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1 Further negative results

After showing that computing the volume of a convex polytope is #P—complete by reducing
#LEXT on VPT we give a further negative result on the approximability of the volume of a
convex body in general. Let K C R¢ be a convex, bounded, closed, and vol(K) > 0. We assume
that K is given by an oracle that gives an answer to the question "Is ¢ € K77

Theorem 1 ([BF87]). Suppose a deterministic polynomial-time algorithm that computes numbers
Vi and V,, for a convex body K C R such that Vi < vol(K) <V, using a membership oracle for K.
Then there exists a constant ¢, such that for every dimension d a convex body with % > c(ﬁ)d

exists.

2 A non-deterministic approximation algorithm

In this section the idea of a FPRAS for the volume of a convex body of [DFK91] is given.

Definition 2. e A polynomial-time randomised approximation scheme (PRAS) for a function
f is a randomised algorithm A which computes for an input instance I and € > 0, in time
polynomial in n = |I| an output (I) with

=]

Pril—ef(I) <A(I) < (1+ef()] =

e A polynomial-time randomised approximation scheme ((e-)FPRAS) is a PRAS that takes
also € as input and has a running time that is still polynomial in n and %

o Ae—)—FPRAS is a e-FPRAS that takes § > 0 as input, has a running time that is polynomial
mn n,% and log %, and guarantees a probability of 1 — 0 instead of %.

The existence of a e-FPRAS implies the existence of a ¢ — —FPRAS.
In following we assume that we know balls B and B’ with B’ ¢ K C B.

Basic idea: Consider a convex body K with diameter s in the plane and a rectangle R, such
that two opposite sides of R are tangent to K in the endpoints of s, see Figure 2. The volume of K
can be approximated by randomly (uniformly distributed) sampling N points within the bounding

rectangle. If Ng is the number of points contained in K, then the ration a = % converges almost
surely to Y/?)ll((g)) . In this example we also know that vol(R) < 2vol(K). For an convex body in

arbitrary dimension this simple approach does not work since for the standard simplex S we have
vol(S) = % but the smallest bounding box of S has volume 1, hence the first point contained in S
is sampled after ©(d!) steps in expectation.



Figure 1: Bounding rectangle.

Idea: We construct a sequence of convex bodies where B = Ky 2 K1 2 --- O K, = K with the
following properties:

vol(K;)

Vol 1) < c. This ratio can be approximated for ¢ = 1

1. There exists a constant ¢ such that
by the idea before.

. 1 1K
2. ¢ is polynomial in «, then vol(K) = VOl(Ko)ngl%.

The problem here is the sampling the uniformly distributed points in K;.

2.1 Finding random points in a convex body given by a membership oracle

For technical reasons we consider the body K(a) = K @ aBy, the Minkowski sum of K and a
d-dimensional ball of radius a.

Idea: We lay a grid of width 0 over a convex body K. Now we start with one point in the grid
and start with a ”(natural) random walk” on the cubes. After a sufficiently long walk we take the
endpoint:

Figure 2: Grid over K.

e start at any cube in K(«).



e at each step within some cube C: stay in C or go to a neighbouring cube C’, i.e. a cube that
shares a facet by choosing a facet of C' (probability o; each). If C” intersects K (a) go to C’,
otherwise stay in C'.

Note that it is not really decidable whether C” intersects K («), therefore only "weak intersection”
is calculated by an algorithm by Grotschel, Lovész and Schrijver from [GLS88]. Additionally, the
“natural random walk” is modified, such that the probability of staying within the cell C is larger
or equal than % Hence, pick the cells adjacent to one facet of C' with probability 4171 and C with
probability %

3 Markov chain

It consists of a set S (in our case S is finite) of states and transition probabilities.
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Figure 3: Example Graph

pi; denotes the probability to go to state j in the next step if being in state i.
This gives a k x k matrix P = (p;;)1<i j<k with 0 < p;; <1 and Z?Zl pij = 1Vi
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Figure 4: Example Matrix

We have discrete time steps t = 1,2, 3, ..., in which the Markov chain may change its state according
to transition probabilities, and some start state Xy € {1, ..., k}.

(2) _ Zle P, P; = i-j-entry of P2

The probability of going from ¢ to j in 2 steps is given by: Dy

in general for ¢ steps: pg) = (PY);
We define the following notation:

0

: probability that, starting in state ¢, state j is reached for the first time after ¢ steps
fii = >0 rg.): probability that, starting from ¢ ,j will ever be reached

hij = 10 trg): expected number of steps until j is reached starting from 7 for the first time

¢ probability distribution after t steps, s.t. starting with probability distribution vector ¢(©) for
Xo, ¢t =4O . p N g = ¢ . pt



transient state: A state ¢ with f;; < 1
persistent state: A state ¢ with f; =1
null-persistent state: A state ¢ witch is persistent and h;; = oo

irreducible Markov chain: < corresponding graph is strongly connected (all edges have prob-
ability > 0)

periodicity of a state i: maxT € N such that there exists an initial distribution vector (proba-
bility distribution for the states) ¢(*) € R¥, 3a € N such that {t|qz-(t) >0} C{a+T-4]j=0,1,}
if T > 1 the state i is periodic. Otherwise it is aperiodic.

ergodic state aperiodic and non null-persistent.

ergodic Markov chain < all states are ergodic

Definition 3. A Stationary distribution of a Markov chain with the Matriz P is a distribution
7w € RF with m = wP 7T is the eigenvector of PT to eigenvalue 1.

Theorem 4. any irreducible finite aperiodic MC has the following properties.
1. it is ergodic
2. there exists a unique stationary distribution m such that m; > 0Vi

8. fi=1hy==L

e

4. N(i,t) number of times state i is visited in t steps lim;_,o0 NGt

£ T

important property: if lim;_,o m;Vi, j converges quickly, we call it rapidly mizing Markov chain.

4 Application to random walk

The random walk in the algorithm is a Markov chain.
e The random walk is irreducible (HOMEWORK!),
e aperiodic,
e ergodic,
e P is symmetric (all 7; are equal) and regular = P is time reversible (Pj;m; = Pj;m;)

Theorem 5 (Jerrum/Sinclair 1988). A Markov chain with the above properties is rapidly mizing.
Concretely: ]pz(.t) — 75 < (1 — 15rrqm0)°

e.g. we choose t = (1017 - d'?) - k then the term becomes (%)k
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