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1 Further negative results

After showing that computing the volume of a convex polytope is #P−complete by reducing
#LEXT on V PT we give a further negative result on the approximability of the volume of a
convex body in general. Let K ⊂ Rd be a convex, bounded, closed, and vol(K) > 0. We assume
that K is given by an oracle that gives an answer to the question ”Is q ∈ K?”.

Theorem 1 ([BF87]). Suppose a deterministic polynomial-time algorithm that computes numbers
Vl and Vu for a convex body K ⊆ R such that Vl ≤ vol(K) ≤ Vu using a membership oracle for K.
Then there exists a constant c, such that for every dimension d a convex body with Vu

Vl
> c( d

log d)d

exists.

2 A non-deterministic approximation algorithm

In this section the idea of a FPRAS for the volume of a convex body of [DFK91] is given.

Definition 2. • A polynomial-time randomised approximation scheme (PRAS) for a function
f is a randomised algorithm A which computes for an input instance I and ε > 0, in time
polynomial in n = |I| an output (I) with

Pr [(1− ε)f(I) ≤ A(I) ≤ (1 + ε)f(I)] ≥ 3

4
.

• A polynomial-time randomised approximation scheme ((ε-)FPRAS) is a PRAS that takes
also ε as input and has a running time that is still polynomial in n and 1

ε .

• A ε−δ−FPRAS is a ε-FPRAS that takes δ > 0 as input, has a running time that is polynomial
in n,1ε and log 1

δ , and guarantees a probability of 1− δ instead of 3
4 .

The existence of a ε-FPRAS implies the existence of a ε− δ−FPRAS.
In following we assume that we know balls B and B′ with B′ ⊂ K ⊂ B.

Basic idea: Consider a convex body K with diameter s in the plane and a rectangle R, such
that two opposite sides of R are tangent to K in the endpoints of s, see Figure 2. The volume of K
can be approximated by randomly (uniformly distributed) sampling N points within the bounding
rectangle. If NK is the number of points contained in K, then the ration α = nk

N converges almost

surely to vol(K)

vol(R)
. In this example we also know that vol(R) ≤ 2vol(K). For an convex body in

arbitrary dimension this simple approach does not work since for the standard simplex S we have
vol(S) = 1

d! but the smallest bounding box of S has volume 1, hence the first point contained in S
is sampled after Θ(d!) steps in expectation.
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Figure 1: Bounding rectangle.

Idea: We construct a sequence of convex bodies where B = K0 ⊇ K1 ⊇ · · · ⊇ Kq = K with the
following properties:

1. There exists a constant c such that vol(Ki)

vol(Ki−1)
≤ c. This ratio can be approximated for i = 1

by the idea before.

2. q is polynomial in α, then vol(K) = vol(K0)Π
q
i=1

vol(Ki−1)

vol(Ki)
.

The problem here is the sampling the uniformly distributed points in Ki.

2.1 Finding random points in a convex body given by a membership oracle

For technical reasons we consider the body K(α) = K ⊕ αBd, the Minkowski sum of K and a
d-dimensional ball of radius α.

Idea: We lay a grid of width δ over a convex body K. Now we start with one point in the grid
and start with a ”(natural) random walk” on the cubes. After a sufficiently long walk we take the
endpoint:

Figure 2: Grid over K.

• start at any cube in K(α).
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• at each step within some cube C: stay in C or go to a neighbouring cube C ′, i.e. a cube that
shares a facet by choosing a facet of C (probability 1

2d each). If C ′ intersects K(α) go to C ′,
otherwise stay in C.

Note that it is not really decidable whether C ′ intersects K(α), therefore only ”weak intersection”
is calculated by an algorithm by Grötschel, Lovász and Schrijver from [GLS88]. Additionally, the
”natural random walk” is modified, such that the probability of staying within the cell C is larger
or equal than 1

2 . Hence, pick the cells adjacent to one facet of C with probability 1
4d and C with

probability 1
2 .

3 Markov chain

It consists of a set S (in our case S is finite) of states and transition probabilities.
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Figure 3: Example Graph

pij denotes the probability to go to state j in the next step if being in state i.

This gives a k × k matrix P = (pij)1≤i,j≤k with 0 ≤ pij ≤ 1 and
∑k

j=1 pij = 1∀i(
0.6 0.4
0.7 0.3

)

Figure 4: Example Matrix

We have discrete time steps t = 1, 2, 3, ..., in which the Markov chain may change its state according
to transition probabilities, and some start state X0 ∈ {1, ..., k}.
The probability of going from i to j in 2 steps is given by: p

(2)
ij =

∑k
l=1 PilPlj = i-j-entry of P 2

in general for t steps: p
(t)
ij = (P t)ij

We define the following notation:

r
(t)
ij : probability that, starting in state i, state j is reached for the first time after t steps

fij =
∑∞

t=0 r
(t)
ij : probability that, starting from i ,j will ever be reached

hij =
∑∞

t=0 tr
(t)
ij : expected number of steps until j is reached starting from i for the first time

q(t): probability distribution after t steps, s.t. starting with probability distribution vector q(0) for
X0, q

(t+1) = q(t) · P → q(t) = q(0) · P t
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transient state: A state i with fii < 1

persistent state: A state i with fii = 1

null-persistent state: A state i witch is persistent and hii =∞

irreducible Markov chain: ⇔ corresponding graph is strongly connected (all edges have prob-
ability > 0)

periodicity of a state i: maxT ∈ N such that there exists an initial distribution vector (proba-

bility distribution for the states) q(0) ∈ Rk,∃a ∈ N such that {t|q(t)i > 0} ⊆ {a+T ·j|j = 0, 1, }
if T > 1 the state i is periodic. Otherwise it is aperiodic.

ergodic state aperiodic and non null-persistent.

ergodic Markov chain ⇔ all states are ergodic

Definition 3. A Stationary distribution of a Markov chain with the Matrix P is a distribution

π ∈ Rk with π = πP πT is the eigenvector of P T to eigenvalue 1.

Theorem 4. any irreducible finite aperiodic MC has the following properties.

1. it is ergodic

2. there exists a unique stationary distribution π such that πi > 0∀i

3. fii = 1, hii = 1
πi

4. N(i, t) number of times state i is visited in t steps limt→∞
N(i,t)
t = πi

important property: if limt→∞ πj∀i, j converges quickly, we call it rapidly mixing Markov chain.

4 Application to random walk

The random walk in the algorithm is a Markov chain.

• The random walk is irreducible (HOMEWORK!),

• aperiodic,

• ergodic,

• P is symmetric (all πj are equal) and regular ⇒ P is time reversible (Pijπi = Pjiπj)

Theorem 5 (Jerrum/Sinclair 1988). A Markov chain with the above properties is rapidly mixing.

Concretely: |p(t)i − πj | ≤ (1− 1
1017d19

)t

e.g. we choose t = (1017 · d19) · k then the term becomes (1e )k
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