
1

Lecture Overview

• Introduction to Linux process scheduling
– Policy versus algorithm

– Linux’ overall process scheduling objectives
• Timesharing

• Dynamic priority

• Favor I/O-bound process

– Linux’ scheduling algorithm
• Dividing time into epochs

• Remaining quantum as process priority

• When scheduling occurs

Operating Systems - May 17, 2001

Linux Process Scheduling Policy

• First we examine Linux’ scheduling policy
– A scheduling policy is the set of decisions you make

regarding scheduling priorities, goals, and objectives

– A scheduling algorithm is the instructions or code that
implements a given scheduling policy

• Linux has several, conflicting objectives
– Fast process response time

– Good throughput for background jobs

– Avoidance of process starvation

– etc.

2

Linux Process Scheduling Policy

• Linux uses a timesharing technique
– We know that this means that each process is assigned a

small quantum or time slice that it is allowed to execute
• This relies on hardware timer interrupts and is completely

transparent to the processes

• Linux schedule process according to a priority
ranking, this is a “goodness” ranking
– Linux uses dynamic priorities, i.e., priorities are adjusted

over time to eliminate starvation
• Processes that have not received the CPU for a long time get

their priorities increased, processes that have received the CPU
often get their priorities decreased

Linux Process Scheduling Policy

• We can classify processes using two schemes
– CPU-bound versus I/O-bound

• We learned about this in previous lectures

– Interactive versus batch versus real-time
• We have talked about these concepts in previous lectures, so

they should be relatively self-explanatory

– These classifications are somewhat independent, e.g., a
batch process can be either I/O-bound or CPU-bound

• Linux recognizes real-time programs and assigns them
high priority, but this is only soft real-time, like
streaming audio

• Linux does not recognize batch or interactive
processes, instead it implicitly favors I/O-bound
processes

3

Linux Process Scheduling Policy

• Linux uses process preemption, a process is preempted
when
– Its time quantum has expired
– A new process enters TASK_RUNNING state and its priority is

greater than the priority of the currently running process
• The preempted process is not suspended, it is still in the ready

queue, it simply no longer has the CPU

• Consider a text editor and a compiler
– Since the text editor is an interactive program, its dynamic priority

is higher than the compiler
– The text editor will be block often since it is waiting for I/O
– When the I/O interrupt receives a key-press for the editor, the

editor is put on the ready queue and the scheduler is called since
the editor’s priority is higher than the compiler

– The editor gets the input and quickly blocks for more I/O

Linux Process Scheduling Policy

• Determining the length of the quantum
– Should be neither too long or too short
– If too short, the overhead caused by process switching becomes

excessively high
– If too long, processes no longer appear to be executing

concurrently
• For Linux, long quanta do not necessarily degrade response

time for interactive processes because their dynamic priority
remains high, thus they get the CPU as soon as they need it

• For long quanta, responsiveness can degrade in instances
where the scheduler does not know if a process is interactive
or not, such as when a process is newly created

– The for Linux is the longest possible quantum without
affecting responsiveness; this turns out to be about 20 “clock
ticks” or 210 milliseconds

4

Linux Process Scheduling Algorithm

• The Linux scheduling algorithm is not based on a
continuous CPU time axis, instead it divides the CPU
time into epochs
– An epoch is a division of time or a period of time
– In a single epoch, every process has a specified time quantum that

is computed at the beginning of each epoch
• This is the maximum CPU time that the process can use during

the current epoch
– A process only uses its quantum when it is executing on the CPU,

when the process is waiting for I/O its quantum is not used
• As a result, a process can get the CPU many times in one

epoch, until its quantum is fully used
– An epoch ends when all runnable processes have used all of their

quantum
• The a new epoch starts and all process get a new quantum

Linux Process Scheduling Algorithm

• When does an epoch end?
Important!
– An epoch ends when all processes in the ready queue have

used their quantum
– This does not include processes that are blocking on some

wait queue, they will still have quantum remaining
– The end of an epoch is only concerned with processes on the

ready queue

5

Linux Process Scheduling Algorithm

• Calculating process quanta for an epoch
– Each process is initially assigned a base time quantum, as

mentioned previously it is about 20 “clock ticks”
– If a process uses its entire quantum in the current epoch,

then in the next epoch it will get the base time quantum
again

– If a process does not use its entire quantum, then the unused
quantum carries over into the next epoch (the unused
quantum is not directly used, but a “bonus” is calculated)

• Why? Process that block often will not use their quantum; this
is used to favor I/O-bound processes because this value is used
to calculate priority

– When forking a new child process, the parent process’
remaining quantum divided in half; half for the parent and
half for the child

Linux Process Scheduling Algorithm

• Selecting a process to run next
– The scheduler considers the priority of each process
– There are two kinds of priorities

• Static priorities - these are assigned to real-time processes and
range from 1 to 99; they never change

• Dynamic priorities - these apply to all other processes and it is
the sum of the base time quantum (also called the base
priority) and the number of “clock ticks” left in the current
epoch

– The static priority of real-time process is always higher than
the dynamic priority of conventional processes

• Conventional processes will only execute when there are no
real-time processes to execute

6

Linux Process Scheduling Algorithm

• Scheduling data in the process descriptor
– The process descriptor (task_struct in Linux) holds

essentially of the information for a process, including
scheduling information

– Recall that Linux keeps a list of all process task_structs
and a list of all ready process task_structs

– The next two slides describe the relevant scheduling fields in
the process descriptor

Linux Process Scheduling Algorithm

• Each process descriptor (task_struct) contains
the following fields
– need_resched - this flag is checked every time an

interrupt handler completes to decide if rescheduling is
necessary

– policy - the scheduling class for the process
• For real-time processes this can have the value of

– SCHED_FIFO - first-in, first-out with unlimited time quantum
– SCHED_RR - round-robin with time quantum, fair CPU usage

• For all other processes the value is
– SCHED_OTHER

• For processes that have yielded the CPU, the value is
– SCHED_YIELD

7

Linux Process Scheduling Algorithm

• Process descriptor fields (con’t)
– rt_priority - the static priority of a real-time process,

not used for other processes
– priority - the base time quantum (or base priority) of the

process
– counter - the number of CPU ticks left in its quantum for

the current epoch
• This field is updated every clock tick by
update_process_times()

– The priority and counter fields are used to for time-
sharing and dynamic priorities in conventional processes,
for only time-sharing in SCHED_RR real-time processes, and
are not used at all for SCHED_FIFO real-time processes

Linux Process Scheduling Algorithm

• Process descriptor fields (con’t)
Important!
– Just in case you missed it in the last bullet of the last slide,

the priority and counter fields are used to for
calculating the dynamic priority of conventional processes

• These two fields are added together to get the current dynamic
priority of a process when searching for a process to schedule

• These two fields are also used when assigning new quanta at
the end of an epoch; if a process has not used its quantum then
it is probably an I/O-bound process and will get a bonus added
to its quantum for the next epoch

– This raises the priority of interactive processes over time

8

Linux Process Scheduling Algorithm

• Scheduling actually occurs in schedule()
– Its objective is to find a process in the ready queue then

assign the CPU to it
– It is invoked in two ways

• Direct invocation
• Lazy invocation

Linux Process Scheduling Algorithm

• Direct invocation of schedule()
– Occurs when the current process is going to block because it

needs to wait for a necessary resource
• The current process is taken off of the ready queue and is

placed on the appropriate wait queue; its state is changed to
TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE

– Once the needed resource becomes available, the process is
immediately woken up and remove from the wait queue

9

Linux Process Scheduling Algorithm

• Lazy invocation of schedule()
– Occurs when

• The current process has used up its quantum; this is checked in
update_process_times()

• A process is added to the ready queue and its priority is higher
than the currently executing process; this check occurs in
wake_up_process()

• A process calls sched_yield()
– Lazy invocation used the need_resched flag of the

process descriptor and will cause schedule() to be
called later

Linux Process Scheduling Algorithm

• Actions performed by schedule()
– First it runs any kernel control paths that have not completed

and other uncompleted house-keeping tasks
• Remember, the kernel is not preemptive, so it cannot switch to

another process if a process is already in the kernel or if the
kernel is in the middle of doing something else

– If the current process is SCHED_RR and has used all of its
quantum, then it is given a new quantum and placed at the
end of the ready queue

– If the process is not SCHED_RR, then it is removed from the
ready queue

10

Linux Process Scheduling Algorithm

• Actions performed by schedule() (con’t)
– It scans the ready queue for the highest priority process

• It calculates the priority using the goodness() function
• It may not find any processes that are “good” when all

processes on the ready queue have used up their quantum (i.e.,
all have a zero counter field)

– In this case it must start a new epoch by assigned a new
quantum to all processes as described on a previous slide (both
running and blocked processes this allows us to favor I/O-bound
processes)

• If a higher priority process was found, then the scheduler
performs a process switch

Linux Process Scheduling Algorithm

• How good is a runnable process?
– Uses goodness() to determine priority

• (goodness == -1000) - do not select process
• (goodness == 0) - process has exhausted quantum
• (0 < goodness < 1000) - conventional process with quantum
• (goodness >= 1000) - real-time process

– goodness() is essentially equivalent to

if (p->policy != SCHED_OTHER)
 return 1000 + p->rt_priority;
if (p->counter == 0)
 return 0;
if (p->mm == prev->mm)
 return p->counter + p->priority + 1;
return p->counter + p->priority;

11

Linux Process Scheduling Algorithm

• Linux scheduler issues
– Does not scale very well as the number of process grows

because it has to recompute dynamic priorities
• Tries to minimize this by computing at end of epoch only
• Large numbers of runnable processes can slow response time

– Predefined quantum is too long for high system loads
– I/O-bound process boosting is not optimal

• Some I/O-bound processes are not interactive (e.g., database
search or network transfer)

– Support for real-time processes is weak

Review of Lectures So Far

• Computer hardware
– In general, we can think of the CPU as a small, self-

contained computer
• It has instructions for performing mathematical operations

• It has a small amount of storage space (its registers)

• We can feed instructions to the CPU one at a time and use it to
perform complex calculations

– This is the ultimate in “interactive” operation; the user does
everything

– It would be better if there was some way to give the CPU a lot
of instructions all at once, rather than one at a time

12

Review of Lectures So Far

• Computer hardware (con’t)
– We need to combine the CPU with RAM and a memory bus

• The bus connects the CPU to the RAM and allows the CPU to
access address location contents

• Since we are going to load many instructions (i.e., a program)
into memory, the CPU must have a special register to keep
track of the current instruction, the program counter

– The program counter is incremented after each instruction

– Some instructions directly set the value of the program counter,
like JUMP or GOTO instruction

Review of Lectures So Far

• Computer hardware (con’t)
– We need to combine the CPU with RAM and a memory bus

(con’t)
• By adding memory we must extend the operations that the

CPU needs to perform, it needs instructions to read/write
to/from memory

• We can use memory for two purposes now
– Storing instructions (the program code)

– Storing data

• This doesn’t allow us to interact with the program and
memory is still pretty expensive for its size

13

Review of Lectures So Far

• Computer hardware (con’t)
– Now we add I/O devices to the communication bus

• The CPU communicates with I/O devices via the bus

• This allows user interaction with the program (e.g., via a
terminal)

• This also allows more data and bigger programs (e.g., stored
on a disk)

• Since the CPU is much faster than the I/O devices it has three
options when performing I/O

– It can simply wait (not very efficient)

– It can poll the device and try to do other work at the same time
(complicated to implement and not necessarily timely)

– It can allow the I/O devices to notify it when they are done via
interrupts (still a bit complicated, but efficient and timely)

Review of Lectures So Far

• Computer hardware (con’t)
– Up until this point we have described what amounts to a

simple, but reasonable computer system
• This system stores programs and data on disks

• It executes a one program at a time by loading a program’s
instructions into memory and sets the program counter to the
first instruction of the program

• A program runs until completion and has complete access to
the hardware and I/O devices

• There really isn’t much of an operating system and no such
thing as a process

– This is good, but a lot of the time the CPU is just sitting
around with nothing to do because the program is waiting
for I/O

14

Review of Lectures So Far

• Providing an Operating System
– We could get a bigger benefit if we could run more than one

program at once (i.e., time-sharing)
• With time-sharing the CPU can execute other program when

the current program blocks for I/O
– This introduces the notion of a process (i.e., an executing

program)

– Currently we have no way of interrupting the current process
and starting a new process, there are two options

• Implement all I/O calls to give up CPU when they might
block; this is cooperative multitasking

• Add a hardware timer interrupt to our CPU so that we can
automatically interrupt processes after some amount of time;
this is called preemptive multitasking

Review of Lectures So Far

• Providing an Operating System (con’t)
– On a uniprocessor system, a process can only make progress

when it has the CPU and only one process can have the CPU
at a time

– How does the OS share the CPU among multiple processes?
• It preempts the current process (or the current process

cooperatively blocks) and the OS chooses another process for
the CPU

15

Review of Lectures So Far

• Providing an Operating System (con’t)
– What happens when a process is preempted?

• The OS must save the CPU registers for the current process
since they contain unfinished work; the CPU registers are
saved in the process descriptor in RAM

– The process descriptor keeps track of all process information for
a specific process

• The OS must also save the program counter in the process
descriptor so it knows where to resume the current process

• For the new process, the OS must restore its CPU registers
from the saved values in the process descriptor and restore the
program counter to the next instruction for the new process

Review of Lectures So Far

• Providing an Operating System (con’t)
– We now have created a multitasking OS

– Is it a concurrent system?
• English definition of “concurrent”

– Happening at the same time as something else

• Computer science definition of “concurrent”
– Non-sequential

• Definition of “parallel”
– Happening at the same time as something else

– This is the same as the English meaning of “concurrent”

• In computer science something that is parallel is also
concurrent (i.e., non-sequential), but something that is
concurrent is not necessarily parallel

