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Abstract. We propose a homogenized filter for multiscale signals, which allows to reduce the
dimension of the system. We prove that the nonlinear filter converges to our homogenized filter
with rate

√
ε. This is achieved by a suitable asymptotic expansion of the dual of the Zakai

equation, and by probabilistically representing the correction terms with the help of BDSDEs.

1. Introduction

Filtering theory is an established field in applied probability and decision and control sys-
tems, which is important in many practical applications from inertial guidance of aircrafts and
spacecrafts to weather and climate prediction. It provides a recursive algorithm for estimating a
signal or state of a random dynamical system based on noisy measurements. More precisely, fil-

tering problems consist of an unobservable signal process X
def
= {Xt : t ≥ 0} and an observation

process Y
def
= {Yt : t ≥ 0} that is a function of X corrupted by noise. The main objective of fil-

tering theory is to get the best estimate of Xt based on the information Yt
def
= σ{Ys : 0 ≤ s ≤ t}.

This is given by the conditional distribution πt of Xt given Yt or equivalently, the conditional
expectations E[f(Xt)|Yt] for a rich enough class of functions. Since this estimate minimizes the
mean square error loss, we call πt the optimal filter. The goal of filtering theory is to charac-
terize this conditional distribution effectively. In simplified problems where the signal and the
observation models are linear and Gaussian, the filtering equation is finite-dimensional, and the
solution is the well-known Kalman-Bucy filter. In more realistic problems, nonlinearities in the
models lead to more complicated equations for πt, defined by Zakai (1969) and Fujisaki et al.
(1972), which describe the evolution of the conditional distribution in the space of probability
measures (see, for example, Bain and Crisan (2009), Kallianpur (1980), Liptser and Shiryaev
(2001)).

It is impractical to implement a numerical solution to such infinite dimensional stochastic
evolution equations of the general nonlinear filtering problem by finite difference or finite element
approximations. Therefore, extended Kalman filter algorithms, which use linear approximations
to the signal dynamics and observation, have been used extensively in several applications.
These provide essentially a first order approximation to an infinite dimensional problem and
can perform quite poorly in problems with strong nonlinearities. Particle filters have been well
established for the implementation of nonlinear filtering in science and engineering applications.
Doucet et al. (2001) and Arulampalam et al. (2002) provide comprehensive insight into particle
filtering. However, due to dimensionality issues (see, for example, Snyder et al. (2008)) and
computational complexities that arise in representing the signal density using a high number
of particles, the problem of particle filtering in high dimensions is still not completely resolved.
As a result of these difficulties, we have established a novel particle filtering method Park et al.
(2011) for multiscale signal and observation processes that combines the homogenization with
filtering techniques. The theoretical basis for this new capability is presented in this paper.
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The results presented here are set within the context of slow-fast dynamical systems, where
the rates of change of different variables differ by orders of magnitude. Multiple time scales
occur in models throughout the science and engineering field. For example, climate evolution is
governed by fast atmospheric and slow oceanic dynamics and state dynamics in electric power
systems consists of fast- and slowly-varying elements. This paper addresses the effects of the
multiscale signal and observation processes via the study of the Zakai equation. We construct
a lower dimensional Zakai equation in a canonical way. This problem has also been studied
in Park et al. (2010) using a different approach from what is presented here. In moderate
dimensional problems, particle filters are an attractive alternative to numerical approximation
of the stochastic partial differential equations (SPDEs) by finite difference or finite element
methods. For the reduced nonlinear model an appropriate form of particle filter can be a viable
and useful scheme. Hence, Lingala et al. (2012) presents the numerical solution of the lower
dimensional stochastic partial differential equation derived here, as it is applied to a chaotic
high-dimensional multiscale system.

In general, this paper provides rigorous mathematical results that support the numerical
algorithms based on the idea that stochastically averaged models provide qualitatively useful
results which are potentially helpful in developing inexpensive lower-dimensional filtering as
demonstrated by Park et al. (2011) in the context of homogenized particle filters and by Harlim
and Kang (2012) in the context of averaged ensemble Kalman filters. The convergence of the
optimal filter to the homogenized filter is shown using backward stochastic differential equations
(BSDEs) and asymptotic techniques.

Let us describe the main result. We assume the signal is given as solution of the two time
scale stochastic differential equation (SDE)

dXε
t = b(Xε

t , Z
ε
t )dt+ σ(Xε

t , Z
ε
t )dVt

dZεt =
1

ε
f(Xε

t , Z
ε
t )dt+

1√
ε
g(Xε

t , Z
ε
t )dWt.

Here Xε is the slow component and Zε is the fast component. We assume that for every fixed
x, the solution Zx of

dZxt = f(x, Zxt )dt+ g(x, Zxt )dWt

is ergodic and converges rapidly to its unique stationary distribution. In this case it is well
known that Xε converges in distribution to a diffusion X0 which is governed by an SDE

dX0
t = b̄(X0

t )dt+ σ̄(X0
t )dVt.

This X0 is used to construct an averaged filter π0. We denote the optimal filter for the full
system by πε. Define the x-marginal of πε as πε,x, i.e.∫

ϕ(x)πε,xt (dx) =

∫
ϕ(x)πεt (dx, dz).

Our main result is then

Theorem. Under the assumptions stated in Theorem 3.1, for every p ≥ 1 and T ≥ 0 there
exists C > 0, such that for every ϕ ∈ C4

b(
EQ
[∣∣πε,xT (ϕ)− π0T (ϕ)

∣∣p])1/p ≤ √εC||ϕ||4,∞.
In particular, there exists a metric d on the space of probability measures, such that d generates
the topology of weak convergence, and such that for every T ≥ 0 there exists C > 0 such that

EQ
[
d(πε,xT , π0T )

]
≤
√
εC.

We begin in Section 2 by presenting the general formulation of the multiscale nonlinear filtering
problem. Here we describe the measure-valued Zakai equation and introduce the homogenized
equations that we seek to derive for the reduced dimension unnormalized filter. Section 3 presents



DIMENSIONAL REDUCTION IN NONLINEAR FILTERING 3

the formal asymptotic expansion of the multi scale Zakai equation that results in several SPDEs.
We also present the main results of this paper in this section. Section 4 provides the probabilistic
representation of the SPDEs, that is, we describe the solutions of the infinite dimensional SPDEs
by finite dimensional backward doubly stochastic differential equations (BDSDEs). We restate
some of the results in this context due to Rozovskii (1990) and Pardoux and Peng (1994) at the
end of this section. We present some of the preliminary results of Pardoux and Veretennikov
(2003) on convergence of the transition function of Zx in section 5. These estimates are used in
the proof of the main results presented in section 6.

2. Formulation of multiscale nonlinear filtering problems

Let (Ω,F , (Ft),Q) be a filtered probability space that supports a (k + l + d)-dimensional
standard Brownian motion (V,W,B). Let the signal (Xε, Zε) be a two time scale diffusion
process with a fast component Zε and a slow component Xε:

dXε
t = b(Xε

t , Z
ε
t )dt+ σ(Xε

t , Z
ε
t )dVt(1)

dZεt =
1

ε
f(Xε

t , Z
ε
t )dt+

1√
ε
g(Xε

t , Z
ε
t )dWt,

where Xε
t ∈ Rm, Zεt ∈ Rn, Wt ∈ Rl and Vt ∈ Rk are independent standard Brownian motions,

b : Rm+n → Rm, σ : Rm+n → Rm×k, f : Rm+n → Rn, g : Rm+n → Rn×l. All the functions above
are assumed to be Borel-measurable. For fixed x ∈ Rm, define

dZxt = f(x, Zxt )dt+ g(x, Zxt )dWt.(2)

Assume that for all x ∈ Rm, Zx is ergodic and converges rapidly towards its stationary measure
µ(x, ·). We will make this precise later.

The d-dimensional observation Y ε is given by

Y ε
t =

∫ t

0
h(Xε

s , Z
ε
s)ds+Bt

with Borel-measurable h : Rm+n → Rd. B is assumed to be a d-dimensional standard Brownian
motion that is independent of W and V .

Define Yεt = σ(Y ε
s : 0 ≤ s ≤ t)∨N , where N are the Q-negligible sets. For a finite measure π

on Rm+n and for a bounded measurable function ϕ on Rm+n denote π(ϕ) =
∫
ϕ(x, z)π(dx, dz).

Then our aim is to calculate the measure-valued process (πεt , t ≥ 0) determined by

πεt (ϕ) = E[ϕ(Xε
t , Z

ε
t )|Yεt ].

Define the Girsanov transform

dPε

dQ

∣∣∣∣
Ft

= Dε
t = exp

(
−
∫ t

0
h(Xε

s , Z
ε
s )∗dBs −

1

2

∫ t

0
|h(Xε

s , Z
ε
s )|2ds

)
.

Under Pε, the observation process, Y ε, is a Brownian motion and independent of (Xε, Zε). By
the Kallianpur-Striebel formula,

EQ[ϕ(Xε
t , Z

ε
t )|Yεt ] =

EPε

[
ϕ(Xε

t , Z
ε
t ) dQ

dPε

∣∣∣
Ft

∣∣∣∣Yεt ]
EPε

[
dQ
dPε

∣∣∣
Ft

∣∣∣∣Yεt ]
with

dQ
dPε

∣∣∣∣
Ft

= D̃ε
t = exp

(∫ t

0
h(Xε

s , Z
ε
s )∗dY ε

s −
1

2

∫ t

0
|h(Xε

s , Z
ε
s )|2ds

)
.
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So if we define

ρεt (ϕ)

= EPε

[
ϕ(Xε

t , Z
ε
t ) exp

(∫ t

0
h(Xε

s , Z
ε
s )∗dY ε

s −
1

2

∫ t

0
|h(Xε

s , Z
ε
s )|2ds

)∣∣∣∣Yεt ] ,
then

πεt (ϕ) =
ρεt (ϕ)

ρεt (1)
.

Denote by Lε = 1
εLF + LS the differential operator associated to (Xε, Zε). That is,

LF =
n∑
i=1

fi(x, z)
∂

∂zi
+

1

2

n∑
i,j=1

(gg∗)ij(x, z)
∂2

∂zi∂zj

LS =
m∑
i=1

bi(x, z)
∂

∂xi
+

1

2

m∑
i,j=1

(σσ∗)ij(x, z)
∂2

∂xi∂xj

where ·∗ denotes the transpose of a matrix or a vector.
Then the unnormalized measure-valued process, ρε, satisfies the Zakai equation:

dρεt (ϕ) = ρεt (Lεϕ)dt+ ρεt (hϕ)dY ε
t(3)

ρε0(ϕ) = EQ[ϕ(Xε
0 , Z

ε
0)]

for every ϕ ∈ C2
b (Rm+n,R) (see, for example, Bain and Crisan (2009)). For k ≥ 0, Ckb is the

space of k times continuously differentiable functions f , such that f and all its partial derivatives
up to order k are bounded.

The theory of stochastic averaging (see, for example, Papanicolaou et al. (1977)) tells us that
under suitable conditions, Xε converges in law to X0 as ε → 0, where X0 is the solution of an
SDE

dX0
t = b̄(X0

t )dt+ σ̄(X0
t )dWt

for suitably averaged b̄ and σ̄. Denote the generator of X0 by L̄.
We want to show that as long as we are only interested in estimating the slow component, we

can take advantage of this fact. More precisely, we want to find a homogenized (unnnormalized)
filter ρ0, such that for small ε, ρε,x which is the x-marginal of ρεt , is close to ρ0. The x-marginal
of ρεt is defined as

ρε,xt (ϕ) =

∫
Rm+n

ϕ(x)ρεt (dx, dz)

for every measurable bounded ϕ : Rm → R, and ρ0 is the solution of

dρ0t (ϕ) = ρ0t (L̄ϕ)dt+ ρ0t (h̄ϕ)dY ε
t(4)

ρ00(ϕ) = EQ[ϕ(X0
0 )],

where h̄ is a suitably averaged version of h. The measure-valued processes π0 and πε,x are then
defined in terms of ρ0 and ρε,x as πε was defined in terms of ρε:

π0t (ϕ) =
ρ0t (ϕ)

ρ0t (1)
and πε,xt (ϕ) =

ρε,xt (ϕ)

ρε,xt (ϕ)
.

Note that the homogenized filter is still driven by the real observation Y ε and not by a “ho-
mogenized observation”, which is practical for implementation of the homogenized filter in ap-
plications since such homogenized observation is usually not available. However, should such
homogenized observation be available, using it would lead to loss of information for estimating
the signal compared to using the actual observation.
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In this paper, we will prove L1-convergence of the actual filter to the homogenized filter, i.e.
we will show that for any T > 0,

lim
ε→0

E
[
d(πε,xT , π0T )

]
= 0,

where d denotes a suitable distance on the space of probability measures that generates the
topology of weak convergence. This convergence result is shown in Park et al. (2010) for a
two-dimensional multiscale signal process with no drift in the fast component SDE. Here, we
extend the result to an Rm+n-dimensional signal process with drift and diffusion coefficients of
the fast and slow components dependent on both components. The proof of Park et al. (2010) is
based on representing the slow component as a time-changed Brownian motion under a suitable
measure, which cannot be extended easily to the multidimensional setting we assume here.

Based on (3) and (4), the filter convergence problem is a problem of homogenization of
a SPDE. In Papanicolaou et al. (1977), homogenization of diffusion processes with periodic
structures is done using the martingale problem approach. In Papanicolaou and Kohler (1975)
and Chapter 2 of Bensoussan et al. (1978), limit behavior of stochastic processes is studied using
asymptotic analysis. Bensoussan et al. (1978) studies linear SPDEs with periodic coefficients
and also used a probabilistic approach in Chapter 3. Homogenization in the nonlinear filtering
problem framework has been studied in Bensoussan and Blankenship (1986) and Ichihara (2004)
via asymptotic analysis on a dual representation of the nonlinear filtering equation. As far
as we are aware, Ichihara (2004) has used BSDEs for studying homogenization of Zakai-type
SPDEs for the first time. Our convergence proof applies BSDE techniques by invoking the
dual representation of the filtering equation and using asymptotic analysis to determine the
limit behavior of the solution of the backward equation. Pardoux and Veretennikov (2003) give
precise estimates for the transition function of an ergodic SDE of the type (2), and these results
are used in our proof. To our knowledge, such method of homogenization for SPDEs combining
BSDE and asymptotic methods has not been done before.

To our knowledge, a result presented in Chapter 6 of Kushner (1990) is the closest to the results
presented in this paper. In Theorem 6.3.1 of Kushner (1990) it is shown that for a fixed test
function, the difference of the unnormalized actual and homogenized filters for multiscale jump-
diffusion processes converges to zero in distribution. Standard results then give convergence
in probability of the fixed time marginals. Kushner (1990)’s method of proof is by averaging
the coefficients of the SDEs for the unnormalized filters and showing that the limits of both
filters satisfy the same SDE that possesses a unique solution. We obtain Lp convergence of the
measure valued process, not just for fixed test functions, and we are able to quantify the rate of
convergence, which, to the best of our knowledge, has not been achieved before in homogenization
of nonlinear filters..

In Kleptsina et al. (1997), convergence of the nonlinear filter is shown in a very general
setting, based on convergence in total variation distance of the law of (Xε, Y ε). This is then
applied to two examples. Since the diffusion matrix of our slow component is allowed to depend
on the fast component, our results are not a special case. In the examples of Kleptsina et al.
(1997), Xε converges to X̄ in probability, which is no longer the case in our setting. However
it might be possible to apply the total variation techniques developed in Kleptsina et al. (1997)
to obtain convergence in our setting. Only the rate of convergence cannot be determined with
these techniques.

For a given bounded test function ϕ and terminal time T , we follow Pardoux (1979) in intro-

ducing the associated dual process vε,T,ϕt (x, z), which is a dynamic version of EPε [ϕ(Xε
T )D̃ε

T |YεT ]:

vε,T,ϕt (x, z) = EPε
t,x,z

[ϕ(Xε
T )D̃ε

t,T |Yεt,T ]

where Pεt,x,z is the measure under which Xε and Zε are governed by the same dynamics as
under Pε, but (Xε, Zε) stays in (x, z) until time t, then it starts to follow the SDE dynamics.

D̃ε
t,T = D̃ε

T (D̃ε
t )
−1; and Yεt,T = σ(Y ε

r − Y ε
t : t ≤ r ≤ T ) ∨ N (recall that N denotes the
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Q-negligible sets). From the Markov property of (Xε, Zε) it follows that for any t ∈ [0, T ]:

ρεt (v
ε,T,ϕ
t ) = ρε,xT (ϕ). In particular (because at time 0, ρε is just the starting distribution of

(Xε, Zε)):

ρε,xT (ϕ) =

∫
vε,T,ϕ0 (x, z)Q(Xε

0 ,Z
ε
0)

(dx, dz).

Similarly introduce

v0,T,ϕt (x) = EPε
t,x

[ϕ(X0
T )D̃0

t,T |Yεt,T ],

where

D̃0
t,T = exp

(∫ T

t
h̄(X0

r )∗dY ε
r −

1

2

∫ T

t
|h̄(X0

r )|2dr
)

and Pεt,x is the measure under which X0 is governed by the same dynamics as under Pε, but

stays in x until time t. We can also show that for any t ∈ [0, T ]: ρ0t (v
0,T,ϕ
t ) = ρ0T (ϕ), so that

ρ0T (ϕ) =

∫
v0,T,ϕ0 (x)QX0

0
(dx).

Note that QX0
0

= QXε
0
, because the homogenized process has the same starting distribution as

the unhomogenized one.

Now fix T and ϕ ∈ C2
b (Rm,R) and write vεt = vε,T,ϕt and v0t = v0,T,ϕt .

Our aim is to show that for nice test functions ϕ, and for the dual processes vε and v0 defined
above, E[|vε0(x, z)− v00(x)|p] is small (in a way that will depend on x and z). Then

E[|ρε,xT (ϕ)− ρ0T (ϕ)|p] = E
[∣∣∣∣∫ (vε0(x, z)− v00(x))Q(Xε

0 ,Z
ε
0)

(dx, dz)

∣∣∣∣p]
≤ E

[∫
|vε0(x, z)− v00(x)|pQ(Xε

0 ,Z
ε
0)

(dx, dz)

]
=

∫
E[|vε0(x, z)− v00(x)|p]Q(Xε

0 ,Z
ε
0)

(dx, dz)

will also be small as long as Q(Xε
0 ,Z

ε
0)

is well behaved.

3. Formal expansions of the filtering equations and the main results

Before we continue, let us change notation: For large parts of this article we will only work un-
der Pε, and the process Y ε is a Brownian motion under Pε which is independent of (Xε, Zε, X0).
Therefore from now on we write P instead of Pε and B instead of Y ε to facilitate the reading.
The distribution and notation for the Markov processes (Xε, Zε, X0) do not change.

The key point is now that vε and v0 solve backward SPDEs:

−dvεt (x, z) = Lεvεt (x, z)dt+ h(x, z)∗vεt (x, z)d
←
Bt(5)

vεT (x, z) = ϕ(x)

and

−dv0t (x) = L̄v0t (x, z)dt+ h̄(x)∗v0t (x)d
←
Bt(6)

v0T (x) = ϕ(x).

Here and everywhere in this article, d
←
B denotes Itô’s backward integral.

We formally expand vε as

vεt (x, z) = u0t (x, z) + εu1t/ε (x, z) + ε2u2t/ε(x, z).

Note that rigorously this does not make any sense, because:



DIMENSIONAL REDUCTION IN NONLINEAR FILTERING 7

• We work with equations with terminal conditions. But when we send ε → 0, then t/ε
converges to infinity. So for which time should the terminal condition of e.g. u1 be
defined?
• The terms in this expansion will all be stochastic. Then if u1 is adapted to FB, the

stochastic integral
∫ T
t u1s/ε(x, z)d

←
Bs a priori does not make any sense for ε < 1.

However if we do such a formal asymptotic expansion, and then call

v0(t, x) = u0(t, x), ψ1(t, x, z) = εu1t/ε(x, z), R(t, x, z) = ε2u2t/ε(x, z)

(of course all terms except v0 depend on ε, which we omit in the notation to facilitate the
reading), then these terms have to solve the following equations:

−dv0t (x) = L̄v0t (x, z)dt+ h̄(x)∗v0t (x)d
←
Bt

−dψ1
t (x, z) =

1

ε
LFψ1

t (x, z)dt+ (LS − L̄)v0t (x)dt(7)

+
(
h(x, z)− h̄(x)

)∗
v0t (x)d

←
Bt

−dRt(x, z) = LεRt(x, z)dt+ LSψ1
t (x, z)dt(8)

+ h(x, z)∗
(
ψ1
t (x, z) +Rt(x, z)

)
d
←
Bt

with terminal conditions

v0(T, x) = ϕ(x), ψ1(T, x, z) = R(T, x, z) = 0.

Note that the equation for v0 is exactly the desired equation (6). By existence and uniqueness
of the solutions to these linear equations, we can apply superposition to obtain that then indeed

vεt (x, z) = v0t (x) + ψ1
t (x, z) +Rt(x, z).

Therefore the problem of showing Lp-convergence of vε to v0 reduces to showing Lp-convergence
of ψ1 +R to 0. To achieve this, we will give probabilistic representations of ψ1 and R in terms
of backward doubly stochastic differential equations. This will allow us to apply the existing
estimates for the transition function of Zx from Pardoux and Veretennikov (2003).

It will be convenient for us to work with functions that are smoother in their x-component
than they are in their z-component or vice versa. To do so, introduce the function spaces
Ck,l(Rm × Rn,Rd): For θ : Rm × Rn → Rd, θ = θ(x, z), write θ ∈ Ck,l(Rm × Rn,Rd), if θ is
k times continuously differentiable in its x-components and l times continuously differentiable
in its z-components. If θ as well as its partial derivatives up to order (k, l) are bounded, write

θ ∈ Ck,lb (Rm × Rn,Rd).
Introduce the following assumptions:

(Hstat) For the existence of a stationary distribution µ(x, dz) for Zx, we suppose that there exist
M0 > 0, α > 0, such that for all |z| ≥M0

sup
x
〈f(x, z), z〉 ≤ −C|z|α.

For the uniqueness of the stationary distribution µ(x, dz) of Zx, we suppose uniform
ellipticity, i.e. that there are 0 < λ ≤ Λ <∞, such that

λI ≤ gg∗(x, y) ≤ ΛI

in the sense of positive semi-definite matrices (I is the unit matrix).

(HFk,l) The coefficients of the fast diffusion satisfy f ∈ Ck,lb (Rm × Rn,Rn) and g ∈ Ck,lb (Rm ×
Rn,Rn×k).

(HSk,l) The coefficients of the slow diffusion satisfy b ∈ Ck,lb (Rm × Rn,Rm) and σ ∈ Ck,lb (Rm ×
Rn,Rm×k).

(HOk,l) The observation function h satisfies h ∈ Ck,lb (Rm × Rn,Rd).
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We will usually write p∞(x, dz) instead of µ(x, dz). Also introduce the notation

pt(z, θ;x) :=

∫
Rn

θ(x, z′)pt(z, z
′;x)dz′ := Ez[θ(Zxt )]

where z denotes the starting point of Zx, and z′ 7→ pt(z, z
′;x) is the density of Zxt if at time 0

it is started in z. Note that the density exists for all t > 0 under the condition (Hstat), because
of the uniform ellipticity of gg∗. Similarly

p∞(θ;x) =

∫
Rn

θ(x, z)p∞(x, dz).

Let the differential operator L̄ be defined as

L̄ =

m∑
i=1

b̄i(x)
∂

∂xi
+

1

2

m∑
i,j=1

āij(x, z)
∂2

∂xi∂xj

where b̄(x) = p∞(b;x) and ā = p∞(σσ∗;x). Also define h̄(x) = p∞(h;x).
We introduce the following notation: A multiindex α = (α1, . . . , αm) ∈ Nn0 is of order

|α| = α1 + · · ·+ αm.

Given such a multiindex, define the differential operator

Dα =
∂|α|

∂xα1
1 . . . xαm

m
.

Finally introduce the following norms for f ∈ Ckb (Rm,Rn):

||f ||k,∞ =
∑
|α|≤k

||Dαf ||∞

where || · ||∞ is the usual supremum norm.
Our main result is

Theorem 3.1. Assume (Hstat), (HF8,4), (HS7,4), (HO8,4), and that the initial distribution
Q(Xε

0 ,Z
ε
0)

has finite moments of every order. Then for every p ≥ 1 and T ≥ 0 there exists

C > 0, such that for every ϕ ∈ C4
b(

EQ
[∣∣πε,xT (ϕ)− π0T (ϕ)

∣∣p])1/p ≤ √εC||ϕ||4,∞.
In particular, there exists a metric d on the space of probability measures, such that d generates
the topology of weak convergence, and such that for every T ≥ 0 there exists C > 0, such that

EQ
[
d(πε,xT , π0T )

]
≤
√
εC.

This result will be proven in Section 6.
In particular we can use Borel-Cantelli to conclude that if (εn) converges quickly enough to

0, then πεn will a.s. converge weakly to π0.
The ideas are rather simple: We represent the backward SPDEs by finite-dimensional sto-

chastic equations (this will be BDSDEs). The diffusion operators get replaced by the associated
diffusions. We are able to solve those finite-dimensional equations explicitly, or at least give
explicit estimates up to an application of Gronwall. This allows us to estimate ψ1 and R in
terms of the transition function of the fast diffusion. But Pardoux and Veretennikov (2003)
proved very precise estimates for this transition function. These estimates allow us to obtain
the convergence.

While the ideas are simple, the precise formulation and the actual proofs are quite technical.
We start by describing the probabilistic representation.
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4. Probabilistic representation of SPDEs

In this section, we derive probabilistic representations for SPDEs of the form

−dψ(ω, t, x) = Lψ(ω, t, x)dt+ f(ω, t, x)dt

+ (g(ω, t, x) +G(ω, t, x)ψ(ω, t, x))d
←
Bt,(9)

ψ(T, x) = ϕ(ω, x),

where ψ : Ω × [0, T ] × Rm → R, f : Ω × [0, T ] × Rm → R, g : Ω × [0, T ] × Rm → R1×d, and
G : Ω × [0, T ] × Rm → R1×d, ϕ : Ω × Rm → R are all jointly measurable, and (Bt : t ∈ [0, T ])
is a d-dimensional standard Brownian motion under the measure P. Equation (9) represents
the general form of the equations (7) and (8) for the corrector ψ1

t (x, z) and error Rt(x, z),
respectively. The differential operator L is given by

L =
m∑
i=1

bi(x)
∂

∂xi
+

1

2

m∑
i,j=1

aij(x)
∂2

∂xi∂xj

for measurable b : Rm → Rm and a : Rm → Sm×m (Sm×m denotes positive semidefinite symmet-
ric matrices). We will represent these equations in terms of BDSDEs as introduced by Pardoux
and Peng (1994). Note that for these linear equations it is possible to give a Feynman-Kac type
representation without using BDSDEs. This is done, for example, in Rozovskii (1990) (“The
Method of Stochastic Characteristics”). However the BDSDE-representation has the advantage
that it permits us to apply Gronwall’s lemma. This would not be possible with the method of
stochastic characteristics.

A BDSDE is an integral equation of the form

Yt = ξ +

∫ T

t
f(s, Ys, Zs)ds+

∫ T

t
g(s, Ys, Zs)d

←
Bs −

∫ T

t
ZsdWs

where B and W are independent Brownian motions. The solution (Yt, Zt) will be FBt,T ∨ FWt -
measurable. Starting from the notion of BDSDEs, we can define forward-backward doubly
stochastic differential equations. Let σ = a1/2 and

Xt,x
s = x+

∫ s

t
b(Xt,x

s )ds+

∫ s

t
σ(Xt,x

s )dWs for s ≥ t

Xt,x
s = x for s ≤ t

We then define the following BDSDE

−dY t,x
s = f(s,Xt,x

s )ds+ (g(s,Xt,x
s )ds+G(s,Xt,x

s )Y t,x
s )d

←
Bs − Zt,xs dWs

Y t,x
T = ϕ(Xt,x

T )

It turns out that Y gives a finite-dimensional probabilistic representation for equation (9), more

precisely we have Y t,x
t = ψ(t, x). This is not completely covered by Pardoux and Peng (1994),

because we have random unbounded coefficients, and because we do not assume the diffusion
matrix a to have a smooth square root. On the other side, the equation is of a particularly
simple linear type. In the remainder of this section, we give the precise statement and proof for
this representation. This can be skipped at first reading.

We will not be able to get an existence result for classical solutions of the above SPDE from
the theory of BDSDEs: This is due to the fact that for this we would need smoothness properties
of a square root of a. But even when a is smooth, in the degenerate elliptic case it does not need
to have a smooth square root (see, for example, Stroock (2008), Chapter 2.3). Instead we will
use the existence result of Rozovskii (1990) and only reprove the uniqueness result of Pardoux

and Peng (1994) in our setting. This will work under Lipschitz continuity of a1/2.
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Define for 0 ≤ t ≤ s ≤ T

F0,B
t,s = σ(Bu −Bt : t ≤ u ≤ s)

and FBt,s as the completion of F0,B
t,s under P. Introduce the space of adapted random fields of

polynomial growth:

Definition. PT (Rm,Rn) is the space of random fields

H : Ω× [0, T ]× Rm → Rn

that are jointly measurable in (ω, t, x), and for fixed (t, x), ω 7→ H(ω, t, x) is FBt,T -measurable.

Further for fixed ω outside a null set, H has to be jointly continuous in (t, x), and it has to
satisfy the following inequality: For every p ≥ 1 there is Cp > 0, q > 0, such that for all x ∈ Rm

E

[
sup

0≤t≤T
|H(t, x)|p

]
≤ Cp(1 + |x|q)

We make the following assumptions on the coefficients of the SPDE:

(Sk) f and g are k times continuously differentiable and the partial derivatives up to order k
are all in PT . G is (k + 1) times continuously differentiable and the partial derivatives
up to order (k + 1) are all uniformly bounded in (ω, t, x). ϕ is k times continuously
differentiable, and all partial derivates of order 0 to k grow at most polynomially.

We make the following assumptions on the coefficients of the differential operator L:

(Dk) b ∈ Ckb (Rm,Rm), a ∈ Ckb (Rm,Sm×m), and a is degenerate elliptic: For every ξ ∈ Rm and
every x ∈ Rm,

〈a(x)ξ, ξ〉 =
m∑

i,j=1

aij(x)ξiξj ≥ 0.

Then we have the following result:

Proposition 4.1. Assume (Sk) and (Dk) for some k ≥ 3. Then the equation (9) has a unique
classical solution ψ in the sense that for every fixed ω outside a null set, ψ(ω, ·, ·) ∈ C0,k−1([0, T ]×
Rd,R), ψ and its partial derivatives are in PT (Rm,R), and ψ solves the integral equation. If ψ̃

is any other solution of the integral equation, then ψ and ψ̃ are indistinguishable. If further f, g
and ϕ as well as their derivatives up to order k are uniformly bounded in (ω, t, x), then for any
p > 0 there exist Cp, q > 0 (only depending on p, the dimensions involved, the bounds on a, b
and G, and on T), such that for all |α| ≤ k − 1 and x ∈ Rm:

E

[
sup
t≤T
|Dαψ(t, x)|p

]

≤ C(1 + |x|q)E

[
||ϕ||pk,∞ + sup

t≤T
||f(t, ·)||pk,∞ + sup

t≤T
||g(t, ·)||pk,∞

]
.

Proof. This is a combination of Theorem 4.3.2 and Corollary 4.3.2 of Rozovskii (1990) (The
claimed bound is only given for the equation in unweighted Sobolev spaces, in Corollary 4.2.2.
But from that we can deduce the result for the weighted Sobolev case). The only thing we need
to verify is that our polynomial growth assumption on the coefficients is compatible with the
Sobolev norm condition there. But if θ ∈ PT (Rm,Rn), then for any p ≥ 1 there certainly is an
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r < 0 such that θ takes its values in the weighted Lp-space with weight (1 + |x|2)r/2:

E

[
sup

0≤t≤T

∫
|θ(t, x)|p(1 + |x|2)

r
2dx

]
≤ E

[∫
sup

0≤t≤T
|θ(t, x)|p(1 + |x|2)

r
2dx

]

=

∫
E

[
sup

0≤t≤T
|θ(t, x)|p

]
(1 + |x|2)

r
2dx

≤
∫
Cp(1 + |x|q)(1 + |x|2)

r
2dx <∞

for small enough r. �

Now we combine this result with the theory of BDSDEs:
Let (Wt : t ∈ [0, T ]) be an n-dimensional standard Brownian motion that is independent of

B. For 0 ≤ t ≤ s, FWt,s is defined analogously to FBt,s. For 0 ≤ t ≤ T we set

Ft = FBt,T ∨ FWt .

Note that this is not a filtration, as it is neither decreasing nor increasing in t. Introduce the
following notation:

• H2
T (Rm) is the space of measurable Rm-valued processes Y s.t. Yt is Ft-measurable and

E
[∫ T

0
|Yt|2dt

]
<∞.

• S2
T (Rm) is the space of continuous adapted Rm-valued processes Y s.t. Yt ∈ Ft and

E

[
sup

0≤t≤T
|Yt|2

]
<∞.

A BDSDE is an integral equation of the form

Yt = ξ +

∫ T

t
f(s, ·, Ys, Zs)ds+

∫ T

t
g(s, ·, Ys, Zs)d

←
Bs −

∫ T

t
ZsdWs,(10)

where f : [0, T ]×Ω×R×R1×n → R, g : [0, T ]×Ω×R×R1×n → R1×l, and for fixed y ∈ R, z ∈ R1×n

the processes (ω, t) 7→ f(t, ω, x, z) and (ω, t) 7→ g(t, ω, x, z) are (FB0,T ∨FWT )⊗B(R)-measurable,

and for every t, f(t, ·, x, z) and g(t, ·, x, z) are Ft-measurable.
(Y, Z) will be called solution of (10) if (Y,Z) ∈ S2

T (R) × H2
T (R1×n) and if the couple solves

the integral equation.
We will also write the equation in differential form:

−dYt = f(t, Yt, Zt)dt+ g(t, Yt, Zt)d
←
Bt − ZtdWt.

Observe that with suitable adaptations, all of the following results also hold in the multidi-
mensional case, i.e. for Y ∈ Rm. We restrict to one-dimensional Y for simplicity and because
ultimately we are only interested in that case.

Pardoux and Peng (1994) show that under the following conditions, equation (10) has a unique
solution:

• ξ ∈ L2(Ω,FT ,P;R)
• for any (y, z) ∈ R× R1×n: f(·, ·, y, z) ∈ H2

T (R) and g(·, ·, y, z) ∈ H2
T (R1×k)

• f and g satisfy Lipschitz conditions and g is a contraction in z: there exist constants
L > 0 and 0 < α < 1 s.t. for any (ω, t) and y1, y2, z1, z2:

|f(t, ω, y1, z1)− f(t, ω, y2, z2)|2 ≤ L(|y1 − y2|2 + |z1 − z2|2) and

|g(t, ω, y1, z1)− g(t, ω, y2, z2)|2 ≤ L|y1 − y2|2 + α|z1 − z2|2.
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Now we want to associate a diffusion X to the differential operator L. To do so, assume that
(Dk) is satisfied for some k ≥ 2. Then σ := a1/2 is Lipschitz continuous by Lemma 2.3.3 of
Stroock (2008). Hence for every (t, x) ∈ [0, T ]× Rm, there exists a strong solution of the SDE

Xt,x
s = x+

∫ s

t
b(Xt,x

s )ds+

∫ s

t
σ(Xt,x

s )dWs for s ≥ t,

Xt,x
s = x for s ≤ t.

Associate the following BDSDE to (9):

−dY t,x
s = f(s,Xt,x

s )ds+ (g(s,Xt,x
s ) +G(s,Xt,x

s )Y t,x
s )d

←
Bs − Zt,xs dWs,(11)

Y t,x
T = ϕ(Xt,x

T ).

Under the assumptions (Sk) and (Dk) for k ≥ 2, this equation has a unique solution.

Proposition 4.2. Assume (Sk) and (Dk) for some k ≥ 3. Then the unique classical solution

ψ of the SPDE (9) is given by ψ(t, x) = Y t,x
t , where (Y t,x, Zt,x) is the unique solution of the

BDSDE (11).

We can give exactly the same proof as in Pardoux and Peng (1994), Theorem 3.1, taking
advantage of the independence of B and W . For the reader’s convenience, we include it here.

Proof. Let ψ be a classical solution of (9). It suffices to show that

(ψ(s,Xt,x
s ), Dψ(s,Xt,x

s )σ(Xt,x
s ) : t ≤ s ≤ T )

solves the BDSDE (11). Here Dψ is the gradient of ψ. For this purpose, consider a partition
t = t0 < t1 < · · · < tn = T of [t, T ]. Then

ψ(t,Xt,x
t ) = ψ(T,Xt,x

T ) +

n−1∑
i=0

(ψ(ti, X
t,x
ti

)− ψ(ti+1, X
t,x
ti+1

))

= ϕ(Xt,x
T ) +

n−1∑
i=0

(ψ(ti, X
t,x
ti

)− ψ(ti+1, X
t,x
ti+1

))

and

ψ(ti,X
t,x
ti

)− ψ(ti+1, X
t,x
ti+1

)

= (ψ(ti, X
t,x
ti

)− ψ(ti, X
t,x
ti+1

)) + (ψ(ti, X
t,x
ti+1

)− ψ(ti+1, X
t,x
ti+1

))

= −
(∫ ti+1

ti

Lψ(ti, X
t,x
s )ds+

∫ ti+1

ti

Dψ(ti, X
t,x
s )σ(Xt,x

s )dWs

)
+

∫ ti+1

ti

(Lψ(s,Xt,x
ti+1

) + f(s,Xt,x
ti+1

))ds

+

∫ ti+1

ti

(g(s,Xt,x
ti+1

) +G(Xt,x
ti+1

)ψ(s,Xt,x
ti+1

))d
←
Bs.

This is justified because Xt,x and ψ are independent and because ψ grows polynomially, hence
we can apply Itô’s formula. We also used the fact that ψ is a classical solution to (9). If we let
the mesh size tend to 0, then by continuity of Xt,x and ψ, the result follows. �

5. Preliminary estimates

The notation Dα
x indicates that the differential operator Dα is only acting on the x-variables.

The following result will help us to justify the BDSDE-representations on the deeper levels.
Recall that pt(z, θ;x) = E[θ(x, Zxt )|Zx0 = z].
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Proposition 5.1. Assume (HFk,l). Let θ ∈ Ck,l(Rm × Rn,R) satisfy for some C, p > 0∑
|α|≤k

∑
|β|≤l

∣∣∣Dα
xD

β
z θ(x, z)

∣∣∣ ≤ C(1 + |x|p + |z|p).

Then

(t, x, z) 7→ pt(z, θ;x) ∈ C0,k,l(R+ × Rm × Rn,R)

and there exist C1, p1 > 0, such that for all (t, x, z) ∈ [0,∞)× Rm × Rn∑
|α|≤k

∑
|β|≤l

∣∣∣Dα
xD

β
z pt(z, θ;x)

∣∣∣ ≤ C1e
C1t(1 + |x|p1 + |z|p1).

If the bound on the derivatives of θ can be chosen uniformly in x, i.e.∑
|α|≤k

∑
|β|≤l

sup
x

∣∣∣Dα
xD

β
z θ(x, z)

∣∣∣ ≤ C(1 + |z|p),

then the bound on the derivatives of pt(z, θ;x) is also uniform in x:∑
|α|≤k

∑
|β|≤l

sup
x

∣∣∣Dα
xD

β
z pt(z, θ;x)

∣∣∣ ≤ C1e
C1t(1 + |z|p1).

Proof. Note that

pt(z, θ;x) = E[θ(x, Zxt )|Zx0 = z] = E(θ(Xt, Zt)|(X0, Z0) = (x, z)]

is the solution of Kolmogorov’s backward equation associated to (X,Z), where

Xt = X0,

Zt = Z0 +

∫ t

0
f(Xs, Zs)ds+

∫ t

0
g(Xs, Zs)dWs.

In this formulation, the first result is standard. Cf. e.g. Stroock (2008), Corollary 2.2.8.
The second statement can be proven in the same way as Stroock (2008), Corollary 2.2.8. �

Some results from Pardoux and Veretennikov (2003) are collected in the following Proposition:

Proposition 5.2. Assume (Hstat) and (HFk,3). Let θ ∈ Ck,0(Rm × Rn,R) satisfy for some
C, p > 0: ∑

|α|≤k

sup
x
|Dα

xθ(x, z)| ≤ C(1 + |z|p).

Then

(1) x 7→ p∞(θ;x) ∈ Ckb (Rm,R).
(2) Assume additionally that θ satisfies the centering condition∫

Rn

θ(x, z)p∞(x, dz) = 0

for all x, and that θ ∈ Ck,1(Rm × Rn,R) and∑
|α|≤k

∑
|β|≤1

sup
x

∣∣∣Dβ
zD

α
xθ(x, z)

∣∣∣ ≤ C(1 + |z|p).

Then

(x, z) 7→
∫ ∞
0

pt(z, θ;x)dt ∈ Ck,1(Rm × Rn,R),
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and for every q > 0 there exist C1, q1 > 0, such that for every z ∈ Rn∑
|α|≤k

∑
|β|≤1

∫ ∞
0

sup
x

∣∣∣Dβ
zD

α
xpt(z, θ;x)

∣∣∣q dt ≤ C1(1 + |z|q1).

Proof. The statements in the Proposition are taken from Theorem 1, Theorem 2 and Proposition
1 of Pardoux and Veretennikov (2003):

(1) We get from Theorem 1 of Pardoux and Veretennikov (2003), that for any q > 0 there
exists Cq > 0, such that for any (x, z, z′) ∈ Rm × Rn × Rn:∑

|α|≤k

sup
x

∣∣Dα
xp∞(z′;x)

∣∣ ≤ Cq
1 + |z′|q

.

So if we choose q large enough and differentiate p∞(θ;x) under the integral sign, then
we obtain the first claim. (Of course here we have to use the growth constraint on θ and
its derivatives).

(2) This follows from the bounds on the derivatives of pt(z, θ;x) that are given in Pardoux
and Veretennikov (2003), Theorem 2, formulae (14) and (15): For any k > 0 there exist
Ck,mk > 0, such that for any (t, x, z) ∈ [1,∞)× Rm × Rn∑

|α|≤k

∑
|β|≤1

∣∣∣Dβ
zD

α
xpt(z, θ;x)

∣∣∣ ≤ Ck 1 + |z|mk

(1 + t)k
.

We combine this estimate with Proposition 5.1, from where we obtain for (t, x, z) ∈
R+ × Rm × Rn∑

|α|≤k

∑
|β|≤l

sup
x

∣∣∣Dα
xD

β
z pt(z, θ;x)

∣∣∣ ≤ C1e
C1t(1 + |z|p1).

We choose k such that qk > 1 and use the first estimate on [1,∞) and the second
estimate on [0, 1). The result follows.

�

We will also need some moment bounds for the diffusions Xε and Zε.

Proposition 5.3. Assume (Hstat) and that the coefficients b and σ and f and g of the fast and
slow motion are bounded and globally Lipschitz continuous. Then for any p ≥ 1 there exists
Cp > 0, such that

sup
(t,ε,x)∈[0,∞)×[0,1]×Rm

E[|Zεt |p|(Xε
0 , Z

ε
0) = (x, z)] ≤ Cp(1 + |z|p).

Also, for every T > 0 and every p ≥ 1 there exist C(p, T ), q > 0, such that

sup
(t,ε)∈[0,T ]×[0,1]

E[|Xε
t |p|(Xε

0 , Z
ε
0) = (x, z)] ≤ C(p, T )(1 + |x|p).

Proof. The first claim can be proven exactly as in Veretennikov (1997): First write Z̄εt := Zεtε2 .
Then

dZ̄εt = f(Xε
ε2t, Z̄

ε
t )dt+ g(Xε

ε2t, Z̄
ε
t )dW̄ ε

t

where W̄ ε
t := 1/εWε2t is a Wiener process. Next, introduce the same time change as in Pardoux

and Veretennikov, page 1063:

κ(x, z) := |g(x, z)∗z|/|z|, γε(t) :=

∫ t

0
κ2(Xε

ε2s, Z̄
ε
s)ds, τ ε(t) := (γε)−1(t).

Define Z̃εt := Z̄ετε(t). Then,

dZ̃εt = κ−2(Xε
ε2t, Z̃

ε
t )f(Xε

ε2t, Z̃
ε
t )dt+ κ−1(Xε

ε2t, Z̃
ε
t )g(Xε

ε2t, Z̃
ε
t )dW̃ ε

t
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with a new standard Brownian motion W̃ ε. Now we are in a position to just copy the proof of
Lemma 1 in Veretennikov (1997) (which we do not do here) to get the first result.

The second claim is obvious, because the coefficients of Xε are bounded. �

Now we we are able to impose conditions on the coefficients of the diffusions that guarantee
smoothness of the coefficients of L̄. Recall that L̄ was defined as

L̄ =
m∑
i=1

b̄i(x)
∂

∂xi
+

1

2

m∑
i,j=1

āij(x, z)
∂2

∂xi∂xj

where b̄ = p∞(b;x) and ā = p∞(σσ∗;x).

Proposition 5.4. Assume (HFk,3), (HSk,0), and (HOk,0). Then

b̄ ∈ Ckb (Rm,Rm), ā ∈ Ckb (Rm,Sm×m), h̄ ∈ Ckb (Rm,Rk)

Proof. All the terms of b̄, ā and h̄ are of the form p∞(θ;x). So by Proposition 5.2, we only need
to verify that the respective θ are in Ck,0 and satisfy the polynomial bound∑

|α|≤k

sup
x
|Dα

xθ(x, z)| ≤ C(1 + |z|p)

for some C, p > 0. But we even assumed them to be in Ck,0b , so the result follows. �

6. Proof of the main result

We will find convergence rates for the corrector and remainder terms that are expressed in
terms of v0 and its derivatives. So now we give bounds on v0 and its derivatives in terms of
the test function ϕ. This is necessary, because we do not only want to show convergence of the
filter integrating fixed test functions, but with respect to a suitable distance on the space of
probability measures.

Lemma 6.1. Let k ≥ 2 and assume b̄, ā, ϕ ∈ Ck+1
b , and h̄ ∈ Ck+2

b . Then v0 ∈ C0,k([0, T ] ×
Rm,R), and for any p ≥ 1 there exist Cp, q > 0, independent of ϕ, such that for all x ∈ Rm:∑

|α|≤k

E

[
sup

0≤t≤T
|Dαv0t (x)|p

]
≤ Cp(1 + |x|q)||ϕ||pk,∞.

In particular, v0 and all its partial derivatives up to order (0, k) are in PT (Rm,R).

Proof. This is a simple application of Proposition 4.1, noting that the equation (6) for v0 is of
the type (9) with f = 0, g = 0, and G = h̄∗. �

We will prove Lp-convergence of ψ1 and R separately:

Lemma 6.2. Let k, l ≥ 2. Assume (Hstat), (HFk+1,l+1), (HSk+1,l+1), and (HOk+1,l+1). Also

assume v0 ∈ C0,k+1([0, T ]×Rm,R), and that all its partial derivatives in x up to order k+ 1 are
in PT (Rm,R). Finally assume ā, b̄, h̄ ∈ Ckb . Then ψ1 ∈ C0,k,l([0, T ] × Rm × Rn,R), and ψ1 as
well as its partial derivatives up to order (0, k, l) are in PT (Rm × Rn,R). For any p ≥ 1 there
exist Cp, q > 0, independent of ϕ, such that for any (x, z) ∈ Rm+n and any ε ∈ (0, 1)∑

|α|≤k−1

sup
0≤t≤T

E
[
|Dα

xψ
1
t (x, z)|p

]
≤ ε

p
2Cp(1 + |z|q)

∑
0≤|α|≤k+1

E

[
sup

0≤t≤T

∣∣Dα
xv

0
t (x)

∣∣p] .
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Proof. ψ1
t (x, z) solves the BSPDE

−dψ1
t (x, z) =

[
1

ε
LFψ1

t (x, z) + (LS − L̄)v0t (x)

]
dt(12)

+
[
h(x, z)− h̄(x)

]∗
v0t (x)d

←
Bt,

ψ1
T (x, z) = 0.

Existence of the solution ψ1 and its derivatives as well as the polynomial growth all follow from
Proposition 4.1. Write Zε,x,(t,z) for the solution of the SDE

dZε,x,(t,z)s =
1

ε
f(x, Zε,x,(t,z)s )ds+

1√
ε
g(x, Zε,x,(t,z)s )dWt, s ≥ t

Zε,x,(t,z)s = z, s ≤ t.

We consider (x, Zε,x,(t,z)) as a joint diffusion, just as in the proof of Proposition 5.1 (x has

generator 0). By Proposition 4.2, the solution of (12) is given by θ
(t,x,z)(1)
t , the unique solution

to the BDSDE

−dθ(t,x,z)(1)s = (LS(·, Zε,x,(t,z)s )− L̄)v0s(x)ds

+
(
h(x, Zε,x,(t,z)s )− h̄(x)

)∗
v0s(x)d

←
Bs + γt,x,zs dWs,

θ
(t,x,z)(1)
T = 0.

We will drop superscripts (t, x, z) for θ
(t,x,z)(1)
s and write θ1s instead. Similarly, we write Zε,xs

instead of Z
ε,x,(t,z)
s . ψ1

t (x, z) is FBt,T -measurable, hence, so is θ1t . We can then write θ1t =

E
[
θ1t |FBt,T

]
, where

E
[
θ1t |FBt,T

]
= E

[∫ T

t
(LS − L̄)v0s(x)ds|FBt,T

]
+ E

[∫ T

t

[
h(x, Zε,xs )− h̄(x)

]∗
v0s(x)d

←
Bs|FBt,T

]
− E

[∫ T

t
γt,x,zs dWs|FBt,T

]
.

W and B are independent, thereforeW is a Brownian motion in the large filtration (FWs ∨FBt,T :

s ∈ [0, T ]), hence E
[∫ T
t γt,x,zs dWs|FWt ∨ FBt,T

]
= 0, and by the tower property

E
[∫ T

t
γt,x,zs dWs|FBt,T

]
= 0.

v0s is FBs,T -measurable and L̄ has deterministic coefficients. Thus

E
[∫ T

t
L̄v0s(x)ds|FBt,T

]
=

∫ T

t
E
[
L̄v0s(x)|FBs,T

]
ds

=

∫ T

t


m∑
i=1

p∞(bi;x)
∂

∂xi
v0s(x) +

m∑
i,j=1

p∞((σσ∗)ij ;x)
∂2

∂xixj
v0s(x)

 ds.
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Since Zε,x is independent of B,

E
[∫ T

t
LS(·, Zε,xs )v0s(x)ds|FBt,T

]
=

∫ T

t
E
[
LS(·, Zε,xs )v0s(x)|FBs,T

]
ds

=

∫ T

t

{
m∑
i=1

E [bi(x, Z
ε,x
s )]

∂

∂xi
v0s(x)

+
1

2

m∑
i,j=1

E [(σσ∗)ij(x, Z
ε,x
s )]

∂2

∂xixj
v0s(x)

 ds

=

∫ T

t

{
m∑
i=1

p s−t
ε

(z, bi;x)
∂

∂xi
v0s(x)

+
1

2

m∑
i,j=1

p s−t
ε

(z, (σσ∗)ij ;x)
∂2

∂xixj
v0s(x)

 ds,

so

∣∣∣∣E [∫ T

t
(LS − L̄)v0s(x)ds|FBt,T

]∣∣∣∣
=

∣∣∣∣∣
∫ T

t

{
m∑
i=1

p s−t
ε

(z, bi − p∞(bi;x);x)
∂

∂xi
v0s(x)

+
1

2

m∑
i,j=1

p s−t
ε

(z, (σσ∗)ij − p∞((σσ∗)ij ;x);x)
∂2

∂xixj
v0s(x)

 ds

∣∣∣∣∣∣
(the p∞(.;x) terms have been brought inside the integral p s−t

ε
(z, ·;x)

since they not depend on z)

≤ ε

∣∣∣∣∣
m∑
i=1

∫ T−t
ε

0
pu(z, bi − p∞(bi;x);x)

∂

∂xi
v0εu+t(x)du

∣∣∣∣∣
+
ε

2

∣∣∣∣∣∣
m∑

i,j=1

∫ T−t
ε

0
pu(z, (σσ∗)ij − p∞((σσ∗)ij ;x);x)

∂2

∂xixj
v0εu+t(x)du

∣∣∣∣∣∣
≤ ε

m∑
i=1

∫ ∞
0
|pu(z, bi − p∞(bi;x);x)| du sup

t≤s≤T

∣∣∣∣ ∂∂xi v0s(x)

∣∣∣∣
+
ε

2

m∑
i,j=1

∫ ∞
0
|pu(z, (σσ∗)ij − p∞((σσ∗)ij ;x);x)| du sup

t≤s≤T

∣∣∣∣ ∂2

∂xixj
v0s(x)

∣∣∣∣
(f − p∞(f ;x) is centered, so by Proposition 5.2, (2):)

≤ εC1(1 + |z|q1)


m∑
i=1

sup
t≤s≤T

∣∣∣∣ ∂∂xi v0s(x)

∣∣∣∣+

m∑
i,j=1

sup
t≤s≤T

∣∣∣∣ ∂2

∂xixj
v0s(x)

∣∣∣∣

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and therefore finally

E

[∣∣∣∣E [∫ T

t
(LS − L̄)v0s(x)ds|FBt,T

]∣∣∣∣p
]

(13)

≤ εpC2(1 + |z|q2)E

 m∑
i=1

sup
t≤s≤T

∣∣∣∣ ∂∂xi v0s(x)

∣∣∣∣p +

m∑
i,j=1

sup
t≤s≤T

∣∣∣∣ ∂2

∂xixj
v0s(x)

∣∣∣∣p
 .

Next, using again v0s ∈ FBs,T and that Zε,x is independent of B,

E
[∫ T

t

[
h(x, Zε,xs )− h̄(x)

]∗
v0s(x)d

←
Bs|FBt,T

]
=

∫ T

t
E
[[
h(x, Zε,xs )− h̄(x)

]∗
v0s(x)|FBs,T

]
d
←
Bs

=

∫ T

t
p s−t

ε
(z, h− h̄;x)∗v0s(x)d

←
Bs.

For t ≤ r ≤ T , r 7→
∫ T
r p s−t

ε
(z, h − h̄;x)∗v0s(x)d

←
Bs, is a martingale w.r.t. (FBr,T : r ∈ [t, T ]) if

time is run backwards. Hence by the Burkholder-Davis-Gundy inequality,

E

[∣∣∣∣∫ T

t
p s−t

ε
(z, h− h̄;x)∗v0s(x)d

←
Bs

∣∣∣∣p
]

≤ CpE
[
〈
∫ T

t
p s−t

ε
(z, h− h̄;x)∗v0s(x)d

←
Bs〉

p
2

]
,

where

〈
∫ T

t
p s−t

ε
(z, h− h̄;x)∗v0s(x)d

←
Bs〉 =

∫ T

t

∣∣∣p s−t
ε

(z, h− h̄;x)∗v0s(x)
∣∣∣2 ds

≤ ε
∫ ∞
0

∣∣pu(z, h− h̄;x)
∣∣2 du sup

t≤s≤T

∣∣v0s(x)
∣∣2

≤ εC3(1 + |z|q3) sup
t≤s≤T

∣∣v0s(x)
∣∣2 ,

where the last inequality is by Proposition 5.2, (2), since h− h̄ is centered. Therefore,

E

[∣∣∣∣∫ T

t
p s−t

ε
(z, h− h̄;x)∗v0s(x)d

←
Bs

∣∣∣∣p
]
≤ ε

p
2C4(1 + |z|q4)E

[
sup
t≤s≤T

∣∣v0s(x)
∣∣p] .(14)

Combining (13) and (14),

E
[∣∣θ1t ∣∣p] ≤ εpC4(1 + |z|q4)

∑
|α|≤2

E

[
sup
t≤s≤T

|Dα
xv

0
s(x)|p

]
.

Next, consider a first order x-derivative of θ1t :

∂

∂xk
θ1t =

∂

∂xk

∫ T

t
E
[
LS − L̄

]
v0s(x)ds

+
∂

∂xk

∫ T

t
E
[
h(x, Zε,xs )− h̄(x)

]∗
v0s(x)d

←
Bs.

As before, the forward Itó integral term vanished after taking the (conditional) expectation.
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Interchanging order of differentiation and integration,

∣∣∣∣ ∂∂xk
∫ T

t
E
[
LS − L̄

]
v0s(x)ds

∣∣∣∣
≤ ε

m∑
i=1

∣∣∣∣∣
∫ T−t

ε

0

{
∂

∂xk
pu(z, bi − p∞(bi;x);x)

∂

∂xi
v0εu+t(x)

+pu(z, bi − p∞(bi;x);x)
∂2

∂xkxi
v0εu+t(x)

}
du

∣∣∣∣
+
ε

2

m∑
i,j=1

∣∣∣∣∣
∫ T−t

ε

0

{
∂

∂xk
pu(z, (σσ∗)ij − p∞((σσ∗)ij ;x);x)

∂2

∂xixj
v0εu+t(x)

+pu(z, (σσ∗)ij − p∞((σσ∗)ij ;x);x)
∂3

∂xixjxk
v0εu+t(x)

}
du

∣∣∣∣
≤ ε

m∑
i=1

{∫ ∞
0

∣∣∣∣ ∂∂xk pu(z, bi − p∞(bi;x);x)

∣∣∣∣ du sup
t≤s≤T

∣∣∣∣ ∂∂xi v0s(x)

∣∣∣∣
+

∫ ∞
0
|pu(z, bi − p∞(bi;x);x)| du sup

t≤s≤T

∣∣∣∣ ∂2

∂xkxi
v0s(x)

∣∣∣∣
}

+
ε

2

m∑
i,j=1

{∫ ∞
0

∣∣∣∣ ∂∂xk pu(z, (σσ∗)ij − p∞((σσ∗)ij ;x);x)

∣∣∣∣ du
× sup
t≤s≤T

∣∣∣∣ ∂2

∂xixj
v0s(x)

∣∣∣∣
+

∫ ∞
0
|pu(z, (σσ∗)ij − p∞((σσ∗)ij ;x);x)| du sup

t≤s≤T

∣∣∣∣ ∂3

∂xixjxk
v0s(x)

∣∣∣∣
}
.

Then, from Proposition 5.2, (2) again,

∣∣∣∣ ∂∂xk
∫ T

t
E
[
LS − L̄

]
v0s(x)ds

∣∣∣∣ ≤ εC5(1 + |z|q5)
∑

1≤β≤3
sup
t≤s≤T

∣∣∣Dβ
xv

0
s(x)

∣∣∣ .

since the quantities b− b̄ and σσ∗ − ¯σσ∗ are centered. Taking expectation,

E

[∣∣∣∣ ∂∂xk
∫ T

t
E
[
LS − L̄

]
v0s(x)ds

∣∣∣∣p
]

(15)

≤ εpC6(1 + |z|q6)
∑

1≤β≤3
E

[
sup
t≤s≤T

∣∣∣Dβ
xv

0
s(x)

∣∣∣p] .
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Next, by (HOk,l), we can interchange the order of ordinary differentiation and stochastic inte-
gration (cf. Karandikar (1983)):

E

[∣∣∣∣ ∂∂xk
(∫ T

t
E
[
h(x, Zε,xs )− h̄(x)

]∗
v0s(x)d

←
Bs

)∣∣∣∣p
]

= E

[∣∣∣∣∫ T

t

∂

∂xk

(
E
[
h(x, Zε,xs )− h̄(x)

]∗
v0s(x)

)
d
←
Bs

∣∣∣∣p
]

≤ CpE

(∫ T

t

∣∣∣∣ ∂∂xk (E [h(x, Zε,xs )− h̄(x)
]∗
v0s(x)

)∣∣∣∣2 ds
)p/2 ,

where ∫ T

t

∣∣∣∣ ∂∂xk (E [h(x, Zε,xs )− h̄(x)
]∗
v0s(x)

)∣∣∣∣2 ds
= ε

∫ T−t
ε

0

∣∣∣∣ ∂∂xk pu(z, h− h̄;x)v0εu+t(x) + pu(z, h− h̄;x)
∂

∂xk
v0εu+t(x)

∣∣∣∣2 du
≤ 2ε

{∫ ∞
0

∣∣∣∣ ∂∂xk pu(z, h− h̄;x)

∣∣∣∣2 ∣∣v0εu+t(x)
∣∣2 du

+

∫ ∞
0

∣∣pu(z, h− h̄;x)
∣∣2 ∣∣∣∣ ∂∂xk v0εu+t(x)

∣∣∣∣2 du
}

≤ εC7(1 + |z|q7)

{
sup
t≤s≤T

∣∣v0s(x)
∣∣2 + sup

t≤s≤T

∣∣∣∣ ∂∂xk v0s(x)

∣∣∣∣2
}
.

The last step follows once again from Proposition 5.2, (2). So,

E

[∣∣∣∣ ∂∂xk
(∫ T

t
E
[
h(x, Zε,xs )− h̄(x)

]∗
v0s(x)d

←
Bs

)∣∣∣∣p
]

(16)

≤ ε
p
2C8(1 + |z|q8)

{
E

[
sup
t≤s≤T

∣∣v0s(x)
∣∣p]+ E

[
sup
t≤s≤T

∣∣∣∣ ∂∂xk v0s(x)

∣∣∣∣p
]}

.

Combining (15) and (16)

E
[∣∣∣∣ ∂∂xk θ1t

∣∣∣∣p] ≤ ε p
2C9(1 + |z|q9)

∑
α≤3

E

[
sup
t≤s≤T

∣∣Dα
xv

0
s(x)

∣∣p] .
Iterating these arguments for the higher order derivatives of θ1,∑

|α|≤k−1

E
[∣∣Dα

xθ
1
t

∣∣p] ≤ ε p
2C10(1 + |z|q10)

∑
|α|≤k+1

E

[
sup
t≤s≤T

∣∣Dα
xv

0
s(x)

∣∣p] .
�

Lemma 6.3. Let k, l ≥ 3. Assume (HFk,l), (HSk,l), and (HOk+1,l+1). Also assume ψ1 ∈
C0,k+2,l([0, T ] × Rm × Rn,R) and that all its partial derivatives up to order (0, k + 2, l) are in
PT ([0, T ]×Rm,R). Then for any p ≥ 1 there exists Cp > 0, independent of ϕ, such that for any
(x, z) ∈ Rm+n, any ε ∈ (0, 1), and any t ∈ [0, T ]

E [|Rt(x, z)|p] ≤ Cp
∑
|α|≤2

∫ T

t
E
[
E
[∣∣Dα

xψ
1
s(x
′, z′)

∣∣p]
(x′,z′)=(X

ε,(t,x)
s ,Z

ε,(t,z)
s )

]
ds.
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Proof. Rt(x, z) solves the BSPDE

−dRt(x, z) =
(
LεRt(x, z) + LSψ1

t (x, z)
)
dt(17)

+ h(x, z)∗
(
ψ1
t (x, z) +Rt(x, z)

)
d
←
Bt,

RT (x, z) = 0.

Existence of the solution R and its derivatives, as well as the polynomial growth all follow from

Proposition 4.1. By Proposition 4.2, the solution of (17) is given by θ
(t,x,z)(2)
t , the solution to

the BDSDE

−dθ(t,x,z)(2)s = LSψ1
s(X

ε,(t,x)
s , Zε,(t,z)s )ds

+ h(Xε,(t,x)
s , Zε,(t,z)s )∗ψ1

s(X
ε,(t,x)
s , Zε,(t,z)s )d

←
Bs

+ h(Xε,(t,x)
s , Zε,(t,z)s )∗θ(t,x,z)(2)s d

←
Bs − γt,x,zs dWs − δt,x,zs dVs

θ
(t,x,z)(2)
T = 0.

We will drop superscripts (t, x, z) for θ
(t,x,z)(2)
t , (t, z) for Zε,(t,z), and (t, x) for Xε,(t,x).

Rt(x, z) is FBt,T -measurable, hence, so is θ2t . As before, the stochastic integrals over dV and

dW vanish when we take conditional expectation with respect to FBt,T . Thus

θ2t = E
[∫ T

t
LSψ1

s(X
ε
s , Z

ε
s )ds

∣∣∣∣FBt,T](18)

+ E
[∫ T

t
h(Xε

s , Z
ε
s )∗ψ1

s(X
ε
s , Z

ε
s )d
←
Bs

∣∣∣∣FBt,T]
+ E

[∫ T

t
h(Xε

s , Z
ε
s )∗θ2sd

←
Bs

∣∣∣∣FBt,T] .
Consider each term separately:

E

[∣∣∣∣E [∫ T

t
LSψ1

s(X
ε
s , Z

ε
s)ds

∣∣∣∣FBt,T]∣∣∣∣p
]
≤ E

[∣∣∣∣∫ T

t
LSψ1

s(X
ε
s , Z

ε
s)ds

∣∣∣∣p
]

≤ (T − t)p−1
∫ T

t
E

[∣∣∣∣∣
(

m∑
i=1

bi(X
ε
s , Z

ε
s )

∂

∂xi

+
1

2

m∑
i,j=1

(σσ∗)ij(X
ε
s , Z

ε
s)

∂2

∂xixi

ψ1
s(X

ε
s , Z

ε
s )

∣∣∣∣∣∣
p ds

≤ C1

∫ T

t

(
||b||∞

m∑
i=1

E
[∣∣∣∣ ∂∂xiψ1

s(X
ε
s , Z

ε
s )

∣∣∣∣p]

+
1

2
||σσ∗||∞

m∑
i,j=1

E
[∣∣∣∣ ∂2

∂xixi
ψ1
s(X

ε
s , Z

ε
s )

∣∣∣∣p]
 ds

≤ C2

∫ T

t

∑
1≤|α|≤2

E
[∣∣Dα

xψ
1
s(X

ε
s , Z

ε
s )
∣∣p] ds.
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Note that Zεs and Xε
s are FWs ∨ FVs -measurable, ψ1

s is FBs,T -measurable, and B and (V,W ) are
independent. Thus

E
[∣∣Dα

xψ
1
s(X

ε
s , Z

ε
s )
∣∣p] = E

[
E
[∣∣Dα

xψ
1
s(X

ε
s , Z

ε
s )
∣∣p∣∣FVs ∨ FWs ]]

= E
[
E
[∣∣Dα

xψ
1
s(x
′, z′)

∣∣p]
(x′,z′)=(Xε

s ,Z
ε
s )

]
,

so that

E

[∣∣∣∣E [∫ T

t
LSψ1

s(X
ε
s , Z

ε
s )ds

∣∣∣∣FBt,T]∣∣∣∣p
]

(19)

≤ C2

∑
1≤|α|≤2

∫ T

t
E
[
E
[∣∣Dα

xψ
1
s(x
′, z′)

∣∣p]
(x′z′)=(Xε

s ,Z
ε
s )

]
ds.

Next, by Jensen’s inequality, the tower property, and the Burkholder-Davis-Gundy inequality,

E

[∣∣∣∣E [∫ T

t
h(Xε

s , Z
ε
s )∗ψ1

s(X
ε
s , Z

ε
s )d
←
Bs

∣∣∣∣FBt,T]∣∣∣∣p
]

≤ E

[∣∣∣∣∫ T

t
h(Xε

s , Z
ε
s )∗ψ1

s(X
ε
s , Z

ε
s )d
←
Bs

∣∣∣∣p
]

≤ CpE
[
〈
∫ T

t
h(Xε

s , Z
ε
s )∗ψ1

s(X
ε
s , Z

ε
s )d
←
Bs〉

p
2

]
,

where by Hölder’s inequality and the Cauchy-Schwarz inequality

〈
∫ T

t
h(Xε

s , Z
ε,x
s )∗ψ1

s(X
ε
s , Z

ε
s)d
←
Bs〉

p
2 =

(∫ T

t

∣∣h(Xε
s , Z

ε,x
s )∗ψ1

s(X
ε
s , Z

ε
s )
∣∣2 ds) p

2

≤ C3

∫ T

t
|h(Xε

s , Z
ε
s )|p|ψ1

s(X
ε
s , Z

ε
s )|pds.

So by the same arguments as for the first term,

E

[∣∣∣∣E [∫ T

t
h(Xε

s , Z
ε
s )∗ψ1

s(X
ε
s , Z

ε
s )d
←
Bs

∣∣∣∣FBt,T]∣∣∣∣p
]

(20)

≤ C4

∫ T

t
E
[
E
[∣∣ψ1

s(x
′, z′)

∣∣p]
(x′,z′)=(Xε

s ,Z
ε
s )

]
ds.

Finally, using Burkholder-Davis-Gundy in the second line, and Cauchy-Schwarz in the third
line

E

[∣∣∣∣E [∫ T

t
h(Xε

s , Z
ε
s )∗θ2sd

←
Bs

∣∣∣∣FBt,T]∣∣∣∣p
]

≤ E

[∣∣∣∣∫ T

t
[h(Xε

s , Z
ε
s )]∗ θ2sd

←
Bs

∣∣∣∣p
]

≤ CpE

[(∫ T

t
|h(Xε

s , Z
ε
s )∗θ2s |2ds

) p
2

]

≤ CpE

[(∫ T

t
|h(Xε

s , Z
ε
s )|2|θ2s |2ds

) p
2

]

≤ C5||h||p∞
∫ T

t
E[|θ2s |p]ds.(21)
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Combining (18) with (19), (20), and (21)

E
[∣∣θ2t ∣∣p] ≤ C6

∑
|α|≤2

∫ T

t
E
[
E
[∣∣Dα

xψ
1
s(x
′, z′)

∣∣p]
(x′,z′)=(Xε

s ,Z
ε
s )

]
ds

+ C5||h||p∞
∫ T

t
E[|θ2s |p]ds.

By Gronwall,

E
[∣∣θ2t ∣∣p]
≤ C6

∑
|α|≤2

∫ T

t
E
[
E
[∣∣Dα

xψ
1
s(x
′, z′)

∣∣p]
(x′,z′)=(Xε

s ,Z
ε
s )

]
ds

 e(T−t)C5||h||p∞

≤ C7

∑
|α|≤2

∫ T

t
E
[
E
[∣∣Dα

xψ
1
s(x
′, z′)

∣∣p]
(x′,z′)=(Xε

s ,Z
ε
s )

]
ds

 .

where we choose C7 so that the inequality holds for every t ∈ [0, T ] (replace e(T−t)C5||h||∞ by

eTC5||h||∞). �

Now we can collect all these results, to obtain the first step towards Theorem 3.1.

Lemma 6.4. Assume (Hstat), (HF8,4), (HS7,4), (HO8,4), and that ϕ ∈ C7
b (Rm,R). Then for

every p ≥ 1 there exists C, q1, q2 > 0, independent of ϕ, such that

sup
0≤t≤T

E[|vεt (x, z)− v0t (x)|p] ≤ εp/2C (1 + |x|q1 + |z|q2) ||ϕ||p4,∞.

Proof of Theorem 3.1. We track the necessary conditions backward from Lemma 6.3.
1. For the solution R given in Lemma 6.3 to exist and satisfy the stated bound, we need

(HF3,3), (HS3,3), (HO4,4), and ψ1 ∈ C0,5,3([0, T ]×Rm×Rn,R). The polynomial growth condition
will be satisfied anyways.

2. For ψ1 to be in C0,5,3([0, T ]×Rm ×Rn,R), we need (Hstat), (HF6,4), (HS6,4), (HO6,4) and
ā, b̄, h̄ ∈ C5

b . We also need v0 ∈ C0,6([0, T ] × Rm,R). Again, the polynomial growth condition
will be satisfied.

3. For v0 to be in C0,6([0, T ]× Rm,R) we need ā, b̄, ϕ ∈ C7
b and h̄ ∈ C8

b .
4. For ā, b̄ to be in C7

b we need (HF7,3) as well as (HS7,0) by Proposition 5.4. Similarly we
need (HF8,3) as well as (HO8,0) for h̄ to be in C8

b .
5. So sufficient conditions are (Hstat), (HF8,4), (HS7,4), (HO8,4). In that case we obtain from

Lemma 6.1 ∑
|α|≤4

E

[
sup

0≤t≤T
|Dαv0t (x)|p

]
≤ C1(1 + |x|q1)||ϕ||p4,∞.(22)

From Lemma 6.2 we obtain∑
|α|≤2

sup
0≤t≤T

E
[
|Dα

xψ
1
t (x, z)|p

]
≤ ε

p
2C2(1 + |z|q2)

∑
|α|≤4

E

[
sup

0≤t≤T

∣∣Dα
xv

0
t (x)

∣∣p] .(23)

From Lemma 6.3 we get

E [|Rt(x, z)|p] ≤ C3

∑
|α|≤2

∫ T

t
E
[
E
[∣∣Dα

xψ
1
s(x
′, z′)

∣∣p]
(x′,z′)=(X

ε,(t,x)
s ,Z

ε,(t,z)
s )

]
ds.(24)
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Combining (22), (24), (24), we get for any t ∈ [0, T ] (by time-homogeneity of Xε and Zε)

E [|Rt(x, z)|p] + E
[
|ψ1
t (x, z)|p

]
≤ εp/2C4

(
1 + sup

0≤s≤T
E [|Xε

s |q1 + |Zε,xs |q2 |(Xε
0 , Z

ε
0) = (x, z)]

)
||ϕ||p4,∞.(25)

From Proposition 5.3 we obtain

sup
0≤s≤T

E [|Xε
s |q1 + |Zε,xs |q2 |(Xε

0 , Z
ε
0) = (x, z)] ≤ C5(1 + |x|q3 + |z|q4).

Noting that the right hand side in (25) does not depend on t ∈ [0, T ],

sup
0≤t≤T

E [|Rt(x, z)|p] + sup
0≤t≤T

E
[
|ψ1
t (x, z)|p

]
≤ εp/2C6 (1 + |x|q3 + |z|q4) ||ϕ||p4,∞.

Finally

sup
0≤t≤T

E[|vεt (x, z)− v0t (x)|p]

≤ C7

(
sup

0≤t≤T
E [|Rt(x, z)|p] + sup

0≤t≤T
E
[
|ψ1
t (x, z)|p

])
≤ εp/2C8 (1 + |x|q3 + |z|q4) ||ϕ||p4,∞,

which completes the proof. �

Now we recall that all the calculations up until now were under the changed measure Pε.
We only wrote P and B to facilitate the reading. So let us transfer the results to the original
measure Q.

Lemma 6.5. Assume (Hstat), (HF8,4), (HS7,4), (HO8,4), and that ϕ ∈ C7
b (Rm,R). Then for

every p ≥ 1 there exist C, q1, q2 > 0, independent of ϕ, such that

sup
0≤t≤T

EQ[|vεt (x, z)− v0t (x)|p] ≤ εp/2C (1 + |x|q1 + |z|q2) ||ϕ||p4,∞.

Proof. This is a simple application of the Cauchy-Schwarz inequality in combination with Gron-
wall’s lemma:

EQ[|vεt (x, z)− v0t (x)|p] = EPε

[
|vεt (x, z)− v0t (x)|p dQ

dPε

]

≤ EPε [|vεt (x, z)− v0t (x)|2p]1/2EPε

[(
dQ
dPε

)2
]1/2

,

so we see that the result is true by Lemma 6.4 as long as the second expectation is finite. Recall
that we had defined the notation

dQ
dPε

∣∣∣∣
Ft

= D̃ε
t = exp

(∫ t

0
h(Xε

s , Z
ε
s )∗dY ε

s −
1

2

∫ t

0
|h(Xε

s , Z
ε
s )|2ds

)
.

So D̃ε satisfies the SDE

dD̃ε
t = D̃ε

th(Xε
t , Z

ε
t )∗dY ε

t , D̃ε
0 = 1.

Since under Pε, Y ε is a Brownian motion, we get by Itô-isometry

EPε

[
(D̃ε

t )
2
]

= EPε

[∫ t

0
(D̃ε

s)
2|h(Xε

s , Z
ε
s )|2ds

]
≤ ||h||2∞EPε

[∫ t

0
(D̃ε

s)
2ds

]
,

so that by Gronwall EPε

[
(D̃ε

T )2
]
<∞ �
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Lemma 6.6. Assume (Hstat), (HF8,4), (HS7,4), (HO8,4), that ϕ ∈ C7
b , and that the initial

distribution Q(Xε
0 ,Z

ε
0)

has finite moments of every order. Then for every p ≥ 1 there exists
C > 0, independent of ϕ, such that

EQ[|ρε,xT (ϕ)− ρ0T (ϕ)|p] ≤ εp/2C||ϕ||p4,∞.

Proof. As we already described in the introduction, we obtain from Lemma 6.5

EQ[|ρε,xT (ϕ)− ρ0T (ϕ)|p]

= EQ

[∣∣∣∣∫ (vε0(x, z)− v00(x))Q(Xε
0 ,Z

ε
0)

(dx, dz)

∣∣∣∣p]
≤
∫

EQ[|vε0(x, z)− v00(x)|p]Q(Xε
0 ,Z

ε
0)

(dx, dz)

≤ εp/2C1

∫
(1 + |x|q1 + |z|q2)Q(Xε

0 ,Z
ε
0)

(dx, dz)||ϕ||p4,∞

≤ εp/2C2||ϕ||p4,∞.

�

The convergence of the actual filter, i.e. of πε,x to π0, now follows exactly as in Chapter 9.4
of Bain and Crisan (2009). For the sake of completeness, we include the arguments.

Lemma 6.7. Let p ≥ 1. Then

sup
ε∈(0,1],t∈[0,T ]

{EQ[|ρε,xt (1)|−p] + EQ[|ρ0t (1)|−p]} <∞

as long as h is bounded.

Proof. We give the argument for EQ[|ρε,xt (1)|−p], EQ[|ρ0t (1)|−p] being completely analogue. We
have

EQ[|ρε,xt (1)|−p] = EPε

[
|ρε,xt (1)|−p dQ

dPε

]

≤ EPε

[
|ρε,xt (1)|−2p

]1/2 EPε

[(
dQ
dPε

)2
]1/2

We showed in the proof of Lemma 6.5 that the second expectation is finite. Note that x 7→ x−2p

is convex. Therefore by Jensen’s inequality,

EPε [|ρε,xt (1)|−2p]

= EPε

[∣∣∣∣EPε

[
exp

(∫ t

0
h(Xε

s , Z
ε
s )∗dY ε

s −
1

2

∫ t

0
|h̄(Xε

s , Z
ε
s)|2ds

)∣∣∣∣Yεt ]∣∣∣∣−2p
]

≤ EPε

[∣∣∣∣exp

(∫ t

0
h(Xε

s , Z
ε
s)∗dY ε

s −
1

2

∫ t

0
|h̄(Xε

s , Z
ε
s)|2ds

)∣∣∣∣−2p
]

≤ EPε

[∣∣∣∣ dQdPε
∣∣∣∣−2p

]
= EQ

[∣∣∣∣dPεdQ

∣∣∣∣2p+1
]
.

The result now follows exactly as in the proof of Lemma 6.5, because for Dε
t = dPε/dQ|Ft we

have

dDε
t = −h(Xε

t , Z
ε
t )∗dBt, Dε

0 = 1

and B is a Brownian motion under Q. �
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Define for any measurable and bounded test function ϕ : Rm → R

π0t (ϕ) =
ρ0t (ϕ)

ρ0t (1)
.

Recall that πε,xt was defined analogously with ρε,xt instead of ρ0t . We then have

Lemma 6.8. Assume (Hstat), (HF8,4), (HS7,4), (HO8,4), and that the initial distribution Q(Xε
0 ,Z

ε
0)

has finite moments of every order. Let p ≥ 1. Then there exists C > 0 such that for every ϕ ∈ C7
b

EQ[|πε,xT (ϕ)− π0T (ϕ)|p] ≤ εp/2C||ϕ||p4,∞.

Proof. In the third line we use that πε,x is a.s. equal to a probability measure.

EQ[|πε,xT (ϕ)− π0T (ϕ)|p]

= EQ

[∣∣∣∣ρε,xT (ϕ)

ρε,xT (1)
−
ρ0T (ϕ)

ρ0T (1)

∣∣∣∣p]
= EQ

[∣∣∣∣ρε,xT (ϕ)− ρ0T (ϕ)

ρ0T (1)
− πε,xT (ϕ)

ρε,xT (1)− ρ0T (1)

ρ0T (1)

∣∣∣∣p]
≤ Cp

(
EQ

[∣∣∣∣ρε,xT (ϕ)− ρ0T (ϕ)

ρ0T (1)

∣∣∣∣p]+ ||ϕ||p∞EQ

[∣∣∣∣ρε,xT (1)− ρ0T (1)

ρ0T (1)

∣∣∣∣p])
≤ Cp

(
EQ[|ρ0T (1)|−2p]

)1/2(EQ

[∣∣ρε,xT (ϕ)− ρ0T (ϕ)
∣∣2p]1/2

+ ||ϕ||p∞EQ

[∣∣ρε,xT (1)− ρ0T (1)
∣∣2p]1/2)

≤ εp/2C1||ϕ||4,∞,
where the last step follows from Lemma 6.6 and Lemma 6.7. �

Since the bound only depends on ||ϕ||4,∞, we can replace the assumption ϕ ∈ C7
b by ϕ ∈ C4

b :
Just approximate ϕ ∈ C4

b by ϕn ∈ C7
b in the || · ||4,∞-norm, and take advantage of the fact that

πε,xT and π0T are a.s. equal to probability measures. Therefore we have

Corollary 6.9. Assume (Hstat), (HF8,4), (HS7,4), (HO8,4), and that the initial distribution
Q(Xε

0 ,Z
ε
0)

has finite moments of every order. Let p ≥ 1. Then there exists C > 0 such that for

every ϕ ∈ C4
b ,

EQ[|πε,xT (ϕ)− π0T (ϕ)|p] ≤ εp/2C||ϕ||p4,∞.

Now note that there exists a countable algebra (ϕi)i∈N of C4
b functions that strongly sep-

arates points in Rm. That is, for every x ∈ Rm and δ > 0, there exists i ∈ N, such that
infy:|x−y|>δ |ϕi(x)− ϕi(y)| > 0. Take e.g. all functions of the form

exp

− n∑
j=1

qj(x− xj)2


with n ∈ N, qj ∈ Q+, xj ∈ Qm. By Theorem 3.4.5 of Ethier and Kurtz (1986), the sequence
(ϕi) is convergence determining for the topology of weak convergence of probability measures.
That is, if µn and µ are probability measures on Rm, such that limn→∞ µn(ϕi) = µ(ϕi) for every
i ∈ N, then µn converges weakly to µ.

Define the following metric on the space of probability measures on Rm:

d(ν, µ) = d(ϕi)(ν, µ) =

∞∑
i=1

|ν(ϕi)− µ(ϕi)|
2i

.
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Because (ϕi) is convergence determining, the metric d generates the topology of weak conver-
gence. Therefore the proof of Theorem 3.1 is complete. �

7. Conclusion and future directions

This paper presented the theoretical basis for the development of a lower-dimensional parti-
cle filtering algorithm for the state estimation in complex multiscale systems. To this end, we
combined stochastic homogenization with nonlinear filtering theory to construct a homogenized
SPDE which is the approximation of a lower-dimesional nonlinear filter for the “coarse-grained”
process. The convergence of the optimal filter of the “coarse-grained” process to the solution
of the homogenized filter is shown using BSDEs and asymptotic techniques. This homogenized
SPDE can be used as the basis for an efficient multi-scale particle filtering algorithm for es-
timating the slow dynamics of the system, without directly accounting for the fast dynamics.
In Lingala et al. (2012) we present a numerical algorithm based on this scheme, that enables ef-
ficient incorporation of observation data for estimation of the coarse-grained (“slow”) dynamics,
and we apply the algorithm to a high-dimensional chaotic multiscale system.

Even though this paper deals with just one widely separated characteristic time scale, one
can extend this work to incorporate a more realistic setting where the signal has more than one
time scale separation. As before we let ε be a small parameter that measures the ratio of slow
and fast time scales. Consider the signal and observation processes governed by:

(26)

dZεt =
1

ε2
f(Zεt , X

ε
t ) +

1

ε
g(Zεt , X

ε
t ) dWt, Zε0 = z,

dXε
t =

1

ε
bI(Zεt , X

ε
t ) + b(Zεt , X

ε
t ) + σ(Zεt , X

ε
t ) dVt, Xε

0 = x,

dY ε
t = h(Zεt , X

ε
t ) dt+ dBt, Y ε

0 = 0,

where W , V and B are independent Wiener processes and x and z are random initial conditions
which are independent of W , V and B. It is important to realize that there are several scales
in (26), even the slow process Xε

t has a fast varying component. This case is important, in
particular, for applications in geophysical flows and climate dynamics. The drift term b and the
diffusion σ cause fluctuations of order order 1, and the drift term f and the diffusion g cause
fluctuations of order order ε−2, whereas the drift term bI causes fluctuations at an intermediate
order ε−1. It was found that when the average of bI with respect to the invariant measure of
the fast component Zεt (for the fixed slow component) is zero, the limit distribution of the slow
component (away from the initial layer) can also be obtained in terms of the solution of some
auxiliary Poisson equation in the homogenization theory. However, a unified framework to deal
with ε−1 term in developing a lower-dimensional nonlinear filter for the “coarse-grained” process
is still not available.

Our conditions on the coefficients are very restrictive and exclude for example linear models.
This is due to the fact that we are using homogenization of SPDEs to obtain convergence of
the filter, and that for existence of solutions to the SPDEs, the coefficients need to be bounded
and sufficiently smooth. Working with weak solutions in place of classical solutions would
not improve the conditions much. Using viscosity solutions or entirely relying on probabilistic
arguments might be a way to get less restrictive conditions, however with these methods we do
not expect that a rate of convergence can be obtained.

While we were able to obtain the explicit rate of convergence
√
ε, the constant C in Theorem

3.1 depends on the terminal time T . It would be interesting to find conditions under which this
can be avoided. This might be achieved by building on stability results for nonlinear filters, see
e.g. Crisan and Rozovskii (2011), Chapter 4, “Stability and asymptotic analysis”.
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N. Lingala, N. S. Namachchivaya, N. Perkowski, and H. C. Yeong. Particle filtering in high-

dimensional chaotic systems. Chaos, to appear; arXiv:1204.1360, 2012.
R. S. Liptser and A. N. Shiryaev. Statistics of Random Processes: Applications. Springer, Berlin,

2001.
G. C. Papanicolaou and W. Kohler. Asymptotic analysis of deterministic and stochastic equa-

tions with rapidly varying components. Comm. Math. Phys., 45:217–232, 1975.
G. C. Papanicolaou, D. Stroock, and S. R. S. Varadhan. Martingale approach to some limit

theorems. In Papers from the Duke Turbulence Conference (Duke Univ., Durham, N.C.,
1976), Paper No. 6. Duke Univ., Durham, N.C., 1977.



DIMENSIONAL REDUCTION IN NONLINEAR FILTERING 29

E. Pardoux. Stochastic partial differential equations and filtering of diffusion processes. Stochas-
tics, 3:127–167, 1979.

E. Pardoux and S. Peng. Backward doubly stochastic differential equations and systems of
quasilinear spdes. Probab. Theory Related Fields, 98:209–227, 1994.

E. Pardoux and A. Y. Veretennikov. On the Poisson equation and diffusion approximation.
Ann. Probab., (3):1061–1085.

E. Pardoux and A. Y. Veretennikov. On Poisson equation and diffusion approximation 2. Ann.
Probab., 31(3):1166–1192, 2003.

J. Park, R. B. Sowers, and N. S. Namachchivaya. Dimensional reduction in nonlinear filtering.
Nonlinearity, 23(2):305–324, 2010.

J. Park, N. S. Namachchivaya, and H. C. Yeong. Particle filters in a multiscale environment:
Homogenized hybrid particle filter. J. Appl. Mech., 78(6):1–10, 2011.

B. L. Rozovskii. Stochastic Evolution System: Linear Theory and Aplications to Non-linear
Filtering. Kluwer Academic Publishers, Dordrecht, 1990.

C. Snyder, T. Bengtsson, P. Bickel, and J. Anderson. Obstacles to high-dimensional particle
filtering. Mon. Weather Rev., 136(12):4629–4640, 2008.

D. W. Stroock. Partial Differential Equations for Probabilists. Cambridge University Press,
Cambridge, 2008.

A. Y. Veretennikov. On polynomial mixing bounds for stochastic differential equations. Sto-
chastic Process. Appl., 70(1):115–127, 1997.

M. Zakai. On the optimal filtering of diffusion processes. Z. Wahrscheinlichkeitstheorie verw.
Geb., 11(3):230–243, 1969.

1Institut für Mathematik, Humboldt-Universität zu Berlin, Rudower Chaussee 25, 12489 Berlin,
Germany

E-mail address: imkeller@math.hu-berlin.de, perkowsk@math.hu-berlin.de

2Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, 306 Talbot
Laboratory, MC-236, 104 South Wright Street, Urbana, Illinois 61801, USA

E-mail address: navam@illinois.edu, hyeong2@illinois.edu


	1. Introduction
	2. Formulation of multiscale nonlinear filtering problems
	3. Formal expansions of the filtering equations and the main results
	4. Probabilistic representation of SPDEs
	5. Preliminary estimates
	6. Proof of the main result
	7. Conclusion and future directions
	References

