
Working Group Software Engineering

Winter Semester 2006

WikiJavadoc - A collaborative documentation

system for Java

Jing Zhao

zhao@inf.fu-berlin.de

Supervisor: Christopher Oezbek, Prof. Dr. Lutz Prechelt

09.11.2006

mailto://zhao@inf.fu-berlin.de
http://www.inf.fu-berlin.de/~oezbek/
http://www.inf.fu-berlin.de/~prechelt/

2

Abstract

Over the past twenty years, Free and Open Source Software (F/OSS) has risen to

great prominence. Studies have shown in many cases, F/OSS programs provide a

reasonable or even a superior approach compared to their proprietary competition.

Unfortunately, documentation is one of the weakest aspects of open source pro-

grams. Updating the documentation is sometimes an afterthought. And the main-

tenance of the documentation becomes difficult due to the nature of F/OSS. This

paper describes an attempt to merge a JavaDoc-style in-line documentation system

with the online collaboration paradigm of WikiWiki. This work is focused on devel-

oping an open source inline documentation tool enhanced with Wiki functionality.

With this documentation system users can not only read but also edit the JavaDoc

HTML pages. And these modifications can be rewritten in the source code. The

aim of this work is to enable users to improve their Java documentation without too

much effort. This paper will also discuss programming details of WikiJavadoc.

oezbek
Underline

oezbek
Underline

oezbek
Underline

oezbek
Highlight

oezbek
Cross-Out

oezbek
Highlight

oezbek
Highlight

oezbek
Highlight
to the

oezbek
Cross-Out

3

Eidesstattliche Erklaerung

Hiermit versichere ich, die vorliegende Arbeit selbstandig und unter ausschlies-

sicher Verwendung der angegebenen Literatur erstellt zu haben.

Die Arbeit wurde im November 2006 fertiggestellt und kommt hier erstmalig zur

Vorlage.

———————————-

oezbek
Highlight

oezbek
Highlight

Zhao — WikiJavadoc 1

Contents

1 Introduction 7

1.1 Free and Open Source Software and Documentations 7

1.2 JavaDoc + Wiki = Wiki-collaborative construction of documentation for

open source software . 9

1.3 Usage Scenarios . 11

2 Related Work 13

2.1 JavadocOnline . 13

2.2 KickJava . 13

2.3 JDocs . 13

2.4 JSourcery . 14

2.5 Docenhancer . 14

2.6 Faq-o-matic . 15

2.7 Conclusion and Comparison . 15

3 Requirements 17

3.1 Authentication . 17

3.2 Compatible look . 17

3.3 Wiki-Capabilities . 17

3.4 Synchronization of the source code . 19

3.5 Abilities of loading source code . 19

3.6 Link source code . 19

3.7 Abilities of Logging . 19

3.8 Performance Requirements . 19

3.9 Robustness . 20

3.10 Notification Service . 20

Zhao — WikiJavadoc 2

3.11 Installation Requirements . 20

3.12 Optional Requirements . 21

4 Architecture Concept 22

4.1 Design Goals . 22

4.2 System Decomposition . 22

4.2.1 Security Portal . 22

4.2.2 Projects Management . 23

4.2.3 UpdateJavadoc tool . 23

4.2.4 Edit Window . 23

4.2.5 Version Control . 23

4.3 System Overview . 24

5 Detail Design 26

5.1 Using Technology . 26

5.1.1 Programming Language . 26

5.1.2 Form based Authentication . 26

5.1.3 JSP, Servlets, HTML . 26

5.1.4 Gjdoc, Eclipse JDK, ASTParser and Equinox Incubator 27

5.1.5 Ant, Logj4 . 28

5.2 Security . 28

5.3 Project Management . 29

5.4 UpdateJavadoc Tool . 30

5.5 JavadocGenerator Tool . 32

5.6 Logging . 32

5.7 Mockup Walkthrough . 33

6 Implementation 42

Zhao — WikiJavadoc 3

6.1 Implementation of Form-based authentication 42

6.2 Project Management . 45

6.3 Implementation of UpdateJavadoc Tool . 47

6.4 JavadocGenerator . 56

6.5 Equinox Incubator . 58

6.6 Version Control . 62

7 Testing 64

7.1 Test Plans and Results . 64

7.2 Functional Testing . 64

7.2.1 Test Methodology Junit . 64

7.2.2 Test Cases . 68

7.3 Acceptance Testing . 71

7.4 Conclusion . 73

8 Future Research 74

8.1 CVS Portal . 74

8.2 Authoritative-Versioning . 75

8.3 Log Contributions . 75

9 Summary 76

Bibliography 77

A Appendix 80

A.1 User Guides . 80

A.2 For potential Developers . 82

A.2.1 File Release . 82

A.2.2 Code Management . 83

oezbek
Highlight
Appendix B: Developer Guide

oezbek
Highlight
Appendix A: User Guide

Zhao — WikiJavadoc 4

A.3 Writing Javadoc Comments . 84

A.4 Creating a WAR-File . 86

A.5 Important Files of WikiJavadoc . 88

Zhao — WikiJavadoc 5

List of Figures

1 Overview of Docenhancer [DOC05] . 15

2 A comparison of various Java documentation tools 16

3 Javadoc comment in source code . 18

4 Javadoc comment in edit window . 18

5 Overview of WikiJavadoc system . 25

6 Using UpdateJavadoc tool from conmand line 31

7 Login interface of the WikiJavadoc . 33

8 Check out source files with Tortoise CVS . 35

9 Admininistrator page of the WikiJavadoc 36

10 Information about creating the WikiJavadoc work process 37

11 Edit page of the WikiJavadoc . 38

12 Updated html page of the WikiJavadoc . 39

13 Comparison between the original and the modified source code 40

14 Comparison between the original and the modified source code 41

15 Excerpt of code in login page . 43

16 Specify form-based authentication and the login and error pages 44

17 Activate the copy task . 45

18 Excerpt of GjdocTask.java . 46

19 The definition of GjdocTask class in Ant build file 47

20 Work procedure of UpdateJavadoc tool . 48

21 Create the headless eclipse plug-in II . 50

22 Create a plug-in extension . 51

23 Procedure to add an application to the Extension 52

24 Procedure to add a run() method to the application 53

25 Create the class de.fu_berlin.wikidoc.codeRewriter.PlateformRunnable . . 54

Zhao — WikiJavadoc 6

26 Plug.xml file of the headless plug-in . 55

27 Overview of the Eclipse project[Lip06] . 58

28 Excerpt of Equinox Incubator plug-in’s Plug.xml file 61

29 Overview of WikiJavadoc’s file system structure 62

30 Creating a JUnit test in the Eclipse IDE . 65

31 Excerpt of code in JavadocModifyTest class 66

32 Excerpt of code in JavadocModifyTest class 67

33 The test result for UpdateJavadoc tool with a JUnit 68

34 Traceability of Test Cases to UpdateJavadoc 69

35 Traceability of Test Cases to WikiJavadoc 71

36 The number of pages and the number of modifications 72

37 The number of users pro project . 72

38 The statitic about the number of users pro project 73

39 Javadoc Block Tags in JDK/SDK 1.0-1.4 . 85

40 web.xml File of Wikijavadoc project I . 88

41 web.xml File of Wikijavadoc project II . 89

42 build.xml File of Ant Script . 90

43 download.xml File of Ant Script . 91

Zhao — WikiJavadoc 7

1 Introduction

1.1 Free and Open Source Software and Documentations

Free and Open Source Software (F/OSS) refers to software whose licenses permit users

to run program for any purpose; to study and modify the program freely; and to redis-

tribute copies of either the original or modified programs, without having to pay royal-

ties to previous developers. F/OSS has been building momentum for over twenty years,

and is breaking into commercial world. Some F/OSS programs remain non-commercial,

but more and more are designed for profit. Many studies have shown that, in many

cases, F/OSS programs provide a reasonable or even a superior approach compared to

their proprietary competition. As evidenced by the number of stable and robust F/OSS

programs, including Linux, Apache, Mozilla, MySQL, Perl, Python, F/OSS has been

extremely successful on the technological level. Unfortunately, documentation is one of

the weakest aspects of F/OSS. F/OSS are usually documented in the following forms :

as an introductory text on the home page, in the FAQ(Frequently Asked Questions), use

scenarios, case studies, readme file, user’s guides, or API documentation.

When a programmer wants to develop a new software, and needs some F/OOS

tools. Then how can he find the right tool? It is not easy when one just rely on the

information in the web, because most information in the web is mainly limited to intro-

ductory text describing for first-time-users. That information primarily addresses just

simple questions, like "What is the tool?", and "What function can the tool perform?".

But the quality documentation, such as that provided by API documentation and user’s

guides, tutorials are often missing. To some degree, the quality documentation is per-

haps more of a programming tool than a strict text. And thus that proves more helpful

for software developers.

oezbek
Underline
Damnit Jing! You stole a sentence again! Where are you citations????

oezbek
Underline

oezbek
Underline

oezbek
Underline

oezbek
Underline

oezbek
Underline
I put a green underline when there is a citation missing!

oezbek
Underline

oezbek
Underline

oezbek
Underline

oezbek
Highlight

oezbek
Cross-Out

oezbek
Cross-Out

oezbek
Highlight
But documentation such as...

is often missing.

oezbek
Highlight
I don't understand?

Zhao — WikiJavadoc 8

Jack Herrington1 finds that better documentation directly improves adoption rates

of F/OSS . In his study about the state of open source introductory documentation,

he took the top 20 entries in Sourceforge.net2 and analyzed their documentation. He

found that if documentation was available, it was centrally located and easy to find.

That means that the efficiency and quality documentation affects the cost, quality and

reusability of software. In his study, all of the 20 project samples were documented

to some degree. After assessing the quality of the introductory documentation, Jack

Herrington has concluded that there is still a lot of room for improvement.

All of the sites in the study included some brief description of what function the tool

performed. ”Only one in every 10 projects had a clear and concise statement of what

problem the tool was meant to solve”[Her03]. Almost all projects provided a statement

of the function of the tool, but only one of the 20 projects that included list of graphics

to illustrated the function.

Only half of the projects had FAQs. Of those, less than half again addressed the

simple question of hat the tool was meant to do. Half of the projects had some type

of tutorial or sample code. Of those, only a third had documentation that provided

”scenarios for when the tool was useful and in what configuration”[Her03]. Informa-

tion about the hardware or system requirements for the software was given by Only 15

percent of the projects.

Of course, updating the documentation is often merely an afterthought. Because

there are so many developers who work according to the motto ”release early, release

often”, open source software can change very frequently. Thus, due to the very nature

of F/OSS, the maintenance of these documents remains difficult. However, since F/OSS

are becoming more and more popular, quality documentation and API documentation

should be provided to users in light of its increasing importance.

1Jack Herrington is the author of the paper, Is documentation holding open source back?
2SourceForge.net is the world’s largest development and download repository of Open Source code

and applications.

oezbek
Cross-Out

oezbek
Highlight
In his 2003 study about the Herrington finds that.... [Her03].

oezbek
Highlight

oezbek
Highlight
Links don't work!

oezbek
Highlight
No! Why would that be?

oezbek
Cross-Out
the author

oezbek
Highlight

oezbek
Highlight

oezbek
Highlight

oezbek
Highlight
First you say "All of the sites" <=> then "One in Ten". Does not make sense.

oezbek
Highlight

oezbek
Highlight

oezbek
Underline

oezbek
Underline

Zhao — WikiJavadoc 9

1.2 JavaDoc + Wiki = Wiki-collaborative construction of documenta-

tion for open source software

There are many documentation types for F/OSS according to the program types. Java is

a sophisticated and popular programming language. Many F/OSS are written in Java,

so the Java documentation frameworks are widely used, e.g. Javadoc, and gjdoc.

Javadoc is a Java documentation framework from Sun Microsystems. It is a tool for

generating API documentation from Java source code into HTML format. Javadoc is

the industry standard for documenting Java classes. In fact, most IDEs3, such as the

Eclipse IDE, NetBeans or Microsoft Visual Studio, can generate Javadoc HTML auto-

matically. Another Java documentation framework is gjdoc. It is a Javadoc replacement

from GNU Classpath4. In another words, just as Javadoc is included in Java SDK, so too

is gjdoc part of GNU Class. Gjdoc wii be discussed in this paper in more detail. Because

WikiJavadoc is an extension to gjdoc.

Gjdoc documentation is similar to Javadoc documentation. They are both hypertext

documentation listing available software components at class level along with a series of

navigational indices[Ber00]. Hyperlinks are used to cross-reference among class docu-

ments via parameters, types, return values, written comments, and so on. Erik Berglund

finds that Javadoc has become somewhat of a model for online software reference doc-

umentation. Javadoc can also be viewed as a source-code browser, providing the reader

with what is assumed to be a correct typeset and relevant extract of Java source-code

files (including written comments)[Ber00].

Wiki is an effective tool for collaborative authoring, since it allows visitors to easily

add, remove, edit and change some available content, sometimes without the need for

registration. It is increasingly common to use some type of Wiki as a platform for de-

3IDE is an abbreviation of Integrated Development Environment
4GNU Classpath is a project aiming to create a free implementation of the standard class library for

Java.

oezbek
Highlight
what is a documentation type?

oezbek
Cross-Out

oezbek
Underline

oezbek
Highlight

oezbek
Highlight
framework or tool?

oezbek
Underline

oezbek
Highlight
Better to write Integrated Development Environments (IDE) than use the footnotes.

oezbek
Highlight

oezbek
Highlight
No it is not just another Java documentation framework! why would we have chosen it otherwise?

oezbek
Highlight
This belongs in the paragraph about JavaDoc.

oezbek
Highlight
What is the difference?

oezbek
Highlight
Logical flow is difficult to follow.

Why suddenly talk about Wikis?

Zhao — WikiJavadoc 10

veloping F/OSS documentation. This is due to the fact that Wikis have more flexibility

in terms of layout design. More importantly, open source projects depend on commu-

nity involvement in the development, which applies to both the application and the

documentation.

As mentioned above, the maintenance of the Java documentation is difficult. Javadoc

is a very strong framework, however, it only delivers static text that does not change.

To facilitate a better Java documentation, a Javadoc-style in-line documentation system

with the online collaboration paradigm of WikiWiki named WikiJavaDoc is proposed.

The idea is that WikiJavadoc looks and feels like a normal Javadoc page, but it has

an edit link at the bottom of every class or class members’ Javadoc comment. Users can

edit each Javadoc comment on a Javadoc site using the wiki command ”edit” without

the need for registration. Changes that the user makes to the comment are directly

reflected both on the HTML page and in the underlying source code.

WikiJavadoc is a freely available and modifiable Java documentation

tool, a Javadoc enhancement. It extends the standard Javadoc with Wiki functionality.

WikiJavadoc users benefit from a variety of features:

• Javadoc collaboration: WikiJavadoc makes a normal Javadoc become a collabora-

tive Java document. For a Java project, non-developer users can also document it.

WikiJavadoc is effective to put together collaborative Javadoc-style comments in a

short time based on its Wiki functionality.

• Linking HTML source Page: WikiJavadoc provides also HTML source code pages.

That makes the non-developer users can write comments better according to HTML

source pages.

• Writing back modifications to source: Users can reflect the changes from the Javadoc

page back into the source code directly. That makes contributing to favorite APIs

much easier.

oezbek
Highlight
????????

oezbek
Cross-Out

oezbek
Highlight

oezbek
Highlight
should look and feel

oezbek
Highlight
if you just propose it then you should write "should look and feel..."

Zhao — WikiJavadoc 11

• Users collaboration: Users can be asked to collaborate as well. For instance, if a

user can send a question to others via a mailing list, others may contribute their

solutions to the WikiJavadoc documentation.

1.3 Usage Scenarios

The WikiJavadoc was written with the following scenario in mind:

For a small scale F/OSS project, a library is written in Java and documented using

Javadoc comment tags. F/OSS projects implementation is always more important than

the quality of the documentation. So large amounts of code are often undocumented, as

a result of the personal preference of some developers. In many cases, some comments

can be insufficient, outdated, incorrect, or even misleading. Nonetheless, the popularity

of the library has been steadily increasing. Imagine another Java developer downloads

the library from the Internet and wants to learn how to use it. In this typical scenario

the developer receives the jar file containing the binaries (and any other binaries needed

to use that jar file) and the automatically generated Javadoc documentation. However,

this documentation is can insufficient and might be outdated. The project experienced

an increase in the number of questions asked about the use of the library on the mailing

list.

The library developers clearly feel the need to provide better, richer, and more ac-

curate documentation. But they are too deeply time-committed to bug-hunting and

expanding features for the next release. The developer generates the Javadoc documen-

tation with WikiJavadoc and then enriches it and distributes the rich documentation

with the library.

Generally they have to start an IDE and then document every Javadoc comment of

every file, even though there are thousands of Java files to be documented. Instead of

using that normal way, they can use WikiJavadoc framework, which will facilitate the

Zhao — WikiJavadoc 12

document work.

They can install a web container Tomcat quickly and copy pre-built WAR5 file to the

dictionary ”webapps” with minimum configuration. That war file is deployed and a

WikiJavadoc project is created by giving the location of the current source code. An ad-

ministrator can use standard version control tools to check out the source files from CVS

repository to the WikiJavadoc version, then the administrator can create WikiJavadoc

project. The source code is copied to another dictionary and the API is created as well.

In addition, the anonymous users can browse APIs, source files, edit Javadoc comments,

and save changes to the Javadoc Version in WikiJavadoc Server. These changes are not

directly fed back into the source code of the project but kept in a separate source code

in WikiJavadoc system. At last the administer can commit the WikiJavadoc version to

CVS repository if the new version are found to be appropriate. Of course administra-

tor can also execute other version control operations, or update and delete WikiJavadoc

projects. Furthermore, a web interface simplifies the document work.

5 WAR is abbreviation for Web ARchive, a WAR file is a ZIP file used to distribute a set of Java classes.

oezbek
Highlight

oezbek
Highlight

oezbek
Highlight
deploy

oezbek
Cross-Out

oezbek
Highlight
Move before other sentence

oezbek
Highlight
Not really!

Zhao — WikiJavadoc 13

2 Related Work

2.1 JavadocOnline

JavadocOnline 6is a search engine project based on the web service Google Web API.

In another words, JavadocOnline searches for the classes in Google, building better au-

tomatic queries, in order to show only filtered Javadoc webs.[JAV06a] Users can find

Java API documentation from the JavadocOnline homepage, but he can neither edit

documentation, nor overwrite the source code.

2.2 KickJava

KickJava 7has introduced a Java Source Codes Repository. With this the user can browse

Java APIs, and search Java source code and code examples. KickJava provides just

original API documentation, and like JavadocOnline it does not allow users to edit or

add further information to documentation and source code.

2.3 JDocs

JDocs 8collects the online APIs for many popular Java tools and libraries, totalling 205

APIs as of this writing. The APIs for those popular tools are loaded in one db-driven

system. JDocs, which has a familiar "Javadocs"interface, also allows the users to write

comments for individual JavaDoc pages. Because the information in JDocs is indexed,

users can search the information in the documentation. Because each registered users

can provide additional information by annotating the JavaDoc APIs and share their

knowledge by adding useful hints and information, Jdocs has potential to become a

6www.javadoconline.com
7www.kickjava.com
8www.jdocs.com/

oezbek
Highlight

oezbek
Highlight

oezbek
Highlight

oezbek
Highlight

Zhao — WikiJavadoc 14

very helpful resource. Although the annotating facilities of JDocs are promising, Jdocs

differs from WikiJavadoc in other aspects, as it does not link HTMl source page, or allow

users to rewrite modifications to source files.

2.4 JSourcery

JSourcery 9is a web site like JDocs, and has thus far collected 100 open source Libraries.

It provides the Javadoc documentation, which link HTML pages with syntax-highlighted

source code for each class. Further, the source code HTML page contains embedded link

so that its possible to trace program execution by following these links. JSourcery can

also generate source code references in Javadocs and all libraries are searchable. It does

not, however, provide functions for editing Javadocs and rewriting source files.

2.5 Docenhancer

Docenhancer 10from IBM adds further semantic information to the Java documentation.

That kind of information is gathered by statically analyzing the corresponding Java class

files, for example, Call-graph information or Effect information. Docenhancer is not an

online framework. It needs Javadoc API and the associated library as input to generate

a new version eJavadocs. An overview of Docenhancer is illustrated in Fig.1.

9www.Jsourcery.com
10www.docenhancer.com

Zhao — WikiJavadoc 15

Figure 1: Overview of Docenhancer [DOC05]

2.6 Faq-o-matic

Faq-o-matic 11provides a good example of an approach that is more involved with

content-management than a pure wiki.

2.7 Conclusion and Comparison

All of the frameworks discussed abovee, except Faq-o-matic, are intended for Java de-

velopers. They all provide users standard Java API documentation or Documentation

with extended information about libraries and applications. Some provide additional

services. for example, some allow users to search documentation information, and oth-

ers can show examples of the source codes.

Note. This comparison cannot be considered as of final, since most of the systems

are still being developed. Last update was made for versions 10. 2006.

11www.faq-o-matic.com

oezbek
Highlight
The list can be considered current as of Octobre 2006

Zhao — WikiJavadoc 16

Figure 2: A comparison of various Java documentation tools

The above comparison illustrates the innovative aspects of WikiJavadoc. To sum-

marize, WikiJavadoc provides Java developers with different functionalities from the

existing Java documentation framework, and focuses on editing Java API Documenta-

tion and rewriting source code collaboratively.

oezbek
Highlight
We don't do version control!!

Zhao — WikiJavadoc 17

3 Requirements

According to the usage Scenario discussed above, all the functional and non-functional

requirements for the system will be explained in this section. This section serves as a

guideline for detail design, implementation and testing of the software.

3.1 Authentication

In WikiJavadoc system there are two types of users, authorized users and anonymous

users. Only the authorized users are permitted to manage WikiJavadoc projects, e.g.

creating, updating, or deleting projects. The anonymous users can only edit the exist-

ing APIs. Therefore, authentication mechanisms should be used to protect the project

management resources.

3.2 Compatible look

WikiJavaDoc should have a similar JavaDoc Interface, since most Java developers are

already familiar with JavaDoc. However, it should have an edit link at the bottom of

every class or class member. So that users can click on it to edit Javadoc documentation.

3.3 Wiki-Capabilities

Wiki should allow users to edit individual comments, and to add further contents to the

Javadoc of that program entity. WikiJavadoc is able to reflect the modifications from the

Javadoc page back into the source code directly. The updating of source code should be

done without changing the general format of the document.

For generating proper Javadoc source code and HTML files, users must write the

comments according to the specified rules. Those rules are fully compatible with the

standard Javadoc rules used for the same problem. Fig.3 and Fig.4 are examples of

Zhao — WikiJavadoc 18

Javadoc comment parts in a Java source file and the corresponding comments in user

interface. With the specified rules, the comments can be extracted automatically and

properly. These rules will be explained in Appendix of this Paper.

Figure 3: Javadoc comment in source code

Figure 4: Javadoc comment in edit window

Zhao — WikiJavadoc 19

3.4 Synchronization of the source code

The system should be able to adjust API documentation to the Java files. Changes in

the source code should be integrated into API documentation, and changes in API doc-

umentation should be able to be written back into the source code meaningfully .

3.5 Abilities of loading source code

The WikiJavadoc system created Java API documentation from Javadoc comments in

source code, so it should be able to check out the sources from CVS or Subversion repos-

itory. After the source code is modified, it should be able to commit source code to CVS

and Subversion repository.

3.6 Link source code

Sometimes a user wants to edit Javadoc documentation, but doesn’t read the source

code, it can be difficult to write comments. WikiJavadoc should be able to generate a

html page with source code for each class. When the user edit some program entity’s

Javadoc, if he needs, he just clicks on the name of programming entity in the detail

section of a class documentation page to display the page of the source code. The user

can then refer to source code and notify better Javadoc comments.

3.7 Abilities of Logging

Modifications by users should be saved in a log file, and it will be accessible to the

authorized users if needed.

3.8 Performance Requirements

The major performance requirements for WikiJavadoc:

Zhao — WikiJavadoc 20

1. The operation of user interface should not lead to human noticeable time delay

beyond the usual HTTP performance.

2. Modifications should be implemented into the WikiJavaDoc server directly and

become applicable for other operations.

3. Another important aspect is that the information should be fed back to users while

operating the programm. For example, information, such as, the user-requested

operation progress should be sent to the user when the operation lasts more than

5 seconds.

4. Concurrent processing capability. A well-developed WikiJavadoc system on a

sever should be able to support at least 20 concurrent viewers plus 5 concurrent

editors. This function consumes a lot of memory, however. In order to reduce the

consumption of memory, the aim is to run the entire system on the visual-machine

memory with less than 128 MB (not a restrictive limit).

3.9 Robustness

The system should run stably, and be able to treat errors meaningfully.

3.10 Notification Service

Users who are interested in WikiJavaDoc platform major changes can be notified, when

changes occur.

3.11 Installation Requirements

In order to make the WikiJavadoc system widely used in F/OSS projects, the installa-

tion should have no hurdles and be executed as quickly as possible, ideally within a

Zhao — WikiJavadoc 21

few minutes. The purpose is to minimize the installation time and the other computer

resources by programming the WikiJavadoc software efficiently. For comparison, the

other required components like JDK, Tomcat, can be installed within 30 minutes. In or-

der to ease the burden of users, the number of those kind of add-on components should

be less than 6.

3.12 Optional Requirements

Ideas that could improve this work with Wiki function, or in other Wiki software work

satisfactorily, should be collected, although this is not mandatory. For example, a mailing-

list or a forum could help resolve disputes arising from a particular. The RSS12-Feed

function could be added to the Wikijavadoc system to inform users about new contri-

butions and changes.

12Really Simple Syndication

Zhao — WikiJavadoc 22

4 Architecture Concept

4.1 Design Goals

The goal of this architecture model is to support software re-use for the sub systems

wherever possible. This model will support integration of the modules and also parallel

development of every components.

4.2 System Decomposition

The architecture model of the WikiJavadoc tool consists of a few components.

The first contains the security portal, the second contains project management, which

contains create, update, and delete projects. The third contains the UpdateJavadoc tool,

which manipulate source files. The fourth is edit window, which is a Equinox Incubator

plug-in. The last one is version control component.

4.2.1 Security Portal

The security portal provides authentication and authorization for individuals of the

two user-groups, namely users and members. An anonymous user can edit Javadoc

comments of one WikiJavadoc project. If the user has been authenticated, he can also

access protected project management resources, for example, create, update or delete

project; otherwise, the user will be asked for a username and password. If the name

and password cannot be authenticated, an error page will be displayed and the user

will have an opportunity to enter a new username and password.

Zhao — WikiJavadoc 23

4.2.2 Projects Management

Only the authorized users can create, update or delete a project. To create a project it

is necessary to do two steps: In a first step the Java source files must be loaded. In a

second step the JavaDoc HTML pages, including HTML source code pages, are created

from loaded the Java source files. The created project can be updated or deleted. To

update an existed project the source file will be reloaded, then Java documentation is

created. To delete a project all APIs including their sub directories should be deleted.

4.2.3 UpdateJavadoc tool

UpdateJavadoc tool receives changes by users, UpdateJavadoc tool parses the underly-

ing source files provided by the version control layer, the new version of source code

is generated from the changes in Javadoc. It is identical, including indentation and

whitespace, to the original version in all parts but where the changes were applied.

4.2.4 Edit Window

When a user browse the Javadoc documentation, he click on a edit link, a new win-

dow will be displayed. After the user write some comments, click on ”Submt” button.

Then the modifications will be written into underlying Java source files, edit window

component can call the UpdateJavadoc tool, additional, the edited HTML page should

be updated, and the associated HTML source page should be updated. EDIT Window

component answers for these work.

4.2.5 Version Control

The version control component should support all version control operations, such as,

check out, commit, update, ect. And the version control component provides the source

files to Project management component.

Zhao — WikiJavadoc 24

4.3 System Overview

A web-based portal with authentication and authorization mechanisms controls the

provision and use of WikiJavadoc. All the compositions have high cohesion and less

coupling. Local Error Handling will be used.

Fig. 5 illustrates the compositions of the WikiJavadoc and the corresponding tech-

nologies for implementation. First, users need to pass the portal of authentication and

authorization before be allowed to manage projects. Form-based authentication is se-

lected for security setting in this project. Only the authenticated users can check out the

project’s source codes to the local disk with version control tool, such as, Tortoise SVN.

Then the authenticated users can create, update or even delete a project. Ant scripts

and extended gjdoc is used to implement project management. Anonymous users can

browse Javadoc and source code HTML pages, or edit Javadoc comments without the

need for registration. When Javadoc comment of the documentation is edited by the

user, the edit window will be displayed. The Implementation of the edit window uses

Equinox Incubator technology. The modifications by users are rewritten into source files

via UpdateJavadoc tool, which is a headless Eclipse plug-in. The edited Javadoc HTML

page and the associated source HTML page are updated via the method in the extended

gjdoc. WikiJavadoc requites version control function, including CVS and SVN. The au-

thorized users can execute all the CVS operations, e.g. they can check out projects from

the CVS repository, after the users modified the Javadoc comments, commit, or update

to repository. All details will be discussed in the next two sections.

Zhao — WikiJavadoc 25

Figure 5: Overview of WikiJavadoc system

Zhao — WikiJavadoc 26

5 Detail Design

The detailed design will be discussed in this section. This part is separated into 6 subsec-

tions. The first subcsection is about user authentication design. The second subsection

contains project management design. The third subsection covers source code rewrite.

An undependent tool, namely, the UpdateJavadoc tool, is designed. The fifth subsection

contains logging resolution. The last subsection is the conclusion about the whole work

procedure of the WikiJavadoc system.

5.1 Using Technology

5.1.1 Programming Language

Since an inline documentation tool (Javadoc) with Wiki functionality is to be created,

and Java source codes need to be manipulated, Java is the best choice instead of scripting

languages such as Perl, Python, Ruby and more visual IDE-based ones like Visual Basic.

5.1.2 Form based Authentication

Form based Authentication provides more control over the look and feel of the login

process.

5.1.3 JSP, Servlets, HTML

• Servlets:

Srevlets provide a way to generate dynamic documents.

Pros: Servlets are both easier to write and faster to run

Cons: HTML embedded in Java source file.

JSP:

Zhao — WikiJavadoc 27

JSP is based on servlet, It does not give anything that could not in principle be

done with a servlet.

Pros: Compared to pure Servlets, JSP separates look and content clearly, so that

programers can first insert the dynamic content and later design the web page.

Cons: Run-Time, since all pages need to be recreated after every modification.

• HTML: Pages could be statically generated. HTML pages can be linked to servlet

script for edit action by entering the adress.

Pros: HTML is simple and a open standard. It can be cached.

Cons: Changes could trigger long update operations on files that are rarely ac-

cessed.

5.1.4 Gjdoc, Eclipse JDK, ASTParser and Equinox Incubator

• Gjdoc13:

Gjdoc is a replacement of Javadoc from GNU Classpath. It uses Antlr as the parser.

Gjdoc can be used as a driver for a user-specified doclet. It is compatible with

Javadoc up to and including version 1.4.

Pros: (vs. Javadoc) GPL (GNU General Public License)

Cons: Thus far there is no support for Java 1.5. It can not recreate the source files

from within the doclet.

• Eclipse Java Development Tools and ASTParser:

Eclipse’s JDT has its own Document Object Model (DOM) and the Abstract Syntax

Tree (AST). Eclipse’s JDT generates an AST from the java source which holds all

the information about the source (including location).

13http://www.gnu.org/software/classpath/cp-tools/

Zhao — WikiJavadoc 28

Pros: It performs all required functions and supports Java 1.5.

Cons: It uses its own complex API

• Equinox Incubator:

It is embeded in a servlet Container and builds a common infrastructure for launch-

ing eclipse from a servlet container and creating OSGi based servlet applications.

Pros: It is the only choice for server side eclipse.

Cons: It needs eclipse 3.2 or later.

5.1.5 Ant, Logj4

• Ant: Ant is a Java based build tool. Like java, it is platform independent.

Pros: It has a large variety of common tasks. It is extensible, and it is not hard to

create the user’s own tasks.

• Logj4:

Log4j is a powerful log manager.

Pros: It supports the Apach Commons Logging interface.

Cons: Log4j as the Tomcat system logger needs to be installed and configured .

5.2 Security

In the WikiJavadoc system, only authorized users are able to manage Wiki projects, e.g.

execute creating, updating, or deleting projects. The anonymous users can only edit the

exsiting APIs. Therefore, the authentication mechanisms should be used to protect the

project management resources.

There are different ways to implement page security. The servlet specification re-

quires servlet containers to provide implementations of basic and digest authentication,

Zhao — WikiJavadoc 29

as defined in the HTTP/1.1 specification. Additionally, servlet containers must pro-

vide form-based security that allows developers to control the layout of login screens.

Servlet containers may provide SSL and client certificate authentication. However, the

non-J2EE compliant containers are not required to do so.

Form-based authentication is a bit more effort to provide a well-designed, descrip-

tive, and friendly login page. Obviously, it is more feasible for the WikiJavadoc system.

The WikiJavadoc system requires a login page. And an error page will be displayed if

the login fails. The security page in WikiJavadoc will be implemented similar to Tom-

cat’s project management page.

5.3 Project Management

Project management contains creatinf, updating deleting projects. To create a project it

is necessary to do two steps: In a first step the Java source files must be loaded. In a

second step the JavaDoc HTML pages, including HTML source code pages, are created

from loaded the Java source files. The created project can be updated or deleted. To

update an existed project the source file will be reloaded, then Java documentation is

created. To delete a project all APIs including their sub directories should be deleted.

For these work procedures the development tool ANT is suitable. With ANT pro-

grams are executing automated. It is comparable compared to other development tools

spreading in the UNIX world. To execute a program, targets need be defined in an ANT

script. The targets summarize individual work procedures, which are necessary for ex-

ecuting a program. Dependence between individual targets can be defined. ANT solves

these dependence through calling targets in the appropriate order. In the targets ANT

tasks will be called. A task represent particulars, indivisible work steps. It has a large

variety of common tasks already catered for. Loading source can be realized with the

standard ANT tasks completely . Generating documentation can be implemented easily

Zhao — WikiJavadoc 30

as ANT task.

5.4 UpdateJavadoc Tool

The updateJavadoc tool is designed to update JavaDoc comments in source code in a

selective manner. The tool is a subproject of the WikiJavdoc system. It can be used

independently from the command line.

When one begin to write an application that manipulates Javadoc comments in

source code, the procesure can become a little complicated. A Java Parser is needed

to parse Java source code. Considering of the powerful parsing abilities of Eclipse, we

decided to take advantage of the Java Development Tooling (JDT), which has a pow-

erful ASTParser. Eclipse’s JDT has its own Document Object Model (DOM) and the

Abstract Syntax Tree (AST). The Eclipse’s JDT allows the developers to create and mod-

ify Java source code. Even compilation of the created or modified source code can be

invoked programmatically by the developer. ASTParser can generate new Java source

files from abstract syntax Trees. An AST contains all necessary information, which can

be extracted by a deep run and be written into a new Java source code file. With this

procedure the modifications from the Wiki are replaced and written back in the branch.

Because AST parser is part of eclipse IDE, the UpdateJavadoc tool should be a headless

Eclipse plug-in. The ASTParser will be discussed in detail in Section 5.

Fig. 6 is an example to use this tool with the following commands.

”java -cp startup.jar org.eclipse.core.launcher.Main -application” starts eclipse runtime

from console, but no UI of eclipse show up. ”de.fu_berlin.inf.wikidoc.coderewriter”

is the name of the UpdateJavadoc tool. JavadocUpdate is ID of the extension point.

”C:/eclipse/workspace/ASTExplore/src” is the path of the Java source files. ”swtJ-

Face.Hello.main(String[] args)” is the qualified name of the class or the class number.

”new comments” refers to the modifcations that the user edited. After the modifica-

Zhao — WikiJavadoc 31

Figure 6: Using UpdateJavadoc tool from conmand line

tions is rewritten to source code, the original Javadoc and the modified Javadoc will be

printed in console, so that the user can compare them easily.

An UpdateJavadoc tool command consists of a few elements: java -cp startup.jar

org.eclipse.core.launcher.Main -application

de.fu_berlin.inf.wikidoc.coderewriter.JavadocUpdate

[path of java source file] [class or class number] [new comments]

For the purposes of using UpdateJavadoc tool from the command line, the user

needs to give the correct parameters.

• path of java source files:

The absolute path of a java file is needed and it ends with suffix ”.java”. Such as,

C:/eclipse/workspace/classpath/gnu/classpath/src

• class or class number:

The fully qualified expression is needed. It identifies the method, attribute or class

to be changed.

Such as: swtJFace.Hello.main(String[] args)

swtJFace is package name, Hello is class name, main(String[] args) is method

name.

Zhao — WikiJavadoc 32

• new comments:

The comments must be written according to the specified rules.The rules are fully

compatible to the JavaDoc rules used for the same problem.

5.5 JavadocGenerator Tool

This tool generates API documentation in HTML format from Javadoc comments in

source code. Gjdoc may be used under the GNU General Public License, so this Javadoc-

Generator tool an be implemented through extending gjdoc, especially its doclet.

5.6 Logging

There are two different methods for logging.

• Debug information:

The important work procedures, like data that are written to standard output and

standard error, should be written in a log file, in order to reconstruct the function

of the program better and to find errors more easily.

• Security information:

Additional, changes of the Wikis should also be logged. The changes of Wikis

should therefor be retracable. The logging definition should also cover the IP ad-

dress and the registered user.

In order to fulfill these requirements, the Logging Framework Log4j should be

used. The output is nearly arbitrarily configurable and different kinds of loggings

would be treated separately. For example, it is possible to reject the logging infor-

mation on the work process of the Wikis, but to store the logged accesses durably

on the hard-disk.

Zhao — WikiJavadoc 33

5.7 Mockup Walkthrough

1. If a user wants to create a WikiProject, he or she should install JDK 1.5 , Tomcat

5.5, Tortoise SVN and Tortoise SVN. The user will download the pre-built web

application archive wikijavadoc.war file and adds it to the webapps dictionary in

the tomcat installation directory. For security reasons, use of the administration

WikiJavadoc is restricted to users with the role ”admin” and ”wikidocAdmin”.

Users are defined in $CATALINA_HOME/conf/tomcat-users.xml. she adds the

role "wikidocAdmin"in tomcat-users.xml. Of course The administrator of Tomcat

is the default Administrator of WikiJavadoc.The URL is the server’s base with the

/wikijavadoc/ context, e.g., http://localhost:8080/wikijavadoc.

Figure 7: Login interface of the WikiJavadoc

This is the login user Interface of WikiJavadoc system designed for this project. A

WikiJavadoc logo is placed at the upper left hand corner. Software version and

Zhao — WikiJavadoc 34

copy right information are also shown in this interface. The side menu is a block

containing function options.

• The option ”Home” links to the general introduction about the wikiJavadoc

system. ”Was is the tool?” and ”How to config the tool?”. On the home page

one can also download the WikiJavadoc User’s Guide.

• The option ”Project” links to the list of projects that were created in this sys-

tem. The anonymous user can edit Javadoc APIs there.

• The option ”Admin” links to the admin page, where admin can creat API

for new projects, or update and delete the old APIs. If the admin has not

registered, the login page will be forwarded first.

• The option ”download” links to our project page in sourcrfoge.net. From

there everyone can download the project, including the software, source codes

and User’s Guides.

2. After login, the admin page illustrated in Fig.9 is displayed.

Since WikiJavadoc lacks the required version control functionality, so we have re-

placed it with another software, e.g. Tortoise CVS and Tortoise SNV, which both

have a graphical user interface. So the inexperienced users for version control can

use it easily. Fig.11 illustrated the authorized user check out project source files to

the local disk with Tortoise SVN.

Zhao — WikiJavadoc 35

Figure 8: Check out source files with Tortoise CVS

3. After the source files are checked out to the local disk, In the admin page the user

must type the project name, the local path of the Java source files and the local path

of the java library, and then click on the ”Create” button.The creating WikiJavadoc

work begins. Fig. 10 illustrates the admininistrator page of the WikiJavadoc.

Zhao — WikiJavadoc 36

Figure 9: Admininistrator page of the WikiJavadoc

While the user-requested operation is being executed, the information is being fed

back to the user during operating. Fig.11 tells the users the information about the

creating operation progress. Creating project is in the prepare phase, then in copy

phase, etc.

Zhao — WikiJavadoc 37

Figure 10: Information about creating the WikiJavadoc work process

4. After the project has been created, in the projects’ page a list of project names will

be displayed. Every project name includs a link to its Javadoc documentation.

Other anonymous users can also display and edit the APIs. For instance, a user

wants to edit the entry of a class she is cuurently browsing, because the user finds

the comment inadequate. In this case, the "Edit"button will provide this func-

tionality. After the user clicks on the ”Edit” button, a Javadoc edit page will be

displayed. Fig. 12 is just one simple example process of this. The user can edit

comment texts, all the Javadoc tags content, like the paprameters, return content,

exceptions ect.

Zhao — WikiJavadoc 38

Figure 11: Edit page of the WikiJavadoc

5. If the user is satiesfied with the changes she can save them using the ”Submit”

button, to save all modifications. In our example part of Javadoc text is deleted.

Zhao — WikiJavadoc 39

Figure 12: Updated html page of the WikiJavadoc

6. The system regenerates the Javadoc appropriately and displays the new version

HTML page to the user, at the same time changes are added in the associated java

source file. Fig.14 provides the comparison of the HTML source codes page before

and after editing. Fig.15 provides the comparison of the source codes before and

after editing.

Zhao — WikiJavadoc 40

Figure 13: Comparison between the original and the modified source code

7. If the user is satisfied with the modified Javadoc comments, she can commit the

new version source to the CVS respository with Tortoises CVS.

Zhao — WikiJavadoc 41

Figure 14: Comparison between the original and the modified source code

Zhao — WikiJavadoc 42

6 Implementation

The project WikiJavadoc is a web application and a Tomcat project. This section will be

also discussed in 6 subsections.

6.1 Implementation of Form-based authentication

The following steps are performed to implement Form-based authentication of Wiki-

Javadoc system:

• Create a login page.

Login Form Attributes, j_username, j_password, and j_security_check are defined

in the Servlet Specification. Fig. 11 is a part of login.jsp. The three attributes are

used. ”j_username” is the name of the username field. ”j_password” is the name

of the password field. And ”j_security_check” is used in the login form’s action

field.

Zhao — WikiJavadoc 43

Figure 15: Excerpt of code in login page

• Create an error page that will be displayed if login fails.

The error page shows an error message and provides a link back to the login page.

Since it’s easy to implement such an error.jsp, it will not be explained here.

• In the deployment descriptor, specify form-based authentication and the login and

error pages. Part of the deployment descriptor for the application is shown in Fig.

16. It specifies the security constraint that restricts access to /config to principals

in the role of tomcat and wikidocAdmin. The authentication method is specified

as FORM, and the login and error pages are identified. The level of security in the

transport mechanism is declarant with ”NONE”, because in our work no encryp-

Zhao — WikiJavadoc 44

tion is required.

Figure 16: Specify form-based authentication and the login and error pages

Zhao — WikiJavadoc 45

6.2 Project Management

Project management contains creating , updating, and deleting Projects. The popular

Apache’s Ant build tool is used to manage projects. In this thesis only creating a project

will be in details explained.

In WikiJavadoc home, there is a directory named projects which is the root directory

of Ant. For creating a WikiJavadoc project two things needed be done.

• copy source codes from local path to the root-directory.

• generate API from those sources.

For the first task the following xml is used in build.xml file.

Figure 17: Activate the copy task

For the sencond task we write a class GjdocTask.java extends org.apache.tools.ant.Task

which is integrated in Ant. It gets the project-reference, provides documentation fields,

provides easier access to the logging facility. It gives the exact location in the buildfile

build.xml where this task instance is used. In the GjdocTask.java the extended Gjdoc

method is called.

The following is a part of GjdocTask.java codes.

For the deletion of a project Ant execute the task to delete the project dictionary with

all contained files and dictionaries.

Zhao — WikiJavadoc 46

Figure 18: Excerpt of GjdocTask.java

In the build file, first a task named "CreateWiki"is defined that specifies the Gjdoc-

Task class. The following xml is involved in the buildfile:

Zhao — WikiJavadoc 47

Figure 19: The definition of GjdocTask class in Ant build file

6.3 Implementation of UpdateJavadoc Tool

UpdateJavadoc Tool is a headless (console-mode, non-GUI) application plug-in for Eclipse.

Eclipse project consists of Eclipse Platform, IDE, and RCP. The Java IDE is called JDT

and compiler that comes as part of Eclipse. Eclipse’s JDT has its own Document Object

Model (DOM) and the Abstract Syntax Tree (AST). The DOM/AST is the set of classes

that manipulate Java source code, detect errors, perform compilations, and launch pro-

grams. The Java DOM/AST classes is contained in package org.eclipse.jdt.core.dom. In

particular, it provides a full abstract syntax tree for a Java compilation unit, which can

be queried for resolved type information, and modified. Its principal classes are AST

ASTNode, and ASTParser, which are used in our project.

Eclipse V3.0.2 supports the Java Language Specification, Second Edition (JLS2). It

will correctly parse programs written in all versions of the Java language up to and

including J2SE 1.4. Eclipse since V3.1 supports JLS3. The JLS3 API can be used to

manipulate programs written in all versions of the Java language up to and including

J2SE 5 (JDK 1.5). AST.JLS3 has a different structure and more nodes than AST.JLS2:

In our work the AST is created with JLS3. If users run this project with old API, an

IllegalArgumentException will be thrown.

There are three types of Comment nodes in Java: BlockComment, Javadoc, and

LineComment. The AST Tree supports the creation and insertion of Javadoc nodes only.

It considers the exact positioning of BlockComment and LineComment nodes problem-

atic. In fact, the UpdateJavadoc tool only needs to modify Javadoc.

How does the tool updateJavadoc work?

Zhao — WikiJavadoc 48

First, an AST is created by paring the source code of the given Java file, then with

a search algorithm the right node, whose JavaDoc comment is edited by the user, is

found. Now changes need be written back to source, and instead of changing the AST,

just the Javadoc node is changed. The last step is to get the actual source code, from the

Compilation Unit.

Figure 20: Work procedure of UpdateJavadoc tool

Since Javadoc can be involved in one of nested classes, the search algorithm is a

recursive algorithm.

From the AST of one file the TypeDeclaration is provided, and from the TypeDec-

laration a list of BodyDeclarations is provided. The BodyDeclarations has 8 different

types, like FieldDeclaration, MethodDeclaration except that it can be a nested class. For

different type of BodyDeclarations the comparison is done, the right bodyDeclaration

is returned. If the BodyDeclaration is a nested class, call recursively the algorithm.

At first I tried to write a normal Java application for this tool. It turns out that method

doesn’t work, although the logic is correct. The changed Javadoc node can not be re-

turned. The problem is that ASTParser can only work well with eclipse plug-in mode.

That’s why a headless (console-mode, non-GUI) application plug-in for Eclipse will be

created. In other words, via a console without GUI an eclipse plug-in is started, which

will access appropriate eclipse jar files from the eclipse platform, .

The OSGi run time, the Extension Registry of Eclipse, as well as eclipse runtime is

the mentioned headless eclipse.

A minimal Eclipse headless application will require only:

Zhao — WikiJavadoc 49

• org.eclipse.osgi

• org.eclipse.core.runtime that requires org.eclipse.osgi.

• a user plug-in providing an application

The plug-in org.eclipse.update.configurator will also be needed if one wants Eclipse-

style support for discovering which plug-ins ought to be installed. Otherwise, one

needs to add user plug-in to the list of plug-ins to be installed.

Plug-in org.eclipse.core.runtime offers applications an extension point, which is eval-

uated when starting and serves as a starting point of the Application. To be able to start

our application, we use startup.jar provided by Eclipse or the OS-specific Launcher.

With the program parameter - application <applicationID> we specify which extension

point is to be addressed. Also here the OSGi Configuration file must be indicated or

existing in the sub folder configuration. It is not difficult to create a headless eclipse

plug-in with eclipse. Because It’s difficult to find information or tutorials about how to

create headless eclipse Plug-in, that will be explained here. At last useful plug-ins from

all the eclipse plug-ins are separated.

The pictorial guide for building the UpdateJavadoc headless plug-in is shown here.

To create the headless plug-in perform the following steps, select ”File->new->Project...”

from the main menu and choose "Plug-in Project"from the resulting "New Project"dialog

box. Input project name into the ”project name” text box. Accept the rest of the default

preloaded values on the ”plug-in Project” and click ”next”.In the next dialog, accept the

default preloaded values on the ”Plug-in Content” page and click ”Next”.

Zhao — WikiJavadoc 50

Figure 21: Create the headless eclipse plug-in II

Directly click on ”Finish” without selecting any templates from the list of ”Avail-

able Templatees”. As mentioned above, the headless Plug-in needs an extension point

from ”org.eclipse.core.runtime.applications”. To create a plug-in extension, first click

on ”Extensions” in the under menu. The extensions page of this project will be dis-

played. Then click on ”add” button. A dialog will be displayed shown in fig 19. Form

the list of extension points org.eclipse.core.runtime.applications is selected. At last click

on ”finish”.

Zhao — WikiJavadoc 51

Figure 22: Create a plug-in extension

To add an application to the Extension, select org.eclipse.core.runtime.applications,

right click mouse, then ”New->application”.

Zhao — WikiJavadoc 52

Figure 23: Procedure to add an application to the Extension

To add a run() method to the application, select application, right click mouse, then

”New->run”.

Zhao — WikiJavadoc 53

Figure 24: Procedure to add a run() method to the application

To create the class de.fu_berlin.wikidoc.codeRewriter.Runnable, click on ”class*:”

with green color, a dialog will be displayed, shown in fig 22. Input package name and

class name, accept the rest of default preloaded values, click on ”finish”.

A class which implements Interface IPlatformRunnable is created. In run() method

of this class the functional method should be called.

Zhao — WikiJavadoc 54

Figure 25: Create the class de.fu_berlin.wikidoc.codeRewriter.PlateformRunnable

After the extension point and application are added, the extension ID must be added,

as well.

At last, export the plug-in to a dictionary. Select” File->Export->Deployable plug-

ins and fragments”, click”next”, select a destination directory from the local disk. Click

”Finish”.

Zhao — WikiJavadoc 55

Figure 26: Plug.xml file of the headless plug-in

Zhao — WikiJavadoc 56

6.4 JavadocGenerator

Gjdoc is a documentation generation framework for Java source files. It is a replacement

of Javadoc from GNU Classpath. Gjdoc can be used in two ways: as a stand-alone

documentation tool, or as a driver for a user-specified Doclet. In the default mode,

gjdoc uses the Standard Doclet HtmlDoclet to generate a set of HTML pages. In this

work the latest version 0.7.7-3 of gjdoc is used as a driver. And its standard HtmlDoclet

is extended so that it generates a set of Html pages with wiki functionility.

How does gjdoc work?

1. First, gjdoc fetches the Class object for the Doclet, then finds the optionLength

method and the validOptions method in the Doclet class. It’s also OK if the Do-

clet class doesn’t define this method. Then gjdoc finds the start method in the

Doclet class, feeds the custom command line tokens to the Doclet, and stores all

recognized options.

2. Gjdoc stores packages and classes defined on the command line. For each package

specified with the -subpackages option on the command line, gjdoc recursively

finds all valid java files beneath it. For each class or package specified on the

command line, gjdoc checks that it exists and finds out whether it is a class or a

package. The gjdoc creates one file object each for a possible package directory

and a possible class file, and finds out if they exist. Gjdoc adds all classes and

packages to the RootDocImpl, which is required by Doclet. Then gjdoc validates

custom options passed on command line by asking the Doclet if they are OK.

Gjdoc adds the valid operations to RootDocImpl. ;

3. RootDocImpl builds. RootDocImpl creates a temporary random access file for

caching comment text. Then RootDocImpl parses all files in explicitly specified

package directories and all files in "java.lang". RootDocImpl translates every pack-

age into an PackageDocImpl, every file into a ClassDocImpl. After all specified

Zhao — WikiJavadoc 57

classes are loaded, RootDocImpl loads all classes implicitly referenced by explic-

itly specified classes. Then RootDocImpl resolves references in comments, resolve

pending references in all PackageDocImpls and ClassDocImpls, in comment data

of all packages. At last RootdocImpl create an array of ClassDocImpl with all

loaded classes.

4. The start method in the Doclet mentioned above is running.

Doclet generates HTML files for overview, HTML files for full tree in the naviga-

tion bar, HTML files for index and HTML files for every package;

We need extend gjdoc’s Doclet, so that on one Html class page the class and ev-

ery class memeber has its own edit link. When a WikiJavadoc project is created, Ant

script calls gjdoc. The complete suite of Javadoc HTML pages with edit links will be

generated, including HTML pages with syntax-highlighted source code for all classes.

Additional, after the Javadoc comments are edited, the edited Javadoc HTML page and

its source HTML page should be updated. Two methods are extended in gjdoc, print-

ClassPage(...) and printSourcePage1(...). To run the two extended methods, A new

RootDocImpl is needed for the extended Doclet. The ideal approach is that the Root-

DocImpl, including all its ClassDocImpls is saved in an object oriented database, such

as DB4o14, while a WikiJavadoc project is created. When one class page is edited, re-

trieve the associated ClassDocImpl, change it refereing to modifications by the user.

Thus, we get a modified RootDocImpl. But gjdoc uses Antlr as a Parser, which has

not such the powerful parser ability as ASTParser. Another, because of the high cou-

pling between the RootDocImpl and its parser; separation of ClassDocImpl and Javadoc

comments in Hashmap, this ideal approach is impossible to implement. Then we select

another available approach without database. After the modifications is written into the

source file via UpdateJavadoc tool, we directly parse all the files, including the modified
14DB4o is the open source object database that enables Java and .NET developers to slash development

time and costs and achieve unprecedented levels of performance.

Zhao — WikiJavadoc 58

Java file, and create a new RootDocImpl. This approach is fit for most open source soft-

ware in sourceforge.net. For larger projects with more than 1000 classes, visual-machine

memory with 128 MB is not enough. To handel this problem, we should consider imple-

menting a total new documentation framework instead of extending gjdoc. Fortunately,

today’s computer has 2 G memories, it is no problem to give visual-machine memory

more than 128 M.

6.5 Equinox Incubator

WikiJavadoc needs to call the UpdateJavadoc tool, which is a headless plug-in. Equinox

Incubator is used in this project to help to run UpdateJavadoc on server side.

Eclipse overview

Figure 27: Overview of the Eclipse project[Lip06]

Zhao — WikiJavadoc 59

Eclipse is a nice Java-IDE and a well-known framework for developing Rich-Client-

Applications(RCP). Fig. 27 shows the relationships among Eclipse platform, RCP, and

Equinox. In 2003 Eclipse selected OSGi15 as the underlying runtime for the plug-in

architecture. The goal of the Equinox project is to be ”a first class OSGi community and

foster the vision of Eclipse as a landscape of bundles”[EQU06b]. Equinox Incubator is

”an experiment with techniques for broadening the range of Eclipse platform runtime

configurations”[EQU06a]. Equinox has a variety of work areas, such as, security, the use

of Equinox on the server-side. Since WikiJavadoc needs run a headless plug-in on the

server-side, Incubator is used in this project. With Incubator servlets can be packaged

in Eclipse-style plug-ins for the server-side. Incubator plug-in cab be deployed and

un-deployed while the container WAR file keeps running.

The configuration steps:

1. Download bridge.war from Eclipse page. It is a web application. It launches the

framework, provides a place for the framework to hook back into the servlet con-

tainer, then hooks back into the servlet bridge, proxies through the servlet con-

tainer to provide an OSGi Http Service.

2. Copy bridge.war to the Tomcat webapps folder.

Start Tomcat, so that an unpacked bridge project is generated.

Copy all files and subfolders of the bridge project, except its deployment descrip-

tor(web.xml), to our WikiJavadoc root folder.

The eclipse Bundles, which are involved in the bridge project, are also required by

WikiJavadoc.

3. Specify our own framework launcher in WikiJavadoc’s deployment descriptor,

and with one servlet entry assign an incoming request to the BridgeServlet.

15OSGI is an abbravation of Open Services Gateway initiative. Here it means a Java-based service
platform that can be remotely managed

Zhao — WikiJavadoc 60

4. Then begin creating our own deployment Bundle based on an OSGi HttpService.

On Eclipse page it says that there are two approaches of writing a bundle-based

server application. One is to write a bundle that uses the OSGi HttpService reg-

istered by org.eclipse.eqinox.servlet.bridge.http. The other is to write a bundle

that adds extensions from org.eclipse.equinox.http.registry. [EQU06a] Via the ex-

tension points of Org.eclipse.equinox.http.registry, we can map servlet, static re-

sources and HTTP service. But we can not map JSP.

Since WikiJavadoc needs an edit window, a servlet is suitable to our project. The

servlet registry is realized via the extension point

org.eclipse.equinox.http.registr.servlets.

• A new bundle project is created in the Eclipse IDE and is called it

de.fuberlin.inf.wikidoc.http.registry.

• In MANIFEST.MF file Require-Bundle, UpdateJavadoc and Import-Package

that is from the headless plug-in was added.

• A new class named WikiJavadocServlet that extends javax.serlvet.http.HttpServlet

was created. In WikiJavadocServlet the headless plug-in created earlier was

used.

• The following XML is added to the plugin.xml file of the bundle

de.fu_berlin.inf.wikidoc.http.registry. This new element is placed within the

<plugin> element.

In the extension above, the alias attribute locates the servlet in URL space

and the class attribute identifies the class that implements the servlet. So the

server knows where the servlets are and where they should show up in URL

space.

Compared to the normal web application file system structure, the structure of Wik-

Zhao — WikiJavadoc 61

Figure 28: Excerpt of Equinox Incubator plug-in’s Plug.xml file

iJavadoc is a little complicated and is shown in Fig.29. The structure of Equinox in-

cubator is meant to be very close to an RCP application with the /platform directory

containing components suitable for server side interaction. In folder wikijavadoc/WEB-

INF/plateform/plugins, all Eclipse bundles, which are required in our project, are saved,

including also the bundles which UpdateJavadoc requires.

Zhao — WikiJavadoc 62

Figure 29: Overview of WikiJavadoc’s file system structure

6.6 Version Control

The following approach is adopted to the validation and implementation of the system.

WikiJavadoc lacks the required version control functionality, so it is replaced with other

software, Tortoise CVS (TCVS) and Tortoise SVN (TSVN). They both have a graphical

user interface. This approach will grant flexibility as our requirements evolve.

TCVS and TSVN are both F/OSS licensed under the GNU General Public License.

TCVS does away with the command line interface, and instead it has a graphical

user interface. It lets users work with files under CVS version control directly from

Windows Explorer. That makes version control an enjoyable experience even for novice

users. The user simply right clicks on files and folders to access context-sensitive CVS

menus (Fig.9)35. TCVS provides a point-and-click interface for the most common CVS

Zhao — WikiJavadoc 63

commands.

TSVN is similar to TCVS, provides also a point-and-click interface for the most com-

mon SVN commands. The difference is that it is a SVN client rather than a CVS client.

Zhao — WikiJavadoc 64

7 Testing

This part explains the test methods and technologies used for the WikiJavadoc tool ap-

plication and their results. It takes into consideration the functional and non-functional

requirements mentioned in the Section Requirements. The testing strategy adopted is

explained.

7.1 Test Plans and Results

This test plan is aimed at detecting the differences between the expected behavior spec-

ified in requirements and the observed behavior of the implemented system. Testing

activities for this application include functional and acceptance testing. Functional test-

ing will be carried out by developing test cases. Acceptance testing is performed by the

user to verify the proper implementation of the requirements specified by him.

7.2 Functional Testing

7.2.1 Test Methodology Junit

The powerful test methodologies can accelerate testing toolkits, and the development

of better testing processes. To test UpdateJavadoc tool we use framework Junit with

Eclipse IDE together.

JUnit is a simple framework to write repeatable tests. It is an instance of the xUnit

architecture for unit testing frameworks. It is easy to run many of them at the same

time. More information about Junit is available at

http://junit.sourceforge.net/doc/cookbook/cookbook.htm .

To create a test for the project updateJavadoc tool, right-click on the project name

de.fu-berlin.inf.wikidoc.updateJavadoc, select New -> Other, expand the "Java"selection,

and choose JUnit. On the right column of the dialog, choose Test Case, then click Next.

http://junit.sourceforge.net/doc/cookbook/cookbook.htm
oezbek
Highlight
Can be one sentence for all of the description about how to do testing

oezbek
Highlight
Regressiontesting

Zhao — WikiJavadoc 65

This is illustrated in Fig.30.

Figure 30: Creating a JUnit test in the Eclipse IDE

Our Test case is named JavadocModifyTest, click on ”Finish”. Java class Javadoc-

ModifyTest extends JUnit framework. Junit.framework.TestCase is defined in JUnit’s

Javadocs as "a fixture to run multiple tests."In the next step different test cases are de-

fined in JavadocModifyTest. The tests returns void and whose name begins with the

string ”test”, such as, testOverloading(), testMultiLineComments() etc..

The code for one of test cases is shown in Fig.31:

Zhao — WikiJavadoc 66

Figure 31: Excerpt of code in JavadocModifyTest class

String code contains two methods for overloading. They each have their own Javadoc

conmments. The method testOvrloading1() uses an assertEquals() call, which com-

pares the value that we expect to receive against the value returned by filewrapper(¡).

filewrapper(¡) is a help method that writes old codes to a java file, calls updateJavadoc

method, then returns the new codes of that java file

oezbek
Highlight

oezbek
Highlight

oezbek
Highlight
Bad example because of Bla() and New Javadoc etc. Needs to be meaningful.

Zhao — WikiJavadoc 67

Figure 32: Excerpt of code in JavadocModifyTest class

Click Run -> Run as -> JUnit Test (remember that JavadocModifyTest.java should

be highlighted in Package Explorer). In the left window, instead of Package Explorer,

you will see the JUnit window, which shows a green bar, as seen in Fig.33. the tests are

successful.

Zhao — WikiJavadoc 68

Figure 33: The test result for UpdateJavadoc tool with a JUnit

7.2.2 Test Cases

The traceability of Test Cases to UpdateJavadoc Tool is summarized in fig.33. Update-

Javadoc can handle the cases, such as, Javadoc comments of one class or interface, fields,

constructors, overloading, nested classes, etc. The required functionalities work well.

oezbek
Highlight

oezbek
Highlight
But what about the problems we found?

public static int a,b,c?

Zhao — WikiJavadoc 69

Figure 34: Traceability of Test Cases to UpdateJavadoc

Test Cases to WikiJavadoc system:

A simple example is selected and the following steps are performed to test the whole

WikiJavadoc system:

1. Create a Java project ’TestSimple’ with Eclipse IDE.

2. Create a source folder, then create two packages. In every package one Java file

is created. In every file there are some Javadoc comments to the class or class

members.

3. Import the project ’TestSimple’ to the SVN repository from Sourceforge.net with

Tortoies SVN tool.

4. Export the project ’TestSimple’ to the locale dictionary WikiJavadoc.

oezbek
Highlight
We just one test case and not several for the whole system :-(

Zhao — WikiJavadoc 70

5. Start up WikiJavadoc system, create a WikiJavadoc project named testSimpleWiki

from source code in the dictionary WikiJavadoc.

6. Borwse the Javadoc Documentation of testSimpleWiki, then edit comments, click

on ’Submit’ Button. (Modifications1)

7. Make sure the html Javadoc page, the html source page, and the source files will

be updated.

8. Commit the updated WikiJavadoc dictionary to SVN repository from sourceforge.net

with Tortoies SVN tool.

9. Update source files from the SVN repository in Eclipse IDE, then make sure if

Modifications1 exist.

10. Modify the comments in the source files in Eclipse IDE(Modifications2), then com-

mit to the SVN repositary.

11. Update the source files in the locale dictionary WikiJavadoc fronm SVN repositary

with Tortoies SVN tool, make sure Modifications2 exist in the locale dictionary

WikiJavadoc.

12. Update the WikiJavadoc project TestSimpleWiki.

13. Browse TestSimple Documentation, make sure if Modifications2 exist in the html

Javadoc page and the html source page.

All 13 steps are performed without errors, that shows the WikiJavadoc system works

well.

The traceability of test cases to WikiJavadoc is summarized in fig. 34. The Wik-

iJavadoc handles cases, such as creating , updating, editing deleting project. The re-

quired functionalities work well.

Zhao — WikiJavadoc 71

Figure 35: Traceability of Test Cases to WikiJavadoc

7.3 Acceptance Testing

Of course we want to know whether WikiJavadoc is a truly useful tool for Java de-

velopers. On the server of our university, JDK 1.5, Tomcat5.5, Tortoies SVN, Tortoies

CVN, WikiJavadoc are installed. 5 open source projects are taken from sourceforge.net.

The choice rules is that the projects written in Java and has at least 4 developers. Let

WikiJavadoc run on the 5 projects.

The five projects:

• jabref-2.2b16: zip file, 3.9M

• jasmin-2.317: zip file, 1.24M

• jdom-1.018: zip file 3.73M

• jnex3.819: zip: 8.95M

• jruby-0.9.120:zip file 2.76M

16 http://jabref.sourceforge.net/
17 http://jasmin.sourceforge.net/
18 http://www.jdom.org//
19 http://http://jnex.sourceforge.net/
20 http://jruby.sourceforge.net/

oezbek
Highlight
What about the real-life test with the projects?

oezbek
Cross-Out

oezbek
Cross-Out

oezbek
Cross-Out

oezbek
Cross-Out

oezbek
Cross-Out

oezbek
Cross-Out

oezbek
Highlight
Categorize the projects quickly: why would they use JavaWikiDoc?

Zhao — WikiJavadoc 72

For an initial pilot test, we send mails to c.a 20 students from major computer science of

our university and invite them to join in this experiment. We ask them try to improve

the documentation of those 5 projects for 30 minutes. For statistical purposes the access

to the system will be anonymously logged.

If there are bugs in the programs or something the user wish had been present in the

Javadocs of an API they use, they are asked to give us feedback. They report the bugs

on the project page on sourceforge.net or write mails directly. Then we’ll devote the

time and resources to improve WikiJavadoc. If the test-users are interested in receiving

the edits performed by users as patches in unified diff format, we will send them.

The following are the test results: There are 26 testers, Every one of them browsed

111 pages in average, and made 13.3 modifications. Fig.36 lists the number of pages pro

project the users browse and the number of modifications pro project the users make.

Figure 36: The number of pages and the number of modifications

Fig.37 lists the number of users pro project, most of the testers don’t browse all 5

projects, only ca. 2-3 projects.

Figure 37: The number of users pro project

The statistic in Fig.38 shows the arithmetic mean wert is 11.2 and the media wert is

12. That says every projects has 11.2 users in average.

Zhao — WikiJavadoc 73

Figure 38: The statitic about the number of users pro project

Testplan2:

Send mails to the mailing list of every project, post messages in the forum of every

project, and invite them to use WikiJavadoc for a few weeks. See what will happen?

will the developers and users accept this tool? Their feedback is important to improve

WikiJavadoc and extend WikiJavadoc’s functionalities.

7.4 Conclusion

Testing is a necessary part of the development process. Testing code was always an inte-

gral part of any development. But it has been advanced over the last few years. Thanks

to powerful methodologies Junit, accelerated testing toolkits, and the development of

better testing processes. Thanks to the 20 testers from the university, their feedback are

important to find out bugs in the programs or present something the user wish in the

API documentation. That improve WikiJavadoc.

Zhao — WikiJavadoc 74

8 Future Research

WikiJavadoc is an open source Java inline documentation tool with Wiki functionali-

ties and a JavaDoc enhancement, which makes a normal Javadoc become a collaborative

java document.

With the base laid we are planning to improve and add new features to WikiJavadoc.

The improvements will include:

8.1 CVS Portal

CVS is widely used around the world, including in many free and open source software

projects. In the current version of WikiJavadoc the source code is loaded with normal

CVS or SVN tool, like Tortoises CVN, or Tortoises SVN. A CVS portal can be added to

the WikiJavadoc system. It allows users to run basic CVS operations from the web. That

will facilitate the work procedure of the administrator.

Up to now no CVS web application in Java exists, that can execute the complete suite

of CVS operations. We may consider using an open source CVS client written in Java,

such as Jcvsweb. It is an open source CVS client web application written entirely in Java

according to the CVS client/server protocol. It involves a com.ice.cvsc package and a

web application. The package implements the CVS client/server protocol and allows

any Java program to implement the complete suite of CVS operations. The web appli-

cation presents any CVS repository on the internet just for browsing and checking out

source files. Unfortunately, it can not commit, update source files to the CVS repository.

We can consider extending Jcvsweb with other functionalities. Another, Jcvsweb uses

Struts Tiles template to implement its interface. WikiJavadoc uses technology Equinox

Incubator. We need consider integrating Struts Tiles and Equinox Incubator. In other

words, we need run Struts Tiles in eclipse plug-ins on server side. It is a new try and

surely much work , but it is possible from a technological aspect.

oezbek
Highlight
who is we? it is possible

oezbek
Highlight
can?

oezbek
Highlight

oezbek
Underline

oezbek
Underline

oezbek
Highlight

oezbek
Highlight
But which CVS operations do we need for WikiJavaDoc to be usable and useful?

Zhao — WikiJavadoc 75

If the CVS portal is added to WikiJavadoc successfully, in the next step we may

consider adding a Subversion web application.

8.2 Authoritative-Versioning

In order to make WikiJavadoc robust, the concept of authoritative-versioning will be

introduced. The versioning should have these functions:

1. Users are allowed to see the difference between the authoritative and user modi-

fied version.

2. At any time, WikiJavadoc can be rolled back to any version in its history if neces-

sary. The detailed method is to store versions with folders named after modifica-

tion dates. Only the administrator has the right to restore earlier versions.

8.3 Log Contributions

A sign-on/sign-off mechanism for anonymous users cab be provided. Depending on

project size, the sign-on/off mechanism will be activated. For larger projects, such as,

GNU ClassPath with about 1000 class files, it is necessary that that changes exceeding a

certain size can only be updated by an authorized contributor. In this case the log on/off

system will be activated. On the other hand, if a project only requires an easy web-

interface for users to modify the inline API documentation, the sign on/off mechanism

can be switched off, or the authorization limit can be lowered.

oezbek
Highlight
should be possible

oezbek
Highlight
Or use a database approach...?

oezbek
Highlight

Zhao — WikiJavadoc 76

9 Summary

This diploma thesis presented WikiJavadoc, which is a freely available and modi-

fiable Java documentation tool and an JavaDoc enhancement. It extends the standard

Javadoc with Wiki functionality and has the following additional features compared to

the standard Javadoc:

• Popular Interface: WikiJavadoc provides a proven, known, and popular interface,

because it integrates the interface of Javadoc and Twiki respectively.

• Javadoc collaboration: WikiJavadoc makes a normal Javadoc become a collabora-

tive Java document. For a Java project, non-developer users can also document a

Java project. WikiJavadoc is effective to put together collaborative Javadoc-style

comments in a short time based on its Wiki functionality.

• Linking HTML source page: WikiJavadoc provides also HTML source code pages.

That makes the non-developer users can write comments better according to HTML

source pages.

• Writing back modifications to source: Users can reflect the changes from the Javadoc

page back into the source code directly. That makes contributing to favorite APIs

much easier.

• Users Collaboration: Users can be asked to collaborate as well. For instance, if a

user can send a question to others via a mailing list, others may contribute their

solutions to the WikiJavadoc documentation.

Of course, on this field some useful improvements can be made, enpowing Wiki-

Javadoc.

We believe WikiJavadoc is a promising tool to help complete Java documentation,

to increase reusability and enhance quality. Thus, it makes the software more accessible

oezbek
Highlight
presents a limited implementation of the Wiki functionality for JavaDoc

oezbek
Highlight

oezbek
Highlight
Why TWiki? Why not Wiki?

oezbek
Cross-Out

oezbek
Cross-Out
JavaDoc can do this too.

oezbek
Highlight
Did you talk about this usecase for the project administrator?

oezbek
Highlight
Difference to the points before?

oezbek
Highlight

Zhao — WikiJavadoc 77

to users by bundling a richer documentation. WikiJavadoc will be developed further,

possible improvements are sketched in section 8.8

References

[Alm06] Dion Almaer. Web form-based authentication. Onjava.com,

http://www.onjava.com/pub/a/onjava/2001/08/06/webform.html, 2006.

[Ber00] Erik Berglund. Writing for adaptable documentation. IEEE, 2000.

[CHYM03] Davor Cubranic, Reid Holmes, Annie T.T. Ying, and Gail. C. Murphy. Tools

for light-weight knowledge sharing in open-source software development.

2003.

[DOC05] Docenhancer’s homepage, http://www.alphaworks.ibm.com/tech/docenhancer.

Documentation Enhancer for Java, 2005.

[Dru00] John G. Drummond. Open source software and documents: A

literature and online resource review. Omar’s official Web Site,

http://www.omar.org/opensource/litreview/, 2000.

[EBN00] Henrik Eriksson, Erik Berglund, and Peter Nevalainen. Using knowledge

engineering support for a java documentation viewer. SEKE, 2000.

[EQU06a] Eclipse Equinox Incubator’s homepage, http://www.eclipse.org/equinox/incubator/.

Equinox Incubator, 2006.

[EQU06b] Eclipse Equinox’s homepage, http://www.eclipse.org/equinox/. Equinox,

2006.

[EQU06c] Eclipse Equinox’s homepage, http://www.eclipse.org/equinox/documents/http_quickstart.php.

Equinox Server-side Quickstart, 2006.

oezbek
Highlight
All URLs need a visited at...

oezbek
Highlight

Zhao — WikiJavadoc 78

[ESD05] http://help.eclipse.org/help31/index.jsp. JDT Plug-in Developer Guide,

2005.

[FAQ06] faq-o-matic.net, http://www.faq-o-matic.net/. faq-o-matic.net, 2006.

[Fre05] Jeffrey Fredrick. Headless hello world in eclipse. Developer Test-

ing, http://www.developertesting.com/archives/month200508/20050823-

HeadlessHelloWorldInEclipse.html, 2005.

[GNU06] GNU Classpath, http://www.gnu.org/software/classpath/. GNU Class-

path, 2006.

[Her03] Jack Herrington. Is documentation holding open source back? DevX.com,

http://www.devx.com/opensource/Article/11839, 2003.

[JAV06a] JavadocOnline, http://www.javadoconline.com. JavadocOnline, 2006.

[jav06b] Sun, http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/javadoc.html#{@link}.

Javadoc - The Java API Documentation Generator, 2006.

[jav06c] Wikipedia, http://en.wikipedia.org/wiki/Javadoc. Javadoc, 2006.

[JCV06] JCVS’s homepage, http://www.jcvs.org/. JCVS, 2006.

[JDO05] JDocs’ homepage, http://www.jdocs.com/. Jdocs, 2005.

[JSO06] JSourcery’s homepage, http://jsourcery.com/welcome/home.html.

JSourcery, 2006.

[Kal06] Riyad Kalla. Developing eclipse/osgi web applications. Eclipse Zone,

http://eclipsezone.com/eclipse/forums/t64085.html, 2006.

[KIC05] Kick Java’s homepage, http://kickjava.com/. Kick Java, 2005.

oezbek
Highlight

oezbek
Highlight

oezbek
Highlight

Zhao — WikiJavadoc 79

[Lip06] Martin Lippert. Server-side eclipse. Java Stuttgart Forum, http://www.java-

forum-stuttgart.de/folien/D4_Lippert.pdf, 2006.

[LKW06] Martin Lippert, Bernd Kolb, and Gerd Wuetherich. Next step eclipse. Eclipse

Magazine, http://www.eclipse-magazin.de, 2006.

[Mar05a] David Patrick Marin. What motivates programmers

to comment? Technical Report No. UCB/EECS-2005-18

http://www.eecs.berkeley.edu/Pubs/TechRpts/2005/EECS-2005-18.html, 2005.

[Mar05b] Manoel Marques. Exploring eclipse’s astparser. IBM developerWorks,

http://www-128.ibm.com/developerworks/opensource/library/os-ast/?ca=dgr-

lnxw97ASTParser, 2005.

[PS01] Nic Peeling and Julian Satchell. Analysis of the impact of open source soft-

ware. SEKE, 2001.

[RRM04] A.J. Rostkowycz, V. Rajlich, and A Marcus. A case study on the long-term

effects of software redocumentation. 1063-6773/04 20.00 . 2004 IEEE, 2004.

[Twi06] TWiki, http://twiki.org/. TWiki, 2006.

[Whe05] David A. Wheeler. Why open source software / free software?

look at the numbers! David A. Wheeler¡¯s Personal Home Page,

http://www.dwheeler.com/oss_fs_why.html, 2005.

[wik06a] APC.org, http://www.apc.org/english/news/index.shtml?x=5038198.

Wiki part I, Progressive communications, wiki style, 2006.

[wik06b] APC.org, http://www.apc.org/english/news/index.shtml?x=5038198.

Wiki part II, Wiki part II: Find your wiki at the bazaar, 2006.

[wik06c] Wikipedia, http://en.wikipedia.org/wiki/Wiki. Wiki, 2006.

oezbek
Highlight

Zhao — WikiJavadoc 80

A Appendix

A.1 User Guides

WikiJavadoc Manual

—————————————————–

Contents

1. Introduction

2. System requirements

3. Starting

4. Configuration

5. Problems

—————————————————-

1. Introduction

WikiJavadoc is the open source JavaDoc-style in-line documentation systems with

the online collaboration paradigm of WikiWiki. It is supplied by:

Free University Berlin

Institute of Computer Science

Make sure that you have downloaded the latest version from the WikiJavadoc

website from sourceforge.net:

http://sourceforge.net/projects/wikijavadoc

WikiJavaDoc may be used under the GNU General Public License, GPL.

http://sourceforge.net/projects/wikijavadoc

Zhao — WikiJavadoc 81

2. System requirements

WikiJavadoc and UpdateJavadoc make use of various JDK 5 features, so you need

a JDK 5 or later. You need also a version control tool, e.g. Tortoise CVS or Tortoises

SVN. For servlet container Tomcat 5.5 or later is required.

3. Starting

• Download the pre-built web application archive wikijavadoc.war and copy

the wikijavadoc.war file to the webapps directory in the tomcat installation

directory.

• Start Tomcat, your URL is the server’s base with the /wikijavadoc/ context.

For example, http://localhost:8080/wikijavadoc/.

4. Configuration

For security reasons, using the administration webapp od WikiJavadoc is restricted

to users with a role "wikidocAdmin". Users are defined in $CATALINA_HOME/conf/tomcat-

users.xml. In tomcat-users.xml file you should add the following lines:

<role rolename=”wikidocAdmin”/>

<user username=”yourName” password=”yourPassword” roles=”wikidocAdmin”/>

Of course the administrator of Tomcat is the default Administrator of WikiJavadoc.

5. Problems

If you encounter any problems, you can ask in WikiJavadoc’s forum from source-

forge.net. or if you find out bugs, please report it to WikiJavadoc’s bugs tracker

page. Of course you can also write mails to zhao@inf.fu-berlin.de

Your WikiJavadoc team.

Zhao — WikiJavadoc 82

A.2 For potential Developers

If you are interested in WikiJavadoc and want to join our developers team. You are very

welcome. You can write mails to

oezbek@inf.fu-berlin.de. or zhao@inf.fu-berlin.de

We will add you as a number in our project in sourceforge.net.

A.2.1 File Release

You can download our newest release from

http://sourceforge.net/project/showfiles.php?group_id=166216

If you want to release a file, You have to login to sourge.net and go to the Wiki-

Javadoc page.

Select ”Admin->Publicity->File Release”, then you come into the file release system

of WikiJavadoc.

Under the file release system two packages named ”javawikidoc” and ”update-

Javadoc” are created. One is for the project WikiJavadoc, the other is for the project

UpdateJavadoc. If you want to release a new file for the project WikiJavadoc, you should

generate a WAR file. If you want to realse a new file for the project UpdateJavadoc, you

should generate a zip archive or tar file. And you can place the new file at the root of

your hard drive, for easy access. Then follow these instructions to perform the upload:

1. FTP to upload.sourceforge.net

2. Login as "anonymous"

3. Use your e-mail address as the password for this login

4. Set your FTP client to binary mode.

5. Change your current directory to /incoming .

mailto://oezbek@inf.fu-berlin.de
mailto://zhao@inf.fu-berlin.de
http://sourceforge.net/project/showfiles.php?group_id=166216

Zhao — WikiJavadoc 83

6. Upload the desired files for the release.

A.2.2 Code Management

A.2.2.1 With SVN You can also get source code of our project with SVN or CVS.

WikiJavadoc Subversion repository can be checked out through SVN with the fol-

lowing instruction set:

svn co https://svn.sourceforge.net/svnroot/wikijavadoc wikijavadoc

As a developer, if you want to execute other SVN operations, you need to enter your

site password when prompted.

A.2.2.2 With CVS

A.2.2.2.1 Anonymous CVS Access This project’s SourceForge.net CVS reposi-

tory can be checked out through anonymous (pserver) CVS. When prompted for a pass-

word for anonymous, simply press the Enter key.

The repositorise:

cvs -d:pserver:anonymous@wikijavadoc.cvs.sourceforge.net:/cvsroot/wikijavadoc lo-

gin

cvs -z3 -d:pserver:anonymous@wikijavadoc.cvs.sourceforge.net:/cvsroot/wikijavadoc

co -P modulename

If you’ve never used SVN or CVS, you should read some documentation about them,

useful URLs:

SVN: http://sourceforge.net/docs/E09

CVS: http://sourceforge.net/docs/E04/

A.2.2.2.2 Developer CVS Access via SSH Only project developers can access the

CVS tree via this method. A SSH client must be installed on your client machine. Substi-

http://sourceforge.net/docs/E09
http://sourceforge.net/docs/E04/
oezbek
Highlight
But we don't use CVS!!!!!

Zhao — WikiJavadoc 84

tute modulename and developername with the proper values. Enter your site password

when prompted.

The repository:

export CVS_RSH=ssh

cvs -z3 -d:ext:developername@wikijavadoc.cvs.sourceforge.net:/cvsroot/wikijavadoc

co -P modulename

A.3 Writing Javadoc Comments

The commenting styles and Javadoc tags should be used when documenting source

code. A Javadoc comment block always starts with /** and ends with */ . A Javadoc

tag begins with an "@". An example of using Javadoc to document a method is given

in Fig.33. In WikiJavadoc edit window the comments delimiters are avoided. Fig.44

illustrates an example of documenting in WikiJavadoc edit window.

There are two types of tags:

• Block tags

Block tags can be placed only in the tag section that follows the main description.

• Inline tags

Inline tags are denoted by curly braces, and can be placed anywhere in the main

description or in the comments for block tags. [jav06b]

The following table provides the Javadoc tags, which are introduced in JDK/SDK

1.0-1.4, and are supported for by WikiJavadoc.

oezbek
Highlight

oezbek
Highlight

Zhao — WikiJavadoc 85

Figure 39: Javadoc Block Tags in JDK/SDK 1.0-1.4

Zhao — WikiJavadoc 86

A.4 Creating a WAR-File

The WikiJavadoc project is a web application. To ease the work of users, it should be

exported into a ”runnable” WAR file. There are a few ways to create WAR files.

• With Ant script

You can write an ant script to help you.

Sun Microsystems has a technical article on how to create a WAR file.

http://access1.sun.com/techarticles/simple.WAR.html

• With Lomboz Plug-in

If you do not know Ant or have not time to learn how to write Ant script, you can

use tools to do that. If you is using Eclipse there are several plug-ins available.

One of them called Lomboz is a nice plug-in, which you can download from

http://sourceforge.net/projects/lomboz/

• With Sysdeo Tomcat Plug-in

If your web application is not a J2EE-Web project, you can use Sysdeo Eclipse

Tomcat Launcher plug-in. WikiJavadoc is such a Tomcat plug-in project and is

exported into a WAR file with this method. And it’s also the easiest way.

1. Install Sysdeo Tomcat plugin

You can download Sysdeo Eclipse Tomcat Launcher plug-in from

http://www.sysdeo.com/eclipse/tomcatplugin .

Extract zip file to a temporary directory and copy the directory com.sysdeo.eclipse.tomcat_3.2.0.beta2

to Exlipse’s plugins dictionary or directly extract zip file to Exlipse’s plugins

dictionary.

http://access1.sun.com/techarticles/simple.WAR.html
http://sourceforge.net/projects/lomboz/
http://www.sysdeo.com/eclipse/tomcatplugin
oezbek
Highlight
I don't want to know how to create a WAR-File. I want to know how to make the WAR-File for WikiJavaDoc

Zhao — WikiJavadoc 87

2. Configure Eclipse and set the Tomcat plug-in preferences. Select ”Window

-> Preferences -> Tomcat”, then check Version 5.x, then click Browse to select

Tomcat home.

3. Create Tomcat Project

With Eclipse a new project with a WAR structure is created in the workspace.

Make sure your project has no problem to deploy on the local Tomcat. Then

Select the Tomcat project name, right-click mouse, then select ”Properties -

>Tomcat-> Attitude for an Export in WAR-File” , and give the war file local

path and name.

4. Export a WAR file. Select Tomcat project name, right-click mouse, then select

”Tomcat Project->Export...War-File”

Zhao — WikiJavadoc 88

A.5 Important Files of WikiJavadoc

The Deployment Descriptor, namely Web.xml in the WikiJavadoc project.

Figure 40: web.xml File of Wikijavadoc project I

Zhao — WikiJavadoc 89

Figure 41: web.xml File of Wikijavadoc project II

Zhao — WikiJavadoc 90

The build.xml and downloa d.xml files are used in Ant script:

Figure 42: build.xml File of Ant Script

Zhao — WikiJavadoc 91

Figure 43: download.xml File of Ant Script

	Introduction
	Free and Open Source Software and Documentations
	JavaDoc + Wiki = Wiki-collaborative construction of documentation for open source software
	Usage Scenarios

	Related Work
	JavadocOnline
	KickJava
	JDocs
	JSourcery
	Docenhancer
	Faq-o-matic
	Conclusion and Comparison

	Requirements
	Authentication
	Compatible look
	Wiki-Capabilities
	Synchronization of the source code
	Abilities of loading source code
	Link source code
	Abilities of Logging
	Performance Requirements
	Robustness
	Notification Service
	Installation Requirements
	Optional Requirements

	Architecture Concept
	Design Goals
	System Decomposition
	Security Portal
	Projects Management
	UpdateJavadoc tool
	Edit Window
	Version Control

	System Overview

	Detail Design
	Using Technology
	Programming Language
	Form based Authentication
	JSP, Servlets, HTML
	Gjdoc, Eclipse JDK, ASTParser and Equinox Incubator
	Ant, Logj4

	Security
	Project Management
	UpdateJavadoc Tool
	JavadocGenerator Tool
	Logging
	Mockup Walkthrough

	Implementation
	Implementation of Form-based authentication
	Project Management
	Implementation of UpdateJavadoc Tool
	JavadocGenerator
	Equinox Incubator
	Version Control

	Testing
	Test Plans and Results
	Functional Testing
	Test Methodology Junit
	Test Cases

	Acceptance Testing
	Conclusion

	Future Research
	CVS Portal
	Authoritative-Versioning
	Log Contributions

	Summary
	Bibliography
	Appendix
	User Guides
	For potential Developers
	File Release
	Code Management

	Writing Javadoc Comments
	Creating a WAR-File
	Important Files of WikiJavadoc

