ﬂzt — Aiﬁl’a(t, )Ayaxﬂif)(x)
@2m)"E N pek)e B0 T (AL (E, ) 80502, — AIVE(E, ) A;0075 ) ()
keZ

= 2m)2 S pelk)e S puk ) (k — Kl — K).Z9 (1, ) (k) F 02 (k — K)
kK €T
% (1 — Z(k)) F ek — K))).
From this expression it is clear that if we can show E[||9° o 81195||%T<52a,1] < 00, then the
convergence result in (28) will follow by dominated convergence, because % is bounded and
F1(0) =1 by assumption.
Using the covariance of %1 that we calculated in Lemma 4.4, we obtain
Z 1551A5(Aﬂ91(t,-)Ajamﬁit)(x)

2
? |
li—jl<1

S DD il > pilk+ ) pi(k)pir (k)pi (K )pyr ()

li—j]<1 |i'—5'|<1 kk'ezd
1 — e 2k 2 811 1—20(1—6
X W'M |t — s]°|k/| 72 (1=9)
Z 1€§i Z p%(kﬁ + k‘/)22i(1_20+06)’t _ 8‘6
li—jl<1 kesupp(p;),k’€supp(p;)
S Z 2422i(1+1/2—20+06)|t _ S|5
>0

for all § € [0,1]. Since 0 > 5/6, there exists § > 0 small enough so that the sum is finite, and
we obtain
?

and by the same arguments
?
Since

Aiﬁl(t, -)Aj8x792(t, ) - Ai’ﬁl(S, ')Ajax?}2(8, ) == Ai’ﬁl(t, -)Ajf)xz?it + Aﬂ?;tAjaxﬁZ(S, -),

D LA A (¢, ) Aj0L02,) ()

li—jI<1

)

2
:| < 22i(2—20+06)|t _ S|5

Z Lo<i Ag(A} A ;097 (s, 7)) (2)

2
:| S, 22i(2720+a6)’t _ 8’5.
li—jI<1

we get for sufficiently small § > 0 and for arbitrarily large p > 1 that
[”Ag(l?l 0d 192)st||L2p ’]I‘)] < 2—25(20 2—04) p|t S|5P'

Now we use the same arguments as in the proof of Lemma 4.5 to obtain the required LP-bound
for |9 0 0,9%||cpg20—1 with a < o —1/2. O
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Now Lemma 4.6 and Theorem 4.1 give us the existence and uniqueness of solutions to the
fractional Burgers type equation driven by space-time white noise:

Corollary 4.7. Let o >5/6, a € (1/3,0—1/2), T >0, G € C}, up € ¢*(T), L = 9y + (—A)°,
and let & be a space-time white noise on [0,T] x T with values in R™. Then there exists a unique
solution u to

Lu = G(u)0zu + &, u(0) = wo,

in the following sense: If € . with [¢dt =1 and if for e > 0 the function u® solves
Lu® = G(u®)0u® + &°, u(0) = uo,
where €5 = e~ 1p(e-) x &, then u® converges in probability in CrE* to u.

Remark 4.8. There is no problem in considering the equation on T rather than on T%, and the
analysis works exactly as in the one-dimensional case. The proof of Lemma 4.5 shows that if £
is a space-time white noise on [0, 7] x T¢, then the solution ¥ to L9 = &, ¥(0) = 0, will be in
Cr€*(T?) for every a < o —d/2. So as long as 0 —d/2 > 1/3, we can solve the Burgers equation
on T¢. For the existence of the area 1 o 3,9 we need the additional condition 26 —d/2 — 1 > 0;
see [Perl4], Lemma 5.4.3. But if o0 — d/2 > 1/3, then this is always satisfied.

5 A generalized parabolic Anderson model
Consider now the following PDE on [0, T x T? for some fixed 7' > 0:

where L = 0 — A, the function F' is continuous from R to R, £ is a spatial white noise, and
ug € €° for suitable a € R. Formally, this equation is very similar to the rough differential
equation (12).

The regularity of the spatial white noise  on T¢ is n € €~%27¢ for all ¢ > 0. Since we are
in dimension d = 2, we have £ € ¥~ 17¢. The Laplacian increases the regularity by 2, so we
expect that for fixed t > 0 we have u(t) € €'~¢, and therefore the product F(u)¢ is ill-defined.

However, let us assume that ¢ € €%~ 2(T?) for some 2/3 < o < 1, and let ¥ € €“ be such
that Ly = £. Consider the paracontrolled ansatz

uw=F(u) <0+ uf

with uf € C7p%?®, and where as in Section 4 the paraproduct < is only acting on the spatial
variables. If u is of this form, then Lemma 2.7 and Lemma 2.4 imply that

F(u)§ = F(u) < £+ F(u) = E+ F'(u)F(u)(9 0 &) + F'(u)C(F(u), 9, &) + F'(u) (w0 &) + L5 (u, €)

is well defined provided that (9 o &) € Cr€?*~2. Moreover, the algebraic rules for d; and A
acting on products imply that

Lu = (LF(u)) <94 F(u) < LY — 2D, F(u) < D0 + Luf,
and thus we find the following equation for u*:

Luf = 2D, F(u) < Dyt — (LF(u)) < 0+ F(u) = & + F'(uw)F(u)(9 0 £)
+F'(u)C(F(u),9,8) + F'(u)(uf 0 &) + Hp(u,§).
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We would like all the terms on the right hand side to be in Cr%?*~2. However, it is not easy
to estimate the term (LF(u)) < ¢ in C7€P for any § € R: the term AF(u) can be controlled
in €2, but there are no straightforward estimates available for the time derivative 9, F(u)
appearing in LF(u). Indeed, it would be more convenient to treat the generalized parabolic
Anderson model in a space-time parabolic Besov space adapted to the operator L and to use
the natural paraproduct associated to this space. An alternative strategy would be to stick with
the simpler space C7%*~2 and to observe that

LF(u) = F'(u)Lu — F"(u)(Dyu)? = F'(u)F(w)é — F"(u)(Dyu)?,

and that the terms on the right hand side can be analyzed using the paracontrolled ansatz.
Since this strategy seems to require a lot of regularity from F, we do not pursue it further.

Instead, we keep working on C7¢* 2, but we modify the paraproduct appearing in the
paracontrolled ansatz. Let ¢: R — R, be a positive smooth function with compact support and
total mass 1, and for all i > —1 define the operator Q;: Cr¢? — C7€” by

Qurtt) = [ 202t~ 9)F(sAT) v 0)ds.
R
For Q; we have the following standard estimates, which we leave to the reader to prove:
1Qif()lpoe < fllerroes  106Qif @)llzee < 2%72| fllcg poc (32)
1Qif = Nl <27 flleg poo

for all t € [0,T] and all v € (0,1); for the second estimate we use that [ ¢'(¢t)dt = 0, and for
the third estimate we use that ¢ has total mass 1. With the help of @);, let us define a modified
paraproduct by setting

f=<g=> (Si1Qif)Aig

()

for f,g € Cp.”’. Tt is easy to show that for this paraproduct we have essentially the same
estimates as for the pointwise paraproduct f < g, only that we have to bound f uniformly in
time; for example

I =< 9)Dlla S Ifllorr=llg®)la-

for all ¢ [0,T]. For us, the following two commutator estimates are the most useful properties
of <.

Lemma 5.1. Let T >0, a € (0,1), B € R, and let u € CpE* N C’;/QLOO and v € Cr€P. Then
[L(u < v) —u = (Lv)lgpgats-2 S (lull parz o + [ullorge)[vllopes, (33)
T

as well as
lu <v—u<Kv|cpgats S IIUHC;/aLoo vl cpes- (34)

Proof. For (33), observe that L(u < v) —u < (Lv) = (Lu) < v —2Dzu < Dgv. The second
term on the right hand side is easy to estimate. The first term is given by

(Lu) <v = Z(Si_lQiLu)Aiv = Z(LSi_lQiu)Aiv.

7 7
Observe that, as for the standard paraproduct, (LS;—1Q;F(u))A;v has a spatial Fourier trans-

form localized in an annulus 2°.27, so that according to Lemma A.3 it will be sufficient to control
its C7L°° norm. But

|LSi—1Qiullcpre < [|0:QiSi—1ul|cpre + [|QiASi—1ul|cp Lo
<

2—(04—2)1‘(,‘51,_1““0;/%& + lullcpee),
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where we used the bounds (32). It is easy to see that [|Si—1ul[ ja/2 < ||ull je/2, and therefore we
T T
obtain (33).
As for (34), we have

U<v—u=<Kv= Z(QiSi_lu — Si—1u)Awv,

(2

and again it will be sufficient to control the C7L> norm of each term of the series. But using
once more (32), we obtain

1(@QiSiau = Sicaw)Allerre S 27 Siaull posz o [Alor e S 2‘i(a+5)IIUIIC;/2LmIIUIICT%

and the result is proved. ]

Letting
u=F(u) <19+ u (35)

and redoing the same computation as above gives
Luf = @ = —[L(F(u) < 0) — F(u) < &+ [F(u) < €~ F(u) <&+ F(u) = £+ F(u) 0. (36)

Lemma 5.1 takes care of the first two terms on the right hand side. The term F'(u) > £ can be
controlled using the paraproduct estimates, so that it remains to control the resonant product
F(u) o &. In principle, this can be achieved by combining the decomposition described above
with (34), which enables us to switch between the two paraproducts < and <. However, in that
way we would pick up a superlinear estimate from Lemma 2.7, and thus would get a problem
when trying to construct global in time solutions. We therefore have to be slightly more careful.

Lemma 5.2. Let a € (2/3,1) and 3 € (0,q] be such that 2a+ 3 > 2. Let T > 0, £ € C(T% R),
Ve Cr6*, uec Cre?, and let F € C;+6/a. Define uf = u — F(u) < ¥. Then

I(F (@) 0 ) (D lats—2 S CrCe(1+ llullorwe + lull porz o + 1 (®)las),
for all t € [0,T], where

1+ 24+
Ce = (1+ [€la-2) (1 + IG5 + 190 Elloggeas and Cr = | Fll grosse + |1 FIZT0. (37)
b

We pay attention to indicate that, for fixed ¢ € [0,T], the estimate depends only on the
€8 norm of uf(t). This will come useful below when introducing the right norm to control
the contribution of the initial condition.

Proof. We decompose

F(u)o& = (F(u) — F'(u) < (F(u) < 9)) o0&+ C(F'(u), F(u) < 9,&) (38)
+ F'(u)[(F(u) <9 — F(u) <9) o &)+ F'(u)C(F(u),9,€) + F'(u)F(u) (¥ o §),

from where we can use Lemma 5.1 and the commutator estimate Lemma 2.4 to see that

1F(u) 0 & = (F(u) = F'(w) < (F(u) < 9)) o llepgoro—n S Crle(1+ [[ullepae + l[ull pore o)
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It remains to treat the first term on the right hand side of (38), which we split into two parts:

(F(u) = F'(u) < (F(u) < 0))o& = Z A[F(u) = F'(u) < (F(u) < 9)]Az€ (39)
\szlgl

+ Z Ai[F(u) = F'(u) < (F(u) < 9)]Az¢
i,5>n,
li—jI<1

for n € N. For the first series, we use that a4+ § — 2 < 0 and simply estimate

Y AIF(w) = F'(u) < (Fu) < 9)]A€

?1j§n7
li—jl<1

< 2CTICpCe S 2" CpCe.

Cr¢ath—2 i<n

For the second series in (39) we get

J80( X AP - ) < (Pl < 0)]2,€) 0
i,j>n,
li—jI<1
S (Lhen27"P0H07D 415,27 K CHD) [(F(u) — F'(w) < (F(w) < 0) () larsll€llaz
< 2727 MO (F(u) — F'(u) < (F(w) % 9)()llatsl1E]la—2
for all t € [0,7] and k > —1. Now a slight modification of the proof of Lemma 2.6 shows that
for f € €% and g € €°8 we have

Lo

1E(f +9) = F'(f +9) < fllats S 1l greora (1 + LFIE )+ llg1375),
and applying this with f = (F(u) < 9)(t) and g = u¥(t) we deduce that
H((F () = F'(u) < (F(u) < 9)) 0 &) ()|, 5_p S CrCe("®™ + 27 [ ()[1315)

for all n € N. Tt remains to optimize over the parameter n. If ||u®(t)||o1+s < 1, we choose n = 0
and obtain

[((F(w) = F'(w) < (F(u) < 9)) 0€) (t)]|, sy S CrCe(l + | (8) lasp).

If ||u®(t)||ats > 1, we choose n with 272~ o ||uf(t)||as s, SO that

5o +a+5

20 9 (1) |4 o b (1)l + 15002

at+B —

Since f < «, we can bound the exponent on the second term from above by 2o — /(2 — «),
and it is not hard to see that for o < 2 this expression is smaller or equal to 1. Therefore, we
obtain also in that case

[((F(u) = F'(u) < (F(u) < 9) 0 &)(t)]| 1y 55 S CrCe(1+ [6F () lats),
which completes the proof. O

Let us summarize our observations so far.
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Lemma 5.3. Let a € (2/3,1), B € (2—2a,0a], and T > 0. Let ug € €%, £ € C(T%,R), let ¥ be
such that LY =&, and let F € C;+ﬁ/a. Then u solves the PDE

Lu = F(u)§, u(0) = ug € €“
on [0,T] if and only if u = F(u) < 9 + uf, where uf solves
Luf = ®F  uF(0) = up — (F(u) < 9)(0)
on [0,T], for ®* as defined in (36). Moreover, for all t € [0,T] we have the estimate
90 52 S CrCe(1 + ullogen + ull g + 190 ass). (10)

where Cr and C¢ are as defined in (37).

Next, we would like to close the estimate (40), so that the right hand side only depends on
®%. In order to estimate ||u|/c o + [ull fo/2; o » We observe that u = u? + F(u) < 9 and that
T

LF(u) <9 =[L(F(u) < 9) — F(u) < (LY)] + F(u) < &.
Now it is easy to see that
IL(F(u) < 9) = F(u) < (LY)|crge—2 S 1FWllorr=lVllores S NF L= l9loree

(compare also the proof of Lemma 5.1). Thus, we can apply the heat flow estimates Lemma A.7,
Lemma A.8, and Lemma A.9, to deduce

lullores +llullgar o < [l ope + HUﬁHC;/zLOO + [1F(u) < 9(0)[la + [[L(F(u) < 9)lcpga—s
< el epge + ||Uﬁ\|0;/2m + [[uolla + [ Fllzee (19l cpee + 1€ lla—2)-
Plugging this into (40), we get

|95 ) la+p—2 S CrCe(1 + CrCe + lluolla + [W¥llerse + 16 sz oo + 165 (E) lats)-

Moreover, since u*(0) = ug — (F(u) < 9)(0) and Lu* = ®* we can apply Lemma A.7 and
Lemma A.9 to obtain

72w () o+ S lluolla + CrCe + sup (s7|®F(s) ot s-2),

s€(0,t
so that our new estimate for ®¥ reads

t7/214(t) la+p—2 < CFCg(1+CF05+\|UoHa+Huﬁ||cT<ga+Huﬁ||C;/zLoo+ s%p}(sw||¢”(s)||a+ﬁ-2)),
s€|0,t

uniformly in ¢ € [0,7]. It remains to control ut in C;)f/ 21N Cr%®. For 0 < s <t < T, we have

It (t) — ()l < 1|(Pres — id) Pt (0)) 2 + H [ R

LOO

.

/ (P_s —id) P,_, ®*(r)dr
0

LOO
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Applying Lemma A.8 to the first and third term and Lemma A.7 to the second term, we obtain

t
lf () = wf ()| Lo S (¢ = 9)*2 [ (0)]la + / (t — 5) 7122 08 (r) oy podr

Lt ) / | Py () | ndlr
0
< (t - $)°/2(CpCe + luolla)

t
+(t - s)a/Q/O (t — ) 1HPR2p=A 2y Sl[lop](TB/QH‘I)ﬁ(T)HaJr,B—Q)
rel0,t

+(t—s)“/2/0 (5 —r) 202y s%p](rwlléﬁ(r)||a+5—2)-
rel0,s

For the time integrals we have fg(t — ) "B/ =B2qy = fol(l — 7)1=B2p=B/2qr < 1, so that

||Uﬁ||ca/2LoO < CrCe + |Juglla + sup (872 @%(5)||arp_2)-
T s€[0,T]

Similar (but easier) arguments can be used to bound the C7%“ norm of «f, and thus we obtain
our final estimate for ®:

sup (t7/2(|®%(t)||arp—2) S CrCe(1 + CFcf)(l + |luolja + sup (tﬂ/2||‘1’ﬁ(t)||a+ﬁ—2))- (41)
+€[0,7] t€[0,1]

In order to use this estimate to bound ®%, we will apply the usual scaling argument. More
precisely, we set Ay f(t,x) = f(\%t,\x), so that LAy = A2A\L. Now let u* = Ayu, u) = Ayuo,
N = N272A\¢, and 9* = A¥A 9. Note that u?: [0, 7/A% x T2 — R, where T2 = (R/(27A71Z))?
is a rescaled torus, and that u? solves the equation

Lu* = N2F(uM)A\E = N2 F(uM)e, u(0) = ).
<

The scaling is chosen in such a way that [|u}lla < |[uollas [|EMga—2 < [[€llga—z, |9 |cpee S
9]0, and according to Lemma B.1 also [#*0& a2 < [90€]|pgan-2 -+ 9] e [Elaas
all uniformly in A € (0,1]. In particular, Cex S C¢ and Crap < A*CF for all A € (0, 1]. Injecting
these estimates into (41), we obtain

sup (¢7/2[| @52 (t)llasp-2) S 1+ [lula
te[0,T]

for all sufficiently small A > 0 (depending only on C¢ and Cr, but not on ug), where P s
defined analogously to ®f. From here we easily get the existence of paracontrolled solutions
o (31). Similar arguments show that if F' € C§+,6’/o¢7 then the map (ug,§,9,£00) — u € Cr€“
is locally Lipschitz continuous, and in particular there is a unique paracontrolled solution.

5.1 Renormalization

So far, we argued under the assumption that there exist continuous functions (£°) such that
(€2,097,0° 0 £°) converges to (£,9,0 0 &) in €2 x Cr6?¥ 2 x Or%€?*2 as ¢ — 0. Here the
superscript € refers to a smooth regularization of the noise, whereas in the previous section the
superscript A referred to a scaling transform. From now on we will no longer consider scaling
transforms, so that no confusion should arise.

One further difficulty is that the resonant product (¥°0&°) does not converge in some relevant
cases; in particular, if £ is a spatial white noise. However, what we will show below is that for

35



the white noise there exist constants c. € R such that ((9° o £%) — ¢) converges in probability
in C7%€%*2. In order to make the term c. appear in the equation, we can introduce a suitable
correction term in the regularized problems and consider the renormalized PDE

L = F(uf)E — co F'(uf) F (). (42)

For this equation we use again the paracontrolled ansatz (35). The same derivation as for (36)
yields

LuP® = G(uf, 9%, €%) + F(uf) 0 & — c. F' (u®) F(uf)
for some bounded functional GG, and as in Lemma 5.2 we decompose
F(uf) 0 & — c.F'(uf)F(uf) = H(u®,ub®, 0%, £%) + F'(uf)F(uf) (¥ 0 €5 — ¢.)
for another bounded functional H. We see that Lu®® only depends on &2, ¥¢, and (9% 0 &°) — ce.
Thus, the convergence of (£2,95,9° 0 £ —¢.) to (£,9,n) in €2 x Or€?*~2 x C7€¢**~? implies

that the solutions (u®) to (42) converge to a limit which only depends on &, ¢, and 7, but not
on the approximating family.

Theorem 5.4. Let a € (2/3,1), B € (2 — 2a,a] and assume that (£%)eso C C(T%R) and
JANS C’g+’6/a. Suppose that there exist ¢ € €72, 9 € Cr€®, and n € Cr€**~? such that
(€8,092, (95 0 £5) — c.) converges to (£,9,7) in €2 x C7E* x C1E**~2, where ¥¢ are solutions
to LY* = £°, and where ¢ € R for alle > 0. Let for € > 0 the function u® be the unique solution
to the Cauchy problem

Lu® = F(u®)& — c. F'(uf)F(u), u®(0) = uo,

where ug € €. Then there exists u € C7E€* such that u® — u in Cr€“. The limit u depends
only on (ug,&,9,1n), and not on the approzimating family (&°,9°, (9° 0 £%) — ¢¢).

As for the previous equations, u is the unique paracontrolled weak solution to Lu = F'(u) ¢ &
with u(0) = wyg if we interpret the renormalized product F'(u) ¢ £ in the right way, the initial
condition 9¥(0) is of no importance, and u depends continuously on .

5.2 Regularity of the area and renormalized products

It remains to study the regularity of the area ¥ o £&. As already indicated, we will have to
renormalize the product by “subtracting an infinite constant” in order to obtain a well-defined
object.

To simplify the arguments below, we assume that £ is given by £ — (2m) 2.7 3 (0), where £is
a spatial white noise on T2. Then (F¢(k))kez2 is a complex valued, centered Gaussian process
with covariance

E[ZE(k)ZE(K)] = (2m)* Lmp Lio-

Since £ is a smooth additive perturbation of é , this simplification will pose no problems, and we
indicate below how to handle £ once we are able to handle £.
Since £ is a mean zero distribution, there exists a stationary solution ¥ to L = &, given by

9(a) = /0 (Pt

Then LY = £ by definition, and it is easily verified that (Z#9(k)) is a centered, complex valued
Gaussian process with covariance

ELZ9(k)F9(K)] = <2w>2,,j|41k_k/1k¢0
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and such that Z9(k) = Z9(—k). This yields, using Gaussian hypercontractivity and Besov
embedding, that E[Hz?Hpa(,ﬂ,Q)] < oo for all @ < 1 and p > 1. Since P,¢ is a smooth function
for t > 0, the resonant term P:£ o £ is a smooth function, and therefore we could formally set
Vo= [7(P&o&)dt. However, this expression is not well defined:

Lemma 5.5. For any x € T2 and t > 0 we have
g =E[(Po€)(w)] =E[A_1(PEog)(a)] = (2m) ™2 Y e
kez2\{0}

In particular, g: does not depend on the partition of unity used to define the o operator, and
fg gsds = oo for all t > 0.

Proof. Let z € T2, ¢t > 0, and ¢ > —1. Then
E[A(Pgo€)(@)] = ) EA(A(PEAE)(x)],
li—j|<1

where exchanging summation and expectation is justified because it can be easily verified that
the partial sums of Ay(P,€ o &)(x) are uniformly LP-bounded for any p > 1. Now P, = e~tIDI,
and therefore

E[A((A(PE)AE) ()] = 2m) ™ 3 e oy (ke 4+ k) i (k) e M pj (K E[FE (k) ZE(K)]
k,k'ez2\{0}
=2m)2 > pu0)pilk)e ™ p;(k)
kez2\{0}
=20 Pl Y pulk)p(k)e
kez2\{0}
For |i — j| > 1 we have p;(k)p;(k) = 0. This implies, independently of x € T?, that
g =E[(Pgo)@)]= 3 > plk)pi(R)e M =(2m)72 " ot
keZ2\{0} i,j kez2\{0}

while E[(P,¢ 0 €)(z) — A_1 (P 0 £))(z)] = 0. O

Remark 5.6. The same calculation shows that if ¢ € .7, and if €& = e 2¢(e7 1) % £, then
E[(P£ 0 6)(2)] = E[A 1(PE o ) (a)] = (2m) 2 Y e ™| 7y(eh) .
kez2\{0}

The diverging time integral motivates us to study the renormalized product ¥ o & — fooo qgdt,
where fooo g¢dt is an infinite constant:
Lemma 5.7. Set ~
o8 = [ (Rgoc— g
0

Then E[||9 o &|[5,,_5] < 0o for all < 1, p = 1. Moreover, if ¢ € . satisfies [(z)dz =1, and
if €8 = e 2(e) * & with Y° = e 2Y(e-) for e > 0, and ¥° = fooo P&edt, then

. - £ € p —
lm B[|9 0§ — (9 0 &% — )50 = 0

for all p > 1, where for x € T?

FUER)

. = E[)°(2)¢"(2)] = E[V° o ()] = /OOOE[BF%E(%)]dt: @ > p

kez2\{0}
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Proof. We split the time integral into two components, fol ...dt and floo ...dt. The second
integral can be treated without relying on probabilistic estimates: Given x € T2, we have

\ [ rgoc— gt~ [reog ~ EiRg o @
1 1

200—2
< / |PE 0 € — PLE o €% lzadt + / S P | Fy (k) Pt
1 kez2\{0}
0o |k2
< /1 P = €) lasallEllos + 1Pl lasallé — Ellao)dt + 3 €| g1 PR

kez2\{0}

Since F£(0) = 0, the estimate ||Pié%|late S t72[|€%]la—2 of Lemma A.7 holds uniformly over
t > 0, and thus the time integral is finite. The convergence in LP(P) now easily follows from the
dominated convergence theorem.

We will treat the integral from 0 to 1 using similar arguments as in the proof of Lemma 4.6.

To lighten the notation, we will only show that E[|| fo Pio&—g)dt|b, o] < oo. The difference

E[H/O (Ptgos—gadt—/o (Pe® 0 & — B[P o ¢*(a)])at]|

can be treated with the same arguments, we only have to include some additional factors of the
form |1 — .Z4)(ek)|? in the sums below. The convergence of the expectation can then be shown
using dominated convergence.

Let ¢t € (0,1] and define Z; = P,£ o £ — ¢g;. By Gaussian hypercontractivity we obtain for
p=1and m > —1 that

20— 2]

(| AmEell oo 2] Sp IENAmEe(@) P75 oy (43)
By Lemma 5.5 we have
El|AnEi(x)]’] = Var(Am(Pig o €)(x)), (44)
for all m > —1, where Var(-) denotes the variance. Now
Am(Pi€ 0 €)(x) NS etttk ok + ko) pi(ky)e 1 ZE (k) pj () FE(R),

k1,ko€Z? |i—j|<1

and therefore
Var(A (Pt§0€)( )

Z Z Z Z Whithe,w) o (k) + kz)ﬂi(kl)e_tlkﬂgpj(@)

k1, ko€Z2 ki kheZ? |i—j|<1 | —j/|<1
o k! ! x _ /2
Ftham) o () + K5)pi (kG ) e Wil pj (kb)) cov(F € (k) T € (ka), FE(K,) FE(KS)),

where exchanging summation and expectation can again be justified a posteriori by the uniform
LP—boundedness of the partial sums, and where cov denotes the covariance. Since ({(k))yez2 is
a centered Gaussian process, we can apply Wick’s theorem ([Jan97], Theorem 1.28) to deduce

cov(€(k1)& k), E(KE(KS)) = (27)* (Ly— g iy, + Lty —— 1 Lige g ) Ly 20Tk 0,
and therefore
Var(Ap, (P o &)(x))
=m0 > Z [ miLmsipm, (k1 + k2)pi (k1 )pj (k) p (k1) pjr (k) e =2H1Fr

k1,ko€Z2\{0} |i—j|<1 |¢/—5'|<1

+ L<i L<irpi (K1 + kz)ﬂi(kl)Pj(kz)Pi’(k2)Pj'(k1)e_ﬂk”Q_t‘kQ'Q] :

X e
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There exists ¢ > 0 such that e~ 2/ < et for all k € supp(p;) and for all @ > —1. In the
remainder of the proof the value of this strictly positive ¢ may change from line to line. If
i — j] < 1, then we also have e t** < e~ for all k € supp(p;). Thus

Var(Ap (P 0 §))(z))
9422
S Z Lngilinjoitng? Z lsupp(pm)(kl + k2)1supp(m)(kl)lsupp(pj)(kQ)e 2

i7j7i/7j/ k17k2€Z2\{0}
2m 2m
; _4.92i 2 _4.92i 2 _+.92m
S Z 221221716 tc2 g - Z e tc2 g - e tc2 ’ (45)
92>m 92>m

where we used that 221 < t(¢=<)2* for any ¢ < c.
Now let o < 1. We apply Jensen’s inequality and combine (43), (44), and (45) to obtain

1

oV _ 2
EllZsgyza] S (3 20O Bl AnE o)

m>—1
% o0 %
< t1/2< Z 2(2042)m2p22mp6tcp22m> < t71/2 (/ (2z)2p(2a1)€ctp(21)2dx) )
m>—1 -1

The change of variables y = /12" then yields

1

B[Sl p2o-2] S ¢ 1/2<t P20 1)/0 AT —— dy) |

If @ > 1/2, the integral is finite for all sufficiently large p, and therefore E[HEtHB;‘jgg] <ty

so that ! E[||Z¢|| g2a—2]dt < oo for all @ < 1. Gaussian hypercontractivity allows us to conclude
0 B2, yp y
P,2p

that also
1 P
]E[H/ dt]| ] < o0
0 BZp,2p

for all p > 1. The result now follows from the Besov embedding theorem, Lemma A.2. O

Corollary 5.8. Let € be a_spatial white noise, and let &, I, and ¥ ¢ £ be as defined above. Set
I(t, ) = V(z) +t(2m) 2.7 E(0) (so that LY = £) and

(Do )(t,z) = (908)(t,2) + (2m) (0 0 FE(0))(2) + t(2m)2(FE(0) 0 £) () + t(2m) "2 (FE(0))”.

If ¢ € . satisfies fzp(fz:)ci:v =1, and if €8 = f x & and 9° = ¢ * J, where ¢F = e~ %p(e-) for
e >0, then lime_o E[||[d o0& — (9° 0 & — cE)HgT%QCH} =0 forallT >0 andp > 1, where c. is as
defined in Lemma 5.7.

Combining the existence of the renormalized product ¢ ¢ £ with Theorem 5.4, we obtain the
existence and uniqueness of solutions to the generalized parabolic Anderson model:

Corollary 5.9. Let a € (2/3,1), B€ (2—2a,a], F € C2/* uge ¢, L =0, — A, and let ¢
be a spatial white noise on T2. Then there exists a unique solution u to

Lu = F(u) <&, u(0) = o,
in the following sense: For ¢ € % with [dt =1 and for € > 0 consider the solution u® to
Luf = F(uf)& — c. F'(u®) F(uf), u®(0) = wo,
on [0,00) x T2, where £ = e~ 1)(e-) * €, and where c. is as defined in Lemma 5.7. Then for all

T >0, (u®) converges in probability in CT€* to u.
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Remark 5.10. Concerning the convergence of (9 o £°), let us make the following remark: Since
Ly¢ = £°, we have

(% 0 €) = (6 0 L) = L L(9F 0 1) — (Dat” o D),

from which we see that the only problem in passing to the limit is given by the second term on the
right hand side. This integration by parts formula is the crucial difference with what happens in
the RDE case, which otherwise shares many structural properties with the PAM model. The fact
that L is a second order operator generates the term (D,¥° o D,1¥°) in the above computation,
which is absent in case of the operator d;. This term, whose convergence is equivalent to the
convergence of the positive term |D,9°|?
origin for the need of introducing an additive renomalization when considering the PAM model.
Our previous analysis easily implies that the solutions to the modified problem

, cannot have simple cancellation properties and it is the

L = F(u)EE + F'(uf)F (uf)| Dyt |2

will converge as soon as &€& — ¢ in €* 2, without any requirements on the bilinear term 9 o £° .

6 Relation with regularity structures

In [Hail4] Hairer introduces a general setup suitable to describe distributions which locally
behave like a linear combination of a set of basic distributions. He calls this set a model. A
modelled distribution is the result of patching up in a coherent fashion the local models according
to a set of coefficients. At the core of his theory of regularity structures is the reconstruction
map R which, for a given set of coefficients, delivers a modelled distribution which has the
required local behavior up to small errors. In this section we review the concepts of model and
modelled distribution and we use paracontrolled techniques to explicitly identify the modelled
distributions as distributions paracontrolled by a given model, thus partially bridging the gap
between the two theories. We conjecture that there is a complete correspondence between
paracontrolled and modelled distributions however at this point this remains an open problem.

We denote by (K;);>—1 the convolution kernels corresponding to the family of Littlewood—
Paley projectors (A;);>—1, and we write K<; = >, _; Kj and K¢; = ;. K. For any integral
kernel V' denote V,(y) = V(x — y) so for example K; »(y) = K;(x — y).

Let us briefly recall the basic setup for regularity structures. For more details the reader is
referred to Hairer’s original paper [Hail4].

Definition 6.1. Let A C R be bounded from below and without accumulation points and let
T = ®acaTy be a vector space graded by A and such that T, is a Banach space for all o € A.
Let G be a group of continuous operators on T such that for all T € T, and I' € G we have
I't —7 € ®g<aTp. The triple T = (A, T,G) is called a regularity structure with model space T'
and structure group G.

For 7 € T we write ||7]|o for the norm of the component of 7 in 7,. We assume also that
0 € A and Ty ~ R and that T is invariant under G. Write also ¢ (y) = A™%po((y — x)/)).

Definition 6.2. Given a regularity structure T and an integer d > 1, a model for T on R?
consists of maps
M:RY— (T, (RY)) T:RExR?— G
x I, (z,y) = Ty y
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such that T'y Iy . =Ty, and I1,I'y , = I1,. Furthermore, given r > |min A|, v > 0, there exists
a constant C' such that the bounds

(L) ()] S OA7llas ITaylls < Cle = y* 7]l

hold uniformly over ¢ € CF(RY) with lelley < 1 and with support in the unit ball of RY,
z,y€RY, 0< A <1 and 7 €T, witha <~ and < .
In [Hail4], these conditions are only required to hold locally uniformly, that is for =,y con-

tained in a compact subset of R?. To simplify the presentation and to facilitate the comparison
with the paracontrolled approach, we will work here in the global framework.

Lemma 6.3. Let ¢ be a Schwartz function, let v > 0, and r > |min A|. Then there exists
C(p) > 0 such that
(I7) (22)] < C@AYI7]la

holds uniformly over 0 < A\ < 1 and 7 € T, with o < 7. The constant C(p) can be chosen
proportional to

sup sup (1 + [z]) 7|9 p(x)).
lul<[r] zeR4

Proof. We can decompose ¢ = Y ;74 ©k, Where every ¢ € CZ° is supported in the ball with

radius V/d, centered at k € Z?. Then ¢ = Z|k|<\/&+1 k. is a compactly supported smooth
function, and therefore

((ILr)(¥2)] Sp A7 la-
For |k| > v/d + 1 we have (¢1,)2 = (Px)]_,, for @ supported in a ball centered at 0. Using that

¢ is a Schwartz function, we can estimate ||(g5k)>‘HCg So ATTA(|K|/A) T4 Therefore,

Yo L)@ S D (MeeiToi o) (BR)2-0)]

|k|>Vd+1 |k[>Vd+1
Sga,m Z Z |k‘a—6||7_||a|k,|—(d+r+o¢)>\—r—d+(d+r+a) 5 ||7_||a>\a~
|k|>Vd41 B<e

O

Definition 6.4. For v € R, the set DY(T,T) consists of all functions f™: R% — Da<yTa such
that for every a < v there exists a constant C with

17 = Tayfylla <Clz =y [fflla <C,

uniformly over x,y € R,

6.1 The reconstruction operator

Definition 6.5. Let v € R and r > |min A|. A reconstruction Rf™ of f© € DV(T,T) is a
distribution such that

RFT(92) — e f7 (2)] S N (46)
for all 0 < X\ < 1, uniformly in x € R and uniformly over ¢ € CgJW(]Rd) with HSOHCZ” <1 and
with support in the unit ball of RY.

In [Hail4] inequality (46) is assumed to hold for all ¢ € Cf (R?) with el < 1 and with

support in the unit ball of R?. It should be possible to show that this follows from (46) and the
definition of II and D7(7,I"). But for our purposes Definition 6.5 will be sufficient.
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Lemma 6.6. Property (46) is equivalent to
R (K<ip) = Mo f7 (K<in)| S 2777 (47)
foralli >0 and x € RY.

Proof. Start by assuming (47). Lemma 6.3 yields |TL, f7(K<;,)| < 2770, where ap = min A,
and therefore |Rf™(K<i.)| < 27'*. In particular, Rf™ € €* and [Rf™(¢)| < [[¢]lcp for all
Y e Cy. If now ¢ € C’g+T is supported in the unit ball and if ¢ > 0 is such that 27¢ ~ ), then
Lemma 6.3 yields

(RS = T fT)(02 = Siod)| S 2 llgyer S Nl

Next, observe that
(R ~TLIE)(SiY) = [ R ~ D (K as )N o0 (o 2)
= [ ARSI (KN e o - 2)
b [ I = Lonf D E N 07 o 2),

In the second term of this sum we can estimate [IL.(fI =T 2 f7) (K<i2)| S X< 2Bz — 2|7 7P,
where we used that f™ € D7. The first term in the sum is estimated using (47), giving

(R = o f)(Sig)| S277+ > 2”3/61256 —27PAT (A (2 —2)) S 277
B<y

So requiring (47) is sufficient to have the general bound (46). To see that (46) implies (47) we
can use similar arguments as in the proof of Lemma 6.3. 0

The characterization of the reconstruction given by (47) is better suited for us, so we will
stick with it in the following.

Lemma 6.7. If v > 0, the reconstruction operator is unique.
Proof. Indeed, for the difference of two reconstructions Rf™ and Rf™ we have
1Si(RFT =R re S 277,

and therefore 0 = lim; oo S;(Rf™ — Rf™) = Rf™ — RfT. O

6.2 Paraproducts and modelled distributions

We are now going to generalize the paraproduct defined previously in order to apply it to a given
model. Fix a model IT and for every i > 0 and v € R define the operator P; : DY(T,T') — S'(R%)
by

P (@) = [ deRei (L2 (),

Note that

Pifm(x) = / UKy ()L (K ) + / Q2 i1 () (T o f7— 7Y (Ki) = T f (K ) +O(2717)
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for all ¢ > 1, where we used that fdeQ,l,m(z) = 1, and where the estimate for the second
integral follows from arguments similar to those used in Lemma 6.6. Now define the operator

PfT = ZPJ”r

and note that this always gives a well defined distribution since every P; f™ is spectrally supported
in an annulus 2'.<7. In the particular case where I1, fT(2') = a,b(z’), we get P;(f™) = S;_1aA;b
and Pf™ = a < b, which justifies the claim that P is a generalization of the usual paraproduct.

The following lemma links P f™ with the local behavior of the distribution II, f7 around the
point x.

Lemma 6.8. Let v € R and f™ € DV(T,T") and set

Tif"(z) = PfM(Kin) — o f7 (Kiw)
for all i > 0. Then |T;f™ || <279,
Proof. Observe that
P (Kia) = Y (B ) Ki) = 3 [ dpdeonp)K o1y (LI ()
j jijei

and also that, since ... . K; * K; = Kj,

gijri
L7 (Ki) = Y [ dyKiao)IL 2 (5.
jejri
Using the decomposition IL, f7 (K ) — g fI(Kjy) = I,y o (fF =T, 2 f7)(Kjy), we further have
Tif™ (@) = PfT(Kia) =T f7 (Kia) = / dydz Ko (9) Koy (T (F7 = T f7) (K )
jijevi

from which the claimed bound can be shown to hold. Indeed, using the fact that f™ € DY(T,T)
we obtain

2|/

Jijei

ddeKi,z(y)K<j*1,y(Z)HyFy,z(f;r - FZ,zf;r)(Kj:y)

Z Z/dydzu(wc )K<j*1,y(z)| Hry,z(f;r _Fz,zf;r)HﬁQ_jﬂ

Jigrt B<y

SY Y Y e Kaal) Koy (o)l — 2 - a2

Jig~i B<y a:f<a<y
Now it suffices to note that |z — 2|7 < |z — y|7™* + |y — 2|7~ ¢, and the proof is complete. [

Lemma 6.9. Let v > 0 and f™ € DV(T,T) and define

Tf™(x ZTf” )= [Pf™(Kia) — o f7(Kig)):

i

Then T f™ € €7.
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Proof. According to Lemma 6.8, the series converges in L°°. Let us analyze its regularity.
Consider A;Tf™ = 3" A;T; f™ and split the sum into two contributions, A;Tf™ = AT 1 f™+
AGTS 11 f7, where Tjy1 f7 = Zi<j+1 Tif"and TS j41 f* =T f"—T<j41f7. For the second term
we have

1A TS i1 f e < D0 AT e S > NTif e S 2777
i>j+1 i>j+1

For the first one we proceed as follows. Note that T'<;j11f"(x) = Pf™(K<jt1,2) — o 7T (K<jt1,2),
so that using K; * K¢;11 = K; we get
ATy fra) = PP (Ky) = [ Qs f (Ko
= P ~ W2 ()~ [ dyKoa ()L (0 — Ty fE) (K yiy)
= B77(@) - [ W] - Ty (Kesin,),
where in the last line we have used the definition of T f™. Now
‘Hy(f; =Dy fi)(K<jrig)l S Z ly — x‘v_ﬁQ_j’Ba
B<y

so that ||A;Tf™ — T;f™||p < 2777, This implies that [|A;Tf7||z~ < 2777 and thus concludes
the proof. O

Theorem 6.10. The reconstruction operator R exists for all v € R\ {0}. If v > 0 we have
R =P —T while if v < 0 we can take R = P.

Proof. In case v > 0 set Rf™ = Pf™ — T f™ and observe that
RIfF(K<in) = Waf7 (Keig) = PfM(K<in) — W f7 (Keig) = T (K<ig)
=Tf"(x) = (PfM(Kzie) — I f7 (Ksiw)) = T (K<ig)
= —PfT(Ksig) + o f7(Kzig) + T (Ksie) = Y (AT (x) = Tj ().

>
With the bounds of Lemma 6.8 and Lemma 6.9 we can conclude that
R (K<in) — Mo fT(Keig)| S 277,

which implies that R is the reconstruction operator. If v < 0, just set R = P and observe that

RIT(Kcia) =T f7(K<ia)l S )T (@) S Y277 S 277,
j<i j<i
which shows that also in this case R is an admissible reconstruction operator. ]

For v > 0, we could say that a distribution f is paracontrolled by II if there exist f™ €
DY(T,T) and f* € C7 such that
f = P(f,I0) + fF

in that case we write f € Q7. In particular, every modelled distribution is a paracontrolled
distribution since the reconstruction map R delivers an injection

fPeDT,T) — RfT = P(f7, 1) — Tf" € Q7.
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Moreover, every paracontrolled distribution can be decomposed into “slices”, each of which has
its natural regularity. More precisely, let us write 7% for the component of 7 € T in T, for
a < 7. Then the distribution P(f™,1I) is given as

P(ff, ) =) Pf =) / dzKcio12()LfT (Kia) = Y (

i>0 i>0 a<y

Z/d2K<i—1,x(z)H:v(F:v,zf;r)a(Ki,m)> .

120

Now
ITozfIlla S >, lo—2PfTlls S 1+ — 27,
Ba<f<y

and similar arguments as in Lemma 6.6 show that [IL,7%(K;.)| < 27|71, for all 7 € T,
i > —1. Combining these estimates with the fact that [ dzK;_1 ()L, f2"“(K; ;) is spectrally
supported in an annulus 2°.e7, we deduce that

Z/dZK<i—l,x(Z)Hx(Fx,zf;r)a(Ki,x) €.
120

In particular, if » = |inf A|, then every paracontrolled distribution is in .

Note also that the paraproduct vanishes on constant and polynomial components of the
model. Indeed, if 7 is such that II,7(y) = (y — ) for some p € N?, then P(-,7) = 0 since
(IL,7) (K ) = 0 for any i > 0.

A Besov spaces and paraproducts

A.1 Littlewood-Paley theory and Besov spaces

In the following, we describe the concepts from Littlewood—Paley theory which are necessary
for our analysis, and we recall the definition and some properties of Besov spaces. For a general
introduction to Littlewood—Paley theory, Besov spaces, and paraproducts, we refer to the nice
book of Bahouri, Chemin, and Danchin [BCD11].

Littlewood—Paley theory allows for an efficient way of characterizing the regularity of func-
tions and distributions. It relies on the decomposition of an arbitrary distribution into a series
of smooth functions whose Fourier transforms have localized support.

Let x,p € 2 be nonnegative radial functions on R?, such that

i. the support of y is contained in a ball and the support of p is contained in an annulus;
i x(2) + 22550 p(2772) =1 for all z € R%;
iii. supp(x) Nsupp(p(277-)) = 0 for j > 1 and supp(p(2~%)) Nsupp(p(277-)) = O for |i — j| > 1.
We call such (x, p) dyadic partition of unity, and we frequently employ the notation
poi=x and  p;=p(277) for j > 0.

For the existence of dyadic partitions of unity see [BCD11], Proposition 2.10. The Littlewood—
Paley blocks are now defined as

Aju=F ' (xFu) = F p_1Fu) and Aju=F 1 (p;Fu) for j > 0.

Then Aju = K xu, where K; = % 1p; for all j > —1. In particular, Aju is a smooth function
for every j > —1. We also use the notation

Sju = Z Au.

i<j—1
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It is easy to see that u = Zj;—l Aju = limj_,o Sju for every u € .
For a € R, the Hélder-Besov space €% is given by €“ = Bg‘o,oo(]Rd,]R”), where for p,q €
[1, 00] we define

, 1/q
B (R R") = {u €. (RY,R") : ||ullpg, = ( > (2ﬂa\|Aju||Lp)q> < oo},

j>—1

with the usual interpretation as £*° norm in case ¢ = oo. The ||-||z» norm is taken with respect to
Lebesgue measure on RY. While the norm ||-|| By, depends on the dyadic partition of unity (x, p),
the space B, does not, and any other dyadic partition of unity corresponds to an equivalent
norm. We write [|-||, instead of ||-[|ga .

If o € (0,00)\N, then € is the space of |«] times differentiable functions, whose partial
derivatives up to order |« are bounded, and whose partial derivatives of order |a] are (a—|«])-
Holder continuous (see p. 99 of [BCD11]). Note however, that for & € N the Holder-Besov space
€* is strictly larger than C’If.

We will use without comment that ||-||o < ||-[|g for a < 8, that |||z < |||« for a > 0, and
that [|*||a < |||l for o < 0. We will also use that ||Sjul| g < 27%||ul|o for a < 0 and u € €.

We denote by 2. the set of all distributions u such that gu € €% for all ¢ € Z. If the

difference p(u, —u) converges to 0 in € for all ¢ € &, then we say that (u,) converges to u in

«
loc*

The following Bernstein inequalities are tremendously useful when dealing with functions
with compactly supported Fourier transform.

Lemma A.1 (Lemma 2.1 of [BCD11]). Let &/ be an annulus and let B be a ball. For any
keN, A>0, and 1 < p < q < oo we have that

1. if u € LP(R%) is such that supp(Fu) C N4, then

1_1
max  ||0"u| e <k A+ (3 q)||u|pr;
HEN®: |p|=k

2. if u € LP(RY) is such that supp(.Fu) C Ao/, then

Mo llullpr < max |0 ul| e
pENT:|u|=k

For example, it is a simple consequence of the Bernstein inequalities that [|[D¥ul|a—r < ||ulla
forall o € R and k € N.

We point out that everything above and everything that follows can (and will) be applied
to distributions on the torus. More precisely, let 2’ (']I‘d) be the space of distributions on T¢.
Any uw € 7' (Td) can be interpreted as a periodic tempered distribution on R¢, with frequency
spectrum contained in Z? — and vice versa. For details see [ST87], Chapter 3.2. In particular,
Aju is a periodic smooth function, and therefore ||Ajul|r e = [|Ajul|foo(ray. In other words, we
can define

€*(T%) = {u € €% : u is (2m) — periodic}

for a € R. For p # oo however, this definition is not very useful, because no nontrivial periodic
function is in L? for p < co. Therefore, general Besov spaces on the torus are defined as

) 1/q
551 = {u € DT sl oo = (2 @ Asulee)t) - < o0},

j=z—1
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where we set
Aju = (2m)0 Y ) o, () Frau) () = Fopj Fau)
kezd
and where #4 and .7, 1 denote Fourier transform and inverse Fourier transform on the torus.
The two definitions are compatlble. we have €(T9) = B (T ). Strictly speaking we will not

work with BY,(T?) for (p,q) # (00, 00). But we will need the Besov embedding theorem on the
torus.

Lemma A.2. Let 1 < <p2<ooandl < qr < g2 < oo, and let a € R. Then By, | (']I‘d)

is continuously embedded in Bp,, qQ(l/pl 1/p?)(']l“d)

ng,ng(l/pl 1/p2) (Rd)

. and B, (RY) is continuously embedded in

For the embedding theorem on R¢ see [BCD11], Proposition 2.71. The result on the torus
can be shown using the same arguments, see for example [CG06]. In both cases, the proof is
based on the Bernstein inequalities, Lemma A.1.

The following characterization of Besov regularity for functions which can be decomposed
into pieces that are well localized in Fourier space will be useful below.

Lemma A.3. (Lemmas 2.69 and 2.84 of [BCD11])

1. Let o be an annulus, let o € R, and let (u;) be a sequence of smooth functions such that
Fu; has its support in 20.a/, and such that ||uj||pe < 279 for all j. Then

u=3uw e and [lulla S sup {2~}
= jz—1

2. Let % be a ball, let o > 0, and let (u;) be a sequence of smooth functions such that Fu; has
its support in 2B, and such that ||uj||pe < 279 for all j. Then

u= Z uj € € and [ulla S sup {27%||ug]| o }-
j>-1 izt

Proof. 1t Fu; is supported in 2/.o7, then Aju; # 0 only for i ~ j. Hence, we obtain

1Az < Y7 1Al < sup {2 uell=} Y 2770 > Sup {25 Jug || }2 7.
Jij~i Jigevi

If Fu; is supported in 2/ %4, then A;u; # 0 only for i < j. Therefore,

Az < 3 Ayl < sup (27 g} S 2797 S sup (25 e J2 7

Jijzi Jiyzi

using « > 0 in the last step. O

A.2 Linear operators acting on Besov spaces

Here we discuss the action of some important linear operators on Besov spaces. We start with
the rescaling of the spatial variable:

Lemma A.4. For A\ > 0 and u € %" we define the scaling transformation Ayu(-) = u(A-). Then
[Axulla S max{1, A*}ulla

for all « € R\ {0} and all u € €.
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Proof. Let u € € and let Ayu(x) = u(Az) for some A > 0. Note that AyD = A\"!DA,, and
therefore AyAju = Axp(277D)u = p(277A"1D)Au, which implies that the Fourier transform of
A\Aju is supported in the annulus A2/.¢7 (where <7 is the annulus in which p is supported). In
particular, if £ > 0, we have Ay A Aju # 0 only if 2F ~ \27. Thus, there exist a,b > 0 such that

IAsbullze S Y AMAull= S Y [Ajullr
J:a2k <27 <b2k J:a2k <27 <b2k

Slulla >, 279 S lullax*27
7:a2k <29 <b2F

for all £ > 0. For K = —1 we can simply bound

1A Aullze S Y 1AMAullze S lufla D 27 S [lullq max{1, A%},
G20 <1 J:A20<1

Next, we are concerned with the action of Fourier multipliers on Besov spaces.

Lemma A.5. Let o € R. Let ¢ be a continuous function, such that o is infinitely differentiable
everywhere except possibly at 0, and such that ¢ and all its partial derivatives decay faster than
any rational function at infinity. Assume also that Fp € L'. Then

lp(eD)ullars Ssp e ’llulla and  [lp(eD)ulls Ssp e |lull oo
foralle € (0,1], 6 >0, and u € "

Proof. Let ¢ € & with support in an annulus be such that ¥p = p, where (x, p) is our dyadic
partition of unity. Then we have for j > 0 that

p(eD)Aju = [FH(p(e)h(277))] * Aju,
and therefore Young’s inequality implies

le(eD)Ajullz S [|F 7 (e(e )27 ))] 277 lulla = [|F 7 (0@ e))|| 1 277 lula-

Hence, it suffices to prove Hﬁ 0(27¢e) ”Ll < 792779 But
|7 @) S ||+ \2>d%‘*l<w<2je->w>ﬂ s [# 7+ ayie@ew))|
SIA+2) e @ el S (1 +27e)*" max  [[0#0(2e)| oo (supp(w)-

pneN:|u|<2d

By assumption, ¢ is smooth away from 0, and ¢ and all its partial derivatives decay faster than
any rational function at infinity. Thus, there exists C = C(y, ) > 0 such that

sup(1 + |)° 28" p(2)| < C

x>1

for all 4 € N? with |u| < 2d. Since supp(t) is bounded away from 0, there exists a minimal
jo € N, such that 2/0¢|z| > 1 for all 2 € supp(z). Thus, we obtain

|7 (e )p)|| 0 S C(1+27e)?4 (1 4+ 27e) 7072 <5, (14 27e) ™0 < 279070
for all j > jo. On the other side, we get for 5 < jo
- 7- j = 0)
le(eD)Ajull S IF 7 (leN | Ajulle Sp 27 lulla = (£27)° 277 fu]l4
< (e27°)°e 70270 |lu|lq S5 670277 u o,

where we used that § > 0
The estimate for v € L™ follows from the same arguments. O
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Remark A.6. If the support of Fu has a “hole” at 0, that is if there exists a ball & centered at
0 such that .#u is supported outside of 4, then the estimates of Lemma A.5 hold uniformly in
e > 0 and not just for € € (0,1]. This is an immediate consequence of the proof above.

As an application, we derive the smoothing properties of the heat kernel generated by the
fractional Laplacian.

Lemma A.7. Let 0 € (0,1], let —(—A)? be the fractional Laplacian with periodic boundary
conditions on T?, and let (P;);>0 be the semigroup generated by —(—A)?. Then for all T > 0,
€ (0,T], « R, § 20, and u € " we have

1Prllors St ulla and  |[Palls Sr 7 C ]| .

If Fu is supported outside of a ball centered at 0, then these estimates are uniform int > 0 and
not just in t € (0,T].

Proof. The semigroup is given by P; = ¢(t'/(?)D) with o(z) = e 17" Now © and its derivatives
decay faster than any rational function at co. For o < 1, F¢ is the density of a symmetric
20-stable random variable, and therefore in L'. For o > 1 it is easily shown that (1+|-|9T1).Z ¢
is bounded, and therefore in L'. Thus, the estimates follow from Lemma A.5. O

Lemma A.8. Let o and (P)i>o be as in Lemma A.7. Let o € R, 8 € [0,1], and let u € €°.
Then we have for allt >0
(P = Td)ull o= < 7P ul|s.

Proof. For the uniform estimate of (P, — Id)u, we write P, — Id as convolution operator: if
o(z) = e 1?1 and K(z) = F1¢, then
—d/(2 r—y
(7= ayuto) =0 [ 1 (5754 ) wlo) = ateay

— o €z g
St e )/K <t1/ 2o—>> ly — 2|’ ullpdy < 77 |Jul 5,

where we identified €? with the space of Holder continuous functions. O
Based on Lemma A.7 and Lemma A.8, we derive the following Schauder estimates:

Lemma A.9. Let o and (Pt)t>0 be as in Lemma A.7. Assume that v € Cr€? for some f € R
and T > 0. Letting V(¢ fo P_sv(s)ds, we have

IV (@)llpt20 < St[gpﬂ(«S”Hv(S)Hﬁ) (48)
se|0,

for ally €[0,1) and all t € [0,T]. If 0 < B+ 20 < 1, then we also have

IVl ggpe2/00 o S sUP [lu(s)]5- (49)
s€[0,t]

Proof. Consider A,V for some ¢ > 0 and let § € [0,¢/2]. We decompose the integral into two
parts:

t

t é
AGV(t) = /0 P,_s(Agu)(s)ds = /0 Py(Agv)(t — s)ds —1—/5 Py(Agv)(t — s)ds.

49



Letting M = sup,c(o (57 ||v(s)[|5), we estimate the first term by

H /0 " Po(Ag0) (- 5)ds

4 1
</ 2_q’8|]v(t—s)|]5ds<2_qﬁM/ (t— $)~7ds
oo 0 0

6/t
= M2~ / _ds < M279B¢78,
o (=87

using |1 — (1 — §/¢)177| < 6/t in the last step. On the other side, we can use Lemma A.7 to
estimate the second term for € > 0 by

~

t
</ S—l—sz—q(6+2a(1+£))Hv(t_S)Hﬁds
4

Agv)(t — s)ds

L(x)

! ds 1 ds
< Mpo-a(B+20(1+¢)) _ MQ—Q(B-‘:-ZU(l-&-E))t—a—fy/ _ds
~ 5 Sl-l—a(t _ 3)7 o)t sl-i—e(l _ 8)7

< Mo—4B+20(1+e))—v5—e — M2_Q(B+20)(2q2‘75)_8t_7.

If 27927 < t/2, we can take § = 27927 to obtain ||A,V ()| pe < Mt=7279(8+20) 1f 27020 > /2,
we have || A,V (8)|| e < M279511=7 < Mt=72790929) " and the first claim follows.
As for the second claim, note that for 0 < s < ¢t < T we have

V() = V(s) = (Ps — Id)V / P

and therefore we can apply Lemma A.8 to obtain
t
IV (#) = V(s)llzee S [[(Pi—s = Id)V(s) Lo~ +/ [ Pe—rv(r)]| oo dr

S It = 5|2V () 54 + / Jo(lladr S [t = /62 sup fo(r) s,
rel0,

where we used that (8 + 2) € (0,1) and that |t — s| < T. This yields the second claim. O

When dealing with RDEs, the convolution with the (fractional) heat kernel has a natural
correspondence in the integral map.

Lemma A.10. Let u € € 1(R) for some a € (0,1). Then there exists a unique U € €2.(R)
such that DU = u and U(0) = 0. This antiderivative U satisfies

U#) =U(s)] S 1t = s [ulla— (50)

for all s,t € R with |s —t| < 1. We will use the notation U (t fo s)ds to denote this map,
which is an extension of the usual definite integral. If the support of u is contained in [—T,T]
for some T >0, then U € € and

1Ulla < Tlulla-1-

Proof. The second statement about compactly supported u follows from the first statement by
identifying €“ with the space of bounded Hoélder continuous functions.
As for the first statement, we define

Z/Au
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If we can show (50), then U is indeed in 4. and therefore in particular in .#’. Since the
derivative D is a continuous operator on ./, we then conclude that DU = > j Aju = u. Let
therefore s,t € R with |s —t| < 1. We have

t .
/ Aju(r)dr| < 27079yl o1|t — s].

S
If j > 0, then Aju = DD™!(Aju), where D! is the Fourier multiplier with symbol 1/(:z), and
therefore

= D7 Aju(t) = D' Aju(s)] S 277 | Azullze £ 277 ulla-1,

/St Aju(r)dr

where we used the Bernstein inequality, Lemma A.1. If jg is such that 2770 < |t — s| < 2770 FL,
then we use the first estimate for j < jo and the second estimate for j7 > jg, and obtain

t
/ Aju(r)dr| S 3 20 ullaalt = s+ Y 279 ulla—

§ J<jo J>Jjo

Ut ~U(s)| < )

jz—-1

< (29000 — | 4+ 2790 ||| gm1 ~ [t — 5|¥]|tu]| a1

Uniqueness is easy since every distribution with zero derivative is a constant function. O

B Some more commutator estimates

When applying the scaling argument to solve equations, we need to control the resonant product
of the rescaled data. This can be done by relying on the following commutator estimate.

Lemma B.1. Let o, 8 € R and f,g € .. Then we have uniformly in X € (0, 1]

IAX(f 2 9) = (Axf) © (Aag)lats S max{ A7 1} fllallgllss
and thus Ay(-o-) — (Ax-) o (Ay-) extends to a bounded bilinear operator from €* x €7 to €°+5.

Proof. We have AyA; = Ayp;j(D) = p;(A"!D)A, for all j > —1. Let k € N and N € (1/2,1] be
such that A = M27%. Then

M(fog)= D MAifAg)+ D pNTID)ANfp(2 7N TID)ANg. (51)
li—j|<1 li—j|<1
i,j<k i,j>k

The first sum is spectrally supported in a ball centered at zero (which is independent of k), and
therefore

Z A(AifAjg) N Z 2790738 fllallglls S max{x*TP, 1} fllallglls-
li—jl<1 atBJi—ji<1
ij<k ij<k

The second sum is the resonant paraproduct (AyfoAyg) with respect to the dyadic partition
of unity (x(N'~1-), p(N'~1.)), except that the sum only starts in 7,5 = 1. By Lemma 3.5 we can
therefore bound

S I llallglls-

> p@TTENTID)ANfp(2TTENTID) Avg — (Axf) © (Arg)
li—jl<1
i,j>k

a+f

o1



Next, we prove that it is possible to “pull the time integral inside the paraproduct”:

Lemma B.2. Let o, 3 € (0,1) with a+ 3 < 1. Let u € €*(R,R¥>") and v € €°(R,R"). Then
t
/ (u < B)(r)dr — u(s)(u(t) — v(s))

for all s,t € R with |t — s| < 1, where we write fst f(r)dr = fg f(r)dr — [ f(r)dr.
Proof. Fix s,t € R with |s — t| < 1. We can rewrite

/ (u < ) (r)dr —u(s)(v(t) —v(s)) = Z/ [Sj—1u(r) — u(s)]0rAju(r)dr.

St = sl ullallvlls,

We will use two different estimates, one for large j and one for small j. First note that

/ [Sj—1u(r) — u(s)]0-Aju(r)dr / [Sj—1u(r) — Sj—1u(s)]0pAju(r)dr

<

+

/ [Sj—1u(s) — u(s)]0rAju(r)dr

Now |Sj_1u(r) — Sj—1u(s)| S |r — s|“||u]|a, and therefore

t t t
/ [Sj_1u(r) — u(s)]8,A0(r)dr| < ( / Ir — s|*270=Fdr + / 2j°‘2j(1’8)d7")]uHaHvH5

s

S @0t — s 4 20BN — )l 0]l - (52)
On the other side, it follows from integration by parts that

/ [Sj—1u(r) — u(s)]0rAju(r)dr| < / [Sj—1u(r) — Sj—1u(s)]0rAjv(r)dr

(53)

+ /[Sj_lu(s)—u(s)]@rAjv(r)dr

<I(Syru(t) = Sj1u(s)Ajel0)| +| [ 908y ru(r)au(r)ar
1(Syrus) — u()(B0(t) — Ajo(s))]

S (1t = 52790 4 |t — 5] +Pe279° 4 279 FD) [l |o o],

for all € € [0, + 3), where for the middle term we applied Lemma A.10, which gives us

t
/ OrSj-rulr)Aju(r)dr| < [t — |70 1u(r) Ajo(r) lasp—e1

< |t — s|otPmeoietb=e=1))19 S u(r)Aju(r)|| L
S|t — sy o ||v] | -

Let now jo € N be such that 2770 < |t — 5| < 2770F1, We use estimate (52) for j < jo and (53)
for j > jo to obtain

t
/ (u < Op)(r)dr —u(s)(v(t) — U(S))‘ S (@O — st 4 270D — ) Jula 0]l
s Jj<jo
+ ) ([t = |27 4t — 5|2 g 27 @ o 0] g
J>jo
~ Jullallvllglt — s/,

where we used that o + 8 < 1. O
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