L ecture Overview

* Introduction to Linux process scheduling
— Policy versus agorithm
— Linux’ overall process scheduling objectives
» Timesharing
* Dynamic priority
* Favor I/O-bound process
— Linux’ scheduling algorithm
* Dividing time into epochs
» Remaining quantum as process priority
» When scheduling occurs

Operating Systems- May 17, 2001

L inux Process Scheduling Policy

» First we examine Linux’ scheduling policy
— A scheduling policy isthe set of decisions you make
regarding scheduling priorities, goals, and objectives
— A scheduling algorithm is the instructions or code that
implements a given scheduling policy
» Linux has several, conflicting objectives
— Fast process response time
— Good throughput for background jobs
— Avoidance of process starvation
— etc.




L inux Process Scheduling Policy

* Linux uses atimesharing technique
— We know that this means that each processis assigned a
small quantum or time slice that it is alowed to execute

» Thisrelies on hardware timer interrupts and is completely
transparent to the processes

 Linux schedule process according to a priority
ranking, thisisa*“goodness’ ranking
— Linux usesdynamic priorities, i.e., priorities are adjusted
over time to eliminate starvation

* Processes that have not received the CPU for along time get
their priorities increased, processes that have received the CPU
often get their priorities decreased

L inux Process Scheduling Policy

» We can classify processes using two schemes
— CPU-bound versus |/O-bound
» Welearned about thisin previous lectures
— Interactive versus batch versusreal-time

» We have talked about these concepts in previous lectures, so
they should be relatively self-explanatory

— These classifications are somewhat independent, e.g., a
batch process can be either 1/0-bound or CPU-bound
 Linux recognizes real-time programs and assigns them
high priority, but thisis only soft real-time, like
streaming audio

* Linux does not recognize batch or interactive
processes, instead it implicitly favors 1/0O-bound
processes




L inux Process Scheduling Policy

* Linux uses process preemption, a process is preempted
when
— Itstime quantum has expired

— A new process enters TASK_RUNNING state and its priority is
greater than the priority of the currently running process

* The preempted process is not suspended, it is still in the ready
queue, it simply no longer has the CPU
» Consider atext editor and a compiler
— Sincethe text editor is an interactive program, its dynamic priority
is higher than the compiler
— Thetext editor will be block often since it iswaiting for I/0

— When the I/O interrupt receives a key-press for the editor, the
editor is put on the ready queue and the scheduler is called since
the editor’ s priority is higher than the compiler

— The editor gets the input and quickly blocks for more 1/0

L inux Process Scheduling Policy

» Determining the length of the quantum
— Should be neither too long or too short
— If too short, the overhead caused by process switching becomes
excessively high
— If too long, processes no longer appear to be executing
concurrently
* For Linux, long quanta do not necessarily degrade response
time for interactive processes because their dynamic priority
remains high, thus they get the CPU as soon as they need it
* For long quanta, responsiveness can degrade in instances
where the scheduler does not know if a processis interactive
or not, such aswhen a processis newly created
— Thefor Linux is the longest possible quantum without
affecting responsiveness; this turns out to be about 20 “clock
ticks’ or 210 milliseconds




Linux Process Scheduling Algorithm

* The Linux scheduling algorithm is not based on a
continuous CPU time axis, instead it divides the CPU

time into epochs
— Anepoch isadivision of time or a period of time
— Inasingle epoch, every process has a specified time quantum that
is computed at the beginning of each epoch
* Thisisthe maximum CPU time that the process can use during
the current epoch
— A process only uses its quantum when it is executing on the CPU,
when the process iswaiting for 1/0O its quantum is not used
» Asaresult, a process can get the CPU many timesin one
epoch, until its quantum is fully used
— An epoch ends when all runnable processes have used all of their
quantum
» The anew epoch starts and all process get a new quantum

Linux Process Scheduling Algorithm

* When does an epoch end?

| mportant!

— An epoch ends when al processesin the ready queue have
used their quantum

— This does not include processes that are blocking on some
wait queue, they will still have quantum remaining

— The end of an epoch is only concerned with processes on the
ready queue




Linux Process Scheduling Algorithm

» Calculating process quantafor an epoch

— Each processisinitially assigned a base time quantum, as
mentioned previoudly it is about 20 “clock ticks’

— If aprocess usesits entire quantum in the current epoch,
then in the next epoch it will get the base time quantum
again

— If aprocess does not use its entire quantum, then the unused
guantum carries over into the next epoch (the unused
guantum is not directly used, but a“bonus’ is calculated)

« Why? Process that block often will not use their quantum; this
is used to favor 1/0-bound processes because thisvalue is used
to calculate priority

— When forking a new child process, the parent process
remaining quantum divided in half; half for the parent and
half for the child

Linux Process Scheduling Algorithm

» Selecting a process to run next
— The scheduler considers the priority of each process
— There are two kinds of priorities

o Static priorities - these are assigned to real-time processes and
range from 1 to 99; they never change

* Dynamic priorities - these apply to all other processesand it is
the sum of the base time quantum (also called the base
priority) and the number of “clock ticks’ left in the current
epoch

— The static priority of real-time processis aways higher than
the dynamic priority of conventional processes

» Conventional processes will only execute when there are no
real-time processes to execute




Linux Process Scheduling Algorithm

» Scheduling data in the process descriptor

— The process descriptor (t ask_st ruct in Linux) holds
essentialy of the information for a process, including
scheduling information

— Recall that Linux keepsalist of all processt ask_structs
and alist of all ready processt ask_structs

— The next two slides describe the relevant scheduling fields in
the process descriptor

Linux Process Scheduling Algorithm

» Each process descriptor (t ask st ruct) contains
the following fields
— need_r esched - thisflag is checked every time an
interrupt handler completes to decide if rescheduling is
necessary
— policy - the scheduling class for the process
* For rea-time processes this can have the value of
— SCHED_FI FO- firgt-in, first-out with unlimited time quantum
— SCHED_RR - round-robin with time quantum, fair CPU usage
* For al other processesthe valueis
— SCHED_OTHER
* For processes that have yielded the CPU, the value is
— SCHED _YI ELD




Linux Process Scheduling Algorithm

* Process descriptor fields (con’t)

—rt_priority -thestatic priority of areal-time process,
not used for other processes

— priority -thebasetime quantum (or base priority) of the
process

— count er - the number of CPU ticks left in its quantum for
the current epoch

» Thisfield isupdated every clock tick by
updat e_process_ti nmes()

— Thepriority andcount er fieldsare used to for time-
sharing and dynamic priorities in conventional processes,
for only time-sharing in SCHED_RR real-time processes, and
arenot used at all for SCHED_FI FOreal-time processes

Linux Process Scheduling Algorithm

* Process descriptor fields (con’t)

| mportant!

— Just in case you missed it in the last bullet of the last dlide,
thepriority andcount er fieldsare used to for
calculating the dynamic priority of conventional processes

» These two fields are added together to get the current dynamic
priority of a process when searching for a process to schedule

» These two fields are a so used when assigning new quanta at
the end of an epoch; if a process has not used its quantum then
it is probably an 1/0-bound process and will get a bonus added
to its quantum for the next epoch

— Thisraises the priority of interactive processes over time




Linux Process Scheduling Algorithm

» Scheduling actually occursinschedul e()
— Its objectiveisto find a process in the ready queue then
assign the CPU to it
— Itisinvoked in two ways
« Direct invocation
* Lazy invocation

Linux Process Scheduling Algorithm

 Direct invocation of schedul e()

— Occurs when the current processis going to block because it
needs to wait for a necessary resource
» The current processis taken off of the ready queue and is
placed on the appropriate wait queue; its state is changed to
TASK | NTERRUPTI BLE or TASK _UNI NTERRUPTI BLE
— Once the needed resource becomes available, the processis
immediately woken up and remove from the wait queue




Linux Process Scheduling Algorithm

» Lazy invocation of schedul e()

— Occurswhen

* The current process has used up its quantum; thisis checked in
updat e_process_ti nmes()

* A processisadded to the ready queue and its priority is higher
than the currently executing process; this check occursin
wake_up_process()

» A processcalssched_yi el d()
— Lazy invocation used theneed_r esched flag of the
process descriptor and will causeschedul e() tobe
called later

Linux Process Scheduling Algorithm

» Actions performed by schedul e()

— First it runs any kernel control paths that have not completed
and other uncompleted house-keeping tasks
* Remember, the kernel is not preemptive, so it cannot switch to
another processif aprocessis aready in the kernel or if the
kernel isin the middle of doing something else
— If the current processis SCHED _RR and has used all of its
guantum, then it is given a new quantum and placed at the
end of the ready queue
— If the processis not SCHED_RR, then it is removed from the
ready queue




Linux Process Scheduling Algorithm

» Actions performed by schedul e() (con't)

— It scans the ready queue for the highest priority process
* It calculates the priority using thegoodness() function

* It may not find any processes that are “good” when all
processes on the ready queue have used up their quantum (i.e.,
al haveazerocount er field)

— Inthis case it must start a new epoch by assigned a new
guantum to all processes as described on a previous slide (both
running and blocked processes this allows us to favor 1/0O-bound
processes)

« If ahigher priority process was found, then the scheduler
performs a process switch

Linux Process Scheduling Algorithm

* How good is arunnable process?
— Usesgoodness() todetermine priority
* (goodness == -1000) - do not select process
* (goodness == 0) - process has exhausted quantum
* (0 < goodness < 1000) - conventional process with quantum
* (goodness >= 1000) - real-time process
— goodness() isessentialy equivalent to
if (p->policy != SCHED OTHER)
return 1000 + p->rt_priority;
if (p->counter == 0)
return O;
if (p->mm == prev->mm
return p->counter + p->priority + 1;
return p->counter + p->priority;

an



Linux Process Scheduling Algorithm

e Linux scheduler issues
— Does not scale very well as the number of process grows
because it has to recompute dynamic priorities
 Triesto minimize this by computing at end of epoch only
* Large numbers of runnable processes can slow response time
— Predefined quantum is too long for high system loads
— 1/0O-bound process boosting is not optimal

» Some 1/O-bound processes are not interactive (e.g., database
search or network transfer)

— Support for real-time processes is weak

Review of Lectures So Far

e Computer hardware

— In general, we can think of the CPU asasmall, self-
contained computer
* It hasinstructions for performing mathematical operations
* It has asmall amount of storage space (its registers)
» We can feed instructions to the CPU one at atime and use it to
perform complex calculations
— Thisisthe ultimate in “interactive” operation; the user does
everything
— It would be better if there was some way to give the CPU alot
of instructions al at once, rather than one at atime

1



Review of Lectures So Far

o Computer hardware (con't)

— We need to combine the CPU with RAM and a memory bus
* The bus connects the CPU to the RAM and allows the CPU to
access address |ocation contents
» Since we are going to load many instructions (i.e., a program)
into memory, the CPU must have a special register to keep
track of the current instruction, the program counter
— The program counter is incremented after each instruction

— Some instructions directly set the value of the program counter,
like JUMP or GOTOinstruction

Review of Lectures So Far

o Computer hardware (con't)

— We need to combine the CPU with RAM and a memory bus
(con't)

By adding memory we must extend the operations that the
CPU needs to perform, it needs instructions to read/write
to/from memory

» We can use memory for two purposes now

— Storing instructions (the program code)
— Storing data

» Thisdoesn't alow usto interact with the program and

memory is still pretty expensive for itssize

an



Review of Lectures So Far

o Computer hardware (con't)
— Now we add 1/O devices to the communication bus
* The CPU communicates with I/O devices via the bus
» Thisallows user interaction with the program (e.g., viaa
terminal)
» This also alows more data and bigger programs (e.g., stored
on adisk)
* Since the CPU is much faster than the /O devicesit has three
options when performing I/0
— It can simply wait (not very efficient)
— It can poll the device and try to do other work at the same time
(complicated to implement and not necessarily timely)

— It can alow the I/O devicesto notify it when they are done via
interrupts (still abit complicated, but efficient and timely)

Review of Lectures So Far

o Computer hardware (con't)

— Up until this point we have described what amountsto a
simple, but reasonable computer system
* This system stores programs and data on disks
* It executes aone program at atime by loading a program’s
instructions into memory and sets the program counter to the
first instruction of the program
* A program runs until completion and has complete access to
the hardware and I/O devices
» Therereally isn’t much of an operating system and no such
thing as a process
— Thisisgood, but alot of thetime the CPU isjust sitting
around with nothing to do because the program is waiting
for 110

an



Review of Lectures So Far

* Providing an Operating System
— We could get a bigger benefit if we could run more than one
program at once (i.e., time-sharing)
» With time-sharing the CPU can execute other program when
the current program blocks for 1/0
— Thisintroduces the notion of a process (i.e., an executing
program)
— Currently we have no way of interrupting the current process
and starting a new process, there are two options
* Implement all 1/0O callsto give up CPU when they might
block; thisis cooperative multitasking
* Add ahardware timer interrupt to our CPU so that we can
automatically interrupt processes after some amount of time;
thisis called preemptive multitasking

Review of Lectures So Far

» Providing an Operating System (con't)

— On auniprocessor system, a process can only make progress
when it has the CPU and only one process can have the CPU
at atime

— How does the OS share the CPU among multiple processes?

* It preempts the current process (or the current process
cooperatively blocks) and the OS chooses another process for
the CPU




Review of Lectures So Far

» Providing an Operating System (con't)
— What happens when a process is preempted?

» The OS must save the CPU registers for the current process
since they contain unfinished work; the CPU registers are
saved in the process descriptor in RAM

— The process descriptor keeps track of all process information for
a specific process

* The OS must also save the program counter in the process
descriptor so it knows where to resume the current process

* For the new process, the OS must restore its CPU registers
from the saved values in the process descriptor and restore the
program counter to the next instruction for the new process

Review of Lectures So Far

* Providing an Operating System (con’t)
— We now have created a multitasking OS
— Isit aconcurrent system?
* English definition of “concurrent”
— Happening at the same time as something else
» Computer science definition of “concurrent”
— Non-sequential
* Definition of “parallel”
— Happening at the same time as something else
— Thisisthe same as the English meaning of “concurrent”

* In computer science something that is parallel is also
concurrent (i.e., non-sequential), but something that is
concurrent is not necessarily parallel

ar



