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Definition 1. (#LEXT)
given: a partial order (by Hasse diagram)
compute: # of linear extensions

Figure 1: The number of linear extensions for this partial order is 30

Theorem 2. (Brightwell, Winkler, 1991)
#LEXT is #P-complete.

Proof. We will proof the theorem by reduction from #SAT.
Let I be an Instance for #SAT with m variables and n clauses. Let M = 7n+m.
Define the partial order PI :

• for each variable x there is a vertex hx

• for each clause c there are 7 vertices c1, . . . , c7

• if c has variables x, y, z (negated or not), then the vertices in PI are connected as in figure 2

c1 c2 c3 c4 c5 c6 c7

hx hy hz

Figure 2: The relations in PI corresponding to a clause c involving the variables x, y, z

PI has size M .
Let LI be the number of linear extensions of PI . We can determine LI by a call to #LEXT-oracle
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O(M), where O(M) denotes an oracle call to partial order of size M .
Let S0 =

{
p | p prime,M < p < M2

}
. Then

∏
S0

excercise
≥ M ! · 2M > M ! · 2m

Let S = {p ∈ S0 | p - LI}, then ∏
S > 2m

since LI ≤M !

Let S(I) be the number of satisfying assignments for I.
idea:

compute S(I) mod p for all p ∈ S

From those values:

compute S(I) by Chinese remainder theorem

For each p ∈ S, construct a partial order QI(p) as in figure 3:

a

U0 . . . Uy Uz. . . . . .Ux

x x̄ y ȳ z z̄

V0 Vc′ Vc. . .

c1 c3 c8

c2

b

. . .

Figure 3: The partial order QI(p). The rectangles represent antichains of size p − 1. The only
clause vertices shown here are those corresponding to the clause c = x ∨ y ∨ z̄

• the Ui and Vj are antichains of p− 1 vertices each
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• there is a box Ui for each variable and a box Vj for each clause and additionally U0 and V0

• the vertices for x, x̄, y, ȳ, z, z̄ etc. are called literal vertices

• the vertices for the ci are called clause vertices

• each clause vertex corresponds to an assignment for x, y, z and is connected to the three
literals (of the variables in clause c) that are true in this assignment

• the one clause vertex above b is the one that is connected with the literals of c

• the part shown in the figure for the clause c = x ∨ y ∨ z̄ is constructed for each clause c.

A linear extension ”≤” of QI(p) has the form:

B︸︷︷︸
bottom part

≤ a ≤ M︸︷︷︸
middle part

≤ b ≤ T︸︷︷︸
top part

Let ϕ be a configuration Bϕ, Mϕ, Tϕ of QI(p) into B,M, T .
If Pϕ, the partial order according to ϕ, extends QI(p), then the number of linear extensions of
QI(p)

N (QI(p)) =
∑
conf ϕ

N (Pϕ)

and

N (Pϕ) = N
(
Pϕ
B

)
·N
(
Pϕ
M

)
·N
(
Pϕ
T

)
where Pϕ

B is the bottom part of Pϕ, Pϕ
M the middle part and Pϕ

T the top part.

Definition 3. A configuration ϕ is called feasible, iff

p - N
(
Pϕ
B

)
, p - N

(
Pϕ
M

)
Lemma 4. Let ϕ be a feasible configuration for QI(p).

(a) Bϕ contains exactly one literal vertex per variable and

N
(
Pϕ
B

)
=

(p (m+ 1)− 1)!

pm
6≡ 0 mod p

(b) Mϕ contains no literal vertex and exactly one clause vertex per clause and

N
(
Pϕ
M

)
=

(p (n+ 1)− 1)!

pn
6≡ 0 mod p

Proof. (a) ϕ feasible ⇒ Pϕ
B contains antichain U = U0 ∪

⋃
Ux of size (p− 1)(m+ 1).

Within the bottom part Bϕ: U0 is isolated and for every x Ux is isolated if x and x̄ are not in
Bϕ. Suppose ∃ one isolated Ux ⇒ r ≥ p − 1 isolated vertices in Bϕ. In a linear extension of
Bϕ: k · (k − 1) · . . . · (k − r + 1) possibilities to place them (where k = |Bϕ|). This number must
divide N

(
Pϕ
B

)
. Since ϕ is feasible ⇒ p - N

(
Pϕ
B

)
⇒ no multiple of p is a factor in the product

k · (k − 1) · . . . · (k − r + 1). It follows:
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1. r = p− 1

2. for each variable x: the vertex/vertices for x or for x̄ are in Bϕ

3. k ≡ −1 mod p

For k′ = number of literal vertices in Bϕ:

k = (p− 1)(m+ 1)︸ ︷︷ ︸
U -blocks

+k′ | take mod p

−(m+ 1) + k′ ≡ −1 mod p

−m+ k′ ≡ 0 mod p

k′ ≡ m mod p

Since p > m and m
2.
≤ k′ ≤ 2m,

k′ = m

i.e., exactly one literal vertex per variable is in Bϕ.
Pϕ
B looks like in figure 4.

. . .
p− 1 vertices of U0

. . .
p− 1 vertices of Ux

. . .
p− 1 vertices of Uz

. . .

x or x̄ z or z̄

m times

Figure 4: Pϕ
B

With problem three from the third problem set follows:

N
(
Pϕ
B

)
=

(p (m+ 1)− 1)!

pm

In the numerator, there is m times the factor p, and this is divided by pm, therefore there is no
more multiple of p in the number.
(b) excercise!

Lemma 5. The number S(I) of satisfying assignments of I
= the number of feasible configurations of QI(p) for any p ∈ S.

Proof. We construct a mapping h : assignments → configurations as follows:
given an assignment α, construct configuration ϕ = h(α):

• the literal vertices for the literals that are satisfied are placed in Tϕ and the others in Bϕ
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• the clause vertices c1, . . . , c8 corresponding to literal combinations whose ∨ is 1 (true) are
placed in Tϕ, the others in Mϕ

• (Ux in Bϕ, Vc in Mϕ)

Claim 6. α is satisfying for I ⇔ h(α) is feasible

Proof. ”⇐”: ϕ = h(α) is feasible
L.4(a)⇒ for each variable x one literal hx is in Tϕ and the other,

lx, is in Bϕ, by construction: α (hx) = 1 and α (lx) = 0. We have to show that α is satisfying.
Assume, α is not, there exists a clause C that is not satisfied. The literals in C are all set to false
by α, therefore the clause vertex ci, which corresponds exactly to the literals of C is placed in Mϕ

(by construction of h). So it‘s not above b.  
”⇒”: look at proof of Lemma 4.

h restricted to satisfying assignments is a bijection to the feasible configurations. We show that
the inverse mapping h−1 exists: by Lemma 4: for each variable one literal hx is placed in Tϕ, the
other, lx, in Bϕ. So α (hx) = 1. Therefore, α is a satisfying assignment, because if not, one clause
C is not satisfied, then . . . (as above)  

Observation: ϕ feasible ⇒ Pϕ
T has 7 clause vertices, each one is above at least one of hx, hy, hz.

⇒ Pϕ
T is isomorphic to PI from the beginning, see figure 2.

It follows:

N (Pϕ) = N
(
Pϕ
B

)
·N
(
Pϕ
M

)
·N
(
Pϕ
T

)
=

(p (m+ 1)− 1)!

pm
· (p (n+ 1)− 1)!

pn
· LI =: N0

Since if ϕ is not feasible, then N (Pϕ) has p as a factor, it follows:

N (QI(p)) ≡
∑

ϕ feasible

N (Pϕ) mod p

≡ N0 · (# feasible configurations of QI(p)) mod p
L.5≡ N0 · S(I) mod p for all p ∈ S

From this: determine S(I) mod p:

• compute N0 by one oracle call to determine LI ; the other terms in the definition of N0 can
be computed in polynomial time

• compute N−10︸︷︷︸
standard techniques

· N (QI(p))︸ ︷︷ ︸
oracle call O(M3)

≡ S(I) mod p

So for each p ∈ S: determine S(I) mod p this way. For this values determine S(I), since∏
p∈S

p
seen before

> 2m = # all possible assignments ≥ S(I),
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by chinese remainder theorem.
———
Chinese remainder theorem (Sun Tzu, 3rd century A.D.)
Suppose p1, . . . , pk are (pairwise relatively) prime. Then the congruence equalities

x ≡ a1 mod p1

x ≡ a2 mod p2
...

x ≡ ak mod pk

have exactly one solution x ∈ {0, . . . , p1 · p2 · . . . · pk − 1}.
———
All computations are done with numbers whose size (# of bits) is polynomial in M :

largest number: N (QI(p)) ≤
(
O
(
M3
))

! <
(
cM3

)cM3

for some constant c

# of bits: ≤ log
((
cM3

)cM3)
= O

(
M3 logM3

)

Definition 7. (VCP)
Given a convex polytope (H-polytope)
Compute its volume

Theorem 8. VCP is #P-hard.

Proof. We will proof the theorem by reduction from #LEXT.
Let π be a partial order on elements x1, x2, . . . , xd.
The order polytope of the partial order pi is defined as an intersection of the following set of
halfspaces:

{xi − xj ≥ 0|(xi, xj) ∈ π}
where 0 ≤ xi ≤ 1 for all i = 1, 2, . . . , d.
A linear extension satisfies 0 ≤ xi1 ≤ xi2 ≤ . . . ≤ xid ≤ 1 so that the partial order is preserved.
Each inequality defines a halfspace and all these d + 1 inequalities define the intersection of d + 1
halfspaces which is a simplex in Rd.
All these simplices have the same volume and their interiors are disjoint. That is, they do not
intersect but may share boundaries. Their union is the order polytope itself.
Therefore:

Vol(order polytope) = #simplices ·Vol(one simplex)

= (# linear extensions of π) · 1

d!

We can compute the number of linear extensions of a partial order π by an oracle call to VCP.

⇓
#LEXT ≤

reducible
VCP
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