
1
NUMBER SYSTEMS
AND CODES

Arithmetic operations using decimal numbers are quite common.    However, in logical
design it is necessary to perform manipulations in the so-called binary system of num-
bers because of the on-off nature of the physical devices used.   The present chapter is
intended to acquaint the reader with the fundamental concepts involved in dealing with
number systems other than decimal.   In particular, the binary system is covered in con-
siderable detail.

1.1  POSITIONAL NOTATION

An ordinary decimal number can be regarded as a polynomial in powers of 10.   For ex-
ample, 423.12 can be regarded as  4 × 102 + 2 × 101 + 3 × 100 + 1 × 10−1 + 2 × 10−2.
Decimal numbers like this are said to be expressed in a number system with  base, or
radix, 10 because there are 10 basic digits (0, 1, 2, …, 9) from which the number
system is formulated.   In a similar fashion we can express any number N   in a system
using any base b.   We shall write such a number as (N)b . Whenever (N)b  is written,
the convention of always expressing b in base 10 will be followed.   Thus (N)b  = (pn
pn−1   … p1p0 . p−1p−2 … p−m )b where b  is an integer greater than 1 and 0 <  pi   <  b
− 1.   The value of a number represented in this fashion, which is called  positional
notation, is given by

(N)b  = pn bn  + pn-1 bn-1 + … + p0 b0 + p-1 b-1 

(1.1-1)
+ p-2 b-2+ … + p−m b−m

n

(N)b  = ∑    pi bi (1.1-2)
i = -m
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For decimal numbers, the symbol “.” is called the decimal point; for more gen-
eral base-b numbers, it is called the radix point.   That portion of the number to the
right of the radix point (p-1p-2 … p−m ) is called the fractional part, and the portion to
the left of the radix point (pnpn −1  … p0 ) is called the integral part.

Numbers expressed in base 2 are called  binary numbers.   They are often used
in computers since they require only two coefficient values.   The integers from 0 to 15
are given in Table 1.1-1 for several bases.   Since there are no coefficient values for the
range 10 to b − 1 when b > 10, the letters A, B, C, . . . are used.   Base-8 numbers are
called octal numbers,  and base-16 numbers are called  hexadecimal numbers.
Octal and hexadecimal numbers are often used as a shorthand for binary numbers.   An
octal number can be converted into a binary number by converting each of the octal co-
efficients individually into its binary equivalent.   The same is true for hexadecimal
numbers.   This property is true because 8 and 16 are both powers of 2.   For numbers
with bases that are not a power of 2, the conversion to binary is more complex.

1.1-1 Conversion of Base

To make use of nondecimal number systems, it is necessary to be able to convert a
number expressed in one base into the correct representation of the number in another
base.   One way of doing this makes direct use of the polynomial expression (1.1-1).
For example, consider the binary number (1011.101)2 . The corresponding polynomial
expression is

1 ×  23 +  0  ×  22  +  1  ×  21  +  1  ×  20  +  1  ×  2−1  +  0  × 2−2 +  1  ×  2−3

or 8 + 2  + 1  + 1/2  + 1/8

or 11 + 5/8 = 11.625

TABLE 1.1-1    Integers in various bases

2 3 4 5 … 8 … 10 11 12 …  16

0001 001  01 01 01 01 01 01 1
0010 002 02 02 02 02 02 02 2
0011 010 03 03 03 03 03 03 3
0100 011 10 04 04 04 04 04 4
0101 012 11 10 05 05 05 05 5
0110 020 12 11 06 06 06 06 6

(N)b    0111   021 13 12 07 07 07 07 7
1000 022 20 13 10 08 08 08 8
1001 100 21 14 11 09 09 09 9
1010 101 22 20 12 10 0A 0A A
1011 102 23 21 13 11 10 0B B
1100 110 30 22 14 12 11 10 C
1101 111 31 23 15 13 12 11 D
1110 112 32 24 16 14 13 12 E
1111 120 33 30 17 15 14 13 F
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This technique of directly evaluating the polynomial expression for a number is a
general method for converting from an arbitrary base  b1  to another arbitrary base b2.

For convenience, it will be called the  polynomial method.   This method consists
in:

1. Expressing the number (N)b1  as a polynomial, with base-b2  numbers used in the
polynomial.

2. Evaluating the polynomial, base-b2  arithmetic being used.

This polynomial method is most often used by human beings whenever a number
is to be converted to base 10, since it is then possible to use decimal arithmetic.

This method for converting numbers from one base to another is the first example
of one of the major goals of this book:  the development of algorithms.   In general
terms, an algorithm is a list of instructions specifying a sequence of operations which
will give the answer to any problem of a given type.   The important characteristics of
an algorithm are: (1) that it is fully specified and does not rely on any  skill or intuition
on the part of the person applying it and (2) that it always works, (i.e., that a correct
answer is always obtained.)  The notion of an algorithm is discussed in more detail in
Section 1.1 of [Knuth 68].

It is not always convenient to use base-b2 
 arithmetic in converting from base-b1

to base-b2 .   An algorithm for carrying out this conversion by using base-b1 
 arithmetic

will be discussed next.    This discussion is specifically for the situation in which b1   =
10,  but it can be extended easily to the more general case.   This will be called the it-
erative method,  since it involves iterated multiplication or division.

In converting (N)
10

 to (N)b  the fraction and integer parts are converted separately.
First, consider the integer part (portion to the left of the decimal point). The general
conversion procedure is to divide (N)

10
 by b, giving (N)

10
/b and a remainder.   The

remainder, call it p
0
, is the least significant (rightmost) digit of (N)b.   The next least

significant digit, p
1
, is the remainder of (N)

10
/b divided by b, and succeeding digits are

obtained by continuing this process.  A convenient form for carrying out this
conversion is illustrated in the following example.

Example 1.1-1

(a) (23)10 = (10111)2 2 23 (Remainder)

2 11 1

2 5 1

2 2 1

2 1 0

0 1

(b) (23)10 = (27)8 8 23 (Remainder)

8 2 7

0 2
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(c) (410)10 = (3120)5 5 410 (Remainder)

5 82 0

5 16 2

5 3 1

0 3

Now consider the portion of the number to the right of the decimal point, i.e., the
fractional part.   The procedure for converting this is to multiply (N)10  (fractional) by b.
If the resulting product is less than 1, then the most significant (leftmost) digit of the
fractional part is 0.   If the resulting product is greater than 1, the most significant digit
of the fractional part is the integral part of the product.   The next most significant digit
is formed by multiplying the fractional part of this product by b and taking the integral
part.   The remaining digits are formed by repeating this process.   The process may or
may not terminate. A convenient form for carrying out this conversion is illustrated be-
low.

Example 1.1-2.

(a) (0.625)10   = (0.5)8 0.625 x 8 = 5.000 0.5

(b) (0.23)10   = (0.001110 . . . )2 0.23  x 2 = 0.46 0.0

0.46  x 2 = 0.92 0.00

0.92  x 2 = 1.84 0.001

0.84  x 2 = 1.68 0.0011

0.68  x 2 = 1.36 0.00111

0.36  x 2 = 0.72 0.001110  …
(c) (27.68)10   = (11011.101011 . . . )2  =  (33.53 . . . )8

2 27 0.68 x 2 = 1.36 0.1

2 13 1 0.36 x 2 = 0.72 0.10

2 6 1 0.72 x 2 = 1.44 0.101

2 3 0 0.44 x 2 = 0.88 0.1010

2 1 1 0.88 x 2 = 1.76 0.10101

0 1 0.76 x 2 = 1.52 0.101011 …

8 27 0.68 x 8 = 5.44 0.5

8 3 3 0.44 x 8 = 3.52 0.53 …

0 3

This example illustrates the simple relationship between the base-2 (binary) sys-
tem and the base-8 (octal) system.   The binary digits, called bits, are taken three at a
time in each direction from the binary point and are expressed as decimal digits to give
the corresponding octal number.   For example, 101 in binary is equivalent to 5 in
decimal; so the octal number in part (c) above has a 5 for the most significant digit of the
fractional part.   The conversion between octal and binary is so simple that the octal
expression is sometimes used as a convenient shorthand for the corresponding binary
number.
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When a fraction is converted from one base to another, the conversion may not
terminate, since it may not be possible to represent the fraction exactly in the new base
with a finite number of digits.   For example,  consider the conversion of (0.1)3  to a
base-10 fraction.   The result is clearly (0.333 …)10 , which can be written as (0.3)10  to
indicate that the 3's are repeated indefinitely.   It is always possible to represent the
result of a conversion of base in this notation, since the nonterminating fraction must
consist of a group of digits which are repeated indefinitely. For example, (0.2)11  = 2 x
11−1 = (0.1818 …)10  = (0. 018)10 .

It should be pointed out that by combining the two conversion methods it is pos-
sible to convert between any two arbitrary bases by using only arithmetic of a third
base. For example, to convert (16)7  to base 3, first convert to base 10,

(16)7  =  1  × 71  +  6  ×  70   =  7  +  6  =  (13)10

Then convert (13)10   to base 3,

3 13 (Remainder)

3 4 1 (16)7  = (13)10   = (111)3

3 1 1

3 0 1

For more information about positional number systems, the following references
are good sources: [Chrystal 61] and [Knuth 69].

1.2  BINARY ARITHMETIC

Many modern digital computers employ the binary (base-2) number system to represent
numbers, and carry out the arithmetic operations  using binary arithmetic.   While a de-
tailed treatment of computer arithmetic is not within the scope of this book, it will be
useful to have the elementary techniques of binary arithmetic available.   In performing
decimal arithmetic it is necessary to memorize the tables giving the results of the elemen-
tary arithmetic operations for pairs of decimal digits.   Similarly, for binary arithmetic
the tables for the elementary operations for the binary digits are necessary.

1.2-1 Binary Addition

The binary addition table is as follows:

Sum Carry
0 + 0 = 0 0
0 + 1 = 1 0
1 + 0 = 1 0
1 + 1 = 0 1

Addition is performed by writing the numbers to be added in a column with the
binary points aligned.   The individual columns of binary digits, or bits, are added in
the usual order according to the above addition table.   Note that in adding a column of
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bits, there is a 1 carry for each pair of 1's in that column.   These 1 carries are treated as
bits to be added in the next column to the left.   A general rule for addition of a column
of numbers (using any base) is to add the column decimally and divide by the base.
The remainder is entered as the sum for that column, and the quotient is carried to be
added in the next column.

Example 1.2-1

Base 2
Carries:   10011 11

1001.011 = (9.375)10

  1101.101 =(13.625)10

10111.000   =  (23)10   = Sum

1.2-2  Binary Subtraction

The binary subtraction table is as follows:

Difference Borrow

0 − 0 = 0 0
0 − 1 = 1 1
1 − 0 = 1 0
1 − 1 = 0 0

Subtraction is performed by writing the minuend over the subtrahend with the bi-
nary points aligned and carrying out the subtraction according to the above table.   If a
borrow occurs and the next leftmost digit of the minuend is a 1, it is changed to a 0 and
the process of subtraction is then continued from right to left.

Base 2 Base 10
Borrow: 1

0
Minuend 1\0 2
Subtrahend − 01 −1
Difference   01 1

If a borrow occurs and the next leftmost digit of the minuend is a 0, then this 0 is
changed to a 1, as is each successive minuend digit to the left which is equal to 0.   The
first minuend digit to the left which is equal to 1 is changed to 0, and then the subtrac-
tion process is resumed.

Base 2 Base 10

Borrow:    1

 011
 Minuend   11\0\0\0   24

Subtrahend −10001 − 17
Difference   00111    7
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Borrow:   1  1

01011 
Minuend   1\0\1\0\0\0 40

Subtrahend −011001 −25

Difference   001111 15

1.2-3 Complements

It is possible to avoid this subtraction process by using a complement representation for
negative numbers.   This will be discussed specifically for binary fractions, although
it is easy to extend the complement techniques to integers and mixed numbers.   The
2's complement (2B) of a binary fraction B  is defined as follows:

2B = (2 − B)10   = (10 − B)2

Thus, 2(0.1101) = 10.0000 − 0.1101 = 1.0011.   A particularly simple means of carry-
ing out the subtraction indicated in the expression for 2(0.1101) is obtained by noting
that 10.0000 = 1.1111 + 0.0001.   Thus, 10.0000 − 0.1101 = (1.1111 − 0.1101) +
0.0001.   The subtraction 1.1111 − 0.1101 is particularly easy, since all that is neces-
sary is to reverse each of the digits of 0.1101 to obtain 1.0010.   Finally, the addition of
0.0001 is also relatively simple, and yields 1.0011.   In general, the process of forming
2B involves reversing the digits of B  and then adding 0.00 … 01.

The usefulness of the 2's complement stems from the fact that it is possible to ob-
tain the difference A − B by adding 2B  to A.   Thus, A + 2B = (A + 10 − B)2  = (10 +
(A − B))2 .   If (A − B) > 0, then (10 + A − B)2  will be 10 plus the positive fraction (A
− B).  It is thus possible to obtain A − B by dropping the leftmost 1 in A + 2B. For ex-
ample,

A = 0.1110 A = 0.1110
−B = −0.1101 + 2B = 1.0011

0.0001 10.0001

If (A − B) < 0, then A + 2B = (10 − |A −B|)2, which is just equal to 2(A − B), the 2's-
complement representation of A − B.   For example,

A = 0.1101 A = 0.1101
−B = −0.1110 + 2B = 1.0010

–0.0001 1.1111              2(0.0001) = 1.1111

The 1's complement is also very commonly used.   This is defined as

1B = (10  −  0.000  …  1 − B)2

where the location of the 1 in 0.000 … 1 corresponds to the least significant digit of B.
Since (10 − 0.000 … 1)2  is equal to 01.111 … 1, it is possible to form 1B  by revers-
ing the digits of B  and adding a 1 before the radix point.   Thus, 1(0.1101) = 1.0010.
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If A  + 1B  is formed, the result is (A − B  + 10 −  0.000 … 1)2. If (A − B) > 0,
this can be converted to A − B  by removing the (10)2 and adding a 1 to the least signifi-
cant digit of A + 1B.   This is called an end-around carry.   For example:

A = 0.1110 A = 0.1110
−B = −0.1101 + 1B  = +1.0010

0.0001 A  + 1B  = 10.0000
↓
↓→ → → → → →         

↓     End-around  
↓ carry

+0.0001 ←←←←↓
0.0001

so that A   −   B  = 0.0001

If (A − B) < 0, then A + 1B  will be the 1's complement of |A − B|. For example,

A = 0.1101 A = 0.1101
−B = −0.1110 1B = 1.0001

−0.0001 A + 1B = 1.1110          1(0.0001) = 1.1110

The radix complement  of a base-b  fraction F  is defined as

bF = (10 − F)b

and the diminished radix complement is defined as

b−1F = (10 − F −  0.000  …  1)b

Similar procedures hold for the formation of the complements and their use for subtrac-
tion.

When integers or mixed numbers are involved in the subtractions, the definitions
of the complements must be generalized to

bN = (100 … 0. − N)b

and                                      b−1N  = (100 … 0.   − N   −  0.00 … 1)b

where 100 … 0 contains two more digits than any integer to be encountered in the sub-
tractions. For example, if (N)2  = 11.01, then

2(N)2  = 1000.00 − 11.01

= 111.11 − 11.01 + 0.01
= 100.10 + 0.01
= 100.11

M   = 11.10  M   = 11.10
−N  = −11.01 2N    = 100.11

0.01 1000.01

↑

  Discard
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1.2-4 Shifting

In carrying out multiplication or division there are intermediate steps which require that
numbers be shifted to the right or the left.   Shifting a base-b  number k  places to the
right has the effect of multiplying the number by b-k  , and shifting k  places to the left is
equivalent to multiplication by b+k .   Thus, if

      n
(N)b   =    ∑    pi bi  = (pn pn-1   …  p1 p0 .  p−1 p−2 … p−m)b
               i =-m

shifting (N)b  k  places to the left yields

 n

(pn pn-1   … p1 p0 p−1 … p−k  .  p−k−1  … p−m)b = ∑     pi bi+k

i =-m

and
                 n                       n

∑     pi b i+k  =  b k  ∑  pi bi   =  b k (N)b
                i =−m                          i =−m

A similar manipulation shows the corresponding situation for right shifts. Shifting
the binary point k  places (k  positive for right shifts and negative for left shifts) in a bi-
nary number multiplies the value of the number by 2k  .   For example,

(110.101)2    =    (6.625)10

(1.10101)2    =   2−2 (6.625)10    =   (6.625
4 )10    =   (1.65625)10

(11010.1)2    =    2+2 (6.625)10   =   (4  × 6.625)10    =   (26.5)10

1.2-5  Binary Multiplication

The binary multiplication table is as follows:

0  ×  0  =  0
0  ×  1  =  0
1  ×  0  =  0
1  ×  1  =  1

The process of binary multiplication is illustrated by the following example:

110.10 Multiplicand
   10 .1 Multiplier

 11010 Partial Product
         00000 Partial Product
      11010    Partial Product

10000.010
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For every digit of the multiplier which is equal to 1,  a partial product is formed
consisting of the multiplicand shifted so that its least significant digit is aligned with the
1 of the multiplier.   An all-zero partial product is formed for each 0 multiplier digit.   Of
course,  the all-zero partial products can be omitted.   The final product is formed by
summing all the partial products.   The binary point is placed in the product by using the
same rule as for decimal multiplication:   the number of digits to the right of the binary
point of the product is equal to the sum of the numbers of digits to the right of the
binary points of the multiplier and the multiplicand.

The simplest technique for handling the multiplication of negative numbers is to
use the process just described to multiply the magnitudes of the numbers.   The sign of
the product is determined separately, and the product is made negative if either the
multiplier or the multiplicand,  but not both, are negative.   It is possible to carry out
multiplication directly with negative numbers represented in complement form.   This is
usually done using a recoding scheme called Booth's Algorithm,  [Waser 82],  which
also speeds up the multiplication.

1.2-6  Binary Division

Division is the most complex of the four basic arithmetic operations.   Decimal long
division as taught in grade school is a trial-and-error process.   For example, in dividing
362 by 46 one must first recognize that 46 is larger than 36 and then must guess how
many times 46 will go into 362.   If an initial guess of 8 is made and the multiplication 8
x 46 = 368 is carried out, the result is seen to be larger than 362 so that the 8 must be
replaced by a 7.   This process of trial and error is simpler for binary division because
there are fewer possibilities in the binary case.

To implement binary division in a digital computer a division algorithm must be
specified.   Two different algorithms, called restoring and nonrestoring division, are
used.

Restoring division is carried out as follows:  In the first step, the divisor is
subtracted from the dividend with their leftmost digits aligned.   If the result is positive,
a 1 is entered as the quotient digit corresponding to the rightmost digit of the dividend
from which a digit of the divisor was subtracted.   The next rightmost digit of the
dividend is appended to the result, which then becomes the next partial dividend.   The
divisor is then shifted one place to the right so that its least significant digit is aligned
with the rightmost digit of the partial dividend, and the process just described is
repeated.

If the result of subtracting the divisor from the dividend is negative, a 0 is entered
in the quotient and the divisor is added back to the negative result so as to restore the
original dividend.   The divisor is then shifted one place to the right, and a subtraction is
carried out again.   The process of restoring division is illustrated in the following
example at the top of the next page:
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Divisor = 1 1 1 1 Dividend = 1 1 0 0
       q0   q−1  q−2    q−3     q−4   q−5

      0   .1      1       0      0      1
                                                   1 1 1 1 \r( 1  1  0  0  .0       0       0      0      0)
Subtract                                     1  1  1  1
Negative result      q0   = 0                 −0  0  1  1
Restore                                   +1  1  1  1

1  1  0  0  0
Subtract      1  1  1  1
Positive result q−1  = 1              1  0  0  1  0
Subtract       1  1  1  1
Positive result  q−2  = 1        0  0  0  1  1  0
Subtract         1  1  1  1
Negative result  q−3  = 0  −  1  0  0  1
Restore +   1  1  1  1

   0  1  1  0  0
Subtract           1  1  1  1
Negative result  q−4  = 0      −   0  0  1  1
Restore   +     1  1  1  1

   1  1  0  0  0
Subtract            1  1  1  1
Positive result q−5  = 1     1  0  0  1     (remainder)

In nonrestoring division, the step of adding the divisor to a negative partial
dividend is omitted, and instead the shifted  divisor is added to the negative partial divi-
dend.   This step of adding the shifted divisor replaces the two steps of adding the divi-
sor and then subtracting the shifted divisor.   This can be justified as follows:  If X   rep-
resents the negative partial dividend and   Y   the divisor, then 1/2Y   represents the divi-
sor shifted one place to the right.   Adding the divisor and then subtracting the shifted
divisor yields   X   +   Y   − 1/2Y   =  X   + 1/2Y , while adding the shifted divisor yields
the same result,   X   + 1/2Y .   The steps which occur in using nonrestoring division to
divide 1100 by 1111 are shown in the following example at the top of the next page:
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Divisor = 1 1 1 1 Dividend = 1 1 0 0
     q0   q−1  q−2   q−3  q−4  q−5

  0    .1      1      0      0      1
                                               1 1 1 1 \r( 1  1  0  0    .0      0      0      0      0)
Subtract                           1  1  1  1
Negative result q0   = 0           − 0  0  1  1  0
Shift and add                          +      1  1  1  1
Positive result q−1  = 1               +  1  0  0  1  0
Shift and subtract                             −        1  1  1  1
Positive result q−2   = 1 + 0  0  1  1  0
Shift and subtract      −     1  1  1  1
Negative result q−3  = 0      − 1  0  0  1  0
Shift and add    +      1  1  1  1
Negative result q−4  = 0    − 0  0  1  1  0
Shift and add  +     1  1  1  1
Positive result q−5  = 1       +     1  0  0  1        (remainder)

An important technique for improving the performance of digital arithmetic cir-
cuitry is the use of more sophisticated algorithms for the basic arithmetic operations.   A
discussion of these methods is beyond the scope of this book.   The interested reader is
referred to [Waser 82], [Hwang 78], or Chapter 2 and Section 8.1 in [Gschwind 75]
for more details on arithmetic.

1.3 BINARY CODES

The binary number system has many advantages and is widely used in digital systems.
However, there are times when binary numbers are not appropriate. Since we think
much more readily in terms of decimal numbers than binary numbers, facilities are
usually provided so that data can be entered into the system in decimal form, the con-
version to binary being performed automatically inside the system.   In fact, many com-
puters have been designed which work entirely with decimal numbers.   For this to be
possible, a scheme for representing each of the 10 decimal digits as a sequence of bi-
nary digits must be used.

1.3-1  Binary-Coded-Decimal Numbers

To represent 10 decimal digits,  it is necessary to use at least 4 binary digits,
since there are 24 ,  or 16,  different combinations of 4 binary digits but only 23,  or 8,
different combinations of 3 binary digits.   If 4 binary digits,  or bits,  are used and
only one combination of bits is used to represent each decimal digit, there will be six
unused or invalid code words.   In general,  any arbitrary assignment of combinations
of bits to digits can be used so that there are 16!/6! or approximately 2.9 × 1010
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TABLE 1.3-1   Some common 4-bit decimal codes

Decimal
digit

8
b3

4
b2

2
b1

1
b0

8 4 -2 -1 2 4 2 1 Excess-3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 1
3 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 0
4 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1
5 0 1 0 1 1 0 1 1 1 0 1 1 1 0 0 0
6 0 1 1 0 1 0 1 0 1 1 0 0 1 0 0 1
7 0 1 1 1 1 0 0 1 1 1 0 1 1 0 1 0
8 1 0 0 0 1 0 0 0 1 1 1 0 1 0 1 1
9 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0

possible codes.   Only a few of these codes have ever been used in any system,  since
the arithmetic operations are very difficult in almost all of the possible codes.   Several
of the more common 4-bit decimal codes are shown in Table 1.3-1.

The 8,4,2,1 code is obtained by taking the first 10 binary numbers and assigning
them to the corresponding decimal digits.   This code is an example of a  weighted
code, since the decimal digits can be determined from the binary digits by forming the
sum d = 8b3  + 4b2  + 2b1  + b0 . The coefficients 8, 4, 2, 1 are known as the  code
weights. The number 462 would be represented as 0100   0110   0010 in the 8,4,2,1
code. It has been shown in [White 53] that there are only 17 different sets of weights
possible for a positively weighted code: (3,3,3,1), (4,2,2,1), (4,3,1,1), (5,2,1,1),
(4,3,2,1), (4,4,2,1), (5,2,2,1), (5,3,1,1), (5,3,2,1), (5,4,2,1), (6,2,2,1), (6,3,1,1),
(6,3,2,1), (6,4,2,1), (7,3,2,1),  (7,4,2,1),  (8,4,2,1).

It is also possible to have a weighted code in which some of the weights are nega-
tive, as in the 8,4,−2,−1 code shown in Table 1.3-1.   This code has the useful property
of being self-complementing: if a code word is formed by complementing each bit
individually (changing 1's to 0's and 0's to 1's), then this new code word represents
the 9's complement of the digit to which the original code word corresponds.   For
example, 0101 represents 3 in the 8,4,−2,−1 code, and 1010 represents 6 in this code.
In general, if b'

i
  denotes the complement of bi , then a code is self-complementing if,

for any code word b3b2b1b0 representing a digit di , the code word  b'
3b'

2b'
1b'

0 represents
9 − di.   The 2,4,2,1 code of Table 1.3-1 is an example of a self-complementing code
having all positive weights, and the excess-3 code is an example of a code which is self-
complementing but not weighted.   The excess-3 code is obtained from the 8,4,2,1 code
by adding (using binary arithmetic) 0011 (or 3) to each 8,4,2,1 code word to obtain the
corresponding excess-3 code word.

Although 4 bits are sufficient for representing the decimal digits, it is sometimes
expedient to use more than 4 bits in order to achieve arithmetic simplicity or ease in er-
ror detection.   The 2-out-of-5 code shown in Table 1.3-2 has the property that each
code word has exactly two 1's.   A single error which complements 1 of the bits will
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TABLE  1.3-2    Some decimal codes using more than 4
bits.

Decimal
digit 2-out-of-5

Biquinary
5043210

0 00011 0100001
1 00101 0100010
2 00110 0100100
3 01001 0101000
4 01010 0110000
5 01100 1000001
6 10001 1000010
7 10010 1000100
8 10100 1001000
9 11000 1010000

always produce an invalid code word and is therefore easily detected.   This is an un-
weighted code.   The biquinary code shown in Table 1.3-2 is a weighted code in which
2 of the bits specify whether the digit is in the range 0 to 4 or the range 5 to 9 and the
other 5 bits identify where in the range the digit occurs.

1.4 GEOMETRIC REPRESENTATION OF BINARY NUMBERS

An n-bit binary number can be represented by what is called a point in n-
space.   To see just what is meant by this, consider the set of 1-bit binary numbers,
that is, 0 and 1.   This set can be represented by two points in 1-space, i.e., by two
points on a line.   Such a presentation is called a 1-cube  and is shown in Fig.1.4-1b.
(A 0-cube is a single point in 0-space.)

Now consider the set of 2-bit binary numbers, that is, 00, 01, 10, 11 (or, deci-
mally, 0, 1, 2, 3).  This set can be represented by four points (also called vertices, or
nodes) in 2-space. This representation is called a 2-cube and is shown in Fig.1.4-1c.
Note that this figure can be obtained by projecting the 1-cube (i.e., the horizontal line
with two points) downward and by prefixing a 0 to 0 and 1 on the original 1-cube and a
1 to 0 and 1 on the projected 1-cube.   A similar projection procedure can be followed in
obtaining any next-higher-dimensional figure.   For example, the representation for the

Figure  1.4-1   n-Cubes for n  =  0, 1,
2, 3:  (a)  0-cube;  (b)  1-cube;  (c)  2-
cube; (d)  3-cube.
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set of 3-bit binary numbers is obtained by projecting the 2-cube representation of
Fig.1.4-1c.   A 0 is prefixed to the bits on the original 2-cube, and a 1 is prefixed to the
bits on the projection of the 2-cube.   Thus, the 3-bit representation, or 3-cube, is
shown in Fig. 1.4-1d.

A more formal statement for the projection method of defining an n-cube is as
follows:

1. A 0-cube is a single point with no designation.
2. An n-cube is formed by projecting an (n−1)-cube.   A 0 is prefixed to the desig-

nations of the points of the original (n−1)-cube, and a 1 is prefixed to the desig-
nations of the points of the projected (n−1)-cube.

There are 2n  points in an n-cube.   A p-subcube of an n-cube.   (p < n) is de-
fined as a collection of any 2p  points which have exactly (n −p) corresponding bits all
the same.   For example, the points 100, 101, 000, and 001 in the 3-cube (Fig.1.4-1d)
form a 2-subcube, since there are 22  = 4 total points and 3 − 2 = 1 of the bits (the sec-
ond) is the same for all four points.   In general, there are (n!2n−p )/[(n −p)!p!] different
p-subcubes in an n-cube, since there are (Cn

n−p) = (n!/(n −p)!p!) (number of ways of se-
lecting n things taken n −p at a time) ways in which n −p of the bits may be the same,
and there are 2n −p  combinations which these bits may take on. For example, there are
(3!22 )/(2!1!) = 12 1-subcubes (line segments) in a 3-cube, and there are (3!21 )/(1!2!) =
6 2-subcubes ("squares") in a 3-cube.

Besides the form shown in Fig.1.4-1, there are two other methods of drawing an
n-cube which are frequently used.   The first of these is shown in Fig.1.4-2 for the 3-
and 4-cubes.   It is seen that these still agree with the projection scheme and are merely a
particular way of drawing the cubes.   The lines which are dotted are usually omitted for
convenience in drawing.

If in the representation of Fig.1.4-2 we replace each dot by a square area, we have
what is known as an n-cube map.   This representation is shown for the 3- and 4-
cubes in Fig. 1.4-3.   Maps will be of considerable use to us later.   Notice that the
appropriate entry for each cell of the maps of Fig.1.4-3 can be determined from the
corresponding row and column labels.

It is sometimes convenient to represent the points of an n-cube by the decimal
equivalents of their binary designations.   For example, Fig.1.4-4 shows the 3- and 4-
cube maps represented this way.   It is of interest to note that, if a point has the decimal
equivalent N i  in an n-cube, in an (n + 1)-cube this point and its projection (as defined)
become N i  and N i  + 2n .

Figure 1.4-2  Alternative representa-
tions: (a) 3-cube; (b) 4-cube.
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Figure 1.4-3  n-Cube maps for n = 3
(a) and n = 4 (b).

1.4-1 Distance

A concept which will be of later use is that of the distance between two points on an n-
cube.   Briefly,  the distance between two points on an n-cube is simply the number of
coordinates (bit positions) in which the binary representations of the two points differ.
This is also called the Hamming distance.   For example,  10110 and 01101 differ in
all but the third coordinate (from left or right).  Since the points differ in four coordi-
nates,  the distance between them is 4.   A more formal definition is as follows:

First, define the mod 2 sum of two bits, a  ⊕ b, by

0 ⊕ 0 = 0                  1 ⊕ 0 = 1

0 ⊕ 1 = 1                  1 ⊕ 1 = 0
That is,   the sum is 0 if the 2 bits are alike,   and it is 1 if the 2 bits are different.   Now
consider the binary representations of two points,   Pi   =  (an-1 an−2 …a 0) ) and  Pj  =
(bn−1 bn−2 …b0)), on the n-cube.   The mod 2 sum of these two points is defined as

Pk = Pi  ⊕  Pj  =  (an−1  ⊕ bn−1 , an−2  ⊕ bn−2 , … a0  ⊕ b0)

This sum Pk   is the binary representation of another point on the n-cube. The number of
1's in the binary representation Pi  is defined as the weight of Pi  and is given the sym-
bol |Pi  |. Then the distance (or metric) between  two points is defined as

D(Pi , Pj ) = | Pi  ⊕ Pj  |
The distance function satisfies the following three properties:

D(Pi , Pj    ) = 0             if and only if Pi   =  Pj

D(Pi , Pj  ) = D(Pj , Pi , ) > 0           if Pi    /= Pj

D(Pi , Pj  ) + D(Pj , Pk  )  >   D(Pi , Pk   )              Triangle inequality

Figure 1.4-4   Decimal labels in n-cube
maps:  (a) 3-cube map;  (b) 4-cube map.
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To return to the more intuitive approach, since two adjacent points (connected by
a single line segment) on an n-cube form a 1-subcube, they differ in exactly one coordi-
nate and thus are distance 1 apart.   We see then that, to any two points which are dis-
tance D apart, there corresponds a path  of D connected line segments on the n-cube
joining the two points. Furthermore, there will be more than one path of length D con-
necting the two points (for D > 1 and n >  2), but there will be no path shorter than
length D connecting the two points.   A given shortest path connecting the two points,
thus, cannot intersect itself, and D + 1 nodes (including the end points) will occur on
the path.

1.4-2  Unit-distance Codes

In terms of the geometric picture, a code is simply the association of the decimal inte-
gers (0,1,2,...) with the points on an n-cube.   There are two types of codes which are
best described in terms of their geometric properties.   These are the so-called unit-
distance codes and error-detecting and error-correcting codes.

A unit-distance code is simply the association of the decimal integers (0,1,2,. . . )
with the points on a connected path in the n-cube such that the distance is 1 between the
point corresponding to any integer i and the point corresponding to integer i + 1 (see
Fig. 1.4-5).  That is, if Pi  is the binary-code word for decimal integer i, then we must
have

D(Pi  , Pi  + 1) = 1      i = 0, 1, 2, …

Unit-distance codes are used in devices for converting analog or continuous sig-
nals such as voltages or shaft rotations into binary numbers which represent the magni-
tude of the signal.   Such a device is called an analog-digital converter.   In any
such device there must be boundaries between successive digits, and it is always
possible for there to be some misalignment among the different bit positions at such a
boundary.   For example, if the seventh position is represented by 0111 and the eighth
position by 1000, misalignment could cause signals corresponding to 1111 to be gen-
erated at the boundary between 7 and 8.   If binary numbers were used for such a de-
vice, large errors could thus occur.   By using a unit-distance code in which adjacent
positions differ only in 1 bit, the error due to misalignment can be eliminated.

The highest integer to be encoded may or may not be required to be distance 1
from the code word for 0.   If it is distance 1,  then the path is closed.   Of particular
interest is the case of a closed nonintersecting path which goes through all 2n  points of
the n-cube.   In graph theory such a path is known as a (closed) Hamilton line.   Any
unit-distance code associated with such a path is sometimes called a Gray    code,
although this term is usually reserved for a particular one of these codes.   To avoid

Figure  1.4-5   Path on a 3-cube
corresponding to a unit-distance code.
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TABLE 1.4-1   Unit-dis-
tance code of Fig. 1.4-5

0 000
1 001
2 011
3 010
4 110
5 111
6 101
7 100

confusing terminology,   we shall refer to a unit-distance code which corresponds to a
closed Hamilton line as a closed n code.   This is a unit-distance code containing 2n

code words in which the code word for the largest integer (2n  −  1) is distance 1 from
the code word for the least integer (0).   An open n code is similar except that the
code words for the least and largest integer,  respectively,  are not distance 1 apart.

The most useful unit distance code is the Gray code which is shown in Table 1.4-
2.   The attractive feature of this code is the simplicity of the algorithm for translating
from the binary number system into the Gray code. This algorithm is described by the
expression

gi  = bi  ⊕ bi  + 1

TABLE 1.4-2   The Gray code

Binary Gray

Decimal b3 b2 b1 b0 g3 g2 g1 g0

0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1
2 0 0 1 0 0 0 1 1
3 0 0 1 1 0 0 1 0
4 0 1 0 0 0 1 1 0
5 0 1 0 1 0 1 1 1
6 0 1 1 0 0 1 0 1
7 0 1 1 1 0 1 0 0
8 1 0 0 0 1 1 0 0
9 1 0 0 1 1 1 0 1
10 1 0 1 0 1 1 1 1
11 1 0 1 1 1 1 1 0
12 1 1 0 0 1 0 1 0
13 1 1 0 1 1 0 1 1
14 1 1 1 0 1 0 0 1
15 1 1 1 1 1 0 0 0
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Thus, the Gray code word corresponding to 1100 in binary is formed as follows:
g0  = b0  ⊕ b1 = 0 ⊕ 0 = 0

g1  = b1  ⊕ b2 = 0 ⊕ 1 = 1

g2  = b2  ⊕ b3 = 1 ⊕ 1 = 0

g3  = b3  ⊕ b4 = b3 = 1 b4 understood to be 0

1.4-3 Symmetries of the n-Cube

A symmetry of the n-cube is defined to be any one-to-one translation of the binary
point representations on the n-cube which leaves all pairwise distances the same.   If we
consider the set of binary numbers, we see that there are only two basic translation
schemes which leave pairwise distances the same.   (1) The bits of one coordinate may
be interchanged with the bits of another coordinate in all code words.   (2) The bits of
one coordinate may be complemented (i.e., change 1's to 0's and 0's to 1's) in all code
words. Since there are n! translation schemes possible using (1), and since there are 2n

ways in which coordinates may be complemented, there are 2n translation schemes
possible using (2).  Thus, in all there are 2n(n!) symmetries of the n-cube.   This means
that for any n-bit code there are 2n (n!) − 1 rather trivial modifications of the original
code (in fact, some of these may result in the original code) which can be obtained by
interchanging and complementing coordinates.   The pairwise distances are the same in
all these codes.
It is sometimes desired to ennumerate the different types of a class of codes. Two codes
are said to be of the same type if a symmetry of the n-cube translates one code into the
other (i.e., by interchanging and complementing coordinates).  As an example, we
might ask:  What are the types of closed n codes?  It turns out that for n < 4 there is just
one type, and this is the type of the conventional Gray code.   For n = 4, there are nine
types.   Rather than specify a particular code of each type, we can list these types by
specifying the sequence of coordinate changes for a closed path of that type.   On the as-
sumption that the coordinates are numbered (3210), the nine types are shown in Table
1.4-3.

TABLE 1.4-3   Nine different types of unit-distance 4-bit code

   Type

1  (Gray) 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 3
2 1 0 1 3 1 0 1 2 0 1 0 3 0 1 0 2
3 1 0 1 3 0 1 0 2 1 0 1 3 0 1 0 2
4 1 0 1 3 2 3 1 0 1 3 1 0 2 0 1 3
5 1 0 1 3 2 0 1 3 1 0 1 3 2 0 1 3
6 1 0 1 3 2 3 1 3 2 0 1 2 1 3 1 2
7 1 0 1 3 2 0 2 1 0 2 0 3 0 1 0 2
8 1 0 1 3 2 1 2 0 1 2 1 3 0 1 0 2
9 1 0 1 3 2 3 1 0 3 0 2 0 1 2 3 2
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1.5 ERROR-DETECTING AND ERROR-CORRECTING CODES

Special features are included in many digital systems for the purpose of increasing
system reliability.   In some cases circuits are included which indicate when an error has
occurred—error detection—and perhaps provide some information as to where the error
is—error diagnosis.   Sometimes it is more appropriate to provide error correction:
circuits not only detect a malfunction but act to automatically correct   the erroneous
indications caused by it.    One technique used to improve reliability is to build two
duplicate systems and then to run them in parallel,   continually comparing the outputs
of the two systems,   [Burks 62].   When a mismatch is detected,  actions are initiated to
determine the source of the error and to correct it,  [Keister 64]. Another approach uses
three copies of each system module and relies on voter elements to select the correct
output in case one of the three copies has a different output from the other two,  ([von
Neumann 56],  [Lyons 62]).   This technique is called triple modular redundancy
(TMR).   Such costly designs are appropriate either when the components are not
sufficiently reliable [Burks 62] or in systems where reliability is very important as in
real-time applications such as telephony,  [Keister 64],   airline reservations,   [Perry
61], or space vehicles,   [Dickinson 64].

In many other applications where such massive redundancy is not justified it is
still important to introduce some (less costly) techniques to obtain some improvement in
reliability.   A very basic and common practice is to introduce some redundancy in
encoding the information manipulated in the system.   For example,  when the 2-out-of-
5 code is used to represent the decimal digits,  any error in only one bit is easily detected
since if any single bit is changed the resulting binary word no longer contains exactly
two 1's.   While it is true that there are many 2-bit errors which will not be detected by
this code, it is possible to argue that in many situations multiple errors are so much less
likely than single errors that it is reasonable to ignore all but single errors.

Suppose it is assumed that the probability of any single bit being in error is p and
that this probability is independent of the condition of any  other bits. Also suppose that
p  is very much less than one,  (i.e.,  that the components are very reliable).  Then the
probability of all 5 bits representing one digit being correct is P0 = (1−p)5, the
probability of exactly one error is P1 = 5(1−p)4p and the probabilty of two errors is P2 =
10(1−p)3p2 .   Taking the ratio P2/P1= 2p/(1−p) ≅  2p/(1+p) << 1, showing that the
probabilty of a double error is much smaller than that of a single error.   Arguments
such as this are the basis for the very common emphasis on handling only single errors.

It is possible to easily convert any of the 4-bit decimal codes to single-error-
detecting codes by the addition of a single bit−a parity bit as is illustrated for the 8421
code in Table 1.5-1. The parity bit p is added to each code word so as to make the
total number of 1's in the resultant 5-bit word even; i.e., p = b0 ⊕ b1 ⊕ b2 ⊕ b3  If any
one bit is reversed it will change the overall parity (number of 1's) from even to odd and
thus provide an error indication.

This technique of adding a parity bit to a set of binary words is not peculiar to
binary-coded-decimal schemes but is generally applicable. It is common practice to add
a parity bit to all information recorded on magnetic tapes.
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TABLE 1.5-1  8421 code with parity bit added

Decimal 8 4 2 1 Parity,
digit b3 b2 b1 b0 p

0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 1
3 0 0 1 1 0
4 0 1 0 0 1
5 0 1 0 1 0
6 0 1 1 0 0
7 0 1 1 1 1
8 1 0 0 0 1
9 1 0 0 1 0

The 8421 code with a parity bit added is shown plotted on the 5-cube map of
Fig.1.5-1.   Inspection of this figure shows that the minimum distance between any two
words is two as must be true for any single-error-detecting code.

In summary, any single-error-detecting code must have a minimum distance
between any two code words of at least two, and any set of binary words with
minimum distance between words of at least two can be used as a single-error-detecting
code. Also the addition of a parity bit to any set of binary words will guarantee that the
minimum distance between any two words is at least two.

Figure 1.5-1   Five-cube map for
the 8421 BCD code with parity bit p

1.5-1 Single-Error-Correcting Codes

A parity check over all the bits of a binary word provides an indication if one of the bits
is reversed; however,  it provides no information about which bit was changed − all bits
enter into the parity check in the same manner.   If it is desired to use parity checks to
not only detect an altered bit but also to identify the altered bit, it is necessary to resort to
several parity checks − each checking a different set of bits in the word.   For example,
consider the situation in Table 1.5-2 in which there are three bits, M1, M2, and M3,
which are to be used to represent eight items of information and there are two parity
check bits C1  and C2.   The information bits, Mi, are often called message bits and
the Ci  bits check bits. As indicated in the table C1 is obtained as a parity check over
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TABLE 1.5-2 A parity check table

M1 M2 M3 C1 C2

× × ×
× × ×

        C1 = M1 ⊕ M3, C2 = M2 ⊕ M3

bits M1 and M3, while C2  checks bits M2 and M3.
At first glance it might seem that this scheme might result in a single-error-correct-

ing code since an error in M3  alters both parity checks while an error in M1 or M2 each
alters a distinct single parity check. This reasoning overlooks the fact that it is possible
to have an error in a check bit as well as an error in a message bit.   Parity check one
could fail as a result of an error either in message bit M1 or in check bit C1.   Thus in
this situation it would not be clear whether M1 should be changed or not.   In order to
obtain a true single-error-correcting code it is necessary to add an additional check bit as
in Table 1.5-3.

TABLE 1.5-3  Eight-word single-error-correcting code: (a) Parity check table;
(b) parity check equations; (c) Single-error-correcting code

(a) (b)

M1 M2 M3 C1 C2 C3

× × × C1 = M1 ⊕ M3

× × × C2  = M2 ⊕ M3

× × × C3 = M1 ⊕ M2

(c)

` M1 M2 M3 C1 C2 C3

a 0 0 0 0 0 0
b 0 0 1 1 1 0
c 0 1 0 0 1 1
d 0 1 1 1 0 1
e 1 0 0 1 0 1
f 1 0 1 0 1 1
g 1 1 0 1 1 0
h 1 1 1 0 0 0

Inspection of the parity check table in Table 1.5-3a shows that an error in any one
of the check bits will cause exactly one parity check violation while an error in any one
of the message bits will cause violations of a distinct pair of parity checks.   Thus it is
possible to uniquely identify any single error.   The code words of Table 1.5-3c are
shown plotted on the 6-cube map of Fig. 1.5-2. Each code word is indicated by the cor-
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responding letter and all cells distance 1 away from a code word are marked with an ×.
The fact that no cell has more than one × shows that no cell is distance one away from
two code words.   Since a single error changes a code word into a new word distance
one away and each of such words is distance one away from only one code word it is
possible to correct all single errors.   A necessary consequence of the fact that no word
is distance one away from more than one code word is the  fact that the minimum
distance between any pair of code words is three.   In fact the necessary and sufficient
conditions for any set of binary words to be a single-error-correcting code is that the
minimum distance between any pair of words be three.

A single error correcting code can be obtained by any procedure which results in a
set of words which are minimum distance three apart.   The procedure illustrated in
Table 1.5-3 is due to [Hamming 50] and due to its systematic nature is almost univer-
sally used for single-error-codes.

With three parity check bits it is possible to obtain a single-error-correcting code
of more than eight code words.   In fact up to sixteen code words can be obtained.   The
parity check table for a code with three check bits, C1, C2, and C4, and four message
bits M3 , M5, M6 and M7 is shown in Table 1.5-4. The peculiar numbering of the bits
has been adopted to demonstrate the fact that it is possible to make a correspondence
between the bit positions and the entries of the parity check table.   If the blanks in the
table are replaced by 0's and the ×'s by 1's then each column will be a binary number
which is the equivalent of the subscript on the corresponding code bit.   The check bits
are placed in the bit positions corresponding to binary powers since they then enter into
only one parity check making the formation of the parity check equations very straight-
forward.

The fact that Table 1.5-4 leads to a single-error-correcting code follows from the
fact that each code bit enters into a unique set of parity checks.   In fact, the necessary
and sufficient conditions for a parity check table to correspond to a single-error-correct-
ing code are that each column of the table be distinct (no repeated columns) and that

Figure 1.5-2   Six-cube map for the
code of Table 1.5-3c.
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TABLE 1.5-4  Parity check table for a single-error-correcting
code with 3 check bits and 4 message bits

C1 C2 M3 C4 M5 M6 M7

× × × ×
× × × ×

× × × ×

C1 = M3 ⊕ M5 ⊕ M7

C2 = M3 ⊕ M6, ⊕ M7

C4 = M5 ⊕ M6, ⊕ M7

each column contain at least one entry. It follows from this that with K  check bits it is
possible to obtain a single-error-correcting code having at most 2K −1 total bits.1 There
are  2K  different columns possible but the empty column must be excluded leaving 2K

−1 columns.

1.5-2 Double-Error-Detecting Codes

If a code such as that generated by Table 1.5-4 is being used and a double error occurs,
a correction will be carried out but the wrong code word will be produced.   For exam-
ple, suppose that bits C1 and C2 were in error, the first two parity checks would be vio-
lated and it would appear as if message bit M3 had been in error.   Similarly, errors in
bit M3 and M6 would result in violations of the first and third parity checks,2 and an
indication of M5   being in error would be produced.   It is possible to add the ability to
detect double errors as well as correct single errors by means of one addition parity
check over all the bits.   This is illustrated in Table 1.5-5.   Any  single error in the
resulting code will result in the same parity check violations as without P and in addition
will violate the P parity check.   Any double error will not violate the P parity check but
will violate some of the C parity checks thus providing an indication of the double error.

A code that detects double errors as well as correcting single errors must consist
of binary words having a minimum distance of four.   This situation is illustrated by
Fig.1.5-3.   Both the single-error codes and the double-error-detecting codes are in use
in contemporary systems [Hsiao 70].   Many more sophisticated error-correcting codes
have been studied ( [Peterson 72], [Berlekamp 68] ).

1  In Table 1.5-4, K=3, 2K −1=7  and the table does indeed have a total of 7 bits.
2  The two changes in parity check two would cancel.
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TABLE 1.5-5   Parity check table for a code to detect all double
errors and correct all single errors

C1 C2 M3 C4 M5 M6 M7 P

× × × ×
× × × ×

× × × ×
× × × × × × × ×

C1 =M3 ⊕ M5 ⊕M7

C2 =M3 ⊕M6, ⊕M7

C4 =M5 ⊕M6, ⊕M7

P =C1 ⊕C2 ⊕M3 ⊕ C4 ⊕M5 ⊕ M6 ⊕M7

Figure 1.5-3  Fragment of an N-cube
illustrating the distance between code
words in a double-error-detecting, single-
error-correcting code.
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PROBLEMS

1.1 Convert:
(a) (523.1)10   to base 8
(b) (523.1)10   to base 2
(c) (101.11)2  to base 8
(d) (101.11)2  to base 10

(e) (1100.11)2  to base 7
(f) (101.11)2  to base 4
(g) (321.40)6 to base 7
(h) (25/3) 10   to base 2

1.2 In base 10  the highest number which can be obtained by multiplying together two
single digits is 9 × 9 = 81, which can be expressed with two digits.   What is the
maximum number of digits required to express the product of two single digits in
an arbitrary base-b  system?

1.3 Given that (79)10   = (142)b , determine the value of b.

1.4 Given that (301)b   = (I2)b  , where I is an integer in base b and I2  is its square,
determine the value of b.

1.5 Let
  N* =  (n4 n3n2n1n0)* = 2 . 3 . 4 . 5 . n4 + 3 . 4 . 5 . n3 + 4 . 5 . n2 + 5 . n1 +n0

= 120n4  + 60n3   + 20n2  + 5n1  + n0

where
0 < n0   <  4   0 < n1  <  3   0 < n2  <  2   0 < n3  <  1 0 < n4  <  1

with all the ni  positive integers.
(a) Convert (11111)* to base 10.
(b) Convert (11234)* to base 10.
(c) Convert (97)10  to its equivalent (n4 n3n2n1n0)* .
(d) Which decimal numbers can be expressed in the form (n4 n3n2n1n0 )* ?
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1.6 In order to write a number in base 16 the following symbols will be used for the
numbers from 10 to 15:

10  t 12  w 14  u

11  e 13  h 15  f(a) Convert (4tu)16  to
base 10.

(b) Convert (2tfu)16  to base 2 directly (without first converting to  base 10).

1.7 Convert (1222)3 to base 5, (N)5 , using only binary arithmetic:
(a) Convert (1222)3  to (N)2 .
(b) Convert (N)2  to (N)5 .

1.8 Perform the following binary-arithmetic operations:
(a) 11.10 + 10.11 + 111.00 + 110.11 + 001.01 = ?
(b) 111.00 − 011.11 = ?
(c) 011.11 − 111.00 = ?
(d) 111.001 × 1001.1 = ?
(e) 101011.1 + 1101.11 = ?

1.9 Form the radix complement and the diminished radix complement for each of the
following numbers:
(a) (.10111)2

(b) (.110011)2

(c) (0.5231)10

(d) (0.32499)10

(e) (0.3214)6

(f) (032456)7

1.10
(a) Write out the following weighted decimal codes:

(i) 7, 4, 2,  −1
(ii) 8, 4, −2, −1

(iii) 4, 4, 1, −2
(iv) 7, 5, 3, −6
(v) 8, 7, −4, −2

(b) Which codes of part (a) are self-complementing?
(c) If a weighted binary-coded-decimal code is self-complementing, what

necessary condition is placed on the sum of the weights?
(d) Is the condition of part (c) sufficient to guarantee the self-complementing

property? Give an example to justify your answer.

1.11 Write out the following weighted decimal codes:           (7, 3, 1, −2), (8, 4, −3 ,−2),
(6, 2, 2, 1).   Which of these, if any, are self-complementing?

1.12 Sketch a 4-cube, and label the points.   List the points in the p-subcubes for p=2,3.

1.13 Compute all the pairwise distances for the points in a 3-cube.   Arrange these in a
matrix form where the rows and columns are numbered 0,1,...,7, corresponding to
the points of the 3-cube.   The 0-, 1-, and 2-cube pairwise distances are given by
submatrices of this matrix.   By observing the relationship between these matrices,
what  is a scheme for going from the n-cube pairwise-distance matrix to the (n+1)-
cube pairwise-distance matrix?

1.14 What is a scheme for going from the Gray code to the ordinary binary code using
addition mod 2 only?

1.15 For the Gray code, a weighting scheme exists in which the weights associated with
the bits are constant except for sign.The signs alternate with the occurrence of 1's,
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left to right.   What is the weighting scheme?

1.16 List the symmetries of the 2-cube.

1.17 Write out a typical type-6 closed-unit-distance 4 code (Table 1.4-3).

1.18 Write out two open unit-distance 4 codes of different type (i.e., one is not a
symmetry of the other).

1.19 Write out a set of six code words which have and single-error-correcting property.

1.20 A closed error-detecting unit-distance code is defined as follows:  There are k
(k<2n ) ordered binary n-bit code words with the property that changing a single bit
in any word will change the original word into either its predecessor or its successor
in the list (the first word is considered the successor for the last word) or into some
other n-bit word not in the code.   Changing a single bit cannot transform a code
word into any code word other than its predecessor or successor.   List the code
word for such a code with k = 6, n = 3.   Is there more than one symmetry type of
code for these specifications?  Why?
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