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1 Introduction

It may be argued that the foundation of financial mathematics consists in
giving a mathematical characterization of market models satisfying certain fi-
nancial axioms. This leads to so-called fundamental theorems of asset pricing.
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Harrison and Pliska [HP81] were the first to observe that, on finite probability
spaces, the absence of arbitrage opportunities (condition no arbitrage, (NA))
is equivalent to the existence of an equivalent martingale measure. A definite
version was shown by Delbaen and Schachermayer [DS94]. Their result, com-
monly referred to as the Fundamental Theorem of Asset Pricing, states that for
locally bounded semimartingale models there exists an equivalent probability
measure under which the price process is a local martingale, if and only if the
market satisfies the condition no free lunch with vanishing risk (NFLVR). Del-
baen and Schachermayer also observed that (NFLVR) is satisfied if and only
if there are no arbitrage opportunities ((NA) holds), and if further it is not
possible to make an unbounded profit with bounded risk (we say there are no
arbitrage opportunities of the first kind, condition (NA1) holds). Since in finite
discrete time, (NA) is equivalent to the existence of an equivalent martingale
measure, it was then a natural question how to characterize continuous time
market models satisfying only (NA) and not necessarily (NA1). For continu-
ous price processes, this was achieved by Delbaen and Schachermayer [DS95b],
who show that (NA) implies the existence of an absolutely continuous local
martingale measure.

Here we complement this program by proving that for locally bounded
processes, (NA1) is equivalent to the existence of a dominating local martin-
gale measure. Apart from its mathematical interest, we believe that this result
may also be relevant in financial applications. It is known that dominating
local martingale measures are the appropriate pricing operators when working
with continuous price paths satisfying (NA1) [Ruf13]. Moreover, in the duality
approach to utility maximization, the dual variables are often given by suit-
able measures. There is a functional analytic approach, working with finitely
additive measures [CSW01,KŽ03], and a probabilistic approach, working with
countably additive measures on an extended probability space [FG06]. How-
ever, to the best of our knowledge there is no intrinsic characterization of these
measures, they are described in terms of associated processes which may be in-
terpreted as generalized Radon-Nikodym derivatives. While we do not believe
that in general the space of dual variables is given by the dominating local
martingale measures (see Remark 4.17), their closure seems to be a natural
candidate.

Let us give a more precise description of the notions of arbitrage considered
in this work, and of the obtained results.

In the first four sections of the paper, we fix the following probability
space: Let E be a Polish space, and let ∆ /∈ E be a cemetery state. For all
ω ∈ (E ∪ {∆})[0,∞) define

ζ(ω) = inf{t ≥ 0 : ω(t) = ∆}.

Let Ω ⊂ (E∪{∆})[0,∞) be the space of paths ω : [0,∞)→ E∪{∆}, for which
ω is càdlàg on [0, ζ(ω)), and for which ω(t) = ∆ for all t ≥ ζ(ω). For all t ≥ 0
define F0

t as the σ–algebra generated by the coordinate projections up to time
t and Ft =

⋂
s>t F0

s . Moreover, set F =
∨
t≥0 F0

t =
∨
t≥0 Ft. We also assume

that P is a given probability measure on (Ω,F) such that P (ζ <∞) = 0.
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Note that (Ft) is not complete. We hope to convince the reader with the
arguments in Appendix A that this does not pose any problem. While many
of our auxiliary results hold on general probability spaces, the main results
Theorem 1.5 and Theorem 1.6 need some topological assumptions on (Ω,F):
on a general probability space, say with a complete filtration, we cannot hope
to construct a probability measure which is not absolutely continuous. This is
also why in model free financial mathematics, where non-dominated families of
probability measures are considered, one usually works on suitable path spaces.
We choose (Ω,F) as above because it allows us to apply the construction of
Föllmer’s measure given in [PR14].

Throughout, S = (St)t≥0 denotes a d–dimensional adapted process on
the filtered probability space (Ω,F , (Ft)t≥0, P ) which is almost surely right-
continuous. We think of S as the (discounted) price process of d financial
assets. Of course, the case of a finite time horizon T > 0 can be embedded
by setting ST+t = ST for all t ≥ 0. Semimartingales are defined as usually,
except that they are only almost surely càdlàg. Since (Ft) is not complete, a
semimartingale does not need to be càdlàg for all ω ∈ Ω.

A strategy is a predictable process H = (Ht)t≥0 with values in Rd. If S is
a semimartingale and λ > 0, then a strategy H is called λ–admissible (for S)
if the stochastic integral H · S :=

∫ ·
0
HsdSs exists and satisfies P ((H · S)t ≥

−λ) = 1 for all t ≥ 0. Here we write xy =
∑d
k=1 xkyk for the usual inner

product on Rd. We define Hλ as the set of all λ–admissible strategies. For
details on vector stochastic integration we refer to Jacod and Shiryaev [JS03].

If S is not a semimartingale, we can still integrate simple strategies against
S. A simple strategy is a process of the form Ht =

∑m−1
j=0 Fk1(τk,τk+1](t) for

m ∈ N and stopping times 0 ≤ τ0 < τ1 < · · · < τm < ∞, where for every
0 ≤ k < m the random variable Fk is bounded and Fτk–measurable and takes
its values in Rd. The integral H · S is then defined as

(H · S)t =

m−1∑
k=0

Fk(Sτk+1∧t − Sτk∧t),

and λ–admissible strategies are defined analogously to the semimartingale
case. We denote the set of simple λ–admissible strategies by Hλ,s.

The setW1 consists of all wealth processes obtained by using 1–admissible
strategies with initial wealth 1, and such that the terminal wealth is well
defined, that is

W1 = {1 +H · S : H ∈ H1 and (H · S)t almost surely converges as t→∞}.
(1.1)

Similarly, W1,s is defined as W1,s = {1 + H · S : H ∈ H1,s}. Note that the
convergence condition in (1.1) is trivially satisfied for simple strategies. We
will also need the following sets of terminal wealths:

K1 = {X∞ : X ∈ W1} and K1,s = {X∞ : X ∈ W1,s}. (1.2)
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We write L0 = L0(Ω,F , P ) for the space of real-valued random variables
on (Ω,F), where we identify random variables that are P–almost surely equal.
Recall that a family of random variables X is bounded in probability, or bounded
in L0, if limm→∞ supX∈X P [|X| ≥ m] = 0.

Definition 1.1 A semimartingale S satisfies no arbitrage of the first kind
(NA1) if K1 is bounded in probability. It satisfies no arbitrage (NA) if there
is no X ∈ K1 with X ≥ 1 and P (X > 1) > 0. If both (NA1) and (NA) hold,
we say that S satisfies no free lunch with vanishing risk (NFLVR).

Similarly, an almost surely right-continuous adapted process S satisfies no
arbitrage of the first kind with simple strategies (NA1s), no arbitrage with sim-
ple strategies (NAs), or no free lunch with vanishing risk with simple strategies
(NFLVRs), if K1,s satisfies the corresponding conditions.

Heuristically, (NA) says that it is not possible to make a profit without
taking a risk. (NA1), which is also referred to as “no unbounded profit with
bounded risk” (NUPBR) [KK07], says that is not possible to make an un-
bounded profit if the risk remains bounded.

We want to construct dominating local martingale measures for S. When
constructing absolutely continuous probability measures, it suffices to work
with random variables. In Section 2 below, we argue that dominating measures
correspond to nonnegative supermartingales with strictly positive terminal
values. We also show that a dominating local martingale measure corresponds
to a supermartingale density in the following sense.

Definition 1.2 Let Y be a family of stochastic processes. A supermartingale
density for Y is an almost surely càdlàg and nonnegative supermartingale Z
with Z∞ = limt→∞ Zt > 0, so that Y Z is a supermartingale for all Y ∈ Y.
If all processes in Y are of the form 1 + (H · S) for suitable integrands H,
and if Z is a supermartingale density for Y, then we will sometimes call Z a
supermartingale density for S.

In the literature, supermartingale densities are usually referred to as super-
martingale deflators. We think of a supermartingale density as the “Radon-
Nikodym derivative” dQ/dP of a dominating measure Q � P . This is why
we prefer the term supermartingale density.

First we sketch an alternative proof of Rokhlin’s theorem:

Theorem 1.3 ([Rok10], Theorem 2, see also [KK07], Theorem 4.12)
Let S be an adapted process, almost surely right-continuous (respectively a
semimartingale). Then (NA1s) (respectively (NA1)) holds if and only if there
exists a supermartingale density for W1,s (respectively for W1).

The following corollary has also been known for a while:

Corollary 1.4 ([Ank05], Theorem 7.4.3 or [KP11]) Let S = (S1, . . . , Sd)
be an adapted process, almost surely right-continuous. If every component Si

of S is locally bounded from below and if S satisfies (NA1s), then S is a
semimartingale that satisfies (NA1), and any supermartingale density forW1,s

is also a supermartingale density for W1.
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Given a supermartingale density Z for S, we then apply Yoeurp’s [Yoe85]
results on Föllmer’s measure [Föl72] together with the construction of [PR14],
to obtain a dominating measure Q � P associated to Z. Let γ be a right-
continuous version of the density process γt = dP/dQ|Ft

, and let τ be the first
time that γ hits zero, τ = inf{t ≥ 0 : γt = 0}. We define

Sτ−t = St1{t<τ} + Sτ−1{t≥τ} = St1{t<τ} + lim
s→τ−

Ss1{t≥τ}.

Note that S and Sτ− are P–indistinguishable. In the predictable case, our
main result is then:

Theorem 1.5 Let S be a predictable semimartingale on (Ω,F , (Ft), P ). If Z
is a supermartingale density for W1, then Z determines a probability measure
Q� P such that Sτ− is a Q–local martingale. Conversely, if Q� P is a dom-
inating local martingale measure for Sτ−, then W1 admits a supermartingale
density.

Theorem 1.5 is false if S is not predictable, as we will demonstrate on a
simple counterexample. But we will be able to exhibit a subset of supermartin-
gale densities that do give rise to dominating local martingale measures. Con-
versely, every dominating local martingale measure for Sτ− corresponds to a
supermartingale density, even for processes that are not predictable. In this
way we obtain the following theorem, the main result of this paper. In the
non-predictable case we build on results of [TS14] which are formulated for
processes on finite time intervals. So in the theorem we let T∞ = ∞ if S is
predictable, and T∞ ∈ (0,∞) otherwise.

Theorem 1.6 Let (St)t∈[0,T∞] be a locally bounded, adapted process on the
space (Ω,F , (Ft), P ) which is almost surely right-continuous. Then S satisfies
(NA1s) if and only if there exists a dominating Q � P such that Sτ− is a
Q–local martingale.

This work is motivated by insights from filtrations enlargements. A filtra-
tion (Gt) is called filtration enlargement of (Ft) if Gt ⊇ Ft for all t ≥ 0. A
basic question is then under which conditions all members of a given fam-
ily of (Ft)–semimartingales are (Gt)–semimartingales. We say that Hypothèse
(H ′) is satisfied if all (Ft)–semimartingales are (Gt)–semimartingales. Given
a (Ft)–semimartingale that satisfies (NFLVR), i.e. for which there exists an
equivalent local martingale measure, one might also ask under which condi-
tions it still satisfies (NFLVR) under (Gt). It is well known, and we illustrate
this in an example below, that the (NFLVR) condition is usually violated after
filtration enlargements.

However, (NA1) is relatively stable under filtration enlargements. If (Gt) is
an initial enlargement of (Ft), i.e. Gt = Ft ∨ σ(X) for some random variable
X and for every t ≥ 0, then Jacod’s criterion [Jac85] is a celebrated condition
on X and (Ft) under which Hypothèse (H ′) is satisfied. We show that in fact
Jacod’s criterion implies the existence of a universal supermartingale density. A
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strictly positive process Z is called universal supermartingale density if ZM is
a (Gt)–supermartingale for every nonnegative (Ft)–supermartingale M , which
is obviously much stronger than Hypothèse (H ′). Moreover, we will see that
under Jacod’s criterion every predictable process satisfying (NA1) under (Ft)
also satisfies (NA1) under (Gt). Conversely, if (Gt) is a general (not necessarily
initial) filtration enlargement, and if there exists a universal supermartingale
density for (Gt), then a generalized version of Jacod’s criterion is satisfied.

Section 2 describes the link to filtration enlargements in more detail. In
Section 2 we also argue that a dominating local martingale measure should
correspond to a supermartingale density. In Section 3 we discuss Rokhlin’s
theorem, for which we sketch an alternative proof. In Section 4 we prove that
if S is predictable, then Z is a supermartingale density for S if and only if
Sτ− is a local martingale under the Föllmer measure of Z. We also prove our
main result, Theorem 1.6. In Section 5 we discuss the relation with filtration
enlargements.

Relevant literature

To the best of our knowledge, supermartingale densities were first considered
by Karatzas et al. [KLSX91]; see also Kramkov and Schachermayer [KS99] and
Becherer [Bec01].

The semimartingale case of Theorem 1.3 was shown by Karatzas and Kar-
daras [KK07]. The generalized version which we will encounter in Section 3 is
due to Rokhlin [Rok10].

It was first observed by Ankirchner [Ank05] that a locally bounded pro-
cess satisfying (NA1s) must be a semimartingale; see also Kardaras and Platen
[KP11]. A slightly weaker version of this result is due to Delbaen and Schacher-
mayer [DS94]. This part of Corollary 1.4 is an immediate consequence of The-
orem 1.3. We get from [KP11] that (NA1s) implies (NA1) for locally bounded
processes and that supermartingale densities for W1,s are supermartingale
densities for W1.

Recently there has been an increased interest in Föllmer’s measure, mo-
tivated by problems from mathematical finance. Föllmer’s measure appears
naturally in the construction and study of strict local martingales, i.e. local
martingales that are not martingales. These are used to model bubbles in
financial markets, see Jarrow et al. [JPS10]. A pioneering work on the rela-
tion between Föllmer’s measure and strict local martingales is Delbaen and
Schachermayer [DS95a]. Other references are Pal and Protter [PP10], Kar-
daras et al. [KKN14], and Carr et al. [CFR14]. The work most related to ours
is Ruf [Ruf13], where it is shown that, in a diffusion setting, (NA1) implies
the existence of a dominating local martingale measure. All these works study
Föllmer measures of nonnegative local martingales.

To the best of our knowledge, the current work is the first in which the
Föllmer measure of a supermartingale that is not a local martingale is used as
a local martingale measure. In Föllmer and Gundel [FG06], supermartingales
Z are associated to “extended martingale measures” PZ . But by definition,
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PZ is an extended martingale measure if and only if Z is a supermartingale
density. This does not obviously imply that Sτ− or S is a local martingale
under PZ – and as we will see it is not true in general.

Another related work is Kardaras [Kar10], where it is shown that (NA1)
is equivalent to the existence of a finitely additive equivalent local martingale
measure. Here we construct countably additive measures and therefore we lose
the equivalence and only obtain dominating measures.

Our main motivation comes from filtrations enlargements, see for example
Amendinger et al. [AIS98], Ankirchner [Ank05], and Ankirchner et al. [ADI06].
In these works it is shown that if M is a continuous local martingale and if
(Gt) is a filtration enlargement, then under suitable conditions M is of the

form M = M̃ +
∫ ·
0
αsd〈M̃〉s, where M̃ is a (Gt)–local martingale. It is then

a natural question whether there exists an equivalent measure Q that “elimi-
nates” the drift, i.e. under which M is a (Gt)–local martingale. In general, the
answer to this question is negative. However, Ankirchner [Ank05], Theorem
9.2.7, observed that if there exists a well-posed utility maximization problem
in the large filtration, then the information drift α must be locally square inte-
grable with respect to M̃ . Here we show that this condition is in fact sufficient
and necessary and we also give the corresponding results for discontinuous
processes.

2 Motivation

We start with some motivating discussions. First we show that the (NFLVR)
property is not very robust under filtration enlargements. Then we recall that
if Jacod’s criterion is satisfied, there still is a dominating local martingale
measure. Finally we argue that under Jacod’s criterion, (NA1) is often satisfied
in the large filtration. So (NA1) respectively (NA1s) seem to be related to
the existence of dominating local martingale measures. Assuming that such
a measure exists, we show that its Kunita-Yoeurp decomposition under P is
supermartingale density.

Equivalent local martingale measures and filtration enlargements

Assume that P (A) ∈ {0, 1} for all A ∈ F0 and that S is a one dimensional
semimartingale modelling a complete market (i.e. for every X ∈ L∞(F) there
exists a predictable process H, integrable with respect to S, so that X =
X0 +

∫∞
0
HsdSs for some constant X0 ∈ R). Let X be a random variable that

is not P–almost surely constant, and define the initially enlarged filtration
Gt = Ft∨σ(X) for t ≥ 0. This is a toy model for insider trading: at time 0, the
insider has the additional knowledge of the value of X. Assume now that Q
is an equivalent (Gt)–local martingale measure for S. Since X is not constant,
there exists A ∈ σ(X) with P [A] ∈ (0, 1). Consider the (Q, (Ft))–martingale
Nt = EQ[1A|Ft], for t ≥ 0. By completeness of the market, there exists a (Ft)–
predictable strategy H such that N = Q[A] +

∫ ·
0
HsdSs. But then

∫ ·
0
HsdSs
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is a bounded (Q, (Gt))–local martingale and thus a martingale. Using Ac ∈ G0
and that Q is equivalent to P , we derive the contradiction

0 = EQ[1Ac1A] = EQ

[
1Ac

[
Q(A) +

∫ ∞
0

HsdSs

]]
= Q[Ac]Q[A] > 0.

So already in the simplest models incorporating information asymmetry,
there may not exist an equivalent local martingale measure. If S is locally
bounded, then by the Fundamental Theorem of Asset Pricing at least one of
the conditions (NA) or (NA1) has to be violated.

Jacod’s criterion and dominating local martingale measures

Here we consider again an initial filtration enlargement Gt = Ft ∨ σ(X) for
t ≥ 0, where X is a random variable. Jacod’s criterion [Jac85] is a condition
which implies that all (Ft)–semimartingales remain (Gt)–semimartingales. The
following formulation was first found in Föllmer and Imkeller [FI93] and later
generalized and carefully studied by Ankirchner et al. [ADI07]. Define the
product space

Ω = Ω ×Ω, G = F ⊗ σ(X), Gt = Ft ⊗ σ(X), t ≥ 0.

We consider two measures on Ω: the decoupling measure Q = P ⊗P |σ(X), and

P = P ◦ ψ−1, where ψ : Ω → Ω, ψ(ω) = (ω, ω). The following result is then a
reformulation of Jacod’s criterion.

Theorem (Theorem 1 in [ADI07]) If P � Q, then Hypothèse (H ′) holds,
i.e. any (Ft)–semimartingale is a (Gt)–semimartingale.

In this formulation it is quite obvious why Jacod’s criterion works. Un-
der the measure Q, the additional information from X is independent of
F . Therefore, any (Ft)–martingale M will be a (Gt)–martingale under Q (if
we embed M from Ω to Ω by setting M t(ω, ω

′) = Mt(ω)). By assumption,
Q � P , and therefore an application of Girsanov’s theorem implies that M
is a P–semimartingale. But it is possible to show that if M is a (P , (Gt))–
semimartingale, then M is a (P, (Gt))–semimartingale, which completes the
argument.

The main argument was that Jacod’s criterion gives us a dominating mea-
sure (on an enlarged space), under which any (Ft)–martingale is a (Gt)–
martingale. But Jacod’s criterion is always satisfied if X takes its values in
a countable set, regardless of P and S. So if we recall our example of filtration
enlargements in complete markets from above, then we see that Jacod’s crite-
rion may be satisfied although there is no equivalent local martingale measure
under (Gt).
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Utility maximization and filtration enlargements

Assume again that S models a complete market and that (Gt) is an initial
enlargement satisfying Jacod’s criterion. We then define the set of attainable
terminal wealths K1(Ft) and K1(Gt) as in (1.2), using (Ft)–predictable and
(Gt)–predictable strategies respectively. It is shown in Ankirchner’s Ph.D. the-
sis ([Ank05], Theorem 12.6.1, see also [ADI06]), that the maximal expected
logarithmic utility under (Gt) is given by

sup
X∈K1(Gt)

E[log(X)] = sup
X∈K1(Ft)

E[log(X)] + I(X,F),

where I(X,F) denotes the mutual information between X and F . The mutual
information is often finite, and therefore the maximal expected utility under
(Gt) is often finite. But finite utility and (NA1) are equivalent:

Lemma 2.1 The process S satisfies (NA1) under (Gt) if and only if there
exists an unbounded increasing function U for which the maximal expected
utility is finite, i.e. such that

sup
X∈K1(Gt)

E[U(X)] <∞.

Proof This follows from Proposition 2.2 below.

In conclusion, we showed that (NFLVR) and thus (NA) or (NA1) is not
very robust under filtration enlargements. We also observed that the maximal
expected logarithmic utility in an enlarged filtration may be finite, and that
this is only possible under the (NA1) condition. So (NA) seems to be the part
of (NFLVR) which is less robust with respect to filtration enlargements; see
also Remark 5.8 below. Moreover, Jacod’s criterion is satisfied in the examples
where (NA1) holds. As we saw above, Jacod’s criterion gives us a dominating
local martingale measure. Hence, (NA1) seems to be related to the existence
of dominating local martingale measures.

Supermartingale densities

Now let Q� P be a dominating local martingale measure for S. Let γ be the
right-continuous density process, γt = dP/dQ|Ft

, and set τ = inf{t ≥ 0 : γt =
0}. Define Zt = 1{t<τ}/γt. Let H be 1–admissible for S under Q, i.e. so that

Q[
∫ t
0
HsdSs ≥ −1] = 1 for all t ≥ 0. Let s, t ≥ 0 and let A ∈ Ft. We have

EP [1AZt+s(1 + (H · S)t+s)] = EQ

[
γt+s1A

1{t+s<τ}

γt+s
(1 + (H · S)t+s)

]
(2.1)

≤ EQ
[
1A1{t<τ}(1 + (H · S)t+s)

]
≤ EQ

[
1A1{t<τ}(1 + (H · S)t)

]
= EP [1AZt(1 + (H · S)t)],
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using in the second line that 1A(1+(H ·S)t+s) is nonnegative, and in the third
line that 1 + (H · S) is a Q–supermartingale. This indicates that Z should be
a supermartingale density. Of course, here we only considered strategies that
are 1–admissible under Q, and there might be strategies that are 1–admissible
under P but not under Q. We will solve this by problem by considering dom-
inating local martingale measures for Sτ− rather than for S.

The pair (Z, τ) is the Kunita-Yoeurp decomposition of Q with respect to
P , a progressive Lebesgue decomposition on filtered probability spaces. It was
introduced by Kunita [Kun76] in a Markovian context, and generalized to
arbitrary filtered probability spaces by Yoeurp [Yoe85]. Namely, we have for
all t ≥ 0

1. P [τ =∞] = 1,
2. Q[· ∩ {τ ≤ t}] and P are mutually singular on Ft,
3. for A ∈ Ft we have Q[A ∩ {τ > t}] = EP [1AZt].

Note that the second property is a consequence of the first property.

Hence, our program will be to find a supermartingale density Z and to
construct a measure Q and a stopping time τ such that (Z, τ) is the Kunita-
Yoeurp decomposition of Q with respect to P . But the second part was already
solved by [Yoe85], and Q will be the Föllmer measure of Z. Studying the
relation between S and Z, we will see that Sτ− is a local martingale under Q.

Before getting to the main part of the paper, let us prove Lemma 2.1,
which is a consequence of the following de la Vallée-Poussin type result for
L0–bounded families of random variables.

Proposition 2.2 A family of random variables X is bounded in probability if
and only if there exists an increasing and unbounded function U on [0,∞) for
which

sup
X∈X

E[U(|X|)] <∞.

In that case U can be chosen strictly increasing, concave, and such that U(0) =
0.

Proof If such a U exists, then obviously X is bounded in L0.

Conversely, assume that X is bounded in probability. Our construction
of U is inspired by the proof of de la Vallée-Poussin’s theorem. That is, we
construct a function U of the form

U(x) =

∫ x

0

g(y)dy, where g(y) = gk for y ∈ [k − 1, k), k ∈ N,

for a decreasing sequence of strictly positive numbers (gk). This U will be
strictly increasing, concave, and U(0) = 0. It will be unbounded if and only if∑∞
k=1 gk =∞.
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For such U we apply montone convergence and Fubini’s theorem to obtain

E[U(|X|)] =

∞∑
m=1

E[U(|X|)1{|X|∈[m−1,m)}] ≤
∞∑
m=1

m∑
k=1

gkP [|X| ∈ [m− 1,m)]

=

∞∑
k=1

gkP [|X| ≥ k − 1] ≤
∞∑
k=1

gkFX (k − 1),

where FX (k − 1) = supX∈X P [|X| ≥ k − 1].
So the proof is complete if we can find a decreasing sequence (gk) of positive

numbers with
∑∞
k=1 gk = ∞ but

∑∞
k=1 gkFX (k − 1) < ∞. By assumption,

(FX (k)) converges to zero as k tends to ∞, and therefore it also converges to
zero in the Cesàro sense. So for every m ∈ N there exists Km ∈ N such that

1

Km

Km∑
k=1

FX (k − 1) ≤ 1

m
. (2.2)

We may also assume that Km ≥ m. Define

gmk =

{
1

mKm
, k ≤ Km,

0, k > Km,

and let mk denote the smallest m for which gmk 6= 0, that is mk := min{m ∈
N : Km ≥ k}. By definition, mk ≤ mk+1 for all k, and therefore the sequence
(gk), where

gk =

∞∑
m=1

gmk =

∞∑
m=mk

1

mKm
≤

∞∑
m=mk

1

m2
<∞,

is decreasing in k. Moreover, Fubini’s theorem implies that

∞∑
k=1

gk =

∞∑
k=1

∞∑
m=1

gmk =

∞∑
m=1

∞∑
k=1

gmk =

∞∑
m=1

Km∑
k=1

1

mKm
=

∞∑
m=1

1

m
=∞,

and at the same time we get from (2.2)

∞∑
k=1

gkFX (k − 1) =

∞∑
m=1

Km∑
k=1

FX (k − 1)

mKm
≤
∞∑
m=1

1

m2
<∞,

which completes the proof.

Remark 2.3 In Loewenstein and Willard [LW00], Theorem 1, it is shown that
the utility maximization problem for Itô processes is well posed if and only
if there is absence of a certain notion of arbitrage. Karatzas and Kardaras
[KK07], Section 4.7 show for semimartingale models that (NA1) is the minimal
property which has to be satisfied to obtain a well-posed utility maximization
problem. Proposition 2.2 is much simpler and more obvious, but therefore also
more robust. It is applicable in virtually any context, say non-semimartingale
models with transaction costs under trading constraints. The family of port-
folios need not even be convex.
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Remark 2.4 Supermartingale densities are the dual variables in the duality
approach to utility maximization [KS99]. Taking Proposition 2.2 into account,
Theorem 1.3 therefore states that there exists a non-degenerate utility maxi-
mization problem if and only if the space of dual minimizers is nonempty. This
insight might also be useful in more complicated contexts. As a sort of meta-
theorem holding for many utility maximization problems, we expect that the
space of dual variables is nonempty if and only if the space of primal variables
is bounded in probability.

A first consequence is that any locally bounded process satisfying (NA1s)
is a semimartingale. This follows from [Ank05], Theorem 7.4.3, where it is
shown that finite utility implies the semimartingale property.

3 Existence of supermartingale densities

Now let us sketch an alternative proof of Theorem 1.3. In fact, we will obtain
a generalized version which is known as Rokhlin’s theorem.

A family of nonnegative stochastic processes Y is called fork-convex, see
[Ž02] or [Rok10], if Ys = 0 implies Yt = 0 for all 0 ≤ s ≤ t < ∞, and
if further for all Y 1, Y 2, Y 3 ∈ Y, for all s ≥ 0, and for all Fs–measurable
random variables λs with values in [0, 1], we have that

Y· = 1[0,s)(·)Y 1
s + 1[s,∞)(·)Y 1

s

(
λs
Y 2
·
Y 2
s

+ (1− λs)
Y 3
·
Y 3
s

)
∈ Y. (3.1)

Here and in all that follows we interpret 0/0 = 0. A fork-convex family of
processes with Y0 = 1 for all Y ∈ Y is convex. If moreover Y contains the
constant process 1, then Y is stable under stopping at deterministic times.
Rokhlin’s theorem is the following.

Theorem 3.1 ([Rok10], Theorem 1) Let Y be a fork-convex family of
right-continuous and nonnegative processes containing the constant process 1
and such that Y0 = 1 for all Y ∈ Y. Let

K =
{
Y∞ : Y ∈ Y, Y∞ = lim

t→∞
Yt exists

}
.

Then K is bounded in probability if and only if there exists a supermartingale
density for Y.

Let us show the result for two time steps. First, we show that we can switch
from boundedness in L0 to boundedness in L1 by a change of measure.

Lemma 3.2 Let X be a convex family of nonnegative random variables. Then
X is bounded in probability if and only if there exists a strictly positive random
variable Z with

sup
X∈X

E[XZ] <∞.
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Proof The necessity is Theorem 1 of [Yan80] in combination with Remark (c)
of [DM82], VIII-84; see also Lemma 2.3 of [BS99]. The sufficiency is easy.

This lemma is all we need to prove the result in two time steps:

Lemma 3.3 Let Y be a L1–bounded family of nonnegative processes indexed
by {0, 1}, adapted to a filtration (F0,F1). Assume that Y is fork-convex and
that Y contains a process of the form (1, Y ∗1 ) for a strictly positive Y ∗1 . Then
there exists a strictly positive F0–measurable random variable Z for which
(Y0Z, Y1) is a supermartingale for every Y ∈ Y. The random variable Z can
be chosen such that

sup
Y ∈Y

E[Y0Z] ≤ sup
Y ∈Y

max
i=0,1

E[Yi]. (3.2)

Proof We define a nonnegative set function µ on F0 by setting

µ(A) := sup
Y ∈Y

E[1AY1/Y0].

Let us apply the fork-convexity of Y to show that for every Y ∈ Y there exists
Ỹ ∈ Y with Y1/Y0 = Ỹ1. We take s = 0, Y 1 = (1, Y ∗1 ), Y 2 = Y , and λs = 1

in (3.1). Then Ỹ ∈ Y, where Ỹ0 = 1{Y0>0} and Ỹ1 = Y1/Y0. In particular, it
follows from the L1–boundedness of Y that

µ(A) = sup
Y ∈Y

E

[
1A
Y1
Y0

]
≤ sup
Ỹ ∈Y

E[1AỸ1] <∞

for all A ∈ F0. In fact, µ is a finite measure: Let A,B ∈ F0 be two disjoint
sets and let Y A, Y B ∈ Y. We take s = 0, Y 1 = (1, Y ∗1 ), Y 2 = Y A, Y 3 = Y B ,
and λs = 1A in (3.1), so that

Ỹt = 1{0}(t)
(

1A1{Y A
0 >0} + 1B1{Y B

0 >0}

)
+ 1{1}(t)

(
1A
Y A1
Y A0

+ 1B
Y B1
Y B0

)
∈ Y.

Note that Ỹ1/Ỹ0 = Ỹ1, since we set 0/0 = 0. Because A and B are disjoint, we
have

1A∪B
Ỹ1

Ỹ0
= 1A

Y A1
Y A0

+ 1B
Y B1
Y B0

.

As a consequence we obtain

µ(A) + µ(B) ≤ sup
Ỹ ∈Y

E

[
1A∪B

Ỹ1

Ỹ0

]
= µ(A ∪B).

But µ(A ∪ B) ≤ µ(A) + µ(B) is obvious, and therefore µ is finitely additive.
It is also obvious that µ(

⋃
nAn) ≤

∑
n µ(An) for every sequence (An) of

disjoint sets in F0. Since the opposite inequality holds for any finitely additive
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nonnegative set function, µ is a finite measure on F0, absolutely continuous
with respect to P . Hence, there exists a nonnegative Z ∈ L1(F0, P ) with

µ(A) = E[1AZ] = sup
Y ∈Y

E

[
1A
Y1
Y0

]
(3.3)

for all A ∈ F0. As a consequence, we get for any Y ∈ Y and A ∈ F0

E[1AY0Z] = sup
Ỹ ∈Y

E

[
1AY0

Ỹ1

Ỹ0

]
≥ E

[
1AY0

Y1
Y0

]
= E[1AY1],

proving that (Y0Z, Y1) is a supermartingale provided that E[Y0Z] < ∞. But
the bound (3.2) follows immediately from the fork-convexity of Y and the

definition of Z, because the process Ỹ = (Y01{Y 1
0 >0}, Y0Y

1
1 /Y

1
0 ) is in Y for all

Y 1 ∈ Y. It remains to show that Z is strictly positive. By assumption, there
exists (1, Y ∗1 ) ∈ Y with strictly positive Y ∗1 . Since (Z, Y ∗1 ) is a supermartingale,
also Z must be strictly positive.

The case of finitely many time steps easily follows by induction. From here
we can use a compactness principle for nonnegative supermartingales such as
Lemma 5.2 of Föllmer and Kramkov [FK97] to pass to the general case. It
is also possible to use a Tychonoff theorem for convex compactness, a weak
notion of compactness introduced by Žitković [Ž10]. This approach is carried
out in [Per14], where also many counterexamples are given to show that all
conditions of Theorem 3.1 are reasonably sharp. Alternatively, we may at this
point just follow the arguments in the proof of Theorem 2 in [Rok10].

Corollary 3.4 If Y is as in Theorem 3.1, then every Y ∈ Y is a semimartin-
gale for which Yt almost surely converges as t→∞.

Proof Convergence follows because Y Z is a nonnegative supermartingale and
because Z converges to a strictly positive limit. The semimartingale property
is obtained using Itô’s formula and the strict positivity of Z.

To conclude the proof of Theorem 1.3, it suffices to show that W1 and
W1,s satisfy the assumptions of Theorem 3.1. This is easy and done for example
in [Rok10]. Rokhlin only treats the case ofW1 and K1, but the same arguments
also work for W1,s and K1,s.

Proof (Proof of Corollary 1.4) It suffices to argue for each component sep-
arately. Let S be locally bounded from below and assume that S satisfies
(NA1s). Then also S−S0 is locally bounded from below so that we can choose
an increasing sequence of stopping times (τm) with limm→∞ τm = ∞, and a
sequence of strictly positive numbers (am), so that (1 + am(St∧τm −S0))t≥0 ∈
W1,s. By Corollary 3.4, the stopped process S·∧τm is a semimartingale for every
m. But local semimartingales are semimartingales, see Protter [Pro04], Theo-
rem II.6. Protter works with complete filtrations, but it follows from Lemma
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A.3 in Appendix A that for every semimartingale in the completed filtration
there exists an indistinguishable (Ft)–semimartingale.

It remains to show that every supermartingale density for W1,s is a super-
martingale density for W1. But this is the content of [KP11], Section 2.2.

In the unbounded case S is not necessarily a semimartingale. A simple
counterexample is given by a one dimensional Lévy-process with jumps that
are unbounded both from above and from below, to which we add a fractional
Brownian motion with Hurst index H < 1/2. The resulting process has infinite
quadratic variation and is therefore not a semimartingale. But there are no
1–admissible simple strategies other than 0, so that K1,s = {1} is obviously
bounded in probability.

4 Construction of dominating local martingale measures

4.1 The Kunita-Yoeurp problem and Föllmer’s measure

Now let Z be a strictly positive supermartingale with Z∞ > 0 and EP (Z0) = 1.
Our aim is to construct a dominating measure Q and a stopping time τ such
that (Z, τ) is the Kunita-Yoeurp decomposition of Q with respect to P . We
call this the Kunita-Yoeurp problem. Recall that (Z, τ) is the Kunita-Yoeurp
decomposition of Q with respect to P if

1. P [τ =∞] = 1,
2. for A ∈ Ft we have

Q[A ∩ {τ > t}] = EP [1AZt]. (4.1)

In this case it follows for any stopping time ρ and any A ∈ Fρ that

Q[A ∩ {τ > ρ}] = EP
[
1A∩{ρ<∞}Zρ

]
, (4.2)

see for example [Yoe85], Proposition 4.
In general it is impossible to construct Q and τ without making further

assumptions on the underlying probability space. Under certain topological
assumptions on the probability space, Yoeurp [Yoe85] showed that one can al-
ways find an enlarged probability space where the Kunita-Yoeurp problem ad-
mits a solution (Q, τ). Indeed, Q can be chosen as the Föllmer measure [Föl72]
of Z. Here we use the construction of [PR14], where it is shown that if P is a
probability measure on the path space (Ω,F) described in the introduction,
such that the explosion time to the cemetery state ∆ is P–almost surely in-
finite, the Kunita-Yoeurp problem always admits a solution (Q, τ) on (Ω,F)
and it is not necessary to enlarge the probability space. There it is also ex-
amined very precisely under which conditions Q and τ are unique (almost
never).

So let (Q, τ) solve the Kunita-Yoeurp problem for Z and let us show that
Q dominates P .
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Lemma 4.1 Let P and Q be two probability measures on (Ω,F) and let
(Z, τ) be the Kunita-Yoeurp decomposition of Q with respect to P . Assume
that P [Z∞ > 0] = 1. Then P � Q.

Proof Let A ∈
⋃
t≥0 Ft. Equation (4.1) and Fatou’s lemma yield

Q[A ∩ {τ =∞}] = lim
t→∞

Q[A ∩ {τ > t}] = lim
t→∞

EP [Zt1A] ≥ EP [Z∞1A].

By the monotone class theorem and since F =
∨
t≥0 Ft, this inequality extends

to all A ∈ F . Since P (Z∞ > 0) = 1, we conclude that P � Q.

4.1.1 Calculating expectations under Q

Here we collect important results of [Yoe85] that allow to rewrite certain ex-
pectations under Q as expectations under P . More precisely, let Z be a nonneg-
ative supermartingale with E(Z0) = 1 and with Doob-Meyer decomposition
Z = Z0 +N −B, where N is a local martingale starting in zero, and B is an
adapted process, almost surely increasing and càdlàg, and let (Q, τ) solve the
Kunita-Yoeurp problem for Z.

Lemma 4.2 ([Yoe85], Proposition I.9) Let Z = Z0 + N − B, and let τ
and Q be as described above. Let (ρm)m∈N be a localizing sequence for N such
that every ρm is finite. Then we have for every bounded predictable process Y
and for every m ∈ N that

EQ[Y ρmτ ] = EP

[
YρmZρm +

∫ ρm

0

YsdBs

]
. (4.3)

Corollary 4.3 Let Y be a bounded adapted process that is P–almost surely
càdlàg. Define

Y τ−t (ω) := Yt(ω)1{t<τ(ω)} + lim sup
s→τ(ω)−

Ys(ω)1{t≥τ(ω)}.

Let Z and (ρm) be as in Lemma 4.2. Then

EQ[Y τ−ρm ] = EP

[
YρmZρm +

∫ ρm

0

Ys−dBs

]
.

Proof This is a small generalization of (2.4) in [Yoe85]. Define Y −t (ω) =
Yt−(ω) = lim sups→t− Ys for t > 0, and Y −0 = Y0. Then Y − is predictable
process, and therefore we can apply Lemma 4.2. Observe that

Y τ−ρm = Yρm1{τ>ρm} + Yτ−1{τ≤ρm} = Yρm1{τ>ρm} + (Y −)τ1{τ≤ρm}.

Now (4.2) implies that EQ[Yρm1{τ>ρm}] = EP [YρmZρm ], whereas (4.3) and
then again (4.2) applied to the second term on the right hand side give

EQ[(Y −)τ1{τ≤ρm}] = EQ[(Y −)ρmτ ]− EQ[(Y −)ρm1{τ>ρm}]

= EP

[
Yρm−Zρm +

∫ ρm

0

Ys−dBs

]
− EP [Yρm−Zρm ]

= EP

[∫ ρm

0

Ys−dBs

]
.
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4.2 The predictable case

Let now S be a d–dimensional predictable semimartingale and let Z be a
supermartingale density for W1. Here we examine the structure of S and Z
closer. This will allow us to apply Lemma 4.2 to deduce that Sτ− is a local
martingale under the dominating measure associated to Z.

Remark 4.4 Observe that, thanks to predictability, S − S0 is almost surely
locally bounded. In view of Corollary 1.4 it would therefore suffice to assume
that Z is a supermartingale density for W1,s. Then S is a semimartingale and
Z is a supermartingale density for W1.

Since S − S0 is locally bounded, it is a special semimartingale. That is,
there exists a unique decomposition S = S0 + M + D, where M is a local
martingale with M0 = 0, and D is a predictable process of finite variation
with D0 = 0. Thus, M = S − S0 −D is predictable and therefore continuous.
But then also D must be continuous, because (NA1) implies dDi � d〈M i〉
for i = 1, . . . , d, where M = (M1, . . . ,Md) and D = (D1, . . . , Dd); see for
example [Ank05], Lemma 9.1.2. Otherwise, one could find a predictable process
Hi which satisfies Hi·M i ≡ 0, but for which Hi·Di is increasing. In conclusion,
S must be continuous.

In fact, S must satisfy the structure condition as defined in Schweizer
[Sch95]. Recall that L2

loc(M) is the space of progressively measurable processes
(λt)t≥0 that are locally square integrable with respect to M , i.e. so that∫ t

0

d∑
i,j=1

λisλ
j
sd〈M i,M j〉s <∞, t ≥ 0.

Definition 4.5 Let S = S0 +M +D be a d–dimensional special semimartin-
gale with locally square-integrable M . Define

Ct =

d∑
i=1

〈M i〉t and for 1 ≤ i, j ≤ d : σijt =
d〈M i,M j〉t

dCt
.

Note that σ exists by the Kunita-Watanabe inequality. Then S satisfies the
structure condition if dDi � d〈M i〉 for all 1 ≤ i ≤ d, with predictable
derivative αit = dDi

t/d〈M i〉t, and if there exists a predictable process λt =
(λ1t , . . . , λ

d
t ) ∈ L2

loc(M) so that for i = 1, . . . , d we have dC(ω)⊗P (dω)–almost
everywhere

(σλ)i = αiσii. (4.4)

Note that λ might not be uniquely determined, but the stochastic integral∫
λdM does not depend on the choice of λ, see [Sch95]. If∫ ∞

0

d∑
i,j=1

λitσ
ij
t λ

j
tdCt <∞, (4.5)

then we say that S satisfies the structure condition until ∞.
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Recall that two one dimensional local martingales L and N are called
strongly orthogonal if LN is a local martingale. If L and N are multidimen-
sional, then we call them strongly orthogonal if all their components are
strongly orthogonal. Also recall that the stochastic exponential of a semi-
martingale X is defined by the SDE

E(X)t = 1 +

∫ t

0

E(X)s−dXs, t ≥ 0.

Let us write dXt ∼ dYt if d(X−Y )t is the differential of a local martingale.

Lemma 4.6 ([LŽ07], Proposition 3.2) Let S = S0+M+D be a predictable
semimartingale and suppose that Z is a supermartingale density for S. Then
S satisfies the structure condition until ∞, and

dZt = Zt−(−λtdMt + dNt − dBt), (4.6)

where λ satisfies (4.4) and (4.5), N is a local martingale that is strongly or-
thogonal to M , B is increasing, and E(N −B)∞ > 0.

Conversely, if a predictable process S satisfies the structure condition until
∞, and if Z is defined by (4.6) with Z0 = 1, then Z is a supermartingale
density for S.

In particular, for predictable S the structure condition until∞ is equivalent
to (NA1).

Proof This is essentially Proposition 3.2 of Larsen and Žitković [LŽ07] in infi-
nite time. We provide a slightly simplified version of their proof, because later
we will need some results obtained during the proof.

Let Z be a supermartingale density. Since Z is strictly positive, it is of
the form dZt = Zt−(dLt − dBt) for a local martingale L and a predictable
increasing process B. Since M is continuous, there exists a predictable process
λ ∈ L2

loc(M) such that dLt = −λtdMt + dNt, where N is a local martin-
gale that is strongly orthogonal to all components of M , see [JS03], Theorem
III.4.11. Moreover,

0 < Z∞ = Z0E(−λ ·M +N −B)∞ = Z0E(−λ ·M)∞E(N −B)∞,

which is only possible if λ satisfies (4.5) and if E(N −B)∞ > 0. It remains to
show that λ also satisfies (4.4).

Let H be a 1–admissible strategy. Write WH := 1 + H · S for the wealth
process generated by H. Then WHZ is a nonnegative supermartingale. Since
Z is strictly positive, we must have WH

t ≡ 0 for t ≥ τH := inf{s ≥ 0 : WH
s− =

0 or WH
s = 0}. Therefore, we may assume without loss of generality that Ht =

Ht1{t<τH} for all t ≥ 0. Define πt := Ht/W
H
t−, so that WH

t = 1+
∫ t
0
πsW

H
s−dSs.

In other words, every wealth process is of the form WH = E(π ·S) for a suitable
integrand π. We slightly abuse notation and write Wπ instead of WH .
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Integration by parts applied to ZWπ gives

d(ZWπ)t = Wπ
t−dZt + Zt−πtW

π
t−dSt + d[Wπ, Z]t (4.7)

= Wπ
t−Zt−(−λtdMt + dNt − dBt) + Zt−πtW

π
t−(dMt + dDt)

+Wπ
t−Zt−d[π · (M +D),−λ ·M +N −B]t

∼ −Wπ
t−Zt−dBt + Zt−πtW

π
t−dDt +Wπ

t−Zt−d〈π ·M,−λ ·M〉t,

where we used that M and D are continuous and that N is strongly orthogonal
to M .

Let now C and σ be as described in Definition 4.5. Then Theorem III.4.5
of [JS03] implies that the bracket 〈π ·M,−λ ·M〉 can be rewritten as

d(ZWπ)t ∼Wπ
t−Zt− (−dBt + πtdDt + d〈π ·M,−λ ·M〉t)

= Wπ
t−Zt−

(
− dBt +

d∑
i=1

πit

(
dDi

t −
d∑
j=1

σijt λ
j
tdCt

))
. (4.8)

Assume that there exists i ∈ {1, . . . , d} for which the continuous process of

finite variation Xi
t = Di

t−
∑d
j=1

∫ ·
0
σijs λ

j
sdCs is not evanescent. We claim that

then there exists π for which the finite variation part of (ZWπ) is increasing on
a small time interval. By the predictable Radon-Nikodym theorem of Delbaen
and Schachermayer [DS95b], Theorem 2.1 b), we can find a predictable γi

with values in {−1, 1} such that
∫ ·
0
γisdD

i
s = V i, where V i denotes the total

variation process of Xi. Note that [DS95b] work with complete filtrations, but
we can apply Lemma A.2 to get rid of that assumption. Let now m ∈ N and
set πjt := mδijγ

i
t for j = 1, . . . , d. Then

d(ZWπ)t ∼Wπ
t−Zt−

(
−dBt +mdV it

)
.

Since V i is an increasing process that is not constant, there exists m so that
−dBt + mdV it is locally strictly increasing with positive probability. Since
π is bounded, we obtain that Wπ

t− > 0 for all t ≥ 0. Therefore, the finite
variation part of WπZ is locally strictly increasing with positive probability,
a contradiction to ZWπ being a supermartingale.

Thus, Xi is evanescent. Recall that dDi � d〈M i〉 = σiidC, and therefore
there exists a predictable process αi for which

0 ≡

dDi
t −

d∑
j=1

σijt λ
j
tdCt

 =
(
αitσ

ii
t − (σtλt)

i
)

dCt,

so that dC(ω) ⊗ P (dω)–almost everywhere αiσii = (σλ)i and thus λ satis-
fies (4.4).

The converse direction is easy and follows directly from (4.7).
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Remark 4.7 For later reference we remark that if S is discontinuous, then a
priori we only know that dZt = Zt−(dNt−dBt), for a local martingale N and
a predictable process of finite variation B. Similarly as in(4.7) we can show
that then for Wπ = E(π · S)

d(WπZ)t ∼Wπ
t−Zt−(−dBt + πtdDt + d[π ·M,N ]t − d[π ·D,B]t). (4.9)

Here we used that if L is a local martingale and if D is predictable process
of finite variation, then [L,D] is a local martingale, see Proposition I.4.49
of [JS03].

If Z is a supermartingale density, then SZ is not necessarily a local mar-
tingale:

Corollary 4.8 Let Z and S be as in Lemma 4.6. Then SiZ is a local super-
martingale if and only if Si ≥ 0 on the support of the measure dB. If Si ≥ 0
identically, then SiZ is a supermartingale.

The process SiZ is a local martingale if and only if Si = 0 on the support
of the measure dB.

Proof Integration by parts and (4.6) imply that

d(SiZ)t = Zt−(dM i
t + αitσ

ii
t dCt) + Sit−Zt−(−λdMt + dNt − dBt)

− Zt−(σλ)itdCt

∼ −Sit−Zt−dBt,

where we used (4.4) in the second step. The claim now follows easily since
nonnegative local supermartingales are supermartingales by Fatou’s lemma.

Another consequence of Lemma 4.6 is that in the predictable case, the
maximal elements among the supermartingale densities are always local mar-
tingales. This is important in the duality approach to utility maximization.
For details we refer to [LŽ07].

We are now ready to prove Theorem 1.5, which is a consequence of the
following corollary.

Corollary 4.9 Let S be a predictable semimartingale, and let Z be a super-
martingale density for S. Let τ be a stopping time and Q be a probability
measure so that (Z/EP (Z0), τ) is the Kunita-Yoeurp decomposition of Q with
respect to P . Then Sτ− is a Q–local martingale.

Conversely, if Q � P has the Kunita-Yoeurp decomposition (Z, τ) with
respect to P and if Sτ− is a local martingale under Q, then Z is a super-
martingale density for S.

Proof We first show that Sτ− is Q–almost surely locally bounded. For n ∈ N
let ρ̃n := inf{t ≥ 0 : |Sτ−t | ≥ n}. Since Sτ− was only required to be right-
continuous P–almost surely and not identically, ρ̃n is not necessarily a stopping
time. But it is a stopping time in the filtration (FQt ) which is completed with
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respect to Q. By Lemma A.1, there exist (Ft)–stopping times (ρn)n∈N with
Q[ρn = ρ̃n] = 1 for all n. Then supn ρn is a stopping time, and we obtain from
(4.2) that

Q
[

sup
n
ρn < τ

]
= EP

[
Zsupn ρn1{supn ρn<∞}

]
= 0, (4.10)

because P [supn ρn < ∞] = 0. But Sτ−t is constant after τ , and therefore
{supn ρn ≥ τ} is Q–almost surely contained in {supn ρn =∞}, so that Sτ− is
Q–almost surely locally bounded.

Let now (σn)n∈N be a localizing sequence of finite stopping times for the
local martingale N , where Z = Z0+N−B, and define τn := ρn∧σn. Let H be a
strategy that is 1–admissible for (Sτ−)τn under Q. Since (H ·Sτ−) = (H ·S)τ−,
we can apply Corollary 4.3 (which of course extends to nonnegative Y ), to
obtain

EQ[1 + (H · Sτ−)τn ] = EP

[
(1 + (H · S)τn)Zτn +

∫ τn

0

(1 + (H · S)s−)dBs

]
.

But now (4.8) and (4.4) imply that for π as defined in the proof of Lemma 4.6,
the process

(1 + (H · S))Z +

∫ ·
0

(1 + (H · S)s−)dBs = WπZ +

∫ ·
0

Wπ
s−dBs

is a nonnegative P–local martingale starting in 1, and therefore EQ[(H ·
Sτ−)τn ] ≤ 0. Since (Sτ−)τn is bounded, we easily conclude that it is a martin-
gale.

The only remaining problem is that so far we only know that Q[supn τn ≥
τ ] = 1 and not that Q[supn τn = ∞] = 1. But the same arguments also
show that (Sτ−)ρn∧τm is a martingale for all n,m ∈ N, so that by bounded
convergence

EQ[(Sτ−)ρnt+s|Ft] = lim
m→∞

EQ[(Sτ−)ρn∧τmt+s |Ft] = lim
m→∞

(Sτ−)ρn∧τmt = (Sτ−)ρnt

for all s, t ≥ 0. As we saw above, Q[supn ρn =∞] = 1, and therefore Sτ− is a
Q–local martingale.

Conversely, let Sτ− be a Q–local martingale, and let H be a 1–admissible
strategy for S under P . Define ρ := inf{t ≥ 0 : (H ·Sτ−)t < −1}. Then P [ρ <
∞] = 0 and therefore Q[ρ < τ ] = 0. Hence, H is 1–admissible for Sτ− under
Q. Now we can repeat the arguments in (2.1), to obtain that Zt = 1{t<τ}/γt
is a supermartingale density for S, where we denoted γt := (dP/dQ)|Ft .

Remark 4.10 For later reference, note that we only used once that S is pre-
dictable: it was only needed to obtain

EP

[
(1 + (H · S)τn)Zτn +

∫ τn

0

(1 + (H · S)s−)dBs

]
≤ 1,

for which we applied Lemma 4.6 (and formula (4.8) from the proof of that
lemma).
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Remark 4.11 We argued above that a predictable process satisfying (NA1)
must be continuous. Therefore, Theorem 1.5 is not much more general than
Ruf [Ruf13], where it is shown that a diffusion S that satisfies (NA1) admits
a dominating local martingale measure. However, [Ruf13] only shows that su-
permartingale densities which are local martingales correspond to local mar-
tingale measures. Here we show that in the predictable case this is true for all
supermartingale densities.

4.3 The general case

We start the treatment of the non-predictable case with two examples that
illustrate why it is natural to consider dominating local martingale measures
for Sτ− rather than for S.

Example 4.12 If Q is a dominating local martingale measure for S, then S
does not need to satisfy (NA1): Let τ be standard exponentially distributed
under Q. Define the uniformly integrable martingale St = et1{t<τ} for t ∈ [0, 1]
and set dP = S1dQ. Under P we have St = et for all t ∈ [0, 1], so that S does
not satisfy (NA1) under P , despite the fact that Q is a dominating martingale
measure for S. Note that Sτ−t = et, t ∈ [0, 1], is not a Q–local martingale.

Recall that a stopping time τ is called foretellable under a probability mea-
sure P if there exists an increasing sequence (τn) of stopping times such that
P (τn < τ) = 1 for every n, and such that P (supn τn = τ) = 1. In this case
(τn) is called an announcing sequence for τ . Every predictable time is fore-
tellable under any probability measure, see Theorem I.2.15 and Remark I.2.16
of [JS03].

Example 4.13 Let S be a semimartingale under P and let Q � P be a dom-
inating measure with Kunita-Yoeurp decomposition (Z, τ) with respect to P .
Assume that τ is not foretellable under Q. Then there exists an adapted pro-
cess S̃ which is P–indistinguishable from S and so that S̃ is not a Q–local
martingale: Let x ∈ Rd and define S̃xt = St1{t<τ} + x1{t≥τ}, which is P–

indistinguishable from S since P (τ = ∞) = 1. If S̃x is a Q–local martingale,

then τxn = inf{t ≥ 0 : |S̃xt | ≥ n}, n ∈ N, defines a localizing sequence. In
particular, Q[limn→∞ τxn ≥ τ ] = 1. Since τ is not foretellable under Q, there
must exist n ∈ N for which Q[τxn ≥ τ ] > 0. Moreover, we have

EQ[S0] = EQ[S̃xτx
n

] = EQ[Sτx
n

1{τx
n<τ}] + xQ[τxn ≥ τ ].

Since τxn = τyn for all |x| < n, |y| < n, this holds for all |x| < n – a contradiction.

The examples show that given Q � P it is important to choose a good
version of S if we want to obtain a Q–local martingale. All results so far
indicate that this good version should be Sτ−. Maybe somewhat surprisingly,
this is not true in general, as we demonstrate in the following example.
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Example 4.14 Let Lt = N1
t −N2

t + bt, t ∈ [0, 1], where N1 and N2 are inde-
pendent Poisson processes and b 6= 0. Let a > |b| and let ρ be an exponential
random variable with parameter a, independent of L. Define τ = ρ if ρ ≤ 1,
and τ = ∞ otherwise. Consider the probability measure dP = ea1{1<τ}dQ.
By independence of L and τ , L has the same distribution under P as un-
der Q. The Kunita-Yoeurp decomposition of Q with respect to P is given by
((e−at)t∈[0,1], τ).

We claim that Z = e−a· is a supermartingale density for L. Let (πtW
π
t−)

be a strategy for L, where Wπ is the wealth process obtained by investing
in this strategy. Such a strategy is 1–admissible if and only if |πt| ≤ 1 for all
t ∈ [0, 1]. Moreover, we get from (4.9) that

d(ZWπ)t ∼ −Wπ
t−Zt−adt+ Zt−πtW

π
t−bdt = Wπ

t−Zt−(πtb− a)dt.

Since WπZ ≥ 0 and πtb−a < 0 (recall that a > |b|), the drift rate is negative.
Therefore, ZWπ is a local supermartingale, and since it is nonnegative, it is a
supermartingale.

Now τ is independent from L under Q, and L has no fixed jump times.
Hence,

Q[∆Lτ 6= 0, τ ≤ 1] =

∫
[0,1]

Q[∆Lt 6= 0](Q ◦ τ−1)[dt] = 0,

which implies that Lτ− = Lτ , and this is clearly no Q–local martingale.

Remark 4.15 In the preceding example it is possible to show that the modified
process

L̃t = Lτ−t −
b

a
1{t≥τ} (4.11)

is a Q–martingale. More generally, we expect that given a semimartingale S, a
supermartingale density Z for S, and a measure Q� P with Kunita-Yoeurp
decomposition (Z, τ) with respect to P , there should always exist a version S̃

that is P–indistinguishable from S and so that S̃ is a Q–local martingale. But
as (4.11) shows, we will need to take different S̃ for different supermartingale
densities. This seems somewhat unnatural, and we will not pursue it further.

Note that all three examples had one thing in common: τ was not fore-
tellable under Q. We will see that things are much simpler if τ is foretellable
under Q. But if (τn)n∈N is an announcing sequence for τ , then we obtain from
(4.2) that 1 = Q[τn < τ ] = EP [Zτn1{τn<∞}] for all n ∈ N and 0 = Q[supn τn <
τ ] = EP [Zsupn τn1{supn τn<∞}]. Since Z is strictly positive, we conclude that
(τn)n∈N is a localizing sequence for Z under P , i.e. Z is a P–local martingale.

Therefore, we should look for supermartingale densities that are local mar-
tingales, so called local martingale densities. If (St)t∈[0,T ] is one dimensional
with finite terminal time T < ∞, it is shown by Kardaras [Kar12] that lo-
cal martingale densities exist if and only if (NA1) is satisfied. Takaoka and
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Schweizer [TS14] prove the same result in the multidimensional case with fi-
nite terminal time. See also the recent preprint Song [Son13] for an alternative
proof.

Of course [Kar12,TS14,Son13] all work with complete filtrations, but as
usual we remove this assumption with the help of Lemma A.2.

Lemma 4.16 Let S be a locally bounded semimartingale, and let Z be a local
martingale density for S. Let τ be a stopping time and Q be a probability
measure such that (Z/EP (Z0), τ) is the Kunita-Yoeurp decomposition of Q
with respect to P . Then Sτ− is a Q–local martingale.

Conversely, if Q� P has Kunita-Yoeurp decomposition (Z, τ) with respect
to P , and if Sτ− is a Q–local martingale, then Z is a supermartingale density
for S.

Proof The proof is similar to the one of Corollary 4.9. Recall from Remark 4.10
that we only used the predictability of S once in the proof of Corollary 4.9,
namely to obtain

EQ[(H · Sτ−)σn
] ≤ 0 (4.12)

for all strategies H that are 1–admissible for (Sτ−)σn under Q. Here (σn) was
a localizing sequence of finite stopping times for the local martingale N under
P , where Z = Z0 +N −B. So it suffices to show that (4.12) always holds if Z
has the decomposition Z = Z0 +N , i.e. if B = 0.

Let (σn) be a localizing sequence of finite stopping times for the local
martingale Z under P , and let H be a strategy that is 1–admissible for (Sτ−)σn

under Q (and then also for Sσn under P ). We apply Corollary 4.3 with B = 0
and that Z is a supermartingale density to obtain

EQ[1 + (H · Sτ−)σn
] = EP [(1 + (H · S)σn

)Zσn
] ≤ 1.

From here on we can just copy the proof of Corollary 4.9.

Theorem 1.6 now easily follows by combining Theorem 1.3, Corollary 1.4,
and Lemma 4.16.

Remark 4.17 There is another subset of supermartingale densities of which one
might expect that they correspond to local martingale measures for Sτ−: the
maximal elements among the supermartingale densities. A supermartingale
density Z is called maximal if it is indistinguishable from any supermartingale
density Y that satisfies Yt ≥ Zt for all t ≥ 0. If S is discontinuous, then some
maximal supermartingale densities are no local martingales, see Example 5.1’
of [KS99].

But such Z will usually not correspond to local martingale measures for
Sτ−. Assume for example that we are in the situation of Theorem 2.2 in [KS99].
That is, we have a dual optimizer Z and a primal optimizer H for a certain
utility maximization problem. Then point iii) of this Theorem 2.2 states that
(1 + (H · S))Z is a uniformly integrable martingale. If we assume now that Z
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is not a local martingale, and if (τn) is a localizing sequence of finite stopping
times for the local martingale part N of Z = Z0 +N −B, then we obtain from
Corollary 4.3 that

EQ[1 + (H · Sτ−)τn ] = EP [(1 + (H · S)τn)Zτn ]

+ EP

[ ∫ τn

0

(1 + (H · S)s−)dBs

]
= 1 + EP

[ ∫ τn

0

(1 + (H · S)s−)dBs

]
, (4.13)

Since H is optimal, the wealth process (1+(H ·S)s−)s≥0 will be strictly positive
with positive probability. Since also dB 6= 0 with positive probability, the
expectation in (4.13) is strictly positive for sufficiently large n, and therefore
Sτ− cannot be a Q–local martingale.

5 Relation to filtration enlargements

Here we show that Jacod’s criterion for initial filtration enlargements is in fact
a criterion for the existence of a universal supermartingale density (to be de-
fined below) and we show that it preserves (NA1) for all continuous processes.
For general filtration enlargements we show that if there exists a universal
supermartingale density, then a generalized version of Jacod’s criterion is nec-
essarily satisfied.

5.1 Jacod’s criterion and universal supermartingale densities

In this subsection we work on a general probability space (Ω,F , (Ft)t≥0, P )
and not necessarily on a path space. Let G0t = Ft ∨ σ(X), t ≥ 0 be an initial
filtration enlargement of (Ft) with the random variable X. We define the
right-continuous regularization of (G0t ) by setting Gt :=

⋂
s>t G0s for all t ≥ 0.

Recall that Hypothèse (H ′) is satisfied if all (Ft)–semimartingales are (Gt)-
semimartingales.

We now give the classical formulation of Jacod’s criterion [Jac85]. For this
purpose, we assume that X takes its values in a standard Borel (X,B). For the
definition of standard Borel spaces see Parthasarathy [Par67], Definition V.2.2.
For a detailed discussion see also Dellacherie [Del69], where standard Borel
spaces are referred to as Lusin spaces. Note that (X,B) is a standard Borel
space provided that X is a Polish space and B its Borel σ–algebra.

If X takes its values in a standard Borel space, then the regular conditional
distribution

Pt[ω,dx] := P [X ∈ dx|Ft](ω)
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exists for all t ≥ 0. We write PX for the distribution of X. Jacod’s criterion
states that Hypothèse (H ′) is satisfied provided that for every t ≥ 0 almost
surely

Pt[ω,dx]� PX [dx]. (5.1)

Note that this statement only makes sense if the set {ω : Pt[ω,dx]� PX [dx]}
is F–measurable. But since the σ–algebra of a standard Borel space is count-
ably generated (see also [PR14]), it is easily verified that this is indeed the
case. Below we give an alternative proof of Jacod’s result, and we relate it to
the existence of a universal supermartingale density.

First observe that Hypothèse (H ′) is satisfied if and only if all nonnegative
(Ft)–martingales are (Gt)–semimartingales: This follows by decomposing ev-
ery (Ft)–local martingale into a sum of a locally bounded local martingale and
a local martingale of finite variation, by observing that every bounded pro-
cess can be made nonnegative by adding a deterministic constant, and from
the fact that local semimartingales are semimartingales (see Protter [Pro04],
Theorem II.6).

Definition 5.1 Let (Gt) be a filtration enlargement of (Ft). Let Z be a (Gt)–
adapted process that is almost surely càdlàg, such that P [Zt > 0] = 1 for all
t ≥ 0. Then Z is called universal supermartingale density for (Gt) if ZM is a
(Gt)–supermartingale for every nonnegative (Ft)–supermartingale M .

Note that here we do not require Z∞ to be strictly positive, unlike in
the previous sections. This is because here we are primarily interested in the
semimartingale property and not whether (NA1) holds. Local semimartingales
are semimartingales, and therefore it suffices to verify the (Gt)–semimartingale
property of M on every compact interval [0, t].

The first result of this section shows that Jacod’s criterion is not so much a
criterion for Hypothèse (H ′) to hold, but rather for the existence of universal
supermartingale densities.

Proposition 5.2 Assume that Jacod’s criterion (5.1) is satisfied. Then there
exists a universal supermartingale density for (Gt).

Proof 1. Let t ≥ 0. Without loss of generality we may assume that dPt[ω, ·]�
dPX [·] for all ω ∈ Ω. This can be achieved by setting Pt[ω, ·] := 0 on the
measurable set {ω : Pt(ω) does not satisfy Pt[ω, ·] � PX [·]}. Now we can
apply a theorem of Doob, see [YM78], according to which there exists a
Ft ⊗ B–measurable random variable Yt : Ω × X → R+ so that for every
ω ∈ Ω we have PX–almost surely

Yt(ω, x) =
dPt[ω, ·]

dPX
(x).

Note that Yor and Meyer [YM78] do not require complete σ–algebras. Let
now t, s ≥ 0. We first show that P ⊗ PX–almost surely

{(ω, x) : Yt(ω, x) = 0} ⊆ {(ω, x) : Yt+s(ω, x) = 0}. (5.2)
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Note that Yt+s ≥ 0, and therefore Fubini’s theorem and the tower property
of conditional expectations imply that∫

Ω×X
1{Yt(ω,x)=0}Yt+s(ω, x)P ⊗ PX [dω,dx]

=

∫
Ω

∫
X

1{Yt(ω,x)=0}Pt+s[ω,dx]P [dω]

=

∫
Ω

∫
X

1{Yt(ω,X(ω))=0}P [dω]

=

∫
Ω

∫
X

1{Yt(ω,x)=0}Pt[ω,dx]P [dω] = 0.

2. Define Z̃t(ω, x) := 1{Yt(ω,x)>0}/Yt(ω, x) and Zt(ω) := Z̃t(ω,X(ω)). This Z
is (Gt)–adapted by construction. Let now M be a nonnegative (Ft)–super-
martingale, and let s, t ≥ 0, A ∈ Ft, and B ∈ B. Then we can apply the
tower property to obtain

E [1A1B(X)Mt+sZt+s]

=

∫
Ω

1A(ω)Mt+s(ω)

∫
X

1B(x)Z̃t+s(ω, x)Pt+s[ω,dx]P [dω]

=

∫
Ω

1A(ω)Mt+s(ω)

∫
X

1B(x)
Yt+s(ω, x)

Yt+s(ω, x)
1{Yt+s(ω,x)>0}PX [dx]P [dω]

≤
∫
Ω

1A(ω)Mt+s(ω)

∫
X

1B(x)1{Yt(ω,x)>0}PX [dx]P [dω],

where in the last step we applied (5.2). Using the (Ft)–supermartingale
property of M in conjunction with Fubini’s theorem, we obtain∫
Ω

1A(ω)Mt+s(ω)

∫
X

1B(x)1{Yt(ω,x)>0}PX [dx]P [dω]

≤
∫
X

1B(x)

∫
Ω

1A(ω)Mt(ω)1{Yt(ω,x)>0}P [dω]PX [dx]

=

∫
Ω

1A(ω)

∫
X

1B(x)Mt(ω)Z̃t(ω, x)Pt[ω,dx]P [dω] = E [1A1B(X)MtZt] .

The monotone class theorem allows to pass from sets of the form A ∩
X−1(B) to general sets in (G0t ), and therefore MZ is a (G0t )–supermar-
tingale. Taking M ≡ 1, we see that also Z is a (G0t )–supermartingale.

3. Let us show that Zt is P–almost surely strictly positive for every t ≥ 0.
For this purpose it suffices to show that P [ω : Yt(ω,X(ω)) = 0] = 0. By
the tower property we have

E[1{Yt(·,X(·))=0}] =

∫
Ω

∫
X

1{Yt(ω,x)=0}Pt[ω,dx]P [dω] = 0.
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4. Z is not necessarily almost surely càdlàg, and also ZM is only a (G0t )–super-
martingale and not necessarily a (Gt)–supermartingale. But to conclude the
proof, it suffices to pass to the right limit process of Z. This can be done
using standard techniques as the ones on page 59 of [EK86]. A similar
construction (with an emphasis on the incomplete nature of our filtration)
is carried out in the proof of Theorem 1.3.1 in [Per14].

Remark 5.3 If we are only interested whether Hypothèse (H ′) holds and not
whether there exists a universal supermartingale density, then we can also work
with (G0t ) instead of its right-continuous regularization (Gt). Since Hypothèse
(H ′) holds for (Gt) and since (G0t ) is a filtration shrinkage of (Gt), Stricker’s
theorem implies that Hypothèse (H ′) is also satisfied for (G0t ).

Next, we are interested in the (NA1) property under filtration enlarge-
ments. The following result is due to Ankirchner who proved that for continu-
ous processes the structure condition is preserved under filtration enlargements
satisfying Jacod’s criterion. Here we give an alternative proof working directly
with the definition of (NA1).

Proposition 5.4 ([Ank05], Theorem 2.1.11) Assume that Jacod’s crite-
rion holds, let T > 0, and let (St)t∈[0,T ] be a d–dimensional continuous (Ft)–
adapted process satisfying (NA1) under (Ft). Then S satisfies (NA1) under
(Gt).

Proof As in Section 2 we work with the equivalent formulation of Jacod’s
criterion given in [FI93]. Consider the product space Ω := Ω × X equipped
with the σ–algebra F := F ⊗ B and the filtration F t := Ft ⊗B, t ≥ 0. Define
ψ : Ω → Ω, ψ(ω) := (ω,X(ω)) and the two probability measures Q := P ⊗PX
and P := P ◦ ψ−1. We embed random variables from (Ω,F) to (Ω,F) by
setting Y (ω, x) = Y (ω). Jacod’s criterion is then equivalent to P |Ft

� Q|Ft

for all t ≥ 0. We define τ := inf{t ≥ 0 : γt = 0}, where γ is a right-continuous
version of the density process.

If now (St)t∈[0,T ] satisfies (NA1) under P , then the independence of the

coordinate projections under Q shows that S satisfies (NA1) under Q and
has the same distribution as S under P . In particular, S is Q–almost surely

continuous and therefore also S
τ−

= S
τ

satisfies (NA1) under Q. Since any 1–

admissible strategy for S under P is 1–admissible for S
τ−

under Q, the process
S satisfies (NA1) under P . Let now H be a 1–admissible strategy for S under
P , and let m ∈ N. Then P (1 + (H · S)T ≥ m) = P (1 + (H(·, X) · S)T ≥ m),
so that S satisfies (NA1) in the filtration (G0t ). By right-continuity of S, we
easily deduce the (NA1) property in (Gt).

Remark 5.5 If γ and τ are as defined in the proof, if ZS is a supermartingale
density for the continuous process (St)t∈[0,T ] under P in the filtration (Ft),
and if Zt = 1t<τ/γt, t ≥ 0, then one can show that Yt(ω) = ZSt (ω)Zt(ω,X(ω))
defines a supermartingale density for S under (Gt). The key point is again that

S
τ−

= S
τ

under Q, so that S
τ−

satisfies (NA1) under Q.
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Remark 5.6 Continuity is necessary: Consider a process S starting in 1 and
at time 1 jumping to 1/2 or 2, both with strictly positive probability. Then
S satisfies (NA1) in its natural filtration, but of course not in the enlarged
filtration Gt = Ft ∨ σ(S1), t ≥ 0. But S1 is a discrete random variable and
therefore Jacod’s criterion is satisfied for (Gt). For a more detailed study of the
discontinuous case, we refer to the recent preprint [AFK14], see also [ACDJ13].

Remark 5.7 At this point it is clear that to preserve the (NA1) property in in-
finite time, we would have to require P∞[ω,dx]� PX [dx], where P∞[ω,dx] =
P [X ∈ dx|

∨
t≥0 Ft]. If F =

∨
Ft, then this condition is satisfied if and only if

X is a discrete random variable.

Remark 5.8 We could replace assumption (5.1) by Pt[ω,dx]� PX [dx] and use
the same proof as for Proposition 5.2 to obtain the existence of a nonnegative
martingale Z such that ZM is a (Gt)–supermartingale for every nonnegative
(Ft)–supermartingale M . In particular, then there exists a locally absolutely
continuous measure Q so that every locally bounded (P, (Ft))–local martin-
gale is a (Q, (Gt))–local martingale. Since (NA) is related to the existence of
absolutely continuous local martingale measures [DS95b], this indicates that
the (NA) property may be stable under such a “reverse Jacod criterion”.

If Pt[ω,dx] ∼ PX [dx], we obtain a locally equivalent measure Q under
which every nonnegative (P, (Ft))–supermartingale is a nonnegative (Q, (Gt))–
supermartingale, and in particular every locally bounded (P, (Ft))–local mar-
tingale is a (Q, (Gt))–local martingale. This condition has been studied by
Amendinger et al. [AIS98,Ame00] and is of course harder to satisfy than Ja-
cod’s criterion or the reverse Jacod criterion. In financial applications one
may however assume that the “insider’s knowledge” is perturbed by a small
Gaussian noise which is independent of

∨
Ft (or more generally by an inde-

pendent noise whose distribution is equivalent to the Lebesgue measure). Then
P∞[ω,dx] ∼ PX [dx] is always satisfied.

5.2 Universal supermartingale densities and the generalized Jacod criterion

In the previous section, we saw that Jacod’s criterion is a sufficient condition
for the existence of universal supermartingale densities under initial filtration
enlargements. Here we show that for general filtration enlargements, a gener-
alized version of Jacod’s criterion is necessary for the existence of universal
supermartingale densities.

Let (Ω,F , (Ft), P ) be a filtered probability space such that (Ω,F) is a
standard Borel space; for example (Ω,F , (Ft)) could be a path space or the
explosive path space on which we worked in Sections 1 to 4. We assume that
there exists a filtration (F0

t )t≥0 with Ft =
⋂
s>t F0

s for all t ≥ 0. We also
assume that (G0t )t≥0 is a filtration enlargement of (F0

t ) such that G0t ⊆ F is
countably generated for every t ≥ 0, that is there exists a sequence of sets
(Btn)n∈N with G0t = σ(Bt1, B

t
2, . . . ). Then (Gt)t≥0, defined by Gt :=

⋂
s>t G0t , is

a filtration enlargement of (Ft).
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The reason for choosing such a complicated set-up is that Gt will in general
not be countably generated, but in our argumentation below we will need a
countably generated filtration. On the other side, if we would only work with
the non right-continuous filtration (G0t ), then there would be little hope of
constructing a right-continuous universal supermartingale density in the first
place.

Since (Ω,F) is a standard Borel space, the regular conditional probabilities

Pt[ω, ·] := P [·|Ft](ω), t ≥ 0,

exist. We say that the generalized Jacod criterion is satisfied if for all s, t ≥ 0
almost surely

Pt+s|G0
t
[ω, ·]� Pt|G0

t
[ω, ·].

It is known that neither Jacod’s criterion nor the generalized Jacod crite-
rion are necessary conditions for Hypothèse (H ′) to hold. But the generalized
Jacod criterion is a necessary condition for the existence of a universal super-
martingale density for (Gt):

Proposition 5.9 Assume that there exists a universal supermartingale den-
sity Z for (Gt). Then the generalized Jacod criterion is satisfied.

Proof For all A ∈ F , the process MA
t := EP [1A|Ft], t ≥ 0, is a nonnegative

(Ft)–martingale. Therefore, MAZ is a (Gt)–supermartingale. Fix s, t ≥ 0, let
A ∈ Ft+s, and B ∈ Gt. Then

E
[
1A1B

Zt+s
Zt

]
≤ E

[1B
Zt
MA
t Zt

]
= E[1AE[1B |Ft]].

The same inequality holds if we replace Zt+s/Zt by a version Z̃t+s/Z̃t that is
strictly positive for all ω ∈ Ω. Since the inequality holds for all A ∈ Ft+s, we
conclude that∫

1B(ω′)
Z̃t+s

Z̃t
(ω′)Pt+s[ω,dω

′] ≤ Pt[ω,B] for almost all ω ∈ Ω. (5.3)

This looks promising. The only problem is that the null set outside of which
the inequality holds may depend on B.

Now we use the assumption that G0t is countably generated, which gives us
a countable algebra Ht with G0t = σ(Ht). From (5.3) we get a null set N such
that for all ω ∈ Ω \ N and all B ∈ Ht∫

1B(ω′)
Z̃t+s

Z̃t
(ω′)Pt+s[ω,dω

′] ≤ Pt[ω,B]. (5.4)

By the monotone class theorem, this extends to B ∈ σ(Ht) = G0t . To complete

the proof, it suffices to recall that Z̃t+s(ω
′)/Z̃t(ω

′) > 0 for all ω′ ∈ Ω.
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Corollary 5.10 Suppose that there exists a one dimensional continuous local
martingale M which has the predictable representation property under (Ft). If
under (Gt), the semimartingale decomposition of M is of the form

Mt = M̃t +

∫ t

0

αsd〈M̃〉s, t ≥ 0,

for a (Gt)–local martingale M̃ and a predictable integrand α ∈ L2
loc(M̃), then

the generalized Jacod criterion holds.

Proof The stochastic exponential Z := E(−α ·M) is a universal supermartin-
gale density.

Corollary 5.10 was previously shown in [IPW01] for initial enlargements

and under the stronger assumption E[
∫∞
0
α2
sd〈M̃〉s] <∞.

Of course, the same argument works in a multidimensional setting: if M =
(M1, . . . ,Md) has the predictable representation property under (Ft), and if
M satisfies the structure condition under (Gt), then the generalized Jacod
criterion is satisfied.

A Incomplete filtrations

Here we collect some classical observations which allow to transfer results of
other authors that were obtained under complete filtrations to our setting.
There are at least two important monographs which avoid the use of complete
filtrations as far as possible, Jacod [Jac79] and Jacod and Shiryaev [JS03].
Here we follow [JS03].

Let (Ω,F , (Ft)t≥0, P ) be a filtered probability space with a right-conti-
nuous filtration (Ft). Write FP for the P–completion of F , and NP for the
P–null sets of FP . Then FPt = Ft∨NP , t ≥ 0, satisfies the usual conditions. It
is well known and easy to show that for every random variable X on (Ω,FP )
there exists a random variable Y on (Ω,F) with P (X = Y ) = 1.

Recall that the optional σ–algebra over (Ft) is the σ–algebra on Ω× [0,∞)
that is generated by all processes of the form Xt(ω) = 1A(ω)1[r,s)(t) for some
0 ≤ r < s < ∞ and A ∈ Fr. The predictable σ–algebra over (Ft) is the σ–
algebra on Ω × [0,∞) that is generated by all processes of the form Xt(ω) =
1A(ω)1{0}(t)+1B(ω)1(r,s](t) for some 0 ≤ r < s <∞, for A ∈ F0, and B ∈ Fr.
Similarly we define the predictable and optional σ–algebras over (FPt ).

The first result relates stopping times under (Ft) and under (FPt ).

Lemma A.1 (Lemma I.1.19 of [JS03]) Any stopping time on the comple-
tion (Ω, (FPt )) is almost surely equal to a stopping time on (Ω, (Ft)).

We also have a comparable result on the level of processes.

Lemma A.2 Any predictable (respectively optional) process on the completion
(Ω, (FPt )) is indistinguishable from a predictable (respectively optional) process
on (Ω, (Ft)).
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Proof The predictable case is Lemma I.2.17 of [JS03]. The proof of the optional
case works exactly in the same way: the claim is trivial for the generating
processes described above, and we can use the monotone class theorem to
pass to indicator functions of general optional sets. Then we use monotone
convergence to pass to general optional processes.

This allows us to deduce a similar result for càdlàg processes.

Lemma A.3 Let S be a (FPt )–adapted process that it almost surely càdlàg.
Then S is indistinguishable from a (Ft)–adapted process (which is then of
course almost surely càdlàg as well).

Proof Since (FPt ) is complete, S admits an indistinguishable version S̃ that

is (FPt )–adapted and càdlàg for every ω ∈ Ω. This S̃ is optional, so now the
result follows from Lemma A.2.
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[DM82] Claude Dellacherie and Paul-André Meyer, Probabilities and potential. B, North-
Holland Mathematics Studies, vol. 72, North-Holland Publishing Co., Amster-
dam, 1982, Theory of martingales, Translated from the French by J. P. Wilson.
MR 745449 (85e:60001)

[DS94] Freddy Delbaen and Walter Schachermayer, A general version of the fundamental
theorem of asset pricing, Math. Ann. 300 (1994), no. 1, 463–520.

[DS95a] , Arbitrage possibilities in Bessel processes and their relations to local
martingales, Probab. Theory Related Fields 102 (1995), no. 3, 357–366.

[DS95b] , The existence of absolutely continuous local martingale measures, Ann.
Appl. Probab. 5 (1995), no. 4, 926–945.

[EK86] Stewart N. Ethier and Thomas G. Kurtz, Markov processes: Characterization and
convergence, John Wiley & Sons, 1986.
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