
Bachelor Thesis, Institute of Computer Science, Freien Universität Berlin

Development of a mobile payment
service with focus on evaluating API

recording for automated mocking

Johannes Würbach (4278779)
johannes.wuerbach@googlemail.com

Berlin, January 23rd, 2013

Supervisor: Prof. Dr. Lutz Prechelt
Second supervisor: Prof. Dr. rer. nat. Adrian Paschke
Adviser (external): Dipl.-Ing. (BA) Robert Glaser

1

Contents
1 Introduction 4

1.1 The service . 4
1.2 The company . 4
1.3 Goal . 4
1.4 Approach . 4

2 The existing solution 5
2.0.1 Overview . 5
2.0.2 Mobile payment . 5

3 Current problems and required improvements 5
3.1 Technical problems . 5

3.1.1 Difficult to maintain and extend 5
3.1.2 Payment provider implementation 6
3.1.3 Alarming statistics . 6

3.2 Bad usability . 6

4 The new solution 7

5 Implementation of the service 10
5.1 The environment . 10

5.1.1 Rails instead of the Zend Framework 10
5.1.2 Continues integration as a service 11
5.1.3 Code management . 12
5.1.4 Development live cycle of a feature 12
5.1.5 Hosting . 12
5.1.6 Task management . 13
5.1.7 Downtimes . 13

5.2 The structure . 13
5.2.1 Javascript-API . 15
5.2.2 Server-to-server request . 15

5.3 Provider implementation . 16
5.3.1 Types of integrations . 16
5.3.2 Example Google Wallet . 17
5.3.3 Example MobiTown . 17

5.4 Do not invent the wheel again . 18
5.5 Testing . 18

5.5.1 Testing the Javascript-API . 19
5.5.2 Testing the ruby code . 19
5.5.3 API-Recording . 19

5.6 Broken holidays . 21

6 Conclusion 23

2

7 Forecast 23

8 References 24

3

1 Introduction
This thesis covers the creation of a payment service for HTML 5 products, which
could be used as a drop-in replacement for in-app purchases outside of App Stores.
As testing is a really important aspect of creating a payment service, this thesis will
give you an inside look how to test different communication ways like AES encrypted
communication, signature based communication, SOAP via HTTP or a RESTful com-
munication.

1.1 The service
As a developer of a mobile HTML5 free-to-play game it is quite difficult to integrate
a proper payment solution, which works in various countries. On the one side there
are providers with their own customer base like PayPal or Google Wallet on the other
side there are SMS and WAP payment providers with different regulations and price
points in every country. The goal of the payment service created in this thesis is to
allow 3rd-party developers to bill customers everywhere, without knowing any country
specific regulations or prices.

1.2 The company
The Softgames GmbH is a company build around mobile gaming. They started with
creating and distributing mobile java games six years ago and have extended their
business to Android and HTML5 games.
Their latest product is called ’SG Connect’, ’which solves developers biggest challenges:
Distribution, Monetization and Discovery of their HTML5 Games’ (1).

1.3 Goal
The main goal of this thesis was to extract the payment integrated in the existing
application (SG Connect) and to reimplement it as a service. The resulting service
should be usable without using the ’SG Connect’ platform.

1.4 Approach
The following steps have been chosen to achieve the goal:

1. Identify and list the problems of the existing solution from the technical side

2. Collect wishes and issues other departments have with the current system from
the management side

3. Decide, whether refactoring or reimplementation is the better approach to extract
the payment as a service and present that solution to the company

4. Develop the service

4

These steps are also the structure of this thesis. The advantages and disadvantages of
the existing implementation are explained in section 2. Required improvements and
current problems are listed and explained in section 3. The final specifications for the
service and explained flows are mentioned in section 4. Decisions and problems during
the implementation of the service are written down in section 5.

2 The existing solution
2.0.1 Overview

The existing solution was build using the PHP based Zend Framework 1 and some
Python scripts. PostgreSQL was used as database in the background. Developers
were using a SVN repository hosted on an own server to manage their source code. A
feature or bug fix was developed in a feature branch, this branch was merged by the
lead developer of the team into trunk and the trunk was deployed with some Python
scripts to some dedicated servers. These servers were managed by the Softgames IT
and one additional external server administrator in Poland. Only the lead developer
had access to the live system and the knowledge, how to deploy the system.
The existing solution had approximately 63.000 lines of code 1. Maintaining the ex-
isting code and developing new feature was hindered by nearly no documentation and
the complete absence of any automated tests.

2.0.2 Mobile payment

In the world of mobile payment you have a lot of different providers for different regions
and markets. Well-known examples are PayPal and Google Wallet, but for games, users
prefer SMS- or WAP-payment, which is provided by many small providers. These
providers are offering some specific price packages in a list of countries. So a main
goal for the payment service should be, to make the integration of mobile provider as
simple as possible to have access to a large number of country specific packages and to
replace providers and case of rate changes. In the existing solution the implementation
of Google Wallet2 payment was done using four files and approximately 400 lines of
source code.

3 Current problems and required improvements

3.1 Technical problems
3.1.1 Difficult to maintain and extend

The biggest problem of the existing solutions was the full lack of code tests. This made
any code changes in the existing nearly undocumented codebase really complicated

1counted using cloc version 1.56 on a trunk checkout from the 27.12.2012
2http://www.google.com/wallet/, Accessed: 18.01.2013

5

http://www.google.com/wallet/

and developers were always trying to make the easiest solution as possible, even if
this solution included copying a lot of existing code. On top of that nobody fully
understood internal flow in the application between an incoming http request and the
generated response. Also the reasons behind some uncommon architectural decisions
were not clear anymore. The reason for that was, that nearly nothing was documented
and that most the developers of the existing solution had already left the company.

3.1.2 Payment provider implementation

Normally the implementation of a new provider was done by copying a previous imple-
mentation and perform all necessary changes in that copy. During this process around
50% of the copied code were not changed and additional 20% of the code required only
the renaming of variables and classnames. This process produced a lot of duplicated
code.

3.1.3 Alarming statistics

To understand the distribution of transactions between countries and providers some
analysis were made. This resulted in some alarming indicators. On the one side
around 97% off all transactions were canceled and on the other side some providers
implementations were not working at all. One example for a broken implementation
was Google Wallet. The analysis of the company’s data resulted in zero successful
transactions and no revenue, but creating the same statistics on the data provided by
Google itself was reporting 70% successful transactions and several thousand Euro of
revenue.

3.2 Bad usability
Purchasing additional in-game currency was quite difficult to understand from a user
perspective. In the first step a user had to select the amount of coins (1(a)), he wanted
to buy for his game (in-game currency). In the next step (1(b)) a new page opened
and the user had to exchange SGDS coins for the in-game currency. These SGDS coins
were shared between all games in the portfolio of the company. If the user had not
enough SGDS coins, he could buy a package of SGDS coins with real money (1(c)).
To do that, he had to select a provider (mobile in the example) and had to perform
the steps the selected payment provider required. For the most used SMS payment
flow, these steps are: Enter your phone number. Receive a PIN from the provider in
a text message and enter this PIN back into the website, if the network operators in
a country are allowing ’MT-Billing’. If the operators are using ’MO-Billing’, the user
has to sent a text message including a PIN to the payment provider to finalize the
transaction. An provider using the ’MO-Billing’ flow is shown in the figure 1.

6

(a) Select package (b) Buy SGDS coins (c) Enter number (d) Send message

Figure 1: Existing payment flow

4 The new solution
For creating the service and simplifying future discussions about it, an overview of
all possible paths an user can follow was created and is shown in figure 4. The gen-
eral consensus in the management was, that the payment has to be simplified and
unnecessary steps should be removed. To start the payment the user selects a package
like before, but instead listing SGDS coins, real prices have to be displayed below
the packages. After the user selected a package, he can decide between the available
payment providers available in his country. This list of providers is presented in an
overlay to the user and he is not ’visually removing’ from the game like before. After
the user selected a provider, the interface of the provider is displayed. Those provider
interfaces are not customizable by the services and because of that marked as black
box in the overview. After the user finished all required steps, he will see a success or
an error page from the service.
The figure includes already possible future improvements like automatically select a
payment provider and skip the selection list. Displaying other payment methods again
after the user canceled the purchase in the black box could be also tried to increase the
overall percentage of finished transactions. Between those things and the normal way
A/B testing should be possible to optimize the service customers in specific countries.

To simplify the integration of mobile payment a tier based approach has been cho-
sen. As already mentioned, a world wide mobile payment solution consists of a large
number of single price points.
For example the SMS payment provider Fortumo3 can bill 0.49, 0.99, 1.99, 2.99, 3.99
and 4.99 EUR in Germany, but only 1.45, 3.63, 5.20 and 7.26 EUR in Spain. IPX4,
which is providing SMS payment only in the United Kingdom and Germany, is offering

3http://fortumo.com, Accessed: 15.01.2013
4Not online accessible

7

http://fortumo.com

(a) Select the item (b) Select the provider (c) Pay

Figure 2: New payment flow

0,19, 0.49, 0.99, 1.29, 1.49, 1.99, 2.99, 3.99, 4.99, 9.49 and 9.99 EUR to be billed. As
game developers should not care about different currencies and country specific buying
power of a playing user, the services provides price tiers.
A tier represents one fixed package per country and has nearly the same amount ev-
erywhere. An excerpt from the used table of tiers is shown in figure 3.
Developers can now sell their product for a tier instead of a concrete price and the
service provides an API to convert the selected tier on-the-fly into the related amount
of money and currency for the current user. For example a Samurai sword should be
sold for approximately one Euro in Germany. According to the tiers table provided
by Softgames this price is represented by tier ’1’. If a user from Spain is now visiting
the shopping page the developer requests the concrete for the price for this user, the
payment service will return ’0.86 e’ as this is the best matching package available in
Spain to be billed.

Figure 3: Excerpt from the tiers table

8

B
LA

C
K
B
O
X

A
ut

om
at

ic
al

se

le
ct

io
n,

 if

on
ly

 o
ne

pr

ov
id

er

P
ro

vi
de

rp
ag

e

P
ro

vi
de

r
se

le
ct

io
n

sc
re

en

G
am

e

P
ay

S
ta

tu
s

pa
ge

C
an

ce
l

P
ay

m
en

t
ov

er
la

y

B
ac

k
to

 g
am

e

O
ffe

r d
iff

er
en

t
pr

ov
id

er
s

C
an

ce
l

C
an

ce
l

M
es

sa
ge

 /
re

di
re

ct

Le
ge

nd
:

- G
re

en
 a

rr
ow

s:
 A

/B
 te

st
in

g
us

in
g

G
oo

gl
e

A
na

ly
tic

s
E

xp
er

im
en

t f
ea

tu
re

- B
lu

e
/ P

ur
pl

e
&

 R
ed

 /
Y

el
lo

w
: D

iff
er

en
t f

lo
w

s
to

A

/B
 te

st

Fo
rc

ed

pr
ov

id
er

se

le
ct

io
n

Figure 4: Steps a user can take

9

5 Implementation of the service

5.1 The environment
After analyzing the existing solution, it was decided to recreate the new payment
service from scratch and ensure test coverage from the beginning. To do that, the
service should be implemented using test-driven development.

5.1.1 Rails instead of the Zend Framework

As mention already the previous service build using the PHP based Zend Framework
1, Apache, Memcache, Postgres and some custom database migration and deployment
scripts written in Python.
The installation and maintaing of a PHP based application is not very developer
friendly. Indeed PHP 5.4 includes a web server and it is not required to configure and
run apache on your local machine anymore, but there are a lot of libraries incompatible
with that version. As development of a web services includes using several libraries,
you should also be able to update them with a few steps and other developers should
be able to install those libraries in the same version quite simple. This is not possible
at the moment in a PHP application without requiring a lot of manual work. There is
a dependency manager for PHP called ’Composer’5, but this manager supports only
a few packages at the moment.

Beside a simple installation and automated dependency management, a solution for
database migrations and assets compilation and minification should be also included
in the new framework.

As the most developers in the company had already more experience in Ruby than
in Python, Ruby on Rails (RoR)6 was decided to be the framework for developing
the payment service. Node.js7 was also included in the evaluation as it delivers an
impressive performance, but it was discarded because there is no solution like Rails
for Node.js, except the early alpha Tower.js8.
RoR has the advantage that every developer can setup the application in a few minutes
without being forced to use specific operation system.
After that decision was done, it was evaluated, whether PostgreSQL is still the right
database. As executing payments is always tied to generate statistics about what was
sold in which time frame a pure key-value storage like Redis9 was discarded. As the
document based database MongoDB10 has a really advanced integration into Rails,
the database came also into consideration. MongoDB was discarded, because a pay-
ment system is always storing transactions and those transactions are unlikely to be

5http://getcomposer.org/, Accessed: 23.01.2013
6http://rubyonrails.org/, Accessed: 23.01.2013
7http://nodejs.org/, Accessed: 23.01.2013
8http://towerjs.org/, Accessed: 23.01.2013
9http://redis.io, Accessed: 15.01.2013

10http://www.mongodb.org/, Accessed: 23.01.2013

10

http://getcomposer.org/
http://rubyonrails.org/
http://nodejs.org/
http://towerjs.org/
http://redis.io
http://www.mongodb.org/

extended with additional data, so a schema-less approach was not required. As the
majority of the developers was also more experienced in writing SQL queries then
working with MongoDB, it was decided to use a SQL based database again. Since the
old system was already using PostgreSQL and is already preconfigured on the selected
hosting partner, PostgreSQL was selected to be the storage backend of the payment
service, too.
The installation of the old application required to install a web server, a specific PHP
version, Postgres11 and Memcache12 in the beginning. After that you had to find some
special PHP extensions compiled for your operation system or compile them. Next
you had to checkout the code from the SVN repository. Creating a local test database
was normally done by dumping the live system and loading this dump into your local
database, which required some hours as the dump was usually some giga bytes large.
Running the database migration scripts used to update the live database on your lo-
cal environment required to install and setup a specific Python setup and modify the
scripts to use the local environment, which nobody had done before.

Moving from the self-coded PHP to RoR simplified to this process to install RVM13 or
Pik14, if you are using Windows. Install Postgres on your machine, create the default
database user and clone the git repository. Run ’bundle install’ to install all required
extensions. After that the database could be created using ’rake db:setup’.

As running and managing the servers used by Softgames to serve the application and
hosting the tools, which were used to support the development, was constantly stealing
a lot developer time, the payment service should be build upon external services to
save money and create clear responsibilities.

5.1.2 Continues integration as a service

To support the test-driven development a continues integration solution was required
to ensure that all commits were tested. The most common solution for testing and
building an application, is the continuous integration server ’Jenkins’15. The prob-
lem with Jenkins is, that it requires a server and somebody, who is maintaining this
server. Configuring a Jenkins server to test every commit and configure which steps
are executed before and after the testing requires also a training period. Instead of
using Jenkins the service is using CircleCI16. This service is strongly created around
Github17, tests automatically every commit and is supporting the Github’s commit
status API18. The service automatically detected that a Rails application should be

11http://www.postgresql.org/, Accessed: 22.01.2013
12http://memcached.org/, Accessed: 22.01.2013
13https://rvm.io/, Accessed: 15.01.2013
14https://github.com/vertiginous/pik, Accessed: 15.01.2013
15http://jenkins-ci.org/, Accessed: 21.01.2013
16https://circleci.com, Accessed: 18.01.2013
17https://github.com, Accessed: 18.01.2013
18https://github.com/blog/1227-commit-status-api, Accessed: 18.01.2013

11

http://www.postgresql.org/
http://memcached.org/
https://rvm.io/
https://github.com/vertiginous/pik
http://jenkins-ci.org/
https://circleci.com
https://github.com
https://github.com/blog/1227-commit-status-api

tested, created a test database and executed the example tests. As every build of the
project is executed in a new virtual machine, it is not possible that former runs falsify
the current build.

5.1.3 Code management

As SVN caused some problems already in the existing team. The payment service is
now using git as source code management system and Github as provider for git. Using
Github allowed also to enhance the code review process, as it is possible to comment
directly on changed lines of code in a commit. Github also provides a simple wiki
solution, which is used for documentation instead of the old self-hosted wiki.

5.1.4 Development live cycle of a feature

Using all this services together made the workflow of development much cleaner. To
develop a feature or a fix a new branch is created like before. After the development is
finished a pull request is created. This notifies the person responsible for merging the
code changes and gives also an overview of the changes made during the development.
CircleCI is testing the pull request automatically, whether all tests are still passing
and provides the result directly on the Github page as shown in figure 5.

Figure 5: Github pull request status

5.1.5 Hosting

To remove the dependency from the external and sometimes unresponsive server ad-
ministrator and to speed up the process for new developers, the payment service was
hosted on Heroku19. Heroku provides hosting for Rails applications and does not re-
quire any administration or configuration. Deployment is done by simply pushing the
code into a remote git repository. A nice advantage of Heroku is, that they are pro-
viding a development environment for free. This includes one running instance and

19https://heroku.com, Accessed: 15.01.2013

12

https://heroku.com

small postgres database. If you need other software beside ruby and postgres, Heroku
provides a list of ’add-ons’20 to use additional services provided by other companies.
For the service, the ’MyRedis’ add-on was used. This add-on provides a hosted Rails
database, which is used for caching in the service.

5.1.6 Task management

The bug tracking software Mantis21 and a list of notes on the iPad of the lead developer
of the company was mainly used to coordinate the development of new features and
bug fixes for the old service. During the creation of the service, the company was
already in the process of moving everything into PivotalTracker22. As GitHub provides
already an task management called ’GitHub Issues’ and PivotalTracker provides a lot
features not needed for a single developer, ’GitHub Issues’ was used in the beginning
to coordinate and plan the creation of the payment service. As a normal payment
provider integration is done by receiving several integration documents in different
formats the missing file upload in the issue system provided by GitHub was becoming
a problem and the project was moved the PivotalTracker as well.

5.1.7 Downtimes

As most of the services used now are operated by 3rd parties, there is always the risk
of unexpected downtimes. During the three months used for developing the service
CircleCI and GitHub were down once during normal office hours. As the process was
designed, to allow continuing the work during a downtime the option to manually push
to Heroku was always available.
The only influence, caused by those downtimes, was less comfort and an additional
mail to the support of the service somebody had to write.
In the old setup the whole development team was waiting until the responsible person
had fixed the problem and the service was operational again. This caused two big
problems. On the one side nobody wanted to have additional responses for a service,
because those response where always causing a stressful time, if something was not
working. On the other side running and configuring a service required also some inside
knowledge of linux, which most developers in the company did not had, so most of the
knowledge how to operate most of the services was combined into one person.

5.2 The structure
After collecting the requirements of the Softgames payment service the structure of
the system was created in figure 6.

20https://addons.heroku.com/, Accessed: 15.01.2013
21http://www.mantisbt.org/, Accessed: 22.01.2013
22https://pivotaltracker.com, Accessed: 15.01.2013

13

https://addons.heroku.com/
http://www.mantisbt.org/
https://pivotaltracker.com

Game
User

Payment serice

buy(onComplete)

Render payment page

Start payment
getTiers(callback)

callback()

Show provider

Select package

Verify package

Pay or cancel

onComplete()

Status Notification
Show status

Done in the backend

Done in the frontend

Send item

Figure 6: Request flow

14

5.2.1 Javascript-API

To allow developers to render concrete pricing information and to open the payment
overlay, a javascript API was required. As this API would be included into the page
of the developer some additional requirements have been arisen.
As it is not possible to build a versioning with a hard included files and some web
browsers are gladly ignoring cache settings, the API had to be as small as possible and
the service should never require a specific version of that file.
A solution to fix that, would have been a small loader, which loads the API with the
current timestamp for cache busting attached. This solution was discarded, as the
amount of data transferred in mobile networks is limited for most of the customers
and this solution would not allow any caching on the device of an user.
In order to simplify the development of the API, it was written using CoffeeScript23,
which provides a the availability of classes and inheritance in the frontend and is
compiled into javascript before being delivered to the client by Rails. CoffeeScript is
already bundled with Rails by default and it is really common in the Rails community.
Using Rails for delivering the API has also the advantage to split up the frontend code
into multiple files, as it is possible to define dependency on top of each file. The files
defined as dependency of a file are automatically loaded before loading the file itself.

5.2.2 Server-to-server request

After the user selected a package, the payment service verifies the incoming transaction
with the backend of the game. This is required, because the relation between the SKU
of an item and a specific price tier is transmitted from the game to the payment ser-
vice using GET parameters, which are easily changeable by a user. After the provider
backend verifies the relation between userid, SKU and tier, the user is able to continue
the purchase.

This approach was used instead of pre-signing all parameters send to the payment
service to save some resources for the game developers. As a game normally offers
several packages, which had to be pre-signed, and just a small percentage of users is
visiting the shop during each session, it does not make sense to pre-sign all packages in
every session. Lazy pre-signing the packages using XHR would also impact the shop
rendering time and decrease the usability of the payment flow.

The next server-to-server request will be sent, after the payment provider has con-
firmed the transaction by sending an update notification. This request usually arrives
a few seconds later, but the transaction can also be pending for some hours depending
on the external provider. As long pending requests are not helpful to satisfy the user,
the service tries to only use payment providers, which are delivering quick updates.
After the payment was confirmed or rejected by the payment provider and the service
is updated via a notification, the developer has to be informed about this. Those
notifications are created, signed and pushed into a queue during the update request.

23http://coffeescript.org/, Accessed: 20.01.2013

15

http://coffeescript.org/

This is done to encapsulate the response time of the service from the response time of
the game backend and to be able to repeat notifications. A worker daemon running
in the background is pulling these notifications from that queue and tries to delivers
them. If the delivery of a notification fails, because the response of the developer was
not correct or the target server was not available, the notification is requeued with a
growing timeout before delivery.

5.3 Provider implementation
The difficulty of implementing a new payment provider is really provider specific.
On the one hand there are providers providing fully featured sandboxes and easy to
understand documentations and on the other hand there are providers with broken im-
plementations, wrong documentations and without any possibility to test a payment
from Germany.

5.3.1 Types of integrations

In general there are two different types of integrations. Some providers are using a
redirected based integration, which means the user is redirected to their side and others
are using an integration based on javascript, which opens an overlay on the current
page.

Redirect based
To implement a redirect provider you have to create an URL, which includes the
amount of money and the currency you want to bill, a return URL and some provider
specific security parameters like a signature. After that URL was created, the user is
redirected to that. Now the user can pay on that specific site and will be redirected
to the return-URL with some parameters attached.
Some providers are already sending a payment status in those return URL parameters,
others are sending an additional server to server request for confirming the payment.

Javascript based
The implementation based on javascript is normally done by creating a JSON object
with the country specific amount of money you want to bill, adding some security
measures and inserting that together with the script of the provider into the message
body of the response. The browser of the user is now executing a javascript function
after the page has finished loading. This function receives the JSON object as a
parameter and is opening an overlay. After the user finished or canceled his purchase
in the overlay of the provider a javascript callback is executed.
As sending unsigned or unencrypted data via javascript is insecure, every javascript
provider is confirming or rejecting a transaction using a server to server request. Those
requests are signed or encrypted in all cases.

16

5.3.2 Example Google Wallet

As already implemented in the existing system (2.0.2), the reimplementation of Google
Wallet into the new application was a great case study, whether the implementation of
a provider was really simplified. The implement of this javascript based provider was
done this time in 68 lines of code instead of over 400 lines of code in the old service
and the number of files was reduced from four to two.

The reduce of complexity was mainly caused by identifying that there are only two
types of integrations. This allowed to build two abstract flows and let every concrete
provider just fill the gaps.
To do that all providers are extending a general provider class. This general provider
class acts as database model and implements common methods require by more than
one provider. A concrete provider has to implement maximal four methods. The first
method is returning the type of the integration, which is used by the provider. If the
provider is using a redirect based implementation, the implementation has to respond
to at least two methods, the first one is returning the redirect-URL and the second one
is called after the user came back from the provider. If the provider uses notifications
an additional method has to implemented, this method is also required for javascript
based providers. A javascript based provider is implementing instead of a redirect and
return method, a method, which is returning a JSON object. For a javascript provider
an additional view partial is required, which is rendered to start the payment, filled
with the JSON object and loads the external javascript.

5.3.3 Example MobiTown

MobiTown24 is a provider, which offers WAP payment in Thailand and is using a
redirect based implementation. The documentation of their payment was clear until it
comes to the security part. After the explanation which parameter in the query string
has which function, they described to encrypt the resulting query string like this: (2,
Page 8):

BYTE2HEX [AES [parameters]]

without any additional explanations what they mean exactly with AES or BYTE2HEX.
The mail, which was included this document, contained also two strings labeled as key
and salt. As two keys where provided it was reasoned that they are using a CBC
mode instead of EBC. As both keys were 16 chars long and are only including ASCII
chars it was decided to use AES-128-CBC. After some invalid request and additional
mails they confirmed, that they are using AES-128-CBC, but are manually padding
the string with whitespace before encrypting.
As the provider still could not decode our strings, the code used by them for encoding
was requested. After some hours of debugging, the problem was finally found in the
provided code. As MobiTown is using Java in their system they had to convert the key
and salt string into bytes. Instead of using the getBytes() function provided by Java,
24http://www.mobitown.asia/, Accessed: 16.01.2013

17

http://www.mobitown.asia/

they implemented their own function. The function is converting the string into a hex
string in the first step and converting this hex into an array of bytes in the second
step. The first step was implemented in a wrong way and the error resulted in a wrong
hex representation. As the ruby AES implementation requires the key and the salt to
be a string, the service performs now the following to generate the correct encrypted
string:

hex_to_string(mobi_string_to_hex(provided_key))

5.4 Do not invent the wheel again
In contrast to the old solution, Ruby and especially Rails allows to include and manage
3rd-party-extension really easily. There are a lot different extensions used during the
development of the service and here is an extract.
First of all the services is using ActiveAdmin25 to provide an easy to use administra-
tion panel. ActiveAdmin has embedded authentication and allows to generate pages
automatically to create, read, update or delete your database entries. If you are not
conferrable with having all those options available or do not want to display specific
fields of a model you can hide them. ActiveAdmin does most of the things without
the requirement to write a single line of, until you want to have something custom or
you are using complex relations in your database model.
To implement the queue used for sending notifications ’delayed_job’26 was used. This
gem allows to queue method calls in Rails and provides already a worker implementa-
tion, which you just have to start.
As the service deals a lot with money and currency conversations and there are a lot
exceptions like currencies without fractions for example the Japanese yen (JPY) or
currencies which are usually displayed with three decimal positions like the Kuwaiti
dinar (KWD) the ’Money Rails’27 gem was used, as it includes all those exceptions
and provides methods for printing the currency with the correct symbol and exchange
between currencies.

5.5 Testing
As testing should be taken serious this time, the whole service was created using test-
driven development. Test-driven development means to write a failing test first. After
you wrote that test, you can write the application code which make the test pass. It
is only allowed to write only the necessary code to make test pass. To speedup the
ruby gem Guard28 was used to rerun tests automatically again, if a file was changed.
As the test suite of a product is continuously growing Guard tries runs only the test,
which are written for the changed file by following the naming conventions in Rails.

25http://activeadmin.info/, Accessed: 18.01.2013
26https://github.com/collectiveidea/delayed_job, Accessed: 18.01.2013
27http://rubymoney.github.com/money/, Accessed: 20.01.2013
28https://github.com/guard/guard, Accessed: 20.01.2013

18

http://activeadmin.info/
https://github.com/collectiveidea/delayed_job
http://rubymoney.github.com/money/
https://github.com/guard/guard

5.5.1 Testing the Javascript-API

The tests for the Javascript-API, where written in the beginning using Jasmine29. As
the integration of Jasmine into the CI-process was not really stable, the tests were
rewritten using Mocha30. As the API is bundled with the rest of the application and
will be merged and compiled by using the Rails assets pipeline, Konacha31 provides a
simple integration into Rails and allows to run the mocha tests in the browser or in
a CI-environment by using Capybara32. Konacha also allows the tests to be written
using CoffeeScript like the rest of the frontend code.

5.5.2 Testing the ruby code

For testing the backend code written in ruby, the service uses Rspec33, FactoryGirl34,
Capybara with PhantomJS35, Webmock36 and VCR37.

Rspec provides an intuitive language for writing your tests and is the glue, which holds
together the other helpers. FactoryGirl is used for easily creating models and complex
relations during the tests. Capybara allows to write integration tests as it allows to
control a real browser from your tests. Instead of using the selenium38, which uses by
default the Firefox installed on the computer, the service is using PhantomJS, because
it really speeded up the tests and stops the annoying popping up of the browser during
a test run. To use PhantomJS together with Capybara, the service uses Poltergeist39,
which provides and easy PhantomJS integration into Capybara. Mocking HTTP re-
quests is done by Webmock, which allows to intercept HTTP before they are send by
ruby and to evaluate, whether those requests are done with the correct parameters
and method or not.

5.5.3 API-Recording

Mocking a complete API with Webmock is possible, but not ideal as you have to man-
ually update your mocks every time an API changed and you can not be sure that your
mock implemented every edge case correctly. To solve that problem the service is using
VCR. VCR allows the application to make real http connections in the first request
and records them into a ’cassette’. Every additional http request is just answered by
VCR using the recorded version. VCR is using Webmock to intercept requests directly
in Ruby, so you do not have to change the application code to use VCR.

29http://pivotal.github.com/jasmine/, Accessed: 20.01.2013
30http://visionmedia.github.com/mocha/, Accessed: 20.01.2013
31https://github.com/jfirebaugh/konacha, Accessed: 20.01.2013
32http://jnicklas.github.com/capybara/, Accessed: 20.01.2013
33http://rspec.info/, Accessed: 21.01.2013
34https://github.com/thoughtbot/factory_girl, Accessed: 21.01.2013
35http://phantomjs.org/, Accessed: 21.01.2013
36https://github.com/bblimke/webmock, Accessed: 21.01.2013
37https://github.com/vcr/vcr, Accessed: 21.01.2013
38http://seleniumhq.org/, Accessed: 21.01.2013
39https://github.com/jonleighton/poltergeist, Accessed: 21.01.2013

19

http://pivotal.github.com/jasmine/
http://visionmedia.github.com/mocha/
https://github.com/jfirebaugh/konacha
http://jnicklas.github.com/capybara/
http://rspec.info/
https://github.com/thoughtbot/factory_girl
http://phantomjs.org/
https://github.com/bblimke/webmock
https://github.com/vcr/vcr
http://seleniumhq.org/
https://github.com/jonleighton/poltergeist

This allows to simply test against a new version of an API by deleting the cassettes
related to that API. VCR provides some helpers for using it together with RSpec for
creating cassettes automatically named like the test they are recorded from and it is
automatically using separate cassettes for every test, if you want to.
This approach does not fully work with testing an implementation of a payment
provider, because a frontend interaction with the page of the provider is always re-
quired between different API requests. As those interim actions are done on a website
served from another server, they are not recordable by using the VCR running in the
payment service.
To solve that problem, different approaches have been tried.

Proxy approach
An option to work around this limitation is to visit the side of the provider and do
all required frontend steps by using Capybara. As this is already done for testing
the complete payment flow with some fake providers, it does not require additional
software or knowledge.
The first problem, which was occurring here already, is that only payment providers
providing a sandbox environment are testable like this. Otherwise every test run has
to be made using real money, which is to expensive.
To prepare that approach a test for Paypal based on Capybara was created using the
following flow. First login to the developer page of Paypal, to receive a session cookie.
After collecting this cookie, the browser is visiting the payment service to start a Pay-
pal payment, logs in with sandbox credentials received by Paypal and submits the
payment. This tests requires approximately 50 seconds to complete and only covers a
successful payment.
To keep tests fast and independent from the availability of the payment provider, those
frontend actions done by Capybara should also be recorded. A graphical overview of
the required steps is shown in figure 7.
PhantomJS, which is used by Capybara, as a headless browser, allows to specify an
HTTP proxy. After implementing a simple proxy using ruby and VCR based on an
idea posted on StackOverflow40 the next problem occurred.
Most of the payment providers are using HTTPS to secure the payment process, but
the proxy provided by Ruby’s WebRick library does not support decrypting of HTTPS
requests. After doing some research, how this HTTP proxy is processing HTTPS and
whether there are other existing solutions for that problem, two options where remain-
ing. The first is to modify the CONNECT method used by the WebRick proxy to allow
decrypting of HTTPS traffic and the other option is to develop a man-in-the-middle
HTTPS proxy from scratch.
PhantomJS allows to disable the validation of HTTPS certificates, so faking a certifi-
cate authority for signing certificates is not a problem, but there a still some steps
to perform. The first step is to generate a valid certificate for the host name, Phan-
tomJS is connecting to. After that the socket has to be updated into an SSL/TLS
server socket and you have to intercept and parse the incoming requests and forward

40http://stackoverflow.com/q/13039251, Accessed: 21.01.2013

20

http://stackoverflow.com/q/13039251

them afterwards using the library already used by the payment server to do HTTPS
requests. As those requests are now done directly on the proxy, VCR is able to record
them.
A proper solution using this proxy would require also to filter binary data to not bloat
the code repository with recorded graphics and to find a solution for synchronizing be-
tween rerecording of VCR cassettes stored in the payment service and VCR cassettes
stored in the proxy.
In addition to that work all payment providers which are providing a sandbox are
still not fully testable, because of the lack of notifications, which are normally sent
to inform the service about payment status changes. The only provider providing a
sandbox and working without update notifications is Paypal. As Paypal is only one
of seven providers implemented into the service, this solution was discarded and an
hybrid approach was implemented.

Hybrid approach
Instead of trying to test every API request using VCR, only API requests are recorded
now, which are done before an user interaction is required. This allows still to check,
whether a partner has broken his implementation by deleting the related cassettes and
whether the initializing of the payment process works.
Every request, which is executed after the user interaction, is tested against a manually
created mock using Webmock. This approach also allows to test providers which do
not provide a sandbox and providers which are requiring that the user is visiting their
page by using specific mobile internet connection.

Summary
In general VCR provides all methods to test a pure REST-API and the hybrid approach
could probably make sense, if the target pages are browsable via HTTP. In the case of
this mobile payment service, where every page should be accessible only via HTTPS
and most of the providers do not provide sandboxes and or are requiring server-to-
server notification it did not made sense to implement.

5.6 Broken holidays
On 28th of December the CI service reported suddenly timeouts during the build-
process. After reverting all changes the build was still failing. The problem was also,
that the test suite was always crashing the complete ruby binary and not showing any
special source of the problem.
After some hours of debugging the source of problem was found in an updated version
of ruby. On 26th of december Ruby 1.9.3-p362 was released and the CI environ-
ment was updated automatically, as the service was just setting ruby version 1.9.3
as a requirement and not a specific patchlevel. This patchlevel release had an issue
with with rails 41 and the problem was fixed by defining a concrete patch level for ruby.

41http://bugs.ruby-lang.org/issues/7629, Accessed: 08.01.2013

21

http://bugs.ruby-lang.org/issues/7629

Payment service
User

Paypal

Redirect to Paypal

Start payment

SetExpressCheckout

Login & Pay

Redirected to the payment service

Finish payment

DoExpressCheckout
Payment

Show result

Recordable by VCR

Recordable using a proxy

Figure 7: Proxy approach

22

Ironical the inventor of ruby, Yukihiro Matsumoto, closed his release notes with: ’Have
good holidays, and happy hacking!’ (3), which it really was not for me, because of
that update.

6 Conclusion
The payment service can now be seen as a true service and the integration of new
payment providers was simplified. 100% test coverage of the written code has made
additional feature development and code refactoring less dangerous. By providing a
tier based API 3rd-party-developers do not have to worry about different country spe-
cific price points or currencies. This simplifies the integration of real money payment
in web applications a lot.

With using external services instead of self-hosted solutions, management costs were
reduced a lot and developers do not have to care about running a build infrastructure
or server management anymore. This resulted already in faster feature development
in the company’s core business.

7 Forecast
Currently the SG connect API is being redeveloped using the same software stack
and principles as this payment service. After that reimplementation has been finished
in the mid of february42 the payment service will handle all real money payments in
Softgames.
During march the ability to handle subscriptions, using various payment providers will
be added to the service to provide all income types the Google Play Store or the Apple
AppStore providing today.
Currently it is in discussion to open the service to developers not using our game
publishing service, but this will also require to build a web interface for managing their
settings, analytics about payment transactions, a sandbox to test their implementation
and an automated billing solution.
In general the service is not tied to games as developers can sell everything they want
for example music, software or movies.

42Current ETA, may change

23

8 References
[1] Softgames company page. http://softgames.de/distribute-monetize-mobile-html5-

games-softgames-connect/. [Online; accessed December 25, 2012].

[2] Thawalit Junpoung. MobiTown API Specification, 2011. Document only available
after signing a contract with Index Corp. (Thailand) Limited.

[3] Ruby 1.9.3 patchlevel 362 release announcement. http://blade.nagaokaut.ac.jp/cgi-
bin/scat.rb/ruby/ruby-talk/402471. [Online; accessed December 30, 2012].

24

http://softgames.de/distribute-monetize-mobile-html5-games-softgames-connect/
http://softgames.de/distribute-monetize-mobile-html5-games-softgames-connect/
http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-talk/402471
http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-talk/402471

Eidesstattliche Erklärung
Ich versichere hiermit an Eides statt, dass diese Arbeit von niemand anderem als
meiner Person verfasst worden ist. Alle verwendeten Hilfsmittel wie Berichte, Bücher,
Internetseiten oder ähnliches sind im Literaturverzeichnis angegeben. Zitate aus frem-
den Arbeiten sind als solche kenntlich gemacht. Die Arbeit wurde bisher in gleicher
oder ähnlicher Form keiner anderen Prüfungskommission vorgelegt und auch nicht
veröffentlicht.

Berlin, den 23.01.2013

Johannes Würbach

25

	Introduction
	The service
	The company
	Goal
	Approach

	The existing solution
	Overview
	Mobile payment

	Current problems and required improvements
	Technical problems
	Difficult to maintain and extend
	Payment provider implementation
	Alarming statistics

	Bad usability

	The new solution
	Implementation of the service
	The environment
	Rails instead of the Zend Framework
	Continues integration as a service
	Code management
	Development live cycle of a feature
	Hosting
	Task management
	Downtimes

	The structure
	Javascript-API
	Server-to-server request

	Provider implementation
	Types of integrations
	Example Google Wallet
	Example MobiTown

	Do not invent the wheel again
	Testing
	Testing the Javascript-API
	Testing the ruby code
	API-Recording

	Broken holidays

	Conclusion
	Forecast
	References

