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Abstract

This thesis deals with various problems from stochastic analysis and from mathe-
matical finance that can best be summarized under the common theme of robustness.

We begin by studying financial market models that allow for arbitrage opportu-
nities. This is motivated by the insight that even in the simplest models, arbitrage
opportunities can be introduced by slightly changing the information structure. We
identify the weaker notion of absence of arbitrage opportunities of the first kind
(NA1) as the minimal property which every sensible asset price model should satisfy,
and we prove that (NA1) is equivalent to the existence of a dominating probability
measure that makes the asset price process a local martingale. We also show that
(NA1) is relatively robust with respect to changes in the information structure. As
examples of processes which satisfy (NA1) but do not admit equivalent local mar-
tingale measures, we study continuous local martingales that are conditioned not to
hit zero.

We continue by working with a more robust, model free formulation of the (NA1)
property, which permits to describe qualitative properties of “typical asset price
trajectories”. In this context we construct a pathwise Itô integral, which converges
for typical price paths. The obtained results indicate that typical price paths can be
used as integrators in the theory of rough paths.

This motivates us to study the rough path integral more carefully. We use a
certain Fourier series expansion of continuous functions to develop an alternative
approach to the theory of rough paths. Based on this expansion, the integral can
be decomposed into different components with different behavior. Then it is easy
to see that integrators which are only as regular as a typical sample path of the
Brownian motion must be equipped with their Lévy area in order to obtain a pathwise
continuous integral operator. The new approach is relatively elementary and it leads
to explicit, robust, and recursive numerical algorithms with which one can calculate
both Itô and Stratonovich integrals.

Based on these insights, we abstract from integration and note that the different
stochastic integrals can be understood as different means of defining products of tem-
pered distributions. If we are only considering functions of a one-dimensional index
variable, then the problem of integrating two irregular functions against each other
is essentially equivalent to the problem of multiplying two tempered distributions
with each other. In higher index dimensions however, the problem of multiplication
is more general. We now use the Littlewood-Paley decomposition of tempered dis-
tributions, to extend our previously developed approach to rough path integrals to
functions of a multidimensional index variable. We construct an operator that agrees
with the usual product if it is applied to smooth functions, and that is continuous
in a suitable topology. Therefore, we can define the product of suitable tempered
distributions in a robust way. Using this operator, we can solve stochastic partial
differential equations that were previously difficult to access due to nonlinearities.
Since our product operator is continuous, the solutions to these equations depend
continuously on the driving stochastic signal, provided that it is approximated in a
suitable topology.
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Zusammenfassung

Diese Dissertation behandelt verschiedene Fragestellungen aus der stochastischen
Analysis und der Finanzmathematik, die sich am besten unter dem gemeinsamen
Begriff der Robustheit zusammenfassen lassen.

Zunächst betrachten wir finanzmathematische Modelle, die Arbitragemöglichkei-
ten zulassen. Dies ist durch die Einsicht motiviert, dass selbst in den einfachsten
Modellen Änderungen in der Informationsstruktur üblicherweise Arbitragemöglich-
keiten herbeiführen. Wir identifizieren den schwächeren Begriff der Abwesenheit von
Arbitragemöglichkeiten der ersten Art (NA1) als die minimale Eigenschaft, die in
jedem realistischen finanzmathematischen Modell gelten sollte und wir beweisen,
dass (NA1) äquivalent ist zur Existenz eines dominierenden Wahrscheinlichkeitsma-
ßes, unter dem der Preisprozess ein lokales Martingal ist. Wir zeigen ebenfalls, dass
(NA1) relativ robust ist unter Veränderungen in der Informationsstruktur. Als Bei-
spiel für Prozesse, die (NA1) erfüllen aber kein äquivalentes Martingalmaß besitzen,
studieren wir stetige lokale Martingale, die darauf bedingt werden, niemals Null zu
treffen.

Anschließend wird eine robustere, modellfreie Formulierung der (NA1) Eigenschaft
verwendet, die es erlaubt, qualitative Eigenschaften von “typischen Preistrajektorien”
zu beschreiben. In diesem Kontext konstruieren wir für typische Preispfade ein pfad-
weises Itô-Integral. Die hier bewiesenen Resultate deuten darauf hin, dass typische
Preispfade als Integratoren in der rough-path-Theorie verwendet werden können.

Dies motiviert ein tiefergehendes Studium des rough-path-Integrals. Zunächst ver-
wenden wir eine bestimmte Fourierdarstellung stetiger Funktionen, um einen alter-
nativen Zugang zur rough-path-Theorie zu entwickeln. Mit Hilfe dieser Darstellung
lässt sich das Integral in verschiedene Komponenten mit unterschiedlichen Eigen-
schaften zerlegen. So sieht man leicht, dass Integratoren mit der Regularität einer
typischen Realisierung der Brownschen Bewegung mit ihrer Lévy-Fläche versehen
werden müssen, um ein pfadweise stetiges Integral zu erhalten. Der neue Ansatz ist
relativ elementar und führt zu expliziten, robusten und rekursiven numerischen Al-
gorithmen, mithilfe derer sich sowohl Itô- als auch Stratonovich-Integrale pfadweise
berechnen lassen.

Darauf aufbauend abstrahieren wir vom Integral und fassen das Problem der sto-
chastischen Integration als einen Spezialfall des Problems der Multiplikation von
temperierten Distributionen auf. Mittels Integration und Differentiation lässt sich
zeigen, dass die beiden Probleme im Wesentlichen äquivalent sind, solange wir nur
Funktionen einer eindimensionalen Indexvariablen betrachten. In höheren Dimensio-
nen ist das Problem der Multiplikation jedoch weitaus allgemeiner. Wir verwenden
nun die Littlewood-Paley Darstellung von temperierten Distributionen, um unseren
zuvor entwickelten Zugang zur rough-path-Theorie auf Funktionen mehrdimensiona-
ler Variablen zu erweitern. Wir konstruieren einen Operator, der für glatte Funk-
tionen mit dem üblichen Produkt übereinstimmt, und in einer geeigneten Topologie
stetig ist. Somit können wir auf robuste Art und Weise das Produkt von geeigne-
ten temperierten Distributionen definieren. Nun lassen sich stochastische partielle
Differentialgleichungen lösen, die bisher aufgrund von Nichtlinearitäten nicht gut
zugänglich waren. Aufgrund der Stetigkeit unseres Produktoperators hängen die Lö-
sungen dieser Gleichungen stetig vom stochastischen Rauschen ab, solange dieses in
einer geeigneten Topologie approximiert wird.
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Basic notation

Numbers

• R = (−∞,∞) = the set of real numbers; R+ = [0,∞)

• Q = the set of rational numbers; Q+ = Q ∩ R+

• N = {0, 1, . . . } = the set of nonnegative integers; N∗ = N \ {0}

• Z = {0,−1, 1,−2, 2, . . . } = the set of integers

• ı =
√

−1 = the imaginary unit

• a ∧ b = min{a, b}; a ∨ b = max{a, b} for a, b ∈ R

• ⌊a⌋ = max{k ∈ Z : k ≤ a}; ⌈a⌉ = min{k ∈ Z : a ≤ k} for a ∈ R

• δij = 1 if i = j and δij = 0 if i ̸= j denotes the Kronecker delta

Basic spaces

• L(X,Y) = the space of bounded linear operators between the Banach spaces X and
Y

• C(X,Y) = the space of continuous functions between the topological spaces X and
Y

• Cm(Rd,Rn) = Cm the space of m times continuously differentiable functions from
Rd to Rn, where m, d, n ∈ N∗

• Cmb (Rd,Rn) = the space of m times continuously differentiable functions from Rd
to Rn with bounded partial derivatives up to order m, where m, d, n ∈ N∗

Multiindex notation

• |η| = η1 + · · · + ηd = the length of the multiindex η ∈ Nd, where d ∈ N∗

• xη = xη1 · · · · · xηd for x ∈ Rd and η ∈ Nd, where d ∈ N∗

• η! = η1! . . . ηd! for η ∈ Nd, where d ∈ N∗
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Derivatives

• DF (x) = the total differential of F in x

• F ′(x) = DF (x)

• DmF (x) = the m–th order derivative of F in x, where m ∈ N

• DxF (t, x) = the spatial derivative of F in (t, x)

• ∂tF (t, x) = ∂
∂tF (t, x) = the partial derivative of F in direction t

• ∂xk
F (x) = ∂

∂xk
F (x) the partial derivative of F in direction xk

• ∂ηF (x) = ∂|η|

∂
η1
x1 ...∂

ηd
xd

F (x) = a higher order partial derivative of F , where η ∈ Nd

Norms and related objects

• xy =
d
k=1 xkyk = the inner product of x and y

• |x| =
√
xx the Euclidean norm of a vector or matrix x

• ∥F∥Cm
b

=


|η|∈Nd:|η|≤m∥∂ηF∥L∞

• |{. . . }| = the number of elements in the set {. . . }

Measures

• ≪ and ≫ absolute continuity between measures

• ∼ equivalence between measures

Limits

• lims→t− = lims→t,s<t

• lims→t+ = lims→t,s>t

Conventions

• a . b means that there exists a constant c > 0, such that a ≤ cb; a & b means
b . a; a ≃ b means a . b and b . a – except for index variables of dyadic blocks in
Chapter 5

• a(x) .x b(x) means that there exists a constant c(x) > 0, such that a(x) ≤ c(x)b(x);
a(x) &x b(x) means b(x) .x a(x); a(x) ≃x b(x) means a(x) .x b(x) and b(x) .x

a(x)

• 0/0 = 0; ∞ · 0 = 0 – except in Chapter 2
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• (in-) equalities between random variables are to be understood in the almost sure
sense – except in Chapter 3
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Introduction

This thesis deals with questions from mathematical finance and from stochastic analysis
that can best be summarized under the common theme of robustness. Mathematical
models are usually an idealization of the world. Therefore, it is important to understand
how robust they are with respect to changes in the underlying assumptions. On the other
side, even if we have reason to believe that a model gives an accurate description of a
certain phenomenon, in general this model will be infinite dimensional – at least in the
applications that we have in mind. Since a computer can only store and process a finite
amount of data, we might then ask how accurate a given finite dimensional approximation
of the infinite dimensional model is.

One of the basic problems in mathematical finance is the derivation of “fair” prices
for certain financial derivatives. For example, if (St)t∈[0,T ] describes the evolution of the
discounted price of a financial asset, then one might ask for fair prices for European call
options. A European call option with strike K > 0 and maturity T > 0 is a contract
that allows, but not obliges, its owner to buy one asset ST at time T for the price K.
Thus, under the paradigm of rational action, at time T the payoff for the owner of the
contract is equal to (ST −K)+, where x+ = max{x, 0} for all x ∈ R.

First results in this direction have been obtained by Bachelier [Bac00], and by Black and
Scholes [BS73] and Merton [Mer73]. Their derivations are based on hedging arguments:
They assume that the asset price evolution is given by a Brownian motion (respectively a
geometric Brownian motion), and (implicitly) use the predictable representation property
to show that there exists a unique p ∈ R and a unique predictable, square-integrable
strategy H, such that

(ST −K)+ = p+
 T

0
HsdSs.

In other words, an investor with initial capital p can obtain the payoff (ST − K)+ by
investing in S – at least in a frictionless market. Therefore, the “fair” price of the call
option is equal to p. If Q denotes the unique probability measure on FT that is equivalent
to P and makes S a martingale, then p = EQ((ST −K)+).

A model that assigns to every financial derivative a unique price is called complete.
However, most practically relevant models are incomplete, i.e. in those models the price
process does not have the predictable representation property. Incomplete models are
more realistic, because we do not expect that every financial derivative can be replicated
by investing in the asset. In such a model there might not exist an integrand H such
that (ST − K)+ = p +

 T
0 HsdSs for some p > 0. But usually there will exist p > 0,

such that there is a strategy H for which (ST −K)+ ≤ p+
 T

0 HsdSs. Such a p is called
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a superhedging price for (ST − K)+, and it is clear that the price of the option should
be at most p. A probability measure Q that is equivalent to P and that makes S a
local martingale is called an equivalent local martingale measure for S. If the set Q of
equivalent local martingale measures is non-empty, then one can show that

inf

p > 0 : ∃H s.t. p+

 T

0
HsdSs ≥ (ST −K)+


= sup

Q∈Q
EQ((ST −K)+).

But then the question arises why such equivalent local martingale measures should exist
in the first place. This can be economically motivated by the Fundamental Theorem of
Asset Pricing by Delbaen and Schachermayer [DS94], see also [DS06], who show that if
S is locally bounded, then Q is non-empty if and only if S satisfies the property no free
lunch with vanishing risk (NFLVR). The (NFLVR) property roughly states that it is not
possible to make a risk free profit by investing in S, and that an investor who is only
willing to take a small risk can only make a (relatively) small profit.

The Fundamental Theorem of Asset Pricing is one of the cornerstones of modern
financial mathematics, and based on this result, most models assume that the asset
price process admits an equivalent local martingale measure. While this is a reasonable
assumption in most situations, in certain cases it is too restrictive. For example, if S
admits an equivalent local martingale measure, and if X is a FT –measurable random
variable, and Gt = Ft ∨ σ(X), t ∈ [0, T ], is the filtration generated by Ft and X, then
usually there will no longer exist an equivalent Q ∼ P , such that S is a Q–local martingale
in the filtration (Gt). If we interpret Gt as the information available at time t to an
“informed” investor, then this shows that the (NFLVR) property is not very robust with
respect to changes in the information structure. On the other side Ankirchner [Ank05]
observed that the maximal expected logarithmic utility for an informed investor may well
be finite, i.e. that under suitable conditions

sup{E(log(1 + (H · S)T )) : H is a (Gt) − adapted strategy} < ∞.

This indicates that, despite S not admitting an equivalent local martingale measure in
the filtration (Gt), the model is not completely degenerate, meaning that even for an
informed investor it is not possible to generate “infinite wealth” by investing in S.

Therefore, the first part of this thesis is concerned with finding a minimal property
that has to be satisfied by a financial market model, such that

1. there exists an unbounded utility function U for which the maximal expected U–
utility is finite, and

2. the property is (relatively) robust with respect to changes in the information struc-
ture (filtration enlargements).

In that case we would like to characterize all financial market models satisfying this
property, by providing a result that is similar in spirit to the Fundamental Theorem
of Asset Pricing. This is the content of Chapter 1, and it turns out that this minimal

5
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property is the (NA1) property. Intuitively, a stochastic process S admits no arbitrage
opportunities of the first kind (NA1), if it is not possible to make a large profit by investing
in S while at the same time only taking a very small risk.

The basic example of a stochastic process satisfying only (NA1) but not (NFLVR) is
given by the three dimensional Bessel process. It is well known that this process can be
obtained by conditioning a Brownian motion not to hit zero. In Chapter 2 we study the
dynamics of a general local martingale which is conditioned not to hit zero, and we see
that this always leads to a process satisfying (NA1).

While we show in Chapter 1 that (NA1) is the minimal condition which a reasonable
financial market model has to satisfy, and that (NA1) is rather robust, our results are still
in the context of one fixed model. But in applications there is usually some model uncer-
tainty. For example, consider the Black-Scholes model, where the asset price evolution
is given by

dSt = St(bdt+ σdWt)

for a Brownian motion W . It is possible to estimate the volatility σ given data samples
from the price process. But unless the full (continuous time) sample path of S is observed,
it is not possible to determine σ with absolute certainty. Therefore, in Chapter 3 we work
with a model free formulation of the (NA1) property, as introduced by Vovk [Vov12],
that allows to determine which properties are satisfied by “typical price paths”. Here
“model free” refers to the fact that we do not assume that the price process is given
as a stochastic process with known distribution, but that it is an arbitrary continuous
path. In this context, p is a superhedging price for the option (ST −K)+ if there exists a
strategy H such that p+

 T
0 HsdSs ≥ (ST −K)+ for every continuous path S, or at least

for a sufficiently rich set of paths. In the classical setting the inequality has to hold only
almost surely, which is obviously easier to satisfy. Therefore, the results obtained in this
model free context should be more robust. But while in the classical setting we could
use Itô stochastic integrals, here it is not very clear what the integral

 T
0 HsdSs should

mean. This is the main problem treated in Chapter 3, where we construct a pathwise
Itô type integral that converges for typical price paths, and where we show that typical
price paths can be used as integrators in Lyons’ theory of rough paths [Lyo98].

The theory of rough paths is the focus of Chapter 4, where we develop an alternative,
Fourier series based approach to rough path integration. If W is a d–dimensional Brow-
nian motion on (Ω,F , (Ft)t∈[0,T ], P ), then Itô’s stochastic integral is a bounded linear
operator from L2(Ω × [0, T ], P ⊗λ) to the space of square integrable martingales. Here λ
denotes Lebesgue measure. But it is not continuous in a pathwise sense: For example, if
F is a smooth function from Rd to Rd, if W (ω) is a Brownian sample path, and Wn(ω)
is a sequence of smooth paths converging uniformly to W (ω), then it is in general not
true that

 T
0 F (Wn

s (ω))dWn
s (ω) converges to (

 T
0 F (Ws)dWs)(ω). And also the solution

S(ω) of a stochastic differential equation dSt = F (St)dWt with S0 = s will in general
not be the limit of the solutions Sn(ω) to the equations dSnt (ω) = F (Snt (ω))dWn

t (ω)
and Sn0 = s. Of course, we would not really expect to obtain an Itô integral or an Itô
SDE in the limit, because the approximating paths Wn(ω) satisfy the classical integra-
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tion by parts rule and not Itô’s formula. But in general we will not even obtain the
corresponding Stratonovich integral / SDE solution in the limit. The reason is that the
uniform topology is too coarse. Lyons [Lyo98] observed that both integrals and solutions
to SDEs depend continuously on the driving noise, as long as the noise is enhanced to a
(d+ d2)–dimensional path, consisting of the noise itself, but also of its iterated integrals.
We give an elementary approach to rough path integration that is based on a series rep-
resentation of continuous functions. If (ϕm,k)m∈N,0≤k≤2m are the Schauder functions, to
be defined below, then every continuous function f : [0, 1] → Rd can be represented as
f(t) =


m,k fmkϕmk(t). If g : [0, 1] → Rd is another continuous function with expansion

g(t) =

n,ℓ gnℓϕnℓ(t), then we may formally define ·

0
f(s)dg(s) =


m,k


n,ℓ

fmkgnℓ

 ·

0
ϕmk(s)dϕnℓ(s),

because the functions (ϕnℓ) are of bounded variation. Examining the convergence of this
double series will be the main interest of Chapter 4, and we will show that on suitable
function spaces, the integral can be defined as a continuous operator.

In Chapter 5 we reformulate the results of Chapter 4 in the language of Littlewood-
Paley blocks as opposed to Schauder functions. This allows us to define products of
tempered distributions that have a multi dimensional index set. Moreover, our product
is a continuous bilinear operator on suitable function spaces. If W is a Brownian motion
and F is a smooth function, then the Itô integral

 ·
0 F (Ws)dWs can be understood as a

way of defining the distribution F (W )Ẇ , where Ẇ is the time derivative of the Brownian
motion. The same interpretation works also for the Stratonovich integral and for the
rough path integral, which shows that there is a multitude of techniques to treat nonlinear
operations on tempered distributions that have a one dimensional index set. Maybe
somewhat surprisingly, if the index set is multi dimensional, then there are much fewer
techniques available. We formulate a theory of “paracontrolled distributions” that is
similar in spirit to rough paths, and nearly completely analogous to the theory developed
in Chapter 4. We then apply our theory to solve two stochastic partial differential
equations (SPDEs) about which previously there was not much known. Since our product
is continuous in a suitable topology, we obtain automatically that the solutions to these
SPDEs depend continuously on the driving noise.

So the subjects treated in this thesis can be summarized as follows. In the first Chapter
we study financial market models, where we are interested in the (NA1) property, which
is more robust than the classical (NFLVR) property, but still leads to economically
sensible models. In Chapter 2 we derive the dynamics of a nonnegative continuous local
martingale that is conditioned not to hit zero. In the third chapter we study the (NA1)
property in a more robust, model free context, and we show that it allows us to define
pathwise “stochastic” integrals. In Chapter 4 we present a Fourier based approach to
rough path integration, which allows us to identify a topology in which the solutions
of SDEs depend continuously on the driving signal. In Chapter 5 we develop a new
way of defining the product between two tempered distributions. Using this product,
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we solve two nonlinear SPDEs that previously were not very well understood. We also
show the robustness of our solutions, in the sense that under a wide range of smooth
approximations of the driving noise, the solutions of the smooth equations converge to
our solution.

Each chapter is relatively self-contained and can be read independently. In the follow-
ing, we give a more detailed summary of the content of the single chapters.

Chapter 1: Dominating local martingale measures and arbitrage under information
asymmetry

Chapter 1 is based on Imkeller and Perkowski [IP11]. Let S be a stochastic process on
a filtered probability space (Ω,F , (Ft)t≥0, P ). The process S is supposed to model the
evolution of a discounted asset price in a frictionless market. A λ–admissible strategy is
a predictable process (Ht)t≥0 for which the stochastic integral H · S :=

 ·
0 HsdSs exists

and satisfies P ((H · S)t ≥ −λ) = 1 for all t ≥ 0. In that case we write H ∈ Hλ.
We say that S admits no arbitrage opportunities of the first kind (S satisfies (NA1))

if the set

W∞
1 :=


1 + (H · S)∞ : H ∈ H1 and lim

t→∞
(1 + (H · S)t) exists


is bounded in probability, i.e. if limm→∞ supX∈W∞

1
P (X ≥ m) = 0. Heuristically, this

means that an investor who is only willing to risk the initial capital of 1 is not able to
make a very large profit.

The first result of this chapter is that S satisfies (NA1) if and only if there exists an
unbounded utility function U : [0,∞) → R, such that

sup
X∈W∞

1

(EU(X)) < ∞.

The existence of such a U is a minimal requirement that every sensible model should
satisfy. Otherwise any investor will be able to generate infinite utility by investing in S
– no matter what her preference structure looks like!

If S admits an equivalent local martingale measure, then S satisfies (NA1). More pre-
cisely, by the Fundamental Theorem of Asset Pricing, S satisfies (NFLVR), and (NFLVR)
is equivalent to (NA1) and (NA). Here (NA) means no arbitrage, which is satisfied if for
every X ∈ W∞

1 either P (X < 1) > 0 or P (X = 1) = 1. Heuristically, S satisfies (NA)
if it is not possible to make a risk free profit by investing in S. We will show that the
(NFLVR) property is usually violated after filtration enlargements. On the other side,
we will show for enlargements of the type Gt = Ft ∨ σ(X), where X is a random vari-
able which satisfies Jacod’s criterion, that every process satisfying (NA1) under (Ft) also
satisfies (NA1) under (Gt).

In conclusion, the (NA1) property has to be satisfied by every sensible model and it is
relatively robust with respect to changes in the information structure. Our next aim is to
characterize all models satisfying (NA1). We know that the (NFLVR) property (which
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is equivalent to (NA1) and (NA)) is satisfied if and only if S admits an equivalent local
martingale measure. Moreover, Delbaen and Schachermayer [DS95b] showed that if S is
continuous and satisfies (NA), then S admits an absolutely continuous local martingale
measure. We complement this picture by proving that S satisfies (NA1) if and only if it
admits a dominating local martingale measure, i.e. a measure Q such that P is absolutely
continuous with respect to Q, and such that S is a Q–local martingale.

It is not very easy to work directly on the space of dominating measures for P , and
therefore we would first like to construct a type of Radon-Nikodym derivative dQ/dP . Of
course, in general dQ/dP will not exist if Q dominates P . Here we rely on a progressive
Lebesgue decomposition on filtered probability spaces, the Kunita-Yoeurp decomposition,
that associates to every dominating measure Q a P–supermartingale Z. Moreover, we
show that if Q makes S a local martingale, then Z is a supermartingale density, i.e. the
process (1 + (H · S))Z is a P–supermartingale for every H ∈ H1 (where H1 is defined
with respect to P ).

So in a first step, we show that the existence of supermartingale densities is equivalent
to (NA1). In a second step, we show that we can associate dominating local martingale
measures to supermartingale densities.

Not all the results here are new: (NA1) and its relation to filtration enlargements, util-
ity maximization, supermartingale densities, and dominating local martingale measures
have been studied for example by Ankirchner [Ank05], Karatzas and Kardaras [KK07],
and Ruf [Ruf13] respectively. But to the best of our knowledge, here we give the first
general classification of the (NA1) property. It also seems to be a new (albeit simple)
result that (NA1) is the minimal property that every reasonable model should satisfy.

Chapter 2: Conditioned martingales

This chapter, which is based on Perkowski and Ruf [PR12], falls somewhat out of the
theme of this thesis, in the sense that it has not much to do with robustness. One of
the basic examples for a process that satisfies (NA1) but does not admit an equivalent
local martingale measure is given by the three dimensional Bessel process. It is a classical
result, going back at least to McKean [McK63], that the three dimensional Bessel process
has the same dynamics as a Brownian motion which is conditioned not to hit zero, and
that conversely a downward conditioned Bessel process has the same dynamics as a
Brownian motion.

In Chapter 2 we show that a similar result holds for every continuous local martingale.
Our proof is probabilistic and based on the simple observation that if M is a continuous
local martingale starting in 1 and if τa and τ0 denote the first hitting times of a > 1
and 0 respectively, then the two measures dP (·|τa < τ0) and Mτa∧τ0dP agree on the
σ–algebra Fτ0∧τa . Then it only remains to let a tend to ∞, which can be done by
using Parthasarathy’s extension theorem. The so constructed measure Q is the Föllmer
measure of M . Therefore, the main result of this chapter is that the Föllmer measure
of a nonnegative local martingale M can be obtained by conditioning M not to hit
zero. Under the Föllmer measure, 1/M is a local martingale, and therefore we can now
condition M downward, which corresponds to conditioning 1/M upward. By the same

9



Contents

argument as before, the downward conditioned Föllmer measure Q is equal to the original
measure P .

As an application, we explicitly derive the dynamics of upward and downward condi-
tioned diffusions.

Chapter 3: Pathwise integration in model free finance

In this chapter, we are working with a pathwise version of the (NA1) property. Let
Ω := C([0, T ],Rd) be the space of continuous paths with values in Rd. We interpret Ω
as the space of discounted asset price trajectories. The filtration (Ft)t∈[0,T ] is defined
via Ft := σ(ω(s) : s ≤ t). A simple strategy is a process H of the form Ht(ω) =
n Fn(ω)1(τn,τn+1](t) for suitable stopping times (τn)n∈N and Fτn–measurable random

variables (Fn)n∈N. For λ > 0, a simple strategy H is called λ–admissible if (H ·ω)t ≥ −λ
for all ω ∈ Ω and all t ∈ [0, T ]. Note that this is a stronger requirement than in Chapter 1,
where we only assumed that almost surely (H ·ω)t ≥ −1 for all t ∈ [0, T ]. We write Hλ,s

for the set of λ–admissible simple strategies.
Inspired by Vovk [Vov12], we define the outer content of A ⊆ Ω as the cheapest

superhedging price,

P (A) := inf

λ > 0 : ∃ (Hn) ⊆ Hλ,s s.t. lim inf

n→∞
(λ+ (Hn · ω)T ) ≥ 1A(ω) ∀ω ∈ Ω


.

A set of paths A ⊆ Ω is called a null set if it has outer content zero. We then show that
A is a null set if and only if there exists a sequence of 1–admissible strategies (Hn)n∈N,
such that 1 + lim infn→∞(Hn · ω)T = ∞ for all ω ∈ A. Therefore, every null set A can
be interpreted as a model free arbitrage opportunity of the first kind: It is possible to
generate a very large profit by investing in paths from A, without ever risking to lose
more than the initial capital of 1. A property (P) is said to hold for typical price paths
if the set where (P) is violated is a null set.

In a model free setting, where no probability measure is given, it is a priori not clear how
to define stochastic integrals for more complicated integrands than the simple strategies
described above. But such stochastic integrals may be required to develop a sufficiently
powerful theory (usually simple strategies are not enough). The main result of Chapter 3
states that if H is a càdlàg adapted process, such that t →→ Ht(ω) has the same variational
regularity as ω, then for typical price processes the stochastic integral H ·ω can be defined
as limit of Riemann sums. However, the null set where the Riemann sums do not converge
depends on H. For applications, it would be convenient to exclude one null set in the
beginning, and to be able to construct all stochastic integrals for all remaining paths.
This can be achieved by taking H to be the coordinate mapping, so that we construct
all the second order iterated integrals (

 ·
0
 s

0 dωi(r)dωj(s))1≤i,j≤d. These are the crucial
ingredients that are needed to use Lyons’ rough path integral [Lyo98]. The rough path
integral is an analytic object, and therefore it can be constructed for all integrands and
for all ω outside the null set where the iterated integrals do not exist.

It is remarkable that here we are not in a probabilistic context, and that typical price
paths are too irregular to apply Young integration to construct their iterated integrals.
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To the best of our knowledge this is the first time that the iterated integrals of paths are
constructed in a nontrivial setting without using probability theory.

Chapter 4: A Fourier approach to pathwise integration

In Chapter 3 we saw that the rough path integral may be a useful tool in model free
finance. Here we study the rough path integral more carefully, giving an alternative
approach based on Fourier series.

It is a classical result of Ciesielski [Cie60] that Cα := Cα([0, 1],Rd), the space of α-
Hölder continuous functions on [0, 1] with values in Rd, is isomorphic to ℓ∞(Rd), the space
of bounded sequences with values in Rd. The isomorphism gives a series expansion of any
Hölder continuous function f as f(t) =


m,k fmkϕmk(t). Here (ϕmk)mk are (a rescaled

version of) the Schauder functions, the primitives of the Haar wavelets, and (fmk)m,k are
constant coefficients. The function f is α–Hölder continuous if and only the coefficients
(fmk) decay rapidly enough, more precisely if supm,k 2nα|fmk| < ∞. Since Ciesielski’s
work, this isomorphism has been extended to more general Fourier and wavelet bases,
for which one obtains the same type of results: the regularity of a function is encoded in
the decay of the coefficients of its series expansion. For details see [Tri06].

But for the applications that we have in mind, the Schauder functions have two very
pleasant properties. The coefficients (fmk) are (second order) increments of f , so that
we understand their statistics if f is a stochastic process with known distribution. Fur-
thermore, every ϕmk is piecewise linear, which makes it easy to calculate integrals of the
type

 ·
0 ϕmk(s)dϕnℓ(s).

If f and g are Hölder-continuous functions, then we formally set t

0
f(s)dg(s) :=


m,k


n,ℓ

fmkgnℓ

 t

0
ϕmk(s)dϕnℓ(s).

Examining the convergence of this double series is the focus of Chapter 4. Using inte-
gration by parts, the series can be decomposed into components with different behavior: ·

0
f(s)dg(s) =


m<n


k,ℓ

fmkgnℓϕmkϕnℓ +

m,k

fmkgmk

 ·

0
ϕmk(s)dϕmk(s)

+

m>n


k,ℓ

(fmkgnℓ − fnℓgmk)
 ·

0
ϕmk(s)dϕnℓ(s)

=: π<(f, g) + S(f, g) + L(f, g),

where π< is the paraproduct, S is the symmetric part, and L is the antisymmetric Lévy
area (in fact we will show that L is closely related to the Lévy area of a suitable dyadic
martingale). If f ∈ Cα and g ∈ Cβ, then π<(f, g) is well defined and in Cβ, and S(f, g)
is well defined and in Cα+β. But in general L(f, g) only converges if α+ β > 1. In that
case L(f, g) ∈ Cα+β. In other words, π< is always defined but the roughest component,
S is always defined and smooth, and L is not always defined; but if it is, then it is also
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smooth. Since the condition α + β > 1 excludes one of the most interesting examples,
the case when g = W (ω) is a sample path of the Brownian motion, and f = F (W (ω))
for a smooth function F , we are then looking for a way to define the Lévy area also in
situations when it cannot be constructed using purely analytical arguments.

As we saw above, in case α+β > 1 the integral satisfies
 ·

0 f(s)dg(s)−π<(f, g) ∈ Cα+β.
Similarly, we will show that for g ∈ Cα and for a smooth function F we have F (g) ∈ Cα

but F (g) − π<(DF (g), g) ∈ C2α. So in both cases the rough component is given by π<,
and if it is subtracted, then the remainder is relatively smooth. Therefore we say that
f is controlled by g if there exists fg such that f − π<(fg, g) is “smooth”. Our aim is
to construct the Lévy area L(f, g) for f that is controlled by g. Our first main result
is a sort of commutator estimate, where we show that R(fg, g, g) := L(π<(fg, g), g) − ·

0 f
g(s)dL(g, g)(s) is a bounded trilinear operator provided that the regularities of the

three functions add up above 1. In particular, this will be the case if fg, g ∈ Cα for some
α > 1/3. In that case the problem of constructing L(f, g) for f controlled by g reduces
to constructing L(g, g). If L(g, g) ∈ C2α, which would be its natural regularity, then we
can set

L(f, g) := L(f − π<(f, g), g) +R(fg, g, g) +
 ·

0
fg(s)dL(g, g)(s).

This L depends continuously on f and g if the space of integrands is equipped with a
“controlled path norm”, and if we are keeping track of the Lévy area L in the space of
integrators.

This approach provides us with a simple recursive algorithm for calculating rough
path integrals, based on the series expansions of f and g. But these integrals will be
of Stratonovich type, because they are obtained by smooth approximation. In a second
step we compare our Schauder function integral with the integral obtained from nonan-
ticipating Riemann sums. This leads to an expansion of the quadratic variation in terms
of the Schauder functions, which can also be computed (nearly) recursively. Building on
our previous results, we can show that if the nonanticipating dyadic Riemann sums of g
integrated against itself converge, then also the nonanticipating dyadic Riemann sums of
f integrated against g converge.

While this is not the focus of this work, it is then clear from the results of Lyons
[Lyo98] and Gubinelli [Gub04] that the pathwise continuity of the integral implies the
pathwise continuity of the solution flows to SDEs.

In the last part of this section we construct the Lévy area for certain hypercontractive
processes and for continuous local martingales.

Chapter 5: Paracontrolled distributions and applications to SPDEs

This chapter is based on Gubinelli, Imkeller, and Perkowski [GIP12]. To motivate the
results of this section, we first give a reinterpretation of the results of the previous chapter.

Let us say that we want to define the integral
 ·

0 F (Ws)dWs for a Brownian motion
W and a smooth function F . Formally, the integral can be rewritten as

 ·
0 F (Ws)Ẇsds,
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where Ẇs is the white noise, i.e. the time-derivative of the Brownian motion. Hence, the
integral may be constructed using three operations:

• W is differentiated;

• F (W ) and Ẇ are multiplied with each other;

• the result F (Ws)Ẇs is integrated in time.

The first and third operation are linear. Since F (W ) and W are tempered distributions,
these linear operations pose no problem and can be treated with analytical arguments.
The problem lies in the second operation, the multiplication, which is nonlinear. As we
will see, it is always possible to define the product fg for tempered distributions f ∈ Cα

and g ∈ Cβ if α+β > 0 (Hölder-Besov spaces with negative regularity will be introduced
in Chapter 5). The Brownian motion W is in C1/2−ε for every ε > 0, and therefore its
derivative Ẇ is in C−1/2−ε. Hence, we are just below the border α + β > 0, and the
product cannot be defined using classical analytical arguments. But the Itô, Stratonovich,
Skorokhod, and rough path integral can all be understood as different ways of defining
the product, since for any integral we can set

F (Wt)Ẇt := ∂t

 t

0
F (Ws)dWs.

Because of this natural link between integration and multiplication, it is fairly well un-
derstood how to multiply a function of one index with a derivative of a function of one
index variable.

But for functions of several parameters, things get more complicated. In that case the
link between integration and multiplication is not so clear any more, and therefore there
are much fewer techniques available for defining the product of two tempered distributions
on Rd.

The results of Chapter 4 have a natural correspondence in terms of Littlewood-Paley
blocks. More precisely, every tempered distribution on Rd can be decomposed with the
help of Littlewood-Paley blocks into an infinite sum of smooth functions,

f =
∞

m=−1
∆mf,

where ∆mf is infinitely often differentiable for every m. The decay of the L∞–norm of
the Littlewood-Paley blocks (∆m) determines the regularity of f , just as the decay of
the Schauder coefficients determines the regularity of functions on [0, 1]. If now f and g
are two tempered distributions, then we formally set fg :=


m,n ∆mf∆ng. Every term

of this double series is well defined and it remains to study its convergence. As Bony
[Bon81] observed, the series can be decomposed into terms with different behavior, just
as the double series in Chapter 4:

fg = π<(f, g) + π>(f, g) + π◦(f, g),
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where

π<(f, g) =


m<n−1
∆mf∆ng, π>(f, g) =


n<m−1

∆mf∆ng, and

π◦(f, g) =


|m−n|≤1
∆mf∆ng.

The terms π< and π> are always well defined and inherit the regularity of f and g,
respectively. The term π◦ is only well defined if f ∈ Cα and g ∈ Cβ, and α + β > 0. In
that case it is in Cα+β.

Let us assume from now on that α > 0 but β < 0. Then π<(f, g) ∈ Cβ, but the
other terms are in Cα+β (if they are defined), and therefore they are more regular. In
other words, the product fg is in Cβ, but fg − π<(f, g) ∈ Cα+β. Similarly, if F is a
smooth function, then F (f) ∈ Cα, but F (f) − π<(DF (f), f) ∈ C2α. This is the content
of Bony’s paralinearization theorem. In the special case when f = F (W ) and g = Ẇ ,
we obtain that F (W ) − π<(DF (W ),W ) ∈ C2α for all α ∈ (1/3, 1/2). We conclude
that π◦(F (W ) − π<(DF (W ),W ), Ẇ ) is well defined and in C3α−1. Therefore, the term
F (W )Ẇ can be defined if and only if π◦(π<(DF (W ),W ), Ẇ ) can be defined. Here we
prove again a commutator estimate, where we show that

R(F (W ),W, Ẇ ) := π◦(π<(DF (W ),W ), Ẇ ) − DF (W )π◦(W, Ẇ )

is a bounded trilinear operator on Cα×Cα×Cα−1. Just as in Chapter 4, we see that the
problem of constructing π◦(F (W ), Ẇ ) reduces to the problem of constructing π◦(W, Ẇ ).
This extends from F (W ) to controlled distributions, that are defined analogously to
Chapter 4, and we obtain the continuity of the product operator in suitable topologies.

The advantage of the formulation in terms of Littlewood-Paley blocks is that now the
results apply for distributions on Rd for arbitrary d ≥ 1, and not just for functions of one
index variable. Also, we do not require that the second factor (i.e. Ẇ ) is a derivative,
which was necessary to make the connection between products and integrals.

Thus, we developed a robust new way of multiplying two tempered distributions with
each other. We apply our product to solve two nonlinear SPDEs. The first equation is
maybe not very relevant for practical applications, but it is a perfect test bed for our
techniques. We consider a multidimensional fractional Burgers type equation,

∂tu(t, x) = −(−∆)σu(t, x) +G(u(t, x))Dxu(t, x) + Ẇ (t, x), (0.1)

where u : [0, T ] × [−π, π]d → Rn, the operator −(−∆)σ is the fractional Laplacian
with σ > d/2 + 1/3, the map G : Rn → L(L([−π, π]d,Rn),Rn) is smooth, Dx denotes
the spatial derivative, and Ẇ (t, x) is a space-time white noise. The critical term is
G(u(t, x))Dxu(t, x). We will show that the solution v to

∂tv(t, x) = −(−∆)σv(t, x) + Ẇ (t, x)

satisfies v ∈ C([0, T ], Cα([−π, π]d,Rn)) for all α < σ − d/2. We would expect u to have
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the same regularity as v. So if σ−d/2 ≤ 1/2, then it is not possible to define the product
G(u(t, x))Dxu(t, x) using classical arguments. But using our newly developed techniques,
the product is well defined, and we can show that there exists a unique solution to (0.1).
By the continuity of our product operator, it follows automatically that the solution to
(0.1) depends continuously on the driving noise in a suitable topology.

The second equation that we study is a nonlinear version of the parabolic Anderson
model,

∂tu(t, x) = ∆u(t, x) + F (u(t, x))Ẇ (x),

where u : [0, T ] × [−π, π]2 → R, the map F : R → R is smooth, and Ẇ (x) is a spatial
white noise. As we will see, the natural spatial regularity of the solution is u(t, ·) ∈
Cα([−π, π]2,R) for t ∈ [0, T ] and α < 1. Since the white noise satisfies Ẇ ∈ C−1−ε for
every ε > 0, the product F (u(t, x))Ẇ (x) cannot be defined by classical arguments. Here
we will again use our techniques to give a meaning to the solution and to show that it
depends continuously on the driving noise in a suitable topology.
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1. Dominating local martingale measures
and arbitrage under information
asymmetry

In this chapter we study financial market models that may allow for arbitrage oppor-
tunities. We identify (NA1) as the minimal property that has to be satisfied by any
reasonable asset price model, and we show that (NA1) is relatively robust under filtra-
tion enlargements. We show that a locally bounded stochastic process S satisfies (NA1)
if and only if there exists a dominating measure Q such that S is a Q–local martingale.

1.1. Setting and main results

It may be argued that the foundation of financial mathematics consists in giving a mathe-
matical characterization of market models satisfying certain financial axioms. This leads
to so-called fundamental theorems of asset pricing. Harrison and Pliska [HP81] were the
first to observe that, on finite probability spaces, the absence of arbitrage opportunities
(condition no arbitrage, (NA)) is equivalent to the existence of an equivalent martingale
measure. A definite version was shown by Delbaen and Schachermayer [DS94]. Their
result, commonly referred to as the Fundamental Theorem of Asset Pricing, states that
for locally bounded semimartingale models there exists an equivalent probability measure
under which the price process is a local martingale, if and only if the market satisfies the
condition no free lunch with vanishing risk (NFLVR). Delbaen and Schachermayer also
observed that (NFLVR) is satisfied if and only if there are no arbitrage opportunities (i.e.
(NA) holds), and if further it is not possible to make an unbounded profit with bounded
risk (we say there are no arbitrage opportunities of the first kind, condition (NA1) holds).
Since in finite discrete time, (NA) is equivalent to the existence of an equivalent martin-
gale measure, it was then a natural question how to characterize continuous time market
models satisfying only (NA) and not necessarily (NA1). For continuous price processes,
this was achieved by Delbaen and Schachermayer [DS95b], who show that (NA) implies
the existence of an absolutely continuous local martingale measure.

Here we complement this program, by proving that for locally bounded processes,
(NA1) is equivalent to the existence of a dominating local martingale measure. Construct-
ing dominating probability measures is rather delicate, and Föllmer’s measure ([Föl72])
associated to a nonnegative supermartingale appears naturally in this context.

Let us give a more precise description of the notions of arbitrage considered in this
work, and of the obtained results.
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1.1. Setting and main results

Let S = (St)t≥0 be a d–dimensional stochastic process on a filtered probability space
(Ω,F , (Ft)t≥0, P ). We assume throughout this chapter that the filtration (Ft) is right-
continuous, and that F = F∞ =


t≥0 Ft. We think of S as the (discounted) price process

of d financial assets. We consider an infinite time horizon, because this leads to more
general results. The case of a finite time horizon T > 0 can easily be embedded in this
context, by setting FT+t = FT and ST+t = ST for all t ≥ 0.

Semimartingales are defined as usually, except that they are only almost surely (a.s.)
càdlàg. A semimartingale does not need to be càdlàg for every ω ∈ Ω. The reason for
this is that we do not assume our filtration to be complete, since our aim is to construct
dominating measures which may charge P–null sets. We argue in Appendix A that the
incompleteness of our filtration will not pose any problem.

A strategy is a predictable process H = (Ht)t≥0 with values in Rd. If S is a semi-
martingale and λ > 0, then a strategy H is called λ–admissible (for S) if the stochastic
integral H · S :=

 ·
0 HsdSs exists and satisfies P ((H · S)t ≥ −λ) = 1 for all t ≥ 0. Here

we write xy =
d
k=1 xkyk for the usual inner product on Rd. We define Hλ as the set

of all λ–admissible strategies. For details about vector stochastic integration we refer to
Jacod and Shiryaev [JS03], Section III.6.

If S is only adapted and right-continuous, and not necessarily a semimartingale, then
we can still integrate simple strategies against S. A simple strategy is a process of the form
Ht =

m−1
j=0 Fk1(τk,τk+1](t) for m ∈ N and stopping times 0 ≤ τ0 < τ1 < · · · < τm < ∞,

where for every 0 ≤ k < m the random variable Fk is bounded and Fτk
–measurable and

takes its values in Rd. If S is a right-continuous adapted process, then the integral H · S
is defined as

(H · S)t =
m−1
k=0

Fk(Sτk+1∧t − Sτk∧t),

and λ–admissible strategies are defined analogously to the semimartingale case. We
denote the set of simple λ–admissible strategies by Hλ,s.

The set W1 consists of all wealth processes obtained by using 1–admissible strategies
under initial wealth 1, and such that the terminal wealth is well defined, i.e.

W1 = {1 +H · S : H ∈ H1 and (H · S)t a.s. converges as t → ∞}. (1.1)

Similarly W1,s is defined as

W1,s = {1 +H · S : H ∈ H1,s}.

Note that the convergence condition in (1.1) is trivially satisfied for simple strategies.
We will also need K1, the set of terminal wealths that are attainable with initial wealth
1 and using 1–admissible strategies:

K1 = {X∞ : X ∈ W1} and K1,s = {X∞ : X ∈ W1,s}. (1.2)

We write L0 = L0(Ω,F , P ) for the space of real-valued random variables on (Ω,F),
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1. Dominating local martingale measures and arbitrage under information asymmetry

where we identify random variables that are P–almost surely equal. We equip L0 with
the distance d(X,Y ) = E(|X−Y | ∧ 1), under which it becomes a complete metric space.

Recall that a family of random variables X is called bounded in probability, or bounded
in L0, if

lim
m→∞

sup
X∈X

P (|X| ≥ m) = 0.

Definition 1.1.1. We say that a semimartingale S satisfies no arbitrage of the first kind
(NA1) if K1 is bounded in probability. We say that S satisfies no arbitrage (NA) if there
is no X ∈ K1 with X ≥ 1 and P (X > 1) > 0. If both (NA1) and (NA) hold, we say that
S satisfies no free lunch with vanishing risk (NFLVR).

Similarly we say that a right-continuous adapted process S satisfies no arbitrage of
the first kind with simple strategies (NA1s), no arbitrage with simple strategies (NAs),
or no free lunch with vanishing risk with simple strategies (NFLVRs), if K1,s satisfies the
corresponding conditions.

Heuristically, (NA) says that it is not possible to make a profit without taking a
risk. (NA1) says that is not possible to make unbounded profit if the risk remains
bounded. This is why (NA1) is also referred to as “no unbounded profit with bounded
risk” (NUPBR), see for example Karatzas and Kardaras [KK07].

The main result of this chapter is that for locally bounded semimartingales S, (NA1)
is equivalent to the existence of a dominating local martingale measure. As a byproduct
of the proof, we obtain that a locally bounded, right-continuous, and adapted process S
that satisfies (NA1s) is already a semimartingale, and in this case S also satisfies (NA1).

When constructing absolutely continuous probability measures, it suffices to work with
random variables. In Section 1.2 below, we argue that dominating measures correspond
to nonnegative supermartingales with strictly positive terminal values. We also show
that a dominating local martingale measure corresponds to a supermartingale density in
the following sense.

Definition 1.1.2. Let Y be a family of stochastic processes. A supermartingale den-
sity for Y is an almost surely càdlàg and nonnegative supermartingale Z with Z∞ =
limt→∞ Zt > 0, such that Y Z is a supermartingale for every Y ∈ Y.

If all processes in Y are of the form 1 + (H ·S) for suitable integrands H, and if Z is a
supermartingale density for Y, then we will sometimes call Z a supermartingale density
for S.

In the literature, supermartingale densities are usually referred to as supermartingale
deflators. We think of a supermartingale density as the “Radon-Nikodym derivative”
dQ/dP of a dominating measure Q ≫ P . This is why we prefer the term supermartingale
density.

First we give an alternative proof of a well-known result.

Theorem 1.1.3. Let S be a d–dimensional adapted process, almost surely right-contin-
uous (respectively a d–dimensional semimartingale). Then (NA1s) (respectively (NA1))
holds if and only if there exists a supermartingale density for W1,s (respectively for W1).
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1.1. Setting and main results

As a consequence, (NA1s) implies the semimartingale property for locally bounded
processes.

Corollary 1.1.4. Let S be a d–dimensional adapted process, almost surely right-contin-
uous. If every component Si of S = (S1, . . . , Sd) is locally bounded from below and if S
satisfies (NA1s), then S is a semimartingale that satisfies (NA1), and any supermartin-
gale density for W1,s is also a supermartingale density for W1.

Given a supermartingale density Z for S, we then apply Yoeurp’s [Yoe85] results on
Föllmer’s measure [Föl72], to construct a dominating measure Q ≫ P associated to Z.
Let γ be a right-continuous version of the density process γt = dP/dQ|Ft , and let τ be
the first time that γ hits zero, τ = inf{t ≥ 0 : γt = 0}. We define

Sτ−
t = St1{t<τ} + Sτ−1{t≥τ} = St1{t<τ} + lim

s→τ−
Ss1{t≥τ}.

Note that S and Sτ− are P–indistinguishable.
In the predictable case we then obtain the following result.

Theorem 1.1.5. Let S be a predictable semimartingale. If Z is a supermartingale density
for W1, then Z determines a probability measure Q ≫ P such that Sτ− is a Q–local
martingale. Conversely, if Q ≫ P is a dominating local martingale measure for Sτ−,
then W1 admits a supermartingale density.

Actually the current formulation is slightly too simple, we will need to impose topolog-
ical conditions on the probability space (Ω,F , (Ft)t≥0), and also we will need to enlarge
the space. This will be described in more detail in Section 1.4.

Theorem 1.1.5 is false if S is not predictable, as we will demonstrate by a simple exam-
ple. But in the non-predictable case we are able to exhibit a subset of supermartingale
densities that do give rise to dominating local martingale measures. Conversely, every
dominating local martingale measure for Sτ− corresponds to a supermartingale density,
even for processes that are not predictable. Therefore, the following theorem, the main
result of this chapter, is valid for all locally bounded processes that are adapted and al-
most surely right-continuous. In the non-predictable case we build on results of [Tak13]
that are only formulated for processes on finite time intervals. So in the theorem we let
T∞ = ∞ if S is predictable, and T∞ ∈ (0,∞) otherwise.

Theorem 1.1.6. Let (St)t∈[0,T∞] be a locally bounded, adapted process, that is almost
surely right-continuous. Then S satisfies (NA1s) if and only if there exists a dominating
Q ≫ P , such that Sτ− is a Q–local martingale.

This work is motivated by insights from the theory of filtrations enlargements. A filtra-
tion (Gt) is called filtration enlargement of (Ft) if Gt ⊇ Ft for all t ≥ 0. A basic question
is then under which conditions all members of a given family of (Ft)–semimartingales are
(Gt)–semimartingales. We say that Hypothèse (H ′) is satisfied if all (Ft)–semimartingales
are (Gt)–semimartingales. Given a (Ft)–semimartingale that satisfies (NFLVR), i.e. for
which there exists an equivalent local martingale measure, one might also ask under
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1. Dominating local martingale measures and arbitrage under information asymmetry

which conditions it still satisfies (NFLVR) under (Gt). It is well known, and we illustrate
this in an example below, that the (NFLVR) condition is usually violated after filtration
enlargements.

However, we will see that (NA1) is relatively stable under filtration enlargements. If
(Gt) is an initial enlargement of (Ft), i.e. Gt = Ft∨σ(X) for some random variable X and
for every t ≥ 0, then Jacod’s criterion [Jac85] is a celebrated condition on X and (Ft)
under which Hypothèse (H ′) is satisfied. We show that in fact Jacod’s criterion implies
the existence of a universal supermartingale density. A strictly positive process Z is called
universal supermartingale density if ZM is a (Gt)–supermartingale for every nonnegative
(Ft)–supermartingale M . The existence of Z is much stronger than Hypothèse (H ′), and
in particular it shows that every process satisfying (NA1) under (Ft) also satisfies (NA1)
under (Gt).

We also show that if (Gt) is a general (not necessarily initial) filtration enlargement of
(Ft), and if there exists a universal supermartingale density for (Gt), then a generalized
version of Jacod’s criterion is necessarily satisfied.

Section 1.2 describes the link to filtration enlargements in more detail. In Section
1.2 we also argue that a dominating local martingale measure should correspond to a
supermartingale density. In Section 1.3 we prove that the existence of supermartingale
densities is equivalent to (NA1s). In Section 1.4 we prove that if S is predictable, then
Z is a supermartingale density for S if and only if Sτ− is a local martingale under the
Föllmer measure of Z. We also prove our main result, Theorem 1.1.6, for general locally
bounded processes (not necessarily predictable). In Section 1.5 we return to filtration
enlargements and examine how Jacod’s criterion relates to our results.

Relevant literature

Supermartingale densities were first considered by Kramkov and Schachermayer [KS99]
and Becherer [Bec01].

The semimartingale case of Theorem 1.1.3 was shown by Karatzas and Kardaras
[KK07]. Their proof extensively uses the semimartingale characteristics of S, and can
therefore not be applied to general processes satisfying (NA1s). Note that Corollary 1.1.4
states that any locally bounded process satisfying (NA1s) is a semimartingale. But for
unbounded processes this is no longer true, as we shall demonstrate in a simple coun-
terexample. A more general result than Theorem 1.1.3 is shown in Rokhlin [Rok10], using
arguments that are related to our proof. In fact our arguments are powerful enough to
imply the results of [Rok10]. We were not aware of either of these works before complet-
ing our proof. We believe that our proof gives a nice application of convex compactness,
as introduced by Žitković [Ž10]. Oversimplifying things a bit, one can understand con-
vex compactness as an elegant way of formalizing convergence and compactness results
that are usually shown by ad-hoc considerations based on results like Lemma A1.1 of
[DS94]. We also believe that our techniques may be interesting in more complicated
contexts, say under transaction costs, where arbitrage considerations no longer imply the
semimartingale property of the price process.
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1.1. Setting and main results

It is well known that a locally bounded process satisfying (NA1s) must be a semi-
martingale, see Ankirchner’s Ph.D. thesis [Ank05], Theorem 7.4.3, and also Kardaras
and Platen [KP11]. See also [DS94] for a first result in this direction. This part of
Corollary 1.1.4 is an immediate consequence of Theorem 1.1.3. We rely on [KP11] to
obtain that (NA1s) implies (NA1) for locally bounded processes, and that in this case
supermartingale densities for W1,s are supermartingale densities for W1.

Recently there has been an increased interest in Föllmer’s measure, motivated by prob-
lems from mathematical finance. Föllmer’s measure appears naturally in the construc-
tion and study of strict local martingales, i.e. local martingales that are not martingales.
These are used to model bubbles in financial markets, see Jarrow, Protter, and Shimbo
[JPS10]. A pioneering work on the relation between Föllmer’s measure and strict local
martingales is Delbaen and Schachermayer [DS95a]. Other references are Pal and Protter
[PP10] and Kardaras, Kreher, and Nikeghbali [KKN11]. The work most related to ours is
Ruf [Ruf13], where it is shown that, in a diffusion setting, (NA1) implies the existence of
a dominating local martingale measure. All these works have in common that they study
Föllmer measures of strictly positive local martingales. Carr, Fisher and Ruf [CFR12]
study the Föllmer measure of a local martingale which is not strictly positive.

To the best of our knowledge, the current work is the first in which the Föllmer mea-
sure of a supermartingale which is not a local martingale is used as a local martingale
measure. In Föllmer and Gundel [FG06], supermartingales Z are associated to “extended
martingale measures” PZ . But by definition, PZ is an extended martingale measure if
and only if Z is a supermartingale density. This does not obviously imply that Sτ−

or S is a local martingale under PZ – and in general this is not true. Here we show
that if S is predictable, then any supermartingale density Z corresponds to a dominat-
ing local martingale measure PZ – meaning that Sτ− is a local martingale under PZ .
For non-predictable S we give a counterexample. In that case we identify a subset of
supermartingale densities that do correspond to local martingale measures.

Another related work is Kardaras [Kar10a], where it is shown that (NA1) is equivalent
to the existence of a finitely additive equivalent local martingale measure. Here we
construct countably additive measures, that are not equivalent but only dominating.

The main motivation for this work comes from the theory of filtrations enlargements,
see for example Amendinger, Imkeller and Schweizer [AIS98], Ankirchner’s Ph.D. thesis
[Ank05], and Ankirchner, Dereich and Imkeller [ADI06]. In these works it is shown that
if M is a continuous local martingale in a given filtration (Ft), then under an enlarged
filtration (Gt), assuming suitable conditions, M is of the form M = M +

 ·
0 αsd⟨M⟩s,

where M is a (Gt)–local martingale. It is then a natural question whether there exists an
equivalent measure Q that “eliminates” the drift, i.e. under which M is a (Gt)–local mar-
tingale. In general, the answer to this question is negative. However, Ankirchner [Ank05],
Theorem 9.2.7, observed that if there exists a well-posed utility maximization problem in
the large filtration, then the information drift α must be locally square integrable with
respect to M . Here we show that for continuous processes, the square integrability of the
information drift is equivalent to the well-posedness of a utility maximization problem
in the large filtration, we relate these conditions to (NA1), and we show that this allows
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1. Dominating local martingale measures and arbitrage under information asymmetry

us to construct dominating local martingale measures. We also give the corresponding
results for discontinuous processes.

1.2. Motivation
In this section we show that the (NFLVR) property is not very robust under filtration
enlargements. Then we recall that if Jacod’s criterion is satisfied, there still is a domi-
nating local martingale measure. Finally we argue that under Jacod’s criterion, (NA1) is
often satisfied in the large filtration. We hope that this convinces the reader that (NA1)
respectively (NA1s) should be related to the existence of dominating local martingale
measures. Assuming that a dominating local martingale measure exists, we examine its
Kunita-Yoeurp decomposition under P , and we see that it corresponds to a supermartin-
gale density.

Equivalent local martingale measures and filtration enlargements

Consider a filtered probability space (Ω,F , (Ft)t≥0, P ) with P (A) ∈ {0, 1} for all A ∈ F0.
Define F∞ =


t≥0 Ft. Let S be a one dimensional semimartingale that describes a

complete market (i.e. for every X ∈ L∞(F∞) there exists a predictable process H,
integrable with respect to S, such that X = X0 +

∞
0 HsdSs for some constant X0 ∈ R).

Let X be a random variable that is F∞–measurable. Assume that X is not P–almost
surely constant. Define the initially enlarged filtration Gt = Ft ∨ σ(X) for t ≥ 0. This is
a toy model for insider trading. At time 0, the insider has the additional knowledge of
the value of X. Since X is not constant, there exists A ∈ σ(X) such that P (A) ∈ (0, 1).
Assume Q is an equivalent (Gt)–local martingale measure for S. Consider the (Q, (Ft))–
martingaleNt = EQ(1A|Ft), for t ≥ 0. Since the market is complete, 1A can be replicated.
That is, there exists a (Ft)–predictable strategy H such that N = Q(A) +

 ·
0 HsdSs. But

then
 ·

0 HsdSs is a bounded (Q, (Gt))–local martingale. Hence, it is a martingale, and
since Ac ∈ G0, we obtain

0 = EQ(1Ac1A) = EQ


1Ac


Q(A) +

 ∞

0
HsdSs


= Q(Ac)Q(A) > 0,

which is absurd. The last step follows because Q was assumed to be equivalent to P .
So already in the simplest models that incorporate information asymmetry, there may

not exist an equivalent local martingale measure. If S is locally bounded, then by the
Fundamental Theorem of Asset Pricing at least one of the conditions (NA) or (NA1) has
to be violated.

Jacod’s criterion and dominating local martingale measures

Let (Gt) be a filtration enlargement of (Ft), i.e. Ft ⊆ Gt for every t ≥ 0. Let Y be a
family of (Ft)–semimartingales. One of the typical questions in filtration enlargements is
under which conditions all Y ∈ Y are (Gt)–semimartingales. Hypothèse (H ′) is satisfied
if all (Ft)–semimartingales are (Gt)–semimartingales.
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1.2. Motivation

Jacod’s criterion [Jac85] is a famous condition that implies Hypothèse (H ′). Here
we give an equivalent formulation, first found by Föllmer and Imkeller [FI93] and later
generalized and carefully studied by Ankirchner, Dereich and Imkeller [ADI07]. Let X
be a random variable and consider the initial enlargement Gt = Ft ∨ σ(X). Define the
product space

Ω = Ω × Ω, G = F∞ ⊗ σ(X), Gt = Ft ⊗ σ(X), t ≥ 0.

We define two measures on Ω. The decoupling measure Q = P |F∞ ⊗ P |σ(X), and P =
P ◦ ψ−1, where ψ : Ω → Ω, ψ(ω) = (ω, ω). In this setting the following result is a
reformulation of Jacod’s criterion.

Theorem (Theorem 1 in [ADI07]). If P ≪ Q, then Hypothèse (H ′) holds, i.e. any
(Ft)–semimartingale is a (Gt)–semimartingale.

In this formulation it is quite obvious why Jacod’s criterion works. Under the mea-
sure Q, the additional information from X is independent of F∞. Therefore, any (Ft)–
martingale M will stay a (Gt)–martingale under Q (if we embed M from Ω to Ω by setting
M t(ω, ω′) = Mt(ω)). By assumption, Q ≫ P , and therefore an application of Girsanov’s
theorem implies that M is a P–semimartingale. But it is possible to show that if M is
a (P , (Gt))–semimartingale, then M is a (P, (Gt))–semimartingale. This completes the
argument.

Thus, Jacod’s criterion states that there exists a dominating measure (on an enlarged
space), under which any (Ft)–martingale is a (Gt)–martingale.

It is not hard to see that Jacod’s criterion is always satisfied if X takes its values
in a countable set, regardless of the structure of (Ω,F , (Ft), P ) and S. So if we recall
our example of an initial filtration enlargement in a complete market from above, then
we observe that Jacod’s criterion may be satisfied although there is no equivalent local
martingale measure in the large filtration.

Utility maximization and filtration enlargements

There are many articles devoted to calculating the additional utility of an insider. Assume
S is a semimartingale in the large filtration (Gt). Then we define the set of attainable ter-
minal wealths K1(Ft) and K1(Gt) as in (1.2), using (Ft)–predictable and (Gt)–predictable
strategies respectively.

If S describes a complete market under (Ft), and if (Gt) is an initial enlargement satis-
fying Jacod’s criterion, then it is shown in Ankirchner’s Ph.D. thesis ([Ank05], Theorem
12.6.1, see also [ADI06]), that the maximal expected logarithmic utility under (Gt) is
given by

sup
X∈K1(Gt)

E(log(X)) = sup
X∈K1(Ft)

E(log(X)) + I(X,F∞),

where I(X,F∞) denotes the mutual information between X and F∞. The mutual in-
formation is often finite, and therefore the maximal expected utility under (Gt) is often
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1. Dominating local martingale measures and arbitrage under information asymmetry

finite. But finite utility and (NA1) are equivalent:

Lemma 1.2.1. The process S satisfies (NA1) under (Gt) if and only if there exists an
unbounded increasing function U such that the maximal expected utility is finite, i.e. such
that

sup
X∈K1(Gt)

E(U(X)) < ∞.

Proof. This follows from Proposition 1.2.2 below.

In conclusion, we showed that (NFLVR) and thus (NA) or (NA1) is not very robust
with respect to filtration enlargements. We also observed that the maximal expected
logarithmic utility in an enlarged filtration may be finite, and that this is only possible
under the (NA1) condition. Hence, we conclude that (NA) is the part of (NFLVR) which
is less robust with respect to filtration enlargements (see Remark 1.5.4 below for a more
detailed discussion). Moreover, Jacod’s criterion is satisfied in the examples where (NA1)
holds. As we saw above, Jacod’s criterion implies the existence of a dominating local
martingale measure. Hence, (NA1) seems to be related to the existence of a dominating
local martingale measure. Below we prove that the two conditions are equivalent.

Supermartingale densities

Now let us assume that Q ≫ P is a dominating local martingale measure for S, and let
us examine what type of object this gives us under P . Define γ as the right-continuous
density process, γt = dP/dQ|Ft . Then τ = inf{t ≥ 0 : γt = 0} is a stopping time, and we
can define the adapted process Zt = 1{t<τ}/γt. Let H be 1–admissible for S under Q,
i.e. such that Q(

 t
0 HsdSs ≥ −1) = 1 for all t ≥ 0. Let s, t ≥ 0 and let A ∈ Ft. We have

EP (1AZt+s(1 + (H · S)t+s)) = EQ


γt+s1A

1{t+s<τ}
γt+s

(1 + (H · S)t+s)


(1.3)

≤ EQ

1A1{t<τ}(1 + (H · S)t+s)


≤ EQ


1A1{t<τ}(1 + (H · S)t)


= EP (1AZt(1 + (H · S)t))

using in the second line that 1A(1 + (H · S)t+s) is nonnegative, and in the third line
that 1 + (H ·S) is a nonnegative Q–local martingale and therefore a Q–supermartingale.
This indicates that Z should be a supermartingale density. Of course here we only
considered strategies that are 1–admissible under Q, and there might be strategies that
are 1–admissible under P but not under Q. The solution to this problem is to consider
Sτ− rather than S. We will make this rigorous later.

The pair (Z, τ) is the Kunita-Yoeurp decomposition of Q with respect to P . The
Kunita-Yoeurp decomposition is a progressive Lebesgue decomposition on filtered prob-
ability spaces. It was introduced in Kunita [Kun76] in a Markovian context, and gen-
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eralized to arbitrary filtered probability spaces in Yoeurp [Yoe85]. Namely we have for
every t ≥ 0

1. P (τ = ∞) = 1,

2. Q(· ∩ {τ ≤ t}) and P are mutually singular on Ft,

3. for A ∈ Ft we have Q(A ∩ {τ > t}) = EP (1AZt).

Note that the second property is a consequence of the first property.
Hence, our program will be to find a supermartingale density Z, and to construct a

measure Q and a stopping time τ , such that (Z, τ) is the Kunita-Yoeurp decomposition
of Q with respect to P . But the second part was already solved by [Yoe85], and Q will
be the Föllmer measure of Z. After studying the relation between S and Z, we will see
that Sτ− is a local martingale under Q.

Before starting to construct a supermartingale density, let us prove Lemma 1.2.1, which
is an immediate consequence of the following de la Vallée-Poussin type result for families
of random variables that are bounded in L0.

Proposition 1.2.2. A family of random variables X is bounded in probability if and only
if there exists a nondecreasing and unbounded function U on [0,∞), such that

sup
X∈X

E(U(|X|)) < ∞.

In that case U can be chosen strictly increasing, concave, and such that U(0) = 0.

Proof. First, assume that such a U exists. Then we have for m ∈ N

sup
X∈X

P (|X| ≥ m) ≤ sup
X∈X

P (U(|X|) ≥ U(m)) ≤ supX∈X E(U(|X|))
U(m) .

Since U is unbounded, the right hand side converges to zero as m tends to ∞.
Conversely, assume that X is bounded in probability. We need to construct a strictly

increasing, unbounded, and concave function U with U(0) = 0, such that E(U(|X|)) is
bounded for X running through X . Our construction is inspired by the proof of de la
Vallée-Poussin’s theorem. That is, we will construct a function U of the form

U(x) =
 x

0
g(y)dy, where g(y) = gm for y ∈ [m− 1,m), m ∈ N,

for a decreasing sequence of strictly positive numbers (gm). This U will be strictly increas-
ing, concave, and such that U(0) = 0. It will be unbounded if and only if

∞
m=1 gm = ∞.

For U of this form we have by monotone convergence and Fubini (since all terms are
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1. Dominating local martingale measures and arbitrage under information asymmetry

nonnegative)

E(U(|X|)) =
∞
m=1

E(U(|X|)1{|X|∈[m−1,m)}) ≤
∞
m=1

U(m)P (|X| ∈ [m− 1,m))

=
∞
m=1

m
k=1

gkP (|X| ∈ [m− 1,m)) =
∞
k=1

∞
m=k

gkP (|X| ∈ [m− 1,m))

=
∞
k=1

gkP (|X| ≥ k − 1) ≤
∞
k=1

gkFX (k − 1),

where FX (k − 1) = supX∈X P (|X| ≥ k − 1).

So the proof is complete if we can find a decreasing sequence (gk) of positive numbers,
such that

∞
k=1 gk = ∞ but

∞
k=1 gkFX (k−1) < ∞. Let m ∈ N. By assumption, (FX (k))

converges to zero as k tends to ∞, and therefore it also converges to zero in the Cesàro
sense. Hence, we obtain for large enough Km that

1
Km

Km
k=1

FX (k − 1) ≤ 1
m
. (1.4)

We choose an increasing sequence of numbers (Km)m∈N, such that Km ≥ m for all m,
and such that every Km satisfies (1.4). Define

gmk =
 1
mKm

, k ≤ Km,

0, k > Km,

and let mk denote the smallest m for which gmk ̸= 0, i.e.

mk := min{m ∈ N : Km ≥ k}.

By definition, mk ≤ mk+1 for all k, and therefore the sequence (gk), where

gk =
∞
m=1

gmk =
∞

m=mk

1
mKm

≤
∞

m=mk

1
m2 < ∞,

is decreasing in k. Moreover, Fubini’s theorem implies that

∞
k=1

gk =
∞
k=1

∞
m=1

gmk =
∞
m=1

∞
k=1

gmk =
∞
m=1

Km
k=1

1
mKm

=
∞
m=1

1
m

= ∞,

and at the same time we get from (1.4)

∞
k=1

gkFX (k − 1) =
∞
m=1

Km
k=1

FX (k − 1)
mKm

≤
∞
m=1

1
m2 < ∞,
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1.3. Existence of supermartingale densities

which completes the proof.

Remark 1.2.3. In Loewenstein and Willard [LW00], Theorem 1, it is shown that the utility
maximization problem for Itô processes is well posed if and only if there is absence of
a certain notion of arbitrage. They describe the critical arbitrage opportunities very
precisely, and they consider more general utility maximization problems, allowing for
intermediate consumption. Proposition 1.2.2 is much simpler and more obvious, but
therefore also more robust. It is applicable in virtually any context, say to discontinuous
price processes that are not semimartingales, with transaction costs, and under trading
constraints. The family of portfolios need not even be convex.

Remark 1.2.4. Note that supermartingale densities are the dual variables in the duality
approach to utility maximization, see [KS99]. Taking Proposition 1.2.2 into account,
Theorem 1.1.3 therefore states that there exists a well posed utility maximization problem
if and only if the space of dual minimizers is nonempty. This insight might also be useful
in more complicated contexts, say in markets with transaction costs. As a sort of meta-
theorem holding for many utility maximization problems, we expect that the space of
dual variables is nonempty if and only if the space of primal variables is bounded in
probability.

A first consequence is that any locally bounded process satisfying (NA1s) is a semi-
martingale.

Corollary 1.2.5. Let S be a locally bounded, càdlàg process satisfying (NA1s). Then S
is a semimartingale.

Proof. Since K1,s is bounded in probability, Proposition 1.2.2 implies that there exists an
unbounded utility function U for which supX∈K1,s

E(U(X)) < ∞. It then follows from
Theorem 7.4.3 of [Ank05] that S is a semimartingale.

This result will also follow from Theorem 1.1.3.

1.3. Existence of supermartingale densities

Now let us prove Theorem 1.1.3. Let (Ω,F , (Ft)t≥0, P ) be a filtered probability space
with a right-continuous filtration. We do not require (Ft) to be complete, contrary to the
long tradition in probability theory of only working with filtrations satisfying the usual
conditions. In Appendix A there is a detailed discussion with which we hope to convince
the reader that the use of incomplete filtrations does not pose any problems.

Note that Jacod [Jac79] and Jacod and Shiryaev [JS03] work without complete filtra-
tions, as far as this is possible. See for example the discussion on page 8 of [Jac79], or
Definition I.1.2 of [JS03]. Whenever we quote a result that is not from [Jac79] or [JS03],
we point out why it also holds in incomplete filtrations.

After this work was finished, Alexander Gushchin pointed us to a paper by Rokhlin
[Rok10], that gives a related (but not identical) proof for a stronger result than Theorem
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1. Dominating local martingale measures and arbitrage under information asymmetry

1.1.3. In fact our arguments imply this stronger result as well. So here we prove Rokhlin’s
result, and as a corollary we obtain Theorem 1.1.3.

A family of nonnegative stochastic processes Y is called fork-convex, see [Ž02] or
[Rok10], if every Y ∈ Y stays in zero once it hits zero, i.e. Ys = 0 implies Yt = 0
for all 0 ≤ s ≤ t < ∞, and if further for all Y 1, Y 2, Y 3 ∈ Y, for all s ≥ 0, and for all
Fs–measurable random variables λs with values in [0, 1], we have that

Y· = 1[0,s)(·)Y 1
s + 1[s,∞)(·)Y 1

s


λs
Y 2

·
Y 2
s

+ (1 − λs)
Y 3

·
Y 3
s


∈ Y. (1.5)

Recall that we interpret 0/0 = 0. Note that a fork-convex family of processes with Y0 = 1
for all Y ∈ Y is convex. If moreover Y contains the constant process 1, then Y is stable
under stopping at deterministic times, i.e. for all Y ∈ Y and for all t ≥ 0 also Y·∧t ∈ Y.

Rokhlin’s [Rok10] main result is the following.

Theorem 1.3.1. Let Y be a fork-convex family of right-continuous and nonnegative
processes containing the constant process 1 and such that Y0 = 1 for all Y ∈ Y. Let

K =

Y∞ : Y ∈ Y, Y∞ = lim

t→∞
Yt exists


.

Then K is bounded in probability if and only if there exists a supermartingale density for
Y.

We split up the proof in several lemmas.

Lemma 1.3.2. Let X be a convex family of nonnegative random variables. Then X is
bounded in probability if and only if there exists a strictly positive random variable Z such
that

sup
X∈X

E(XZ) < ∞.

Proof. The sufficiency is Theorem 1 of [Yan80]. Note that Yan does not require the
σ–algebra to be complete. Yan makes the additional assumption that X is contained
in L1. But since we are considering nonnegative random variables, this can be avoided
by applying Theorem 1 of [Yan80] to the convex hull of the bounded random variables
{X ∧ n} for n ∈ N, as suggested in Remark (c) of [DM82], VIII-84.

Conversely, let us assume that Z exists. Normalizing by E(Z), we obtain an equivalent
probability measure Q such that X is norm bounded in L1(Q) and therefore bounded in
Q–probability. Since P ≪ Q, it is easy to see that X is also bounded in P–probability.

Remark 1.3.3. Convexity is necessary: Let {Amk : 1 ≤ k ≤ 2m,m ∈ N} be an increasing
sequence of partitions of Ω, such that P (Amk ) = 2−m for all m, k (take for example Ω =
[0, 1], equipped with the Lebesgue measure). Define the nonnegative random variables
Xm
k = 1Am

k
22m. Then (Xm

k : m, k) is bounded in probability. Let a > 0 and assume Z is
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1.3. Existence of supermartingale densities

a nonnegative random variable such that E(ZXm
k ) ≤ a for all m, k. Then

E(1Am
k
Z) = E(ZXm

k )2−2m ≤ a2−2m.

Summing over k, we obtain E(Z) ≤ a2−m for all m ∈ N, and therefore E(Z) = 0. Since
Z ≥ 0, we have Z = 0.

We call a family of random variables Lp–bounded for p ≥ 1 if it is norm bounded in
Lp.
Remark 1.3.4. Lemma 1.3.2 states that a convex family of nonnegative random variables
X is bounded in probability if and only if there exists a measure Q ∼ P , such that X
is L1(Q)–bounded. One might ask if this can be improved. For example, there could
exist Q ∼ P such that X is Lp(Q)–bounded for some p > 1. But this is not true in
general. Even if S is a Brownian motion there might not be an absolutely continuous
Q ≪ P , such that K1 is uniformly integrable under Q. To see this, choose an increasing
sequence of partitions (Amk : 1 ≤ k ≤ 2m,m ∈ N) of R, such that µ(Amk ) = 2−m for all
m, k, where µ denotes the standard normal distribution. Define the random variables
Xm
k = 1Am

k
(S1)2m. Then Xm

k ∈ L∞, and E(Xm
k ) = 1 for all m, k. By the predictable

representation property of Brownian motion, Xm
k ∈ K1 for all m, k. Now let Q ≪ P , and

let g ≥ 0 be such that limx→∞ g(x)/x = ∞. If we show that (g(Xm
k ))m,k is unbounded

in L1(Q), then de la Vallée-Poussin’s theorem (see [DM78], II-22) implies that K1 is not
uniformly integrable under Q. Let a > 0 and let m ∈ N be such that g(2m) ≥ a2m.
Choose k for which Q(S1 ∈ Amk ) ≥ 2−m. Such a k must exist because Q has total mass
1. Then

EQ(g(Xm
k )) ≥ EQ(1Am

k
(S1)2ma) ≥ 2−m2ma = a.

Since a > 0 was arbitrary, EQ(g(·)) is unbounded on K1.
The following Lemma establishes Theorem 1.3.1 in the case of two time steps. The

general case then follows easily.

Lemma 1.3.5. Let Y be a L1–bounded family of nonnegative processes indexed by {0, 1},
adapted to a filtration (F0,F1). Assume that Y is fork-convex and that Y contains a
process of the form (1, Y ∗

1 ) for a strictly positive Y ∗
1 . Then there exists a strictly positive

F0–measurable random variable Z, such that (Y0Z, Y1) is a supermartingale for every
Y ∈ Y. The random variable Z can be chosen such that

sup
Y ∈Y

E(Y0Z) ≤ sup
Y ∈Y

max
i=0,1

E(Yi). (1.6)

Proof. We define a nonnegative set function µ on F0 by setting

µ(A) := sup
Y ∈Y

E(1AY1/Y0).

Let us apply the fork-convexity of Y to show that for every Y ∈ Y there exists Y ∈ Y,
such that Y1/Y0 = Y1. We take s = 0 and Y 1 = (1, Y ∗

1 ) and Y 2 = Y and λs = 1 in
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1. Dominating local martingale measures and arbitrage under information asymmetry

(1.5). Then Y ∈ Y, where Y0 = 1{Y0>0} and Y1 = Y1/Y0. In particular, it follows from
the L1–boundedness of Y that

µ(A) = sup
Y ∈Y

E


1A
Y1
Y0


≤ supY ∈Y

E(1A Y1) < ∞

for all A, i.e. µ is finite. In fact µ is a finite measure. Let A,B ∈ F0 be two disjoint sets
and let Y A, Y B ∈ Y. We take s = 0, Y 1 = (1, Y ∗

1 ), Y 2 = Y A, Y 3 = Y B, and λs = 1A in
(1.5), which implies that Y ∈ Y, where

Yt = 1{0}(t)

1A1{Y A

0 >0} + 1B1{Y B
0 >0}


+ 1{1}(t)


1A
Y A

1
Y A

0
+ 1B

Y B
1
Y B

0


.

Note that Y1/Y0 = Y1, since we set 0/0 = 0. Because A and B are disjoint, we have

1A∪B
Y1Y0

= 1A
Y A

1
Y A

0
+ 1B

Y B
1
Y B

0
.

As a consequence we obtain

µ(A) + µ(B) = sup
(Y A,Y B)∈Y2

E


1A
Y A

1
Y A

0
+ 1B

Y B
1
Y B

0



≤ supY ∈Y
E


1A∪B

Y1Y0


= µ(A ∪B).

But µ(A ∪B) ≤ µ(A) + µ(B) is obvious, and therefore µ is finitely additive.
Now let (An) be a sequence of disjoint sets in F0. Then

µ

 ∞
n=1

An


= sup

Y ∈Y

∞
n=1

E


1An

Y1
Y0


≤

∞
n=1

sup
Y n∈Y

E


1An

Y n
1
Y n

0


=

∞
n=1

µ(An).

The opposite inequality holds for any finitely additive nonnegative set function. There-
fore, µ is a finite measure on F0, which is absolutely continuous with respect to P . Hence,
there exists a nonnegative Z ∈ L1(F0, P ), such that

µ(A) = E(1AZ) = sup
Y ∈Y

E


1A
Y1
Y0


. (1.7)

It is easy to see that we can replace 1A in (1.7) by any nonnegative F0–measurable
random variable. In particular, for any Y ∈ Y and any A ∈ F0

E(1AY0Z) = supY ∈Y
E


1AY0

Y1Y0


≥ E


1AY0

Y1
Y0


= E(1AY1),

proving that (Y0Z, Y1) is a supermartingale provided that E(Y0Z) < ∞. But the bound
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1.3. Existence of supermartingale densities

stated in (1.6) follows immediately from the fork-convexity of Y, because the processY = (Y01{Y 1
0 >0}, Y0Y

1
1 /Y

1
0 ) is in Y for any Y 1 ∈ Y, and thus

E(Y0Z) = sup
Y 1∈Y

E


Y0
Y 1

1
Y 1

0


≤ supY ∈Y

E
Y1


.

It remains to show that Z is strictly positive. But this is easy, because (1, Y ∗
1 ) is in Y,

and Y ∗
1 is strictly positive. Therefore, (Z, Y ∗

1 ) is a supermartingale with strictly positive
terminal value, which is only positive if also Z is strictly positive.

Remark 1.3.6. Some type of stability assumption is necessary for Lemma 1.3.5 to hold.
Even for a uniformly integrable and convex family of processes Y, the lemma may fail
without assuming fork convexity: Let again {Amk : 1 ≤ k ≤ 2m,m ∈ N} be an increasing
sequence of partitions of Ω, such that for every m and k we have P (Amk ) = 2−m. Define
the random variables Xm

k = 1Am
k

2m/m. Let a > 1 and let m0 be such that 2m0−1 < a ≤
2m0 . Then

sup
m,k

E(|Xm
k |1{|Xm

k
|≥a}) ≤ E(|Xm0

1 |) = 1
m0

,

proving that (Xm
k )m,k is uniformly integrable. From de la Vallée-Poussin’s theorem and

Jensen’s inequality we obtain that also the convex hull X of the Xm
k is uniformly inte-

grable. Define F0 = F1 = σ(Amk : 1 ≤ k ≤ 2m,m ∈ N), and Y = {(1, X) : X ∈ X }.
Assume there exists Z > 0 such that E(1AX) ≤ E(1AZ) for all A ∈ F0 and X ∈ X .
Then for every m ∈ N

E(Z) =
2m
k=1

E(1Am
k
Z) ≥

2m
k=1

E(1Am
k
Xm
k ) = 2m

m
.

so that E(Z) = ∞. Therefore, (Z,X) cannot be a supermartingale for any X ∈ X . In
fact it is possible to show that E(1Am

k
Z) = ∞ for all k,m, and since F0 is generated by

(Amk )m,k, we must have P (Z = ∞) = 1.
To pass from two time steps to finitely many time steps is easy and follows by induction:

Corollary 1.3.7. Let Y be a L1–bounded family of nonnegative processes indexed by
{0, . . . ,m}, adapted to a filtration (Fk : 0 ≤ k ≤ m). Assume that Y is fork-convex, and
that it contains the constant process (1, . . . , 1).

Then there exists a strictly positive and adapted process (Zk : 0 ≤ k ≤ m), with Zm = 1
and such that ZY is a supermartingale for every Y ∈ Y. Z can be chosen such that

sup
Y ∈Y

max
k=0...,m

E(ZkYk) ≤ sup
Y ∈Y

max
k=0,...,m

E(Yk). (1.8)

Proof. For m = 1, this is just Lemma 1.3.5: take Z0 = Z,Z1 = 1.
Now assume the result holds for n. Let Y be a family of processes indexed by {0, . . . , n+

1}, and assume that Y satisfies all requirements stated above. Then also (Y1, . . . , Ym+1)
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1. Dominating local martingale measures and arbitrage under information asymmetry

satisfies all those requirements. By induction hypothesis, there exists a strictly positive
and adapted process Z = (Z1, . . . , Zm, 1) such that ZY is a supermartingale for all Y ∈ Y,
and such that

sup
Y ∈Y

max
k=1...,m+1

E(ZkYk) ≤ sup
Y ∈Y

max
k=1,...,m+1

E(Yk). (1.9)

Therefore, it suffices to construct a suitable Z0. For this purpose we apply Lemma 1.3.5
to the family of processes Y = {(Y0, Z1Y1) : Y ∈ Y}. Since Y contains the constant
process (1, . . . , 1), the family Y contains the process (1, Z1), and Z1 is strictly positive.
Furthermore, it is straightforward to check that Y is fork-convex. L1–boundedness of Y
follows from (1.9). Hence, we can apply Lemma 1.3.5 to Y, and the result follows.

To prove Theorem 1.3.1, we have to go from finite discrete time to continuous time.
This is achieved by means of a compactness argument. Compactness for right-continuous
functions is not very easy to show, and it would require us to use some form of the Arzelà-
Ascoli theorem. However, we want to construct a supermartingale Z, and therefore it
will be sufficient to construct its “skeleton” (Zq : q ∈ Q+). Using standard results for
supermartingales, we can then use this skeleton to construct a right-continuous super-
martingale density.

We will need the notion of convex compactness as introduced by Žitković [Ž10].

Definition 1.3.8. Let X be a topological vector space. A closed convex subset C ⊆ X is
called convexly compact if for any family {Fα : α ∈ A} of closed convex subsets of C, we
can only have


α∈A Fα = ∅ if there exist already finitely many α1, . . . , αm ∈ A for whichm

k=1 Fαk
= ∅.

Recall that L0 is the space of real valued random variables, equipped with the topology
of convergence in probability. Žitković [Ž10] then characterizes convexly compact sets of
nonnegative elements of L0.

Lemma 1.3.9 (Theorem 3.1 of [Ž10]). Let X be a convex set of nonnegative random
variables, closed with respect to convergence in probability. Then X is convexly compact
in L0 if and only if it is bounded in probability.

Note that Žitković works on a complete probability space. But completeness is not
used in the proof of Theorem 3.1. There is only one point in the proof where it is not
immediately clear whether completeness of the σ–algebra is needed: when Lemma A1.2
of [DS94] is applied. However, this lemma is formulated for general probability spaces.

In Proposition B.6 we prove a Tychonoff theorem for countable families of convexly
compact subsets of metric spaces. This will be used in the following proof.

Lemma 1.3.10. Let Y and K be as in Theorem 1.3.1. Then there exists a nonnegative
supermartingale (Zq)q∈Q+∪{∞} with Z∞ > 0, such that (ZqYq)q∈Q+ is a supermartingale
for all Y ∈ X .

32



1.3. Existence of supermartingale densities

Proof. Recall that Y is convex, and thus K is convex as well. By Lemma 1.3.2 there
exists Q ∼ P such that K is L1(Q)–bounded. We set a := supX∈K EQ(X) and define the
family of processes

Z = {(Zq)q∈Q+∪{∞} : Z∞ = 1, Zq ≥ 0, Zq ∈ Fq, and EQ(Zq) ≤ a for all q},

where we write Zq ∈ Fq to denote that Zq is Fq–measurable. According to Lemma 1.3.9
and Proposition B.6 in Appendix B, Z is a convexly compact set in


q∈Q+∪{∞} L

0(Fq, Q)
equipped with the product topology. Define for given q, r ∈ Q+ ∪ {∞}

Z(q, r) = {Z ∈ Z : EQ(Zq+rYq+r/Yq|Fq) ≤ Zq for all Y ∈ Y},

where for r = ∞ we only consider those Y ∈ Y for which Y∞ = limt→∞ Yt exists. The
sets Z(q, r) are convex, and by Fatou’s lemma they are also closed. Furthermore, they
are subsets of the convexly compact set Z. So if

q∈Q+,r∈Q+∪{∞}
Z(q, r)

was empty, then already a finite intersection would have to be empty. But if a finite
intersection was empty, then there would exist 0 ≤ t0 < · · · < tn ≤ ∞ for which it is
impossible to find (Zti : i = 0, . . . , n) with Ztn = 1 and such that (YtiZti : i = 0, . . . , n) is
a Q–supermartingale for every Y ∈ Y (respectively for every Y ∈ Y for which limt→∞ Yt
exists in case tn = ∞). This would contradict Corollary 1.3.7.

So let Z be in the intersection of all Z(q, r) and let Y ∈ Y. Then for all q, r ∈ Q+

EQ


Zq+r

Yq+r
Yq

Fq


≤ Zq,

which shows that ZY is a Q–supermartingale indexed by Q+. Taking Y ≡ 1, we also see
that (Zq : q ∈ Q+ ∪ {∞}) is a supermartingale. To complete the proof it suffices now to
define for q ∈ Q+ ∪ {∞}

Zq = Zq
dP

dQ


Fq

.

We are now ready to prove Rokhlin’s result.

Proof of Theorem 1.3.1. It remains to show that given the skeleton (Zq : q ∈ Q+ ∪
{∞}) we can construct a right-continuous supermartingale density with left limits almost
everywhere. This is a standard result on supermartingales. For the reader’s convenience
and to dispel possible concerns about the incompleteness of our filtration, we give the
arguments below.
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1. Dominating local martingale measures and arbitrage under information asymmetry

Since (Ft) is right-continuous, for every t ≥ 0 there exists a nondecreasing family of
sets (Nt)t≥0, such that Nt ∈ Ft for all t ≥ 0, and such that for ω ∈ Ω \ Nt

lim
r→s−
r∈Q

Z(ω)r and lim
r→s+
r∈Q

Z(ω)r

exist for all s ≤ t. See for example Ethier and Kurtz [EK86], right before Proposition
2.2.9. We define for t ∈ [0,∞)

Zt(ω) =

lims→t+
s∈Q

Zs(ω), ω ∈ Ω \ Nt

0, otherwise.

Then Z is adapted because (Ft) is right-continuous, and Z is right-continuous by def-
inition. It may not have left limits everywhere. But since (Nt) is nondecreasing,
τ(ω) := inf{t ≥ 0 : ω ∈ Nt} defines a stopping time, such that P (τ = ∞) = 1, and
such that t →→ Zt(ω) has left limits everywhere except at τ(ω).

Let us show that ZY is a supermartingale for every Y ∈ Y. Recall that the processes
in Y are right-continuous. Using Fatou’s Lemma in the first step and Corollary 2.2.10 of
[EK86] in the second step, we obtain

EQ(Zt+sYt+s|Ft) ≤ lim inf
r→(t+s)+

r∈Q

EQ(ZrYr|Ft) = lim inf
r→(t+s)+

r∈Q

lim inf
q→t+
q∈Q

EQ(ZrYr|Fq)

≤ lim inf
r→(t+s)+

r∈Q

lim inf
q→t+
q∈Q

ZqYq = ZtYt.

The same arguments with s = ∞ and Y = 1 show that if we set Z∞ = Z∞, then
(Zt)t∈[0,∞] is a nonnegative supermartingale with strictly positive terminal value. By
Theorem I.1.39 of [JS03], Zt almost surely converges to a limit Z∞ as t → ∞. Define
now Mt = E(Z∞|Ft) for t ∈ [0,∞]. This is a uniformly integrable martingale which
almost surely converges to Z∞ as t → ∞. By the supermartingale property of Z we have
Mt ≤ Zt for all t ≥ 0, and therefore

0 < Z∞ = lim
t→∞

Mt ≤ lim
t→∞

Zt = Z∞.

It remains to show that if there exists a supermartingale density, then Y is bounded in
probability. If Z is a supermartingale density for Y, then for any Y ∈ Y, ZtYt converges
as t → ∞, see Theorem I.1.39 of [JS03]. Since Zt converges to a strictly positive limit, Yt
must converge as well, and we have E(Z∞Y∞) ≤ E(Z0Y0) = E(Z0). Now Lemma 1.3.2
shows that Y is bounded in probability.

Corollary 1.3.11. If Y is as in Theorem 1.3.1, then every Y ∈ Y is a semimartingale
for which Yt almost surely converges as t → ∞.

Proof. Convergence was shown in the proof of Theorem 1.3.1. The semimartingale prop-
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erty follows from Itô’s formula: Let Z be a supermartingale density for Y. Then Z is
strictly positive, and therefore 1/Z is a semimartingale, implying that Y = (1/Z)(ZY )
is a semimartingale.

In case Y = W1 and under the stronger assumption (NFLVRs), Corollary 1.3.11 was
already shown by Delbaen and Schachermayer [DS94]. See also Ankirchner [Ank05] and
Kardaras and Platen [KP11].

Theorem 1.1.3 is now an immediate corollary of Theorem 1.3.1:

Proof of Theorem 1.1.3. It suffices to note that W1 and W1,s satisfy the assumptions of
Theorem 1.3.1. This is easy and shown for example in Rokhlin [Rok10], in the proof of
Theorem 2. Rokhlin only treats the case of W1 and K1, but the same arguments also
work for W1,s and K1,s.

Proof of Corollary 1.1.4. Let S have components that are locally bounded from below
and assume that S satisfies (NA1s). Recall that local semimartingales are semimartin-
gales, see for example Protter [Pro04], Theorem II.6. Protter works with complete filtra-
tions, but it follows from Lemma A.5 in Appendix A that for every (FP

t )–semimartingale
there exists an indistinguishable (Ft)–semimartingale. Let 1 ≤ k ≤ d. Since Sk is lo-
cally bounded from below, there exists an increasing sequence of stopping times (τm)
with limm→∞ τm = ∞, and a sequence of strictly positive numbers (am), such that
(1+amS

k
t∧τm

)t≥0 ∈ W1,s. It follows from Corollary 1.3.11 that the stopped process Sk·∧τm

is a semimartingale for every m, and therefore Sk is a semimartingale.
It remains to show that in the case of local boundedness from below, any supermartin-

gale density for W1,s is a supermartingale density for W1. But this is the content of
Kardaras and Platen [KP11], Section 2.2. (And it will also follow from our considera-
tions in Section 1.4.)

Of course we could also assume that every component of S is either locally bounded
from below or locally bounded from above, and we would still obtain the semimartingale
property of S under (NA1s). But in the totally unbounded case, S is not necessarily a
semimartingale. A simple counterexample is given by a one dimensional Lévy-process
with jumps that are unbounded both from above and from below, to which we add an
independent fractional Brownian motion with Hurst index H ̸= 1/2. Their sum is not
a semimartingale. But there are no 1–admissible simple strategies other than 0, so that
K1,s = {1}, which is obviously bounded in probability.

1.4. Construction of dominating local martingale measures

1.4.1. The Kunita-Yoeurp problem and Föllmer’s measure

Now let Z be a strictly positive supermartingale with Z∞ > 0 and EP (Z0) = 1. Our aim
is to construct a dominating measure Q and a stopping time τ , such that (Z, τ) is the
Kunita-Yoeurp decomposition of Q with respect to P . We call this the Kunita-Yoeurp
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problem. Recall that (Z, τ) is the Kunita-Yoeurp decomposition of Q with respect to P
if

1. P (τ = ∞) = 1,

2. for A ∈ Ft we have

Q(A ∩ {τ > t}) = EP (1AZt). (1.10)

In this case it follows for any stopping time ρ and any A ∈ Fρ that

Q(A ∩ {τ > ρ}) = EP

1A∩{ρ<∞}Zρ


, (1.11)

see for example [Yoe85], Proposition 4.
In general it is impossible to construct Q and τ without making further assumptions

on the underlying filtered probability space: For example, the space could be too small.
Take Ω = {0} that consists of only one element, and define F = Ft = {∅,Ω} for all t ≥ 0.
Then

Zt = 1
2(1 + e−t), t ≥ 0,

is a continuous, nonnegative supermartingale with Z∞ > 0. But there exists only one
probability measure on Ω, and therefore any Q would have the Kunita-Yoeurp decom-
position (1,∞) with respect to P , and not (Z, τ). This is reminiscent of the Dambis
Dubins-Schwarz theorem without the assumption ⟨M⟩∞ = ∞ (see Revuz and Yor [RY99],
Theorem V.1.7). This problem can be solved by enlarging Ω.

But even if the space is large enough, it might still not be possible to find Q and τ ,
because the filtration might be too large. Assume that the filtration (Ft) is complete
with respect to P , and that EP (Z0) = 1. Then (1.10) shows that Q is absolutely
continuous with respect to P on F0. Since F0 contains all P–null sets, this means
that Q is absolutely continuous with respect to P , and therefore (1.10) implies that
Zt = EP (dQ/dP |Ft). In other words Z is a uniformly integrable martingale under P . So
if Z is a supermartingale, then the filtration (Ft) should not be completed. This problem
can be avoided by assuming that (Ft) is the right-continuous modification of a standard
system, to be defined below.

If we are allowed to enlarge Ω and if (Ft) is the right-continuous modification of a
standard system, then the problem of constructing Q and τ has been solved by Yoeurp
[Yoe85] with the help of Föllmer’s measure. Let us describe Yoeurp’s solution.

First we remove the second problem in constructing Q and τ by assuming that the
filtration (Ft) is the right-continuous modification of a standard system (F0

t ). A filtration
(F0

t ) is called standard system if

1. for all t ≥ 0, the σ–algebra F0
t is σ–isomorphic to the Borel σ–algebra of a Pol-

ish space; that is, there exists a Polish space Xt with Borel σ–algebra B(Xt),
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and a bijective map π : F0
t → B(Xt), such that π(


m∈NAm) =


m∈NAm and

π(

m∈NAm) =


m∈NAm for every sequence (Am)m∈N;

2. if (tm)m∈N is a nondecreasing sequence of nonnegative times, and if (Am)m∈N is a
nonincreasing sequence of sets, such that for every m ∈ N the set Am is an atom
of F0

tm (i.e. B ∈ Ftm and B ⊆ Am implies B = Am or B = ∅), then

m∈NAm ̸= ∅.

Then (Ft) is defined by setting Ft =

s>t F0

s . Path spaces equipped with the canonical
filtration are only standard systems if we allow for “explosion” to a cemetery state in
finite time, see Föllmer [Föl72], Example 6.3, 2), or Meyer’s result in Dellacherie [Del69],
p. 100. On such a path space it is in fact always possible to solve the Kunita-Yoeurp
problem without enlarging the space. This and other results will be presented in the
upcoming work Perkowski and Ruf [PR13].

Here we do not assume that Ω is a path space, and therefore we continue by enlarging
Ω in order to solve the possible problem of Ω being too small. Define Ω := Ω× [0,∞] and
F := F ⊗ B[0,∞], where B[0,∞] denotes the Borel σ–algebra on [0,∞]. We also define
P := P ⊗ δ∞, where δ∞ is the Dirac measure at ∞. The filtration (F t) is defined as

F t :=

s>t

Fs ⊗ σ([0, r] : r ≤ s).

Note that if (Ft) is the right-continuous modification of the standard system (F0
t ), then

(F t) is the right-continuous modification of the standard system

F0
t := F0

t ⊗ σ([0, s] : s ≤ t), t ≥ 0.

Random variables X on Ω are embedded into Ω by setting X(ω, ζ) := X(ω).
Let us remark that (Ω,F , (F t), P ) is an enlargement of (Ω,F , (Ft), P ) in the sense of

Revuz and Yor [RY99]:

Definition 1.4.1 ([RY99], p. 182). A filtered probability space (Ω, F , ( Ft), P ) is an
enlargement of (Ω,F , (Ft), P ) if there exists a measurable map π : Ω → Ω, such that
π−1(Ft) ⊆ Ft and such that P ◦ π−1 = P . In this case, random variables are embedded
from (Ω,F) into (Ω, F) by setting X(ω) = X(π(ω)).

Define π(ω, ζ) := ω. Then π−1(A) = A× [0,∞] ∈ Ft for every A ∈ Ft, i.e. π−1(Ft) ⊆
Ft. For every A ∈ F we have P ◦ π−1(A) = P ⊗ δ∞(A× [0,∞]) = P (A). And if X is a
random variable on (Ω,F), then X(ω, ζ) = X(ω) = X(π(ω, ζ)).

Now we can proceed to construct (Q, τ) on (Ω,F , (F t)). In fact it suffices to construct
Q, because we will take τ(ω, ζ) := ζ, so that P (τ = ∞) = 1. However, there is one
remaining problem. In general Q will not be uniquely determined by (Z, τ). The measure
Q must satisfy

1 = Q(Ω) = Q(Ω ∩ {t < τ}) +Q(Ω ∩ {t ≥ τ}) = EP (Zt) +Q(t ≥ τ) (1.12)

for all t ≥ 0. But Q is supposed to solve the Kunita-Yoeurp problem associated with
(Z, τ), and therefore at time τ , the measure Q should stop being absolutely continuous

37



1. Dominating local martingale measures and arbitrage under information asymmetry

with respect to P , and (1.12) implies that Q(τ < ∞) > 0 if Z is not a martingale. So
knowing P , Z, and τ , in general we can only hope to determine Q uniquely on the σ–field

Fτ− :=σ(F0
0, {At ∩ {τ > t} : At ∈ F t, t > 0})

=σ({A0 × {0}, At × (t,∞] : At ∈ F0
t , t ≥ 0}). (1.13)

For the second equality we refer to [Föl72]. Note that Fτ− is the predictable σ–algebra
over (F0

t ) on Ω × [0,∞]. The reason for taking F0
0 rather than F0 lies in the fact that

F0
0 is countably generated but in general F0 is not. It then follows from our definition

that Fτ− is countably generated, a condition which is needed to apply Parthasarathy’s
extension theorem [Par67], on which Föllmer’s construction is based.

In conclusion, in order to construct τ and Q, we need to assume that (Ft) is the
right-continuous modification of a standard system, we need to enlarge (Ω,F , (Ft), P )
as described above, and we have to accept that Q will only be defined on Fτ−. Under
these conditions, we can take Q as the Föllmer measure of Z. Given a nonnegative
supermartingale Z with EP (Z0) = 1, Föllmer [Föl72], see also Meyer [Mey72], constructs
a measure PZ on (Ω,Fτ−), which satisfies PZ(At∩{τ > t}) = EP (Zt1At

) for all t ≥ 0 and
all At ∈ F t. This is exactly the relation (1.10), and therefore (Z, τ) is the Kunita-Yoeurp
decomposition of Q := PZ with respect to P .

Note that it is possible to extend Q from Fτ− to F , generally in a non-unique way,
see p. 9 of [KKN11]. See also Perkowski and Ruf [PR13], where we will describe very
precisely under which conditions and in which sense the extension is unique. From now
on we assume that Q is one of these extensions, i.e. that Q denotes a probability measure
on (Ω,F) that satisfies Q|Fτ−

= PZ .
It remains to show that Q dominates P . But this is a consequence of the following

general result:

Lemma 1.4.2. Let P and Q be two probability measures on a filtered probability space
(Ω,F , (Ft)t≥0). Let (Z, τ) be the Kunita-Yoeurp decomposition of Q with respect to P .
Define F∞ =


t≥0 Ft and assume that P (Z∞ > 0) = 1. Then P |F∞ ≪ Q|F∞.

Proof. Let A ∈

t≥0 Ft. We use the σ–continuity of P , (1.10), and Fatou’s lemma, to

obtain

Q(A ∩ {τ = ∞}) = lim
t→∞

Q(A ∩ {τ > t}) = lim
t→∞

EP (Zt1A) ≥ EP (Z∞1A).

By the monotone class theorem, this inequality extends to all A ∈ F∞. Since P (Z∞ >
0) = 1, we conclude that P |F∞ ≪ Q|F∞ .

In the following we make the standing assumption that we work on a probability space
(Ω,F , (Ft), P ) where it is possible to solve the Kunita-Yoeurp problem of associating a
probability measure and a stopping time to a given supermartingale, and we omit the
notation (·).
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Calculating expectations under Q

Here we collect important results of Yoeurp [Yoe85] that allow to rewrite certain ex-
pectations under Q as expectations under P . More precisely, let Z be a nonnegative
supermartingale with E(Z0) = 1 and with Doob-Meyer decomposition Z = Z0 +M −D,
where M is a local martingale starting in zero, and D is an adapted process, almost surely
nondecreasing and càdlàg. Let τ and Q be a stopping time and a probability measure,
such that (Z, τ) is the Kunita-Yoeurp decomposition of Q with respect to P .

Recall that if N is a local martingale, then a nondecreasing sequence of stopping times
(ρm)m∈N is called localizing sequence for N if Nρm is a uniformly integrable martingale
for every m ∈ N, and if P (limm→∞ ρm = ∞) = 1.

Lemma 1.4.3. Let Z = Z0 + M − D, and let τ and Q be as described above. Let
(ρm)m∈N be a localizing sequence for M , such that every ρm is finite. Then we have for
every bounded predictable process Y and for every m ∈ N that

EQ(Y ρm
τ ) = EP


YρmZρm +

 ρm

0
YsdDs


. (1.14)

Proof. This is part of Proposition 9 of [Yoe85]. For the convenience of the reader, we
provide a proof. First consider a simple process of the form Ys(ω) = X(ω)1(t,∞](s) for
some bounded Ft–measurable X. For such Y we get from (1.10) that

EQ(Y ρm
τ ) = EQ(X1(t,∞](ρm ∧ τ)) = EQ(X1{t<ρm}1{t<τ}) = EP (X1{t<ρm}Zt)

= EP (X1{t<ρm}(Z0 +Mt −Dt)) = EP (X1{t<ρm}(Z0 +Mρm
t −Dt)).

Now we use that Mρm is a uniformly integrable martingale, and that X1{t<ρm} is Ft–
measurable, to replace Mρm

t by Mρm
∞ = Mρm . Moreover, we have

X1{t<ρm}Dt = X1{t<ρm}Dρm −X1{t<ρm}(Dρm −Dt)

= X1{t<ρm}Dρm −
 ρm

0
YsdDs,

which proves (1.14) for such simple Y . The general case now follows from the monotone
class theorem.

Corollary 1.4.4. Let Y be a bounded adapted process that is P–almost surely càdlàg.
Define

Y τ−
t (ω) := Yt(ω)1{t<τ(ω)} + lim sup

s→τ(ω)−
Ys(ω)1{t≥τ(ω)}.

Let Z and (ρm) be as in Lemma 1.4.3. Then

EQ(Y τ−
ρm

) = EP


YρmZρm +

 ρm

0
Ys−dDs


.
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Proof. This is a slight generalization of (2.4) in [Yoe85]. Define Y −
t (ω) = Yt−(ω) =

lim sups→t− Ys for t > 0, and Y −
0 = Y0. Then Y − is a predictable process, because it is

the pointwise limit of the step functions

Y n
t = Y01{0}(t) +


k≥0

lim sup
s→k2−n−

Ys1(k2−n,(k+1)2−n](t).

Therefore, we can apply Lemma 1.4.3 to Y −. Observe that

Y τ−
ρm

= Yρm1{τ>ρm} + Yτ−1{τ≤ρm} = Yρm1{τ>ρm} + (Y −)τ1{τ≤ρm}.

Now (1.11) implies that EQ(Yρm1{τ>ρm}) = EP (YρmZρm), whereas (1.14) and then again
(1.11) applied to the second term on the right hand side give

EQ((Y −)τ1{τ≤ρm}) = EQ((Y −)ρm
τ ) − EQ((Y −)ρm1{τ>ρm})

= EP


Yρm−Zρm +

 ρm

0
Ys−dDs


− EP (Yρm−Zρm)

= EP

 ρm

0
Ys−dDs


.

1.4.2. The predictable case
We still assume that (Ω,F , (Ft), P ) is a probability space on which it is possible to
solve the Kunita-Yoeurp problem. Let S be a d–dimensional predictable semimartingale,
let W1 be defined as in (1.1), and let Z be a supermartingale density for W1. Here
we examine the structure of S and Z closer. This will allow us to apply Lemma 1.4.3
to deduce that Sτ− is a local martingale under the dominating measure associated to
Z. Note that Yoeurp [Yoe85] also establishes a generalized Girsanov formula, which we
could apply directly rather than using Lemma 1.4.3. However, the use of Lemma 1.4.3
turns out to be rather instructive, and it allows us to obtain some insight into why the
non-predictable case is more complicated.
Remark 1.4.5. Observe that, thanks to predictability, S − S0 is almost surely locally
bounded. This follows from I.2.16 of [JS03], which says that for a > 0 there exists an
announcing sequence for the entrance time of S into {x ∈ Rd : |x| ≥ a}. In view of
Corollary 1.1.4 it would therefore suffice to assume that Z is a supermartingale density
for W1,s. Then S is a semimartingale and Z is a supermartingale density for W1.

Since S − S0 is locally bounded, it is even a special semimartingale (see [JS03], I.4.23
(iv)). That is, there exists a unique decomposition

S = S0 +M +D, (1.15)

where M is a local martingale with M0 = 0, and D is a predictable process of finite
variation with D0 = 0. Thus, M = S−S0 −D is predictable. But any predictable right-
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continuous local martingale is continuous ([JS03], Corollary I.2.31). Therefore, S is of
the form (1.15) with continuous M . But then also D must be continuous, because (NA1)
implies dDi ≪ d⟨M i⟩ for i = 1, . . . , d, where M = (M1, . . . ,Md) and D = (D1, . . . , Dd).
This is a well known fact, see for example Ankirchner’s Ph.D. thesis [Ank05], Lemma
9.1.2. Otherwise one could find a predictable process H i which satisfies H i ·M i ≡ 0, but
for which H i · Di is increasing; this would contradict K1 being bounded in probability.
Therefore, D and then also S must be continuous.

In fact S must satisfy the structure condition as defined by Schweizer [Sch95]. Recall
that L2

loc(M) is the space of progressively measurable processes (λt)t≥0 that are locally
square integrable with respect to M , i.e. such that

 t

0

d
i,j=1

λisλ
j
sd⟨M i,M j⟩s < ∞

for every t > 0. For details see [JS03], III.4.3.

Definition 1.4.6. Let S = S0 +M +D be a d–dimensional special semimartingale with
locally square-integrable M . Define

Ct =
d
i=1

⟨M i⟩t and for 1 ≤ i, j ≤ d : σijt = d⟨M i,M j⟩t
dCt

.

Note that σ exists by the Kunita-Watanabe inequality. Then S satisfies the structure
condition if dDi ≪ d⟨M i⟩ for all 1 ≤ i ≤ d, with predictable derivative αit = dDi

t/d⟨M i⟩t,
and if there exists a predictable process λt = (λ1

t , . . . , λ
d
t ) ∈ L2

loc(M), such that for
i = 1, . . . , d we have dC(ω) ⊗ P (dω)–almost everywhere

(σλ)i = αiσii. (1.16)

Note that λ might not be uniquely determined, but the stochastic integral

λdM does

not depend on the choice of λ, see [Sch95]. If

 ∞

0

d
i,j=1

λitσ
ij
t λ

j
tdCt < ∞, (1.17)

then we say that S satisfies the structure condition until ∞.

Recall that two one dimensional local martingales L and N are called strongly orthog-
onal if LN is a local martingale. If L and N are multidimensional, then we call them
strongly orthogonal if all their components are strongly orthogonal. Also recall that the
stochastic exponential of a semimartingale X is defined by the SDE

E(X)t = 1 +
 t

0
E(X)s−dXs, t ≥ 0.

Finally we recall that every nonnegative supermartingale Y satisfies Yτ+t ≡ 0 for all
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t ≥ 0, where τ = inf{t ≥ 0 : Yt− = 0 or Yt = 0}.
Let us write dXt ∼ dYt if d(X − Y )t is the differential of a local martingale.

Lemma 1.4.7. Let S = S0 + M + D be a predictable semimartingale and suppose that
Z is a supermartingale density for S. Then S satisfies the structure condition until ∞,
and

dZt = Zt−(−λtdMt + dNt − dBt), (1.18)

where λ satisfies (1.16) and (1.17), N is a local martingale that is strongly orthogonal to
M , B is increasing, and E(N −B)∞ > 0.

Conversely, if a predictable process S satisfies the structure condition until ∞, and if
Z is defined by (1.18) with Z0 = 1, then Z is a supermartingale density for S.

In particular, for predictable S, the structure condition until ∞ is equivalent to (NA1).

Proof. This is essentially Proposition 3.2 of Larsen and Žitković [LŽ07] in infinite time.
We provide a slightly simplified version of their proof, because later we will need some
results obtained during the proof.

Let Z be a supermartingale density. Since Z is strictly positive, it is of the form
dZt = Zt−(dLt − dBt) for a local martingale L and a predictable increasing process
B. Since M is continuous, there exists a predictable process λ ∈ L2

loc(M), such that
dLt = λtdMt + dNt, where N is a local martingale that is strongly orthogonal to all
components of M , see [JS03], Theorem III.4.11. Moreover,

0 < Z∞ = Z0E(λ ·M +N −B)∞ = Z0E(λ ·M)∞E(N −B)∞,

which is only possible if λ satisfies (1.17) and if E(N −B)∞ > 0. It only remains to show
that λ also satisfies (1.16).

Let H be a 1–admissible strategy. Write WH := 1 + H · S for the wealth process
generated by H. Then WHZ is a nonnegative supermartingale. Since Z is strictly
positive, we must have WH

t ≡ 0 for t ≥ τH := inf{s ≥ 0 : WH
s− = 0 or WH

s = 0}.
Therefore, we may assume without loss of generality that Ht = Ht1{t<τH} for all t ≥ 0.
Define πt := Ht/W

H
t−, where we interpret 0/0 = 0 as before. Then

WH
t = 1 + (H · S)t = 1 +

 t

0
πsW

H
s−dSs.

In other words, every wealth process is of the form WH = E(π ·S) for a suitable integrand
π. To simplify matters, we slightly abuse notation and write W π instead of WH .

Integration by parts applied to ZW π gives

d(ZW π)t = W π
t−dZt + Zt−πtW

π
t−dSt + d[W π, Z]t

= W π
t−Zt−(λtdMt + dNt − dBt) + Zt−πtW

π
t−(dMt + dDt)

+W π
t−Zt−d[π · (M +D), λ ·M +N −B]t

∼ −W π
t−Zt−dBt + Zt−πtW

π
t−dDt +W π

t−Zt−d⟨π ·M,λ ·M⟩t, (1.19)
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where we used that M and D are continuous. By orthogonality, [H ·M,N ] = ⟨H ·M,N⟩ is
a continuous martingale of finite variation, starting at zero, which must therefore vanish.

Let now C and σ be as described in Definition 1.4.6. Then Theorem III.4.5 of [JS03]
implies that the bracket ⟨π ·M,λ ·M⟩ can be rewritten as

d(ZW π)t ∼ W π
t−Zt− (−dBt + πtdDt + d⟨π ·M,λ ·M⟩t)

= W π
t−Zt−

−dBt +
d
i=1

πit

dDi
t +

d
j=1

σijt λ
j
tdCt

 . (1.20)

Assume now that there exists an i ∈ {1, . . . , d} for which the continuous process of finite
variation

Xi
t = Di

t +
d
j=1

 ·

0
σijs λ

j
sdCs

is not evanescent. We claim that then there exists a 1–admissible strategy π for which the
finite variation part of (ZW π) is increasing on a small time interval: By the predictable
Radon-Nikodym theorem of Delbaen and Schachermayer [DS95b], Theorem 2.1 b), there
exists a predictable γi with values in {−1, 1}, such that

 ·
0 γ

i
sdDi

s = V i, where V i denotes
the total variation process of Xi. Note that [DS95b] work with complete filtrations, but
given the (FP

t )–predictable γi that they construct, we can apply Lemma A.4 to obtain
a (Ft)–predictable γi that is indistinguishable from γi.

Let now m ∈ N and set πjt := mδijγ
i
t for j = 1, . . . , d. into (1.20). Then

d(ZW π)t ∼ W π
t−Zt−


−dBt +mdV i

t


.

Since V i is an increasing process that is not constant, there exists m ∈ N such that
−dBt +mdV i

t is locally strictly increasing with positive probability. Since π is bounded,
we obtain that W π

t− > 0 for all t ≥ 0, and of course also Zt− > 0 for all t ≥ 0. Therefore,
the finite variation part of W πZ is locally strictly increasing with positive probability, a
contradiction to ZW π being a supermartingale.

Thus, Xi is evanescent. Recall that dDi ≪ d⟨M i⟩ = σiidC, and therefore there exists
a predictable process αi for which

0 ≡

dDi
t +

d
j=1

σijt λ
j
tdCt

 =

αitσ

ii
t + (σtλt)i


dCt,

so that

αiσii = −(σλ)i dC(ω) ⊗ P (dω) − almost everywhere, (1.21)

i.e. (1.16) is satisfied, and the proof of the first part is complete.
The converse direction is easy and follows directly from (1.19).
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Remark 1.4.8. For later reference we remark that if M and D are not necessarily contin-
uous, then a priori we only know that dZt = Zt−(dNt − dBt), for a local martingale N
and a predictable process of finite variation B. The finite variation part of W πZ is then
given by

d(W πZ)t ∼ W π
t−Zt−(−dBt + πtdDt + d[π ·M,N ]t − d[π ·D,B]t), (1.22)

which can be derived similarly as (1.19). Here we used that if L is a local martingale
and if D is predictable process of finite variation, then [L,D] is a local martingale, see
Proposition I.4.49 of [JS03].

Next we will show that Sτ− is a local martingale under the measure Q that is associ-
ated to Z. But first we observe that if Z is a supermartingale density, then SZ is not
necessarily a local martingale.

Corollary 1.4.9. Let Z and S be as in Lemma 1.4.7. Then ZSi is a local supermartin-
gale if and only if Si ≥ 0 on the support of the measure dB. If Si ≥ 0 identically, then
ZSi is a supermartingale.

The process ZSi is a local martingale if and only if Si = 0 on the support of the
measure dB.

Proof. Integration by parts and (1.18) imply that

d(ZSi)t = Zt−dSit + Sit−dZt + d[Si, Z]t
= Zt−(dM i

t + αitσ
ii
t dCt) + Sit−Zt−(−λdMt + dNt − dBt) − Zt−(σλ)itdCt

∼ −Sit−Zt−dBt,

where we used (1.16) in the last step.
The claim now follows easily since nonnegative local supermartingales are supermartin-

gales by Fatou’s lemma.

Another consequence of Lemma 1.4.7 is that in the predictable case, the maximal
elements among the supermartingale densities are always local martingales. This is im-
portant in the duality approach to utility maximization. For details we refer to [LŽ07].

We are now ready to prove Theorem 1.1.5 under the assumption that it is possible to
solve the Kunita-Yoeurp problem.

Corollary 1.4.10. Let S be a predictable semimartingale, and let Z be a supermartin-
gale density for S. Let τ be a stopping time and Q be a probability measure, such that
(Z/EP (Z0), τ) is the Kunita-Yoeurp decomposition of Q with respect to P . Then Sτ− is
a Q–local martingale.

Conversely, if Q ≫ P with Kunita-Yoeurp decomposition (Z, τ) with respect to P , and
if Sτ− is a local martingale under Q, then Z is a supermartingale density for S.

Proof. We first show that Sτ− is Q–almost surely locally bounded: Let ρn := inf{t ≥
0 : |Sτ−

t | ≥ n} for n ∈ N. Since Sτ− was only required to be right-continuous P–almost
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surely and not identically, ρn is not necessarily a stopping time. But it is a (FQ
t )–stopping

time. According to Lemma A.2, there exists a sequence of (Ft)–stopping times (ρn)n∈N
such that Q(ρn = ρn) = 1 for all n ∈ N. Then supn ρn is a stopping time, and we obtain
from (1.11) that

Q


sup
n
ρn < τ


= EP


Zsupn ρn1{supn ρn<∞}


= 0, (1.23)

where we used that P (supn ρn < ∞) = 0. But Sτ−
t is constant for t ≥ τ , and therefore

{supn ρn ≥ τ} is Q–almost surely contained in {supn ρn = ∞}, showing that Sτ− is
Q–almost surely locally bounded.

Let now (σn)n∈N be a localizing sequence of finite stopping times for M , where Z =
Z0 + M − D. We define τn := ρn ∧ σn. Let H be a strategy that is 1–admissible for
(Sτ−)τn under Q. Since (H · S)τ− = (H · Sτ−), we can apply Corollary 1.4.4 (which
extends from bounded Y to nonnegative Y via monotone convergence), to obtain

EQ(1 + (H · Sτ−)τn) = EP


(1 + (H · S)τn)Zτn +

 τn

0
(1 + (H · S)s−)dDs


.

But now (1.20) and (1.16) imply that

(1 + (H · S))Z +
 ·

0
(1 + (H · S)s−)dDs = W πZ +

 ·

0
W π
s−dDs

is a nonnegative P–local martingale starting in 1, and therefore EQ((H · Sτ−)τn) ≤ 0
for every strategy H that is 1–admissible under Q. Since (Sτ−)τn is bounded, we easily
conclude that it is a martingale.

The only remaining problem is that we only know Q(supn τn ≥ τ) = 1 and not
Q(supn τn = ∞) = 1. But the same arguments as used above also show that (Sτ−)ρn∧τm

is a martingale for all n,m ∈ N. Therefore, we can apply bounded convergence to obtain
for all s, t ≥ 0 that

EQ((Sτ−)ρn
t+s|Ft) = lim

m→∞
EQ((Sτ−)ρn∧τm

t+s |Ft) = lim
m→∞

(Sτ−)ρn∧τm
t = (Sτ−)ρn

t .

As we argued above, Q(supn ρn = ∞) = 1, and therefore Sτ− is a Q–local martingale.
Conversely, let Sτ− be a Q–local martingale, and let H be a 1–admissible strategy for

S under P . Define ρ := inf{t ≥ 0 : (H · Sτ−)t < −1}. Then P (ρ < ∞) = 0 and therefore
Q(ρ < τ) = 0 by the same argument as in (1.23). Hence, H is 1–admissible for Sτ−

under Q. Now we can repeat the arguments in (1.3), to obtain that Zt = 1{t<τ}/γt is a
supermartingale density for S, where we denoted γt := (dP/dQ)|Ft .

Remark 1.4.11. For later reference, note that we only used once that S is predictable: it
was only needed to obtain

EP


(1 + (H · S)τn)Zτn +

 τn

0
(1 + (H · S)s−)dDs


≤ 1,
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for which we applied Lemma 1.4.7 (and formula (1.20) from the proof of that lemma).
The general version of Theorem 1.1.5 is as follows:

Corollary 1.4.12 (“Correct formulation of Theorem 1.1.5”). Let (Ft) be the right-
continuous modification of a standard system. Let S be a predictable stochastic process
that is almost surely right-continuous. Then S satisfies (NA1s) if and and only there
exists an enlarged probability space (Ω,F , (F t), P ) and a dominating measure Q ≫ P

with Kunita-Yoeurp decomposition (Z, τ) with respect to P , such that Sτ− is a Q–local
martingale.

Proof. It remains to show that if Q exists, then S satisfies (NA1s). But if Q exists, then
Corollary 1.4.10 and Theorem 1.1.3 show that S even satisfies (NA1) on (Ω,F , (F t), P ).
Since this space is an enlargement of (Ω,F , (Ft), P ), the process S must also satisfy
(NA1).

Remark 1.4.13. We argued above that a predictable process satisfying (NA1) must be
continuous. Therefore, Corollary 1.4.12 is not much more general than Ruf [Ruf13],
where it is shown that a diffusion S that satisfies (NA1) admits a dominating measure
Q under which Sτ− is a local martingale. However, one difference is that [Ruf13] only
shows for supermartingale densities which are local martingales that they correspond to
dominating local martingale measures. Here we show that in the predictable case this
is true for all supermartingale densities. Also, we show equivalence between (NA1) and
the existence of a dominating local martingale measure, and not only that (NA1) implies
the existence of Q. Of course, as it is usually the case for this type of result, the reverse
direction is much easier.

1.4.3. The general case
We start the treatment of the non-predictable case with two examples that illustrate why
it is natural to consider dominating local martingale measures for Sτ− rather than for S.
Example 1.4.14. If S is optional and if Q is a dominating local martingale measure for
S rather than for Sτ−, then S does not need to satisfy (NA1): Let τ be exponentially
distributed with parameter 1 under Q. Define St = et1{t<τ} for t ∈ [0, 1]. Since time
is finite, S is a uniformly integrable martingale. Therefore, dP = S1dQ is absolutely
continuous with respect to Q. But under P we have St = et for all t ∈ [0, 1]. Clearly S
does not satisfy (NA1) under P , even though Q is a dominating martingale measure for
S. Note that Sτ− is not a local martingale under Q because Sτ−

t = et for all t ∈ [0, 1].
Recall that a stopping time τ is called foretellable under a probability measure P if

there exists an increasing sequence (τn) of stopping times, such that P (τn < τ) = 1 for
every n, and such that P (supn τn = τ) = 1. In this case (τn) is called an announcing
sequence for τ . Every predictable time is foretellable under any probability measure, see
Theorem I.2.15 and Remark I.2.16 of [JS03].
Example 1.4.15. Let S be a semimartingale under P and let Q ≫ P be a dominat-
ing measure with Kunita-Yoeurp decomposition (Z, τ) with respect to P . Assume that
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τ is not foretellable under Q. Then there exists an adapted process S which is P–
indistinguishable from S, such that S is not a Q–local martingale: Let x ∈ Rd and defineSxt = St1{t<τ} + x1{t≥τ}, which is P–indistinguishable from S since P (τ = ∞) = 1. IfSx is a Q–local martingale, then τxn = inf{t ≥ 0 : | Sxt | ≥ n}, n ∈ N, defines a localizing
sequence. In particular, (τxn ) converges Q–almost surely to infinity as n tends to ∞, and
thus Q(limn→∞ τxn ≥ τ) = 1. Since τ is not foretellable under Q, there must exist n ∈ N
for which Q(τxn ≥ τ) > 0. Moreover, we have

EQ(S0) = EQ( Sxτx
n
) = EQ(Sτx

n
1{τx

n<τ}) + xQ(τxn ≥ τ).

Since τxn = τyn for all |x| < n, |y| < n, we obtain a contradiction by letting x vary through
the ball of radius n− 1.

These two examples show that given Q ≫ P , it is important to choose a good version
of S if we want to obtain a Q–local martingale. All the results obtained so far indicate
that this good version should be Sτ−. Maybe somewhat surprisingly, this is not true in
general, as we demonstrate in the following example.

Example 1.4.16. Let (Lt)t∈[0,1] be a Lévy process underQ, with jump measure ν = δ1+δ−1
and drift b ∈ R. That is, Lt = N1

t −N2
t + bt, where N1 and N2 are independent Poisson

processes. Let a > |b| and let ρ be an exponential random variable with parameter
a, such that ρ is independent from L. Define τ = ρ if ρ ≤ 1, and τ = ∞ otherwise.
Then (eat1{t<τ})t∈[0,1] is a uniformly integrable martingale, and therefore it defines a
probability measure dP = ea1{1<τ}dQ. Since τ and L are independent, L has the same
distribution under P as under Q. The Kunita-Yoeurp decomposition of Q with respect
to P is given by ((e−at)t∈[0,1], τ).

We claim that Z = e−a· is a supermartingale density for L. Let (πtW π
t−) be a strategy

for L, where W π is the wealth process obtained by investing in this strategy. Such a
strategy is 1–admissible if and only if |πt| ≤ 1 for all t ∈ [0, 1]. Moreover, we get from
(1.22) that

d(ZW π)t ∼ −W π
t−Zt−adt+ Zt−πtW

π
t−bdt = W π

t−Zt−(πtb− a)dt.

Since W πZ ≥ 0 and since πtb − a < 0 (recall that a > |b|), the drift rate is negative.
Therefore, ZW π is a local supermartingale, and since it is a nonnegative process, it is a
supermartingale.

Now τ is independent from L under Q, and L has no fixed jump times. Hence

Q(∆Lτ ̸= 0, τ ≤ 1) =


[0,1]
Q(∆Lt ̸= 0)(Q ◦ τ−1)(dt) = 0,

which implies that Lτ− = Lτ , and this is clearly no Q–local martingale.

Remark 1.4.17. In the preceding example it is possible to show that the modified process

Lt = Lτ−
t − b

a
1{t≥τ} (1.24)
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is a Q–martingale. More generally, we expect that given a semimartingale S, a super-
martingale density Z for S, and a measure Q ≫ P with Kunita-Yoeurp decomposition
(Z, τ) with respect to P , there should always exist a version S that is P–indistinguishable
from S, such that S is a Q–local martingale. But as (1.24) shows, we will need to take
different S for different supermartingale densities. Therefore, this seems somewhat un-
natural, and we will not pursue it further.

Note that all three examples had one thing in common: τ was not foretellable under
Q. It turns out that things get much simpler if τ is foretellable under Q. But if (τn)n∈N
is an announcing sequence for τ , then we obtain from (1.11) that

1 = Q(τn < τ) = EP (Zτn1{τn<∞}) for all n ∈ N, and

0 = Q


sup
n
τn < τ


= EP (Zsupn τn1{supn τn<∞}).

Since Z is strictly positive, we conclude that (τn)n∈N is a localizing sequence for Z under
P , i.e. Z is a P–local martingale.

Therefore, we should look for supermartingale densities that are local martingales.
We call such supermartingale densities local martingale densities. If (St)t∈[0,T ] is one
dimensional with finite terminal time T < ∞, it is shown by Kardaras [Kar12], Theorem
1.1, that local martingale densities exist if and only if (NA1) is satisfied. The proof is in
the spirit of the article [KK07]. Takaoka [Tak13] solves the multidimensional case with
finite terminal time. More precisely, it is easily deduced from Remark 7 of [Tak13] that
for a locally bounded d–dimensional semimartingale (St)t∈[0,T ], (NA1) is satisfied if and
only if there exists a local martingale density. Takoaka’s proof is based on the insight of
Delbaen and Schachermayer [DS95c], that a change of numéraire can induce the (NA)
property, even if previously there were arbitrage opportunities in the market. [Tak13]
continues to show that a clever choice of numéraire preserves the (NA1) property, so
that then the condition (NA) + (NA1) = (NFLVR) is satisfied, which permits to apply
the Fundamental Theorem of Asset Pricing [DS94]. See also the recent preprint Song
[Son13], where an alternative proof of Takaoka’s result is given that does not use the
Fundamental Theorem of Asset Pricing. Roughly speaking, this is achieved by combining
the philosophies behind [KK07] and [Tak13].

Of course [Kar12], [Tak13], and [Son13] all work with complete filtrations, but given a
local martingale density Z that is (FP

t )–adapted, there exists an indistinguishable process
Z that is (Ft)–adapted, see Lemma A.4.

Lemma 1.4.18. Let (St)t∈[0,T ] be a locally bounded semimartingale on a finite time
horizon T < ∞, and let Z be a local martingale density for S. Let τ be a stopping time and
Q be a probability measure, such that (Z/EP (Z0), τ) is the Kunita-Yoeurp decomposition
of Q with respect to P . Then Sτ− is a Q–local martingale.

Conversely, if Q ≫ P has Kunita-Yoeurp decomposition (Z, τ) with respect to P , and
if Sτ− is a Q–local martingale, then Z is a supermartingale density for S.

Proof. The proof is very similar to the one of Corollary 1.4.10. Recall from Remark
1.4.11 that we only used the predictability of S once in the proof of Corollary 1.4.10, to
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obtain

EQ((H · Sτ−)σn) ≤ 0 (1.25)

for all strategies H that are 1–admissible for (Sτ−)σn under Q. Here (σn) was a localizing
sequence of finite stopping times for M under P , where Z = Z0 +M −D. Therefore, it
suffices to show that (1.25) always holds if Z has the decomposition Z = Z0 +M , i.e. if
D = 0, even if S is not predictable.

So let (σn) be a localizing sequence of finite stopping times for the local martingale Z
under P , and let H be a strategy that is 1–admissible for (Sτ−)σn under Q (and then
also for Sσn under P ). We apply Corollary 1.4.4 with D = 0, and obtain

EQ(1 + (H · Sτ−)σn) = EP ((1 + (H · S)σn)Zσn) ≤ 1,

where the last step follows because Z is a supermartingale density. From here on we can
just copy the proof of Corollary 1.4.10.

We obtain our main result, a weak fundamental theorem of asset pricing:

Corollary 1.4.19 (“Correct formulation of Theorem 1.1.6”). Let (Ft)t∈[0,T ] be the right-
continuous modification of a standard system. Let S = (St)t∈[0,T ] be a locally bounded,
right-continuous stochastic process. Then S satisfies (NA1s) if and and only there exists
an enlarged probability space (Ω,F , (F t)t∈[0,T ], P ), and a dominating measure Q ≫ P

with Kunita-Yoeurp decomposition (Z, τ) with respect to P , such that Sτ− is a Q–local
martingale.

Remark 1.4.20. There is another subset of supermartingale densities of which one might
expect that they correspond to local martingale measures for Sτ−: the maximal elements
among the supermartingale densities. A supermartingale density Z is called maximal if it
is indistinguishable from any supermartingale density Y that satisfies Yt ≥ Zt for all t ≥ 0.
If S is not continuous, then some maximal supermartingale densities are supermartingales
and not local martingales, see Example 5.1’ of Kramkov and Schachermayer [KS99].

But such Z will usually not correspond to local martingale measures for S. Assume
for example that we are in the situation described in Theorem 2.2 of [KS99], i.e. we have
a dual optimizer Z and a primal optimizer H for a certain utility maximization problem.
Then point iii) of this Theorem 2.2 states that (1 + (H · S))Z is a uniformly integrable
martingale. If we assume now that Z is not a local martingale, as is the case in Example
5.1’ of [KS99], and if (τn) is a localizing sequence of finite stopping times for the local
martingale part M of Z = Z0 +M −D, then we obtain from Corollary 1.4.4 that

EQ(1 + (H · Sτ−)τn) = EP ((1 + (H · S)τn)Zτn) + EP

 τn

0
(1 + (H · S)s−)dDs


= 1 + EP

 τn

0
(1 + (H · S)s−)dDs


, (1.26)
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where we used that (1+(H ·S))Z is a uniformly integrable martingale. Since H is optimal,
the wealth process (1 + (H · S)s−)s≥0 will be strictly positive with positive probability.
Since also dD ̸= 0 with positive probability, the expectation in (1.26) is strictly positive
for sufficiently large n, and therefore (H · Sτ−)τn cannot be a Q–supermartingale, i.e.
Sτ− cannot be a Q–local martingale.

1.5. Relation to filtration enlargements

Here we show that Jacod’s criterion for initial filtration enlargements is in fact a cri-
terion for the existence of a universal supermartingale density (to be defined below).
We also treat general filtration enlargements. We show that if there exists a universal
supermartingale density in an enlarged filtration, then a generalized version of Jacod’s
criterion is satisfied.

1.5.1. Jacod’s criterion and universal supermartingale densities

Let (Ω,F , (Ft)t≥0, P ) be a filtered probability space, and let (G0
t )t≥0 be an initial filtration

enlargement of (Ft), by which we mean that there there exists a random variable X such
that G0

t = Ft ∨ σ(X) for all t ≥ 0. We define the right-continuous regularization of (G0
t )

by setting Gt :=

s>t G0

s for all t ≥ 0. Note that we do not require F , (Ft)t≥0, or (Gt)t≥0
to be complete, contrary to Jacod [Jac85] (although we allow them to be complete).

Recall that Hypothèse (H ′) is satisfied if all (Ft)–semimartingales are (Gt)-semimartin-
gales.

We now give the classical formulation of Jacod’s criterion, see [Jac85]. For this purpose
we need to assume that X takes its values in a standard Borel space, which we denote by
(X,B). For the definition of standard Borel spaces see Parthasarathy [Par67], Definition
V.2.2. For a detailed discussion see also Dellacherie [Del69], where standard Borel spaces
are referred to as Lusin spaces. Note that (X,B) is a standard Borel space provided that
X is a Polish space and B its Borel σ–algebra.

If X takes its values in the standard Borel space (X,B), then the regular conditional
distribution

Pt(ω,dx) := P (X ∈ dx|Ft)(ω)

exists for all t ≥ 0, see Durrett [Dur10], Theorem 5.1.9 (Durrett calls standard Borel
spaces “nice spaces”). We write PX for the distribution of X. Jacod’s criterion states
that Hypothèse (H ′) is satisfied provided that for every t ≥ 0 almost surely

Pt(ω,dx) ≪ PX(dx). (1.27)

Note that this statement only makes sense if the set {ω : Pt(ω,dx) ≪ PX(dx)} is F–
measurable. But since the σ–algebra of a standard Borel space is countably generated (see
also [PR13]), it is easily verified that this is indeed the case. Below we give an alternative

50



1.5. Relation to filtration enlargements

proof of Jacod’s result, and we relate it to the existence of a universal supermartingale
density.

First observe that Hypothèse (H ′) is satisfied if and only if all nonnegative (Ft)–
martingales are (Gt)–semimartingales: This follows by decomposing every (Ft)–local
martingale into a sum of a locally bounded local martingale and a local martingale
of finite variation, by observing that every bounded process can be made nonnegative
by adding a deterministic constant, and from the fact that local semimartingales are
semimartingales (see Protter [Pro04], Theorem II.6).

Definition 1.5.1. Let (Gt) be a filtration enlargement of (Ft). Let Z be a (Gt)–adapted
process that is almost surely càdlàg, such that P (Zt > 0) = 1 for all t ≥ 0. Then Z
is called universal supermartingale density for (Gt) if ZM is a (Gt)–supermartingale for
every nonnegative (Ft)–supermartingale M .

Note that here we do not require Z∞ to be positive, unlike in the previous sections.
This is because here we are interested in the semimartingale property and not primarily in
the (NA1) property. Local semimartingales are semimartingales, and therefore it suffices
to verify the (Gt)–semimartingale property of M on [0, t] for every t ≥ 0. Hence, it suffices
if Zt > 0 for every t ≥ 0.

Also note that we required ZM to be a (Gt)–supermartingale for every nonnegative
(Ft)–supermartingale M , and not just for nonnegative (Ft)–martingales. This has the ad-
vantage that now we see immediately that in finite time every process satisfying (NA1)
under (Ft) satisfies also (NA1) under (Gt), provided that there exists a universal su-
permartingale density Z: if Y is a (Ft)–supermartingale density for S, then ZY is a
(Gt)–supermartingale density for S. To extend this result to infinite time, we would have
to change the definition of a universal supermartingale density by additionally requiring
that P (Z∞ > 0) = 1. To obtain a universal supermartingale density under Jacod’s crite-
rion, we would then have to assume that also almost surely P∞(ω, ·) ≪ PX(·). Here we
do not pursue this further.

The first result of this section shows that Jacod’s criterion is not so much a crite-
rion for Hypothèse (H ′) to hold, but rather a criterion for the existence of a universal
supermartingale density.

Proposition 1.5.2. Let (Gt) be the right-continuous regularization of an initial enlarge-
ment of (Ft) with a random variable X taking its values in a standard Borel space. As-
sume Jacod’s criterion (1.27) is satisfied. Then there exists a universal supermartingale
density for (Gt).

Proof. 1. Let t ≥ 0. Without loss of generality we may assume that dPt(ω, ·) ≪
dPX(·) for all ω ∈ Ω. This can be achieved by setting Pt(ω, ·) := 0 on the mea-
surable set {ω : Pt(ω) does not satisfy Pt(ω, ·) ≪ PX(·)}. Now we can apply a
theorem of Doob, see [YM78], according to which there exists a Ft⊗ B–measurable
random variable Yt : Ω × X → R+, such that for every ω ∈ Ω we have PX–almost
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surely

Yt(ω, x) = dPt(ω, ·)
dPX

(x).

Note that Yor and Meyer [YM78] do not require complete σ–algebras. Let now
t, s ≥ 0. We first show that P ⊗ PX–almost surely

{(ω, x) : Yt(ω, x) = 0} ⊆ {(ω, x) : Yt+s(ω, x) = 0}. (1.28)

Note that Yt+s ≥ 0, and therefore Fubini’s theorem and the tower property of
conditional expectations imply that

Ω×X
1{Yt(ω,x)=0}Yt+s(ω, x)P ⊗ PX(dω,dx)

=


Ω


X

1{Yt(ω,x)=0}Pt+s(ω,dx)P (dω) =


Ω


X

1{Yt(ω,X(ω))=0}P (dω)

=


Ω


X

1{Yt(ω,x)=0}Pt(ω,dx)P (dω) = 0,

where we used that Pt(ω, ·)–almost surely Yt(ω, ·) > 0.

2. Define Zt(ω, x) := 1{Yt(ω,x)>0}/Yt(ω, x) and

Zt(ω) := Zt(ω,X(ω)).

This Z is (Gt)–adapted by construction. Let now M be a nonnegative (Ft)–
supermartingale. Let s, t ≥ 0, let A ∈ Ft, and B ∈ B(X). Then we can apply
the tower property to obtain

E (1A1B(X)Mt+sZt+s) = E

1AMt+sE(1B(X)Z̃t+s(·, X)|Ft+s)


=


Ω
1A(ω)Mt+s(ω)


X

1B(x) Zt+s(ω, x)Pt+s(ω,dx)P (dω)

=


Ω
1A(ω)Mt+s(ω)


X

1B(x)Yt+s(ω, x)
Yt+s(ω, x)1{Yt+s(ω,x)>0}PX(dx)P (dω)

≤


Ω
1A(ω)Mt+s(ω)


X

1B(x)1{Yt(ω,x)>0}PX(dx)P (dω).

In the last step we used (1.28) and that 1A(ω)1B(x)Mt+s(ω) is PX ⊗ P–almost
surely nonnegative. Using the (Ft)–supermartingale property of M in conjunction
with Fubini’s theorem, we obtain

Ω
1A(ω)Mt+s(ω)


X

1B(x)1{Yt(ω,x)>0}PX(dx)P (dω)

≤

X

1B(x)


Ω
1A(ω)Mt(ω)1{Yt(ω,x)>0}P (dω)PX(dx)
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=


Ω
1A(ω)


X

1B(x)Mt(ω)Yt(ω, x)
Yt(ω, x)1{Yt(ω,x)>0}PX(dx)P (dω)

=


Ω
1A(ω)


X

1B(x)Mt(ω) Zt(ω, x)Pt(ω,dx)P (dω) = E (1A1B(X)MtZt)

The monotone class theorem allows to pass from sets of the form A ∩ X−1(B) to
general sets in (G0

t ), and therefore MZ is a (G0
t )–supermartingale. Taking M ≡ 1,

we see that also Z is a (G0
t )–supermartingale.

3. Let us show that Zt is P–almost surely strictly positive for every t ≥ 0. For this
purpose it suffices to show that P (ω : Yt(ω,X(ω)) = 0) = 0. By the tower property
we have

E(1{Yt(·,X(·))=0}) =


Ω


X

1{Yt(ω,x)=0}Pt(ω,dx)P (dω) = 0.

4. Z is not necessarily right-continuous, and also we did not show yet that ZM is a
(Gt)–supermartingale and not just a (G0

t )–supermartingale. But the construction
of a right-continuous universal supermartingale density is now done exactly as in
the proof of Theorem 1.3.1. The (Gt)–supermartingale property of ZM follows also
in the same way as in the proof of Theorem 1.3.1.

Remark 1.5.3. If we are only interested whether Hypothèse (H ′) holds and not whether
there exists a universal supermartingale density, then we can also work with the filtration
(G0
t ) and not with its right-continuous regularization (Gt). Since Hypothèse (H ′) holds

for (Gt) and since (G0
t ) is a filtration shrinkage of (Gt), Stricker’s theorem implies that

Hypothèse (H ′) is also satisfied for (G0
t ).

Remark 1.5.4. We could replace assumption (1.27) by Pt(ω,dx) ≫ PX(dx) or Pt(ω,dx) ∼
PX(dx). In the first case we could use the same proof as for Proposition 1.5.2 to obtain the
existence of a nonnegative martingale Z, not necessarily strictly positive, such that ZM
is a (Gt)–supermartingale for every nonnegative (Ft)–supermartingale M . In particular,
then there exists an absolutely continuous measure Q ≪ P , such that every locally
bounded (P, (Ft))–local martingale is a (Q, (Gt))–local martingale. Since (NA) is related
to the existence of absolutely continuous local martingale measures, see [DS95b], this
indicates that the (NA) property may be stable under initial filtration enlargements
that satisfy this “reverse Jacod condition”. Note that it is much harder to satisfy this
assumption. For example it will never be satisfied if X is Ft–measurable for some t ≥ 0.

If Pt(ω,dx) ∼ PX(dx), then the same proof as for Proposition 1.5.2 yields the existence
of an equivalent measure Q ∼ P , such that every nonnegative (P, (Ft))–supermartingale
is a nonnegative (Q, (Gt))–supermartingale. In particular, then every locally bounded
(P, (Ft))–local martingale is a (Q, (Gt))–local martingale. This condition has been stud-
ied by Amendinger, Imkeller and Schweizer [AIS98], as well as Amendinger [Ame00].
Obviously it is harder to satisfy than Jacod’s condition or the reverse Jacod condition.
In financial applications one may however assume that the knowledge of the “insider” is
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1. Dominating local martingale measures and arbitrage under information asymmetry

perturbed by a small Gaussian noise that is independent of F∞ (or more generally by
an independent noise with strictly positive density with respect to Lebesgue measure).
Then Pt(ω,dx) ∼ PX(dx) is always satisfied.

1.5.2. Universal supermartingale densities and the generalized Jacod
criterion

In the previous section we saw that for initial enlargements, Jacod’s criterion is a sufficient
condition for the existence of a universal supermartingale density. Here we show that for
general filtration enlargements, a generalized version of Jacod’s criterion is a necessary
condition for the existence of a universal supermartingale density.

Let (Ω,F , (Ft), P ) be a filtered probability space, such that (Ω,F) is a standard Borel
space. We assume that there exists a filtration (F0

t )t≥0, such that Ft =

s>t F0

s for all
t ≥ 0. We also assume that (G0

t )t≥0 is a filtration enlargement of (F0
t ), such that G0

t ⊆ F
is countably generated for every t ≥ 0, i.e. there exists a sequence of sets (Bt

n)n∈N
such that G0

t = σ(Bt
1, B

t
2, . . . ). Then (Gt)t≥0, defined by Gt :=


s>t G0

t , is a filtration
enlargement of (Ft).

The reason for choosing such a complicated set-up is that Gt will in general not be
countably generated, even if G0

s is countably generated for every s ≥ 0. But in our
argumentation below we will need G0

t to be countably generated. On the other side, if
we would only work with the non right-continuous filtration (G0

t ), then there would be
little hope of constructing a right-continuous universal supermartingale density in the
first place.

Since (Ω,F) is a standard Borel space, the regular conditional probabilities

Pt(ω, ·) := P (·|Ft)(ω)

exist. We say that the generalized Jacod criterion is satisfied if for all s, t ≥ 0 almost
surely

Pt+s|G0
t
(ω, ·) ≪ Pt|G0

t
(ω, ·).

It is known that neither Jacod’s criterion nor the generalized Jacod criterion are nec-
essary conditions for Hypothèse (H ′) to hold. But the generalized Jacod criterion is a
necessary condition for the existence of a universal supermartingale density for (Gt):

Proposition 1.5.5. Assume that there exists a universal supermartingale density Z for
(Gt). Then the generalized Jacod criterion is satisfied.

Proof. 1. For every A ∈ F the process MA
t := EP (1A|Ft), t ≥ 0, is a nonnegative

(Ft)–martingale. Therefore, MAZ is a (Gt)–supermartingale. Fix s, t ≥ 0. Let

54



1.5. Relation to filtration enlargements

A ∈ Ft+s and B ∈ Gt. Then for every n ∈ N we have that

E


1A1B

Zt+s
Zt

1{Zt≥1/n}


= E

1B1{Zt≥1/n}
Zt

MA
t+sZt+s


≤ E

1B1{Zt≥1/n}
Zt

MA
t Zt


= E(1AE(1B1{Zt≥1/n}|Ft)).

Applying monotone convergence on both sides, we obtain

E


1A1B

Zt+s
Zt


≤ E(1AEP (1B|Ft)).

The same inequality holds if we replace Zt+s/Zt by a version Zt+s/ Zt that is strictly
positive for every ω ∈ Ω. Since the inequality holds for all A ∈ Ft+s, we conclude
that 

1B(ω′)
Zt+sZt (ω′)Pt+s(ω,dω′) ≤ Pt(ω,B) for almost every ω ∈ Ω. (1.29)

This looks promising. The only problem is that the null set outside of which the
inequality holds may depend on B.

2. Now we use the assumption that G0
t is countably generated: there exists an in-

creasing sequence of finite σ–algebras (Hn)n∈N on Ω, such that G0
t =


n Hn. Since

n Hn is countable and since G0
t ⊆ Gt, we can use (1.29) to obtain a null set N

such that for all ω ∈ Ω \ N and all B ∈

n Hn we have


1B(ω′)

Zt+sZt (ω′)Pt+s(ω,dω′) ≤ Pt(ω,B). (1.30)

Now

n Hn is stable under finite intersections (it even is an algebra), and therefore

the monotone class theorem implies that (1.30) holds for all B ∈

n Hn = G0

t .
Since Zt+s(ω′)/ Zt(ω′) > 0 for every ω′ ∈ Ω, the proof is complete.

Corollary 1.5.6. Suppose that there exists a one dimensional continuous local martin-
gale M that has the predictable representation property under (Ft). If under (Gt), the
semimartingale decomposition of M is of the form

Mt = Mt +
 t

0
αsd⟨M⟩s

for a (Gt)–local martingale M and a predictable integrand α ∈ L2
loc(M), then the gener-

alized Jacod criterion holds.
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1. Dominating local martingale measures and arbitrage under information asymmetry

Proof. In this case the stochastic exponential

Zt := exp


−
 t

0
αsdMs − 1

2

 t

0
α2
sd⟨M⟩s


is a universal supermartingale density.

Corollary 1.5.6 was previously shown by Imkeller, Pontier and Weisz [IPW01] for initial
enlargements and under the stronger assumption

E

 ∞

0
α2
sd⟨M⟩s


< ∞.

For simplicity we gave the one dimensional formulation of Corollary 1.5.6. Of course
the same argument works in the multidimensional setting: if M = (M1, . . . ,Md) has the
predictable representation property under (Ft), and if M satisfies the structure condition
under (Gt), then the generalized Jacod criterion is satisfied.
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In Chapter 1 we studied the (NA1) condition and showed that it is a robust, natural
condition to impose on an asset price model. But we did not give many examples of
processes satisfying (NA1), apart from the classical examples for which an equivalent
local martingale measure exists. Another example that we gave was that of a complete
market under an initial filtration enlargement by a countable random variable: in that
case (NA1) is satisfied but there exists no equivalent local martingale measure.

A more concrete example of a process satisfying (NA1) but not (NA) is given by
the three dimensional Bessel process in finite time. This was first observed by Delbaen
and Schachermayer [DS95a]. On a finite time horizon [0, T ], the three dimensional Bessel
process can be constructed from a Brownian motion W under P started at 1 and stopped
at 0: under the measure dQ := WTdP , the process W is a Bessel process. Delbaen and
Schachermayer [DS95a] noted that the inverse Bessel process 1/W is a local martingale
deflator for W under Q. More precisely, they showed that 1/W defines a dominating
measure (namely P ), under which W is a local martingale (a Brownian motion). At
least in the canonical filtration of W it is then clear that W cannot admit an equivalent
local martingale measure, because it follows from the predictable representation property
of W that 1/W is the only candidate for the density of an equivalent local martingale
measure. Since 1/W is a strict local martingale (i.e. a local martingale that is not
a martingale), there cannot exist an equivalent local martingale measure. This was
generalized to arbitrary filtrations by Karatzas and Kardaras [KK07], Example 3.6, who
constructed an explicit strategy that realizes an arbitrage.

Therefore, the Bessel process is an interesting object when studying (NA1). It is well
known, and was possibly first observed by McKean [McK63], that in infinite time it
can be obtained by conditioning a Brownian motion not to hit zero. Below we give a
simple probabilistic proof for this result, that extends to continuous nonnegative local
martingales.

2.1. Introduction

We study the law Q of a continuous nonnegative P–local martingale M starting in 1, if
conditioned never to hit zero. The key step in our analysis is the simple observation that
the conditional measure Q, on the corresponding σ–algebra, is given by MτdP , where τ
denotes the first hitting time of either 0 or another value x > 1. This observation relates
the change of measure over an infinite time horizon (through a conditioning argument)
to the change of measure in finite time (via the Radon-Nikodym derivative Mτ ).

Under the conditional measure Q, the process M diverges to ∞, and 1/M is a local
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2. Conditioned martingales

martingale. This insight allows us to condition M downwards, which corresponds to
conditioning 1/M upwards and can therefore be treated with our previously developed
arguments. In the case of a diffusion it is possible to write down the dynamics of the
upward conditioned process explicitly, defined via its scale function, - and similarly for a
downward conditioned diffusion.

For example, if M is a P–Brownian motion stopped in 0, then M is a Q–three di-
mensional Bessel process. This connection of Brownian motion and Bessel process has
been well known, at least since the work of McKean [McK63], building on Doob [Doo57].
Following McKean, several different proofs were given for this result, mostly embedding
the statement in a more general result such as the one about path decompositions in
Williams [Wil74]. Most of these proofs are analytical and rely strongly on the Markov
property of Brownian motion and Bessel process - or even on the fact that the transition
densities are known for these processes.

As the study of the law of upward and downward conditioned processes has usually
not been the main focus of these papers, results have, to the best of our knowledge, not
been proven in the full generality of this paper, and the underlying arguments were often
only indirect. Our proof uses only elementary arguments, it is probabilistic, and works
for every continuous local martingale. We show that in finite time it is not possible
to obtain a Bessel process by conditioning a Brownian motion not to hit zero and we
point out that conditioning a Brownian motion upward and conditioning a Bessel process
downward can be understood using the same result.

In Subsection 2.2.1 we treat the case of upward conditioning of local martingales and
in Subsection 2.2.2 the case of downward conditioning. In Section 2.3 we study the
implications of these results for diffusions. In Appendix C we illustrate that conditioning
on a null set (such as the Brownian motion never hitting zero) is highly sensitive with
respect to the approximating sequence of sets.

Relevant literature

The connection of Brownian motion and the three dimensional Bessel process has been
studied in several important and celebrated papers. Most of these studies have focused
on more general statements than this connection only. To provide a complete list of
references is beyond this note. In the following paragraphs, we try to give an overview
of some of the most relevant and influential work in this area.

For a Markov process X, Doob [Doo57] studies its h–transform, where h denotes an
excessive function such that, in particular, h(X) is a supermartingale. Using h(X)/h(X0)
as a Radon-Nikodym density, a new (sub-probability) measure is constructed. Doob
shows, among many other results, that, if h is harmonic (and additionally “minimal,” as
defined therein), the process X converges under the new measure to the points on the
extended real line where h takes the value infinity. In this sense, changing the measure
corresponds to conditioning the process to the event that X converges to these points.
For example, if X is Brownian motion started in 1, then h(x) = x is harmonic and leads
to a probability measure, under which X, now distributed as a Bessel process, tends to
infinity. Our results also yield this observation; furthermore they contain the case of
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2.2. General case: continuous local martingales

non-Markovian processes X that are nonnegative local martingales only.
An analytic proof of the fact that upward conditioned Brownian motion is a three

dimensional Bessel process is given in McKean’s work [McK63] on Brownian excursions.
He shows that if W is a Brownian motion started in 1, if B ∈ Fs, where Fs is the σ–
algebra generated by W up to time s for some s > 0, and if τ0 is the hitting time of 0,
then P (W ∈ B|τ0 > t) → P (X ∈ B) as t → ∞, where X is a three dimensional Bessel
process. The proof is based on techniques from partial differential equations. In that
article, also a path decomposition is given for excursions of Brownian motion in terms of
two Bessel processes, one run forward in time, and the other one run backward. McKean
already generalizes all these results to regular diffusions.

Knight [Kni69] computes the dynamics of Brownian motion conditioned to stay either
in the interval [−a, a] or (−∞, a] for some a > 0, and thus also derives the Bessel
dynamics. To obtain these results, Knight uses a very astute argument based on inverting
Brownian local time. He moreover illustrates the complications arising from conditioning
on null sets by providing an insightful example; we shall present two other examples
based on direct arguments, without the necessity of any computations, in Appendix C
to illustrate this point further.

In his seminal paper on path decompositions, Williams [Wil74] shows that Brownian
motion conditioned not to hit zero corresponds to the Bessel process. His results extend to
diffusions and reach far beyond this observation. For example, he shows that “stitching”
a Brownian motion up to a certain stopping time and a three dimensional Bessel process
together yields another Bessel process. In Pitman and Yor [PY81] this approach is
generalized to killed diffusions. A diffusion process is killed with constant rate and
conditioned to hit infinity before the killing time. This allows the interpretation of a
two-parameter Bessel process as an upward conditioned one-parameter Bessel process.

Pitman [Pit75] proves essentially our Lemma 2.2.1 below in the Brownian case. This is
achieved by approximating the continuous processes by random walks, whose paths can
be counted. For the continuous case, the statement then follows by a weak convergence
argument. The main result of that article is Pitman’s famous theorem that 2W ∗ −W is
a Bessel process if W is a Brownian motion and W ∗ its running maximum.

Baudoin [Bau02] takes a different approach. Given a Brownian motion, a functional Y
of its path and a distribution µ, Baudoin constructs a probability measure under which
Y is distributed as µ. The recent monograph by Roynette and Yor [RY09] studies penal-
izations of Brownian paths, which can be understood as a generalization of conditioned
Brownian motion. Under the penalized measure, the coordinate process can have rad-
ically different behavior than under the Wiener measure. In our example it does not
hit zero. In Roynette and Yor [RY09] there is an example of a penalized measure under
which the supremum process stays almost surely bounded.

2.2. General case: continuous local martingales

Let Ω = Cabs := Cabs(R+, [0,∞]) be the space of [0,∞]–valued functions ω that are
absorbed in 0 and ∞, and that are continuous on [0, τ∞(ω)), where τ∞(ω) denotes the
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first hitting time of ∞ by ω, to be specified below. The reason for considering this space is
that it allows for the application of Parthasarathy’s extension theorem, which we will need
below. Let M be the coordinate process, that is, Mt(ω) = ω(t). Define, for the sake of
notational simplicity, M∞ :=


lim supt→∞Mt lim inft→∞Mt (with ∞ · 0 := 1).1 Denote

the canonical filtration by (Ft)t≥0 with Ft := σ(Ms : s ≤ t), and write F :=

t≥0 Ft. For

all a ∈ [0,∞], define τa as the first hitting time of a, to wit,

τa := inf{t ∈ [0,∞] : Mt = a} (2.1)

with inf ∅ := T, representing a time “beyond infinity.” The introduction of T allows for
a unified approach to treat examples like geometric Brownian motion. We shall extend
the natural ordering to [0,∞] ∪ {T} by t < T for all t ∈ [0,∞]. For all stopping times τ ,
define the σ–algebras Fτ as

Fτ := {A ∈ F : A ∩ {τ ≤ t} ∈ Ft ∀t ∈ [0,∞)}
=σ(M τ

s : s < ∞) = σ(M τ∧τ0
s : s < ∞),

where M τ ≡ M τ∧τ0 is the process M stopped at the stopping time τ . For the equality
between the σ–algebras see Stroock and Varadhan [SV06], Lemma 1.3.3. Let P be
a probability measure on (Ω,F), such that M is a nonnegative local martingale with
P (M0 = 1) = 1.

2.2.1. Upward conditioning

In this section, we study the law of the local martingale M conditioned never to hit zero.
This event can be expressed as

{τ0 = T} =


a∈[0,∞)
{τa ≤ τ0} ⊃


a∈(0,∞]

{τa ∧ τ0 = T}. (2.2)

The core of this chapter is the following simple observation:

Lemma 2.2.1 (Upward conditioning). If P (τa ∧ τ0 < T) = 1 for some a ∈ (1,∞), we
have that

dP (·|τa ≤ τ0) = MτadP.

Proof. Note that M τa is bounded and thus a uniformly integrable martingale. In partic-
ular,

1 = EP (M τa
∞ ) = aP (τa ≤ τ0) + 0,

1Note that this definition differs from the convention in the remainder of this thesis. The definition of
M∞ is not further relevant as M converges (or diverges to infinity) almost surely under all measures
that we shall consider. We chose this definition of M∞ since it commutes with taking the reciprocal
1/M∞.
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which implies that, for all A ∈ F ,

P (A|τa ≤ τ0) = P (A ∩ {τa ≤ τ0})
P (τa ≤ τ0) = P (A ∩ {τa ≤ τ0})

1
a

= EP (M τa
∞ 1A) ,

yielding the statement.

Three different probability measures

Consider three possible probability measures:

1. The local martingale M introduces an h–transform Q of P . This is the unique
probability measure Q on (Ω,F) that satisfies dQ|Fτ = MτdP |Fτ for all stopping
times τ for which M τ is a uniformly integrable martingale. The probability measure
Q is called the Föllmer measure of M , see Föllmer [Föl72] and Meyer [Mey72].2
Note that the construction of this measure does not require the density processM to
be the canonical process on Ω - the extension only relies on the topological structure
of Ω = Cabs. This will be important later, when we consider diffusions. We remark
that, in the case of M being a P–martingale, we could also use a standard extension
theorem, such as Theorem 1.3.5 in Stroock and Varadhan [SV06].

2. If P (τ0 = T) = 0, Lemma 2.2.1 in conjunction with (2.2) directly yields the con-
sistency of the family of probability measures {P (·|τa ≤ τ0)}a>1 on the filtration
(Fτa)a>1. By Föllmer’s construction again, there exists a unique probability mea-
sure Q on (Ω,F), such that Q|Fτa

= P (·|τa ≤ τ0)|Fτa
.

3. If P (τ0 = T) > 0, we can define the probability measure Q(·) := P (·|τ0 = T) via
the Radon-Nikodym derivative 1{τ0=T}/P (τ0 = T).

Since in the case P (τ0 = T) = 0, we have {τa ≤ τ0} =P−a.s. {τa < τ0} for all
a ∈ (0,∞], the measure Q is also called upward conditioned measure since it is constructed
by iteratively conditioning the process M to hit any level a before hitting 0.

Relationship of probability measures

We are now ready to relate the three probability measures constructed above:

Theorem 2.2.2 (Identity of measures). Set p := P (τ0 = T) = P (M∞ > 0). If p = 0,
then Q = Q. If p > 0, then Q = Q if and only if M is a uniformly integrable martingale
with P (M∞ ∈ {0, 1/p}) = 1.

Proof. First, consider the case p = 0. Both Q and Q satisfy, for all a > 1,

d Q|Fτa
= MτadP |Fτa

= dQ|Fτa
.

2See also Delbaen and Schachermayer [DS95a] for a discussion of this measure, Pal and Protter [PP10]
for the extension to infinite time horizons and Carr, Fisher, and Ruf [CFR12] for allowing nonnegative
local martingales.
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Thus, Q and Q agree on

a>1 Fτa =


a>1 σ(M τa

t : t ≥ 0) = F .
Next, consider the case p > 0. Then, Q = Q and d Q/dP |Ft ≤ 1/p imply thatMt ≤ 1/p,

yielding that M is a uniformly integrable martingale with M∞ = dQ/dP ∈ {0, 1/p}. For
the reverse direction, observe that M∞ = 1{τ0=T}/p. This observation together with its
uniform integrability completes the proof.

This theorem implies, in particular, that in finite time the three dimensional Bessel
process cannot be obtained by conditioning a Brownian motion not to hit zero. However,
over finite time horizons, a Bessel-process can be constructed via the h–transform MTdP ,
when M is P–Brownian motion started in 1 and stopped in 0. Over infinite time horizons,
one has two choices; the first one is using an extension theorem for the h–transforms, the
second one is conditioning M not to hit 0 by approximating this null set by the sequence
of events that M hits any a > 0 before it hits 0.

Remark 2.2.3 (Conditioning on null sets). We remark that the interpretation of the
measure Q as P conditioned on a null set requires specifying an approximating sequence
of that null set. In Appendix C we illustrate this subtle but important point.

Remark 2.2.4 (The trans-infinite time T). The introduction of T in this subsection allows
us to introduce the upward-conditioned measure Q and to show its equivalence to the
h–transform Q if M converges to zero but not necessarily hits zero in finite time, such
as P–geometric Brownian motion. If one is only interested in processes as, say, stopped
Brownian motion, then one could formulate all results in this subsection in the standard
way when inf ∅ := ∞ in (2.1). One would then need to exchange T by ∞ throughout
this subsection; in particular, one would have to assume in Lemma 2.2.1 that P (τa∧τ0 <
∞) = 1 and replace the condition P (τ0 = T) = 0 by P (τ0 = ∞) = 0 for the construction
of the upward-conditioned measure Q.

2.2.2. Downward conditioning

In this subsection, we consider the converse case of conditioning M downward instead of
upward. Towards this end, we first provide a well-known result; see for example [CFR12].
For the sake of completeness, we provide a proof.

Lemma 2.2.5 (Local martingale property of 1/M). Under the h–transformed measure
Q, the process 1/M is a nonnegative local martingale and Q(τ∞ = T) = EP (M∞).

Proof. Observe that for s, t ≥ 0 and A ∈ Ft we have

EQ


1A

1
M

τ1/n

t+s


= lim

m→∞
EQ


1A∩{τm>t}

1
M

τ1/n∧τm

t+s


+ EQ


1A∩{τ∞≤t}

1
M

τ1/n

t+s



= lim
m→∞

EP


1A∩{τm>t}

1
M

τ1/n∧τm

t+s
M τm
t+s


+ EQ


1A∩{τ∞≤t}

1
M

τ1/n

t


(2.3)
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2.2. General case: continuous local martingales

Now we consider the two events {τ1/n ≤ t} and {τ1/n > t} separately and used the P–
martingale property of M τm after conditioning on Ft and Fτ1/n

, respectively (note that
A ∩ {τm > t} ∩ {τ1/n > t} ∈ Fτ1/n

), to obtain

EP


1A∩{τm>t}

1
M

τ1/n∧τm

t+s
M τm
t+s


= EP


1A∩{τm>t}

1
M

τ1/n∧τm

t

M τm
t


.

Plugging this back into (2.3), we have

EQ


1A

1
M

τ1/n

t+s


= lim

m→∞
EP


1A∩{τm>t}

1
M

τ1/n∧τm

t

M τm
t


+ EQ


1A∩{τ∞≤t}

1
M

τ1/n

t



= lim
m→∞

EQ


1A∩{τm>t}

1
M

τ1/n∧τm

t


+ EQ


1A∩{τ∞≤t}

1
M

τ1/n

t



= EQ


1A

1
M

τ1/n

t


.

The local martingale property of 1/M then follows from

Q


lim
n→∞

τ1/n < ∞


= lim
m→∞

Q


lim
n→∞

τ1/n < τm ∧ ∞


= lim
m→∞

EP

1{limn→∞ τ1/n<τm}M

τm
∞


= 0.

Therefore, 1/M converges Q–almost surely to some random variable 1/M∞. We observe
that

Q(τ∞ = T) = 1 − lim
m→∞

Q(τm < ∞) = 1 − lim
m→∞

EP (1{τm<∞}M
τm
∞ )

= lim
m→∞

EP (1{τm≥∞}M∞) = EP (M∞),

where we use that M converges P–almost surely, since it is a nonnegative supermartin-
gale.

The last lemma directly implies the following observation.

Corollary 2.2.6 (Mutual singularity). We have P (M∞ = 0) = 1 if and only if Q(M∞ =
∞) = 1.

This observation is consistent with our understanding that either condition implies that
the two measures are supported on two disjoint sets. Corollary 2.2.6 is also consistent
with Theorem 2.2.2, which yields that P (M∞ = 0) = 1 implies the identity Q = Q,
where Q denotes the upward conditioned measure.

Lemma 2.2.5 indicates that we can condition M downward under Q, corresponding to
conditioning 1/M upward. The proof of the next result is exactly along the lines of the
arguments in Subsection 2.2.1; however, now with the Q–local martingale 1/M taking
the place of the P–local martingale M .

63



2. Conditioned martingales

Theorem 2.2.7 (Downward conditioning). If p of Theorem 2.2.2 satisfies p = 0, then

dQ(·|τ1/a ≤ τ∞) = 1
Mτ1/a

dQ

for all a > 1. In particular, there exists a unique probability measure P , such thatP |Fτ1/a
= Q(·|τ1/a < T); in fact, P = P .

2.3. Diffusions

In this section, we apply Theorems 2.2.2 and 2.2.7 to diffusions.

2.3.1. Definition and h-transform for diffusions

We call diffusion any time-homogeneous strong Markov process X : Cabs × [0,∞) → [ℓ, r]
with continuous paths in a possibly infinite interval [ℓ, r] with −∞ ≤ ℓ < r ≤ ∞. Note
that we explicitly allow X to take the values ℓ and r; we stop X once it hits the boundary
of [ℓ, r]. We define τa for all a ∈ [ℓ, r] as in (2.1) with M replaced by X. We denote the
probability measure under which X0 = x ∈ [ℓ, r] by Px.

Since X is Markovian it has an infinitesimal generator (see page 161 in Ethier and
Kurtz [EK86]). As we do not assume any regularity of the semigroup of X, we find it
convenient to work with the following extended infinitesimal generator : A continuous
function f : [ℓ, r] → R∪ {−∞,∞}, such that f restricted to R only takes finite values, is
in the domain of the extended infinitesimal generator L of X if there exists a continuous
function g : [ℓ, r] → R ∪ {−∞,∞}, such that g restricted to R only takes finite values,
and an increasing sequence of stopping times (ρn), such that Px(limn→∞ ρn ≥ τℓ∧τr) = 1
and

f(Xρn
· ) − f(x) −

 ·∧ρn

0
g(Xs)ds

is a Px–martingale for all x ∈ (ℓ, r). In that case we write f ∈ dom(L) and Lf = g.
Throughout this section we shall work with a regular diffusion X; that is, for all

x, z ∈ (ℓ, r) we have that Px(τz < ∞) > 0. In that case there always exists a continuous,
strictly increasing function s : (ℓ, r) → R∪{−∞,∞}, uniquely determined up to an affine
transformation, such that s(X) is a local martingale (see Propositions VII.3.2 and VII.3.5
in Revuz and Yor [RY99]). We call every such s a scale function for X, and we extend
its domain to [ℓ, r] by taking limits. The next result summarizes Proposition VII.3.2 in
[RY99] and describes the relationship of the scale function s and the limiting behavior of
X:

Lemma 2.3.1 (Scale function). We have

1. Px(τℓ = T) = 0 for one (and then for all) x ∈ (ℓ, r) if and only if s(ℓ) ∈ R and
s(r) = ∞;

64



2.3. Diffusions

2. Px(τr = T) = 0 for one (and then for all) x ∈ (ℓ, r) if and only if s(ℓ) = −∞ and
s(r) ∈ R;

3. Px(τℓ ∧ τr = T) = 0 and Px(τℓ < T) ∈ (0, 1) for one (and then for all) x ∈ (ℓ, r) if
and only if s(ℓ) ∈ R and s(r) ∈ R.

Throughout this section, we shall work with the standing assumption that the scale
function s satisfies s(ℓ) > −∞ (Assumption L) or s(r) < ∞ (Assumption R). Without
loss of generality, we shall assume that then s(ℓ) = 0 or s(r) = 0, respectively, and that
F = Fτℓ∧τr .

Since by assumption s(X) is a local martingale, it defines, under each Px, a Föllmer
measure Qx as in Section 2.2, where we would set M := s(X)/s(x), for all x ∈ [ℓ, r] (with
0/0 := ∞/∞ := 1, again contrary to the convention in the remainder of this thesis). The
following proposition illustrates how the extended infinitesimal generators of X under Px
and Qx are related:

Proposition 2.3.2 (h–transform for diffusions). The process X is a regular diffusion
under the probability measures {Qx}x∈[ℓ,r]. Its extended infinitesimal generator Ls under
{Qx}x∈[ℓ,r] is given by dom(Ls) = {ϕ : sϕ ∈ dom(L)} and

Lsϕ(x) = 1
s(x)L[sϕ](x).

Proof. We only discuss the case s(ℓ) = 0 since the case s(r) = 0 is treated in the same
way. In order to show the Markov property of X under Qx, we need to prove that

EQx(f(Xρ+t)|Fρ) = EQx(f(Xρ+t)|Xρ)

for all t ≥ 0, for all bounded and continuous functions f : [ℓ, r] → R, and for all finite
stopping times ρ. On the event {ρ ≥ τr}, the equality holds trivially as X gets absorbed
in ℓ and r. On the event {ρ < τr}, observe that

EQx(f(Xρ+t)|Fρ) = lim
a→r−

EQx(f(Xτa
ρ+t)|Fρ)

= lim
a→r−

EQx(f(Xτa
ρ+t)|Xτa

ρ ) = EQx(f(Xρ+t)|Xρ),

where the second equality follows from the generalized Bayes’ formula in Proposition C.2
in [CFR12] and the Markov property of Xτa under Px. Therefore, X is strongly Marko-
vian under Qx. Since X is also time-homogeneous under any of the measures Qx, we
have shown that X is a diffusion under {Qx}x∈[ℓ,r].

As for the regularity, fix a ∈ (ℓ, x) and b ∈ (x, r). Observe thatQx is equivalent to Px on
Fτa∧τb

. This fact in conjunction with the regularity of X under P and Proposition VII.3.2
in [RY99] yields that Qx(τa < ∞) > 0 as well as Qx(τb < ∞) > 0.

Denote now the extended infinitesimal generator of X under {Qx}x∈[ℓ,r] by G, let
ϕ ∈ dom(G) with localizing sequence (ρn)n∈N, and fix x ∈ (ℓ, r). Fix two sequences
(an)n∈N and (bn)n∈N with an → ℓ+ and bn → r− as n → ∞. We may assume, without loss
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2. Conditioned martingales

of generality, that ρn ≤ τan ∧ τbn . By definition of the extended infinitesimal generator,

ϕ(Xρn
· ) − ϕ(x) −

 ·∧ρn

0
Gϕ(Xs)ds

is a Qx–martingale. Since ϕ(·) and Gϕ(·) are bounded on [an, bn] this fact, in conjunction
with Fubini’s theorem, yields that

1
s(x)


ϕ(Xρn

· )s(Xρn
· ) − ϕ(x)s(x) −

 ·∧ρn

0
Gϕ(Xρn

u )s(Xρn
u )du


is a Px–martingale. Since (ρn)n∈N converges Px–almost surely to τℓ ∧ τr for all x ∈ (ℓ, r)
this implies that ϕs ∈ dom(L) and L[sϕ](x) = Gϕ(x)s(x). The other inclusion can be
shown in the same manner, which completes the proof.

The following observation is a direct consequence of Lemma 2.2.5 and the fact that X
is a regular diffusion under the probability measures {Qx}x∈[ℓ,r]:

Lemma 2.3.3 (Scale function for h–transform). Under {Qx}x∈[ℓ,r], the function s(·) =
−1/s(·) is, with the appropriate definition of 1/0, a scale function for X with s(ℓ) = −∞,s(r) ∈ R under Assumption L and with s(r) = ∞, s(ℓ) ∈ R under Assumption R.

2.3.2. Conditioned diffusions

We now are ready to formulate and prove a version of the statements of Section 2.2 for
diffusions.

Corollary 2.3.4 (Conditioning of diffusions). Fix x ∈ (ℓ, r) and make Assumption L.

1. Suppose that Px(τℓ = T) = 0, which is equivalent to s(r) = ∞. Then the fam-
ily of probability measures {Px(·|τa ≤ τℓ)|Fτa

}x<a<r is consistent and thus has an
extension Qx on F . Moreover, the extension satisfies Qx = Qx.

2. Suppose that Px(τℓ = T) > 0, which is equivalent to s(r) < ∞, and define Qx =
Px(·|τℓ = T). Then Qx satisfies Qx = Qx.

Furthermore, provided that s(r) = ∞, the family {Qx(·|τa ≤ τr)|Fτa
}ℓ<a<x of probabil-

ity measures is consistent. Its unique extension is Px.
Under Assumption R, all statements still hold with r replaced with ℓ and, implicitly,

x < a < r replaced with ℓ < a < x.

Proof. We only consider the case of Assumption L, as Assumption R requires the same
arguments. We write M = s(X)/s(x). The hitting times σa of M are defined as in (2.1).
Since s is strictly increasing, we have that, for all x < a < r,

{τa ≤ τℓ} = {σs(a)/s(x) ≤ σ0}.
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2.3. Diffusions

Since M is a nonnegative local martingale with Px(M0 = 1) = 1, the statements in
1. and 2. follow immediately from Theorem 2.2.2 and Lemma 2.3.1, which shows that
s(X)∞ takes exactly two values. The remaining assertions follow from Lemma 2.3.3 and
Theorem 2.2.7.

It is clear that the measure Q under Assumption L corresponds to the upward con-
ditioned diffusion X, while under Assumption R it corresponds to the downward condi-
tioned diffusion.

After finishing this work, we learned about Kardaras [Kar10b]. Therein, by similar
techniques it is shown that X under Q tends to infinity if s(r) = ∞; see Section 6.2 in
[Kar10b]. In Section 5 therein, a similar probability measure is constructed for a Lévy
process X that drifts to −∞. After a change of measure of the form s(X) for a harmonic
function s, the process X under the new measure drifts to infinity.

2.3.3. Explicit generators

Here we formally derive the dynamics of upward conditioned and downward conditioned
diffusions. For this purpose suppose that X is a diffusion with extended infinitesimal
generator L, such that dom(L) ⊇ C2, where C2 denotes the space of twice continuously
differentiable functions on (ℓ, r), and

Lϕ(x) = b(x)ϕ′(x) + 1
2a(x)ϕ′′(x), ϕ ∈ C2

for some locally bounded, measurable functions b and a such that a(x) > 0 for all
x ∈ (ℓ, r).

Finding the scale function then at least formally corresponds to solving the linear
ordinary differential equation

b(x)s′(x) + 1
2a(x)s′′(x) = 0. (2.4)

This is for example done in Section 5.5.B of Karatzas and Shreve [KS88]. From now on,
we continue under either Assumption L or Assumption R, with s being either nonnegative
or nonpositive. We plug s into the definition of Ls. Towards this end, let ϕ ∈ C2. Then
we have

Lsϕ(x) = 1
s(x)L(sϕ)(x) = 1

s(x)


b(x)(sϕ)′(x) + 1

2a(x)(sϕ)′′(x)


= 1
s(x)


b(x)(s′(x)ϕ(x) + s(x)ϕ′(x))

+ 1
2a(x)(s′′(x)ϕ(x) + 2s′(x)ϕ′(x) + s(x)ϕ′′(x))


=

b(x) + a(x)s′(x)

s(x)


ϕ′(x) + 1

2a(x)ϕ′′(x),
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2. Conditioned martingales

since s′′ = −2(b/a)s′ due to (2.4). Therefore, the upward or downward conditioned pro-
cess has an additional drift of (as′)/s. This drift is always positive (or always negative),
as is to be expected.

Now, under Assumption L (upward conditioning) with ℓ = 0, if b = 0, then s(x) =
x; therefore the additional drift of the upward conditioned diffusion is a(x)/x. Under
Assumption R (downward conditioning) with ℓ = 0 and r = ∞, if b(x) = a(x)/x,
then (2.4) yields s(x) = − 1

x and thus an additional drift of −a(x)/x = −b(x). These
observations lead to the following well-known fact.

Corollary 2.3.5 ((Geometric) Brownian motion). A Brownian motion conditioned on
hitting ∞ before hitting 0 is a three dimensional Bessel process. Vice versa, a three
dimensional Bessel process conditioned to hit 0 is a Brownian motion. Moreover, a
geometric Brownian motion conditioned on hitting ∞ before hitting 0 is a geometric
Brownian motion with unit drift.

68



3. Pathwise integration in model free
finance

Here we use Vovk’s [Vov12] pathwise, hedging based approach to finance to describe
“typical price paths”. Roughly speaking, a property (P) holds for typical price paths if
it is possible to make an arbitrarily large profit by investing in those paths where (P)
is violated, without ever risking to lose much. This can be interpreted as a model free
version of the (NA1) property. Just as we can dismiss stochastic models that violate
(NA1) because they always lead to infinite utility, we can dismiss sets of paths that allow
an investor to make too much profit. We show that for typical price paths it is possible
to define a pathwise Itô type integral. We also indicate that typical price paths can be
used as integrators in Lyons’s theory of rough paths.

3.1. Motivation

We saw in Chapter 1 that (NA1) (see Definition 1.1.1) is a natural condition to impose
on an asset price model, because it is equivalent to the existence of a non-degenerate
utility maximization problem (see Proposition 1.2.2). We also saw that (NA1) is rather
robust under changes in the information structure (see Section 1.5). It is also preserved
when switching to an equivalent probability measure. However, (NA1) may be violated
after passing to an absolutely continuous measure, see Example 1.4.14. Another example
is S0 = 1 and P (S1 = 0) = P (S1 = 2) = 1/2: the process S is a martingale, and
dQ = S1dP is absolutely continuous with respect to P . But S violates both (NA) and
(NA1) under Q. Since (NA1) may already fail when passing to an absolutely continuous
probability measure, there is no hope to show that (NA1) is preserved when passing to
a singular measure Q.

Of course in practice the probability measure P that describes the statistical behavior
of the asset price process is usually not known with absolute certainty. Therefore, in
recent years there has been a lot of interest in mathematical finance under model uncer-
tainty, where one has to argue simultaneously for uncountably many mutually singular
probability measures, and in model free finance, where one does not assume any statis-
tical knowledge about the asset price process. A model free formulation of the (NA1)
property, that we will work with below, was given by Vovk [Vov12].

Maybe the simplest example of model uncertainty is given by the Black-Scholes model
under volatility uncertainty. Here it is assumed that the (discounted) price process of a
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3. Pathwise integration in model free finance

given asset is described by a geometric Brownian motion with drift,

dSσt = Sσt (σdWt + bdt),

where W is a one dimensional standard Brownian motion, and where σ > 0 and b ∈ R.
In contrast to the classical theory, here it is not assumed that the volatility σ is known.
Rather it is assumed that σ lies in some interval [a, c] for 0 < a < c. Note that if P σ is a
probability measure on C([0, T ],R) for which the coordinate process has the distribution
of Sσ, then P σ1 and P σ2 are mutually singular for σ1 ̸= σ2. The reason for only keeping
track of σ lies in the fact that the prices for European options on Sσ are independent of
b, because the martingale measure for Sσ does not depend on b.

One of the basic problems in mathematical finance is to calculate “fair” prices for
financial derivatives of the underlying asset price process S. The minimal superhedging
price of a derivative (i.e. a random variable) F is defined as

p(F ) := inf

λ ∈ R : ∃H ∈ Hλ : λ+

 T

0
HsdSs ≥ F a.s.


, (3.1)

where we denote by Hλ the λ–admissible strategies, i.e. all H for which the stochastic
integral H · S exists and satisfies (H · S)t ≥ −λ for all t ∈ [0, T ]. It can be shown that
under suitable conditions

p(F ) = sup{EQ(F ) : Q is an equivalent local martingale measure for S}.

In order to obtain a similar result under volatility uncertainty, we first have to define
superhedging prices in this context. It would be natural to replace the “a.s.” assumption
in (3.1) by “a.s under every P σ, σ ∈ [a, c]”. But then the stochastic integral (H · S)T
has to be constructed simultaneously under all the measures P σ. First results in this
direction have been obtained by [ALP95] and [Lyo95]. In recent years, such problems
have been tackled with the help of “quasi-sure analysis”, see for example [DM06].

The mutual singularity of the measure P σ for different values of σ requires new tech-
niques to handle the stochastic integrals against general (not necessarily simple) inte-
grands. Such integrals are needed to develop a sufficiently strong theory of mathematical
finance under model uncertainty. But in the model uncertainty context we can essentially
still rely on Itô’s integration techniques, because while we have to deal with many proba-
bility measures at once, the price process is a semimartingale under every given measure.
Model free mathematical finance no longer assumes any model structure. Instead it is
assumed that some basic facts about the financial market are known (for example some
European call and put prices), and the aim is to calculate all prices for a given derivative
that are compatible with these known facts.

In [BHLP11] it is assumed that S = (St)t=0,...,T is a discrete time process, and that
the prices for all European call options with payoff (St −K)+ for 0 ≤ t ≤ T and K ∈ R
are known. This determines the marginal distribution µt of St for 0 ≤ t ≤ T under
every compatible pricing measure, but not the joint distribution (S0, S1, . . . , ST ). The
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3.1. Motivation

aim in [BHLP11] is to calculate the arbitrage free prices of a path-dependent derivative
ϕ(S0, . . . , ST ), where ϕ : RT+1 → R is a given function. A real number p is called
subhedging price for ϕ if there exists a strategy with initial capital p that invests in S
and in European call options on St, t = 1, . . . , T , such that the payoff generated by this
strategy if (S0, . . . , ST ) = (s0, . . . , sT ) ∈ RT+1 is bounded from above by ϕ(s0, . . . , sT ).
This has to hold for all (s0, . . . , sT ) ∈ RT+1, in contrast to the classical theory, where
such an inequality has to be satisfied only almost surely. Their main result, shown by
using techniques from optimal transport, is that the maximal subhedging price for ϕ is
equal to the minimal martingale expectation of ϕ, i.e. to infQEQ(ϕ(S0, . . . , ST )), where
Q runs through all probability measures on RT+1, with marginals lawQ(St) = µt, that
make S a martingale.

Since S is a discrete time process, here the stochastic integrals do not pose any problem
and can be defined pathwise. In continuous time however, it is not a priori clear how
to define stochastic integrals without a probability measure. In [DS12] this problem is
resolved by only considering strategies that are of bounded variation, so that the integrals
can be defined in a pathwise sense, for example by formally applying integration by parts.
In [DOR13], Föllmer’s pathwise Itô calculus [Föl79] is used to define pathwise stochastic
integrals.

Föllmer assumes that S is a continuous real-valued path, and that the quadratic vari-
ation of S exists along a given sequence of partitions πn = {tn0 , . . . , tnNn

} of [0, T ], i.e.
that

[S, S]n(t) :=
Nn−1
k=0

(St∧tn
k+1

− St∧tn
k
)2

converges for every t ∈ [0, T ] to a limit [S, S](t) as n → ∞. Of course the mesh size of
the partition, maxk=1,...,Nn |tnk+1 − tnk |, should converge to zero as n tends to ∞. Föllmer
shows that under these assumptions, if F ∈ C1(R,R), then the non-anticipating Riemann
sums

Nn
k=1

F (Stn
k
)(Stn

k+1∧t − Stn
k

∧t)

converge to a limit that we denote by
 t

0 F (Ss)dSs. This is an analytical result, and the
obtained integral satisfies Itô’s formula. It is possible to generalize Föllmer’s result into
various directions. For example, continuity is not actually necessary. It suffices that S
is càdlàg. In [DOR13] it is shown, building on the unpublished diploma thesis [Wue80],
that it is possible to take F only weakly differentiable, with a derivative in L2([0, T ]).
This requires a notion of pathwise local time. It is also possible to take a path-dependent
functional F , see [CF10]. However, a basic limitation of Föllmer’s pathwise integral
is that it can essentially only handle one dimensional integrators. It is also possible to
consider integrators with values in Rd, but in that case F must be a gradient, i.e. F = ∇ϕ
for some ϕ : Rd → R.
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3. Pathwise integration in model free finance

Lyons’ theory of rough paths [Lyo98] is somewhat similar in spirit to Föllmer’s pathwise
Itô calculus, but it reaches far beyond that, and also works in the multi dimensional
case. Lyons does not assume that the quadratic variation of S exists, but rather that the
iterated integrals  t

0
SisdSjs


1≤i,j≤d

can be constructed, and that S and its integrals are sufficiently regular. Since

[Si, Sj ](t) = SitS
j
t − Si0S

j
0 −

 t

0
SisdSjs −

 t

0
SjsdSis, (3.2)

this is a more restrictive assumption than the one made by Föllmer. Lyons [Lyo98]
and Gubinelli [Gub04] are then able to construct integrals of the type

 t
0 GsdSs if G

is controlled by S. For further details see Section 4.2.2 below, but let us remark here
that for example G = F (S·) is controlled by S if F ∈ C2(Rd,Rd). Lyons [Lyo98] also
shows that the Itô-Lyons map, which maps a path S to the solution to an SDE of the
form dXt = F (Xt)dSt, depends continuously on S and its iterated integrals in a suitable
topology, and that it is impossible to find a topology on a path space (without equipping
paths with their iterated integrals), such that the space contains typical sample paths
of Brownian motion, and such that the Itô-Lyons map is continuous. Moreover, while
Föllmer’s approach can only handle the “semimartingale setting”, where S has finite
(2 + ε)–variation for every ε > 0, Lyons’ approach allows S to have arbitrarily low
regularity (finite p–variation for some p < ∞), provided that sufficiently many iterated
integrals of S are given.

Let us also remark that (3.2) shows that the symmetric part of (
 t

0 S
i
sdSjs)1≤i,j≤d can

be recovered from St and [S, S](t). If now F is a smooth function and n ∈ N∗, then

 t

0
F (Ss)dSs =

n−1
k=0

 (k+1)t
n

kt
n

F (Ss)dSs

≃
n−1
k=0

 (k+1)t
n

kt
n


F (S kt

n
) +

d
i=1

∂xiF (S kt
n

)(Sis − Sikt
n

)


dSs

=
n−1
k=0

F (S kt
n

)(S (k+1)t
n

− S kt
n

) +
d

i,j=1
∂xiF

j(S kt
n

)
 (k+1)t

n

kt
n

(Sis − Sikt
n

)dSjs

 . (3.3)

Rough path theory is essentially built on this heuristic argument. We see that the
second term in the last line depends on the iterated integrals of S. However, if F = ∇ϕ
for some smooth ϕ, then the derivative of F is the Hessian of ϕ, and therefore it is
symmetric, i.e. ∂xiF

j = ∂xjF
i. So in that case the last addend in (3.3) only depends

on the symmetric part of the iterated integrals of S, which, as we argued above, can
be reconstructed from S and its quadratic variation. Therefore, it is not surprising that
Föllmer can integrate gradients given only the quadratic variation of the integrator, but
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3.2. Superhedging and typical price paths

not its iterated integrals.
To summarize, Lyons’ theory of rough paths allows to extend Föllmer’s pathwise Itô

integral to the multidimensional case, and it gives pathwise continuity results for the
solutions to SDEs.

In a recent series of papers, Vovk [Vov11, Vov12] has introduced a model free, hedging
based approach to mathematical finance that uses arbitrage considerations to examine
which properties are satisfied by “typical price paths”. One of the most important results
is that typical price paths are either constant, or they possess a nontrivial quadratic
variation. This gives an axiomatic justification for the use of Föllmer’s pathwise Itô
calculus in model free finance. Here we construct the iterated integrals of typical prices
paths, giving the first steps towards an axiomatic justification for the use of rough path
integrals in model free finance. To complete the argument, it is still necessary to show
that the iterated integrals are sufficiently regular, which will be done in the upcoming
work [PP13].

In Section 3.2 we define an outer content and introduce the notion of “typical price
paths”. In Section 3.3 we construct an Itô type integral that converges for typical price
paths. We also indicate that typical price paths can be taken as integrators for the rough
path integral.

3.2. Superhedging and typical price paths

Vovk’s hedging based, model free approach to finance [Vov12] is based on a notion of
outer content, which is given by the cheapest superhedging price.

Let T > 0 and let Ω = C([0, T ],Rd) be the space of d–dimensional continuous paths.
The filtration (Ft)t∈[0,T ] is defined as Ft := σ(Xs : s ≤ t), where Xs(ω) = ω(s) denotes
the coordinate process, and we set F := FT . Stopping times τ and the associated σ–
algebras Fτ are defined as usually. A process H : Ω × [0, T ] → Rd is called a simple
strategy if there exist stopping times 0 = τ0 < τ1 < . . . , such that for every ω ∈ Ω we
have τn(ω) = ∞ for all but finitely many n, and bounded functions Fn : Ω → Rd, n ∈ N,
such that Fn is Fτn–measurable for every n, for which

Ht(ω) =
∞
n=0

Fn(ω)1(τn(ω),τn+1(ω)](t).

In that case the integral

(H · ω)t =
∞
n=0

Fn(ω)(ω(t ∧ τn+1(ω)) − ω(t ∧ τn(ω)))

is well defined for every ω ∈ Ω and every t ∈ [0, T ]. Here Fn(ω)(ω(t ∧ τn+1(ω)) − ω(t ∧
τn(ω))) denotes the usual inner product on Rd.

Let λ > 0. A simple strategy H is called λ–admissible if (H · ω)t ≥ −λ for all ω ∈ Ω
and all t ∈ [0, T ]. The set of λ–admissible simple strategies is denoted by Hλ,s.
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3. Pathwise integration in model free finance

Definition 3.2.1. The outer content of A ⊆ Ω is defined as the cheapest superhedging
price,

P (A) := inf

λ > 0 : ∃ (Hn)n∈N ⊆ Hλ,s s.t.

lim inf
n→∞

(λ+ (Hn · ω)T ) ≥ 1A(ω) ∀ω ∈ Ω

.

A set of paths A ⊆ Ω is called a null set if it has outer content zero.

Remark 3.2.2. By definition, every Itô stochastic integral is the limit of stochastic in-
tegrals against simple functions. Therefore, our definition of a superhedging price is
essentially the same as in the classical setting, see (3.1). However, there is one important
difference: Here we require superhedging with respect to all ω ∈ Ω, and not just almost
surely.

Remark 3.2.3. Our definition is not quite the same as Vovk’s. See Section 3.2.1 below
for a discussion.

Remark 3.2.4 ([Vov12], p. 564). An equivalent definition of P would be

P (A) := inf

λ > 0 : ∃ (Hn)n∈N ⊆ Hλ,s s.t.

lim inf
n→∞

sup
t∈[0,T ]

(λ+ (Hn · ω)t) ≥ 1A(ω) ∀ω ∈ Ω

.

Clearly P ≤ P . To see the opposite inequality, let P (A) < λ. Let (Hn)n∈N ⊂ Hλ,s be
a sequence of simple strategies such that lim infn→∞ supt∈[0,T ](λ + (Hn · ω)t) ≥ 1A(ω),
and let ε > 0. Define τn(ω) := inf{t ∈ [0, T ] : λ+ ε+ (Hn · ω)t ≥ 1}. Then the stopped
strategy Gnt (ω) := Hn

t (ω)1[0,τn(ω))(t), t ∈ [0, T ], is in Hλ,s ⊆ Hλ+ε,s, and

lim inf
n→∞

(λ+ ε+ (Gn · ω)T ) ≥ lim inf
n→∞

1{ω′:λ+ε+supt∈[0,T ](Hn·ω′)t≥1}(ω) ≥ 1A(ω).

Therefore, P (A) ≤ λ + ε, and since ε > 0 was arbitrary, we conclude that P ≤ P and
therefore P = P .

Lemma 3.2.5. The outer content P is countably subadditive. That is, if (An)n∈N is a
sequence of subsets of Ω, then P (


nAn) ≤


n P (An).

Proof. Write pn := P (An) for n ∈ N. Let ε > 0 and let (Hn,m)m∈N be a sequence
of (pn + ε2−n)–admissible simple strategies such that lim infm→∞(pn + ε2−n + (Hn,m ·
ω)T ) ≥ 1An(ω) for all ω ∈ An. Define for m ∈ N the 1–admissible simple strategy
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3.2. Superhedging and typical price paths

Gm :=
m
n=0H

n,m. Let k ∈ N. Then by Fatou’s lemma

lim inf
m→∞

 ∞
n=0

pn + 2ε+ (Gm · ω)T


=

∞
n=0

pn + 2ε+ lim inf
m→∞

m
n=0

(Hn,m · ω)T

≥
k

n=0
(pn + ε2−n + lim inf

m→∞
(Hn,m · ω)T )

≥ 1k

n=0 An
(ω).

Since the left hand side does not depend on k, we can replace 1k

n=0 An
by 1

n
An

, and
the proof is complete.

Maybe the most important property of P is that there exists an arbitrage interpretation
for sets with outer content zero:
Lemma 3.2.6. A set A ⊆ Ω is a null set if and only if there exists a sequence of
1–admissible simple strategies (Hn)n ⊂ H1,s, such that

lim inf
n→∞

(1 + (Hn · S)T ) ≥ ∞ · 1A(ω), (3.4)

where we set ∞ · 0 = 0.
Proof. If such a sequence exists, then we can scale it down by an arbitrary factor ε > 0
to obtain a sequence of strategies in Hε,s that superhedge A. Therefore, P (A) = 0.

If conversely P (A) = 0, then for every n ∈ N there exists a sequence of simple strategies
(Hn,m)m∈N ⊂ H2−n−1,s such that 2−n−1 + lim infm→∞(Hn,m ·ω)T ≥ 1A(ω) for all ω ∈ Ω.
For m ∈ N we define Gm :=

m
n=0H

n,m, so that Gm ∈ H1,s. For k ∈ N we obtain

lim inf
m→∞

(1 + (Gm · ω)T ) ≥ lim inf
m→∞

m
n=0

(2−n−1 + (Hn,m · ω)T )

≥
k

n=0
(2−n−1 + lim inf

m→∞
(Hn,m · ω)T ) ≥ k1A(ω).

Since the left hand side does not depend on k, the sequence (Gm) satisfies (3.4).

Remark 3.2.7. We interpret (3.4) as a model free version of the (NA1) property. More
precisely, we interpret a set of paths A ⊆ Ω where (3.4) is satisfied as a model free
arbitrage opportunity of the first kind.

We say that a property (P) holds for typical price paths if the set A where (P) is violated
is a null set. In other words, if (P) holds for typical price paths, then it is possible to make
an arbitrarily large profit by investing in paths that violate (P), without ever risking to
lose more than the initial capital 1.

We can relate this model free notion of (NA1) to the classical (NA1) property. Every
set of paths with outer content zero is in fact a “universal null set” that has measure zero
under every probability measure for which the coordinate process satisfies (NA1).
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3. Pathwise integration in model free finance

Proposition 3.2.8. Let A ∈ F be a null set, and let P be a probability measure on
(Ω,F) such that the coordinate process satisfies (NA1). Then P (A) = 0.

Proof. Let (Hn)n∈N be a sequence of 1–admissible simple strategies such that for all
ω ∈ A we have limn→∞(Hn · ω)T = ∞. For every c > 0 we obtain

P (A) = P

A ∩ {ω : lim inf

n→∞
(Hn · ω)T > c}


≤ P

A ∩


n≥0


k≥n

{ω : (Hk · ω)T > c}


= lim

n→∞
P

A ∩


k≥n

{ω : (Hk · ω)T > c}


≤ sup

H∈H1,s

P ({ω : (H · ω)T > c}).

By assumption, the right hand side converges to 0 as c → ∞, and therefore P (A) = 0.

Remark 3.2.9. The proof shows that the measurability assumption on A can be relaxed:
if P (A) = 0, then A is contained in a measurable set of the form {ω : limn→∞(Hn ·ω)T =
∞}, and this set has P–measure zero for every P under which the coordinate process
satisfies (NA1). Therefore, A is contained in the P–completion of F , and gets assigned
mass 0 by the unique extension of P to the completion.

Corollary 3.2.10. Let A ∈ F be a null set, and let P be a probability measure on (Ω,F)
such that the coordinate process is a P–local martingale. Then P (A) = 0.

If under P the coordinate process satisfies only (NA) but not (NA1), then we do not
expect that P (A) = 0 for every A ∈ F with P (A) = 0.

3.2.1. Relation to Vovk’s outer content

Our definition of the outer content P is not exactly the same as Vovk’s [Vov12]. We
find the definition given above more intuitive, but since we rely on some of the results
established by Vovk, let us compare the two notions.

For λ > 0 we define the set of processes

Sλ :=
 ∞
k=0

Hk : Hk ∈ Hλk,s, λk > 0,
∞
k=0

λk = λ


.

For every G =

k≥0H

k ∈ Sλ, every ω ∈ Ω, and every t ∈ [0, T ], the integral

(G · ω)t :=

k≥0

(Hk · ω)t =

k≥0

(λk + (Hk · ω)t) − λ
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3.2. Superhedging and typical price paths

is well defined and takes values in [−λ,∞]. Vovk then defines for A ⊆ Ω the cheapest
superhedging price as

Q(A) := inf{λ > 0 : ∃G ∈ Sλ s.t. λ+ (G · ω)T ≥ 1A(ω) ∀ω ∈ Ω}.

It is easy to see that P is dominated by Q:

Lemma 3.2.11. Let A ⊆ Ω. Then P (A) ≤ Q(A).

Proof. Let G =

kH

k, with Hk ∈ Hλk,s, and

k λk = λ, and assume that λ+(G ·ω)T ≥

1A(ω). Then (
n
k=0H

k)n∈N defines a sequence of simple strategies in Hλ,s, such that

lim inf
n→∞


λ+

 n
k=0

Hk


· ω

T


= λ+ (G · ω)T ≥ 1A(ω).

So if Q(A) < λ, then also P (A) ≤ λ, and therefore P (A) ≤ Q(A).

Remark 3.2.12. At least it is not easy to show that P = Q. Therefore it seems like we
obtain a weaker result in Section 3.3, when we prove that a set A satisfies P (A) = 0,
compared to showing that it satisfies Q(A) = 0. But actually we will (implicitly) work
with a third notion of outer content, R, defined as

R(A) := inf
 ∞
n=0

S(An) : A ⊆

n∈N

An


,

where

S(A) := inf{λ > 0 : ∃H ∈ Hλ,s s.t. λ+ (H · ω)T ≥ 1A(ω)},

and we will show R(A) = 0. Since P and Q are countably subadditive, it is easy to see
that they are both controlled by R.

Recall that for p ≥ 1 the p–variation ∥·∥p−var of a path f : [0, T ] → Rd is defined as

∥f∥p−var := sup




n
k=1

|f(tk) − f(tk−1)|p
1/p

: 0 = t0 < · · · < tn = T, n ∈ N

 .
Corollary 3.2.13. For every p > 2, the set Ap := {ω ∈ Ω : ∥ω∥p−var = ∞} has outer
content zero, i.e. P (Ap) = 0.

Proof. It is shown in Theorem 1 of Vovk [Vov08] that Q(Ap) = 0, so the result follows
from Lemma 3.2.11.

It is a remarkable result of [Vov12] that if Ω = C([0,∞),R) (i.e. if the asset price
process is one dimensional), and if A ⊆ Ω is “invariant under time changes” and such
that ω(0) = 0 for all ω ∈ A, then A ∈ F , and Q(A) = µ(A), where µ denotes the Wiener
measure. This can be interpreted as a pathwise Dambis / Dubins-Schwarz theorem.
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3. Pathwise integration in model free finance

3.3. A pathwise Itô integral for typical price paths

Here we give a pathwise construction of an Itô type integral for typical price paths in
C([0, T ],Rd). The integral is in the spirit of Karandikar [Kar95]. If H is a suitable
process, then we define a sequence of stopping times (τnk )n,k∈N, such that {τnk : k ∈ N} ⊆
{τn+1
k : k ∈ N} for all n ∈ N, and such that the mesh size supk∈N |τnk+1(ω) − τnk (ω)|

converges to zero for every ω ∈ Ω, except possibly on intervals where ω is constant. We
will then construct a sequence of simple 1–admissible strategies (Gn), such that for every
ω ∈ Ω either the Riemann sums

∞
k=0

Hτn
k

(ω)(ω(τnk+1 ∧ ·) − ω(τnk ∧ ·))

converge uniformly, or (Gn · ω)T diverges to ∞. This proves that for typical price paths
the integral (H · ω) can be defined as a continuous function.

Definition 3.3.1. A process H : Ω × [0, T ] → Rd is called càdlàg if t →→ Ht(ω) is càdlàg
for every ω ∈ Ω. The process is called adapted if ω →→ Ht(ω) is Ft–measurable for every
t ∈ [0, T ]. For p ≥ 1 it is called p–variation preserving if t →→ Ht(ω) has finite p–variation
for every ω with finite p–variation.

Recall that if H is càdlàg and adapted, and if τ is a stopping time, then Hτ1{τ≤T} is
Fτ–measurable; see for example [JS03], Proposition 1.1.21.

Let now H be a càdlàg and adapted process and let n ∈ N. We define a sequence of
stopping times (τnk )k∈N by τn0 := 0, and for k ∈ N

τnk+1 := inf{t ∈ [τnk , T ] : |Ht(ω) −Hτn
k

(ω)| + |ω(t) − ω(τnk )| ≥ 2−n}.

Since t →→ Ht(ω) and t →→ ω(t) are càdlàg, we obtain for every ω ∈ Ω that τnk (ω) = ∞ for
all but finitely many k ∈ N. Write πnH := {τnk : k ∈ N}. To obtain an increasing sequence
of partitions, we take the union of the (πnH). More precisely, for n ∈ N we define τn0 := 0
and then for k ∈ N

τnk+1(ω) := min

τ(ω) : τ ∈

n
m=0

πmH , τ(ω) > τnk (ω)

.

If we set πnH := {τnk : k ∈ N}, then (πnH)n∈N is an increasing sequence of partitions. It
is not necessarily true that the mesh size of this sequence of partitions converges to 0,
because H and ω may be constant on some intervals. But for every 0 ≤ s < t ≤ T and
every ω ∈ Ω that is not constant on [s, t] there exist n, k ∈ N such that τnk (ω) ∈ [s, t].

We define Nn
t (ω) := max{k ∈ N : τnk (ω) ≤ t}, so that for every ω ∈ Ω there are

Nn
t (ω) + 1 stopping times in πnH with values in [0, t]. We have the following estimate for

Nn
T (ω):

Lemma 3.3.2. Let p ≥ 1. There exists a constant C > 0 such that for every ω ∈ Ω and
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every n ∈ N

Nn
T (ω) = max{k ∈ N : τnk (ω) < ∞} ≤ C2np


∥ω∥pp−var + ∥H(ω)∥pp−var


.

Proof. By definition, for every k ∈ N there exist m ≤ n and ℓ ∈ N, such that τnk (ω) =τmℓ (ω). Fix m ≤ n and write Nm
T (ω) := max{ℓ ∈ N : τmℓ (ω) ∈ [0, T ]}. The definition ofτmℓ+1 and the right-continuity of H and ω imply that

Nm(ω) ≤
Nm

T (ω)−1
ℓ=0

2mp


|Hτm
ℓ+1

(ω) −Hτm
ℓ

(ω)| + |ω(τmℓ+1) − ω(τmℓ )|
p

≤ 2mpCp
Nm

T (ω)−1
ℓ=1


|Hτm

ℓ+1
(ω) −Hτm

ℓ
(ω)|p + |ω(τmℓ+1) − ω(τmℓ )|p


≤ 2mpCp


∥ω∥pp−var + ∥H(ω)∥pp−var


.

The result now follows by noting that

Nn
T (ω) ≤

n
m=0

Nm
T (ω) ≤ 2(n+1)pCp


∥ω∥pp−var + ∥H(ω)∥pp−var


,

so that we can set C := 2pCp.

The idea of relating the number of upcrossings to the p–variation goes at least back to
Bruneau [Bru79], and Lemma 3.3.2 can be seen as a crude adaption of Bruneau’s result.

In Lemma D.1 in the Appendix we present a pathwise version of the Hoeffding inequal-
ity that is due to Vovk. This will be needed in the proof below.

At this point we are ready to state and prove the main result of this section. The fol-
lowing construction is inspired by Karandikar [Kar95], whereas the proof follows [Vov12],
Lemma 8.1.

Theorem 3.3.3. Let H be a càdlàg, adapted process that is p–variation preserving for
some p ∈ (2, 3). Define for n ∈ N the partition πnH = {τnk : k ∈ N} as above. Then for
typical price paths, the non-anticipating Riemann sums

In(H,dω)(t) :=
∞
k=0

Hτn
k

(ω)(ω(τnk+1 ∧ t) − ω(τnk ∧ t))

converge uniformly to a limit that we denote by
 ·

0 Hsdωs.

Proof. For every n ∈ N we define the process

Hn
t :=

∞
k=0

Hτn
k

(ω)1[τn
k
,τn

k+1)(t).
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Since H is right-continuous, we have supt∈[0,T ] |Ht−Hn
t | ≤ 2−n, and thus supt∈[0,T ] |Hn

t −
Hn−1
t | ≤ 2−n+2 for all n ∈ N. Moreover, πn−1

H ⊆ πnH for all n ≥ 1, which leads to

In(H,dω)(t) − In−1(H,dω)(t)

=
∞
k=0


Hn
τn−1

k

(ω) −Hn−1
τn−1

k

(ω)
 
ω(τnk+1 ∧ t) − ω(τnk ∧ t)


.

By definition of the stopping times (τnk )k, we have

sup
t∈[0,T ]

Hn
τn−1

k

(ω) −Hn−1
τn−1

k

(ω)
 
ω(τnk+1 ∧ t) − ω(τnk ∧ t)


≤ 2−n+22−n = 2−2n+2.

Hence, the pathwise Hoeffding inequality, Lemma D.1 in Appendix D, implies for every
λ ∈ R the existence of a 1–admissible simple strategy Gλ ∈ H1,s, such that

1 + (Gλ · ω)t ≥ exp

λ(In(H,dω)(t) − In−1(H,dω)(t)) − λ2

2 N
n
t (ω)2−4n+4


=: Eλ,nt (ω) (3.5)

for all ω ∈ Ω and all t ∈ [0, T ]. If a > 0, then the strategies G2n
/(2na) and G−2n

/(2na)
are both in H2−n/a,s, and therefore we can apply Remark 3.2.4 in conjunction with (3.5)
to obtain that

P


sup
t∈[0,T ]

2−nE2n,n
t (ω) + sup

t∈[0,T ]
2−nE−2n,n

t (ω) ≥ 2a


≤ P


sup
t∈[0,T ]

E2n,n
t (ω)
2na ≥ 1


+ P


sup
t∈[0,T ]

E−2n,n
t (ω)

2na ≥ 1


≤ 2−n+1

a
. (3.6)

Summing (3.6) over n and letting a tend to ∞, we see that

P


sup
n∈N


sup
t∈[0,T ]

2−nE2n,n
t (ω) + sup

t∈[0,T ]
2−nE−2n,n

t (ω)


= ∞


= 0. (3.7)

Hence, for typical price paths ω ∈ Ω, there exists n0(ω) such that for all n ≥ n0(ω) we
have supt∈[0,T ] E2n,n

t (ω) < 2nn. Note that Nn
t (ω) is increasing in t, and therefore we can

take the logarithm to see that this implies

sup
t∈[0,T ]

2n(In(H,dω)(t) − In−1(H,dω)(t)) < 22n

2 Nn
T (ω)2−4n+4 + n log(2) + log(n). (3.8)

If supt∈[0,T ] E−2n,n
t (ω) < 2nn, then we obtain the same inequality as in (3.8), only that

the sign of the left hand side is reversed. So if both supt∈[0,T ] E2n,n
t (ω) < 2nn and
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supt∈[0,T ] E−2n,n
t (ω) < 2nn, then

sup
t∈[0,T ]

|In(H,dω)(t) − In−1(H,dω)(t)| < Nn
T (ω)2−3n+3 + 2−n(n log(2) + log(n))

≤ C

∥ω∥pp−var + ∥H(ω)∥pp−var


2−n(3−p)+3 + 2−n(n log(2) + log(n)), (3.9)

where the last step follows from Lemma 3.3.2.
Since p < 3, we can combine (3.7) and (3.9) to obtain

P

 ∞
n=1

sup
t∈[0,T ]

|In(H,dω)(t) − In−1(H,dω)(t)| = ∞


≤ P (∥ω∥pp−var + ∥H(ω)∥pp−var = ∞) = P (∥ω∥p−var = ∞) = 0,

where the second to last step uses that H is p–variation preserving, and the last step is
Corollary 3.2.13, which can be applied because p > 2.

Remark 3.3.4. While the integral
 ·

0 Hsdωs converges for all typical price paths, the
strategies that we constructed in the proof depend on H. Therefore, also the null set
where

 ·
0 Hsdωs does not exist depends on H. Since there are uncountably many processes

H, it is a priori not clear whether a “universal null set” exists, outside of which all integrals
can be constructed. It is possible to obtain such a universal null set by using an analytic
construction of the integral, such as Föllmer’s or Lyons’ constructions.

Remark 3.3.5. At some points our analysis was rather crude, and therefore we did not
obtain optimal results. For example, it is not actually necessary to assume that H is
p–variation preserving. Also, here we just considered one fixed sequence of partitions
(πnH)n∈N. It is possible to show that the Riemann sums over any sequence of partitions
converge to the same limit, as long as the mesh size of the partition converges rapidly
enough to 0 (in a way that depends on H, uniformly in ω). Furthermore, one can show
that for p > 2 the “area”

Φs,t(ω) :=

Φi,j
s,t(ω)


1≤i,j≤d

:=
 t

s
ωi(r)dωj(r) − ωi(s)(ωj(t) − ωj(s))


1≤i,j≤d

satisfies

∥Φ∥p/2−var := sup


n
k=1

|Φtk−1,tk |p/2 : 0 = t0 < · · · < tn = T, n ∈ N

< ∞

for typical price paths ω. This condition is required to use ω as an integrator for Lyons’
rough path integral. The rough path integral is for example defined for F ∈ C2 as
uniform limit of the Riemann sums

lim
n→∞

n−1
k=0


F (ω(tnk))(ω(tnk+1 ∧ t) − ω(tnk ∧ t)) + DF (ω(tnk))Φtn

k
∧t,tn

k+1∧t

, (3.10)
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3. Pathwise integration in model free finance

where 0 = tn0 < · · · < tnn = T , n ∈ N, is an arbitrary sequence of partitions with mesh size
converging to 0. Here we see that there is a small problem with the use of the rough path
integral in finance: the term DF (ω(tnk))Φtn

k
∧t,tn

k+1∧t in (3.10) is not an increment of ω, and
therefore it is technically not possible to interpret the integral process as capital obtained
by investing in ω. But this can be resolved, because we can show that if (τnk )n,k∈N is a
double sequence of stopping times such that ·

0
ω(s)dω(s) = lim

n→∞

∞
k=0

ω(τnk )(ω(τnk+1 ∧ ·) − ω(τnk ∧ ·)),

then under some additional conditions also the rough path integral
 ·

0 F (ω(s))dω(s) is
given by  ·

0
F (ω(s))dω(s) = lim

n→∞

∞
k=0

F (ω(τnk ))(ω(τnk+1 ∧ ·) − ω(τnk ∧ ·)).

These and other results will be presented in the upcoming work [PP13].
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4. A Fourier approach to pathwise
stochastic integration

Here we use the decomposition of continuous functions in terms of the Schauder functions,
f(t) =


pm fpmϕpm(t), to give a pathwise definition of the integral

 t
0 f(s)dg(s) as t

0
f(s)dg(s) :=


pm


qn

fpmgqn

 t

0
ϕpm(s)dϕqn(s).

If f is α–Hölder continuous and g is β–Hölder continuous and α+β > 1, then we recover
Young’s integral. For α+β ≤ 1 we define a rough path integral in terms of the Schauder
decomposition.

This new approach to rough paths is quite elementary, and it becomes obvious why
paths have to be enhanced with their Lévy area if we want to obtain a pathwise continuous
stochastic integral. It also leads to simple recursive algorithms for the calculation of
stochastic integrals.

In the setting of Itô integration, we show that under suitable conditions, the Itô rough
path integral can be obtained as limit of nonanticipating Riemann sums involving only
the integrator and not its iterated integrals.

4.1. Introduction

It is a classical result of Ciesielski [Cie60] that Cα := Cα([0, 1],Rd), the space of α–Hölder
continuous functions on [0, 1] with values in Rd, is isomorphic to ℓ∞(Rd), the space of
bounded sequences with values in Rd. The isomorphism gives a Fourier decomposition
of a Hölder-continuous function f as

f =

p,m

⟨Hpm,df⟩Gpm

where (Hpm) are the Haar functions and (Gpm) are the Schauder functions. Ciesielski
proved that a continuous function f is in Cα([0, 1],Rd) if and only if the coefficients
(⟨Hpm, df⟩)p,m satisfy supp,m 2p(α−1/2)|⟨Hpm,df⟩| < ∞.

Since then this isomorphism has been extended to many other Fourier and wavelet
bases, where one can show the same type of results: classical function spaces, such as
the space of Hölder continuous functions, or the space of functions with a certain Besov
regularity, are in one-to-one correspondence with those functions for which the coefficients
in a fixed basis have the correct decay. See for example Triebel [Tri06].
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4. A Fourier approach to pathwise stochastic integration

The isomorphism based on Schauder functions still plays a special role in stochastic
analysis, because the coefficients in the Schauder basis have the pleasant property that
they are just rescaled second order increments of f . So if f is a stochastic process with
known distribution, then also the distribution of its coefficients in the Schauder basis
is known explicitly. This makes the Schauder functions a very useful tool in stochastic
analysis. For example, one of the most elegant constructions of Brownian motion, the
Lévy-Ciesielski construction, is based on them. Ciesielski’s isomorphism can also be used
to give a simple proof of Kolmogorov’s continuity criterion. An incomplete list with
applications of Schauder functions in stochastic analysis will be given below.

Another convenient property of the Schauder functions is that they are piecewise linear,
and therefore their iterated integrals

 ·
0 Gpm(s)dGqn(s), can be easily calculated. This

makes them an ideal tool for our purpose of studying pathwise stochastic integrals.
If we are given two Hölder-continuous functions f and g on [0, 1] with values in

L(Rd,Rn) and Rd respectively, then we formally define t

0
f(s)dg(s) :=


p,m


q,n

⟨Hpm, df⟩⟨Hqn,dg⟩
 t

0
Gpm(s)dGqn(s),

provided the limit exists. Our first observation, which is of course well known, is that
the integral introduces a bounded operator from Cα([0, 1],L(Rd,Rn)) ×Cβ([0, 1],Rd) to
Cβ([0, 1],Rn) if and only if α + β > 1. In this case we recover Young’s integral. In the
derivation of the Young integral, we identify different components of the integral that
exhibit different behavior: we have t

0
f(s)dg(s) = S(f, g)(t) + π<(f, g)(t) + L(f, g)(t),

where S is the symmetric part, π< is the paraproduct, and L(f, g) is the Lévy area. The
operators S and π< are defined for arbitrary α and β, and it is only the Lévy area that
requires α + β > 1. We are therefore looking for a pathwise way of defining L(f, g) for
suitable g. Considering the regularity of the three operators, we have S(f, g) ∈ Cα+β

and π<(f, g) ∈ Cβ and L(f, g) ∈ Cα+β, whenever the latter is defined. Therefore, in the
Young regime

 ·
0 f(s)dg(s) − π<(f, g) ∈ Cα+β. Similarly we can show that for smooth

functions F we have F (f) ∈ Cα but F (f) − π<(DF (f), f) ∈ C2α. In both cases the
“rough component” is given by π<. This inspires us to call a function f ∈ Cβ controlled
by g if there exists a function fg ∈ Cβ such that f − π<(fg, g) ∈ C2β. Our aim is then
to construct the Lévy area L(f, g) for β < 1/2 and f controlled by g. If β > 1/3, then
the term L(f − π<(fg, g), g) is well defined, and it suffices to make sense of the term
L(π<(fg, g), g). This is achieved with the following commutator estimate:L(π<(fg, g), g) −

 ·

0
fg(s)dL(g, g)(s)


3β

≤ ∥fg∥β∥g∥β∥g∥β.

Therefore, the integral
 ·

0 f(s)dg(s) can be constructed for all f that are controlled by g,
provided that L(g, g) can be constructed. In other words, we have found an alternative
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4.1. Introduction

formulation of Lyons’ [Lyo98] rough path integral, at least for Hölder continuous functions
of Hölder exponent larger than 1/3.

Since we approximate f and g by functions of bounded variation, our integral is of
Stratonovich type, i.e. it satisfies the usual integration by parts rule. We also consider
a non-anticipating Itô type integral, that can essentially be reduced to the Stratonovich
case with the help of the quadratic variation.

The last remaining problem is then to construct the Lévy area L(g, g) for suitable
stochastic processes g. We construct the Lévy area for certain hypercontractive processes.
For continuous martingales that possess sufficiently many moments we give a construction
of the Itô iterated integrals that allows us to use them as integrators for our pathwise Itô
integral.

Below we give some references to the use of Schauder functions in stochastic analysis,
and to rough paths. In Section 4.2 we recall some details on Ciesielski’s isomorphism,
and we give a short overview on rough paths and Young integration. In Section 4.3 we
develop a paradifferential calculus in terms of Schauder functions, and we examine the
different components of Young’s integral. In Section 4.4 we construct the rough path
integral based on Schauder functions. Section 4.5 develops the pathwise Itô integral.
And in Section 4.6 we construct the Lévy area for suitable stochastic processes.

Relevant literature

Starting with the Lévy-Ciesielski construction of Brownian motion, Schauder functions
have been a very popular tool in stochastic analysis. They can be used to prove in a
comparatively easy way that stochastic processes belong to Besov spaces; see for ex-
ample Ciesielski, Kerkyacharian, and Roynette [CKR93], Roynette [Roy93], and Rosen-
baum [Ros09]. Baldi and Roynette [BR92] have used Schauder functions to extend the
large deviation principle for Brownian motion, Schilder’s theorem, from the uniform
to the Hölder topology; see also Ben Arous and Ledoux [BL94] for the extension to
diffusions, Eddahbi, N’zi, and Ouknine [ENO99] for the large deviation principle for dif-
fusions in Besov spaces, and Andresen, Imkeller, and Perkowski [AIP13] for the large
deviation principle for a Hilbert space valued Wiener process in Hölder topology. Ben
Arous, Grădinaru, and Ledoux [BGL94] use Schauder functions to extend the Stroock-
Varadhan support theorem for diffusions from the uniform to the Hölder topology. Lyons
and Zeitouni [LZ99] use Schauder functions to prove exponential moment bounds for
Stratonovich iterated integrals of a Brownian motion if the Brownian motion is condi-
tioned to stay in a small ball. Gantert [Gan94] uses Schauder functions to associate to
every sample path of the Brownian bridge a sequence of probability measures on path
space, and continues to show that for almost all sample paths these measures converge to
the distribution of the Brownian bridge. This shows that the law of the Brownian bridge
can be reconstructed from a single “typical sample path”.

Concerning integrals based on Schauder functions, there are three important refer-
ences: Roynette [Roy93] constructs a version of Young’s integral on Besov spaces and
shows that in the one dimensional case the Stratonovich integral

 ·
0 F (Ws)dWs, where W

is a Brownian motion, and F ∈ C2, can be defined in a deterministic manner with the
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4. A Fourier approach to pathwise stochastic integration

help of Schauder functions. Roynette also constructs more general Stratonovich integrals
with the help of Schauder functions, but in that case only almost sure convergence is
established, where the null set depends on the integrand, and the integral is not a de-
terministic operator. Ciesielski, Kerkyacharian, and Roynette [CKR93] slightly extend
the Young integral of [Roy93], and simplify the proof by developing the integrand in the
Haar basis and not in the Schauder basis. They also construct pathwise solutions to SDEs
driven by fractional Brownian motions with Hurst index H > 1/2. Kamont [Kam94] ex-
tends the approach of [CKR93] to define a multiparameter Young integral for functions
in anisotropic Besov spaces.

Rough paths have been introduced by Lyons [Lyo98], see also [Lyo95, LQ96, LQ97] for
previous results. Lyons observed that solution flows to SDEs (or more generally ordinary
differential equations (ODEs) driven by rough signals) can be defined in a pathwise,
continuous way, if paths are equipped with sufficiently many iterated integrals. More
precisely, if a path has finite p–variation for some p ≥ 1, then one needs to associate
⌊p⌋ iterated integrals to it to obtain an object which can be taken as the driving signal
in an ODE, such that the solution to the ODE depends continuously on the signal.
Gubinelli [Gub04, Gub10] simplified the theory of rough paths by introducing the concept
of controlled paths, on which we will strongly rely in what follows. Roughly speaking, a
path f is controlled by the reference path g if the small scale fluctuations of f “look like
those of g”. Good monographs on rough paths are [LQ02, LCL07, FV10b], and Friz and
Hairer [FH13], which is currently in preparation.

4.2. Preliminaries

4.2.1. Ciesielski’s isomorphism

Here we present Ciesielski’s isomorphism between Cα([0, 1],Rd) and ℓ∞(Rd).
The Haar functions (Hpm, p ∈ N, 1 ≤ m ≤ 2p) are defined as

Hpm(t) :=


√

2p, t ∈

m−1

2p , 2m−1
2p+1


,

−
√

2p, t ∈


2m−1
2p+1 ,

m
2p


,

0, otherwise.

If completed by H00 ≡ 1, the Haar functions are an orthonormal basis of L2([0, 1], dt).
We also define Hp0 ≡ 0 for p ≥ 1, which will allow us to write expressions such as
p≥0

2p

m=0Hpm. The primitives of the Haar functions are called Schauder functions,
and they are given by Gpm(t) :=

 t
0 Hpm(s)ds for t ∈ [0, 1], p ∈ N, 0 ≤ m ≤ 2p. More

explicitly G00(t) = t and for p ∈ N, 1 ≤ m ≤ 2p

Gpm(t) =


2p/2


t− m−1

2p


, t ∈


m−1

2p , 2m−1
2p+1


,

−2p/2 t− m
2p


, t ∈


2m−1
2p+1 ,

m
2p


,

0, otherwise.
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Since every Gpm satisfies Gpm(0) = 0, we are only able to expand functions f with
f(0) = 0 in terms of this family (Gpm). Therefore, we complete (Gpm) once more, by
defining G−10(t) := 1 for all t ∈ [0, 1].

To abbreviate notation, we define the times tipm, i = 0, 1, 2, by setting

t0pm := m− 1
2p , t1pm := 2m− 1

2p+1 , t2pm := m

2p ,

for p ∈ N and 1 ≤ m ≤ 2p. For (p,m) = (−1, 0) and (p,m) = (0, 0) we set t0−10 := 0,
t1−10 := 0, t2−10 := 1 and t000 := 0, t100 := 1, t200 := 1. The definition of ti−10 and ti00 for
i ̸= 1 is rather arbitrary, but the definition for i = 1 simplifies for example the statement
of Lemma 4.2.1 below. It is also convenient to define tip0 := 0 for p ≥ 1 and i = 0, 1, 2.

If f is a continuous function on [0, 1] with values in Rd, then we define for p ∈ N and
1 ≤ m ≤ 2p by formally applying integration by parts

⟨Hpm, df⟩ := 2
p
2

f

t1pm


− f


t0pm


−

f

t2pm


− f


t1pm


= 2

p
2

2f

t1pm


− f


t0pm


− f


t2pm


and ⟨H00,df⟩ := f(1) − f(0) as well as ⟨H−10,df⟩ := f(0). Note that we only de-
fined G−10 and not H−10, and that the definition of ⟨H−10, df⟩ is to be understood as
convention.

Lemma 4.2.1. The function

fk := ⟨H−10, df⟩G−10 + ⟨H00,df⟩G00 +
k
p=0

2p
m=1

⟨Hpm,df⟩Gpm

=
k

p=−1

2p
m=0

⟨Hpm,df⟩Gpm

is the linear interpolation of f between the points t1−10, t
1
00, t

1
pm, 0 ≤ p ≤ k, 1 ≤ m ≤ 2p.

So if f is continuous, then fk converges uniformly to f as k → ∞.

Proof. The statement follows easily by induction.

Ciesielski [Cie60] observed that if f is Hölder-continuous, then the series fk converges
absolutely, and the speed of convergence of fk to f can be estimated in terms of the
Hölder norm of f . The norms ∥·∥∞ and ∥·∥Cα are defined respectively as

∥f∥∞ := sup
t∈[0,1]

|f(t)| and ∥f∥Cα := ∥f∥∞ + sup
0≤s<t≤1

|fs,t|
|t− s|α

,

where we write fs,t := f(t) − f(s).
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4. A Fourier approach to pathwise stochastic integration

Lemma 4.2.2 ([Cie60]). Let α ∈ (0, 1). A continuous function f : [0, 1] → Rd is in Cα

if and only if supp,m 2p(α−1/2)|⟨Hpm,df⟩| < ∞. In this case

sup
p,m

2p(α−1/2)|⟨Hpm,df⟩| ≃ ∥f∥α and (4.1)

∥f − fN−1∥∞ =


∞
p=N

2p
m=0

|⟨Hpm, df⟩|Gpm


∞

. ∥f∥α2−αN .

Before we continue, we slightly adapt the notation. We want to get rid of the factor
2−p/2 in (4.1), and therefore we define for p ∈ N and 0 ≤ m ≤ 2p the rescaled functions

χpm := 2
p
2Hpm and ϕpm := 2

p
2Gpm,

as well as ϕ−10 := G−10 ≡ 1. Note that for p ∈ N and 1 ≤ m ≤ 2p

max
t∈[0,1]

|ϕpm(t)| = ϕpm(t1pm) = 2
p
2

 t1pm

t0pm

2
p
2 ds = 2p

2m− 1
2p+1 − 2m− 2

2p+1


= 1

2 ,

so that ∥ϕpm∥∞ ≤ 1 for all p,m. The expansion of f in terms of (ϕpm) is given by
fk =

k
p=0

2p

m=0 fpmϕpm, where f−10 := f(1), and f00 := f(1) − f(0) = f0,1 and for
p ∈ N and m ≥ 1

fpm := 2−p⟨χpm,df⟩ = 2f

t1pm


− f


t0pm


− f


t2pm


= ft0pm,t

1
pm

− ft1pm,t
2
pm
.

We also write ⟨χpm,df⟩ := 2pfpm for all values of (p,m), also for (p,m) = (−1, 0), despite
not having defined χ−10.

We will mainly measure the regularity of functions by the size of their coefficients in
the Schauder series expansion:

Definition 4.2.3. For α > 0 and continuous f : [0, 1] → Rd the norm ∥·∥α is defined as
∥f∥α := suppm 2pα|fpm|. We then define the space

Cα := Cα(Rd) =

f : [0, 1] → Rd : f is continuous and ∥f∥α < ∞


.

It is easy to see that Cα is isomorphic to ℓ∞(Rd). In particular, Cα is a Banach space.
For α ∈ (0, 1), Ciesielski’s isomorphism, Lemma 4.2.2, implies that Cα = Cα([0, 1],Rd).

For α = 1 it can be shown that C1 is the Zygmund space of continuous functions f
satisfying |2f(x) − f(x + h) − f(x − h)| . h. But for ε > 0, there is no reasonable
identification of C1+ε with a classical function space. The space C1+ε([0, 1],Rd) consists
of all continuously differentiable functions f with ε–Hölder continuous derivative Df .
But since the tent shaped functions ϕpm are not continuously differentiable, even an f
with a finite expansion in terms of (ϕpm) is generally not in C1+ε, despite being in Cα
for all α > 0.

One might ask if the a priori requirement of f being continuous could be relaxed. It
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4.2. Preliminaries

can, but not much. To obtain continuity of f from its coefficients (fpm) is only possible
if f is uniquely determined by the values (f(tipm))i,p,m. This is the case if f is right- or
left-continuous, but in general it is false, because we may always choose a point t0 that
is not dyadic and define f(t) := f(t) for all t ̸= t0, and f(t0) := f(t0) + 1. Since the set
(tipm)i,p,m is countable, it is not even true that the coefficients of f determine the function
Lebesgue-almost everywhere.

Littlewood-Paley notation. We will employ the notation from Littlewood-Paley theory.
For p ≥ −1 and f ∈ C([0, 1]) we define

∆pf :=
2p
m=0

fpmϕpm and Spf :=

q≤p

∆qf.

We will occasionally refer to (∆pf) as the Schauder blocks of f . Note that Cα consists
exactly of those f =


p ∆pf for which

∥2pα∥∆pf∥∞∥ℓ∞ < ∞.

4.2.2. Young integration and rough paths

Here we present the main concepts of Young integration and of rough path theory. The
results presented in this section will not be applied in the remainder of this chapter, but
we feel that it could be useful for the reader to be familiar with the basic concepts of
rough paths, since it is the main inspiration for the constructions developed below.

Young’s integral [You36] allows to define

fdg for f ∈ Cα, g ∈ Cβ, and α + β > 1.

More precisely, let f ∈ Cα and g ∈ Cβ be given, let t ∈ [0, 1], and let π = {t0, . . . , tN}
be a partition of [0, t], i.e. 0 = t0 < t1 < · · · < tN = t. Then it can be shown that the
Riemann sums


tk∈π

f(tk)(g(tk+1) − g(tk)) :=
N−1
k=0

f(tk)(g(tk+1) − g(tk))

converge as the mesh size maxk=0,...,N−1 |tk+1 − tk| tends to zero, and that the limit
does not depend on the approximating sequence of partitions. We denote the limit by t

0 f(s)dg(s), and we define
 t
s f(r)dg(r) :=

 t
0 f(r)dg(r) −

 s
0 f(r)dg(r). The function

t →→
 t

0 f(s)dg(s) is uniquely characterized by the fact that t

s
f(r)dg(r) − f(s)(g(t) − g(s))

 . |t− s|α+β∥f∥α∥g∥β

for all s, t ∈ [0, 1]. The condition α + β > 1 is sharp, in the sense that there exist
f, g ∈ C1/2, and a sequence of partitions (πn)n∈N with mesh size going to zero, for which
the Riemann sums


tk∈πn

f(tk)(g(tk+1) − g(tk)) do not converge as n tends to ∞.
The condition α+ β > 1 excludes one of the most important examples: we would like
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to take g as a sample path of Brownian motion, and f = F (g). Lyons’ theory of rough
paths [Lyo98] overcomes this restriction by stipulating the “existence” of basic integrals
and by defining a large class of related integrals as their functionals. Here we present the
approach of Gubinelli [Gub04].

Let α ∈ (1/3, 1) and assume that we are given two functions v, w ∈ Cα, as well as an
associated “Riemann integral” Iv,ws,t =

 t
s v(r)dw(r) that satisfies the estimate

|Φv,w
s,t | := |Iv,ws,t − v(s)ws,t| . |t− s|2α. (4.2)

The remainder Φv,w is often (incorrectly) called the area of v and w. This name has
its origin in the fact that its antisymmetric part 1/2(Φv,w

s,t − Φw,v
s,t ) corresponds to the

algebraic area spanned by the curve ((v(r), w(r)) : r ∈ [s, t]) in the plane R2.
If α ≤ 1/2, then the integral Iv,w cannot be constructed using Young’s theory of

integration, and also Iv,w is not uniquely characterized by (4.2). But let us assume
nonetheless that we are given such an integral Iv,w satisfying (4.2). A function f ∈ Cα

is controlled by v ∈ Cα if there exists fv ∈ Cα, such that for all s, t ∈ [0, 1]

|fs,t − fvs vs,t| . |t− s|2α. (4.3)

Proposition 4.2.4 ([Gub04], Theorem 1). Let α > 1/3, let v, w ∈ Cα, and let Iv,w
satisfy (4.2). Let f and g be controlled by v and w respectively, with derivatives fv

and gw. Then there exists a unique function I(f, g) =
 ·

0 f(s)dg(s) that satisfies for all
s, t ∈ [0, 1]

|I(f, g)s,t − f(s)gs,t − fv(s)gw(s)Φv,w
s,t | . |t− s|3α.

If (πn) is a sequence of partitions of [0, t], with mesh size going to zero, then

I(f, g)(t) = lim
n→∞


tk∈πn


f(tk)gtk,tk+1 + fvtkg

w
tk

Φv,w
tk,tk+1


.

The integral I(f, g) coincides with the Riemann-Stieltjes integral and with the Young
integral, whenever these are defined. Moreover, the integral map is self-consistent, in
the sense that if we consider v and w as controlled by themselves, with derivatives
vv = ww ≡ 1, then I(v, w) = Iv,w.

The only remaining problem is the construction of the integral Iv,w. This is usually
achieved with probabilistic arguments. If v and w are Brownian motions, then we can
for example use Itô or Stratonovich integration to define Iv,w. Already in this simple
example we see that the integral Iv,w is not unique if v and w are outside of the Young
regime.

It is possible to go beyond α > 1/3 by stipulating the existence of higher order iterated
integrals. For details see [Gub10] or any book on rough paths, such as [LQ02, LCL07,
FV10b].

Note that the rough path integral is similar in spirit to Föllmer’s pathwise Itô calculus,
see Chapter 3, that stipulates the existence of the quadratic variation and uses this to
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4.3. Paradifferential calculus and Young integration

give a pathwise construction of stochastic integrals.

4.3. Paradifferential calculus and Young integration

In this section we develop the basic tools that will be required for the rough path in-
tegral in terms of Schauder functions, and we study Young’s integral and its different
components.

4.3.1. Paradifferential calculus with Schauder functions

Here we introduce a “paradifferential calculus” in terms of Schauder functions. Parad-
ifferential calculus is usually formulated in terms of Littlewood-Paley blocks, and was
initiated by Bony [Bon81]. For details see Bahouri, Chemin, and Danchin [BCD11], or
Chapter 5 below.

We will need to study the regularity of

p,m upmϕpm, where upm are functions and

not constant coefficients. For this purpose we define the following space of sequences of
functions.

Definition 4.3.1. If (upm)p≥−1,0≤m≤2p is a family of affine functions of the form upm :
[t0pm, t2pm] → Rd, where upm(s) = apm + (s− t0pm)bpm, then we define for α > 0

∥(upm)∥Aα := sup
p,m

2pα∥upm∥∞,

where it is understood that ∥upm∥∞ := maxt∈[t0pm,t
2
pm] |upm(t)|. The space Aα is then

defined as

Aα := Aα(Rd)

:=


(upm)p≥−1,0≤m≤2p : upm ∈ C([t0pm, t2pm],Rd) is affine and ∥(upm)∥Aα < ∞

.

In Appendix E we prove the following regularity estimate:

Lemma 4.3.2. Let α ∈ (0, 2) and let (upm) ∈ Aα. Then

p,m upmϕpm ∈ Cα, and

p,m

upmϕpm

α
. ∥(upm)∥Aα .

Before we get to paraproducts and paralinearization in terms of Schauder functions,
let us show that Cα is stable under the application of smooth functions.

Lemma 4.3.3. Let α ∈ (0, 2) and let v ∈ Cα(Rd). Let F ∈ C
⌊α+1⌋
b (Rd,R). Then

F (v) ∈ Cα, and

∥F (v)∥α . ∥F∥
C

⌊α+1⌋
b

(1 + ∥v∥α)⌊α+1⌋. (4.4)
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4. A Fourier approach to pathwise stochastic integration

Proof. We have to estimate the coefficients (F (v))pm = 2−p⟨χpm,dF (v)⟩. For (p,m) =
(−1, 0) and (p,m) = (0, 0) we estimate

|(F (v))pm| . ∥F (v)∥∞ ≤ ∥F∥∞.

For all other values of (p,m) we have (F (v))pm = (F (v))t0pm,t
1
pm

− (F (v))t1pm,t
2
pm

. If
α ∈ (0, 1), then we apply a first order Taylor expansion with integral remainder, to
obtain

(F (v))t0pm,t
1
pm

− (F (v))t1pm,t
2
pm

=


|η|=1

 1

0
∂ηF


v(t0pm) + rvt0pm,t

1
pm


(vt0pm,t

1
pm

)ηdr

−


|η|=1

 1

0
∂ηF


v(t1pm) + rvt1pm,t

2
pm


(vt1pm,t

2
pm

)ηdr

According to Lemma 4.2.2 we have ∥v∥Cα ≃ ∥v∥α, and therefore |vt0pm,t
1
pm

| . ∥v∥α2−pα,
which yields (4.4).

For α ∈ [1, 2) we apply a second order Taylor expansion, which implies that

(F (v))t0pm,t
1
pm

− (F (v))t1pm,t
2
pm

(4.5)

=


|η|=1
∂ηF (v(t1pm))(vt0pm,t

1
pm

)η +R1
pm −


|η|=1

∂ηF (v(t1pm))(vt1pm,t
2
pm

)η −R2
pm,

where we use Cα ⊆ C1−ε = C1−ε to obtain that

|R1
pm| + |R2

pm| . ∥F∥C2
b
(|vt0pm,t

1
pm

|2 + |vt0pm,t
1
pm

|2) . ∥F∥C2
b
∥v∥2

1−ε2−2p(1−ε)

for all ε > 0. Choose ε > 0 small enough so that 2 − 2ε > α. Then

|(F (v))t0pm,t
1
pm

− (F (v))t1pm,t
2
pm

| ≤




|η|=1
∂ηF (v(t1pm))(vpm)η

+ |R1
pm| + |R2

pm|

. 2−pα∥F∥C2
b
∥v∥α(1 + ∥v∥α).

Remark 4.3.4. Since v has compact support, it actually suffices if F ∈ C⌊α+1⌋, without
assuming that F and its partial derivatives are bounded. Of course then the estimate
(4.4) would have to be adapted. For simplicity we only consider the case F ∈ C

⌊α+1⌋
b .

Let us define a paraproduct in terms of Schauder functions.

Lemma 4.3.5. Let β ∈ (0, 2), let v ∈ C([0, 1],L(Rd,Rn)), and w ∈ Cβ(Rd). Then

π<(v, w) :=
∞
p=0

Sp−1v∆pw ∈ Cβ(Rn) and ∥π<(v, w)∥β . ∥v∥∞∥w∥β. (4.6)
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Proof. We have

π<(v, w) =

p,m

upmϕpm with upm = (Sp−1v)|[t0pm,t
2
pm]wpm.

For every (p,m), the function (Sp−1v)|[t0pm,t
2
pm] is the linear interpolation of v between

t0pm and t2pm. As ∥(Sp−1v)|[t0pm,t
2
pm]wpm∥∞ ≤ 2−pβ∥v∥∞∥w∥β, the statement follows from

Lemma 4.3.2.

Remark 4.3.6. If v ∈ Cα and w ∈ Cβ, then we can decompose the product vw into three
components, vw = π<(v, w) + π>(v, w) + π◦(v, w), where

π>(v, w) :=

p

∆pvSp−1w, ∥π>(v, w)∥α . ∥v∥α∥w∥∞, and

π◦(v, w) :=

p

∆pv∆pw, ∥π◦(v, w)∥α+β . ∥v∥α∥w∥β.

The estimate for π◦ only holds for α + β < 2, and it is easy to show. Since we will not
use it, we omit the proof.

The paralinearization theorem in terms of Schauder functions is as follows.

Proposition 4.3.7. Let α ∈ (0, 1), let v ∈ Cα(Rd), and F ∈ C2
b (Rd,R). Define

π<(DF (v), v) :=


|η|=1
π<(∂ηF (v), vη).

Then F (v) − π<(DF (v), v) ∈ C2α, and

∥F (v) − π<(DF (v), v)∥2α . ∥F∥C2
b
(1 + ∥v∥α)2. (4.7)

Proof. First note that ∥F (v)∥∞ ≤ ∥F∥∞, which implies the estimate required for (4.7) if
(p,m) = (−1, 0) or (p,m) = (0, 0). For all other values of (p,m) we apply a second order
Taylor expansion to obtain

(F (v))pm =


|η|=1
∂ηF (v(t1pm))(vpm)η +Rpm = DF (v(t1pm))vpm +Rpm,

where |Rpm| . ∥F∥C2
b
2−2pα∥v∥2

α. Therefore, F (v) =

pm DF (v(t1pm))vpmϕpm + R, with

R ∈ C2α and ∥R∥2α . ∥F∥C2
b
∥v∥2

α. Subtracting π<(DF (v), v) gives

F (v) − π<(DF (v), v) =

pm

[DF (v(t1pm)) − (Sp−1DF (v))|[t0pm,t
2
pm]]vpmϕpm +R.

(Sp−1DF (v))|[t0pm,t
2
pm] is the linear interpolation of DF (v) between t0pm and t2pm, so ac-
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cording to Lemma 4.3.2 it suffices to note that

∥[DF (v(t1pm)) − (Sp−1DF (v))|[t0pm,t
2
pm]]vpm∥∞ . 2−pα∥DF (v)∥α2−pα∥v∥α

. 2−2pα∥F∥C2
b
(1 + ∥v∥α)∥v∥α,

where we used the estimate ∥DF (v)∥Cα ≃ ∥DF (v)∥α and Lemma 4.3.3.

Remark 4.3.8. The same proof shows that if f is controlled by v in the sense of Sec-
tion 4.2.1, i.e. fs,t = fv(s)vs,t + Rs,t with fv ∈ Cα and |Rs,t| ≤ ∥R∥2α|t − s|2α, then
f − π<(fv, v) ∈ C2α.

4.3.2. Young’s integral and its different components

In this section we construct Young’s integral using the Schauder expansion. If v ∈ Cα
and w ∈ Cβ, then we formally define ·

0
v(s)dw(s) :=


p,m


q,n

vpmwqn

 ·

0
ϕpm(s)dϕqn(s) =


p,q

 ·

0
∆pv(s)d∆qw(s).

We show that this definition makes sense provided that α+ β > 1, and we identify three
components of the integral that all have a different behavior. This will be our starting
point towards a definition of controlled paths in our setting, and towards an extension of
the integral beyond the Young regime.

In a first step, let us calculate the iterated integrals of Schauder functions.

Lemma 4.3.9. Let p > q ≥ 0. Then 1

0
ϕpm(s)dϕqn(s) = 2−p−2χqn(t0pm) (4.8)

for all m,n. If p = q, then
 1

0 ϕpm(s)dϕpn(s) = 0, except if p = q = 0, in which case the
integral is bounded by 1. If 0 ≤ p < q, then for all (m,n) we have 1

0
ϕpm(s)dϕqn(s) = −2−q−2χpm


t0qn


. (4.9)

If p = −1, then the integral is bounded by 1.

Proof. The cases p = q and p = −1 are easy, so let p > q ≥ 0. Since χqn ≡ χqn(t0pm) on
the support of ϕpm, we have 1

0
ϕpm(s)dϕqn(s) = χqn(t0pm)

 1

0
ϕpm(s)ds = χqn(t0pm)2−p−2.

If 0 ≤ p < q, then integration by parts and (4.8) yield (4.9).

Next we estimate the coefficients of iterated integrals in the Schauder basis.
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Lemma 4.3.10. Let i, p ≥ −1, q ≥ 0, 0 ≤ j ≤ 2i, 0 ≤ m ≤ 2p, 0 ≤ n ≤ 2q. Thenχij ,d ·

0
ϕpmχqnds

 ≤ 2−2(i∨p∨q)+i+p+q, (4.10)

except if p < q = i. In this case we only have the worse estimateχij , d ·

0
ϕpmχqnds

 ≤ 2i. (4.11)

Proof. We have ⟨χ−10,d(
 ·

0 ϕpmχqnds)⟩ = 0 for all (p,m) and (q, n). So let i ≥ 0. If
i < p ∨ q, then χij is constant on the support of ϕpmχqn, and therefore

|⟨χij , ϕpmχqn⟩| ≤ 2i |⟨ϕpm, χqn⟩| ≤ 2−2(p∨q)+p+q+i = 2−2(i∨p∨q)+p+q+i,

where we used Lemma 4.3.9.
Now let i > q. Then χqn is constant on the support of χij , and therefore another

application of Lemma 4.3.9 implies that

|⟨χij , ϕpmχqn⟩| ≤ 2q2−2(p∨i)+p+i = 2−2(i∨p∨q)+p+q+i.

The only remaining case is i = q ≥ p. If p = i = q, then

|⟨χij , ϕpmχqn⟩| ≤ 22p
 1

0
ϕpm(s)ds ≤ 22p2−p = 2−2(i∨p∨q)+p+q+i.

Otherwise, if i = q > p, then

|⟨χij , ϕpmχqn⟩| ≤ 22i
 t2ij

t0ij

ϕpm(s)ds ≤ 2i∥ϕpm∥∞ ≤ 2i.

We use this result to estimate the iterated integrals of Schauder blocks.

Corollary 4.3.11. Let i, p ≥ −1 and q ≥ 0. Let v ∈ C([0, 1],L(Rd,Rn)) and w ∈
C([0, 1],Rd). Then∆i

 ·

0
∆pv(s)d∆qw(s)


∞

. 2−(i∨p∨q)−i+p+q∥∆pv∥∞∥∆qw∥∞, (4.12)

except if i = q > p. In this case we only have the worse estimate∆i

 ·

0
∆pv(s)d∆qw(s)


∞

. ∥∆pv∥∞∥∆qw∥∞. (4.13)
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Proof. The case i = −1 is again easy, so let i ≥ 0. We have

∆i

 ·

0
∆pv(s)d∆qw(s)


=

j,m,n

vpmwqn⟨2−iχij , ϕpmχqn⟩ϕij .

For fixed j, there are at most 2(i∨p∨q)−i non-vanishing terms in the double sum. Fur-
thermore, we have |vpm| . ∥∆pv∥∞ and similarly for |wqn|. Hence, we obtain from
Lemma 4.3.10 that

m,n

vpmwqn⟨2−iχij , ϕpmχqn⟩ϕij


∞

. 2(i∨p∨q)−i∥∆pv∥∞∥∆qw∥∞2−i2−2(i∨p∨q)+i+p+q

= 2−(i∨p∨q)−i+p+q∥∆pv∥∞∥∆qw∥∞,

except if i = q > p. In that case Lemma 4.3.10 yields
m,n

vpmwqn⟨2−iχij , ϕpmχqn⟩ϕij


∞

. 2i−i∥∆pv∥∞∥∆qw∥∞2−i2i

= ∥∆pv∥∞∥∆qw∥∞.

Corollary 4.3.12. Let i, p, q ≥ −1. Let v ∈ C([0, 1],L(Rd,Rn)) and w ∈ C([0, 1],Rd).
Then for p ∨ q ≤ i we have

∥∆i (∆pv∆qw)∥∞ . 2−(i∨p∨q)−i+p+q∥∆pv∥∞∥∆qw∥∞, (4.14)

except if i = q > p or i = p > q, in which case we only have the worse estimate

∥∆i(∆pv∆qw)∥∞ . ∥∆pv∥∞∥∆qw∥∞. (4.15)

If p > i or q > i, then ∆i(∆pv∆qw) ≡ 0.

Proof. The case p = −1 or q = −1 is easy. Otherwise we apply integration by parts and
note that the estimates (4.12) and (4.13) are symmetric in p and q.

If for example p > i, then ∆p(v)(tkij) = 0 for all k, j, which implies that ∆i(∆pv∆qw) =
0.

The estimates (4.12) and (4.13) allow us to identify different components of the integral ·
0 v(s)dw(s). More precisely, (4.13) indicates that the series


p<q

 ·
0 ∆pv(s)d∆qw(s) is

rougher than the remainder

p≥q

 ·
0 ∆pv(s)d∆qw(s). If we apply integration by parts to ·

0 ∆pv(s)d∆qw(s), then we obtain


p<q

 ·

0
∆pv(s)d∆qw(s) = π<(v, w) −


p<q


m,n

vpmwqn

 ·

0
ϕqn(s)dϕpm(s).
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This motivates us to decompose the integral into three components, namely

p,q

 ·

0
∆pv(s)d∆qw(s) = L(v, w) + S(v, w) + π<(v, w).

Here L is defined as the antisymmetric “Lévy area” (we will justify the name below by
showing that L is closely related to the Lévy area of certain dyadic martingales)

L(v, w) :=

p>q


m,n

(vpmwqn − vqnwpm)
 ·

0
ϕpmdϕqn

=

p

 ·

0
∆pvdSp−1w −

 ·

0
d(Sp−1v)∆pw


.

The symmetric part S is defined as

S(v, w) :=


m,n≤1
v0mw0n

 ·

0
ϕ0mdϕ0n +


p≥1


m

vpmwpm

 ·

0
ϕpmdϕpm

=


m,n≤1
v0mw0n

 ·

0
ϕ0mdϕ0n + 1

2

p≥1

∆pv∆pw,

and π< is the paraproduct, as defined in (4.6). As we observed in Lemma 4.3.5, π<(v, w)
is always well defined, and it inherits the regularity of w. Let us examine under which
conditions S and L are defined, and how regular they are.

Lemma 4.3.13. Let α, β ∈ (0, 1) be such that α + β > 1, and let v ∈ Cα and w ∈ Cβ.
Then L(v, w) is well defined and in Cα+β, and moreover

∥L(v, w)∥α+β .α+β ∥v∥α∥w∥β.

Proof. We only argue for

p

 ·
0 ∆pvdSp−1w, because the term − −

 ·
0 d(Sp−1v)∆pw can

be treated with the same arguments. Corollary 4.3.11 (more precisely (4.12)) implies
that

p

∆i

 ·

0
∆pvdSp−1w


∞

≤

p≤i


q<p

∆i

 ·

0
∆pvd∆qw


∞

+

p>i


q<p

∆i

 ·

0
∆pvd∆qw


∞

≤


p≤i


q<p

2−2i+p+q2−pα∥v∥α2−qβ∥w∥β +

p>i


q<p

2−i+q2−pα∥v∥α2−qβ∥w∥β


.α+β 2−i(α+β)∥v∥α∥w∥β,

where we used 1 − α < 0 and 1 − β < 0 for both series, and for the second series we also
used that α+ β > 1.
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Unlike the Lévy area L, the symmetric part S is always well defined. It is also smooth.

Lemma 4.3.14. Let α, β ∈ (0, 1), and let v ∈ Cα and w ∈ Cβ. Then S(v, w) ∈ Cα+β,
and

∥S(v, w)∥α+β . ∥v∥α∥w∥β.

Proof. This is shown using the same arguments as in the proof of Lemma 4.3.13.

In conclusion, the integral consists of three components. The Lévy area L(v, w) is only
defined if α+β > 1, but then it is smooth. The symmetric part S(v, w) is always defined
and smooth. And the paraproduct π<(v, w) is always defined, but it is rougher than the
other components. To summarize:

Theorem 4.3.15 (Young’s integral). Let α, β ∈ (0, 1) be such that α + β > 1, and let
v ∈ Cα and w ∈ Cβ. Then

I(v,dw) :=

p,q

 ·

0
∆pvd∆qw = L(v, w) + S(v, w) + π<(v, w) ∈ Cβ

satisfies ∥I(v,dw)∥β . ∥v∥α∥w∥β and

∥I(v,dw) − π<(v, w)∥α+β . ∥v∥α∥w∥β. (4.16)

Lévy area and dyadic martingales

Here we show that the Lévy area L(v, w)(1) can be expressed in terms of the Lévy area
of suitable dyadic martingales. To simplify notation, we assume that v(0) = w(0) = 0,
so that we do not have to bother with the components v−10 and w−10.

We define the filtration (Fn)n≥0 on [0, 1] by setting

Fn = σ(χpm : 0 ≤ p ≤ n, 0 ≤ m ≤ 2p),

we set F =

n Fn, and we consider the Lebesgue measure on ([0, 1],F). On this space,

the process Mn =
n
p=0

2p

m=0 χpm, n ∈ N, is a martingale. For any continuous function
v : [0, 1] → R with v(0) = 0, the process

Mv
n =

n
p=0

2p
m=0

⟨2−pχpm, dv⟩χpm =
n
p=0

2p
m=0

vpmχpm,

n ∈ N, is a martingale transform of M , and therefore a martingale as well. Since it will
be convenient later, we also define F−1 = {∅, [0, 1]} and Mv

−1 = 0 for every v.
Assume now that v and w are continuous real-valued functions with v(0) = w(0) = 0,
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and that the Lévy area L(v, w)(1) exists. Then it is given by

L(v, w)(1) =
∞
p=0

p−1
q=0


m,n

(vpmwqn − vqnwpm)
 1

0
ϕpm(s)χqn(s)ds

=
∞
p=0

p−1
q=0


m,n

(vpmwqn − vqnwpm)χqn(t0pm)
 1

0
ϕpm(s)ds

=
∞
p=0

p−1
q=0


m,n

(vpmwqn − vqnwpm)2p
 1

0
χqn(s)1[t0pm,t

2
pm)(s)ds⟨ϕpm, 1⟩

=
∞
p=0

p−1
q=0


m,n

(vpmwqn − vqnwpm)2−p
 1

0
χqn(s)χ2

pm(s)ds2−p−2

=
∞
p=0

p−1
q=0

2−2p−2
 1

0


m,n


m′

(vpmwqn − vqnwpm)χqn(s)χpm(s)χpm′(s)ds,

where in the fourth line we used that ⟨ϕpm, 1⟩ = 2−p−2 for all p ≥ 1, and in the last
step we used that χpm and χpm′ have disjoint support for m ̸= m′. Recall that the p–th
Rademacher function (or “square wave”) is defined for p ≥ 1 as

rp(t) :=
2p

m′=1
2−pχpm′(t).

The martingale associated to the Rademacher functions is given by R0 := 0 and Rp :=p
k=1 rk for p ≥ 1. Let us write ∆Mv

p = Mv
p − Mv

p−1 and similarly for Mw and R
and all other discrete time processes that arise. This notation somewhat clashes with
the expression ∆pv for the dyadic blocks of v, but we will only use it in the following
lines, where we do not directly work with dyadic blocks. The quadratic covariation of
two dyadic martingales is defined as [M,N ]n :=

n
k=0 ∆Mk∆Nk, and the discrete time

stochastic integral is defined as (M · N)n :=
n
k=0Mk−1∆Nk. Writing E(·) for the

integral
 1

0 ·ds, we obtain

L(v, w)(1) =
∞
p=0

p−1
q=0

2−p−2E

∆Mv

p∆Mw
q ∆Rp − ∆Mv

q ∆Mw
p ∆Rp



=
∞
p=0

2−p−2E

Mw
p−1∆Mv

p −Mv
p−1∆Mw

p


∆Rp



=
∞
p=0

2−p−2E

∆ [Mw ·Mv −Mv ·Mw, R]p


.

Hence, L(v, w)(1) is closely related to the Lévy area 1/2(Mw · Mv − Mv · Mw) of the
dyadic martingale (Mv,Mw).
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4. A Fourier approach to pathwise stochastic integration

4.4. Controlled paths and pathwise integration beyond Young

In this section we construct a rough path integral in terms of Schauder functions.

4.4.1. Controlled paths

We observed in Section 4.3 that for β ∈ (0, 1), for w ∈ Cβ, and for F ∈ C2
b we have

F (w) − π<(DF (w), w) ∈ C2β. In Section 4.3.2 we observed that if moreover v ∈ Cα,
where α+ β > 1, then the Young integral I(v,dw) satisfies I(v,dw) − π<(v, w) ∈ Cα+β.
Hence, in both cases the function under consideration can be written as π<(fw, w) for
suitable fw, plus a smooth remainder. We make this our definition of controlled paths:

Definition 4.4.1. Let α > 0 and v ∈ Cα(Rd). We define

Dα
v := Dα

v (Rn)

:=

f ∈ Cα(Rn) : ∃fv ∈ Cα(L(Rd,Rn)) s.t. f ♯ = f − π<(fv, v) ∈ C2α(Rn)


.

If f ∈ Dα
v , then f is called controlled by v. The function fv is called the derivative of f

with respect to v. We equip Dα
v with the norm

∥f∥v,α := ∥f∥α + ∥fv∥α + ∥f ♯∥2α.

Remark 4.4.2. In general the derivative fv is not uniquely determined by f and v. For
example, if v ∈ C2α, then 0 ∈ Dα

v , and every fv ∈ Cα can be taken as its derivative. So
the correct definition would be (f, fv) ∈ Dα

v , and ∥(f, fv)∥v,α = ∥f∥α + ∥fv∥α + ∥f ♯∥2α.
But usually there will be no confusion about the derivative that we have in mind, and
therefore we will continue writing f ∈ Dα

v and ∥f∥v,α.

Example 4.4.3. Let α ∈ (0, 1) and v ∈ Cα. Then F (v) ∈ Dα
v for every F ∈ C2

b , with
derivative DF (v). This follows from Proposition 4.3.7.

Example 4.4.4. Let α ∈ (1/2, 1) and v, w ∈ Cα. Then the Young integral I(v,dw) is in
Dα
w, with derivative v. This follows from (4.16).

The following lemma relates our notion of controlled paths to the classical one. This
will allow us to simplify some of the proofs below.

Lemma 4.4.5. If α ∈ (0, 1/2) and f, v ∈ Cα, then

|π<(f, v)(t) − π<(f, v)(s) − f(s)(v(t) − v(s))| . ∥f∥α∥v∥α|t− s|2α.

As a consequence, f ∈ Dα
v if and only if for all 0 ≤ s < t ≤ 1

fs,t = fv(s)vs,t +Rs,t

for some fv ∈ Cα and R that satisfies |Rs,t| . |t − s|2α. In other words, f ∈ Dα
v if and

only if f is controlled by v in the sense of Gubinelli [Gub04] (see Section 4.2.2).
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4.4. Controlled paths and pathwise integration beyond Young

Proof. Let s, t ∈ [0, 1] and let i be such that 2−i ≤ |t− s| < 2−i+1. Note that

|(∆pf)s,t| ≤ max
m=0,...,2p

|fpm|2p|t− s| ≤ 2p(1−α)|t− s|∥f∥α.

for all p ≥ −1 and f ∈ Cα. This implies for p ≤ i

|(Sp−1f∆pv)s,t − f(s)(∆pv)s,t| ≤ |(Sp−1f)s,t∆pv(t)| + |(Sp−1f(s) − f(s))(∆pv)s,t|
.

q<p

|(∆qf)s,t|∥∆pv∥∞ + ∥Sp−1f − f∥∞|(∆pv)s,t|

.

q<p

2q(1−α)|t− s|∥f∥α2−pα∥v∥α + 2−pα∥f∥α2p(1−α)|t− s|∥v∥α

. |t− s|2p(1−2α)∥f∥α∥v∥α.

For p > i we obtain

|(Sp−1f∆pv)s,t − f(s)(∆pv)s,t|

.

q≤i

|(∆qf)s,t|∥∆pv∥∞ +
p−1
q=i+1

∥∆qf∥∞∥∆pv∥∞ + ∥Sp−1f − f∥∞∥∆pv∥∞

.


q≤i

2q(1−α)|t− s|2−pα +
p−1
q=i+1

2−qα2−pα + 2−2pα

 ∥f∥α∥v∥α

.

2i(1−α)|t− s|2−pα + 2−iα2−pα + 2−2pα∥f∥α∥v∥α

≃

|t− s|α2−pα + 2−2pα∥f∥α∥v∥α,

where we used that |t− s| ≃ 2−i. We combine the two estimates to obtain

|π<(f, v)(t) − π<(f, v)(s) − f(s)(v(t) − v(s))|
≤

p≤i

|(Sp−1f∆pv)s,t − f(s)(∆pv)s,t| +

p>i

|(Sp−1f∆pv)s,t − f(s)(∆pv)s,t|

.

p≤i

|t− s|2p(1−2α)∥f∥α∥v∥α +

p>i


|t− s|α2−pα + 2−2pα∥f∥α∥v∥α

. |t− s|2α∥f∥α∥v∥α,

where we used that 1 − 2α > 0, and also that 2−i ≃ |t − s|. This implies that every
f ∈ Dα

v is controlled in the sense of Gubinelli [Gub04]. The opposite inclusion is the
content of Remark 4.3.8.

This connection between Dα
v and the controlled paths of [Gub04] allows us to easily

obtain several useful properties of Dα
v .

Corollary 4.4.6. Let α ∈ (0, 1/2) and let f ∈ Dα
v with derivative fv. Let F ∈ C2

b . Then

101



4. A Fourier approach to pathwise stochastic integration

F (f) ∈ Dα
v with derivative DF (f)fv, and

∥F (f)∥v,α . ∥F∥C2
b
(1 + ∥v∥α)(1 + ∥f∥v,α)2.

Proof. We have

∥F (f)∥v,α = ∥F (f)∥α + ∥DF (f)fv∥α + ∥F (f) − π<(DF (f)fv, v)∥2α.

The first term on the right hand side can be estimated with Lemma 4.3.3. For the second
and third term we use that ∥·∥α ≃ ∥·∥Cα , i.e. we work with the classical Hölder norm.
We apply a Taylor expansion to DF (f) to obtain

∥DF (f)fv∥Cα . ∥DF∥C1
b
(1 + ∥f∥Cα)∥fv∥Cα .

For the remainder we have

∥F (f) − π<(DF (f)fv, v)∥∞ . ∥F∥∞ + ∥π<(DF (f)fv, v)∥∞ . ∥F∥C1
b
(1 + ∥fv∥∞∥v∥α),

where we applied Lemma 4.3.5 to the second term. Moreover, for 0 ≤ s < t ≤ 1, a first
order Taylor expansion yields

|(F (f))s,t − DF (f(s))fv(s)vs,t| . |DF (f(s))fs,t − DF (f(s))fv(s)vs,t|
+ ∥F∥C2

b
∥f∥α|t− s|2α

. ∥DF∥∞|fs,t − (π<(fv, v))s,t|
+ ∥DF∥∞|(π<(fv, v))s,t − fv(s)vs,t|)
+ ∥F∥C2

b
∥f∥α|t− s|2α

. ∥DF∥∞∥f∥v,α(1 + ∥v∥α)|t− s|2α

+ ∥F∥C2
b
∥f∥α|t− s|2α,

where we applied Lemma 4.4.5 in the last step. This shows that F (f) is controlled in
the sense of [Gub04]. The claim now follows by another application of Lemma 4.4.5.

The space of controlled paths is an algebra:

Corollary 4.4.7. Let α ∈ (0, 1/2), let v ∈ Cα(Rd), and f, g ∈ Dα
v (R), with derivatives

fv and gv respectively. Then fg ∈ Dα
v (R), with derivative fvg + fgv, and ∥fg∥v,α .

∥f∥v,α∥g∥v,α(1 + ∥v∥α).

Proof. We only concentrate on (fg)♯. For this term it suffices to note that

|(fg)s,t − fv(s)g(s)vs,t − f(s)gv(s)vs,t| ≤ |g(s)(fs,t − fv(s)vs,t)|
+ |f(s)(gs,t − gv(s)vs,t) + fs,tgs,t|

. ∥g∥∞∥f∥v,α(1 + ∥v∥α)|t− s|2α

+ ∥f∥∞∥g∥v,α(1 + ∥v∥α)|t− s|2α,
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4.4. Controlled paths and pathwise integration beyond Young

where we applied Lemma 4.4.5 in the second step. Another application of Lemma 4.4.5
now completes the argument.

Controlled paths satisfy the following transitivity condition.

Corollary 4.4.8. Let α ∈ (0, 1/2). Let w ∈ Cα(Rm), let v ∈ Dα
w(Rn) with derivative

vw ∈ Cα(L(Rm,Rn)), and let f ∈ Dα
v (Rd) with derivative fv ∈ Cα(L(Rn,Rd)). Then

f ∈ Dα
w, with derivative fw = fvvw ∈ Cα(L(Rm,Rd)), and

∥f∥w,α . ∥f∥v,α + ∥fv∥α∥v∥w,α(1 + ∥w∥α).

Proof. Again we only argue for the remainder term. It suffices to note that

|fs,t − fv(s)vw(s)ws,t| ≤ |fs,t − fv(s)vs,t| + |fv(s)(vs,t − vw(s)ws,t)|

and to apply Lemma 4.4.5.

Remark 4.4.9. Corollaries 4.4.6 – 4.4.8 hold in fact for α ∈ (0, 1), and can be shown
using our definition of controlled paths rather than the equivalent characterization of
Lemma 4.4.5. But then the proofs are longer. Since we will only need these results for
α < 1/2, we decided to give the short proofs based on Lemma 4.4.5.

We will need that if f is controlled by v, then SNf is controlled by SNv.

Lemma 4.4.10. Let α ∈ (0, 1), let v ∈ Cα, and let f ∈ Dα
v with derivative fv. Let

N ∈ N. Then SNf ∈ Dα
SNv

with derivative fv, and for all ε ∈ [0, α) we have

∥SNf − f∥α−ε + ∥(SNf)♯ − f ♯∥2α−ε . 2−Nε∥f∥v,α(1 + ∥v∥α).

In particular, ∥SNf∥SNv,α . ∥f∥v,α(1 + ∥v∥α).

Proof. The estimate for ∥SNf − f∥α−ε is straightforward, so let us concentrate on
∥(SNf)♯ − f ♯∥2α−ε. We have

∥(SNf)♯ − f ♯∥2α−ε ≤ ∥SN (f ♯) − f ♯∥2α−ε + ∥π<(fv, SNv) − SN (π<(fv, v))∥2α−ε.

It is easy to see that ∥SN (f ♯) − f ♯∥2α−ε . 2−Nε∥f ♯∥2α, and therefore it only remains to
estimate the second addend. Recall that ∆i(∆pf

v∆qv) = 0 for q > i or p > i, which
leads to

π<(fv, SNv) − SN (π<(fv, v))

=
∞

i=−1

N
q=−1

q−1
p=−1

∆i(∆pf
v∆qv) −

N
i=−1

N
q=−1

q−1
p=−1

∆i(∆pf
v∆qv)

=
∞

i=N+1

N
q=−1

q−1
p=−1

∆i(∆pf
v∆qv).
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Now let n ∈ N. Then we obtain from Corollary 4.3.12 that

∥∆n[π<(fv, SNv) − SN (π<(fv, v))]∥∞

. 1[N+1,∞)(n)
N

q=−1

q−1
p=−1

2−2n+p(1−α)+q(1−α)∥fv∥α∥v∥α

≃ 1[N+1,∞)(n)2−2n2N(2−2α)∥fv∥α∥v∥α ≤ 1[N+1,∞)(n)2−2αn∥fv∥α∥v∥α,

where we used that 2 − 2α > 0, and from where the claimed estimate follows.

4.4.2. A basic commutator estimate

Here we prove a basic commutator estimate, which will be the main ingredient needed
for constructing the integral I(f, dg), where f is controlled by v, and g is controlled by
w, and where we assume that the integral I(v,dw) exists.

Proposition 4.4.11. Let α, β, γ ∈ (0, 1), and assume that α + β + γ > 1. We also
assume that β + γ ̸= 1 and α + β + γ ̸= 2. Let f ∈ Cα, v ∈ Cβ, and w ∈ Cγ. Then the
“commutator”

R(f, v, w) := L(π<(f, v), w) − I(f, dL(v, w)) (4.17)
:= lim

N→∞
[L(SN (π<(f, v)), SNw) − I(f, dL(SNv, SNw))]

= lim
N→∞

N
p=−1

p−1
q=−1

 ·

0
∆p(π<(f, v))(s)d∆qw(s) −

 ·

0
d(∆q(π<(f, v)))(s)∆pw(s)

−
 ·

0
f(s)∆pv(s)d∆qw(s) −

 ·

0
f(s)d(∆qv)(s)∆pw(s)



converges in Cα+β+γ−ε for all ε > 0. Moreover

∥R(f, v, w)∥α+β+γ . ∥f∥α∥v∥β∥w∥γ .

Proof. We only argue for the difference of the positive terms in (4.17), i.e. for

XN :=
N

p=−1

p−1
q=−1

 ·

0
∆p(π<(f, v))(s)d∆qw(s) −

 ·

0
f(s)∆pv(s)d∆qw(s)


. (4.18)

The difference of the negative terms in (4.17) can be handled with the same arguments.
First we prove that XN converges uniformly, then we show that ∥XN∥α+β+γ stays uni-
formly bounded. This will imply the desired result, because it is easy to see that bounded
sets in Cα+β+γ are relatively compact in Cα+β+γ−ε for all ε > 0.
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4.4. Controlled paths and pathwise integration beyond Young

To prove uniform convergence, note that

XN −XN−1 =
N−1
q=−1

 ·

0
∆N (π<(f, v))(s)d∆qw(s) −

 ·

0
f(s)∆Nv(s)d∆qw(s)



=
N−1
q=−1


N

j=−1

j−1
i=−1

 ·

0
∆N (∆if∆jv)(s)d∆qw(s)

−
∞
j=N

j
i=−1

 ·

0
∆j(∆if∆Nv)(s)d∆qw(s)


, (4.19)

where for the second term it is possible to take the infinite sum over j outside of the
integral, because


j ∆jg converges uniformly to g for every continuous function g, and

because ∆qw is a finite variation path. The restrictions of the range of summation are
justified because ∆N (∆if∆jv) = 0 for i > N or j > N .

Only very few terms in (4.19) actually cancel. Nonetheless the cancellations are crucial,
because they eliminate most terms for which we only have the worse estimate (4.15) in
Corollary 4.3.12. We obtain

XN −XN−1 =
N−1
q=−1

N−1
j=−1

j−1
i=−1

 ·

0
∆N (∆if∆jv)(s)d∆qw(s)

−
N−1
q=−1

 ·

0
∆N (∆Nf∆Nv)(s)d∆qw(s)

−
N−1
q=−1

∞
j=N+1

j−1
i=−1

 ·

0
∆j(∆if∆Nv)(s)d∆qw(s)

−
N−1
q=−1

∞
j=N+1

 ·

0
∆j(∆jf∆Nv)(s)d∆qw(s). (4.20)

Note that ∥∂t∆qw∥∞ . 2q∥∆qw∥∞. Hence, an application of Corollary 4.3.12, where we
use (4.14) for the first three terms and (4.15) for the fourth term, yields

∥XN −XN−1∥∞ . ∥f∥α∥v∥β∥w∥γ


N−1
q=−1

N−1
j=−1

j−1
i=−1

2−2N+i+j2−iα2−jβ2q(1−γ)

+
N−1
q=−1

2−N(α+β)2q(1−γ) +
N−1
q=−1

∞
j=N+1

j−1
i=−1

2−2j+i+N2−iα2−Nβ2q(1−γ)

+
N−1
q=−1

∞
j=N+1

2−jα2−Nβ2q(1−γ)

.
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Now we use that α, β, γ < 1, to conclude that

∥XN −XN−1∥∞ . ∥f∥α∥v∥β∥w∥γ2−N(α+β+γ−1). (4.21)

Since α+ β + γ > 1, this is summable in N , and therefore (XN ) converges uniformly.

Next we need to show that ∥XN∥α+β+γ . ∥f∥α∥v∥β∥w∥γ for all N . Similarly to (4.20)
we obtain for n ∈ N that

∆nXN =

p≤N


q<p

∆n


j<p


i<j

 ·

0
∆p(∆if∆jv)(s)d∆qw(s) −

 ·

0
∆p(∆pf∆pv)(s)d∆qw(s)

−

j>p


i≤j

 ·

0
∆j(∆if∆pv)(s)d∆qw(s)


,

and therefore by Corollary 4.3.11

∥∆nXN∥∞ .

p


q<p


j<p


i<j

2−(n∨p)−n+p+q∥∆p(∆if∆jv)∥∞∥∆qw∥∞

+ 2−(n∨p)−n+p+q∥∆p(∆pf∆pv)∥∞∥∆qw∥∞

+

j>p


i≤j

2−(n∨j)−n+j+q∥∆j(∆if∆pv)∥∞∥∆qw∥∞


.

We apply Corollary 4.3.12, where for the last addend we distinguish the cases i < j and
i = j. Moreover, we use that 1 − γ > 0. This leads to

∥∆nXN∥∞ . ∥f∥α∥v∥β∥w∥γ

p

2p(1−γ)

j<p


i<j

2−(n∨p)−n+p2−2p2i(1−α)2j(1−β)

+ 2−(n∨p)−n+p2−pα2−pβ

+

j>p


i<j

2−(n∨j)−n+j2−2j+i(1−α)+p(1−β)

+

j>p

2−(n∨j)−n+j2−jα−pβ

.

Now a straightforward calculation, using α, β < 1, yields

∥∆nXN∥∞ . ∥f∥α∥v∥β∥w∥γ

p


2−(n∨p)−n2p(2−α−β−γ) + 2−(n∨p)−n2p(2−α−β−γ)

+ 2−(n∨p)−n2p(2−α−β−γ) + 2p(1−β−γ)2−n2−α(n∨p)

.
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Hence, we have

∥∆nXN∥∞ . ∥f∥α∥v∥β∥w∥γ

 n
p=−1


2−2n2p(2−α−β−γ) + 2p(1−β−γ)2−n(1+α)



+
∞

p=n+1
2−n2p(1−α−β−γ)

 .
Now we distinguish the cases α+ β + γ < 2 and α+ β + γ > 2, as well as β + γ < 1 and
β + γ > 1, and we use that 1 − α− β − γ < 0, to conclude that

∥∆nXN∥∞ . ∥f∥α∥v∥β∥w∥γ2−n(α+β+γ),

which completes the proof.

Remark 4.4.12. If β + γ or α + β + γ happen to be integers, then we can apply Propo-
sition 4.4.11 with β − ε to obtain that R(f, v, w) ∈ Cα+β+γ−ε for every sufficiently small
ε > 0.

For later reference, we collect the following result from the proof of Proposition 4.4.11:

Lemma 4.4.13. Let α, β, γ, f, v, w be as in Proposition 4.4.11. Then

∥R(f, v, w) − L(SN (π<(f, v)), SNw) − I(f, dL(SNv, SNw))∥∞

. 2−N(α+β+γ−1)∥f∥α∥v∥β∥w∥γ .

Proof. This follows by summing up (4.21) over N .

Corollary 4.4.14. Let α, β, γ ∈ (0, 1), and assume that α+ β + γ > 1. We also assume
that β + γ ̸= 1 and α+ β + γ ̸= 2. Let f ∈ Cα(L(Rd,R)), g ∈ Cα(L(Rn,R)), v ∈ Cβ(Rd),
and w ∈ Cγ(Rn). Then

R(f, g, v, w) := L(π<(f, v), π<(g, w)) − I(fg, dL(v, w))

:=
d

k=1

n
ℓ=1


L(π<(fk, vk), π<(gℓ, wℓ)) − I(fkgℓ,dL(vk, wℓ))


:=

d
k=1

n
ℓ=1

lim
N→∞


L(SN (π<(fk, vk)), SN (π<(gℓ, wℓ))) − I(fkgℓ,dL(SNvk, SNwℓ))


converges in Cα+β+γ−ε for all ε > 0. Moreover

∥ R(f, g, v, w)∥α+β+γ . ∥f∥α∥g∥α∥v∥β∥w∥γ .
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Proof. For fixed k, ℓ we have, for R as in Proposition 4.4.11,

lim
N→∞


L(SN (π<(fk, vk)), SN (π<(gℓ, wℓ))) − I(fkgℓ,dL(SNvk, SNwℓ))


= R(fk, vk, π<(gℓ, wℓ)) + lim

N→∞


I(fk,dL(SNvk, SN (π<(gℓ, wℓ))))

− I(fk,dI(gℓ,dL(SNvk, SNwℓ)))


= R(fk, vk, π<(gℓ, wℓ)) − lim
N→∞


I(fk, dL(SN (π<(gℓ, wℓ)), SNvk))

− I(fk,dI(gℓ,dL(SNwℓ, SNvk)))


= R(fk, vk, π<(gℓ, wℓ)) − I(fk,dR(gℓ, wℓ, vk)),

where we used that L is antisymmetric. The claimed estimate now follows from Propo-
sition 4.4.11 and from Theorem 4.3.15.

4.4.3. Pathwise integration for rough paths

In this section we apply our commutator estimates Proposition 4.4.11 respectively Corol-
lary 4.4.14 to show that if v, w ∈ Cα for α > 1/3, and if I(v,dw) ∈ Cα is given and
satisfies I(v,dw) − π<(v, w) ∈ C2α, then we can construct the pathwise integral I(f, dg)
for all f ∈ Dα

v and g ∈ Dα
w.

Theorem 4.4.15. Let α ∈ (1/3, 1), α ̸= 1/2, α ̸= 2/3. Let v ∈ Cα(Rd) and w ∈ Cβ(Rn),
and assume that the Lévy area

L(v, w) := lim
N→∞


L(SNvk, SNwℓ)


1≤k≤d,1≤ℓ≤n

converges uniformly, such that supN∥L(SNv, SNw)∥2α < ∞. Let f ∈ Dα
v (L(Rm,Re))

and g ∈ Dα
w(Rm). Then

I(SNf, dSNg) =

p≤N


q≤N

 ·

0
∆pf(s)d∆qg(s)

converges in Cα−ε for all ε > 0. We denote the limit by I(f, dg). Then

∥I(f, dg)∥α . ∥f∥v,α∥g∥w,α

1 + ∥v∥α + ∥w∥α + ∥v∥α∥w∥α + ∥L(v, w)∥2α


.

Moreover, I(f, dg) ∈ Dα
w with derivative fgw and

∥I(f, dg)∥w,α . ∥f∥v,α

1 + ∥g∥w,α


1 + ∥v∥α + ∥w∥α + ∥v∥α∥w∥α + ∥L(v, w)∥2α


.

Proof. We have

I(SNf, dSNg) = S(SNf, SNg) + π<(SNf, SNg) + L(SNf, SNg), (4.22)
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where S and π< are bounded bilinear operators, with

∥S(f, g)∥2α + ∥π<(f, g)∥α . ∥f∥α∥g∥α, (4.23)

see Lemma 4.3.5 and Lemma 4.3.14. Therefore, the result follows once we show that
L(SNf, SNg) converges in C2α−ε as N → ∞, and that the limit L(f, g) is in C2α. But
since f ∈ Dα

v and g ∈ Dα
w, we obtain

L(SNf, SNg) = L(SNf ♯, SNg) + L(SNπ<(fv, v), SNg♯)
+ L(SNπ<(fv, v), SNπ<(gw, w)). (4.24)

Now f ♯, g♯ ∈ C2α and 3α > 1. Hence, we can apply Lemma 4.3.13 to obtain the conver-
gence of L(SNf ♯, SNg) + L(SNπ<(fv, v), SNg♯) in C3α−ε, as well as the estimate

∥L(f ♯, g)∥3α + ∥L(π<(fv, v), g♯)∥3α . ∥f ♯∥2α∥g∥α + ∥π<(fv, v)∥α∥g♯∥2α

. (1 + ∥v∥α)∥f∥v,α∥g∥w,α. (4.25)

Only the term L(SNπ<(fv, v), SNπ<(gw, w)) remains to be treated. But for this term we
obtain from Corollary 4.4.14 that

lim
N→∞

L(SNπ<(fv, v), SNπ<(gw, w)) = R(fv, gw, v, w) + lim
N→∞

I(fvgw,dL(SNv, SNw)).

By assumption, L(SNv, SNw) converges in C2α−ε to L(v, w). The continuity of the Young
integral, see Theorem 4.3.15, therefore implies the convergence in C2α−ε of L(SNf, Sng)
to L(f, g), as well as the estimate

∥L(π<(fv, v), π<(gw, w))∥2α . ∥ R(fv, gw, v, w)∥3α + ∥I(fvgw,dL(v, w))∥2α

. ∥fv∥α∥gw∥α

∥v∥α∥w∥α + ∥L(v, w)∥2α


. (4.26)

Combining (4.22)–(4.26), we obtain I(f, dg) ∈ Dα
g with derivative f , and

∥I(f, dg)∥α . ∥f∥v,α∥g∥w,α

1 + ∥v∥α + ∥w∥α + ∥v∥α∥w∥α + ∥L(v, w)∥2α


as well as

∥I(f, dg)∥g,α . ∥f∥v,α

1 + ∥g∥w,α


1 + ∥v∥α + ∥v∥α∥w∥α + ∥L(v, w)∥2α


.

Now we only need to apply Corollary 4.4.8 to obtain that I(f, dg) ∈ Dα
w, and the estimate

∥I(f, dg)∥w,α . ∥f∥v,α

1 + ∥g∥w,α


1 + ∥v∥α + ∥w∥α + ∥v∥α∥w∥α + ∥L(v, w)∥2α


.

The integral I is a bounded bilinear operator, and therefore it is continuous. The
difference of two integrals can be estimated:
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Corollary 4.4.16. Let α, v, w, f, g be as described in Theorem 4.4.15. Let ṽ ∈ Cα(Rd)
and w̃ ∈ Cα(Rn), and assume that the Lévy area L(SN ṽ, SN w̃) converges uniformly and
with uniformly bounded C2α norm to L(ṽ, w̃). Let f̃ ∈ Dα

ṽ (L(Rm,Re)) and g̃ ∈ Dα
w̃(Rm).

Then

∥I(f, dg) − I(f̃ ,dg̃)∥α .

∥f − f̃∥α + ∥fv − f̃ ṽ∥α + ∥f ♯ − f̃ ♯∥2α


∥g∥w,α

×

1 + ∥v∥α + ∥v∥α∥w∥α + ∥L(v, w)∥2α


+

∥g − g̃∥α + ∥gw − g̃w̃∥α + ∥g♯ − g̃♯∥2α


∥f̃∥ṽ,α

×

1 + ∥v∥α + ∥v∥α∥w∥α + ∥L(v, w)∥2α


+

∥v − ṽ∥α + ∥w − w̃∥α + ∥L(v, w) − L(ṽ, w̃)∥2α


∥f̃∥ṽ,α∥g̃∥w̃,α

×

1 + ∥ṽ∥α + ∥w∥α


.

Proof. We decompose I(f, dg) − I(f̃ ,dg̃) in the same way as I(f, dg) was decomposed in
the proof of Theorem 4.4.15. The claimed estimate then follows from multilinearity and
boundedness of the involved operators.

We can apply Corollary 4.4.16 to estimate ∥I(SNf, dSNg) − I(f, dg)∥α. But usually
we are more interested how close I(SNf, dSNg) and I(f, dg) are in uniform distance.

Corollary 4.4.17. Let α ∈ (1/3, 1/2) and let v, w, f, g be as described in Theorem 4.4.15.
Then we have for all ε ∈ (0, 3α− 1) that

∥I(SNf, dSNg) − I(f, dg)∥∞ .ε 2−N(3α−1−ε)∥f∥v,α∥g∥w,α

1 + ∥v∥α + ∥v∥α∥w∥α


+ ∥f∥α∥g∥α∥L(SNv, SNw) − L(v, w)∥2α.

Proof. We decompose I(SNf, dSNg) as described in the proof of Theorem 4.4.15. This
gives us for example the term

S(SNf, SNg) − S(f, g) = S(SNf − f, SNg) + S(f, SNg − g).

Let δ > 0 be such that α < (1−δ)/2. We have ∥·∥∞ . ∥·∥α+δ, and therefore Lemma 4.3.14
implies that

∥S(SNf, SNg) − S(f, g)∥α+δ . ∥SNf − f∥δ∥SNg∥α + ∥f∥α∥SNg − g∥δ
. 2−N(α−δ)∥f∥α∥g∥α.

By choice of δ we have α−δ > 3α−1, and therefore 2−N(α−δ) < 2−N(3α−1) < 2−N(3α−1−ε).
Let us treat one of the critical terms, say L(SNf ♯, SNg). Since 3α − ε > 1, we can

apply Lemma 4.3.13 to obtain

∥L(SNf ♯, SNg) − L(f ♯, g)∥∞ . ∥L(SNf ♯ − f ♯, SNg)∥1+ε + ∥L(f ♯, SNg − g)∥1+ε

.ε ∥SNf ♯ − f ♯∥1+ε−α∥g∥α + ∥f ♯∥2α∥SNg − g∥1+ε−2α

. 2−N(2α−(1+ε−α))∥f ♯∥2α∥g∥α + 2−N(α−(1+ε−2α))∥f ♯∥2α∥g∥α
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. 2−N(3α−1−ε)∥f ♯∥2α∥g∥α.

By rewriting R in terms of R as in the proof of Corollary 4.4.14 and then applying
Lemma 4.4.13, we see that

∥L(SNπ<(f, v), SNπ<(g, w))∥∞ . 2−N(3α−1)∥f∥α∥g∥α∥v∥α∥w∥α
+ ∥I(fg,dL(SNv, SNw)) − I(fg,dL(v, w))∥∞.

For the second term on the right hand side we use the continuity of the Young integral
to obtain

∥I(fg, dL(SNv, SNw)) − I(fg, dL(v, w))∥∞ . ∥I(fg, dL(SNv, SNw) − dL(v, w))∥2α

. ∥f∥α∥g∥α∥L(SNv, SNw) − L(v, w)∥2α.

The other terms are treated with similar arguments, and the claimed estimate follows.

Remark 4.4.18. In Lemma 4.4.13 we saw that the rate of convergence of

L(SNπ<(fv, v), SNπ<(gw, w)) − I(fg, dL(SNv, SNw))
− (L(π<(fv, v), π<(gw, w)) − I(fg, dL(v, w)))

is in fact 2−N(3α−1) when measured in uniform distance, and not just 2−N(3α−1−ε). It is
possible to show that this optimal rate is attained by the other terms as well, so that

∥I(SNf, dSNg) − I(f, dg)∥∞ . 2−N(3α−1)∥f∥v,α∥g∥w,α

1 + ∥v∥α + ∥v∥α∥w∥α


+ ∥f∥α∥g∥α∥L(SNv, SNw) − L(v, w)∥2α−ε.

Since this requires a rather lengthy calculation, we decided not to include the arguments
here.

Since we approximate f and g by the piecewise smooth functions SNf and SNg when
defining the integral I(f, dg), it is not surprising that we obtain a Stratonovich type
integral.

Proposition 4.4.19. Let α ∈ (1/3, 1) and v ∈ Cα(Rd). Let F ∈ C3(Rd,R). Then

F (v(t)) − F (v(0)) = I(DF (v), dv)(t) := lim
N→∞

I(SNDF (v),dSNv)(t)

for all t ∈ [0, 1].

Proof. The function SNv is Lipschitz continuous for all N ∈ N. Therefore, we can apply
integration by parts to obtain

F (SNv(t)) − F (SNv(0)) = I(DF (SNv),dSNv)(t).

The left hand side converges to F (v(t)) − F (v(0)) as N tends to ∞. To complete the
proof it therefore suffices to show that I(SNDF (v) − DF (SNv),dSNv) converges to zero
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as N → ∞. By continuity of the Young integral, Theorem 4.3.15, it suffices to show that
there exists a sufficiently small ε > 0 such that limN→∞∥SNDF (v)−DF (SNv)∥2α−ε = 0.
Recall that SNv is the linear interpolation of v between the points (t1pm) for p ≤ N and
0 ≤ m ≤ 2p, and therefore ∆pDF (SNv) = ∆pDF (v) = ∆pSNDF (v) for all p ≤ N . For
p > N and 1 ≤ m ≤ 2p we apply a first order Taylor expansion to both terms to see that

|[SNDF (v) − DF (SNv)]pm| ≤ CF 2−2pα∥SNv∥α,

where CF > 0 is a constant such that F and its partial derivatives up to order 3 are
bounded by CF on the support of v (and thus of SNv). Therefore, we have for all
ε ∈ [0, 2α) that

∥SNDF (v) − DF (SNv)∥2α−ε ≤ C2−Nε∥v∥α,

which completes the proof.

Remark 4.4.20. Note that here we did not need any assumption on the convergence of
the area L(v, v). The reason are cancellations that arise due to the symmetric structure
of the derivative of DF , i.e. of the Hessian of F . It is possible to show directly for the
Lévy area L(SNDF (v), SNv) that it converges, and in this approach the importance of
the symmetry of DF becomes very obvious: After a first order Taylor expansion, the
fact that L is antisymmetric implies, in conjunction with the symmetry of the Hessian of
F , that all terms cancel except the remainder, which is smooth enough to be accessible
with Young integration. However, the disadvantage of this approach is that then it is
not trivial to identify the limit as F (v(t)) −F (v(0)). That is why we chose the approach
presented above.

Proposition 4.4.19 was previously obtained by Roynette [Roy93], Proposition 1, except
that Roynette assumed that v is one dimensional and in the Besov space B1/2

1,∞.

4.5. Pathwise Itô integration

In the previous section we saw that our pathwise integral I(f, dg) is of Stratonovich
type, i.e. it satisfies the usual integration by parts rule. But in applications it may be
interesting to have an Itô integral. Here we show that a slight modification of I(f, dg)
allows us to treat non-anticipating Itô-type integrals.

In our dyadic context, a natural approximation of a non-anticipating integral is given
for k ∈ N by

IItô
k (f, dg)(t) :=

2k
ℓ=0

f(t0kℓ)(g(t2kℓ ∧ t) − g(t0kℓ ∧ t))

=
2k
ℓ=0


p,q


m,n

fpmgqnϕpm(t0kℓ)(ϕqn(t2kℓ ∧ t) − ϕqn(t0kℓ ∧ t)).
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Let us assume for the moment that t = m2−k for some 0 ≤ m ≤ 2k. In that case we
obtain for p ≥ k or q ≥ k that ϕpm(t0kℓ)(ϕqn(t2kℓ∧ t)−ϕqn(t0kℓ∧ t)) = 0. For p, q < k, both
ϕpm and ϕqn are affine functions on [t0kℓ ∧ t, t2kℓ ∧ t]. And for affine v and w and s < t it
is not hard to see that

v(s)(w(t) − w(s)) =
 t

s
v(r)dw(r) − 1

2[v(t) − v(s)][w(t) − w(s)].

Hence, we conclude that for t = m2−k we have

IItô
k (f, dg)(t) = I(Sk−1f, dSk−1g)(t) − 1

2[f, g]k(t), (4.27)

where [f, g]k is the k–th dyadic approximation of the quadratic covariation [f, g], i.e.

[f, g]k(t) :=
2k
ℓ=0

[f(t2kℓ ∧ t) − f(t0kℓ ∧ t)][g(t2kℓ ∧ t) − g(t0kℓ ∧ t)].

For the moment let us continue by studying the right-hand side of (4.27). Later we will
show how to return from there to IItô

k (f, dg)(t) for general t, not necessarily of the form
t = m2−k.

We write [w,w] := ([wi, wj ])1≤i,j≤d and L(w,w) := (L(wi, wj))1≤i,j≤d, and similarly
for all expressions of the same type.
Theorem 4.5.1. Let α ∈ (1/3, 1/2) and let w ∈ Cα(Rd) and f, g ∈ Dα

w(R). Assume that
(L(Skw, Skw)) converges uniformly, with uniformly bounded C2α norm. Also assume
that ([w,w]k) converges uniformly. Then I(Sk−1f, dSk−1g)(t) − 1/2[f, g]k(t) converges
uniformly to a limit IItô(f, dg) that satisfies

∥IItô(f, dg)∥∞ . ∥f∥w,α∥g∥w,α(1 + ∥w∥2
α + ∥L(w,w)∥2α + ∥[w,w]∥∞).

The quadratic variation of IItô(f, dg) is given by

[f, g] =
d

i,j=1

 ·

0
fw,i(s)gw,j(s)d[wi, wj ](s). (4.28)

Moreover, for ε ∈ (0, 3α− 1) the speed of convergence can be estimated byIItô(f, dg) −

I(Sk−1f, dSk−1g) − 1

2[f, g]k


∞

.ε 2−k(3α−1−ε)∥f∥w,α∥g∥w,α

1 + ∥w∥α + ∥w∥2

α


+ ∥f∥α∥g∥α∥L(Sk−1w, Sk−1y) − L(w, y)∥2α

+ ∥fw∥∞∥gw∥∞∥[w,w]k − [w,w]∥∞.

Proof. Let us first treat the quadratic variation. Recall from Lemma 4.4.5 that f ∈
Dα
w(R) if and only if there exists Rf : [0, 1]2 → R, such that |Rfs,t| . |t − s|2α, and such
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that for all 0 ≤ s < t ≤ 1 we have fs,t = fw(s)ws,t +Rfs,t. An analogous statement holds
for g. Hence

[f, g]k(t) =

ℓ

ft0
kℓ

∧t,t2
kℓ

∧tgt0
kℓ

∧t,t2
kℓ

∧t

=

ℓ

Rf
t0
kℓ

∧t,t2
kℓ

∧tgt0kℓ
∧t,t2

kℓ
∧t +


ℓ

fw(t0kℓ ∧ t)wt0
kℓ

∧t,t2
kℓ

∧tR
g
t0
kℓ

∧t,t2
kℓ

∧t

+

i,j


ℓ

fw,i(t0kℓ)gw,j(t0kℓ)wit0
kℓ

∧t,t2
kℓ

∧tw
j
t0
kℓ

∧t,t2
kℓ

∧t.

It is easy to see that there exists C > 0, such that the first two terms on the right
hand side are uniformly bounded by C2−k(3α−1)∥f∥w,α∥g∥w,α. For the third term, let
us fix i and j. Then this is just the integral of fw,igw,j with respect to the measure
µkt =


ℓ δt0

kℓ
wi
t0
kℓ

∧t,t2
kℓ

∧tw
j
t0
kℓ

∧t,t2
kℓ

∧t. We can decompose the measure µkt into a positive and
negative part as

µkt = 1
4


ℓ

δt0
kℓ

[(wi + wj)t0
kℓ

∧t,t2
kℓ

∧t]2 −

ℓ

δt0
kℓ

[(wi − wj)t0
kℓ

∧t,t2
kℓ

∧t]2


=: µk,+t − µk,−t .

Hence, we can estimate 1

0
fw,i(s)gw,j(s)µkt (ds) −

 1

0
fw,i(s)gw,j(s)µt(ds)


.
fw,igw,j

∞

[wi + wj ]k − [wi + wj ]


∞
+
[wi − wj ]k − [wi − wj ]


∞


.
fw,igw,j

∞
∥[w,w]k − [w,w]∥∞,

where we write [u] := [u, u] and similarly for [u]k. By assumption, the right hand side
converges to zero, from where we get the uniform convergence of [f, g]k to [f, g]. Moreover,
we have the explicit representation

[f, g](t) =

i,j

 t

0
fw,i(s)gw,j(s)d[wi, wj ](s),

and therefore ∥[f, g]∥∞ . ∥fw∥∞∥gw∥∞∥[w,w]∥∞, where we use the decomposition of
[wi, wj ] into the difference of two nondecreasing processes, [wi, wj ] = 1/4([wi + wj ] −
[wi − wj ]).

Now let us come to the integral I(Sk−1f, dSk−1g). Here we only need to apply Theo-
rem 4.4.15, to obtain convergence to a limit I(f, dg) that satisfies

∥I(f, dg)∥∞ . ∥f∥w,α∥g∥w,α(1 + ∥w∥2
α + ∥L(w,w)∥2α),

where we used that 1 + ∥w∥α + ∥w∥2
α . 1 + ∥w∥2

α. According to Corollary 4.4.17, the
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speed of convergence can be estimated by

∥I(f, dg) − I(Sk−1f, dSk−1g)∥∞ .ε 2−k(3α−1−ε)∥f∥w,α∥g∥w,α

1 + ∥w∥α + ∥w∥2

α


+ ∥f∥α∥g∥α∥L(Sk−1w, Sk−1w) − L(w,w)∥2α.

Note that [w,w] is always a continuous function of bounded variation, but a priori it
is not clear whether it is in C2α. Under this additional assumption we have the following
stronger result.

Corollary 4.5.2. In addition to the conditions of Theorem 4.5.1, assume that also
[w,w] ∈ C2α. Then IItô(f, dg) ∈ Dα

w with derivative fgw, and

∥IItô(f, dg)∥w,α . ∥f∥w,α

1 + ∥g∥w,α


1 + ∥w∥2

α + ∥L(w,w)∥2α + ∥[w,w]∥2α

.

Let moreover w̃ ∈ Cα(Rd) with Lévy area L(Skw̃, Skw̃) that converges uniformly and
with uniformly bounded C2α norm to L(w̃, w̃), and with quadratic variation [w̃, w̃]k that
converges uniformly to [w̃, w̃] ∈ C2α. Let f̃ , g̃ ∈ Dα

w̃(R). Then

∥IItô(f, dg) − IItô(f̃ , dg̃)∥α .

∥f − f̃∥α + ∥fw − f̃ w̃∥α + ∥f ♯ − f̃ ♯∥2α


∥g∥w,α

×

1 + ∥w∥2

α + ∥L(w,w)∥2α + ∥[w,w]∥2α


+

∥g − g̃∥α + ∥gw − g̃w̃∥α + ∥g♯ − g̃♯∥2α


∥f̃∥w̃,α

×

1 + ∥w∥2

α + ∥L(w,w)∥2α + ∥[w,w]∥2α


+

∥w − w̃∥α + ∥L(w,w) − L(w̃, w̃)∥2α + ∥[w,w] − [w̃, w̃]∥2α


× ∥f̃∥w̃,α∥g̃∥w̃,α


1 + ∥w̃∥α + ∥w∥α


.

Proof. This is a combination of Theorem 4.4.15 and Corollary 4.4.16, and the explicit
representation (4.28) for the quadratic variation. We also need continuity of the Young
integral, Theorem 4.3.15, for example to estimate ∥[f, g]∥2α.

The term I(Sk−1f, dSk−1g) has the pleasant property that if we want to refine our
calculation by passing from k to k+ 1, then we can build on our existing calculation and
only add the additional terms I(Sk−1f, d∆kg)+I(∆kf, dSkg). For the quadratic variation
[f, g]k this is not exactly true. But note that [f, g]k(m2−k) = [Sk−1f, Sk−1g]k(m2−k) for
m = 0, . . . , 2k. And there is a recursive way of calculating [Sk−1f, Sk−1g]k:

Lemma 4.5.3. Let f, g ∈ C([0, 1],R). Then we have for all k ≥ 1 and all t ∈ [0, 1] that

[Skf, Skg]k+1(t) = 1
2[Sk−1f, Sk−1g]k(t) + [Sk−1f,∆kg]k+1(t) + [∆kf, Skg]k+1(t) +Rk(t),

(4.29)
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where

Rk(t) := −1
2fxtky,tgxtky,t + fxtky,ptk+1q∧tgxtky,ptk+1q∧t + fptk+1q∧t,tgptk+1q∧t,t

and xtky := ⌊t2k⌋2−k and ptkq := xtky + 2−(k+1). In particular, we obtain for t = 1 that

[f, g]k+1(1) = 1
2[f, g]k(1) + 1

2

m

fkmgkm = 1
2k+1


p≤k


m

2pfpmgpm. (4.30)

If moreover α ∈ (0, 1) and f, g ∈ Cα, then

∥[Sk−1f, Sk−1g]k − [f, g]k∥∞ . 2−2kα∥f∥α∥g∥α.

Proof. By subtracting [Sk−1f,∆kg]k+1(t) + [∆kf, Skg]k+1(t) on both sides of (4.29), we
see that it suffices to show [Sk−1f, Sk−1g]k+1 = 1/2[Sk−1f, Sk−1g]k +Rk. Let us assume
that t = m2−k. In that case Rk(t) = 0, and for every ℓ ≤ 2k we obtain

([Sk−1f, Sk−1g]k+1)t0
kℓ
,t2

kℓ
=

(Sk−1f)t0

kℓ
,t1

kℓ
(Sk−1g)t0

kℓ
,t1

kℓ
+ (Sk−1f)t1

kℓ
,t2

kℓ
(Sk−1g)t1

kℓ
,t2

kℓ


= 1

2(Sk−1f)t0
kℓ
,t2

kℓ
(Sk−1g)t0

kℓ
,t2

kℓ
= 1

2([Sk−1f, Sk−1g]k)t0
kℓ
,t2

kℓ
,

where we used that Sk−1f and Sk−1g are linear on [t0kℓ, t2kℓ], and that the two intervals
[t0kℓ, t1kℓ] and [t1kℓ, t2kℓ] have the same length 2−k−1. The term Rk is now chosen exactly so
that we also obtain the right expression for t ∈ [0, 1] that is not of the form m2−k.

The formula for [f, g]k+1(1) follows because [f, g]k+1(1) = [Skf, Skg]k+1(1), and be-
cause it is easy to see that [∆pf,∆qg]k+1(1) = 0 unless p = q, and that [∆kf,∆kg]k+1 =
1/2


m fkmgkm.

The estimate for ∥[Sk−1f, Sk−1g]k − [f, g]k∥∞ holds because the two functions agree in
all dyadic points of the form m2−k, and because between two such points the quadratic
variation can pick up mass of at most 2−2kα∥f∥α∥g∥α.

Remark 4.5.4. The Cesàro mean formula (4.30) makes the study of existence of the
quadratic variation accessible to ergodic theory. This was previously observed by Gan-
tert [Gan94]. See also Gantert’s thesis [Gan91], Beispiel 3.29, where it is shown that
ergodicity alone (of the distribution of w with respect to suitable transformations on
path space) is not sufficient to obtain convergence of ([w,w]k(1)) as k tends to ∞.

Recall that we defined IItô
k (f, dg)(t) =


ℓ f(t0kℓ)gt0kℓ

∧t,t2
kℓ

∧t.

Remark 4.5.5. Let α ∈ (0, 1). If f ∈ C([0, 1]) and g ∈ Cα, thenIItô
k (f, dg) −


I(Sk−1f, dSk−1g) − 1

2[Sk−1f, Sk−1g]k


∞
. 2−kα∥f∥∞∥g∥α.

This holds because both functions agree in all dyadic points of the form m2−k, and
because between those points the integrals can pick up mass of at most ∥f∥∞2−kα∥g∥α.
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It follows from Remark 4.5.5 that our pathwise Itô type integral constructed in The-
orem 4.5.1 is the limit of non-anticipating Riemann sums. Therefore, it would be more
natural to assume that also for the controlling path w the non-anticipating Riemann
sums converge, rather than assuming that (L(Skw, Skw))k and ([w,w]k) converge. Be-
low we show that this is sufficient, as long as a uniform Hölder estimate is satisfied by the
Riemann sums. In that case all the conditions of Theorem 4.5.1 and of Corollary 4.5.2
are satisfied.

We first show that the existence of the Itô iterated integrals implies the existence of
the quadratic variation.

Lemma 4.5.6. Let α ∈ (0, 1/2) and let w ∈ Cα(Rd). Assume that the non-anticipating
Riemann sums (IItô

k (w,dw))k converge uniformly to IItô(w,dw). Then also ([w,w]k)k
converges uniformly to a limit [w,w]. Moreover, for all 0 ≤ s < t ≤ 1

|[w,w]k(t) − [w,w]k(s)| . |IItô
k (w,dw)s,t − w(s)ws,t| + |ws,t|2. (4.31)

If moreover

sup
k

sup
0≤ℓ<ℓ′≤2k

|IItô
k (w,dw)(ℓ′2−k) − IItô

k (w,dw)(ℓ2−k) − w(ℓ2−k)(w(ℓ′2−k) − w(ℓ2−k))|
|(ℓ′ − ℓ)2−k|2α

= C < ∞,

then [w,w] ∈ C2α, and

∥[w,w]∥2α . C + ∥w∥2
α. (4.32)

Proof. Let t ∈ [0, 1] and 1 ≤ i, j ≤ d. Then

wi(t)wj(t) − wi(0)wj(0) =
2k
ℓ=1


wi(t2kℓ ∧ t)wj(t2kℓ ∧ t) − wi(t0kℓ ∧ t)wj(t0kℓ ∧ t)



=
2k
ℓ=1


wi(t0kℓ)w

j
t0
kℓ

∧t,t2
kℓ

∧t + wj(t0kℓ)wit0
kℓ

∧t,t2
kℓ

∧t + wit0
kℓ

∧t,t2
kℓ

∧tw
j
t0
kℓ

∧t,t2
kℓ

∧t


= IItô

k (wi,dwj)(t) + IItô
k (wj , dwi)(t) + [wi, wj ]k(t), (4.33)

which implies the convergence of ([w,w]k)k as k tends to ∞. For 0 ≤ s < t ≤ 1 we obtain
from (4.33) that

([wi, wj ]k)s,t =

wiwj


s,t

− IItô
k (wi,dwj)s,t − IItô

k (wj , dwi)s,t

=

wi(s)wjs,t − IItô

k (wi,dwj)s,t


+

wj(s)wis,t − IItô

k (wj ,dwi)s,t


+ wis,tw
j
s,t,

leading to (4.31). Given (4.31) it is now easy to estimate ∥[w,w]∥2α. We estimate the
classical Hölder norm, not the C2α norm. Let 0 ≤ s < t ≤ 1. Using the continuity
of [w,w], we choose k large enough such that there exist s < sk = ℓs2−k < t and
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s < tk = ℓt2−k < t with

|[w,w]s,sk
| + |[w,w]tk,t| + ∥[w,w]k − [w,w]∥∞ ≤ ∥w∥2

α|t− s|2α.

Since

|[w,w]s,t| ≤ |[w,w]s,sk
| + |[w,w]tk,t| + ∥[w,w]k − [w,w]∥∞,

we obtain (4.32) as a consequence of (4.31) and the hypothesis.

Let us show that convergence of (IItô
k (w,dw)) implies convergence of (L(Skw, Skw))k:

Lemma 4.5.7. Let α ∈ (0, 1/2), and let w ∈ Cα(Rd). Assume that the non-anticipating
integrals (IItô

k (w,dw))k converge uniformly, and that

sup
k

sup
0≤ℓ<ℓ′≤2k

|IItô
k (w,dw)(ℓ′2−k) − IItô

k (w,dw)(ℓ2−k) − w(ℓ2−k)(w(ℓ′2−k) − w(ℓ2−k))|
|(ℓ′ − ℓ)2−k|2α

= C < ∞.

Then L(Skw, Skw) converges uniformly as k → ∞, and

sup
k

∥L(Skw, Skw)∥2α . C + ∥w∥2
α.

Proof. Let k ∈ N and 0 ≤ ℓ ≤ 2k, and write t = ℓ2−k. Then we obtain from (4.27) that

L(Sk−1w, Sk−1w)(t) (4.34)
= I(Sk−1w,dSk−1w)(t) − π<(Sk−1w, Sk−1w)(t) − S(Sk−1w, Sk−1w)(t)

= IItô
k (w,dw)(t) + 1

2[w,w]k(t) − π<(Sk−1w, Sk−1w)(t) − S(Sk−1w, Sk−1w)(t).

Let now s, t ∈ [0, 1]. We first assume that there exists ℓ such that t0kℓ ≤ s < t ≤ t2kℓ.
Then we use that ∥∂t∆qw∥∞ . 2q(1−α)∥w∥α to obtain

|L(Sk−1w, Sk−1w)s,t| ≤

p<k


q<p

 t

s
∆pw(r)d∆qw(r) −

 t

s
d∆qw(r)∆pw(r)

 (4.35)

.

p<k


q<p

|t− s|2−pα2q(1−α)∥w∥2
α . |t− s|2−k(2α−1)∥w∥2

α ≤ |t− s|2α∥w∥2
α,

where we used that 2α− 1 < 0, and also that |t− s| ≤ 2−k by assumption.
Combining (4.34) and (4.35), we obtain the uniform convergence of (L(Sk−1w, Sk−1w))

from Lemma 4.5.6 and from the continuity of π< and S.
For s and t that do not lie in the same dyadic interval of generation k, let pskq = ℓs2−k

and xtky = ℓt2−k be such that pskq − 2−k < s ≤ pskq and xtky ≤ t < xtky + 2−k. In
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particular, pskq ≤ xtky. Moreover

|L(Sk−1w, Sk−1w)s,t| ≤ |L(Sk−1w, Sk−1w)s,pskq| + |L(Sk−1w, Sk−1w)pskq,xtky|
+ |L(Sk−1w, Sk−1w)xtky,t|.

According to (4.35), the first and third term on the right hand side can be estimated by
(|pskq − s|2α + |t − xtky|2α)∥w∥2

α . |t − s|2α∥w∥2
α. For the middle term we apply (4.34)

to obtain

|L(Sk−1w, Sk−1w)pskq,xtky| ≤
IItô
k (w,dw)pskq,xtky − w(pskq)(w(xtky) − w(pskq))


+
w(pskq)wpskq,xtky − π<(Sk−1w, Sk−1w)pskq,xtky


+ 1

2

([w,w]k)pskq,xtky

+ S(Sk−1w, Sk−1w)pskq,xtky


. |xtky − pskq|2α


C + ∥w∥2

α


≤ |t− s|2α


C + ∥w∥2

α


,

where we used Lemma 4.4.5, Lemma 4.5.6, and Lemma 4.3.14.

Combining Lemma 4.5.6 and Lemma 4.5.7 with Theorem 4.5.1, we see that uni-
form convergence of (IItô

k (w,dw))k to IItô(w,dw) implies the uniform convergence of
(IItô
k (f, dg))k to IItô(f, dg) for f and g controlled by w:

Corollary 4.5.8. Let α ∈ (1/3, 1/2) and let w ∈ Cα(Rd) and f, g ∈ Dα
w(R). Assume that

the non-anticipating Riemann sums (IItô
k (w,dw))k converge uniformly to IItô(w,dw), and

that furthermore

sup
k

sup
0≤ℓ<ℓ′≤2k

|IItô
k (w,dw)(ℓ′2−k) − IItô

k (w,dw)(ℓ2−k) − w(ℓ2−k)(w(ℓ′2−k) − w(ℓ2−k))|
|(ℓ′ − ℓ)2−k|2α

= C < ∞.

Then the non-anticipating Riemann sums (IItô
k (f, dg))k converge to a limit IItô(f, dg)

that satisfies

∥IItô(f, dg)∥∞ . ∥f∥w,α∥g∥w,α(1 + ∥w∥2
α + C).

Remark 4.5.9. Observe that we calculate the pathwise Itô integral IItô(f, dg) as limit of
Riemann sums involving only f and g, and not the Lévy area of L(w,w) or the quadratic
variation [w,w]. The classical rough path integral, see Proposition 4.2.4, is obtained as
a “compensated Riemann sum” that involves f and g, but also their derivatives with
respect to w, as well as the iterated integrals of w. For applications in mathematical
finance, it is more convenient to have an integral that is the limit of Riemann sums
involving only f and g, because then this integral can be interpreted as capital process
obtained by investing in g.

It follows from the work of Föllmer [Föl79] that our pathwise Itô integral satisfies Itô’s
formula:
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Corollary 4.5.10. Let α ∈ (1/3, 1/2) and let w ∈ Cα(Rd) and f, g ∈ Dα
w(R). Assume

that the non-anticipating Riemann sums (IItô
k (w,dw))k converge uniformly to IItô(w,dw),

and that furthermore

sup
k

sup
0≤ℓ<ℓ′≤2k

|IItô
k (w,dw)(ℓ′2−k) − IItô

k (w,dw)(ℓ2−k) − w(ℓ2−k)(w(ℓ′2−k) − w(ℓ2−k))|
|(ℓ′ − ℓ)2−k|2α

= C < ∞.

Let F ∈ C2(Rd,R). Then (IItô(DF (w), dw))k converges to a limit IItô(DF (w),dw) that
satisfies for all t ∈ [0, 1]

F (w(t)) − F (w(0)) = IItô(DF (w),dw)(t) +
 t

0

d
k,ℓ=1

∂xk
∂xℓ

F (w(s))d[wk, wℓ](s).

Proof. This is Remarque 1 of Föllmer [Föl79] in combination with Lemma 4.5.6.

Remark 4.5.11. Note that DF ∈ C1, and therefore DF (w) is not controlled by w. Just
as in the Stratonovich case, see Remark 4.4.20, the symmetry of the derivative of DF
leads to crucial cancellations that allow to take DF less regular than in the non-gradient
case.

4.6. Construction of the Lévy area

To apply our theory, it remains to construct the Lévy area respectively the pathwise
Itô iterated integrals for suitable stochastic processes. In Section 4.6.1 we construct the
Lévy area for hypercontractive stochastic processes whose covariance function satisfies a
certain “finite variation” property. In Section 4.6.2 we construct the pathwise Itô iterated
integrals for some continuous martingales.

4.6.1. Hypercontractive processes

Let X : [0, 1] → Rd be a centered continuous stochastic process, such that Xi is indepen-
dent of Xj for i ̸= j. We write R for its covariance function, i.e. R : [0, 1]2 → Rd×d and
R(s, t) := (E(Xi

sX
j
t ))1≤i,j≤d. The increment of R over a rectangle [s, t] × [u, v] ⊆ [0, 1]2

is defined as

R[s,t]×[u,v] = R(t, v) +R(s, u) −R(s, v) −R(t, u) = (E(Xi
s,tX

j
u,v))1≤i,j≤d.

Let us make the following two assumptions.

(ρ–var) There exist ρ ∈ [1, 2) and C > 0 such that for all 0 ≤ s < t ≤ 1 and for every
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partition s = t0 < t1 < · · · < tn = t of [s, t]

n
i,j=1

|R[ti−1,ti]×[tj−1,tj ]|ρ ≤ C|t− s|.

(HC) The process X is hypercontractive, i.e. for every m,n ∈ N and every p > 2 there
exists Cp,m,n > 0 such that for every polynomial P : Rn → R of degree m, for all
i1, . . . , in ∈ {1, . . . , d}, and for all t1, . . . , tn ∈ [0, 1]

E(|P (Xi1
t1 , . . . , X

in
tn )|2p) ≤ Cp,m,nE(|P (Xi1

t1 , . . . , X
in
tn )|2)p.

These conditions are taken from [FV10a], where under even more general assumptions
it is shown that it is possible to construct the iterated integrals I(X,dX), and that
I(X,dX) is the limit of (I(Xn, dXn))n∈N under a wide range of smooth approximations
(Xn)n that converge to X.

We first construct the Lévy area L(X,X) for X satisfying (ρ–var) and (HC). Then we
give some examples in which these conditions are satisfied.

Lemma 4.6.1. Assume that the stochastic process X : [0, 1] → R satisfies (ρ–var). Then
we have for all p ≥ −1 and for all M,N ∈ N with M ≤ N ≤ 2p that

N
m1,m2=M

|E(Xpm1Xpm2)|ρ . (N −M + 1)2−p. (4.36)

Proof. Let p ≥ 1. It suffices to note that

E(Xpm1Xpm2) = E

(Xt0pm1 ,t

1
pm1

−Xt1pm1 ,t
2
pm1

)(Xt0pm2 ,t
1
pm2

−Xt1pm2 ,t
2
pm2

)


=


i1,i2=0,1
(−1)i1+i2R[ti1

pm1 ,t
i1+1
pm1 ]×[ti2

pm2 ,t
i2+1
pm2 ],

and that {tipm : i = 0, 1, 2,m = M, . . . , N} partitions the interval [(M − 1)2−p, N2−p].
Now the cases p = −1 and p = 0 can be included by enlarging the (implicit) constant

on the right hand side of (4.36).

Lemma 4.6.2. Let X,Y : [0, 1] → R be independent, centered, continuous processes,
both satisfying (ρ–var) for some ρ ∈ [1, 2]. Then for all i, p ≥ −1 and all q < p, and for
all 0 ≤ j ≤ 2i

E


2p
m=0

2q
n=0

XpmYqn⟨2−iχij , ϕpmχqn⟩

2 . 2(p∨i)(1/ρ−4)2(q∨i)(1−1/ρ)2−i2p(4−3/ρ)2q/ρ.

Proof. Since p > q, for every m there exists exactly one n(m), such that ϕpmχqn(m) is
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not identically zero. Hence, we can apply the independence of X and Y to obtain

E


2p
m=0

2q
n=0

XpmYqn⟨2−iχij , ϕpmχqn⟩

2

≤
2p

m1,m2=0

E(Xpm1Xpm2)E(Yqn(m1)Yqn(m2))⟨2−iχij , ϕpm1χqn(m1)⟩⟨2−iχij , ϕpm2χqn(m2)⟩
.

Let us write Mj := {m : 0 ≤ m ≤ 2p, ⟨χij , ϕpmχqn(m)⟩ ≠ 0}. We also write ρ′ for the
conjugate exponent of ρ, i.e. 1/ρ+1/ρ′ = 1. Hölder’s inequality and Lemma 4.3.10 imply
m1,m2∈Mj

E(Xpm1Xpm2)E(Yqn(m1)Yqn(m2))⟨2−iχij , ϕpm1χqn(m1)⟩⟨2−iχij , ϕpm2χqn(m2)⟩


.

 
m1,m2∈Mj

E(Xpm1Xpm2)
ρ1/ρ 

m1,m2∈Mj

E(Yqn(m1)Yqn(m2))
ρ′
1/ρ′

(2−2(p∨i)+p+q)2.

Write Nj for the set of n for which χijχqn is not identically zero. For given n̄ ∈ Nj there
are 2p−q numbers m ∈ Mj for which n(m) = n̄. Hence

 
m1,m2∈Mj

E(Yqn(m1)Yqn(m2))
ρ′
1/ρ′

. (22(p−q))1/ρ′


max
n1,n2∈Nj

E(Yqn1Yqn2)
ρ′−ρ 

n1,n2∈Nj

E(Yqn1Yqn2)
ρ1/ρ′

,

where we used that ρ ∈ [1, 2] and therefore ρ′ − ρ ≥ 0. Lemma 4.6.1 implies thatE(Yqn1Yqn2)
ρ′−ρ1/ρ′

. 2−q(1/ρ−1/ρ′). Similarly we apply Lemma 4.6.1 to the sum over
n1, n2, and we obtain

(22(p−q))1/ρ′


max
n1,n2∈Nj

E(Yqn1Yqn2)
ρ′−ρ 

n1,n2∈Nj

E(Yqn1Yqn2)
ρ1/ρ′

. (22(p−q))1/ρ′2−q(1/ρ−1/ρ′)(|Nj |2−q)1/ρ′ = 2(q∨i)/ρ′2−i/ρ′22p/ρ′2q(−2/ρ′−1/ρ)

= 2(q∨i)(1−1/ρ)2i(1/ρ−1)22p(1−1/ρ)2q(1/ρ−2),

where we used that |Nj | = 2(q∨i)−i. Since |Mj | = 2(p∨i)−i, another application of
Lemma 4.6.1 yields

 
m1,m2∈Mj

E(Xpm1Xpm2)
ρ1/ρ

. 2(p∨i)/ρ2−i/ρ2−p/ρ.
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The result now follows by combining these estimates:

E


2p
m=0

2q
n=0

XpmYqn⟨2−iχij , ϕpmχqn⟩

2

.

 
m1,m2∈Mj

E(Xpm1Xpm2)
ρ1/ρ 

m1,m2∈Mj

E(Yqn(m1)Yqn(m2))
ρ′
1/ρ′

(2−2(p∨i)+p+q)2

.

2(p∨i)/ρ2−i/ρ2−p/ρ

 
2(q∨i)(1−1/ρ)2i(1/ρ−1)22p(1−1/ρ)2q(1/ρ−2)

 
2−4(p∨i)+2p+2q


= 2(p∨i)(1/ρ−4)2(q∨i)(1−1/ρ)2−i2p(4−3/ρ)2q/ρ.

Theorem 4.6.3. Let X : [0, 1] → Rd be a continuous, centered stochastic process with
independent components, and assume that X satisfies (ρ–var) for some ρ ∈ [1, 2) and
(HC). Then for every α ∈ (0, 1/ρ) almost surely

N≥0
∥L(SNX,SNX) − L(SN−1X,SN−1X)∥α < ∞,

and therefore the limit L(X,X) = limN→∞ L(SNX,SNX) is almost surely an α–Hölder
continuous process.

Proof. First note that L is antisymmetric, and in particular the diagonal of the matrix
L(SNX,SNX) is constantly zero. For k, ℓ ∈ {1, . . . , d} with k ̸= ℓ we have

∥L(SNXk, SNX
ℓ) − L(SN−1X

k, SN−1X
ℓ)∥α

=

N−1
q=−1


m,n

(Xk
NmX

ℓ
qn −Xk

qnX
ℓ
Nm)

 ·

0
ϕNm(s)dϕqn(s)


α

≤
N−1
q=−1


m,n

Xk
NmX

ℓ
qn

 ·

0
ϕNm(s)dϕqn(s)


α

+
N−1
q=−1


m,n

Xℓ
NmX

k
qn

 ·

0
ϕNm(s)dϕqn(s)


α

Let us argue for the first addend on the right hand side, the arguments for the second
addend being identical. Let r ≥ 1. Using the hypercontractivity condition (HC), we
obtain

∞
i=−1

2i
j=0

∞
N=−1

N−1
q=−1

P


m,n

Xℓ
NmX

k
qn⟨2−iχij , ϕNmχqn⟩

 > 2−iα2−N/(2r)2−q/(2r)


≤
∞

i=−1

2i
j=0

∞
N=−1

N−1
q=−1

E

m,n

Xℓ
NmX

k
qn⟨2−iχij , ϕNmχqn⟩

2r2iα2r2N+q
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.
∞

i=−1

2i
j=0

∞
N=−1

N−1
q=−1

E

m,n

Xℓ
NmX

k
qn⟨2−iχij , ϕNmχqn⟩

2r2iα2r2N+q.

Now we can apply Lemma 4.6.2 to bound this expression by

∞
i=−1

2i
j=0

∞
N=−1

N−1
q=−1


2(N∨i)(1/ρ−4)2(q∨i)(1−1/ρ)2−i2N(4−3/ρ)2q/ρ

r2iα2r2N+q

.
∞

i=−1
2i

i
N=−1

N−1
q=−1

2ir(2α−4)2Nr(4−3/ρ+1/r)2qr(1/ρ+1/r)

+
∞

i=−1
2i

∞
N=i+1

i
q=−1

2ir(2α−1/ρ)2Nr(1/r−2/ρ)2qr(1/ρ+1/r)

+
∞

i=−1
2i

∞
N=i+1

N−1
q=i+1

2ir(2α−1)2Nr(1/r−2/ρ)2qr(1+1/r)

.
∞

i=−1
2ir(2α+3/r−2/ρ) +

∞
i=−1

∞
N=i+1

2ir(2α+2/r)2Nr(1/r−2/ρ)

+
∞

i=−1

∞
N=i+1

2ir(2α+1/r−1)2Nr(1+2/r−2/ρ).

Note that for all r ≥ 1 we have 1/r − 2/ρ < 0, because ρ < 2. Therefore, the sum over
N in the second addend on the right hand side converges. If now we choose r > 1 large
enough so that 1+ 3/r− 2/ρ < 0 (and then also 2α+3/r− 2/ρ < 0), then all three series
on the right hand side are finite. Hence, the Borel-Cantelli lemma implies the existence
of C(ω) > 0, such that for almost all ω ∈ Ω and for all N, q, i, j

m,n

Xℓ
Nm(ω)Xk

qn(ω)⟨2−iχij , ϕNmχqn⟩
 ≤ C(ω)2−iα2−N/(2r)2−q/(2r).

From here it is straightforward to see that for these ω we have
∞
N=0

∥L(SNX(ω), SNX(ω)) − L(SN−1X(ω), SN−1X(ω))∥α < ∞.

Example 4.6.4. Condition (HC) is satisfied by all Gaussian processes. More generally, it
is satisfied by every process “living in a fixed Gaussian chaos”. Slightly oversimplifying
things, this is the case if X is given by polynomials of fixed degree and iterated integrals
of fixed order with respect to a Gaussian reference process. For details about hyper-
contractivity for random variables living in a fixed Gaussian chaos, we refer to [FV10b],
Appendix D.4.

Prototypical examples of processes living in a fixed chaos are Hermite processes. They
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are defined for H ∈ (1/2, 1) and k ∈ N, k ≥ 1 as

Zk,Ht = C(H, k)

Rk

 t

0

k
i=1

(s− yi)
−( 1

2 + 1−H
k )

+ ds


dBy1 . . . dByk
,

where (By)y∈R is a standard Brownian motion, and C(H, k) is a normalization constant.
In particular, Zk,H lives in the Wiener chaos of order k. The covariance of Zk,H is

E(Zk,Hs Zk,Ht ) = 1
2

t2H + s2H + |t− s|2H


Since Z1,H is Gaussian, it is exactly the fractional Brownian motion with Hurst pa-
rameter H. For k = 2 we obtain the Rosenblatt process. For further details about
Hermite processes see [PT11]. However, we should point out that it follows from Kol-
mogorov’s continuity criterion that Zk,H is α–Hölder continuous for every α < H. Since
H ∈ (1/2, 1), Hermite processes are amenable to Young integration, and it is trivial to
construct L(Zk,H , Zk,H).
Example 4.6.5. Condition (ρ–var) is satisfied by Brownian motion with ρ = 1. More
generally it is satisfied by the fractional Brownian motion with Hurst index H > 1/4. In
that case we have ρ = 1/(2H). It is also satisfied by the fractional Brownian bridge with
Hurst index H > 1/4. A general criterion that implies condition (ρ–var) is the one of
Coutin and Qian [CQ02]: If E(|Xi

s,t|2) . |t− s|2H and |E(Xi
s,s+hX

i
t,t+h)| . |t− s|2H−2h2

for i = 1, . . . , d, then (ρ–var) is satisfied for ρ = 1/(2H). For proofs of these claims and
for further examples see [FV10b], Section 15.2.

4.6.2. Continuous martingales

Here we assume that (Xt)t∈[0,1] is a d–dimensional continuous martingale. Of course in
that case it is no problem to construct the Itô iterated integrals IItô(X,dX) of X. But
in order to apply Corollary 4.5.8, we still need the pathwise convergence of IItô

k (X,dX)
to IItô(X,dX), and we need to prove the uniform Hölder continuity along the dyadics
of the approximating integrals. We are not claiming the greatest generality and work
under rather restrictive conditions. The main example that we have in mind is Brownian
motion.

Recall that for a d–dimensional semimartingale X = (X1, . . . , Xd), the quadratic vari-
ation is defined as [X] = ([Xi, Xj ])1≤i,j≤d. We also write XsXs,t := (Xi

sX
j
s,t)1≤i,j≤d for

s, t ∈ [0, 1].

Theorem 4.6.6. Let X = (X1, . . . , Xd) be a d–dimensional continuous martingale in-
dexed by [0, 1]. Assume that there exists p ≥ 2 and β > 1/3 + 1/p, such that pβ > 7/2,
and such that

E(|[X]s,t|p) . |t− s|2pβ (4.37)

for all s, t ∈ [0, 1]. Then IItô
k (X,dX) almost surely converges uniformly to IItô(X,dX).
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Furthermore, we have for all α ∈ (0, β − 1/p) that X ∈ Cα and that almost surely

sup
k

sup
0≤ℓ<ℓ′≤2k

|IItô
k (X,dX)ℓ2−k,ℓ′2−k −Xℓ2−kXℓ2−k,ℓ′2−k |

|(ℓ′ − ℓ)2−k|2α
< ∞. (4.38)

In particular, X almost surely satisfies all the conditions of Corollary 4.5.8.

Proof. The Hölder continuity of X follows from Kolmogorov’s continuity criterion, be-
cause by the Burkholder-Davis-Gundy inequality and using (4.37) we have

E(|Xs,t|2p) .
d
i=1

E(|Xi
s,t|2p) .

d
i=1

E(|[Xi]s,t|p) . E(|[X]s,t|p) . |t− s|2pβ.

Kolmogorov’s continuity criterion now shows that X ∈ Cα for all α ∈ (0, β− 1/(2p)) and
in particular for all α ∈ (0, β − 1/p). Since we will need it below, let us also study the
regularity of the Itô integral IItô(X,dX): A similar application of the Burkholder-Davis-
Gundy inequality implies that

E(|IItô(X,dX)s,t −XsXs,t|p) . E
 t

s
|Xr −Xs|2d|[X]|s

 p
2

.

We apply Jensen’s inequality (here we need p ≥ 2) to obtain

E
 t

s
|Xr −Xs|2d|[X]|s

 p
2


= E
 t

s
|[X]|s,t|Xr −Xs|2

d|[X]|s
|[X]|s,t

 p
2


. E
 t

s
|[X]|

p
2 −1
s,t |Xr −Xs|pd|[X]|s


,

where we set 0/0 = 0. Now Cauchy-Schwarz’s and then Burkholder-Davis-Gundy’s
inequalities yield

E
 t

s
|[X]|

p
2 −1
s,t |Xr −Xs|pd|[X]|s


. E


sup
r∈[s,t]

|Xr −Xs|p|[X]|
p
2
s,t


≤

E


sup
r∈[s,t]

|Xr −Xs|2p


E(|[X]|ps,t)

. E(|[X]s,t|p) . |t− s|2pβ.

The Kolmogorov criterion for rough paths, Theorem 3.1 of [FH13], then implies that
almost surely

|IItô(X,dX)s,t −XsXs,t| . |t− s|2α (4.39)

for all α ∈ (0, β − 1/p).
Let us continue with the proof of our claim. We need to show that IItô

k (X,dX) almost
surely converges uniformly to IItô(X,dX), and that the uniform Hölder condition (4.38)
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holds. Using similar arguments as before, we can show that

E(|IItô(X,dX)ℓ2−k,ℓ′2−k − IItô
k (X,dX)ℓ2−k,ℓ′2−k |p)

= E
 ℓ′2−k

ℓ2−k

ℓ′−1
m=ℓ

1[m2−k,(m+1)2−k)(r)Xm2−k,rdXs

p

. E

|[X]|

p
2 −1
ℓ2−k,ℓ′2−k

 ℓ′2−k

ℓ2−k

ℓ′−1
m=ℓ

1[m2−k,(m+1)2−k)(r)|Xm2−k,r|2
 p

2 d|[X]|s

.

Since the terms in the sum all have disjoint support, we can pull the exponent p/2 into
the sum, from where we conclude using once again Cauchy-Schwarz’s and Burkholder-
Davis-Gundy’s inequalities

E

|[X]|

p
2 −1
ℓ2−k,ℓ′2−k

 ℓ′2−k

ℓ2−k

ℓ′−1
m=ℓ

1[m2−k,(m+1)2−k)(r)|Xm2−k,r|pd|[X]|s


.

E sup
r∈[s,t]

ℓ′−1
m=ℓ

1[m2−k,(m+1)2−k)(r)|Xm2−k,r|p
2E(|[X]|p

ℓ2−k,ℓ′2−k)

.

ℓ′−1
m=ℓ

E(|[X]m2−k,(m+1)2−k |p)

E(|[X]ℓ2−k,ℓ′2−k |p)

.


(ℓ′ − ℓ)(2−k)2pβ


|(ℓ′ − ℓ)2−k|2pβ = (ℓ′ − ℓ)
1
2 +pβ2−k2pβ.

Hence, we obtain for α ∈ R that

P

|IItô(X,dX)ℓ2−k,ℓ′2−k − IItô

k (X,dX)ℓ2−k,ℓ′2−k | > |(ℓ′ − ℓ)2−k|2α


.
(ℓ′ − ℓ)

1
2 +pβ2−k2pβ

(ℓ′ − ℓ)2pα2−k2pα = (ℓ′ − ℓ)
1
2 +pβ−2pα2−k2p(β−α).

If we set α = β − 1/(2p) − ε for sufficiently small ε > 0, then

1/2 + pβ − 2pα = 3/2 − pβ − 2pε.

Now by assumption, pβ > 7/2, and therefore we can find α ∈ (0, β − 1/(2p)) such that

1/2 + pβ − 2pα < −2. (4.40)

Estimating the double sum by a double integral, we easily see that

2k
ℓ=1

2k
ℓ′=ℓ+1

(ℓ′ − ℓ)γ . 2k
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for γ < −2. Therefore, we have for α ∈ (0, β − 1/(2p)) satisfying (4.40)

2k
ℓ=1

2k
ℓ′=ℓ+1

P

|IItô(X,dX)ℓ2−k,ℓ′2−k − IItô

k (X,dX)ℓ2−k,ℓ′2−k | > |(ℓ′ − ℓ)2−k|2α


. 2k2−k2p(β−α).

Since α < β−1/(2p), this is summable in k, and therefore Borel-Cantelli’s lemma implies
that almost surely

sup
k

sup
0≤ℓ<ℓ′≤2k

|IItô(X,dX)ℓ2−k,ℓ′2−k − IItô
k (X,dX)ℓ2−k,ℓ′2−k |

|(ℓ′ − ℓ)2−k|2α
< ∞. (4.41)

We only proved this for α close enough to β− 1/(2p), but of course then it also holds for
all α′ ≤ α, since (ℓ′ − ℓ)2−k ≤ 1. The estimate (4.38) now follows by combining (4.39)
and (4.41). The uniform convergence of IItô

k (X,dX) to IItô(X,dX) follows from (4.41)
in combination with the Hölder continuity of X.

Example 4.6.7. The conditions of Theorem 4.6.6 are satisfied by the d–dimensional stan-
dard Brownian motion. Here we can take β = 1/2, and p can be taken arbitrarily
large. More generally, the conditions are satisfied by all Itô martingales of the form
Xt = X0 +

 t
0 σsdWs, as long as σ satisfies

E


sup
s∈[0,1]

|σs|2p

< ∞

for some p > 7. In that case we can take β = 1/2.
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5. Paracontrolled distributions and
applications to SPDEs

Here we build on the ideas developed in Chapter 4, to develop an extension of rough
path theory that works for functions of a multi dimensional index variable. We apply
this to solve two nonlinear SPDEs, for which previously it was not well understood how
to make sense of the nonlinearity.

5.1. Introduction

One way of interpreting the rough path integral of Chapters 3 and 4, but also the Itô
and Stratonovich integral, is as a way of defining products of tempered distributions.
Conversely, if we are able to multiply suitable tempered distributions with each other,
then we can integrate the result in time to obtain a “stochastic” integral. Schwartz’s
theory of distributions gives a robust framework for defining linear operations on irregular
generalized functions. But when trying to handle nonlinear operations, we quickly run
into problems. For example, in Schwartz’ theory it is not possible to define the product
ϕ(Wt)Ẇt, where ϕ is a smooth function, W is a Brownian motion, and Ẇ its derivative.
But using for example Itô’s stochastic integral, the product can be defined as

ϕ(Wt)Ẇt := ∂t

 t

0
ϕ(Ws)dWs.

The Itô integral requires an “arrow of time” (a filtration and adapted integrands), a
probability measure (it is defined as L2–limit), and L2–orthogonal increments of the
integrator (the integrator needs to be a (semi-) martingale). If one or several of these
assumptions are violated, then the rough path integral can be a useful alternative. For
example, we saw in Chapter 3 that the rough path integral can be applied in a model free
approach to finance, where no probability measure is given. In Chapter 4 we constructed
a pathwise integral for, among other processes, fractional Brownian motion, which is not
a semimartingale.

The “arrow of time” condition is typically violated if the index is a spatial variable
and not a temporal variable. It is a remarkable observation of Hairer [Hai11], that in
such cases sometimes the rough path integral can be used to handle nonlinear operations.
In [Hai11], Hairer studies the following Burgers type SPDE:

∂tu(t, x) = ∆u(t, x) +G(u(t, x))∂xu(t, x) + Ẇ (t, x),
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where (t, x) ∈ [0, T ] × [−π, π], and where Ẇ (t, x) is a space-time white noise. This
problem is motivated by insights from path sampling, where one can formally derive the
equation as an SPDE whose invariant measure describes the law of a certain conditioned
diffusion. For every fixed t > 0, the solution v to

∂tv(t, x) = ∆v(t, x) + Ẇ (t, x)

is α–Hölder continuous in space for every α < 1/2. We would expect u to have the
same regularity as v. But then the product G(u(t, x))∂xu(t, x) is ill-defined: we expect
G(u) ∈ Cα and ∂xu ∈ Cα−1. Since α < 1/2, the sum of the regularities of G(u) and
∂xu is negative, and therefore their product cannot be defined using classical analytic
methods (see Section 5.2 below). Since x is a spatial variable, there is no natural filtration
associated to the problem, and the integral cannot be treated with Itô’s theory. But
Hairer showed that the rough path integral can be used to define the product, and that
with this definition, the SPDE has a unique solution. Furthermore, this solution is the
limit as ε → 0 of the solutions uε to

∂tuε(t, x) = ∆uε(t, x) +G(uε(t, x))∂xuε(t, x) + Ẇε(t, x),

where Ẇε(t, x) are suitable smooth approximations that converge to Ẇ (t, x).
Since x is a spatial variable, it is natural to ask about extensions of Hairer’s approach

to higher dimensions. In one dimension, all techniques presented above made use of
integrals to define products. In that setting, defining the product G(u)∂xu is essentially
equivalent to defining the integral


G(u)dxu, because in one dimension the integral is

an “antiderivative”, i.e. an inverse operation to differentiation. In the multidimensional
case, there usually exists no antiderivative, and therefore the link between integrals and
products is not so clear. In other words, for multidimensional index variables it is more
natural to work directly on the level of products, rather than working on the level of
integrals.

Here, we adapt the techniques of Chapter 4 to develop an extension of rough path the-
ory that operates on the level of products, and that works for arbitrary index dimensions.
More precisely, we use the Littlewood-Paley decomposition of tempered distributions,
and not the Schauder decomposition. We then combine Bony’s paraproduct, a concept
from functional analysis, with ideas from the theory of controlled rough paths, in order
to develop an algebraic theory for certain types of distributions that we call controlled.
This is similar to the construction of Chapter 4, but since we do not use any integrals
to define our products, the approach presented here works in any index dimension and
constitutes a flexible generalization of rough path theory that allows to handle problems
which were well out of reach with previously known methods.

To exemplify the applicability of our ideas, we will consider two SPDEs for which
previously it was not known how to describe solutions:

1. The first example is the generalization of Hairer’s Burgers type SPDE to a higher
dimensional spatial index variable. While this equation is maybe not very relevant
for applications, it is a perfect test bed for our techniques. We consider the following
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equation on the d–dimensional torus Td := [−π, π]d := (R/2πZ)d with periodic
boundary conditions:

∂tu(t, x) = −Au(t, x) +G(u(t, x))Dxu(t, x) + Ẇ (t, x).

Here u : R+ ×Td → Rn is a vector valued function, −A = −(−∆)σ is the fractional
Laplacian with σ ≥ 1 such that σ > 1/3 + d/2, the Gaussian noise Ẇ is white in
space and time with values in Rn, and Dx denotes the spatial derivative. Moreover,
G : Rn → L(L(Td,Rn),Rn) is a smooth field of linear transformations.

2. The second example is a nonlinear version of the parabolic Anderson model,

∂tu(t, x) = ∆u(t, x) + F (u(t, x))Ẇ (x),

where u : R+ × T2 → R, we consider a white noise potential Ẇ which does not
depend on time, and F : R → R is a smooth function.

In both cases we will exhibit a space of controlled distribution where the equations are
well posed (in a suitable sense), and admit a local solution.

Below we give some references to other articles that apply rough path techniques to
SPDEs. In Section 5.2 we recall the main concepts of Littlewood-Paley theory and of
Bony’s paraproduct, and we present our basic ideas. Section 5.3 develops the paradif-
ferential calculus of controlled distributions. In Section 5.4 we solve Burgers equation
driven by white noise, and in Section 5.5 we solve a nonlinear version of the parabolic
Anderson model.

It may be helpful to go through Section 4.2.2 in Chapter 4 before continuing to read,
to get a basic overview on rough paths.

Relevant literature

Even if only implicitly, the relevance of paraproducts to rough paths has been remarked
before in the work of Unterberger on the renormalization of rough paths [Unt10a, Unt10b],
where it is referred to as “Fourier normal-ordering”, and in the related work of Nualart
and Tindel [NT11].

Before we developed the paraproduct approach, there were several other papers that
applied rough path ideas to treat SPDEs and more generic stochastic processes. But
they all relied on special features of the problem at hand in order to be able to apply the
integration theory provided by the rough path machinery:

Deya, Gubinelli, Lejay, and Tindel [GLT06, Gub12, DGT12] deal with SPDEs of the
form

∂tu(t, x) = ∆u(t, x) + σ(u(t, x))η(t, x),

where x ∈ [−π, π], the noise η is a space-time Gaussian distribution (for example white
in time and colored in space), and σ is some nonlinear coefficient. They interpret this
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as an evolution equation (in time), taking values in a space of functions (with respect to
the space variable). They extend the rough path machinery to handle the convolution
integrals that appear when applying the heat flow to the noise.

Friz, Caruana, Diehl, and Oberhauser [CF09, CFO11, FO11, DF12] deal with fully
nonlinear stochastic PDEs with a special structure. Among others, of the form

∂tu(t, x) = F (u, ∂xu, ∂2
xu) + σ(t, x)∂xu(t, x)η(t),

where the spatial index x can be multidimensional, but the noise η only depends on time.
Such an SPDE can be reinterpreted as a standard PDE with random coefficients via a
change of variables involving the flow of the stochastic characteristics associated to σ.

Teichmann [Tei11] studies semilinear SPDEs of the form

∂tu(t, x) = Au(t, x) + σ(u(t, x))η(t, x),

where A is a suitable linear operator, in general unbounded. The SPDE is transformed
into an SDE with bounded coefficients by applying a suitable transformation based on
the (semi-) group generated by A. This is called the method of the moving frame.

Bessaih, Gubinelli, and Russo [BGR05] and Brzezniak, Gubinelli, and Neklyudov
[BGN10] consider a PDE motivated by the description of the motion of a vortex line
in an incompressible fluid. Rough path theory allows to make sense of this equation with
random irregular initial vortex configurations. Here, the irregularities appear along the
direction of the (one dimensional) variable parameterizing the vortex line.

Hairer, Maas, and Weber [Hai11, HW13, Hai13b, HMW12] build on the insight of
Hairer that rough path theory allows to make sense of SPDEs that are ill-defined in
standard function spaces due to spatial irregularities. Hairer and Weber [HW13] extend
the Burgers type SPDE that we presented in the introduction to the case of multiplicative
noise. Hairer, Maas, and Weber [HMW12] study approximations to this equation, where
they discretize the spatial derivative as ∂xu(t, x) ≃ 1/ε(u(t, x + ε) − u(t, x)). They
show that in the limit ε → 0, this introduces a Stratonovich type corrector term to
the equation. Hairer [Hai13b] solves the KPZ equation, an SPDE of one spatial index
variable that describes the random growth of an interface. This equation was introduced
by Kardar, Parisi, and Zhang [KPZ86], and before Hairer’s work, it could only be solved
by applying a spatial transform (the Cole-Hopf transform) that linearizes the equation.

In all these works, the intrinsic one dimensional nature of rough path theory severely
limits possible improvements or applications to other contexts. To the best of our knowl-
edge, the first attempt to remove these limitations is the still unpublished work by
Chouk and Gubinelli, extending rough path theory to handle the Brownian sheet (a
two-parameter stochastic process akin to Brownian motion).

In the recent paper [Hai13a] however, Hairer has introduced a “theory of regularity
structures”, that fundamentally redefines the notion of regularity. Hairer’s theory is
also inspired by the theory of controlled rough paths, and also extends it to functions
of a multidimensional index variable. The crucial insight is that the regularity of the
solution to an equation driven by - say - Gaussian space time white noise should not
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be described in the classical way. Usually we say that a function is smooth if it can
be approximated around every point by a polynomial of a given degree (the Taylor
polynomial). In other words, smooth functions locally look like polynomials. Since the
solution to an SPDE does not look like a polynomial at all, this is not the correct way of
describing its regularity. We rather expect that the solution locally looks like the driving
noise (more precisely like the noise convoluted with the Green kernel of the linear part
of the equation; in the case of ODEs this is the time integral of the white noise, i.e. the
Brownian motion). Therefore, in Hairer’s theory a function is called smooth if it can
locally be well approximated by this convolution (and higher order terms depending on
the noise). This notion of smoothness induces a natural topology in which the solutions
to semilinear SPDEs depend continuously on the driving signal. Hairer’s approach is
very general, and allows to handle more complicated problems than the ones we treat
below. The merit of our approach is its relative simplicity, the fact that it seems to
be very adaptable so that it can be easily modified to treat problems with a different
structure, and that we make the connection between Fourier analysis and rough paths –
although Hairer also uses wavelets, to show that for every consistent “generalized Taylor
expansion” in terms of polynomials and the noise, there exists a tempered distribution
which has this expansion.

5.2. Preliminaries
Littlewood-Paley theory
Littlewood-Paley theory allows for an elegant way of characterizing the regularity of
functions and distributions. Compared to the characterization of regularity based on
increments, the Littlewood-Paley approach has the advantage that it also applies to
distributions that are not functions.

The space of real valued infinitely differentiable functions of compact support is denoted
by D(Rd) or D. The space of Schwartz functions, which consists of the smooth functions
all of whose derivatives are rapidly decreasing, is denoted by S(Rd) or S. Its dual,
the space of tempered distributions, is S ′(Rd) or S ′. If u is a vector of n tempered
distributions on Rd, then we write u ∈ S ′(Rd,Rn). The Fourier transform is defined with
the normalization

Fu(ξ) := u(ξ) :=

Rd
e−ı⟨ξ,x⟩u(x)dx,

so that the inverse Fourier transform is given by F−1u(ξ) = (2π)−dFu(−ξ). Recall that
for any u ∈ S ′ and ϕ ∈ S we have

FuFϕ = F(u ∗ ϕ) and thus F−1(FuFϕ) = u ∗ ϕ, (5.1)

see for example Proposition 1.24 of [BCD11].
An annulus is a set of the form A = {x ∈ Rd : a ≤ |x| ≤ b} for some 0 < a < b. A ball

is a set of the form B = {x ∈ Rd : |x| ≤ b}.
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Definition 5.2.1. A pair (χ, ρ) ∈ D2 of nonnegative radial functions is called dyadic
partition of unity if

1. the support of χ is contained in a ball and the support of ρ is contained in an
annulus;

2. χ(ξ) +

j≥0 ρ(2−jξ) = 1 for all ξ ∈ Rd;

3. supp(χ) ∩ supp(ρ(2−j ·)) = ∅ for j ≥ 1 and supp(ρ(2−i·)) ∩ supp(ρ(2−j ·)) = ∅ for
|i− j| > 1.

In that case we also write ρ−1 := χ and ρj := ρ(2−j ·) for j ≥ 0.

For the existence of dyadic partitions of unity see [BCD11], Proposition 2.10.
If ϕ is a smooth function, such that ϕ and all its derivatives are at most of polynomial

growth at infinity, then we define ϕ(D)u := F−1(ϕFu) for any u ∈ S ′. More generally
we define ϕ(D)u in this way whenever the right hand side makes sense. Operators of the
form ϕ(D) are called Fourier multipliers. The Littlewood-Paley blocks are now defined
as

∆−1u := χ(D)u = ρ−1(D)u and for j ≥ 0 : ∆ju := ρj(D)u.

Then ∆−1u = h̃∗u and for j ≥ 0 we have ∆ju = hj ∗u, where h̃ = F−1χ and hj = F−1ρj .
In particular, ∆ju is an infinitely differentiable function for every j ≥ −1. We also use
the notation

Sif :=

j≤i−1

∆jf.

It is not hard to see that u =

j≥−1 ∆ju = limi→∞ Siu for every u ∈ S ′, where the

convergence holds in the topology of S ′.
For N ∈ N we define the set AN := {(i, j) ∈ {−1, 0, 1, . . . }2 : i ≤ j+N}. The notation

i . j then means that there exists N ∈ N such that (i, j) ∈ AN for all values of i and j
under consideration. Similarly i & j means j . i, and i ∼ j means i . j and j . i. This
notation will only be applied to index variables of Littlewood-Paley blocks.

For α ∈ R, the Hölder-Besov space Cα is given by Cα := Bα
∞,∞(Rd,Rn), where for

p, q ∈ [1,∞] we define the norm ∥·∥Bα
p,q

and the space Bα
p,q as

Bα
p,q := Bα

p,q(Rd,Rn) :=

u ∈ S ′(Rd,Rn) : ∥u∥Bα

p,q
:=
 
j≥−1

(2jα∥∆ju∥Lp)q
 1

q

< ∞

,

with the usual interpretation as ℓ∞ norm in case q = ∞. The ∥·∥Lp norm is taken
with respect to Lebesgue measure on Rd. While the norm ∥·∥Bα

p,q
depends on the dyadic

partition of unity (χ, ρ), the space Bα
p,q does not, and any other dyadic partition of unity

corresponds to an equivalent norm. We will usually write ∥·∥α instead of ∥·∥Bα
∞,∞ .

134



5.2. Preliminaries

If α ∈ (0,∞) \ N, then Cα is the space of ⌊α⌋ times differentiable functions, whose
partial derivatives up to order ⌊α⌋ are bounded, and whose partial derivatives of order
⌊α⌋ are (α−⌊α⌋)-Hölder continuous, see p. 99 of [BCD11]. For m ∈ N, the Hölder-Besov
space Cm is strictly larger than Cmb , the space of m times continuously differentiable
functions, bounded with bounded derivatives.

We will use without comment that ∥·∥α ≤ ∥·∥β for α ≤ β, that ∥·∥L∞ . ∥·∥α for
α > 0, and that ∥·∥α . ∥·∥L∞ for α ≤ 0. For α < 0 and u ∈ Cα we also use that
∥Sju∥L∞ . 2jα∥u∥α.

The following Bernstein inequalities are for example useful for calculating the regularity
of derivatives.

Lemma 5.2.2 (Lemma 2.1 of [BCD11]). For k ∈ N, for u ∈ S ′, and for 1 ≤ p ≤ q ≤ ∞
we have

max
η∈Nd:|η|=k

∥∂η∆ju∥Lq = max
η∈Nd:|η|=k

∥∆j∂
ηu∥Lq . 2jk+d( 1

p
− 1

q
)∥∆ju∥Lp

for all j ≥ −1, and for all j ≥ 0 we moreover have

2jk∥∆ju∥Lp . max
η∈Nd:|η|=k

∥∂η∆ju∥Lp .

We will often use the following criterion to show that a function is in a certain Hölder-
Besov space:

Lemma 5.2.3 (Lemma 2.69 and 2.84 of [BCD11]). Let A be an annulus and let B be a
ball.

1. Let α ∈ R, and let (uj) be a sequence of smooth functions such that Fuj has its
support in 2jA, and such that ∥uj∥L∞ . 2−jα. Then

u =

j≥−1

uj ∈ Cα and ∥u∥α . sup
j≥−1

{2jα∥uj∥L∞}.

2. Let α > 0, and let (uj) be a sequence of smooth functions such that Fuj has its
support in 2jB, and such that ∥uj∥L∞ . 2−jα. Then

u =

j≥−1

uj ∈ Cα and ∥u∥α . sup
j≥−1

{2jα∥uj∥L∞}.

We should point out that everything above and all that follows can (and will) be ap-
plied to distributions on the torus. More precisely, define Td := [−π, π]d := (R/2πZ)d
and let D′(Td) be the space of distributions on Td. Any u ∈ D′(Td) can be interpreted
as a tempered distribution on Rd that is 2π–periodic in every direction, with frequency
spectrum contained in Zd - and vice versa. For details see [ST87], Chapter 3.2. In par-
ticular, ∆ju is a 2π–periodic smooth function, and therefore ∥∆ju∥L∞ = ∥∆ju∥L∞(Td).
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In other words, we can define

Cα(Td) := {u ∈ Cα : u is (2π) − periodic}.

For p ̸= ∞ however, this definition is not very useful, because no nontrivial periodic
function is in Lp for p < ∞. Therefore, the general Besov space Bα

p,q(Td) is defined as

Bα
p,q(Td) :=


u ∈ D′(Td) : ∥u∥Bα

p,q(Td) :=
 
j≥−1

(2jα∥∆ju∥Lp(Td))q
 1

q

< ∞

.

Note that for u ∈ D′(Td), the Fourier transform is supported in Zd, and

u(x) = (2π)−d 
k∈Zd

u(k)eı⟨k,x⟩ = F−1(u)(x).

Apart from that, ∆ju = F−1(ρjFu) is defined exactly as in the non-periodic case.
Strictly speaking we will not work with Bα

p,q(Td) for (p, q) ̸= (∞,∞). But we will need
the Besov embedding theorem on the torus:

Lemma 5.2.4. Let 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ q1 ≤ q2 ≤ ∞, and let α ∈ R. Then
Bα
p1,q1(Td) is continuously embedded in B

α−d(1/p1−1/p2)
p2,q2 (Td).

For the embedding theorem on Rd see [BCD11], Proposition 2.71. The result on the
torus can be shown using the same arguments, see for example [CG06]. In both cases,
the proof is based on the Bernstein inequalities, Lemma 5.2.2.

For further details concerning Littlewood-Paley theory, Besov spaces, and paraprod-
ucts, we refer to the nice book of Bahouri, Chemin, and Danchin [BCD11].

Bony’s paraproduct and Young integrals

In general, the product fg of two distributions f ∈ Cα and g ∈ Cβ is not well defined
unless α+β > 0. In terms of Littlewood-Paley blocks, a product can be (at least formally)
decomposed as

fg =

j≥−1


i≥−1

∆if∆jg = π<(f, g) + π>(f, g) + π◦(f, g).

Here π<(f, g) is the part of the double sum with i < j − 1, and π>(f, g) the part with
i > j + 1, while π◦(f, g) is the “diagonal part” where |i− j| ≤ 1:

π<(f, g) :=

j≥−1

j−2
i=−1

∆if∆jg, π>(f, g) :=

i≥−1

i−2
j=−1

∆if∆jg := π<(g, f), and

π◦(f, g) :=


|i−j|≤1
∆if∆jg.
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We also introduce the notation

π≶(f, g) := π<(f, g) + π>(f, g).

This decomposition is referred to as paraproduct [Bon81], and it behaves nicely with
respect to Littlewood-Paley theory. Of course the decomposition depends on the dyadic
partition of unity used to define the blocks ∆j , and also on the particular choice of the
pairs (i, j) in the diagonal part. Our choice of taking all (i, j) with |i − j| ≤ 1 into the
diagonal part corresponds to property 3 in the definition of dyadic partition of unity:
supp(ρ(2−i·)) ∩ supp(ρ(2−j ·)) = ∅ for |i− j| > 1. In conjunction with (5.1), this property
implies that every term in the series

π<(f, g) =

j≥−1

j−2
i=−1

∆if∆jg =

j≥−1

Sj−1f∆jg

has a Fourier transform that is supported in a suitable annulus, and of course the same
holds true for π>(f, g). On the other side, the terms in the diagonal part have a Fourier
transform that is supported in a ball.

Bony’s crucial observation is that π<(f, g) (and thus π>(f, g)) is always a well-defined
distribution. In particular, if α > 0 and β ∈ R, then π< is a bounded bilinear operator
from Cα ×Cβ to Cβ. Heuristically π<(f, g) behaves at large frequencies like g (and thus
retains the same regularity), and f provides only a modulation of g at larger scales. The
only difficulty in defining fg for arbitrary distributions lies in handling the diagonal term
π◦(f, g). A basic result about this bilinear operation is given by Bony’s paraproduct
estimates.

Lemma 5.2.5 (Theorem 2.82 and 2.85 of [BCD11]). 1. For any β ∈ R, we have

∥π<(f, g)∥β .β ∥f∥L∞∥g∥β.

For α < 0, we have

∥π<(f, g)∥α+β .α,β ∥f∥α∥g∥β.

2. For α+ β > 0, we have

∥π◦(f, g)∥α+β .α,β ∥f∥α∥g∥β.

We conclude that the product fg of two elements f ∈ Cα and g ∈ Cβ is well defined
as soon as α + β > 0. The attentive reader will note immediately the analogy of this
statement with one of the possible incarnations of Young’s theory of integration, see
Chapter 4. For α, β > 0 and functions f ∈ Cα(R) and g ∈ Cβ(R), the Young integral
I(f, dg)(t) =

 t
0 f(s)dg(s) is well defined as soon as α + β > 1. On the other side it is

clear from the paraproduct estimates that if α+β > 1, then the distribution f∂tg is well
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defined and belongs to Cα+β−1. Another basic fact of Young integration is that

|I(f, dg)(t) − I(f, dg)(s) − f(s)(g(t) − g(s))| . |t− s|α+β∥f∥α∥g∥β, (5.2)

for all s, t ∈ R, which means that the increments of the integral I behave locally (in
the parameter) like the increments of g, modulo a small remainder. Taking derivatives
in the sense of distributions, we have ∂tI(f, dg) = f∂tg. Moreover, Bony’s paraproduct
estimates allow us to see that

∂tI(f, dg) − π<(f, ∂tg) = π◦(f, ∂tg) + π>(f, ∂tg) ∈ Cα+β−1.

This is an alternative form of the Young estimate (5.2). By now it should be clear
why we insist on distinguishing the two “symmetric” paraproducts π< and π>. Indeed
in this application of paraproducts to Young integration, which will motivate all the
developments that follow, the two terms π<(f, ∂tg) and π>(f, ∂tg) play very different
roles. The first one, π<(f, ∂tg), is akin to the first-order approximation f(s)(g(t) − g(s))
of the integral I(f, dg)(t) − I(f, dg)(s), in the sense that the distribution π<(f, ∂tg) is
always well defined and behaves “locally” (here meaning for high Fourier modes) like ∂tg.
On the other side the term π>(f, ∂tg) belongs to Cα+β−1 and is therefore “smoother”
than the main contribution π<(f, ∂tg), which only belongs to Cβ−1.

Controlled distributions and the Besov area
Recall from Chapter 4 that the theory of controlled paths is based on three basic building
blocks:

1. The integral I(v,dw) for reference paths v and w is assumed to exist.

2. If f is controlled by v and if F is a smooth function, then F (f) is controlled by v.

3. If g is controlled by w, then I(f, dg) is controlled by w.

The last two properties allow to consider the space of controlled paths as a Banach
algebra which is stable under nonlinear maps and integration. In particular the space of
paths controlled by a reference path w (which may take its values in a finite dimensional
vector space) is the natural setting where to solve rough differential equations of the form

f(t) = f0 +
 t

0
ϕ(f(s))dw(s)

with fixed point methods. All that is needed is the existence of sufficiently regular iterated
integrals I(w,dw) for w.

Consider now the product of distributions f∂tw where f, w ∈ Cα. A priori this is
not well defined if α ≤ 1/2. As we have already seen, Bony’s paraproduct induces the
decomposition

f∂tw = π<(f, ∂tw) + π◦(f, ∂tw) + π>(f, ∂tw),
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where the only problematic term is π◦(f, ∂tw). Assume now that the distribution f is
controlled by v ∈ Cα in the sense that there exists fv ∈ Cα, such that

f ♯ = f − π<(fv, v) ∈ C2α.

Then (at least formally) we can decompose the problematic term as

π◦(f, ∂tw) = π◦(π<(fv, v), ∂tw) + π◦(f ♯, ∂tw),

where π◦(f ♯, ∂tw) ∈ C3α−1 is well defined if we assume that 3α − 1 > 0. It turns out
(see Lemma 5.3.3 below) that, although π◦(π<(fv, v), ∂tw) is a-priori not defined, the
“commutator”

R(fv, v, ∂tw) := π◦(π<(fv, v), ∂tw) − fvπ◦(v, ∂tw)

can be defined and belongs to C3α−1. If we assume that π◦(v, ∂tw) ∈ C2α−1 is given, then
the product fvπ◦(v, ∂tw) is well defined under the assumption 3α−1 > 0. In this way we
have reduced the problem of defining the product f∂tw for f controlled by v essentially
to the problem of defining the product v∂tw, exactly as in the theory of controlled rough
paths. Moreover, we get the expansion formula

f∂tw = π<(f, ∂tw) + π>(f, ∂tw) + π◦(f ♯, ∂tw) +R(fv, v, ∂tw) + fvπ◦(v, ∂tw) ∈ Cα−1

and

f∂tw − π<(f, ∂tw) ∈ C2α−1.

This shows that f is controlled by ∂tw (modulo a slight adaption of the definition of
controlled distributions).

We point out that the argumentation above works for general distributions that are
defined on Rd, without assuming that one of them is a derivative: If π◦(v, w) is given,
smooth enough, and f and g are controlled by v and w respectively, then also π◦(f, g)
(and thus fg) can be defined in a sensible way.

5.3. Paracontrolled calculus

Motivated by the considerations of the previous section here we lay out some elements
of a calculus of controlled distributions. We start from the analysis of the commutator,
which allows to define the diagonal part of the product as a function of the diagonal part
for special reference distributions. Then we show that controlled distributions are stable
under nonlinear maps. At the end of this section, which can be skipped at first reading,
we gather further commutator estimates, we extend the definition of the product, and
we establish some continuity properties of the product.
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5.3.1. A basic commutator estimate

In this section we prove the basic commutator estimate for π◦(π<(f, v), w) − fπ◦(v, w),
where f, v, w are suitable tempered distributions, that will allow us to extend the defini-
tion of the product by a continuity argument.

We will occasionally prove bounds for operators acting on functions with Fourier trans-
form of compact support, and then argue that the domain of the operator can be ex-
tended by approximation. This can be achieved in the following way. Let A : S ′ → S ′

be an operator such that for all f with Fourier transform of compact support we have
∥Af∥α . ∥f∥β, where α, β ∈ R. Then it is possible to extend A in a continuous way to

Cβ,0 :=

f ∈ Cβ : lim

j→∞
2jβ∥∆jf∥L∞ = 0


:

Sjf converges to f in Cβ for every f ∈ Cβ,0, and since ∥ASif −ASjf∥α . ∥Sif −Sjf∥β,
we obtain that (ASjf)j is a Cauchy sequence. It is clear that the definition of Af does
not depend on the specific sequence of smooth approximations (Sjf)j . If furthermore we
have the estimate ∥Af∥α′ . ∥f∥β′ for some α′ ≤ α and β′ < β, then we can also extend
A continuously to Cβ, because Cβ ⊂ Cβ

′,0.
We will often need the following commutator estimate. Recall that we set ϕ(D)u =

F−1(ϕFu) whenever the right hand side is defined.

Lemma 5.3.1 (Lemma 2.97 of [BCD11]). Let ϕ be a continuously differentiable function,
such that (1+ | · |)Fϕ ∈ L1. Then for any Lipschitz continuous function u with Du ∈ L∞,
any v ∈ L∞, and any λ > 0 we have

∥[u, ϕ(λD)]v∥L∞ . λ max
η∈Nd:|η|=1

∥∂ηu∥L∞∥v∥L∞ ,

where [u, ϕ(λD)]v := u · (ϕ(λD)v) − ϕ(λD)(u · v).

If we apply this for ϕ = ρ or ϕ = χ, where (χ, ρ) is our dyadic partition of unity, and
for λ = 2−j , then we obtain the following corollary:

Corollary 5.3.2. Let u ∈ C1
b and v ∈ L∞. Then for all j ≥ −1 we have

∆j(uv) = u∆jv +Bj(u, v),

where

∥Bj(u, v)∥∞ . 2−j max
η∈Nd:|η|=1

∥∂ηu∥∞∥v∥∞.

We are now in a position to prove our main commutator estimate.

Lemma 5.3.3. Let α ∈ (0, 1), α+ β + γ > 0, but β + γ < 0. Then the remainder

R(f, v, w) := π◦(π<(f, v), w) − fπ◦(v, w)
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is well defined for all f ∈ Cα, v ∈ Cβ, and w ∈ Cγ, and belongs to Cα+β+γ. Moreover

∥R(f, v, w)∥α+β+γ . ∥f∥α∥v∥β∥w∥γ .

Proof. As explained above, it suffices to argue for f, v, w with Fourier transform of com-
pact support, so that all sums are finite and exchanging the order of summation is
justified. Since the Fourier transform of Sk−1f∆kv has its support in an annulus of the
form 2kA, there exists N > 0 such that

π◦(π<(f, v), w) =

i,j,k

[−1, k − 1)(ℓ)1[−1,1](|i− j|)1[−N,N ](|i− k|)∆i(Sk−1f∆kv)∆jw.

Now Corollary 5.3.2 states that

∆i(Sk−1f∆kv) = Sk−1f∆i∆kv +Bi(Sk−1f,∆kv).

Hence

π◦(π<(f, v), w) − fπ◦(v, w)
=

i,j,k,ℓ

(1[−1,k−1)(ℓ)1[−1,1](|i− j|)1[−N,N ](|i− k|) − 1[−1,1](|i− j|))∆ℓf∆i∆kv∆jw

+

i,j,k

1[−1,1](|i− j|)1[−N,N ](|i− k|)Bi(Sk−1f,∆kv)∆jw. (5.3)

Let us consider the first series in (5.3). We have ∆i∆kv = 0 for |i− k| > 1, and therefore
the series can be rewritten as

i,j,k,ℓ

(1[−1,k−1)(ℓ)1[−1,1](|i− j|)1[−N,N ](|i− k|) − 1[−1,1](|i− j|))∆ℓf∆i∆kv∆jw

= −

i,j,k,ℓ

(1[k−1,∞)(ℓ)1[−1,1](|i− j|)1[−1,1](|i− k|))∆ℓf∆i∆kv∆jw

= −

ℓ


i,j,k

(1[−1,ℓ+1](k)1[−1,1](|i− j|)1[−1,1](|i− k|))∆ℓf∆i∆kv∆jw

 .
Every term of this series in ℓ has a Fourier transform that is supported in a suitable ball
2ℓB. By Lemma 5.2.3 it suffices to control its L∞ norm, which can be estimated by


i,j,k

(1[−1,ℓ+1](k)1[−1,1](|i− j|)1[−1,1](|i− k|))∆ℓf∆i∆kv∆jw


∞

.


k≤ℓ+1
2−ℓα∥f∥α2−kβ∥v∥β2−kγ∥w∥γ . 2−ℓ(α+β+γ)∥f∥α∥v∥β∥w∥γ ,

where in the last step we used that β+γ < 0, which implies

k≤ℓ+1 2−k(β+γ) ≃ 2−ℓ(α+β).
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Since α+ β + γ > 0, Lemma 5.2.3 now yields

ℓ


i,j,k

(1[−1,ℓ+1](k)1[−1,1](|i− j|)1[−1,1](|i− k|))∆ℓf∆i∆kv∆jw


α+β+γ

. ∥f∥α∥v∥β∥w∥γ .

It remains to estimate the second series in (5.3), i.e.
i,j,k

1[−1,1](|i− j|)1[−N,N ](|i− k|)Bi(Sk−1f,∆kv)∆jw

=

k


i,j

1[−1,1](|i− j|)1[−N,N ](|i− k|)Bi(Sk−1f,∆kv)∆jw

 . (5.4)

Recall that by definition of Bi(Sk−1f,∆kv) we have

Bi(Sk−1f,∆kv) = ∆i(Sk−1f∆kv) − Sk−1f∆i∆kv = ∆i(Sk−1f∆kv) − Sk−1f∆k∆iv,

and thus for every i, k ≥ −1 the Fourier transform of Bi(Sk−1f,∆kv) has its sup-
port in an annulus of the form 2kA. Hence, for i ∼ j ∼ k, the Fourier transform of
Bi(Sk−1f,∆kv)∆jw is supported in a ball 2kB. Since α+β+γ > 0, Lemma 5.2.3 implies
that it suffices to control the L∞–norm of the terms of the series (5.4). But we obtain
from Corollary 5.3.2 that


i:i∼k


j:j∼i

Bi(Sk−1f,∆kv)∆jw


L∞

. 2−k max
|η|=1

∥∂ηSk−1f∥L∞∥∆kv∥L∞∥∆kw∥L∞

. 2−k2k(1−α)∥f∥α2−kβ∥v∥β2−kγ∥w∥γ = 2−k(α+β+γ)∥f∥α∥v∥β∥w∥γ ,

where we used that 1 − α > 0, and therefore

ℓ<k−1 2ℓ(1−α) ≃ 2k(1−α).

Remark 5.3.4. The restriction β + γ < 0 is not problematic. If β + γ ≥ 0, then for every
ε > 0 we have β + γ′ < 0, where γ′ = −β − ε, and therefore

∥R(f, v, w)∥α−ε . ∥f∥α∥v∥β∥w∥−β−ε ≤ ∥f∥α∥v∥β∥w∥γ .

Since the full product fw will not be in Cα+β+γ but much rougher than that, this loss
of regularity does not bother us.

The restriction α < 1 is a real one, unless 1 + β + γ > 0. Here, this will not affect us,
because we will deal with distributions that are rougher than C1. But if we are given a
relatively smooth v, say v ∈ C3/2, and a smooth function F , and we want to multiply
F (v) with a derivative of a high order, say D4v, then our current commutator estimate
cannot be applied. Even if we assume that π◦(v,D4v) ∈ C−1 is given, and despite the
fact that 3/2 − 1 > 0, the restriction α < 1 prevents us from defining F (v)D4v using
Lemma 5.3.3.
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It is possible to overcome this restriction by introducing higher order Littlewood-Paley
blocks, in terms of which one can define higher order correctors. But to simplify the pre-
sentation, and since we are not dealing with problems where the higher order Littlewood-
Paley blocks would be helpful, we decided to not present these results here.

Lemma 5.3.3 allows us to define the product fw for f controlled by v, under the
assumption that we already constructed vw. The next result will allow us to define the
product fg for f controlled by v, for g controlled by w, and under the assumption that
vw is given.

Corollary 5.3.5. Let α ∈ (0, 1), α + β + γ > 0, but β + γ < 0. Let v = (v1, . . . , vm) ∈
Cβ(Rd,Rm), w = (w1, . . . , wn) ∈ Cγ(Rd,Rn), f = (f1, . . . , fm) ∈ Cα(Rd,L(Rm,R)),
and g = (g1, . . . , gn) ∈ Cα(Rd,L(Rn,R)). Then

R(f, g, v, w) := π◦(π<(f, v), π<(g, w)) − fgπ◦(v, w)

:=
m
k=1

n
ℓ=1


π◦(π<(fk, vk), π<(gℓ, wℓ)) − fkgℓπ◦(vk, wℓ)


is well defined and in Cα+β+γ, and

∥R(f, g, v, w)∥α+β+γ . ∥f∥α∥g∥α∥v∥β∥w∥γ .

Proof. Lemma 5.3.3 implies that for fixed 1 ≤ k ≤ m and 1 ≤ ℓ ≤ n we have

π◦(π<(fk, vk), π<(gℓ, wℓ)) = R(fk, vk, π<(gℓ, wℓ)) + fkπ◦(vk, π<(gℓ, wℓ))
= R(fk, vk, π<(gℓ, wℓ)) + fkπ◦(π<(gℓ, wℓ), vk)
= R(fk, vk, π<(gℓ, wℓ)) + fkR(gℓ, wℓ, vk) + fkgℓπ◦(wℓ, vk)
= R(fk, vk, π<(gℓ, wℓ)) + fkR(gℓ, wℓ, vk) + fkgℓπ◦(vk, wℓ).

The result now follows from Lemma 5.3.3 and from the paraproduct estimates.

5.3.2. Product of controlled distributions

In this section we define the product of two controlled distributions, and we prove con-
tinuity properties of the product operator. For simplicity we restrict our attention to
one dimensional controlled distributions. The controlling distributions can be multi di-
mensional. The general (finite dimensional) case can then be treated by considering each
component separately.

Definition 5.3.6. Let α ∈ R and β > 0. A distribution f ∈ Cα(Rd,R) is controlled by
v ∈ Cα(Rd,Rn) if there exists fv ∈ Cβ(Rd,L(Rn,R)), such that

f ♯ = f − π<(fv, v) ∈ Cα+β.
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We write f ∈ Dα,β
v := Dα,β

v (R) and define

∥f∥v,α,β := ∥f∥α + ∥fv∥β + ∥f ♯∥α+β.

Remark 5.3.7. In general, fv is not uniquely determined by f and v. For example, if
α = β > 0 and v ∈ C2α, then 0 ∈ Dα,α

v , and every f ∈ Cα can be taken as its derivative.
So the correct definition would be (f, fv) ∈ Dα,β

v . We use f ∈ Dα,β
v as an abbreviation,

because usually it will be clear from the context which derivative we have in mind.
Example 5.3.8. If α is the regularity of a first order derivative, say α = γ − 1 for some
γ ∈ (0, 1), then we will usually take β = γ, so that α+ β = 2γ − 1.
Remark 5.3.9. If (χ, ρ) is another dyadic partition of unity, and if π<(fv, v) is the para-
product based on (χ, ρ), then ∥π<(fv, v)−π<(fv, v)∥α+β . ∥fv∥β∥v∥α, see Lemma F.1 in
the appendix. Therefore, only the norm ∥·∥v,α,β depends on the specific dyadic partition
of unity, but not the space Dα,β

v . Since v is fixed, every other dyadic partition of unity
corresponds to an equivalent norm.

To fix ideas, we first define the product fw for given π◦(v, w) and f controlled by v,
where v has positive regularity and w has negative regularity. The problem of defining
fg for g controlled by w can then be treated using similar arguments, as we will show
below.

Let v = (v1, . . . , vm) ∈ Cβ and w = (w1, . . . , wn) ∈ Cγ . If 0 < −γ < β, then Bony’s
paraproduct estimates imply that vw = (vkwℓ)1≤k≤m,1≤ℓ≤n ∈ Cγ , but vw − π<(v, w) =
(vkwℓ − π<(vk, wℓ))k,ℓ ∈ Cβ+γ . This motivates our standing assumption, which is that
we are given a distribution vw ∈ Cγ , such that

vw − π<(v, w) ∈ Cβ+γ (5.5)

for one (and then according to Lemma F.1 for every) dyadic partition of unity. Note
that if β + γ ≤ 0, then this is an assumption on the existence of vw, which cannot be
constructed using Bony’s arguments.

Definition 5.3.10. Let γ < 0 < β, and let v ∈ Cβ(Rd,Rm) and w ∈ Cγ(Rd,Rm). A
distribution vw ∈ Cγ(Rd,Rm×n) is called Besov area for v and w if it satisfies (5.5). In
that case we define

π◦(v, w) := vw − π<(v, w) − π>(v, w).

Theorem 5.3.11. Let γ < 0 < β and let α ∈ (0, 1) be such that α + β + γ > 0
and α > β + γ. Let v ∈ Cβ(Rd,Rm), w ∈ Cγ(Rd,Rn), with associated Besov area
vw = (vkwℓ)1≤k≤m,1≤ℓ≤n ∈ Cγ(Rd,Rm×n). For f ∈ Dβ,α

v (R) we define

f ◦v w := (f ◦ wℓ)1≤ℓ≤n := π≶(f, w) + π◦(f ♯, w) +R(fv, v, w) + fvπ◦(v, w).

Then f ◦v w ∈ Dγ,β
w (Rn) with derivative f , and

∥f ◦v w∥w,γ,β . ∥f∥v,β,α (1 + ∥w∥γ + ∥v∥β∥w∥γ + ∥π◦(v, w)∥β+γ) .

144



5.3. Paracontrolled calculus

If there exist sequences of smooth functions (vj)j∈N and (wj)j∈N, such that (vj) converges
to v in Cβ, (wj) converges to w in Cβ+γ, and (π◦(vj , wj)) converges to π◦(v, w) in Cβ+γ,
then the definition of f ◦v w does not depend on the dyadic partition of unity used to
define the paraproduct and the commutator R.

Proof. Since α, β > 0 and γ < 0, the paraproduct estimates, Lemma 5.2.5, imply

∥π≶(f, w) + π◦(f ♯, w)∥γ . ∥f∥L∞∥w∥γ + ∥π>(f, w)∥β+γ + ∥π◦(f ♯, w)∥β+α+γ

. ∥f∥β∥w∥γ + ∥f ♯∥β+α∥w∥γ ,

where we used that β + α + γ > 0 to estimate π◦(f ♯, w). Let ε > 0 be such that
α− ε > β + γ. Lemma 5.3.3 and Remark 5.3.4 imply that

∥R(fv, v, w)∥γ ≤ ∥R(fv, v, w)∥(α−ε)∧(α+β+γ) . ∥fv∥α∥v∥β∥w∥γ .

Since α + β + γ > 0 and β + γ < α, another application of the paraproduct estimates
yields

∥fvπ◦(v, w)∥γ ≤ ∥fvπ◦(v, w)∥β+γ . ∥fv∥α∥π◦(v, w)∥β+γ .

Note that for all terms we could estimate at least the ∥·∥β+γ–norm, except for π<(f, w),
which is only in Cγ . Hence, we have

∥f ◦v w∥γ + ∥f ◦v w − π<(f, w)∥γ+β . ∥f∥v,β,α(∥w∥γ + ∥v∥β∥w∥γ + ∥π◦(v, w)∥β+γ).

The estimate for the derivative (f ◦v w)w = f is trivial.
Let now (vj)j∈N and (wj)j∈N be sequences of smooth functions, such that (vj) converges

to v in Cβ, (wj) converges to w in Cβ+γ , and (π◦(v, wj)) converges to π◦(v, w) in Cβ+γ .
Let (χ, ρ) be another dyadic partition of unity, and let π◦, π<, π>, and f◦vw be the
operators defined in terms of this partition. We define

P1(f, fv, v, vj , wj) :=π≶(f, wj) + π◦(f − π<(fv, v), wj) +R(fv, vj , wj) + fvπ◦(vj , wj)
= fwj + π◦(π<(fv, vj − v), wj),

where fwj denotes the classical product, defined for example using Bony’s arguments.
By continuity of the operators involved, P1(f, fv, v, vj , wj) converges to f ◦v w as j tends
to ∞. Similarly we define P2(f, fv, v, vj , wj) := fwj + π◦(π<(fv, vj − v), wj), which
converges to f◦vw as j tends to ∞, because by Lemma F.1 also (π◦(vj , wj)) converges toπ◦(v, w). For the difference P1 −P2, Lemma F.1 and a straightforward calculation imply
that

∥P1(f, fv, v, vj , wj) − P2(f, fv, v, vj , wj)∥β+γ

. ∥π◦(π<(fv, vj − v) − π<(fv, vj − v), wj)∥β+γ

+ ∥π◦(π<(fv, vj − v), wj) − π◦(π<(fv, vj − v), wj)∥β+γ

. ∥fv∥α∥vj − v∥β∥wj∥γ ,
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which converges to zero by assumption.

Corollary 5.3.12. Let α, β, γ and f, v, w be as in Theorem 5.3.11. Let furthermorev ∈ Cβ and w ∈ Cγ with associated Besov area v w, and let f ∈ Dβ,αv . Then

∥f ◦v w − f ◦v w∥γ (5.6)

. (∥f − f∥β + ∥fv − fv∥α + ∥f ♯ − f ♯∥β+α)(∥w∥γ + ∥v∥β∥w∥γ + ∥π◦(v, w)∥β+γ)
+ (∥w − w∥γ + ∥v − v∥β + ∥π◦(v, w) − π◦(v, w)∥β+γ)∥ f∥v,β,α(1 + ∥v∥β + ∥w∥γ).

Proof. The multilinearity of the involved operators leads to the decomposition

f ◦v w − f ◦v w = π≶(f − f, w) + π≶( f, w − w) + π◦(f ♯ − f ♯, w) + π◦( f ♯, w − w)

+R(fv − fv, v, w) +R( fv, v − v, w) +R( fv, v, w − w)

+ (fv − fv)π◦(v, w) + fv(π◦(v, w) − π◦(v, w)).

The estimate now follows from the paraproduct estimates and from Lemma 5.3.3.

Remark 5.3.13. To lighten the notation, we will write fv instead of f ◦v w from now on,
unless we want to stress that the product of controlled distributions is considered.

Note that the definition of fv depends on the special choice of vw. From the the-
ory of rough paths it is known that there is no canonical definition of vw beyond the
Young/Bony setting, and in fact there are infinitely many possible choices.

Next we define the product fg for f controlled by v and g controlled by w. For this
purpose we need the following commutator estimate, that is due to Bony:

Lemma 5.3.14 (Theorem 2.3 of [Bon81]). Let α > 0 and β ∈ R. Let f, v ∈ Cα and
w ∈ Cβ. Then

∥π<(f, π<(v, w)) − π<(fv, w)∥α+β . ∥f∥α∥v∥α∥w∥β.

Let us now define the product f ◦v,w g for f controlled by v and g controlled by w. We
restrict our attention to f ∈ Dβ,β

v and g ∈ Dγ,β
w . The situation f ∈ Dβ,α

v and g ∈ Dγ,α
w

can be treated analogously, at the price of distinguishing the cases α ≤ β and α > β.

Theorem 5.3.15. Let γ < 0 and β ∈ (0, 1) be such that γ+2β > 0. Let v ∈ Cβ(Rd,Rm),
w ∈ Cγ(Rd,Rn), with associated Besov area vw = (vkwℓ)1≤k≤m,1≤ℓ≤n ∈ Cγ(Rd,Rm×n).
For f ∈ Dβ,β

v (R) and g ∈ Dγ,β
w (R) we define

f ◦v,w g := π≶(f, g) + π◦(f ♯, g) + π◦(π<(fv, v), g♯) +R(fv, gw, v, w) + fvgwπ◦(v, w).

Then f ◦v,w g ∈ Dγ,β
w with derivative fgw, and

∥f ◦v,w g∥w,γ,β . ∥f∥v,β,β∥g∥w,γ,β(1 + ∥v∥β + ∥w∥γ + ∥v∥β∥w∥γ + ∥π◦(v, w)∥β+γ).
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If there exist sequences of smooth functions (vj)j∈N and (wj)j∈N, such that (vj) converges
to v in Cβ, (wj) converges to w in Cβ+γ, and (π◦(vj , wj)) converges to π◦(v, w) in Cβ+γ,
then the definition of f ◦v,w g does not depend on the dyadic partition of unity used to
define the paraproduct and the commutator R.

If furthermore v ∈ Cβ, w ∈ Cγ, π◦(v, w) ∈ Cβ+γ, and f ∈ Dβ,βv , g ∈ Dγ,βw , then

∥f ◦v,w g − f ◦v,w g∥γ . (∥f − f∥β + ∥fv − fv∥β + ∥f ♯ − f ♯∥2β) (5.7)
× ∥g∥w,γ,β(1 + ∥v∥β + ∥v∥β∥w∥γ + ∥π◦(v, w)∥β+γ)

+ (∥g − g∥γ + ∥gw − gw∥β + ∥g♯ − g♯∥γ+β)
× ∥ f∥v,β,β(1 + ∥v∥β + ∥v∥β∥w∥γ + ∥π◦(v, w)∥β+γ)

+ (∥w − w∥γ + ∥v − v∥β + ∥π◦(v, w) − π◦(v, w)∥β+γ)
× ∥ f∥v,β,β∥g∥w,γ,β(1 + ∥v∥β + ∥w∥γ).

Proof. By the same arguments as in the proof of Theorem 5.3.11, using Corollary 5.3.5
instead of Lemma 5.3.3, we obtain that f ◦v,w g is controlled by g, with derivative f , and

∥f ◦v,w g∥γ + ∥f ◦v,w g − π<(f, g)∥γ+β

. ∥f∥v,β,β∥g∥w,γ,β(1 + ∥v∥β + ∥v∥β∥w∥γ + ∥π◦(v, w)∥β+γ),

and that the definition of the product does not depend on the dyadic partition of unity if
π◦(v, w) is given as limit of (π◦(vj , wj)) for sequences of smooth functions (vj) and (wj)
that converge to v and w respectively.

Let us show that f ◦v,w g is controlled by w, with derivative fgw. Note that

∥f ◦v,w g − π<(fgw, w)∥γ+β ≤ ∥f ◦v,w g − π<(f, g)∥γ+β + ∥π<(f, g − π<(gw, w))∥γ+β

+ ∥π<(f, π<(gw, w)) − π<(fgw, w)∥γ+β

. ∥f∥v,β,β∥g∥w,γ,β(1 + ∥v∥β + ∥v∥β∥w∥γ + ∥π◦(v, w)∥β+γ)
+ ∥f∥L∞∥g♯∥γ+β + ∥f∥β∥gw∥β∥w∥γ ,

where we applied Lemma 5.3.14 to the third term. The estimate for the derivative fgw
is easily derived, and therefore

∥f ◦v,w g∥w,γ,β . ∥f∥v,β,β∥g∥w,γ,β(1 + ∥v∥β + ∥w∥γ + ∥v∥β∥w∥γ + ∥π◦(v, w)∥β+γ).

The estimate for ∥f ◦v,w g− f ◦v,w g∥γ is derived in the same way as Corollary 5.3.12.

5.3.3. Stability under nonlinear maps

Here we establish the stability of controlled distributions under nonlinear maps, and
we show that the space of controlled distributions is an algebra. We still assume the
controlled distributions to be one dimensional, whereas the controlling distributions can
take their values in Rn for arbitrary n.
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In the appendix we prove a simple version of the paralinearization theorem for u ∈ Cα

with α ∈ (0, 1/2), that is F (u) − π<(DF (u), u) ∈ C2α for any F ∈ C2
b . In fact we

slightly generalize this statement, and allow for smooth (meaning C2α) perturbations of
u. The crucial point is that the norm of the smooth perturbation appears only linearly
in the estimate. This will be needed later to obtain global solutions for Burgers type
SPDEs. Our paralinearization theorem is also a generalization of the classical result
in the sense that we only require F ∈ C2

b and not F ∈ C∞, and our estimate for
∥F (u) − π<(DF (u), u)∥2α is more precise than the estimates that we could find in the
literature. On the other side we restrict our attention to α ∈ (0, 1/2).

Lemma 5.3.16 (Lemma G.3 in Appendix G). Let α ∈ (0, 1/2), let f ∈ Cα(Rd,Rn),
u ∈ C2α(Rd,Rn), and F ∈ C2

b (Rn,R). Then

∥F (f + u) − π<(DF (f + u), f)∥2α . ∥F∥C2
b
(1 + ∥u∥2α)(1 + ∥f∥α)2.

In the appendix we also examine the Hölder-Besov regularity of F (u) for u ∈ Cα.

Lemma 5.3.17 (Lemma G.2 in Appendix G). Let α ∈ (0, 1). If f ∈ Cα(Rd,Rn) and
F ∈ C1

b (Rn,R), then

∥F (f)∥α . ∥DF∥L∞∥f∥α + |F (0)| . ∥F∥C1
b
∥f∥α.

In fact Lemma 5.3.16 and Lemma 5.3.17 hold for general α > 0, but the estimates get
worse (polynomial rather than linear / quadratic) as α increases.

Now we are in a position to prove the first main result of this section, about the
stability of controlled distributions under nonlinear maps.

Lemma 5.3.18. Let α ∈ (0, 1/2), let v ∈ Cα, and let f ∈ Dα,α
v , with derivative fv. Let

u ∈ C2α and F ∈ C2
b . Then F (f + u) ∈ Dα,α

v with derivative DF (f + u)fv, and

∥F (f + u)∥v,α,α . ∥F∥C2
b
(1 + ∥v∥α)(1 + ∥u∥2α)(1 + ∥f∥v,α,α)2.

Proof. The estimates for ∥F (f + u)∥α and ∥DF (u + v)fv∥α are straightforward, using
Lemma 5.3.17 and the paraproduct estimates. For the remainder we have

F (f + u) − π<(DF (f + u)fv, v) = F (f + u) − π<(DF (f + u), f) (5.8)
+ π<(DF (f + u), f − π<(fv, v))
+ π<(DF (f + u), π<(fv, v)) − π<(DF (f + u)fv, v).

According to Lemma 5.3.16, the first term on the right hand side can be estimated by

∥F (f + u) − π<(DF (f + u), f)∥2α . ∥F∥C2
b
(1 + ∥u∥2α)(1 + ∥f∥α)2.

The paraproduct estimates imply for the second term on the right hand side of (5.8) that

∥π<(DF (f + u), f − π<(fv, v))∥2α . ∥DF∥L∞∥f − π<(fv, v)∥2α ≤ ∥F∥L∞∥f∥v,α,α.
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5.3. Paracontrolled calculus

Finally Lemma 5.3.14 yields that the third term on the right hand side of (5.8) can be
estimated by

∥π<(DF (f + u), π<(fv, v)) − π<(DF (f + u)fv, v)∥2α . ∥DF (f + u)∥α∥fv∥α∥v∥α
. ∥F∥C2

b
(∥f∥α + ∥u∥α)∥fv∥α∥v∥α,

where we applied Lemma 5.3.17 in the last step.

Next we prove the second main result of this section: If α ∈ (0, 1), then the space of
controlled distributions is an algebra.

Lemma 5.3.19. Let α ∈ (0, 1), v ∈ Cα(Rd,Rn), and f, g ∈ Dα,α
v (R), with derivatives

fv, gv respectively. Then fg ∈ Dα,α
v with derivative fvg + fgv, and

∥fg∥v,α,α . ∥f∥v,α,α∥g∥v,α,α(1 + ∥v∥α).

Proof. The estimates for ∥fg∥α and ∥fvg + fgv∥α are straightforward. The remainder
can be decomposed as

fg = π<(f, π<(gv, v)) + π>(π<(fv, v), g) + r,

where

∥r∥2α = ∥π<(f, g♯) + π◦(f, g) + π>(f ♯, g)∥2α . ∥f∥v,α,α∥g∥v,α,α.

Therefore, it suffices to control ∥π<(f, π<(gv, v))+π>(π<(fv, v), g)−π<(fvg+fgv, v)∥2α.
Lemma 5.3.14 implies that

∥π<(f, π<(gv, v)) − π<(fgv, v)∥2α . ∥f∥α∥gv∥α∥v∥α . ∥f∥v,α,α∥g∥v,α,α∥v∥α.

Since f and g are both one dimensional, another application of Lemma 5.3.14 yields

∥π>(π<(fv, v), g) − π<(fvg, v)∥2α = ∥π<(g, π<(fv, v)) − π<(gfv, v)∥2α

. ∥g∥α∥fv∥α∥v∥α . ∥f∥v,α,α∥g∥v,α,α∥v∥α,

which completes the proof.

5.3.4. Heat flow, paraproducts, and Fourier multipliers

In this section, which can be skipped at first reading, we examine how Fourier multipli-
ers interact with the paraproduct. This will allow us to obtain commutator estimates
between heat flow and paraproduct. We also quantify the smoothing effect of certain
Fourier multipliers.

Lemma 5.3.20. Let α < 1 and β ∈ R. Let ϕ ∈ S, let u ∈ Cα, and v ∈ Cβ. Then for
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every ε > 0 and every δ ≥ −1 we have

∥ϕ(εD)π<(u, v) − π<(u, ϕ(εD)v)∥α+β+δ . ε−δ∥u∥α∥v∥β.

Proof. We have

ϕ(εD)π<(u, v) − π<(u, ϕ(εD)v) =

j≥−1

(ϕ(εD)(Sj−1u∆jv) − Sj−1u∆jϕ(εD)v),

and every term of this series has a Fourier transform with support in an annulus of the
form 2jA. Lemma 5.2.3 implies that it suffices to control the L∞ norm of each term. Let
ψ ∈ D with support in an annulus be such that ψ ≡ 1 on A. We have

ϕ(εD)(Sj−1u∆jv) − Sj−1u∆jϕ(εD)v
= (ψ(2−j ·)ϕ(ε·))(D)(Sj−1u∆jv) − Sj−1u(ψ(2−j ·)ϕ(ε·))(D)∆jv

= [(ψ(2−j ·)ϕ(ε·))(D), Sj−1u]∆jv,

where [(ψ(2−j ·)ϕ(ε·))(D), Sj−1u] denotes the commutator. In the proof of Lemma 2.97
in [BCD11] (our Lemma 5.3.1), it is shown that writing the Fourier multiplier as a convo-
lution operator and applying a first order Taylor expansion and then Young’s inequality
yields

∥[(ψ(2−j ·)ϕ(ε·))(D), Sj−1u]∆jv∥L∞

.


η∈Nd:|η|=1
∥xηF−1(ψ(2−j ·)ϕ(ε·))∥L1∥∂ηSj−1u∥L∞∥∆jv∥L∞ . (5.9)

Now F−1(f(2−j ·)g(ε·)) = 2jdF−1(fg(ε2j ·))(2j ·) for every f, g, and thus we have for every
multi-index η of order one

∥xηF−1(ψ(2−j ·)ϕ(ε·))∥L1

≤ 2−j∥F−1((∂ηψ)(2−j ·)ϕ(ε·))∥L1 + ε∥F−1(ψ(2−j ·)∂ηϕ(ε·))∥L1

= 2−j∥F−1((∂ηψ)ϕ(ε2j ·))∥L1 + ε∥F−1(ψ∂ηϕ(ε2j ·))∥L1

. 2−j∥(1 + | · |)2dF−1((∂ηψ)ϕ(ε2j ·))∥L∞ + ε∥(1 + | · |)2dF−1(ψ∂ηϕ(ε2j ·))∥L∞

= 2−j∥F−1((1 − ∆)d((∂ηψ)ϕ(ε2j ·)))∥L∞ + ε∥F−1((1 − ∆)d(ψ∂ηϕ(ε2j ·))∥L∞

. 2−j∥(1 − ∆)d((∂ηψ)ϕ(ε2j ·))∥L∞ + ε∥(1 − ∆)d(ψ∂ηϕ(ε2j ·))∥L∞ , (5.10)

where the last step follows because ψ has compact support. For j satisfying ε2j ≥ 1 we
obtain

∥xηF−1(ϕ(ε·)ψ(2−j ·))∥L1 . (ε+ 2−j)(ε2j)2d 
η:|η|≤2d+1

∥∂ηϕ(ε2j ·)∥L∞(supp(ψ)), (5.11)

where we used that ψ and all its partial derivatives are bounded, and where L∞(supp(ψ))
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means that the supremum is taken over the values of ∂ηϕ(ε2j ·) restricted to supp(ψ).
Now ϕ is a Schwartz function, and therefore it decays faster than any polynomial. Hence,
there exists a ball Bδ such that for all x ̸∈ Bδ and all |η| ≤ 2d+ 1 we have

|∂ηϕ(x)| ≤ |x|−2d−1−δ. (5.12)

Let j0 ∈ N be minimal such that 2j0εA ∩ Bδ = ∅ and ε2j0 ≥ 1. Then the combination of
(5.9), (5.11), and (5.12) shows for all j ≥ j0 that

∥[(ψ(2−j ·)ϕ(ε·))(D), Sj−1u]∆jv∥L∞

. (ε+ 2−j)(ε2j)2d 
η:|η|≤2d+1

∥(∂ηϕ)(ε2j ·)∥L∞(supp(ψ))2j(1−α)∥u∥α2−jβ∥v∥β

. (ε+ 2−j)(ε2j)2d(ε2j)−2d−1−δ2j(1−α−β)∥u∥α∥v∥β

. (1 + (ε2j)−1)ε−δ2−j(α+β+δ)∥u∥α∥v∥β.

Here we used that α < 1 in order to obtain ∥∂ηSj−1u∥L∞ . 2j(1−α)∥u∥L∞ . Since ε2j ≥ 1,
we have shown the desired estimate for j ≥ j0. On the other side Lemma 5.3.1 implies
for every j ≥ −1 that

∥[ϕ(εD), Sj−1u]∆jv∥L∞ . ε max
η∈Nd:|η|=1

∥∂ηSj−1u∥L∞∥∆jv∥L∞ . ε2j(1−α−β)∥u∥α∥v∥β.

Hence, we obtain for j < j0, i.e. for j satisfying 2jε . 1, that

∥[ϕ(εD), Sj−1u]∆jv∥L∞ . (ε2j)1+δε−δ2−j(α+β+δ)∥u∥α∥v∥β . ε−δ2−j(α+β+δ)∥u∥α∥v∥β,

where we used that δ ≥ −1. This completes the proof.

The same arguments allow us to quantify the smoothing properties of Fourier mul-
tipliers that behave like Schwartz functions for large |x|. In particular, we will be able
quantify the smoothing properties of the semigroup generated by the fractional Laplacian.
Of course these are well known, but at this point we can give a short proof.

Corollary 5.3.21. Let α ∈ R. Let ϕ be a continuous function, such that ϕ is smooth
outside of a ball centered at 0, and such that ϕ and all its partial derivatives decay faster
than any polynomial at infinity. Assume also that Fϕ ∈ L1. Then for all u ∈ Cα, ε > 0,
and δ ≥ 0 we have

∥ϕ(εD)u∥α+δ . ε−δ∥u∥α.

Proof. Let ψ ∈ D with support in an annulus be such that ψρ = ρ, where (χ, ρ) is our
dyadic partition of unity. For j ≥ 0 we have

ϕ(εD)∆ju = F−1(ϕ(ε·)ψ(2−j ·)) ∗ ∆ju,
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5. Paracontrolled distributions and applications to SPDEs

and therefore Young’s inequality implies that

∥ϕ(εD)∆ju∥L∞ . ∥F−1(ϕ(ε·)ψ(2−j ·))∥L12−jα∥u∥α.

Hence, it suffices to prove ∥F−1(ϕ(ε·)ψ(2−j ·))∥L1 . ε−δ2−jδ. For j large enough so
that 2jε ≥ 1 and |∂ηϕ(x)| ≤ |x|−2d−1−δ for all η ∈ Nd with |η| ≤ 2d and for all x ∈
supp(ψ(2jε·)), this is shown exactly as in the proof of Lemma 5.3.20: just omit the
factor xη in the derivation of (5.10). But for ε2j . 1 we have

∥ϕ(εD)∆ju∥L∞ ≤ ∥F−1(ϕ(ε·))∥L1∥∆ju∥L∞ . ∥F−1ϕ∥L12−jα∥u∥α
. 2−jα∥u∥α = (ε2j)δε−δ2−j(α+δ)∥u∥α . ε−δ2−j(α+δ)∥u∥α,

where in the last step we used that δ ≥ 0.

5.4. Rough Burgers type equation
A first example on which to test our theory is the Burgers type SPDE

∂tu(t, x) = −Au(t, x) +G(u(t, x))Dxu(t, x) + Ẇ (t, x), (5.13)

where −A = −(−∆)σ is the fractional Laplacian for a sufficiently large σ, the Gaussian
noise Ẇ is white in space and time and takes its values in Rn, and the spatial derivative is
denoted by Dx. Moreover, G : Rn → L(L(Td,Rn),Rn) is a smooth map. We consider this
equation on the d–dimensional torus Td = [−π, π]d with periodic boundary conditions.
Recall from Section 5.2 that our results on Rd carry over to this setting without problem.
Note that if n > 1, then in general there exists no function Γ : Rn → Rn such that

G(u(t, x))Dxu(t, x) = Dx(Γ(u(t, x))).

This prevents a direct definition of the term G(u(t, x))Dxu(t, x) as a distribution. More-
over, we will see that the natural regularity of u is too low to define G(u(t, x))Dxu(t, x)
using Bony’s paraproduct.

In the case of a one dimensional spatial index set, Hairer [Hai11] uses a flow decompo-
sition to make sense of (5.13): Consider the stationary solution ψ to

∂tψ(t, x) = (−A− λ)ψ(t, x) + Ẇ (t, x)

for a correction term λ > 0 (needed for the existence of stationary solutions). If we set
v := u− ψ, then v formally solves

∂tv(t, x) = −Av(t, x) +G(v(t, x) + ψ(t, x))Dx(v(t, x) + ψ(t, x)) + λψ(t, x).

The main problem then consists of making sense of the term

G(v(s, ·) + ψ(s, ·))Dx(v(s, ·) + ψ(s, ·)).
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5.4. Rough Burgers type equation

Hairer’s key insight is that for d = 1, the theory of controlled rough paths can be applied
to make sense of the product. An extension of this approach to higher dimensions is
naturally provided by the theory of paracontrolled distributions. As we will show, we can
make sense of the product G(v(s, ·)+ψ(s, ·))Dx(v(s, ·)+ψ(s, ·)) by devising a suitable area
distribution for ψ. We then combine the continuity properties of our product operator
with smoothing properties of the heat flow to prove the existence and uniqueness of
solutions to (5.13).

5.4.1. Construction of the Besov area

The first step is to analyze the stationary solution ψ to

∂tψ(t, x) = (−A− λ)ψ(t, x) + Ẇ (t, x). (5.14)

For the existence of ψ, we suppose that the space-time white noise Ẇ is defined on
R × Td. Recall that Ẇ is a space-time white noise if it is a mean zero Gaussian process
with values in S ′(R × Td), such that

E(⟨Ẇ j , ϕ⟩⟨Ẇ ℓ, ϑ⟩) = δjℓ


R×Td

ϕ(t, x)ϑ(t, x)dtdx

for all test function ϕ, ϑ ∈ L2(R × Td). Formally we write E(Ẇ j(t, x)Ẇ ℓ(t′, x′)) =
δjℓδ(t− t′)δ(x−x′), where δ denotes the Dirac delta but δjℓ denotes the Kronecker delta.

In this setting, the stationary solution ψ is given as

ψ(t, x) =
 t

−∞
(P λt−sẆ (s, ·))(x)ds,

where (P λt )t≥0 = (e−λt(e−t|·|2σ )(D))t≥0 is the semigroup generated by −A−λ. The reason
for considering the stationary solution is that its Fourier transform has a particularly
simple covariance structure, which is convenient in the following calculations.

Lemma 5.4.1. Let ψ be the spatial Fourier transform of ψ, i.e.

ψ(t, k) =

Td
e−ı⟨k,x⟩ψ(t, x)dx for k ∈ Zd.

Then ψ is a complex-valued stationary Gaussian process with zero mean and covariance

E( ψj(t, k) ψℓ(t′, k′)) = (2π)dδjℓδk(−k′)
e−|t′−t|(λ+|k|2σ)

2(λ+ |k|2σ) (5.15)

for j, ℓ = 1, . . . , n, k, k′ ∈ Zd and t, t′ ∈ R.

Proof. We give a formal derivation, which can be rendered rigorous by considering the
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action on test functions. For the spatial Fourier transform ̇W of Ẇ we obtain

E
̇W j(t, k)̇W ℓ(t′, k′)


=

Td


Td
e−ı⟨k,x⟩e−ı⟨k′,x′⟩E(Ẇ j(t, x)Ẇ ℓ(t′, x′))dx′dx

= δjℓδ(t− t′)

Td
e−ı⟨k,x⟩e−ı⟨k′,x⟩dx

= (2π)dδjℓδ(t− t′)δk(−k′).

Hence, the covariance of ψ is given by

E( ψj(t, k) ψℓ(t′, k′))

=
 t

−∞

 t′

−∞
e−(t−s)(λ+|k|2σ)e−(t′−s′)(λ+|k′|2σ)E

̇W j(s, k)̇W ℓ(s′, k′)

ds′ds

= (2π)dδjℓδk(−k′)

 t∧t′

−∞
e−(t−s)(λ+|k|2σ)e−(t′−s)(λ+|k|2σ)ds

= (2π)dδjℓδk(−k′)
e2(t∧t′)(λ+|k|2σ)

2(λ+ |k|2σ) e−(t+t′)(λ+|k|2σ)

= (2π)dδjℓδk(−k′)
e−|t′−t|(λ+|k|2σ)

2(λ+ |k|2σ) .

Our first concern is to study the Hölder-Besov regularity of the process ψ.

Lemma 5.4.2. The process ψ is almost surely in C([0, T ], Cα(Td,Rn)) for any α <
σ − d/2.

Proof. Let s, t ∈ [0, T ] and ℓ ≥ −1. Recall that fs,t := f(t) − f(s), for any f defined on
[0, T ]. Writing ∆ℓ as a convolution operator, we see that ∆ℓψs,t is a Gaussian process
indexed by Td, with values in Rn. Using Gaussian hypercontractivity we obtain for p ≥ 1
that

E

∥∆ℓψs,t∥2p

L2p(Td)


.p ∥E(|∆ℓψs,t(x)|2)∥p

Lp
x(Td), (5.16)

where we denote ∥f(x)∥p
Lp

x(Td) :=

Td |f(x)|pdx for any f ∈ L1(Td). By definition we have

∆ℓψs,t(x) = (2π)−d 
k∈Zd

ρℓ(k) ψs,t(k)eı⟨k,x⟩,

and therefore

E(|∆ℓψs,t(x)|2) = (2π)−2d
k,k′

ρℓ(k)ρℓ(k′)eı⟨k+k′,x⟩E( ψs,t(k) ψs,t(k′)).

Since ρℓ has compact support we are considering finite sums, and therefore exchanging
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expectation and summation is justified. Now (5.15) implies for 1 ≤ j ≤ n and indepen-
dently of x ∈ Td that

E(|∆ℓψ
j
s,t(x)|2) = (2π)−d 

k∈Zd

ρ2
ℓ (k)1 − e−|t−s|(λ+|k|2σ)

λ+ |k|2σ
.

For any ε ∈ (0, 1] we have 1 − e−x . xε, and therefore

(2π)−d 
k∈Zd

ρ2
ℓ (k)1 − e−|t−s|(λ+|k|2σ)

λ+ |k|2σ
. |t− s|ε


k∈supp(ρℓ)

1
(λ+ |k|2σ)1−ε

. |t− s|ε2ℓ(d−2σ(1−ε)).

Hence, we obtain from (5.16) that

E


∥ψ(t, ·) − ψ(s, ·)∥2p

Bα
2p,2p(Td)


.

ℓ≥−1

2ℓα2pE

∥∆ℓψs,t∥2p

L2p(Td)


.

ℓ≥−1

2ℓα2p

|t− s|ε2ℓ(d−2σ(1−ε))

p
for any α ∈ R and any p ≥ 1. For α < σ−d/2 there exists ε ∈ (0, 1] small enough so that
the series converges. Since we can choose p arbitrarily large, Kolmogorov’s continuity
criterion for Banach space valued processes, Theorem I.2.1 of [RY99], implies that ψ has
a continuous version such that ψ ∈ C([0, T ], Bα

2p,2p(Td)) for all α < σ − d/2. Now we
use again that p can be chosen arbitrarily large, so that the Besov embedding theorem,
Lemma 5.2.4, shows that this continuous version takes its values in C([0, T ], Cα(Td)) for
all α < σ − d/2.

Contrary to the one dimensional case, in higher dimensions the Laplacian does not
sufficiently smoothen the white noise. In fact Lemma 5.4.2 shows that if σ = 1, then
already for d = 2 we only have a distribution valued solution ψ ∈ C([0, T ], C−ε) for
any ε > 0. Hence, in that case it is not even clear how to define G(ψ(t, ·)), let alone
G(ψ(t, ·))Dxψ(t, ·). So in higher dimensions we need to consider the fractional Laplacian
of a sufficiently high order.

If σ − d/2 ∈ (0, 1/2), then G(ψ) makes sense, but the product G(ψ)Dxψ cannot be
defined using classical analytical arguments. This is why prior to [Hai11] it was not
known how to describe solutions to (5.13). Hairer solved the case d = 1, and in the
following we show how to use our paracontrolled calculus in order to solve (5.13) for
d ≥ 1. For this purpose we need to construct the area process of ψ(t, ·).

Lemma 5.4.3. Let ψ be the stationary solution to (5.14). If 1 + d/2 − 2σ < 0, then for
any α < σ − d/2 almost surely

π◦(ψ,Dxψ) = (π◦(ψi,Dxψ
j))1≤i,j≤n ∈ C([0, T ];C2α−1(Td;Rn×n)).
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Proof. Without loss of generality we can argue for π◦(ψ1,Dxψ
2). The case π◦(ψ1,Dxψ

1)
is easy, because Leibniz’s rule implies that π◦(ψ1,Dxψ

1) = 1
2Dx(π◦(ψ1, ψ1)).

Note that if i is smaller than ℓ − N for sufficiently large N , and if |i − j| ≤ 1, then
∆ℓ(∆if∆jg) = 0 for all f, g ∈ S ′. Hence, the projection of π◦(ψ1,Dxψ

2) onto the ℓ–th
dyadic Fourier block is given by

∆ℓπ◦(ψ1,Dxψ
2) =


|i−j|≤1

∆ℓ(∆iψ
1∆jDxψ

2) =


|i−j|≤1
1ℓ.i∆ℓ(∆iψ

1∆jDxψ
2),

Therefore, we can apply Gaussian hypercontractivity (see [FV10b], Appendix D.4) to
obtain

E∥[∆ℓπ◦(ψ1,Dxψ
2)]s,t∥2p

L2p(Td) .
E 

|i−j|≤1
1ℓ.i[∆ℓ(∆iψ

1∆jDxψ
2)(x)]s,t

2p
Lp

x(Td)
.

(5.17)

Let us start by estimating

E

 
|i−j|≤1

1ℓ.i∆ℓ(∆iψ
1(t, ·)∆jDxψ

2
s,t)(x)

2
(5.18)

=


|i−j|≤1


|i′−j′|≤1

1ℓ.i1ℓ.i′E(∆ℓ(∆iψ
1(t, ·)∆jDxψ

2
s,t)(x)∆ℓ(∆i′ψ

1(t, ·)∆j′Dxψ
2
s,t)(x)).

Taking the infinite sums outside of the expectation can be justified a posteriori, because
for every finite partial sum we will obtain a bound on the L2–norm below, which does
not depend on the number of terms that we sum up. The Gaussian hypercontractivity
(5.17) then provides a uniform Lp–bound for any p ≥ 2, which implies that the squares
of the partial sums are uniformly integrable, and thus allows us to exchange summation
and expectation.

Let us write F for the spatial Fourier transform. Recall that F(F−1uF−1v)(k) =
(2π)−d

k′ u(k′)v(k − k′), and F(Dxu)(k) = ıkF(u)(k), and therefore

∆ℓ(∆iψ
1(t, ·)∆jDxψ

2
s,t)(x) = (2π)−d 

k∈Zd

ρℓ(k)eı⟨k,x⟩F(∆iψ
1(t, ·)∆jDxψ

2
s,t)(k)

= (2π)−d 
k,k′∈Zd

ρℓ(k)eı⟨k,x⟩ρi(k′)F(ψ1)(t, k′)ρj(k − k′)ı(k − k′)F(ψ2)s,t(k − k′).

Using the explicit covariance (5.15) and the independence of ψ1 and ψ2, we thus obtain

E

 
|i−j|≤1

1ℓ.i∆ℓ(∆iψ
1(t, ·)∆jDxψ

2
s,t)(x)

2
=


|i−j|≤1


|i′−j′|≤1

1ℓ.i1ℓ.i′


k,k′∈Zd

ρ2
ℓ (k + k′)ρi(k)ρi′(k)ρj(k′)ρj′(k′)
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× |k′|2 1 − e−|t−s|(λ+|k′|2σ)

λ+ |k′|2σ
1

2(λ+ |k|2σ)

.


|i−j|≤1
1ℓ.i


k∈supp(ρi),k′∈supp(ρj)

ρ2
ℓ (k + k′)|k′|2 1 − e−|t−s|(λ+|k′|2σ)

2(λ+ |k′|2σ)2 .

For any ε ∈ (0, 1] we can estimate the right hand side by

.


|i−j|≤1
1ℓ.i


k∈supp(ρi),k′∈supp(ρj)

ρ2
ℓ (k + k′)|k′|2 |t− s|ε(λ+ |k′|2σ)ε

2(λ+ |k′|2σ)2

.

i:i&ℓ

2di2dℓ(2i)2 |t− s|ε(2i2σ)ε

(2i2σ)2 = 2dℓ

i:i&ℓ

22i(1+d/2−2σ(1−ε))|t− s|ε.

So if 1 + d/2 − 2σ < 0, then we obtain for sufficiently small ε > 0 that

E

 
|i−j|≤1

1ℓ.i∆ℓ(∆iψ
1(t, ·)∆jDxψ

2
s,t)(x)

2
. 22ℓ(1+d−2σ(1−ε))|t− s|ε,

and by the same arguments

E

 
|i−j|≤1

1ℓ.i∆ℓ(∆iψ
1
s,t∆jDxψ

2(s, ·))(x)
2

. 22ℓ(1+d−2σ(1−ε))|t− s|ε.

Since

∆iψ
1(t, ·)∆jDxψ

2(t, ·) − ∆iψ
1(s, ·)∆jDxψ

2(s, ·)
= ∆iψ

1(t, ·)∆jDxψ
2
s,t + ∆iψ

1
s,t∆jDxψ

2(s, ·),

we get for sufficiently small ε > 0 and for arbitrarily large p ≥ 1 that

E∥∆ℓπ◦(ψ1
t ,Dxψ

2
t ) − ∆ℓπ◦(ψ1

s ,Dxψ
2
s)∥

2p
L2p(Td) . 2ℓ(1+d−2σ(1−ε))2p|t− s|εp.

Now we use the same arguments as in the proof of Lemma 5.4.2 to conclude that
π◦(ψ1,Dxψ

2
t ) has a version that almost surely belongs to C([0, T ], C2α−1) for all α <

σ − d/2.

Remark 5.4.4. We constructed the Besov area ψDxψ using one fixed partition of unity.
But if (χ, ρ) is another dyadic partition of unity, with dyadic blocks ( ∆i)i≥−1, and if
ψ◦Dxψ is constructed using that partition, then ψDxψ and ψ◦Dxψ almost surely coincide.
This can be seen by considering the difference

i,j≤N
∆iψ∆jDxψ −


i′,j′≤N

∆i′ψ ∆j′Dxψ,
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and by showing that it converges to 0 as N tends to ∞.
More generally, we expect that for a wide range of smooth approximations (ψj)j∈N to

ψ, the product (π◦(ψj ,Dxψj)) almost surely converges to π◦(ψ,Dxψ). In the setting of
Gaussian rough paths, such results have been obtained by Friz and Victoir [FV10a]. See
also [FGGR12] for the case of SPDEs with a one dimensional spatial index variable, and
Chapter 10 of [Hai13a] for some general results in the multidimensional case.

5.4.2. Picard iteration

Having constructed the Besov area of the driving noise, we can now solve the fractional
Burgers type equation. For this purpose, we first have to define what we mean by a
solution.

For t ≥ 0 and α ∈ R we define the space CαT := C([0, T ], Cα(Td,Rn)) with norm

∥u∥Cα
T

:= sup
s∈[0,T ]

∥us∥α,

where we write us := u(s, ·).

Definition 5.4.5. Let d ∈ N, σ−d/2 > 1/3, ε > 0, and α ∈ (1/3, σ−d/2). Let u0 ∈ Cα.
A function u ∈ CαT is called mild solution to

∂tu(t, x) = −Au(t, x) +G(u(t, x))Dxu(t, x) + Ẇ (t, x), (5.19)

with initial condition u0, if v := u− ψ is in C1+ε
T , and

v(t, ·) = Pt(u0 − ψ0)(x) +
 t

0
Pt−s[G(v(s, ·) + ψ(s, ·))Dx(v(s, ·) + ψ(s, ·))]ds

+ λ

 t

0
Pt−sψ(s, ·)ds,

where the product G(v(s, ·)+ψ(s, ·))Dx(v(s, ·)+ψ(s, ·)) is as in Section 5.3: Since v(s, ·) ∈
C1+ε, we have v(s, ·) + ψ(s, ·) ∈ Dα,α

ψ , and Dx(v(s, ·) + ψ(s, ·)) ∈ Dα−1,α
Dxψ

.

Remark 5.4.6. A priori this definition depends on the constant λ > 0 that we intro-
duced to obtain a stationary solution to the linear part of the equation. But if ψ solves
∂tψ(t, x) = −(A+λ)ψ(t, x)+Ẇ (t, x), and ψ solves ∂t ψ(t, x) = −(A+λ) ψ(t, x)+Ẇ (t, x),
then

∂t(ψ − ψ)(t, x) = −A(ψ − ψ)(t, x) + λ ψ(t, x) − λψ(t, x),

and from here it is easy to see that ψ − ψ is smooth. Therefore, any w ∈ Dα,α
ψ is also in

Dα,αψ , which implies that the definition of the product Pt−sG(v(s, ·) +ψ(s, ·))Dx(v(s, ·) +
ψ(s, ·)) does not depend on the special choice of λ.
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5.4. Rough Burgers type equation

We also could have taken

ψ(t, x) =
 t

0
(Pt−sẆ (s, ·))(x)ds

as reference distribution, and not the stationary solution ψ. While it is harder to derive
the regularity of ψ directly, it is easy to show that the difference ψ − ψ is smooth.

We could also define weak solutions. It should be no problem to show that mild and
weak solutions coincide.

For further details on these questions see [HW13], Definition 3.1 and the following
discussion.

Before proving the existence of a unique solution to (5.19), we establish some a priori
estimates. To lighten the notation, we introduce a “rough path norm”.

Definition 5.4.7. Let α > 1/3 and w ∈ Cα(Td,Rn) with associated Besov area wDxw ∈
C2α−1(Td,Rn ⊗ L(Td,Rn)). In that case we write w := (w,wDxw) ∈ C α, and we define
the “norm”

∥w∥C α := ∥Dxw∥α−1 + ∥w∥α∥Dxw∥α−1 + ∥π◦(w,Dxw)∥2α−1.

For t > 0 we also introduce the space C α
t := C([0, t],C α) with “norm”

∥W∥C α
t

:= sup
s∈[0,t]

∥W(s, ·)∥C α .

We first recall the smoothing properties of the semigroup generated by the fractional
Laplacian.

Lemma 5.4.8. Let σ > 1/2 if d is odd, and σ > 1 if d is even. Let A = −(−∆)σ with
periodic boundary conditions on Td and let (Pt)t≥0 be the semigroup generated by A. Let
α ∈ R, and let u ∈ Cα, t > 0, δ ≥ 0. Then

∥Ptu∥α+δ . t−
δ

2σ ∥u∥α.

For α ≤ 1, u ∈ Cα−1, v ∈ Cα, and ε ≥ 0 we obtain

∥Ptu∥1+ε . t−
2+ε−α

2σ ∥u∥α−1 and ∥Ptv∥1+ε . t−
1+ε−α

2σ ∥v∥α.

Proof. The semigroup is given by Pt = ϕ(t1/(2σ)D), t ≥ 0, where ϕ(x) = e−|x|2σ . Hence, it
suffices to show that ϕ satisfies the assumptions of Corollary 5.3.21. Outside of every ball
that contains the singularity 0 (where ϕ is not infinitely differentiable), ϕ behaves like a
Schwartz function. Let us show that Fϕ ∈ L1. Let m be the smallest even integer that
is strictly larger than d. Since ∥Fϕ∥L∞ . ∥ϕ∥L1 , it suffices to show that |·|mFϕ ∈ L∞.
But

|x|m|Fϕ(x)| = |F(∆m/2ϕ)(x)| . ∥∆m/2ϕ∥L1 .


η∈Nd:|η|≤m
∥∂ηϕ∥L1 .
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5. Paracontrolled distributions and applications to SPDEs

If d is odd, then 2σ −m > 1 − (d+ 1) = −d, and therefore the right hand side is finite.
The argument for even d is similar, and therefore the proof is complete.

Remark 5.4.9. We only used the lower bounds on σ to prove that Fϕ ∈ L1. This holds
for every σ > 0, in fact it is well known that |Fϕ(x)| . |x|−d−2σ. But eventually we are
only interested in σ− d/2 > 1/3, so the lower bounds in Lemma 5.4.8 do not impose any
additional restrictions. On the other side they simplify the proof.

Based on these estimates, we can establish an a priori estimate for the action of the
fractional heat kernel on the nonlinear part.

Lemma 5.4.10. Let α ∈ (1/3, 1) and w = (w,wDxw) ∈ C α. Let ε > 0 and let v ∈ C1+ε

and G ∈ C2
b . Then for all t ∈ [0, T ] we have

∥Pt[G(v + w)Dx(v + w)]∥1+ε .G,w t
− 2+ε−α

2σ (1 + ∥v∥2α) + t−
1+ε
2σ ∥v∥1+ε.

Proof. Since v + w is controlled by w, and Dx(v + w) is controlled by Dxw, it would be
possible to directly apply Theorem 5.3.15 to defineG(v+w)Dx(v+w). But this would only
give us a quadratic estimate in v, which would lead to problems when trying to construct
global solutions. Therefore, we consider the terms G(v + w)Dxv and G(v + w)Dxw
separately.

The semigroup estimate Lemma 5.4.8 implies for the smooth term

∥Pt[G(v + w)Dxv]∥1+ε . t−
1+ε
2σ ∥G(v + w)Dxv∥0 . t−

1+ε
2σ ∥G(v + w)Dxv∥L∞

. t−
1+ε
2σ ∥G∥L∞∥Dxv∥ε . t−

1+ε
2σ ∥G∥L∞∥v∥1+ε. (5.20)

Theorem 5.3.11 applied with β = α and γ = α− 1 lets us estimate the rough term by

∥G(v + w)Dxw∥α−1 ≤ ∥G(v + w)Dxw∥Dxw,α−1,α . ∥G(v + w)∥w,α,α(1 + ∥w∥C α).
(5.21)

Since G ∈ C2
b , Lemma 5.3.18 yields

∥G(v + w)∥w,α,α .G (1 + ∥w∥α)(1 + ∥v∥2α)(1 + ∥w∥w,α,α)2. (5.22)

We combine (5.21) and (5.22) with the semigroup estimate Lemma 5.4.8 (where we take
δ = 2 + ε− α), and obtain

∥Pt(G(v + w)Dxw)∥1+ε .G,w t
− 2+ε−α

2σ (1 + ∥v∥2α). (5.23)

The proof is completed by combining (5.20) and (5.23) and noting that α < 1 implies
2 + ε− α > 1 + ε, so that we can replace t−

1+ε
2σ by t−

2+ε−α
2σ .

Next we establish a contraction property for the semigroup acting on the nonlinear
part.
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5.4. Rough Burgers type equation

Lemma 5.4.11. Let α ∈ (1/3, 1) and w ∈ C α. Let ε > 0 and let v1, v2 ∈ C1+ε and
G ∈ C3

b . Then for all t ∈ [0, T ] we have

∥Pt[G(v1 + w)Dx(v1 + w)] − Pt[G(v2 + w)Dx(v2 + w)]∥1+ε

.G,w t
− 2+ε−α

2σ (1 + ∥v1∥2α + ∥v2∥2α)∥v1 − v2∥2α + t−
1+ε
2σ (1 + ∥v1∥1+ε)∥v1 − v2∥1+ε.

Proof. We decompose

G(v1 + w)Dx(v1 + w) −G(v2 + w)Dx(v2 + w) = g1 + g2 + g3,

where

g1 := (G(v1 + w) −G(v2 + w))Dxw, g2 := (G(v1 + w) −G(v2 + w))Dxv1,

g3 := G(v2 + w)Dx(v1 − v2).

Using Theorem 5.3.11 with β = α and γ = α− 1, the term g1 can be estimated by

∥g1∥α−1 = ∥(G(v1 + w) −G(v2 + w))Dxw∥α−1 .w ∥G(v1 + w) −G(v2 + w)∥w,α,α.

We apply a Taylor expansion in the first step, Lemma 5.3.19 in the second step, and
Lemma 5.3.18 in the third step, to obtain

∥G(v1 + w) −G(v2 + w)∥w,α,α

=
 
η∈Nn:|η|=1

 1

0
(∂ηG)(v2 + w + r(v1 − v2))(v1 − v2)ηdr


w,α,α

.w


|η|=1

 1

0
∥(∂ηG)(v2 + w + r(v1 − v2))∥w,α,α∥v1 − v2∥2αdr

.G,w (1 + ∥v1∥2α + ∥v2∥2α)∥v1 − v2∥2α.

Hence

∥g1∥α−1 .G,w (1 + ∥v1∥2α + ∥v2∥2α)∥v1 − v2∥2α.

We apply a Taylor expansion to g2 and obtain

∥g2∥L∞ + ∥g3∥L∞ . ∥(G(v1 + w) −G(v2 + w))Dxv1∥L∞ + ∥G(v2 + w)Dx(v1 − v2)∥L∞

.G,w ∥v1 − v2∥L∞∥v1∥1+ε + ∥v1 − v2∥1+ε.

The statement now follows from the semigroup estimate Lemma 5.4.8, which we apply
with δ = 2 + ε− α to estimate Ptg1, and with δ = 1 + ε to estimate Ptg2 and Ptg3. For
the last two terms we also need that ∥·∥0 . ∥·∥L∞ .

We are now ready to prove the main result of this section.
Theorem 5.4.12. Let T > 0, d ∈ N, let σ ≥ 1 be such that σ − d/2 > 1/3, and let
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5. Paracontrolled distributions and applications to SPDEs

α ∈ (1/3, (σ − d/2) ∧ 1). Let u0 ∈ Cα and G ∈ C3
b . Then there exists a unique mild

solution u ∈ CαT to equation (5.19).

Proof. Inspired by [Hai11], we subtract the contribution of the initial condition and solve
for vt = ut − ψt − Pt(u0 − ψ0).

We set up a Picard iteration in C1+ε for some small ε > 0, to be specified below. We
define v0 := 0, and

vn+1
t :=

 t

0
Pt−s[G(vns + ψs + Ps(u0 − ψ0))Dx(vns + ψs + Ps(u0 − ψ0))]ds

+ λ

 t

0
Pt−sψsds.

In Lemma 5.4.2 and Lemma 5.4.3 we showed that (ψ,ψDxψ) ∈ C α
T . For Lemma 5.4.3 we

needed that 1 + d/2 − 2σ < 0. But since σ − d/2 > 1/3, this is satisfied.
Let β ∈ (1/3, α) and t ∈ [0, T ]. We apply the a priori estimate Lemma 5.4.10 with β

in the place of α, to obtain

∥vn+1
t ∥1+ε ≤

 t

0
∥Pt−s[G(vns + ψs + Ps(u0 − ψ0))Dx(vns + ψs + Ps(u0 − ψ0))]∥1+ε ds

+ λ

 t

0
∥Pt−sψs∥1+εds

.G,ψ

 t

0
(t− s)− 2+ε−β

2σ (1 + ∥vns + Ps(u0 − ψ0)∥2β)ds

+
 t

0


(t− s)− 1+ε

2σ ∥vns + Ps(u0 − ψ0)∥1+ε + λ∥Pt−sψs∥1+ε


ds.

Now the semigroup estimate Lemma 5.4.8, applied with δ = 2β − α and δ = 1 + ε − α
respectively, yields

∥vn+1
t ∥1+ε .G,ψ

 t

0
(t− s)− 2+ε−β

2σ (1 + ∥vns ∥1+ε + s− 2β−α
2σ ∥u0 − ψ0∥α)ds

+
 t

0


(t− s)− 1+ε

2σ (∥vns ∥1+ε + s− 1+ε−α
2σ ∥u0 − ψ0∥α) + λ(t− s)− 1+ε−α

2σ ∥ψs∥α


ds.

For a, b ≥ 0 the integral
 t

0(t− s)−as−bds converges to zero as t tends to 0 if and only if
a+ b < 1. So if we choose ε > 0 small enough, then there exists T1 ∈ (0, T ], independent
of u0, such that

∥vn∥C1+ε
T1

≤ ∥u0∥α + 1
2 (5.24)

for all n ∈ N.
Let us write Us := Ps(u0 −ψ0). The contraction estimate Lemma 5.4.11, applied with
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5.4. Rough Burgers type equation

β in the place of α, implies for all t ∈ [0, T ] that

∥vn+1
t − vnt ∥1+ε ≤

 t

0

Pt−s[G(vns + ψs + Us)Dx(vns + ψs + Us)]

− Pt−s[G(vn−1
s + ψs + Us)Dx(vn−1

s + ψs + Us)]


1+ε
ds

.G,ψ

 t

0
(t− s)− 2+ε−β

2σ (1 + ∥vns + Us∥2β + ∥vn−1
s + Us∥2β)∥vns − vn−1

s ∥2βds

+
 t

0
(t− s)− 1+ε

2σ (1 + ∥vns + Us∥1+ε)∥vns − vn−1
s ∥1+ε

Now the same arguments as before, in combination with (5.24), prove the contraction
property on [0, T2] for a suitable T2 > 0. Hence, there exists a unique solution on [0, T2].

It remains to show the existence of a global solution. Let Tmax ∈ (0, T ] be the
maximum time for which there exists a solution v on [0, Tmax). First assume that
limt→Tmax ∥v∥C1+ε

t
< ∞. Then we can iterate the construction of a local solution on

small intervals of length T3, where T3 > 0 is fixed, because the initial condition in each
iteration will be bounded by supt<Tmax ∥v∥C1+ε

t
< ∞. Hence, Tmax = T . On the other

side limt→Tmax ∥v∥C1+ε
t

= ∞ is impossible, because (5.24) yields

∥v∥C1+ε
Tmax

≤ F ◦⌈Tmax/T1⌉(∥u0∥α) < ∞,

where F (x) := (x+ 1)/2, and F ◦m is the m–fold iterative application of F .

Remark 5.4.13. The continuity of all operators involved in the Picard iteration enables us
to show that solutions to (5.19) depend continuously on the reference path ψ: If (ψj)j∈N
converges to ψ, such that (π◦(ψj ,Dxψ

j)) converges to π◦(ψ,Dxψ), then the solutions vj
to

vj(t, ·) = Pt(u0 − ψj0)(x) +
 t

0
Pt−s[G(vj(s, ·) + ψj(s, ·))Dx(vj(s, ·) + ψj(s, ·))]ds

+ λ

 t

0
Pt−sψ

j(s, ·)ds

converge to v. This can be seen by similar arguments as the ones used in the proof of
Proposition 8 in [Gub04].

As explained in Remark 5.4.4, we expect that if we approximate Ẇ by suitable se-
quences (Ẇ j) of smooth functions, then (π◦(ψj ,Dxψ

j)) converges to π◦(ψ,Dxψ). This
indicates that our solution u is the limit of the classical solutions uj to

∂tu
j(t, x) = −Auj(t, x) +G(uj(t, x))Dxu

j(t, x) + Ẇ j(t, x).
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5.5. Non-linear parabolic Anderson model

In this section we study the following nonlinear version of the heat equation

∂tu(t, x) = ∆u(t, x) + F (u(t, x))Ẇ (x), (5.25)

where Ẇ is a spatial white noise on T2 without time dependence, F : R → R is a smooth
function, and u : [0, T ] × T2 → R. This is a nonlinear generalization of the parabolic
Anderson model, for which F (u) = u. See for example [CM94] for a comprehensive
treatment of the spatially discrete parabolic Anderson model. There is not much work
on the spatially continuous case in dimension 2 or higher, at least not for a white noise
potential. Most papers that deal with this problem use Wick products to make sense of
the product uẆ , see for example [LR09]. To the best of our knowledge, the only other
work on the nonlinear version (5.25) is the recent paper by Hairer [Hai13a] on regularity
structures, in which, among many other problems, a slightly more general version of the
equation is solved.

The regularity of the spatial white noise is Ẇ ∈ C−d/2−, meaning that Ẇ ∈ C−d/2−ε

for every ε > 0. So for d = 2 we have Ẇ ∈ C−1− and the regularization provided by the
Laplacian would be sufficient to have u ∈ C1−. Heuristically we gain (almost) 2 degrees
of spatial regularity. Then the product F (u)Ẇ is not defined, because the regularities of
F (u) and Ẇ sum up to a negative value. The mild solution reads

u(t, x) = Ptu0(x) +
 t

0
Pt−s[F (us)Ẇ ](x)ds,

where (Pt)t≥0 is the heat kernel and where us := u(s, ·). Now

F (us)Ẇ = π<(F (us), Ẇ ) + π◦(F (us), Ẇ ) + π>(F (us), Ẇ )

and the critical diagonal part can be further decomposed as

π◦(F (us), Ẇ ) = π◦(π<(F ′(us), us), Ẇ ) + π◦(rs, Ẇ )
= F ′(us)π◦(us, Ẇ ) +R(F ′(us), us, Ẇ ) + π◦(rs, Ẇ ),

where the paralinearization theorem implies that rs = F (us) − π<(F ′(us), us) is smooth.
Again the difficult term is π◦(π<(F ′(us), us), Ẇ ), and R is as in Lemma 5.3.3. Since the
commutator between semigroup and paraproduct is smooth (see Lemma 5.5.7 below), we
have

ut = Ptu0 +
 t

0
Pt−s(F (us)Ẇ )ds ≃ Ptu0 +

 t

0
Pt−s(π<(F (us), Ẇ ))ds

≃ Ptu0 +
 t

0
π<(F (us), Pt−sẆ )ds,

where we write f ≃ g if f − g is smooth. Therefore, u is called controlled by Ẇ if there
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exists u′
s such that

ut ≃ Ptu0 +
 t

0
π<(u′

s, Pt−sẆ )ds.

In this case (and if for the moment we ignore the initial condition), we get

π◦(ut, Ẇ ) ≃ π◦

 t

0
π<(u′

s, Pt−sẆ )ds, Ẇ


≃
 t

0
u′
sπ◦(Pt−sẆ , Ẇ )ds.

So here π◦(PtẆ , Ẇ ) takes the role of the area. Of course for every t > 0 this is a well
defined smooth function, but we need an estimate as t → 0.

5.5.1. Regularity of the Besov area and renormalized products

Motivated by this heuristic discussion, let us now study the regularity of the Besov
area π◦(PtẆ , Ẇ ) and construct the product F (ut)Ẇ . It will turn out that we have
to renormalize the product by “subtracting an infinite constant” in order to obtain a
well-defined object.

Recall that Ẇ is a spatial white noise if it is a mean zero Gaussian process with values
in S ′(T2), such that

E(⟨Ẇ , ϕ⟩⟨Ẇ , ϑ⟩) =

T2
ϕ(x)ϑ(x)dx

for all test function ϕ, ϑ ∈ L2(T2). Formally we write E(Ẇ (x)Ẇ (x′)) = δ(x − x′),
x, x′ ∈ R2.

Note that for t > 0 the function PtẆ is smooth, and therefore the Besov area PtẆẆ
is a well-defined smooth function. We have to study how its regularity depends on t.

Lemma 5.5.1. For any x ∈ T2 and t > 0 we have

gt := E(π◦(PtẆ , Ẇ )(x)) = E(∆−1(π◦(PtẆ , Ẇ ))(x)) =

k∈Z2

e−t|k|2 ≃ 1
t
.

In particular, gt does not depend on the dyadic partition of unity under consideration.

Proof. Let x ∈ T2, t > 0, and m ≥ −1. Then

E(∆m(π◦(PtẆ , Ẇ ))(x)) =


|i−j|≤1
E(∆m(∆i(PtẆ )∆jẆ )(x)),

where exchanging summation and expectation is justified because it can be easily verified
that the partial sums of ∆m(π◦(PtẆ , Ẇ ))(x) are uniformly Lp–bounded for any p ≥ 1.
Similarly as in the proof of Lemma 5.4.1 we can show that (̇W (k))k∈Z2 is a complex
valued centered Gaussian process with covariance E(̇W (k)̇W (k′)) = (2π)2δk(−k′). Recall
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that Pt = e−t|·|2(D). Therefore

E(∆m(∆i(PtẆ )∆jẆ )(x))

= (2π)−2 
k,k′∈Z2

eı⟨k+k′,x⟩ρm(k + k′)ρi(k)e−t|k|2ρj(k′)E(̇W (k)̇W (k′))

=

k∈Z2

ρm(0)ρi(k)e−t|k|2ρj(k) = δ(−1)m

k∈Z2

ρi(k)ρj(k)e−t|k|2 .

For |i− j| > 1 we have ρi(k)ρj(k) = 0. This implies, independently of x ∈ T2, that

gt = E(π◦(PtẆ , Ẇ )(x)) =

k∈Z2


i,j

ρi(k)ρj(k)e−t|k|2 =

k∈Z2

e−t|k|2 ≃

R2
e−t|x|2dx ≃ 1

t
,

while E(π◦(PtẆ , Ẇ )(x) − ∆−1(π◦(PtẆ , Ẇ ))(x)) = 0 for every x ∈ T2.

The factor 1/t leads to a diverging time integral. This motivates us to study the
renormalized product π◦(PtẆ , Ẇ ) − gt.

Lemma 5.5.2. For t > 0 we define

Ξt(x) := π◦(PtẆ , Ẇ )(x) − gt.

Then for all ε ∈ (0, 1) and for all t > 0 we have E(∥Ξt∥−ε) . t−1+ ε
4 . In particular

E

 T

0
∥Ξt∥−εdt


< ∞

for all T, ε > 0.

Proof. We use similar arguments as in the proofs of Lemma 5.4.2 and Lemma 5.4.3. Let
t > 0. By Gaussian hypercontractivity we obtain for p ≥ 1 and m ≥ −1 that

E∥∆mΞt∥2p
L2p(T2) .p

E(|∆mΞt(x)|2)
p
Lp

x(T2)
. (5.26)

Lemma 5.5.1 implies that ∆mgt = 0 = E(∆m(π◦(PtẆ , Ẇ ))(x)) for m ≥ 0, and therefore

E(|∆mΞt(x)|2) = E(|∆m(π◦(PtẆ , Ẇ ))(x)|2) = Var(∆m(π◦(PtẆ , Ẇ ))(x)), (5.27)

where Var(X) denotes the variance of X. Lemma 5.5.1 also gives ∆−1gt = gt =
E(∆−1(π◦(PtẆ , Ẇ ))(x)), leading to

E(|∆−1Ξt(x)|2) = E(|∆−1(π◦(PtẆ , Ẇ ))(x) − gt|2) = Var(∆−1(π◦(PtẆ , Ẇ ))(x)).
(5.28)
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Therefore, it suffices to control Var(∆m(π◦(PtẆ , Ẇ ))(x)). We have

F(π◦(PtẆ , Ẇ ))(k) = (2π)−2 
k′∈Z2


|i−j|≤1

ρi(k − k′)e−t|k−k′|2 ̇W (k − k′)ρj(k′)̇W (k′),

implying for all m ≥ −1 and x ∈ T2 that

∆m(π◦(PtẆ , Ẇ ))(x) = (2π)−2 
k∈Z2

eı⟨k,x⟩ρm(k)F(π◦(PtẆ , Ẇ ))(k)

= (2π)−4 
k1,k2∈Z2


|i−j|≤1

eı⟨k1+k2,x⟩ρm(k1 + k2)ρi(k1)e−t|k1|2 ̇W (k1)ρj(k2)̇W (k2).

Hence

Var(∆m(π◦(PtẆ , Ẇ ))(x))

= (2π)−8 
k1,k2∈Z2


k′

1,k
′
2∈Z2


|i−j|≤1


|i′−j′|≤1

eı⟨k1+k2,x⟩ρm(k1 + k2)ρi(k1)e−t|k1|2ρj(k2)

× eı⟨k
′
1+k′

2,x⟩ρm(k′
1 + k′

2)ρi(k′
1)e−t|k′

1|2ρj(k′
2) cov(̇W (k1)̇W (k2), ̇W (k′

1)̇W (k′
2)),

where exchanging summation and expectation can again be justified a posteriori by the
uniform Lp-boundedness of the partial sums, and where cov(X,Y ) denotes the covariance
of X and Y .

Now (̇W (k))k∈Z2 is a centered Gaussian process, and therefore Wick’s theorem ([Jan97],
Theorem 1.28) yields

cov(̇W (k1)̇W (k2), ̇W (k′
1)̇W (k′

2)) = E(̇W (k1)̇W (k2)̇W (k′
1)̇W (k′

2))

− E(̇W (k1)̇W (k2))E(̇W (k′
1)̇W (k′

2))

= cov(̇W (k1), ̇W (k2)) cov(̇W (k′
1), ̇W (k′

2)) + cov(̇W (k1), ̇W (k′
1)) cov(̇W (k2), ̇W (k′

2))

+ cov(̇W (k1), ̇W (k′
2)) cov(̇W (k2), ̇W (k′

1)) − cov(̇W (k1), ̇W (k2)) cov(̇W (k′
1), ̇W (k′

2))
= (2π)4(δk1(−k′

1)δk2(−k′
2) + δk1(−k′

2)δk2(−k′
1)).

This implies that

Var(∆m(π◦(PtẆ , Ẇ ))(x))

=


k1,k2∈Z2


|i−j|≤1


|i′−j′|≤1

1m.i1m.i′ρ
2
m(k1 + k2)ρi(k1)ρj(k2)ρi′(k1)ρj′(k2)e−2t|k1|2

+


k1,k2∈Z2


|i−j|≤1


|i′−j′|≤1

1m.i1m.i′ρ
2
m(k1 + k2)ρi(k1)ρj(k2)ρi′(k2)ρj′(k1)e−t|k1|2−t|k2|2 .

There exists c > 0 such that e−2t|k|2 . e−tc22i for all k ∈ supp(ρi) and for all i ≥ −1. In
the remainder of the proof the value of this strictly positive c may change from line to
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line. If |i− j| ≤ 1, then we also have e−t|k|2 . e−tc22i for all k ∈ supp(ρj). Thus

Var(∆m(π◦(PtẆ , Ẇ ))(x))

.


i,j,i′,j′

1m.i1i∼j∼i′∼j′


k1,k2∈Z2

1supp(ρm)(k1 + k2)1supp(ρi)(k1)1supp(ρj)(k2)e−2tc22i

.

i:i&m

22i22me−tc22i
.

22m

t


i:i&m

e−tc22i
.

22m

t
e−tc22m

, (5.29)

where we used that t22i . et(c−c
′)22i for any c′ < c.

Now let ε ∈ (0, 1). We apply Jensen’s inequality and combine (5.26), (5.27), (5.28),
and (5.29) to obtain

E

∥Ξt∥B−ε

2p,2p


.
 
m≥−1

2−εm2pE

∥∆mΞt∥2p

L2p(T2)

 1
2p

. t−1/2
 
m≥−1

2−εm2p22mpe−tcp22m
 1

2p

≃ t−1/2
 ∞

−1
(2x)2p(1−ε)e−ctp(2x)2dx

 1
2p

.

The change of variables y =
√
t2x then yields

E

∥Ξt∥B−ε

2p,2p


. t−1/2


t−p(1−ε)

 ∞

0
y2p(1−ε)−1e−cpy2dy

 1
2p

.

Since ε < 1, the integral is finite, and therefore finally

E

∥Ξt∥B−ε

2p,2p


.p t

−1+ ε
2 .

Since p can be chosen arbitrarily large, the result now follows from the Besov embedding
theorem, Lemma 5.2.4.

Remark 5.5.3. The renormalized product Ξt has the natural regularity of π◦(PtẆ , Ẇ ):
Since PtẆ ∈ C1− and Ẇ ∈ C−1−, we would expect π◦(PtẆ , Ẇ ) to be in C0−.

Lemma 5.5.2 suggests that we should really consider π◦(ut, Ẇ )−u′
tGt in the definition of

the product, where Gt :=
 t

0 gt−sds is formally defined as an infinite constant. Motivated
by this discussion we now give a meaning to the product in an appropriate space of
controlled distributions.

For α > 0 and β ∈ R we define Cα,βT := Cα([0, T ], Cβ(T2,R)) as the space of α–Hölder
continuous functions taking their values in Cβ, equipped with the norm

∥u∥
Cα,β

T
= sup

t∈[0,T ]
∥ut∥β + sup

s ̸=t

∥ut − us∥β
|t− s|α

.
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Definition 5.5.4. Let α, β > 0. We say that u ∈ C
α,1/2+β
T is controlled by Ẇ if

u(t, ·) =
 t

0
π<(u′(s, ·), Pt−sẆ )ds+ u♯(t, ·)

for all t ∈ [0, T ], where u′ ∈ C
α,1/2+β
T and u♯ ∈ C([0, T ], C1+β). In this case we write

u ∈ Dα,β,T

Ẇ
and define the norm

∥u∥Ẇ ,α,β,T := ∥u∥
C

α,1/2+β
T

+ ∥u′∥
C

α,1/2+β
T

+ ∥u♯∥
C1+β

T
.

In Section 5.3.3 we formulated the paralinearization theorem for α ∈ (0, 1/2). Here,
we need the case α ∈ (1/2, 1), for which we can give a very simple proof.

Lemma 5.5.5. Let α ∈ (1/2, 1). If u ∈ Cα and F ∈ C2
b , then

∥F (u) − π<(F ′(u), u)∥2α . ∥F∥C2
b
(1 + ∥u∥α)2.

Proof. Since 2α ∈ (1, 2), we have ∥u∥2α ≃ ∥u∥L∞ + ∥Du∥2α−1, see Example 2 on p. 99
of [BCD11]. The estimate for the L∞–norm is straightforward, so let us estimate the
derivative. The chain rule together with the paraproduct decomposition implies that

D(F (u)) = π<(F ′(u),Du) + π>(F ′(u),Du) + π◦(F ′(u),Du).

The first term on the right hand side is the critical one, and it follows from the Leibniz
rule that it is cancelled by one of the terms of Dπ<(F ′(u), u). So we end up with

∥D(F (u) − π<(F ′(u), u))∥2α−1 ≤ ∥π>(F ′(u),Du)∥2α−1 + ∥π◦(F ′(u),Du)∥2α−1

+ ∥π<(D(F ′(u)), u)∥2α−1

. ∥F ′(u)∥α∥u∥α . ∥F∥C2
b
(1 + ∥u∥α)∥u∥α,

where we used Lemma 5.3.17 in the last step.

The paralinearization theorem will be needed in the following lemma, where we im-
plicitly use that F (u) is controlled by Ẇ if u is controlled by Ẇ .

For ε > 0 we define Gεt :=
 t

0 gt−s+εds.

Lemma 5.5.6. Let α > 0, β ∈ (0, 1/2), and assume that u ∈ Dα,β,T

Ẇ
and F ∈ C2

b . Then
the renormalized product

F (ut) · PεẆ = F (ut)PεẆ − F ′(ut)u′
tG

ε
t

converges as ε → 0 to a well defined distribution which we denote by F (ut) · Ẇ . For any
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5. Paracontrolled distributions and applications to SPDEs

dyadic partition of unity we have the explicit representation

F (ut) · Ẇ = π<(F (ut), Ẇ ) + π>(F (ut), Ẇ ) + π◦(F (ut) − π<(F ′(ut), ut), Ẇ )

+R(F ′(ut), ut, Ẇ ) + F ′(ut)
 t

0
R(u′

s, Pt−sẆ , Ẇ )ds+ F ′(ut)
 t

0
u′
sΞt−sds

+ F ′(ut)
 t

0
(u′
s − u′

t)gt−sds+ F ′(ut)π◦(u♯t, Ẇ ),

where each of these terms is well defined. Moreover, we have for γ ∈ (0, β) that

∥F (ut) · Ẇ∥
C−1−γ

T
+ ∥F (ut) · Ẇ − π<(F (ut), Ẇ )∥

C
β−1/2−γ
T

(5.30)

. (1 + T )α∨ γ
2 ∥F∥C2

b
(1 + ∥u∥Ẇ ,α,β,T )2(1 + ∥Ẇ∥−1−γ)2


1 +

 T

0
∥Ξs∥−γds


.

Proof. We will perform a formal expansion of the quantity F (ut)Ẇ , which can be ren-
dered rigorous by considering the regularized product. The subtraction then eliminates
the only term which diverges in the limit. According to the discussion above, the only
non-trivial term in F (ut) · Ẇ is F ′(ut)π◦(ut, Ẇ ). Since F ′(ut) ∈ C1/2+β, this term is well
defined as long as π◦(ut, Ẇ ) is well defined and in C−ε for some ε < 1/2 + β. But we
have

π◦(ut, Ẇ ) =
 t

0
π◦(π<(u′

s, Pt−sẆ ), Ẇ )ds+ π◦(u♯t, Ẇ )

=
 t

0
R(u′

s, Pt−sẆ , Ẇ )ds+
 t

0
u′
sπ◦(Pt−sẆ , Ẇ )ds+ π◦(u♯t, Ẇ )

=
 t

0
R(u′

s, Pt−sẆ , Ẇ )ds+
 t

0
u′
sΞt−sds+

 t

0
u′
sgt−sds+ π◦(u♯t, Ẇ )

=
 t

0
R(u′

s, Pt−sẆ , Ẇ )ds+
 t

0
u′
sΞt−sds+

 t

0
(u′
s − u′

t)gt−sds+ u′
tGt + π◦(u♯t, Ẇ ).

The contribution F ′(ut)u′
tGt is exactly canceled by the correction term in the definition

of the product. Putting all together we obtain the claimed result. The term t

0
(u′
t − u′

s)gt−sds

is well defined because Lemma 5.5.1 implies gt−s ≃ (t− s)−1 and we have u′ ∈ C
α,1/2+β
T ,

and therefore ∥u′
s − u′

t∥1−β . |t − s|α∥u∥
C

α,1/2+β
T

. The estimate (5.30) is shown by a
somewhat lengthy but elementary calculation based on the paraproduct estimates and
Lemma 5.3.3.
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5.5.2. Picard iteration

Now that we constructed the area and made sense of the product on a space of suitable
controlled distributions, we can start studying the SPDE under consideration. Before
we get to the existence and uniqueness of solutions, let us first establish some a priori
estimates. Our first result is a commutator estimate between heat flow and paraproduct

Lemma 5.5.7. Let α < 1, β ∈ R, and t > 0. Then for all δ ≥ 0 we have

∥Pt(π<(u, v)) − π<(u, Ptv)∥α+β+δ . t−
δ
2 ∥u∥α∥v∥β.

Proof. The semigroup is given by Pt = ϕ(
√
t), where ϕ(z) = e−|z|2 is a Schwartz function.

The estimate is therefore a special case of Lemma 5.3.20.

The next result will allow us to examine the Hölder continuity of t →→
 t

0 Pt−suds.

Lemma 5.5.8. Let α ∈ [0, 1] and β ∈ R. Then we have for any u ∈ Cβ that

∥(Pt − id)u∥β−2α . tα∥u∥β.

Proof. We only sketch the proof. Following the proof of Lemma 2.4 in [BCD11] it is
possible to show that

∥∆j(Pt − id)u∥L∞ . t22j∥∆ju∥L∞

for any j ≥ −1, so that in particular

∥(Pt − id)u∥β−2 . t∥u∥β

for any β ∈ R. On the other side Pt − id is clearly bounded on Cβ, and therefore the
interpolation inequalities, Theorem 2.80 of [BCD11], imply that

∥(Pt − id)u∥β−2α = ∥(Pt − id)u∥α(β−2)+(1−α)β

≤ ∥(Pt − id)u∥αβ−2∥(Pt − id)u∥1−α
β . tα∥u∥β.

Corollary 5.5.9. Let δ ∈ (0, 2) and γ ∈ R. Then for all T > 0, for every integrable
u : [0, T ] → Cγ, and for all α ∈ (0, 1 − δ/2) we have ·

0
P·−susds


Cα,γ+δ

T

. sup
t∈[0,T ]

 t

0
(t− s)− δ

2 −α∥us∥γds. (5.31)

Proof. Let s, t ∈ [0, T ] with s < t. By the semigroup property of (Pr)r≥0 we have t

0
Pt−rurdr −

 s

0
Ps−rurdr =

 t

s
Pt−rurdr + (Pt−s − id)

 s

0
Ps−rurdr.
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Therefore, Lemma 5.4.8 and Lemma 5.5.8 imply for δ, α > 0 that t

0
Pt−rurdr −

 s

0
Ps−rurdr


γ+δ

.
 t

s
(t− r)− δ

2 ∥ur∥γdr

+ (t− s)α
 s

0
(s− r)− δ

2 −α∥ur∥γdr

. (t− s)α sup
t∈[0,T ]

 t

0
(t− r)− δ

2 −α∥ur∥γdr.

Since we will solve again for u − Ptu0, we need to allow for smooth perturbations in
the following a priori estimate.

Lemma 5.5.10. Let β ∈ (0, 1/4) and α ∈ (0, β/4). Let u ∈ Dα,β,T

Ẇ
and w ∈ C1+β

T ∩
C
α,1/2+β
T . Let F ∈ C2

b and define

vt :=
 t

0
Pt−s(F (us + ws) · Ẇ )ds.

Then v ∈ Dα,β,T

Ẇ
with derivative v′

t = F (ut + wt). For T ∈ [0, 1] we have

∥v∥
C

α,1/2+β
T

+
v −

 ·

0
π<(F (us + ws), P·−sẆ )ds


C1+β

T

(5.32)

.F,Ẇ ,Ξ (1 + ∥u∥Ẇ ,α,β,T )2 sup
t∈[0,T ]

 t

0
(t− s)− 3

4 (1+β)−α(1 + ∥ws∥1+β)2ds

and

∥v′∥
C

α,1/2+β
T

= ∥F (u+ w)∥
C

α,1/2+β
T

.F


1 + ∥u∥

C
α,1/2+β
T

+ ∥w∥
C

α,1/2+β
T

2
. (5.33)

Proof. For fixed s we can consider t →→ ut+ws as controlled path, with derivative u′, and
controlled path norm ∥u∥Ẇ ,α,β,T + ∥ws∥1+β. Lemma 5.5.6 applied with γ = β/2 shows
that F (us + ws) · Ẇ ∈ C−1−β/2, and that

∥F (ut + ws) · Ẇ∥
C

−1−β/2
T

.F,Ẇ ,Ξ (1 + T )α∨ β
4 (1 + ∥u∥Ẇ ,α,β,T + ∥ws∥1+β)2.

for t ∈ [0, T ]. Next we apply Corollary 5.5.9 with γ = −1 − β/2 and δ = 3/2(1 + β) to
get for T ∈ [0, 1] that

∥v∥
C

α,1/2+β
T

=
 t

0
Pt−s(F (us + ws) · Ẇ )ds


C

α,1/2+β
T

. sup
t∈[0,T ]

 t

0
(t− s)− 3

4 (1+β)−α∥F (us + ws) · Ẇ∥−1−β/2ds
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.F,Ẇ ,Ξ (1 + ∥u∥Ẇ ,α,β,T )2 sup
t∈[0,T ]

 t

0
(t− s)− 3

4 (1+β)−α(1 + ∥ws∥1+β)2dr.

Since β < 1/4 and α < β/4, the right hand side is finite. Furthermore, we clearly havev −
 ·

0
P·−sπ<(F (us + ws), Ẇ )ds


Cα,1+β

T

.
v −

 ·

0
P·−sπ<(F (us + ws), Ẇ )ds


Cα,1+2β

T

The estimate (5.32) for this remainder now follows from Lemma 5.5.6 and Corollary 5.5.9
in the same manner as the estimate for ∥v∥

Cα,1−β
T

, using that F (us+ws) ·Ẇ −π<(F (us+
ws), Ẇ ) ∈ C(β−1)/2, and that for δ = 3/2(1+β) as defined above we have (β−1)/2+δ =
1 + 2β. But of course we did not subtract the right corrector, and therefore we need
to consider the commutator between heat flow and paraproduct. Lemma 5.5.7 with
δ = 3/2 + β/2 gives t

0
Pt−sπ<(F (us + ws), Ẇ )ds−

 t

0
π<(F (us + ws), Pt−sẆ )ds


1+β

.
 t

0
(t− s)− 3

4 − β
4 ∥F (us + ws)∥1/2+β∥Ẇ∥−1−β/2ds

.F,Ẇ (1 + ∥u∥
C

1/2+β
T

) sup
t∈[0,T ]

 t

0
(t− s)− 3

4 − β
4 (1 + ∥ws∥1/2+β)ds.

Of course we increase the right hand side by replacing (t− s)− 3
4 − β

4 (1 + ∥ws∥1/2+β) with
(t− s)− 3

4 (1+β)−α(1 + ∥ws∥1+β)2, and therefore estimate (5.32) follows.
It remains to control v′ = F (u + w). But using a first order Taylor expansion, it is

easy to see that

∥F (u+ w)∥
C

α,1/2+β
T

. ∥F∥C2
b
(1 + ∥u∥

C
α,1/2+β
T

+ ∥w∥
C

α,1/2+β
T

)2.

The estimate (5.33) for the derivative of v cannot be controlled by choosing T small.
We will solve this problem by going back one step further in the Picard iteration.

Theorem 5.5.11. Let β ∈ (0, 1/12) and α ∈ (0, β/4). Let F ∈ C3
b and u0 ∈ C1−. Then

there exists a σ(Ẇ ) ∨ σ(u0)–measurable random time τ > 0, such that equation (5.25)
has a unique mild solution u ∈ Cα([0, τ), C1−β).

Proof. We solve for vt := ut−Ptu0. Since u0 ∈ C1− we have in particular that u0 ∈ C1−β.
Let T ∈ (0, 1] to be specified below. We define the map

ΓT : Dα,β,T

Ẇ
→ Dα,β,T

Ẇ
by ΓT (v)t :=

 t

0
Pt−s(F (vs + Psu0) · Ẇ )ds.
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Lemma 5.5.10 implies that

∥ΓT (v)∥
C

α,1/2+β
T

+
ΓT (v) −

 ·

0
π<(F (vs + Psu0), P·−sẆ )ds


C1+β

T

.F,Ẇ ,Ξ (1 + ∥v∥Ẇ ,α,β,T )2 sup
t∈[0,T ]

 t

0
(t− s)− 3

4 (1+β)−α(1 + ∥Psu0∥1+β)2dr.

Now Lemma 5.4.8 yields ∥Psu0∥1+β . s−β∥u0∥1−β, and the assumptions on β and α are
chosen exactly so that 3/4(1 + β) + α+ 2β < 1. Thus, we have

sup
t∈[0,T ]

 t

0
(t− s)− 3

4 (1+β)−α(1 + ∥Psu0∥1+β)2dr . G(T )(1 + ∥u0∥1−β)2

for some continuous function G with G(0) = 0. In particular, there exists a constant
C(f, Ẇ ,Ξ) > 0 such that

∥ΓT (v)∥
C

α,1/2+β
T

+
ΓT (v) −

 ·

0
π<(F (vs + Psu0), P·−sẆ )ds


C1+β

T

(5.34)

≤ C(f, Ẇ ,Ξ)G(T )(1 + ∥u0∥1−β)2(1 + ∥v∥Ẇ ,α,β,T )2.

Moreover, Lemma 5.5.10 yields for the derivative (ΓT (v))′ that

∥(ΓT (v))′∥
C

α,1/2+β
T

= ∥F (v + P·u0)∥
C

α,1/2+β
T

.F (1 + ∥v∥
C

α,1/2+β
T

+ ∥P·u0∥
C

α,1/2+β
T

)2

.F (1 + ∥v∥
C

α,1/2+β
T

)2(1 + ∥P·u0∥
C

α,1/2+β
T

)2.

Now Lemma 5.5.8 implies for every s < t ∈ [0, T ] that

∥Ptu0 − Psu0∥1/2+β = ∥Ps(Pt−s − id)u0∥1−β−2(1/4−β) . (t− s)1/4−β∥u0∥1−β.

Since α < β/4 and β < 1/12, we have α < 1/4 − β, and therefore ∥P·u0∥
C

α,1/2+β
T

.

∥u0∥1−β. We conclude that there exists a constant C(F ) > 0 for which

∥(ΓT (v))′∥
C

α,1/2+β
T

≤ C(F )(1 + ∥v∥
C

α,1/2+β
T

)2(1 + ∥u0∥C1−β )2. (5.35)

Now choose M > 1 such that (C(F, Ẇ ,Ξ) + C(F ))(1 + ∥u0∥1−β)2 ≤ M . We start the
Picard iteration with v0 ≡ 0. Then (5.34) and (5.35) imply for v1 := ΓT (v0) that

1 + ∥v1∥Ẇ ,α,β,T ≤ 1 +G(T )M +M.

Since M > 1, there exists T > 0 for which the right hand side is smaller than 2M . Let
now n ≥ 1, and suppose 1 + ∥vi∥Ẇ ,α,β,T ≤ 2M for i = n, n− 1. Define vn+1 := ΓT (vn).
Then (5.34) gives

∥vn+1∥
C

α,1/2+β
T

+ ∥(vn+1)♯∥
C1+β

T
≤ G(T )2M3.
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Moreover, (5.35) and then (5.34) imply for the derivative

∥(vn+1)′∥
C

α,1/2+β
T

≤ M(1 + ∥vn∥
C

α,1/2+β
T

)2 ≤ M(1 +G(T )2M3)2.

It is now clear that there exists T > 0, only depending on M , so that the Picard iteration
sequence (vn)n∈N satisfies supn(1 + ∥vn∥Ẇ ,α,β,T ) ≤ 2M .

It remains to show the contraction property, but given the estimate on (vn), this is
now easy and follows by standard arguments.

Therefore, we obtain the existence of a unique solution u on [0, T ] for suitably small
T > 0. We controlled only the Cα,1/2+β

T norm of u, but from Lemma 5.5.10 it is clear that
we actually have u ∈ Cα,1−ε

T for any ε > 0. In particular, we have uT ∈ C1−, and thus
we can continue the construction on the next small time interval. Since we only have a
quadratic a priori estimate, we are not able to prove the existence of global solutions. But
we obtain the existence of a unique solution up to a random explosion time τ > 0.

Remark 5.5.12. The assumption F ∈ C3
b of course excludes the most interesting case

when F (x) = x. That case can be included by a simple refinement of the analysis. For
example, in Lemma 5.5.6 it is not strictly necessary to impose boundedness assumptions
on F . The image of any u ∈ Dα,β

T is a compact subset of R, so for F ∈ C2 we could
consider a C2

b function that coincides with F on the image of u. In this way we would
be able to obtain the existence of unique local solutions under the assumption F ∈ C3.
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Appendix

A. Incomplete filtrations

Here we collect some classical observations that allow us to transfer results which were
obtained under complete filtrations to a probability space with an incomplete filtration.

It is an established tradition in probability theory to only work with filtrations satisfy-
ing the usual conditions. The most important reasons to consider complete filtrations are
that the cross-section theorem ([DM78], III-44) only holds in complete σ–algebras, and
as a consequence entrance times into Borel sets are generally only stopping times with
respect to complete filtrations, and that supermartingales only have càdlàg modifications
in complete filtrations.

But there are at least two classical monographs on stochastic analysis that avoid using
complete filtrations as far as possible: Jacod [Jac79] (see the discussion on p. 8), and
Jacod and Shiryaev [JS03] (see Definition I.1.2). We follow [JS03] in presenting results
that allow us to pass from complete filtrations to incomplete filtrations.

Let (Ω,F , (Ft)t≥0, P ) be a filtered probability space with a right-continuous filtration
(Ft). Write FP for the P–completion of F , and NP for the P–null sets of FP . Then
FP
t := Ft ∨ NP is the σ–algebra generated by Ft and NP , and (FP

t ) satisfies the usual
conditions. We call (Ω,FP , (FP

t ), P ) the completion of (Ω,F , (Ft), P ).
Recall that the optional σ–algebra over (Ft) is the σ–algebra on Ω × [0,∞) that is

generated by all processes of the form Xt(ω) = 1A(ω)1[r,s)(t) for some 0 ≤ r < s < ∞
and A ∈ Fr. The predictable σ–algebra over (Ft) is the σ–algebra on Ω × [0,∞) that
is generated by all processes of the form Xt(ω) = 1A(ω)1{0}(t) + 1B(ω)1(r,s](t) for some
0 ≤ r < s < ∞, for A ∈ F0, and B ∈ Fr. Similarly we define the predictable and optional
σ–algebra over (FP

t ).
The first result is not a precise mathematical statement, and is intended to reassure

the reader in this critical point:

Lemma A.1 ([JS03], Section I.4.d and Section III.6). Stochastic integration does not
require a complete filtration.

Next we relate stopping times under (Ft) and under (FP
t ).

Lemma A.2 (Lemma I.1.19 of [JS03]). Any stopping time on the completion (Ω, (FP
t ))

is almost surely equal to a stopping time on (Ω, (Ft)).

Most entrance times that are practically relevant are (Ft)–stopping times:
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Lemma A.3. If S is a right-continuous adapted process with values in a metric space
(X, d), and if A is an open or closed set, then the entrance time

τA := inf{t ≥ 0 : St ∈ A}

is a (Ft)–stopping time.

The proof is easy and therefore omitted.

Lemma A.4. Any predictable (respectively optional) Rd–valued process on the comple-
tion (Ω, (FP

t )) is indistinguishable from a predictable (respectively optional) process on
(Ω, (Ft)).

Proof. The predictable case is Lemma I.2.17 of [JS03]. The proof of the optional case
works exactly in the same way: the claim is trivial for the generating processes described
above, and we can use the monotone class theorem to pass to indicator functions of
general optional sets. Then we use monotone convergence to pass to general optional
processes.

As a consequence, we obtain a similar result for càdlàg processes.

Lemma A.5. Let S be an Rd–valued, (FP
t )–adapted process that it almost surely càdlàg.

Then S is indistinguishable from a (Ft)–adapted process S.
The process S can be chosen such that t →→ St(ω) is right-continuous for every ω ∈ Ω,

and has left limits everywhere except at τ(ω), where τ is a stopping time with P (τ =
∞) = 1.

Proof. Since (FP
t ) is complete, S admits an indistinguishable version S that is (FP

t )–
adapted and càdlàg for every ω ∈ Ω. This S is optional, so the existence of an indistin-
guishable version S′ that is (Ft)–adapted follows from Lemma A.4. Using S′, the versionS with the desired properties can now be constructed in the same way as in the proof of
Theorem 1.3.1.

B. Convex compactness and Tychonoff’s theorem
Here we prove Tychonoff’s theorem for countable products of convexly compact spaces.
Recall the following definitions.

Definition B.1. 1. A set A is called directed if it is partially ordered and if for all
α, β ∈ A there exists γ ∈ A such that α ≤ γ and β ≤ γ.

2. Let X be a topological space. A net in X is a map from some directed set A to X.

3. A net {xα}α∈A in X converges to a point x ∈ X if for every open neighborhood U
of x there exists α ∈ A, such that xα′ ∈ U for every α′ ≥ α.

Example B.2. If A = N, then a net in X is just a sequence with values in X.
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Žitković [Ž10] introduces the notation Fin(A), which denotes all non-empty finite sub-
sets of a given set A. If X is a subset of a vector space, then conv(X) denotes the convex
hull of X. Žitković then gives the following definition.

Definition B.3. Let {xα}α∈A be a net in a topological vector space X. A net {yβ}β∈B is
called a subnet of convex combinations of {xα}α∈A if there exists a map D : B → Fin(A),
such that

1. for every β ∈ B we have yβ ∈ conv{xα : α ∈ D(β)}, and

2. for every α ∈ A there exists β ∈ B such that α′ ≥ α for all α′ ∈

β′≥β D(β′).

Lemma B.4. Let {yβ}β∈B be a subnet of convex combinations of {xα}α∈A, and let
{zγ}γ∈C be a subnet of convex combinations of {yβ}β∈B. Then {zγ}γ∈C is a subnet of
convex combinations of {xα}α∈A.

Proof. Let DB : B → Fin(A) and DC : C → Fin(B) be two maps as described in
Definition B.3, DB for {yβ}β∈B and DC for {zγ}γ∈C . Define

D : C → Fin(A), D(γ) :=


β∈DC(γ)
DB(β).

Then we have for all γ ∈ C that

zγ ∈ conv{yβ : β ∈ DC(γ)} ⊆ conv

xα : α ∈


β∈DC(γ)

DB(β)


= conv{xα : α ∈ D(γ)},

and therefore condition 1. of Definition B.3 is satisfied. As for condition 2., let α ∈ A.
Then there exists β ∈ B, such that α′ ≥ α for all α′ ∈


β′≥β DB(β′). For this β, there

exists γ ∈ C, such that β′ ≥ β for all β′ ∈

γ′≥γ DC(γ′). Hence, α′ ≥ α for all

α′ ∈

γ′≥γ

D(γ′) =

γ′≥γ


β′∈DC(γ′)

DB(β′) ⊆

β′≥β

DB(β′).

One of the main results in [Ž10] is the following Lemma.

Lemma B.5. A closed and convex subset Y of a topological vector space X is convexly
compact if and only if for any net {xα}α∈A in Y there exists a subnet of convex combi-
nations {yβ}β∈B, such that {yβ}β∈B converges to some y ∈ Y.

We will use this insight to prove a weak version of Tychonoff’s theorem for convexly
compact sets.

Proposition B.6. For n ∈ N let Yn be a convexly compact subset of the metric vector
space Xn. Then


n∈NYn is a convexly compact subset of


n∈NXn, equipped with the

product topology.
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Proof. Let {xα : α ∈ A} = {(xα(n))n∈N : α ∈ A} be a net in

n∈NYn. Then {xα(0) :

α ∈ A} is a net in Y0. By Lemma B.5 there exists a subnet of convex combinations
{y0
β : β ∈ B0} of {xα : α ∈ A}, such that {y0

β(0) : β ∈ B0} converges to some y(0) ∈ Y0.
We can now inductively construct for every k ≥ 1 a subnet of convex combinations
{ykβ : β ∈ Bk} of {yk−1

β : β ∈ Bk−1}, such that {ykβ(k) : β ∈ Bk} converges to some
y(k) ∈ Yk. According to Lemma B.4, every {ykβ : β ∈ Bk} is a subnet of convex
combinations of {xα : α ∈ A}. We denote the corresponding maps from Bk to Fin(A)
by Dk. Note that by construction {ykβ(ℓ) : β ∈ Bk} converges to y(ℓ) for all 0 ≤ ℓ ≤ k.
Now consider the directed set N × A with the partial order (k, α) ≤ (k′, α′) if k ≤ k′

and α ≤ α′. Write dℓ for the distance on Yℓ. We define for (k, α) ∈ N × A the set of
“admissible indices” as

C(k, α) :=

β ∈ Bk : α′ ≥ α for all α′ ∈ Dk(β), dℓ(ykβ(ℓ), y(ℓ)) ≤ 1

k
for ℓ = 1, . . . , k


.

The condition on Dk(β) guarantees that the subnet of convex combinations that we
are about to construct satisfies condition 2. of Definition B.3. By construction of the
{ykβ : β ∈ Bk}, every C(k, α) is non-empty. For every (k, α) ∈ N × A choose β(k, α) ∈
C(k, α). Note that here we explicitly apply the Axiom of Choice! Set z(k,α) := ykβ(k,α)
and D((k, α)) := Dk(β(k, α)). Then {z(k,α) : (k, α) ∈ N × A} is a subnet of convex
combinations of {xα : α ∈ A}, which converges to (y(n))n∈N ∈


n∈NYn in the product

topology. Now Lemma B.5 implies that

nYn is convexly compact.

Remark B.7. The proof is surprisingly technical considering that we are dealing with a
countable product of metric spaces. In this case compactness is equivalent to sequential
compactness, and therefore the proof of Tychonoff’s theorem follows from a diagonal
sequence argument. But so far there seems to be no characterization of convex compact-
ness in terms of sequential compactness, and therefore we had to work with nets rather
than with sequences.

C. Conditioning on null sets
In Chapter 2 we constructed a probability measure Q by conditioning P on the null set
{T0 = T} =


a∈[0,∞){Ta ≤ T0} using an extension theorem. It is important to point out

that the choice of the approximating sequence of events, necessary for this construction,
is highly relevant. Consider for example Ω = [0, 1], equipped with the Lebesgue measure
P , and let us assume that we want to condition P on {0, 1}. Then for any p ∈ [0, 1]
the sequence of sets ([0, (1 − p)/n] ∪ [1 − p/n, 1])n∈N has {0, 1} as its intersection, and
P (·|An) converges to (1 − p)δ0 + pδ1, where δ0 and δ1 denote the Dirac masses in 0 and
1 respectively. In this case there is of course a “canonical candidate” for the conditioned
measure: For p = 1/2 we obtain 1/2δ0 + 1/2δ1 in the limit.

Below we give an example that is more relevant to the situation studied in Chapter 2.
We remark that Knight [Kni69] illustrates the same point with another example, which,
in our opinion, is slightly more involved than the one presented in the following.
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Consider the continuous martingale X, defined as

Xt = Xt + (Xt − 1)1{τ3/4≥t} +
1

8 − Xt

2


1{τ3/4<t≤τ1/4}.

The process X moves twice as much as X until X hits 3/4, then it moves half as much
as X until X catches up, which occurs when X hits 1/4. With this understanding, it
is clear that X hits zero exactly when X does. Therefore, we have that {τ0 = T} =
a∈[0,∞){τa ≤ τ0}, where τa is defined exactly as τa with X replaced by X in (2.1).
Now, it is easy to see that P (·|τa ≤ τ0) defines a consistent family of probability mea-

sures on the filtration (Fτ0∧τa
)a>1; namely the one defined through the Radon-Nikodym

derivatives Xτa . Since P ( Xτa ̸= Xτa) > 0 for a > 1/4, the induced measure differs from
the one in Theorem 2.2.2. Therefore, although in the limit we condition on the same
event, the induced probability measures strongly depend on the approximating sequence
of events.

D. Pathwise Hoeffding inequality

In the construction of the pathwise Itô integral for typical price processes we needed
the following result, a pathwise formulation of the Hoeffding inequality. This is a slight
adaptation of [Vov12], Theorem A.1.

Lemma D.1 ([Vov12], Theorem A.1). Let (τn)n∈N be a strictly increasing sequence of
stopping times with τ0 = 0, such that for every ω ∈ Ω we have τn(ω) = ∞ for all but
finitely many n ∈ N. Let for n ∈ N the function hn : Ω → Rd be Fτn–measurable, and
suppose that there exists a Fτn–measurable bounded function bn : Ω → R, such that

sup
t∈[0,T ]

|hn(ω)(ω(τn+1 ∧ t) − ω(τn ∧ t))| ≤ bn(ω) (36)

for all ω ∈ Ω. Then for any λ ∈ R there exists a simple strategy Hλ ∈ H1, such that

1 + (Hλ · ω)t ≥ exp

λ

∞
n=0

hn(ω)(ω(τn+1 ∧ t) − ω(τn ∧ t)) − λ2

2

Nt(ω)
n=0

b2
n(ω)



for all ω ∈ Ω and all t ∈ [0, T ], where Nt(ω) := max{n ∈ N : τn(ω) ≤ t}.

Proof. Let λ ∈ R. The proof is based on the following deterministic inequality: if (36) is
satisfied, then for all ω ∈ Ω and all t ∈ [0, T ] we have that

exp

λhn(ω)(ω(τn+1 ∧ t) − ω(τn ∧ t)) − λ2

2 b
2
n(ω)


− 1

≤ exp


−λ2

2 b
2
n(ω)


eλbn(ω) − e−λbn(ω)

2bn(ω) hn(ω)(ω(τn+1 ∧ t) − ω(τn ∧ t))
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=: fn(ω)(ω(τn+1 ∧ t) − ω(τn ∧ t)), (37)

where we set 0/0 = 0. This inequality is shown in (A.1) in [Vov12]. We define

Hλ
t (ω) :=

∞
n=0

Fn(ω)1(τn,τn+1](t),

with Fn that have to be specified. We choose F0(ω) := f0(ω), which is bounded and
Fτ0–measurable, and on [0, τ1] we obtain from (37) that

1 + (Hλ · ω)t ≥ exp

λh0(ω)(ω(τ1 ∧ t) − ω(τ0 ∧ t)) − λ2

2 b
2
0(ω)


.

Observe also that 1 + (Hλ · ω)τ1 = 1 + f0(ω)(ω(τ1) − ω(τ0)) is bounded, because by
assumption h0(ω)(ω(τ1) − ω(τ0)) is bounded by the bounded random variable b0(ω).

Assume now that Fk has been defined for k = 0, . . . ,m− 1, that

1 + (Hλ · ω)t ≥ exp

λ

∞
n=0

hn(ω)(ω(τn+1 ∧ t) − ω(τn ∧ t)) − λ2

2

Nt(ω)
n=0

b2
n(ω)



for all t ∈ [0, τm], and that 1 + (Hλ · ω)τm is bounded. We define Fm(ω) := (1 +
(Hλ · ω)τm)fm(ω), which is Fτm–measurable and bounded. From (37) we obtain for
t ∈ [τm, τm+1] that

1 + (Hλ · ω)t = 1 + (Hλ · ω)τm + (1 + (Hλ · ω)τm)fm(ω)(ω(τm+1 ∧ t) − ω(τm ∧ t))

≥ (1 + (Hλ · ω)τm) exp

λhm(ω)(ω(τm+1 ∧ t) − ω(τm ∧ t)) − λ2

2 b
2
m(ω)



≥ exp

λ

∞
n=0

hn(ω)(ω(τn+1 ∧ t) − ω(τn ∧ t)) − λ2

2

Nt(ω)
n=0

b2
n(ω)


,

where the last step follows from the induction hypothesis. From the first line of the last
equation we also obtain that 1+(Hλ ·ω)τm+1 is bounded, because fm(ω)(ω(τm+1)−ω(τm))
is bounded for the same reason for which f0(ω)(ω(τ1) − ω(τ0)) is bounded.

E. Regularity for Schauder expansions with affine coefficients

Here we study the regularity of series of Schauder functions that have affine functions as
coefficients. First let us establish an auxiliary result.

Lemma E.1. Let s < t and let f : [s, t] → L(Rd,Rn) and g : [s, t] → Rd be affine
functions, f(r) = a1 + (r − s)b1, and g(r) = a2 + (r − s)b2. Then for all r ∈ (s, t) and
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for all h > 0 with r − h ∈ [s, t] and r + h ∈ [s, t] we have

|(fg)r−h,r − (fg)r,r+h| . |t− s|−2h2∥f∥∞∥g∥∞. (38)

Proof. We have

|(fg)r−h,r − (fg)r,r+h| = |2f(r)g(r) − f(r − h)g(r − h) − f(r + h)g(r + h)|
= | − h2b1b2|.

Now fs,t = b1(t− s), and therefore |b1| . |t− s|−1∥f∥∞, and similarly for b2.

Now we are in a position to prove the regularity estimate.

Lemma E.2. Let α ∈ (0, 2) and let (upm) ∈ Aα. Then

p,m upmϕpm ∈ Cα, and

p,m

upmϕpm

α
. ∥(upm)∥Aα .

Proof. We need to examine the coefficients 2−q⟨χqn,d(

pm upmϕpm)⟩. First let us treat

the case (p,m) = (−1, 0) and (p,m) = (0, 0). Here it suffices to estimate the uniform
norm of


pm upmϕpm. For fixed p, the (ϕpm)m have disjoint support, and therefore


p


m

upmϕpm


∞

.

p

max
m

∥upm∥∞ ≤

p

2−pα∥(upm)∥Aα . ∥(upm)∥Aα .

Now let q ≥ 0 and 1 ≤ n ≤ 2q be given. If p > q, then ϕpm(tiqn) = 0 for i = 0, 1, 2 and
for all m. Hence

2−q

χqn,d


p,m

upmϕpm


= 2−q

p≤q


m

⟨χqn, d(upmϕpm)⟩.

Now if p < q, then there is at most one m with ⟨χqn,d(upmϕpm)⟩ ̸= 0. For this m, the
support of χqn is contained in [t0pm, t1pm] or in [t1pm, t2pm], and upm and ϕpm are affine on
these intervals. Therefore, we can apply (38) to obtain

m

|2−q⟨χqn,d(upmϕpm)⟩| =

m

|(upmϕpm)t0qn,t
1
qn

− (upmϕpm)t1qn,t
2
qn

|

. 22p2−2q∥upm∥∞∥ϕpm∥∞ . 2p(2−α)−2q∥(upm)∥Aα .

For p = q we have ϕqn(t0qn) = ϕqn(t2qn) = 0 and ϕqn(t1qn) = 1/2, and thus
m

|2−q⟨χqn, d(uqmϕqm)⟩| =
(uqnϕqn)t0qn,t

1
qn

− (uqnϕqn)t1qn,t
2
qn


= |u(t1qn)| . 2−αq∥(upm)∥Aα = 2p(2−α)−2q∥(upm)∥Aα .
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We combine the estimates for p < q and p = q, and obtain

2−q


χqn, d


pm

upmϕpm

 .
p≤q

2p(2−α)−2q∥(upm)∥Aα ≃ 2−αq∥(upm)∥Aα ,

where we used that α < 2 and therefore

p≤q 2p(2−α) ≃ 2q(2−α).

F. Different partitions of unity

Here we show that if (χ, ρ) and (χ, ρ) are two dyadic partitions of unity, with paraproduct
operators π<, π>, π◦, and π<, π>, π◦ respectively, then π< − π<, π> − π>, and π◦ − π◦
are bounded bilinear operators from Cα × Cβ to Cα+β – regardless whether α + β > 0
or not.

Lemma F.1. Let α, β ∈ R. Let (χ, ρ) and (χ, ρ) be two dyadic partitions of unity.
Let (∆i)i≥−1 be the Littlewood-Paley blocks corresponding to (χ, ρ), and ( ∆i)i≥−1 those
corresponding to (χ, ρ). Let

π<(u, v) :=


i<j−N1

∆iu∆jv and π<(u, v) :=


i<j−N2

∆iu ∆jv,

π◦(u, v) :=


|i−j|≤N1

∆iu∆jv and π◦(u, v) =


|i−j|≤N2

∆iu ∆jv,

π>(u, v) :=


j<i−N1

∆iu∆jv and π>(u, v) :=


j<i−N2

∆iu ∆jv,

where N1 is large enough so that ∆i∆j = 0 for |i− j| > N1, and similarly for N2. Then
π< − π<, π◦ − π◦, and π> − π> are bounded bilinear operators from Cα × Cβ to Cα+β,
such that for all u ∈ Cα, v ∈ Cβ

∥π<(u, v) − π<(u, v)∥α+β . ∥u∥α∥v∥β,
∥π◦(u, v) − π◦(u, v)∥α+β . ∥u∥α∥v∥β,

∥π>(u, v) − π>(u, v)∥α+β .∥u∥α∥v∥β.

Proof. The statement for π< − π< (and thus for π> − π>) is shown in Bony [Bon81],
Theorem 2.1. Let us prove the statement for π◦ − π◦:

Let u ∈ Cα and v ∈ Cβ both have Fourier transforms of compact support. As we
argued before, it suffices to show the statement for such smooth u, v, and to extend the
operator π◦ − π◦ by a continuity argument. We have

π◦(u, v) − π◦(u, v) = (uv − π<(u, v) − π>(u, v)) − (uv − π<(u, v) − π>(u, v))
= (π<(u, v) − π<(u, v)) + (π>(u, v) − π>(u, v)) .

Hence, the estimate for π◦ − π◦ follows from the estimates for π< − π< and π> − π>.
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G. Paralinearization theorem

Here we prove the slightly modified version of the paralinearization theorem which was
used in the proof of Lemma 5.3.18.

The following Lemma allows us to estimate the Hölder-Besov norm of a series of func-
tions


j uj , where the Fourier transform of uj is not necessarily of compact support.

Lemma G.1 (Lemma 2.88 of [BCD11]). Let α > 0 and let (uj)j∈N be a sequence of
smooth functions such that

sup
|η|∈{0,⌊α⌋+1}

2j(α−|η|) ∥∂ηuj∥L∞


j∈N

∈ ℓ∞ (N) .

Then u =

j uj ∈ Cα, and

∥u∥Cα .α

 sup
|η|∈{0,⌊α⌋+1}

2j(α−|η|) ∥∂ηuj∥L∞


j∈N


ℓ∞(N)

.

The following lemma about the action of a smooth function on u ∈ Cα is of course
well known.

Lemma G.2. Let α ∈ (0, 1). If u ∈ Cα(Rd,Rn) and F ∈ C1
b (Rn,R), then

∥F (u)∥α . ∥F∥C1
b
∥u∥α.

Proof. Since Cα(Rd,Rn) is the space of bounded α–Hölder continuous functions, see p.
99 of [BCD11], the result is easily obtained by a first order Taylor expansion.

Now we are in a position to prove the paralinearization theorem.

Lemma G.3. Let α ∈ (0, 1/2). If u ∈ Cα(Rd,Rn), v ∈ C2α(Rd,Rn), and F ∈ C2
b (Rn,R)

with F (0) = 0, then

∥F (u+ v) − π<(DF (u+ v), u)∥2α . (∥F∥L∞ + ∥D2F∥L∞)(∥u∥α + ∥v∥2α)(1 + ∥u∥α).

In particular, we have for general F ∈ C2
b , not necessarily satisfying F (0) = 0, that

∥F (u+ v) − π<(F (u+ v), u)∥2α . ∥F∥C2
b
(1 + ∥v∥2α)(1 + ∥u∥α)2.

Proof. We will apply Lemma G.1 to the series

F (u+ v) − π<(DF (u+ v), u) =

j

Fj ,

where
Fj := (F (Sj+1(u+ v)) − F (Sj(u+ v))) − Sj−1DF (u+ v)∆ju. (39)
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We apply a Taylor expansion up to second order to the first term of Fj and obtain

F (Sj+1(u+ v)) − F (Sj(u+ v)) =
d

k=1

 1

0
∂xk

F (Sj(u+ v) + r∆j(u+ v))dr∆j(uk + vk)

= DF (Sj(u+ v))∆ju

+
d

k,ℓ=1

 1

0
(1 − r) ∂2

∂xℓ∂xk
F (Sj(u+ v) + r∆j(u+ v))dr∆j(uℓ + vℓ)∆ju

k

+
 1

0
DF (Sj(u+ v) + r∆j(u+ v))∆jvdr. (40)

Combining (39) and (40), we see that

∥Fj∥L∞ . ∥(DF (Sj(u+ v)) − Sj−1DF (u+ v))∆ju∥L∞

+
 1

0
DF (Sj(u+ v) + r∆j(u+ v))∆jvdr


L∞

+
 d
k,ℓ=1

 1

0
(1 − r) ∂2

∂xℓ∂xk
F (Sj(u+ v) + r∆j(u+ v))dr∆j(uℓ + vℓ)∆ju

k


L∞

. ∥(DF (Sj(u+ v)) − DF (u+ v))∥L∞2−jα∥u∥α
+ ∥(DF (u+ v) − Sj−1DF (u+ v))∥L∞2−jα∥u∥α
+ ∥DF∥L∞2−j2α∥v∥2α + ∥D2F∥L∞2−j2α(∥u∥α + ∥v∥α)∥u∥α. (41)

Now a Taylor expansion with integral remainder applied to DF (Sj(u+ v)) − DF (u+ v)
yields

∥DF (Sj(u+ v)) − DF (u+ v)∥L∞ . ∥D2F∥L∞

k≥j

∥∆k(u+ v)∥L∞

. ∥D2F∥L∞2−jα(∥u∥α + ∥v∥α). (42)

Similarly, we have

∥DF (u+ v) − Sj−1DF (u+ v)∥L∞ .


k≥j−1
∥∆kDF (u+ v)∥L∞ . 2−jα∥DF (u+ v)∥α

. 2−jα(∥DF∥L∞ + ∥D2F∥L∞)(∥u∥α + ∥v∥α), (43)

where we used Lemma G.2 in the last step. Combining (41), (42), and (43), we obtain

∥Fj∥L∞ . 2−2jα(∥DF∥L∞ + ∥D2F∥L∞)(∥u∥α + ∥v∥2α)(1 + ∥u∥α).

For the derivatives we do not take advantage of any cancellations, but just estimate every
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term on its own. We have for all η ∈ Nd with |η| = 1 that

∂ηFj = ∂η[F (Sj+1(u+ v)) − F (Sj(u+ v)) − Sj−1DF (u+ v)∆ju]
= DF (Sj+1(u+ v))∂ηSj+1(u+ v) − DF (Sj(u+ v))∂ηSj(u+ v)

− ∂η[Sj−1DF (u+ v)]∆ju− Sj−1DF (u+ v)∂η∆ju

= aj + bj + cj + dj ,

where

aj := [DF (Sj+1(u+ v)) − DF (Sj(u+ v))]∂ηSj+1u,

bj := DF (Sj+1(u+ v))∂ηSj+1v − DF (Sj(u+ v))∂ηSjv,
cj := [DF (Sj(u+ v)) − Sj−1DF (u+ v)]∂η∆ju, and
dj := −∂η(Sj−1DF (u+ v))∆ju.

Using first a Taylor expansion for aj , and then that 1 − α > 0, we obtain

∥aj∥L∞ ≤
 1

0
∥D2F (Sj(u+ v) + r∆j(u+ v))∥L∞dr∥∆j(u+ v)∥L∞∥Sj+1∂

ηu∥L∞

. ∥D2F∥L∞2−jα(∥u∥α + ∥v∥α)2j(1−α)∥∂ηu∥α−1

. 2j(1−2α)∥D2F∥L∞(∥u∥α + ∥v∥α)∥u∥α. (44)

Since 1 − 2α > 0, the next term bj can be easily estimated by

∥bj∥L∞ . ∥DF∥L∞∥∂ηSj+1v∥L∞ + ∥DF∥L∞∥∂ηSjv∥L∞ . 2j(1−2α)∥DF∥L∞∥v∥2α. (45)

Estimates (42) and (43) imply that

∥cj∥L∞ . 2−jα(∥DF∥L∞ + ∥D2F∥L∞)(∥u∥α + ∥v∥α)2j(1−α)∥u∥α (46)
= 2j(1−2α)(∥DF∥L∞ + ∥D2F∥L∞)(∥u∥α + ∥v∥α)∥u∥α. (47)

Finally, we have for the last term

∥dj∥L∞ ≤ ∥Sj−1(∂ηDF (u+ v))∥L∞∥∆ju∥L∞ . 2j(1−α)∥∂ηDF (u+ v)∥α−12−jα∥u∥α
. 2j(1−2α)∥DF (u+ v)∥α∥u∥α,

so that another application of Lemma G.2 yields

∥dj∥L∞ . 2j(1−2α)(∥DF∥L∞ + ∥D2F∥L∞)(∥u∥α + ∥v∥α)∥u∥α. (48)

Combining (44)–(48), we see that

∥∂ηFj∥L∞ . 2j(1−2α)(∥DF∥L∞ + ∥D2F∥L∞)(∥u∥α + ∥v∥2α)(1 + ∥u∥α).

The proof is completed by applying Lemma G.1 to

j Fj .
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