
Diploma Thesis

CPC

an Eclipse framework for automated clone life cycle tracking and

update anomaly detection

Thesis

Valentin Weckerle

Freie Universität Berlin

http://cpc.anetwork.de

January 23, 2008

This thesis consists of five parts:

1. A printed copy of the Thesis (this document)

2. A printed copy of the CPC Core API Specification booklet

3. A printed copy of the Appendix and Recommended Readings booklet

4. A CD-ROM containing CPC sources, binaries and additional documentation

5. The official CPC website at: http://cpc.anetwork.de

Acknowledgements:

I want to thank my supervisors Prof. Lutz Prechelt and Prof. Elfriede Fehr for their
time.

Special thanks go to Prof. Stan Jarzabek, Damith Chatura Rajapakse and Hamid
Abdul Basit at the National University of Singapore for their valuable feedback and
support.

Thanks also go to Sebastian Jekutsch, Christopher Oetzbeck, Marian Schwarz, Ben-
jamin Schröter, Nicolai Kamenzky, Maximilian Höflich and Ulrich Stärk at the Freie
Universität Berlin.

Furthermore, I’d like to thank Patricia Jablonski and Daqing Hou at the Clarkson
University for their feedback.

http://cpc.anetwork.de

Abstract

This thesis covers the development of Copy-Paste-Change (CPC), a framework for copy
and paste clone1 tracking and update anomaly2 warnings within the Eclipse IDE.

CPC represents the first step towards an integrated and feature rich clone tracking
environment which increases the general awareness about clones in a software system
and provides notifications and warnings about potential clone related errors.

It is our hope that CPC will provide in-depth data about the day to day copy and paste
habits of programmers in real environments which can help to improve our overall
understanding of the ‘Micro-process of Software Development’, the small day to day
activities of a developer.

CPC is written in Java 1.5 and is licensed under the GPL. It can be obtained from
http://cpc.anetwork.de.

1Clones are duplicated source code fragments within a software application.
2Update anomalies can occur if a modification to the content of a clone is not propagated consistently to all other

copies of the source code fragment. A typical example are defect corrections which usually need to be applied to all
copies of the defective code section. A developer can easily forget to update some of the copies.

http://cpc.anetwork.de

A journey of a thousand miles begins with a single step.

Contents

1 Introduction 9

1.1 The Micro-process and ECG . 9
1.2 Terminology . 9
1.3 Clone Research . 10

1.3.1 Pervasiveness of Cloning . 10
1.3.2 Copy and Paste . 11
1.3.3 Risks and Benefits . 11
1.3.4 Summary and Conclusion . 12

1.4 Goals of this Thesis . 13
1.5 Outline of this Thesis . 13

2 Requirements 15

2.1 Vision . 15
2.2 Related Work . 17

2.2.1 CnP and CReN . 18
2.2.2 CloneTracker . 18
2.2.3 CbR - Clone-based Reengineering . 19
2.2.4 Others . 20
2.2.5 Related Work at FU Berlin . 20

2.3 Requirements for CPC . 21
2.3.1 Potential Extensions . 21
2.3.2 Requirements . 23
2.3.3 Limitations . 25

3 Design and Implementation 27

3.1 The Eclipse Platform . 27
3.2 Generic Design Goals and Approaches . 28
3.3 The CPC Core . 32

3.3.1 Service Provider API . 33
3.3.2 Event Hub API . 34
3.3.3 Clone Data Objects . 37

3.4 The CPC Modules . 40
3.4.1 CPC Sensor - Eclipse Event Hooks . 40

5

6 CONTENTS

3.4.2 CPC Track - Clone Tracking . 41
3.4.3 CPC Store - Data Persistence . 43
3.4.4 CPC Mapping - Data Mapping . 46
3.4.5 CPC Classification - Clone Categorisation . 46
3.4.6 CPC Similarity - Semantic Equivalence and Differences 47
3.4.7 CPC Notification - Clone Modification Warnings 47
3.4.8 CPC Reconciler - External Modification Handling 48
3.4.9 CPC Store Remote - Remote Synchronisation 50
3.4.10 CPC Imports and Exports . 54
3.4.11 CPC UI and Notifications UI . 57

4 Heuristics 61

4.1 Clone Classification . 61
4.2 Clone Similarity . 63
4.3 Clone Modification Notifications . 66

4.3.1 Modification Evaluation . 66
4.3.2 Delayed Notifications . 69

5 Challenges and Setbacks 71

5.1 Planning and Risk Assessment . 71
5.2 Reuse and Performance . 72
5.3 The Eclipse API . 73

5.3.1 General Complexity and Documentation . 73
5.3.2 Inconsistent, Inappropriate or Missing APIs 75
5.3.3 Conservative Development . 79

5.4 Team Providers . 80
5.5 Failures, Defects and Solutions . 84

6 Testing and Evaluation 87

6.1 Testing . 87
6.1.1 Testing and Debugging Support . 87
6.1.2 Unit Testing . 88

6.2 Evaluation . 89
6.2.1 Survey of Existing Data . 89
6.2.2 CPC . 93

7 Conclusion and Future Work 99

7.1 Looking back . 99
7.2 Looking ahead . 100
7.3 Conclusion . 101

Bibliography 103

List of Figures

3.1 Basic layout of the Eclipse environment (simplified) 28

3.2 COD: Example of design for multi-level reuse in CPC 30

3.3 COD: The CPC Core module . 32

3.4 COD: The CPC service provider concept . 33

3.5 SED: Provider registry usage for initial lookup of a singleton provider 34

3.6 COD: The CPC event hub concept . 35

3.7 SED: Event hub registry usage with synchronous and asynchronous listeners 35

3.8 CLD: The CPC Event hierarchy (simplified) . 36

3.9 The CPC Clone Data Object . 38

3.10 CLD: The CPC Clone Data hierarchy (simplified) . 39

3.11 CUD: Module collaboration during the handling of a paste operation (simplified) . . 40

3.12 SMD: Internal states during cut, copy and paste events (simplified) 41

3.13 COD: The Store Provider concept . 43

3.14 CUD: Module collaboration during the handling of a clone modification (simplified) 48

3.15 CUD: Module interaction during reconciliation of external modifications (simplified) 49

3.16 COD: Structure of the CPC Remote Synchronisation framework (simplified) 51

3.17 COD: Structure of the CPC Imports/Exports framework (simplified) 55

3.18 CPC UI clone marking via coloured bars (rulers) . 57

3.19 Actions available via the notification icon in the editor ruler 58

3.20 CPC notification in problems view . 58

3.21 Simple CPC clone data in list viewer . 59

3.22 CPC clone data tree viewer . 59

3.23 CPC clone history replay view . 60

3.24 Extendible CPC preferences dialogs . 60

6.1 Comparison of average clone creation rate per hour 89

6.2 Comparison of clone size distribution . 91

6.3 Comparison of cut, copy and paste event distribution 92

6.4 Comparison of clone size distribution . 93

6.5 Clone content classifications and modification states 94

6.6 Size distribution of clones by clone state . 95

6.7 Clone state distribution by clone size category . 95

7

8 LIST OF FIGURES

6.8 Size of clone modifications in content length difference and Levenshtein distance . . 96
6.9 Size distribution of clone groups . 96
6.10 Delay between creation of first and last clone in group 96
6.11 Delay in hours between clone creation and last modification 97
6.12 Number of modifications made to a clone’s content 97
6.13 Size distribution of modifications made to a clone’s content 97

For UML diagrams, the type is indicated by the first three characters.
COD: Component Diagram, SED: Sequence Diagram, CLD: Class Diagram

CUD: Communication Diagram, SMD: State Machine Diagram

Chapter 1

Introduction

1.1 The Micro-process and ECG

The ‘Micro-process of Software Development’ represents one of the areas of interest of the soft-
ware engineering research group of the Department of Computer Science at the Freie Universität
Berlin [32, 33]. Sometimes also called ‘Actual Process’, the research focuses on the small, every
day actions of the programmer (i.e. browsing code or documentation, modifying a method, copying
text, ...) and sequences of such actions, the so called episodes.

In order to obtain very fine grained data about such actions and episodes, the ECG Lab toolkit1

has been developed [53, 52]. It uses a set of sensors to automatically collect data about program-
mer actions from multiple sources. The main sensor instruments the Eclipse IDE and records all
interactions between the programmer and the IDE. These automatic data collection methods have
been used extensively to gather data in a number of different experiments.

However, the micro-process research is still in its infancy and it remains unclear what benefits
might someday be derived from it. The focus of this thesis and its predecessor [46] is therefore
only a very narrow part of the micro-process: The programmer’s copy and paste actions and the
resulting source code duplications (clones) in the software system under construction. The so called
‘Copy, Paste, Change Episodes’.

We believe that by narrowing down the focus in this way, it is possible to attain a small but
meaningful part of the benefits which might someday arise out of the micro-process research, today.

1.2 Terminology

Similarities and duplications are a common phenomenon in the source code of most software appli-
cations. These so called ‘clones’ often become a hindrance during software maintenance and have
emerged as a controversial research topic.

The terminology in the field of clone research has traditionally been very inhomogeneous and
the research community has not yet adopted a common definition of a ‘clone’ [51]. The precursor
to this thesis has made some effort to specify a notation for clone descriptions [46].

1ElectroCodeoGram

9

10 CHAPTER 1. INTRODUCTION

In the area of static clone detection the question of what constitutes a clone and what doesn’t
tends to be strongly intertwined with the clone detection approach used. This approach mainly
stems from the often very limited availability of information concerning the evolution of similar
source code which makes it hard to specify exactly what was copied from where or whether observed
similarities might be purely accidental.

The narrow focus on a programmer’s copy and paste actions and the resulting clones adopted in
this thesis allows for a more intuitive approach to cloning. All source code which is duplicated due
to a copy and paste episode of the programmer can safely be considered a clone. Thus some of the
challenging problems of static clone detection are avoided, while others are only postponed. One of
the issues discussed in this thesis, deciding at which point two individually evolving copies of the
same source code should no longer be treated as clones, can be seen as one of these ‘postponed’
problems.

For the remainder of this thesis we thus use the term clone to describe a section of source code
which was copy and pasted from one location to another. The origin of a copy and paste action is
referred to as the origin clone. Clones which were copied from the same location are considered
to form a clone group. If a new clone is created by copying an existing clone, the new clone is
considered to be a member of the clone group of the existing clone.

During the evolution of a software system clones may cease to be part of any clone group (i.e.
because the origin clone and all other clone group members were deleted). While such clones do no
longer constitute ‘clones’ in the basic sense, as there is no longer any source code duplication, it
may at times still be beneficial to take them into consideration. We call such specimen orphaned

clones.

Furthermore, clones which were introduced into a software system before the adoption of a
clone tracking tool will be referred to as legacy clones. Similar code sections which only appear
to be clones are termed accidental clones, these will be covered in the next section.

Activities of a developer which modify only a part of the members of a clone group can lead
to update anomalies. Update anomalies occur when the semantics of members of a clone group
diverge unintentionally and represent one of the biggest clone related problems during software
maintenance.

1.3 Clone Research

Duplication of source code in software systems has been an active field of research for more than a
decade. Roy and Cordy as well as Tairas provide a good overview of the cloning related publications
to date [51, 55].

1.3.1 Pervasiveness of Cloning

Past and current research findings strongly indicate that cloning in software applications is a per-
vasive phenomenon [24, 36]. A study of the authors of CP-Miner found a considerable amount of
cloning in some major open source projects [42]. The study paints an interestingly homogeneous
picture of the clone coverage across very different software projects. The examined systems ranged

1.3. CLONE RESEARCH 11

from operating systems like Linux (version 2.6.6, 4,365 kLOC, 22.3% cloning) and FreeBSD (ver-
sion 5.2.1, 3,299 kLOC, 20.4% cloning) to web servers like Apache (version 2.0.49, 223 kLOC,
17.7% cloning) and data base systems like PostgreSQL (version 7.4.2, 458 kLOC, 22.2% cloning).

Other studies confirm these numbers and some uncover even higher cloning rates in specific
application domains. An investigation into cloning in web applications by the authors of XVCL
examined 17 applications of different sizes, based on different technologies and found clone coverages
of 17 to 63% (average 41%) [50].

1.3.2 Copy and Paste

In comparison with static clone detection techniques, copy and paste actions by individual pro-
grammers have received only little attention by the research community. The amount of available
empirical findings is thus very limited.

Kim et al. conducted an ethnographic study focusing on copy and paste practices [38]. After
observing nine professional programmers for 60 hours (50h automated, similar to ECG; 10h man-
ually), they found that the programmers mainly copied very small code parts (74% less than a
line, 17% blocks, 8% methods, 1% classes). However, they also observed roughly four non-trivial
copy and paste clones per hour of development. During this relatively short study, programmers
applied changes consistently to all clone instances. Clones created during this study were also often
removed due to refactoring or other, unrelated code changes. When interviewed, programmers said
that they deliberately delayed code restructuring until a clone was copied multiple times in order
to discover the right level of abstraction. The authors also argue that some copy and paste actions
have the potential to capture important design decisions.

Kim et al. introduce the notion of structural templates which they divide into syntactic

templates and semantic templates depending on whether the programmer intends to reuse the
semantics of the copied code or whether only a particular syntax is of interest. Semantic templates

are subdivided into a number of finer categories. While this typology may be vague and very hard to
decide programmatically in many situations, it provides a useful conceptual tool when considering
the importance of clones and their evolution (see section 4.1).

1.3.3 Risks and Benefits

The presence of clones in applications has long been considered to be an indication of poor software
quality. Clones were purely regarded to be ‘bad smells’ which hinder program understanding and
increase maintenance costs [26, 51]. Aggressive removal of clones with support of automated clone
detection and refactoring approaches has thus received a lot of attention [51].

In light of newer research findings this tough stance on cloning has been reconsidered and there
are now many advocates of a more lenient approach to clone removal. It is argued that limitations of
the programming language often make cloning impossible to avoid [38, 40]. Basit et al. examined
code cloning in the Java Buffer Library and the C++ Standard Template Library (STL) and
identified a large number of clones which could not be removed with the normal mechanisms offered
by Java or C++ [17, 18]. Unavoidable cloning may also be caused by the presence of conflicting
design goals.

12 CHAPTER 1. INTRODUCTION

Some studies have shown that programmers create clones intentionally [22, 37, 38]. It is argued
that cloning can be viable design decision in certain scenarios where issues such as code stability,
risk minimisation, design complexity, experimental development, performance or code ownership
are important considerations. Roy and Cordy provide a good overview over the different reasons
for cloning2.

Furthermore, it has been observed that the majority of clone groups tend to be maintained
consistently [14, 40]. In small, single contributor software systems clones are maintained even more
consistently [14]. Newly introduced clones are also often volatile. They tend to either be removed or
to evolve independently within a short period of time (48-72% disappeared within 8 checkins) [40].
Aggressive, immediate refactoring of clones may thus be neither necessary nor beneficial.

It has been noted that the use of static clone detection techniques to identify clones for refac-
toring is likely to also identify code sections which are only accidentally similar [13]. Common
usage patterns of an API, design patterns and mental templates are typical examples. Unification
of such accidental clones is likely to increase the future maintenance effort as it bears the high risk
of potentially propagating changes to code sections which were never meant to be affected by a
change.

However, even the supporters of a more lenient approach acknowledge that clones, or at least
certain types of clones, in software systems are likely to have negative effects on the long term
maintenance effort. Findings show that source sections which contain clones are likely to require
more modifications during maintenance than clone free segments [43].

1.3.4 Summary and Conclusion

There is wide spread support for the notion that cloning in software systems increases the long
term maintenance effort. The introduction of potential update anomaly risks is one of the key
arguments. At the same time recent findings suggest that there are many reasons which make
cloning inevitable and sometimes even desired. Many potential remedies have been suggested,
ranging from new language features to special preprocessors or meta-languages [58, 51].

For this thesis the reasons for and effects of copy and paste cloning are of chief interest. The
copy and paste functionality of current software development environments has many undisputed
benefits. Preventing copy and paste cloning, if that would even be desirable, by deactivating such
functions, while possible, would clearly be counterproductive.

Rather than completely preventing copy and paste cloning (or the status quo - completely
ignoring it), a more sensible approach, which has been suggested by many studies, would be to add
special clone tracking features to the software development environments [30, 37, 38, 40, 44]. The
idea is to retain the convenience and positive aspects of copy and paste cloning while at the same
time trying to ease or prevent some of its major pitfalls. This perceived need for tool support is
one of the key motivations for this thesis.

2The corresponding tree-diagram can be found in the Appendix and Recommended Readings booklet.

1.4. GOALS OF THIS THESIS 13

1.4 Goals of this Thesis

This thesis aims at providing a versatile and highly flexible framework for clone tracking within
the Eclipse IDE named Copy-Paste-Change3 (CPC). CPC should provide a base for future work
in the area of clone tracking and should facilitate the collection of data on typical copy and paste
cloning activities of programmers. It should furthermore improve the general awareness about
cloning in an application by providing visualisations of clone data and should establish a basis for
future notifications of the developer about potential update anomalies. This is covered in detail in
chapter 2.

1.5 Outline of this Thesis

This section shortly summarises the content of each of the remaining six parts of this thesis.

Requirements: This chapter starts off with outlining a vision for future clone tracking tool sup-
port, provides an overview of existing work in this area and closes with a list of requirements
for CPC. Furthermore, the chapter provides examples of a number of potential future uses and
extensions for CPC which need to be taken into consideration during requirements elicitation
and lists the scope limiting assumptions made for this thesis. (chapter 2)

Design and Implementation: After a very brief introduction to the Eclipse platform, this chap-
ter introduces the general design goals and approaches of CPC. The remainder of the chapter
covers the CPC design and implementation in-depth by first commenting on the CPC core
and continuing with a listing of the major CPC modules. (chapter 3)

Heuristics: Heuristics for clone classification, similarity and the detection of potential update
anomalies represent one of the key aspects of CPC. This chapter provides a broad overview
of the corresponding CPC modules and introduces the currently implemented heuristics as
well as providing ideas for future improvement. (chapter 4)

Challenges and Setbacks: During the course of this thesis a number of challenges emerged and
some approaches proved to be infeasible. This chapter gives a detailed account of all the
major problems and their solutions. (chapter 5)

Testing and Evaluation: This chapter provides some insight into the testing process of CPC
followed by a short analysis of copy and paste clone data collected in earlier experiments as
well as data collected during the evaluation of CPC. (chapter 6)

Conclusion and Future Work: The final chapter summarises the work done so far, provides an
outlook into the future and finishes with the overall conclusion. (chapter 7)

Additional material of interest can be found in the supplied Appendix and Recommended Readings
booklet and the CPC Core API Specification booklet as well as on the submitted CD-ROM and
the official CPC website at: http://cpc.anetwork.de

3Following the ‘Copy, Paste, Change Episodes’ of the ‘Micro-process of Software Development’

http://cpc.anetwork.de

Chapter 2

Requirements

This chapter first provides an outlook on possible benefits of mature tool support, followed by a
short overview of some of the existing tools. Finally the chapter closes with a list of requirements
which can be inferred for the tool CPC which is to be developed over the course of this thesis.

2.1 Vision

Optimism is an occupational hazard of programming:
feedback is the treatment.

[Kent Beck]

There seems to be a number of potential benefits of integrated tool support for copy and paste
clone tracking, as was already hinted at in the introduction. This sections sums up some of the
interesting long term goals for this research area. While most of these ideas are clearly beyond
what can reasonably be achieved within the timeframe of this thesis, they provide long term targets
which represent important considerations for the framework design.

In an ideal scenario we know about all clones, even those which were not introduced by copy and
paste actions but for instance by transcribing from a print-out and those which were introduced
into the software system before a clone tracking tool was first installed (legacy clones). Without
any false positives.

This requirement poses two serious problems. First, while static clone detection has made
considerable progress in recent years, recall and precision of the available tools are still very far
away from reaching a state where these tools could be used for clone detection without risking
inaccurate clone data. And second, even if the static detection techniques would work flawlessly,
the matter of accidental clones would remain a serious concern [13]. Even in a scenario where a
software system was developed entirely under the control and supervision of a clone tracking tool,
the question of what constitutes a real clone as opposed to an accidental clone is hard to answer.

By giving up on the goal of covering all clones and instead limiting ourself to clones which are
created due to some kind of source code copying, we can circumvent many of the hard problems
like accidental clones, while at the same time accepting the loss of potential benefits which could be
gained by tracking other types of clones too. However, even with this limitation, many problems

15

16 CHAPTER 2. REQUIREMENTS

remain. Though most of them are only technical issues.

For a concrete tool this would imply a need for tracking of all clones which are generated by copy
and paste actions of all types as well as any other means of copying source code. Clone tracking
would need to be in effect system wide. A developer might copy and paste between different
applications, use different tools to modify source code or make a copy of a source file with some
file management application. An all-encompassing solution would thus be to have clone tracking
support either directly integrated into the operating system or in all applications which are likely
to be used for source code modifications [44].

Until such a high level of clone tracking integration is reached, any clone tracking tool would
need to be able to detect and recover from modifications of source code files by external applications.
While such external modifications would be discouraged, as it is impossible to guarantee a perfect
recovery from external edits, it would still be important to reduce the likelihood of clone data loss
as much as possible.

Furthermore, the tool would need to support clone tracking in a distributed environment where
multiple members of a development team are potentially modifying the source code concurrently.
Clone data would need to be synchronised between the workstations of the team members and
potential conflicts would need to be resolved. Conflict resolution would have to be completely
automatic with a graceful fallback strategy in situations where part of the clone data conflict can
not be resolved. Synchronisation would need to be limited to the periods in which repository
operations are executed, as the workstations might not be continuously connected to the network.
The tool should support all major repository providers and should offer a mechanism to store and
synchronise the clone data via the source code repository, for ease of use. A standalone server mode
for larger installations might also be beneficial.

By tracking copy and paste activities in the IDE, the absence of false positives1 can be guaran-
teed. However, it may be prudent to soften this requirement in situations where the clone tracking
tool was introduced late in the development cycle of a software project and where most cloning
activities are thus likely to have taken place already. In such scenarios it may be beneficial to use a
static clone detection utility to ‘jump start’ the clone database, accepting potential false positives.

An important aspect of any clone tracking tool would be support for good visualisations of the
collected clone data. Different views of the data which are tailored to typical tasks or questions
should be provided. It is crucial to make the clone data as easy to grasp as possible, even in large
systems with thousands of clones. In most scenarios a developer is likely to be interested only in a
small subset of the clone data. Powerful, yet easy to use, filtering mechanisms are thus essential.

If implemented correctly, such visualisations are likely to increase the general awareness of
cloning in the application among all developers. Even without explicit support for warnings about
update anomalies and other clone related errors, this increased general awareness might quite
plausibly reduce the likelihood of any such errors. A developer might very well choose to deactivate
advanced features like notifications and warnings about potential update anomalies and still benefit
from the available clone data visualisations.

1According to our clone definition all code which is copied due to cut, copy and paste operations of the developer
is a clone. Whether these ‘clones’ are of interest is another matter.

2.2. RELATED WORK 17

The just mentioned notifications and warnings about potential errors are the by far most de-
manding problem to be dealt with. The tool needs to be able to make a large number of potentially
very challenging decisions. This begins with the creation of a clone: ‘Should the current copy and
paste action even be considered as a clone?’ ‘What kind of clone is it?’ ‘What kind of classifications
are sensible in the first place?’ ‘How important is the clone?’
And becomes even more controversial once a clone is modified: ‘Should the modification be prop-
agated to other clones of this group?’ ‘To all of them?’ ‘Has the classification or importance of
this clone changed due to the modification?’ ‘Is the clone now evolving independently and should
be removed from its current group?’

In other words the tool would need to make an ‘educated’ guess about the semantics of the
copied code as well as the intentions of the developer. While a perfect solution to this problem is
likely to be impossible even for the far future, it seems plausible that an approximation, at least
for special cases, might be achievable. Good heuristics, artificial intelligence and special tailoring
to the individual programmer might prove to be fruitful steps towards this goal.

Another question is how notifications or warnings should be displayed to the programmer and
how the programmer can interact with them to correct the problems. A non-intrusive approach
might be best. However, it would seem sensible to choose different ways of notifying the developer,
depending on the calculated importance of the event and the confidence in its correctness. There
might also be a demand for different ‘notification styles’ from which each user can pick a favourite.

It is painfully obvious that our current understanding of copy and paste cloning practices and
even cloning in general is far from sufficient to implement a solution which comes even close to
solving the problems posed by notifications and warnings as outlined above. Good, empirically
confirmed heuristics can only be developed if a large base of real world cloning data from all kinds
of different projects is available. Small, short term lab experiments with a hand full of students
are clearly not an adequate substitute. A very important aspect for any early version of such a
clone tracking tool would therefore be data collection. If potential users can expect some benefits
even from early versions and are facing only minimal effort for the adoption of the tool, acquiring
a large, very heterogeneous data set may be possible.

Such data would also be very interesting in light of other research questions. One example would
be the ongoing quest for new ways of comparing different static clone detection techniques. A large
project with a complete copy and paste clone history could be used as a new kind of benchmark
for the recall of static clone detectors.

2.2 Related Work

This section highlights some of the existing approaches and solutions which at least partly address
some of the issues pointed out in the previous section. Other interesting tools and research findings,
which do not directly address our ‘vision’, are covered in the chapters for which they are relevant
(i.e. in chapter 4).

18 CHAPTER 2. REQUIREMENTS

2.2.1 CnP and CReN

In the end of 2007, Patricia Jablonski at the Clarkson University started work on a PhD thesis
with the topic Techniques for Detecting and Preventing Copy-and-Paste Errors during Software
Development [29, 30]. The goals of her dissertation proposal show a very high overlap with the
issues covered in this thesis.

The proposed tool CnP will provide automated tool support for copy and paste tracking in the
Eclipse IDE. Its main features, clone ‘detection’ based on copy and paste actions, visualisation of
clone data and detection of potential cloning related inconsistencies or errors are very similar to
CPC. However, the main focus is placed on the development and evaluation of heuristics and on
empirical studies on typical copy and paste related defects.

So far no final version of CnP is available, it is currently in a very early stage of development
and November 2009 seems to be the tentative date for the final release. A specialised, proof of
concept implementation called CReN was presented at OOPSLA 2007 [31]. CReN is an Eclipse
plug-in which tracks copy and paste actions and uses the abstract syntax tree (AST) generated
by Eclipse to support the developer in the task of consistent identifier renaming. Jablonski argues
that this is one of the typical copy and paste related tasks which is likely to introduce defects into
a software system. The very limited focus of CReN and its proof of concept nature distinguishes it
from CPC.

However, the high overlap between the proposed CnP tool and CPC strongly suggests that
interesting knowledge exchange and reuse opportunities are likely to emerge as Jablonski’s disser-
tation progresses. Contact has been established and discussions are ongoing. CPC might emerge
as a suitable base framework for future CnP development.

2.2.2 CloneTracker

In mid 2007 Duala-Ekoko and Robillard presented a clone tracking tool called CloneTracker [23].
Similarly to CPC, it is an Eclipse plug-in which is aiming at supporting the developer during
software maintenance by highlighting clones and issuing warnings when a member of a clone group
is modified. It furthermore supports limited linked editing of two clone instances and provides some
basic visualisations for tracked clones.

CloneTracker employs a 3rd party static clone detection utility to obtain a list of potential clone
instances in the system. The developer can then manually inspect the detection results and select
clones which should be tracked. Copy and paste actions by the developer are not taken into account
and clones found by means of the static clone detector are not automatically tracked.

Duala-Ekoko et al. use a very interesting clone tracking approach. Instead of storing line or
character offsets and updating them during source modifications, they try to extract a robust meta
description of the clone segment from the surrounding source code. This so called Clone Region
Descriptor (CRD) is based on file location, file name, class name, method name (optional) and
multiple block descriptors (optional) as well as some additional source code metrics. It is designed
to be resilient to many types of modification potentially affecting the source file.

The advantage of this approach is that it does not require continuous tracking of clone positions

2.2. RELATED WORK 19

over all modifications of a document. Duala-Ekoko et al. argue that there is a high likelihood that
the position of a clone can be identified even after a 3rd party modified the document.

However, as a result of the necessary trade-off between robustness to document modifications
and positioning precision as well as some general characteristics of the CRD design, CloneTracker
can often only approximate the position of a clone. For one, a CRD is always aligned with a Java
block. A clone smaller than a block or a clone spanning multiple blocks results in a CRD pointing
to the next higher block which completely encompasses the clone, the clone ‘grows’. Another aspect
is the strong reliance on nesting levels. If the nesting depth of a source code section is increased
or decreased (i.e. addition/removal of a surrounding conditional statement), all CRDs within the
section are invalidated. Furthermore, some other specific changes to the code can also invalidate all
CRDs nested within them. Any modification to the predicate expression of a conditional statement,
changes to the condition of a loop and addition/removal of exceptions caught by a try/catch block
are some examples of such changes.

Duala-Ekoko et al. evaluated the precision of their tracking approach on multiple revisions of
a number of open source Java projects. They found that the CRD related ‘growth’ of clones is on
average less than four lines and the average number of ‘missed’ lines (lines of a clone which were
lost due to specifics of the CRD design) is less than two. However, of the 3,275 clones examined,
only 164 (5%) were completely lost.

While this approach seems promising the considerable loss in precision is likely to limit its
usefulness in a lot of scenarios. For the tracking of the often small and unstructured copy and
paste clones typically faced by CPC it seems impracticable. In a fully automated clone tracking
system like CPC the approximation of positions could also lead to confusion and mistrust of the
developers once they become aware of code sections which are incorrectly marked as being part of
a clone. In this sense CRDs introduce a new type of false positives.

2.2.3 CbR - Clone-based Reengineering

In 2003 Simon Giesecke developed the tool CbR as part of his master thesis Clone-based Reengi-
neering für Java auf der Eclipse-Plattform [28]. CbR is an Eclipse plug-in for Java developers which
has some overlap with the features of CPC. It applies static clone detection techniques to identify
duplicated source code and includes basic functionalities for clone visualisation.

The main focus of CbR lies on the incremental update of the detected clone data. If the
developer modifies part of the source code the clone data is either directly updated or, for larger
edits, static clone detection is only reexecuted for those areas which are potentially affected. CbR
relies heavily on the AST generated by Eclipse. The CbR implementation retains an experimental
character and is presented as a basis for further work, rather than a tool which is ready for use. It
was based on Eclipse 2.x and is no longer compatible with current versions of Eclipse. Development
has been discontinued since 2003.

CbR does not track copy and paste actions of the developer but relies entirely on static clone
detection, accepting the potential problems such an approach entails (false positives/accidental
clones/low precision, low recall). Furthermore, it does not try to provide warnings about potential
inconsistencies between members of a clone group. As such its focus is different from that of CPC.

20 CHAPTER 2. REQUIREMENTS

2.2.4 Others

A number of other tools are either available or have been described in publications. However,
compared to the tools so far presented, none of these additional tools has a similar overlap with
the goals of CPC.

In 2004 a tool called C4D was described by Udo Borkowski [20]. So far no more information
about this tool has been made available and the exact state and capabilities of the implementation
remain unclear.

Li et al. developed the tool CP-Miner which combines static clone detection and identification
of potential ‘copy and paste’ inconsistencies [42]. The first version of CP-Miner focused on detection
of inconsistent identifier renaming (like CReN) and was able to identify 28 such defects in the Linux
kernel as well as 23 in FreeBSD. However, it supports neither real copy and paste clone tracking
nor does it provide IDE integration.

Tommim et al. described the prototype editor Codelink, a XEmacs extension which supports
‘linked editing’ of members of a specific clone group [57]. The developer manually selects similar
code sections in the source code and ‘links’ them together. During this process the similarities
and differences between the selected code parts are analysed. Once ‘linked’ a modification to the
common block of a clone will be automatically propagated to all members of the clone group while
modifications to clone specific blocks will affect only the current clone. Codelink also offers some
features for clone visualisation and for navigation between members of a clone group. Automatically
‘linking’ clones after copy and paste actions and the use of static clone detection tools is mentioned
by Tommim et al. but has not been implemented.

Furthermore there are a large number of other clone related tools with IDE integration which ex-
clusively employ static clone detection techniques to find duplicated source code segments. Dudziak
and Wloka implemented a NetBeans plug-in which tries to automatically detect refactoring oppor-
tunities in a software system [25]. Among other features, the tool provides support for clone
identification and removal. SimScan by Blue Edge is commercial static clone detector which can be
integrated into a number of Java IDEs [21]. It focuses solely on the detection and display of clones.
PMD is a general purpose defect detection tool which also detects code duplications [8]. The SDD
clone detection plug-in for Eclipse represents another static detection approach [34, 35]. It provides
the base for the currently implemented CPC legacy clone import functionality (see section 3.4.10).

2.2.5 Related Work at FU Berlin

In early 2007 Sofoklis Papadopoulos submitted the diploma thesis Verfolgen von Kodekopien zur
Defektvermeidung in Eclipse [46] with a very similar focus on copy and paste actions of the pro-
grammer as in this thesis. However, his work did not include Eclipse integration and focused solely
on the development of an ECG Lab based detection approach for use in lab experiments.

The resulting ECG Lab module had multiple crucial shortcomings when considering it for gen-
eral use. All tracking was line based which is too coarse for accurate tracking of clones. The
implementation was furthermore monolithic in design, had performance issues and did not provide
persistence for the collected clone data.

2.3. REQUIREMENTS FOR CPC 21

In effect this made his work only viable for small, experimental setups and provided no support
for copy and paste clone tracking in real environments. Unfortunately this also meant that only a
very small part of his work could be reused for this thesis.

Early versions of CPC were based on a heavily refactored version of the ECG Eclipse Sensor
which was developed by Frank Schlesinger and later extended for detection of copy and paste
operations by Sofoklis Papadopoulos [52]. Furthermore the copy and paste data collected with this
sensor could be used to gain some general insight into copy and paste frequencies and common
clone sizes (see section 6.2.1).

Due to some critical limitations of the ECG Eclipse Sensor, it had to be replaced and the
current version of CPC does no longer include any noteworthy amount of source code of previous
ECG Lab based works (see section 5.2).

2.3 Requirements for CPC

A number of the requirements for CPC can be directly inferred from our overall goal. Others
may be less obvious. As CPC is only the first step towards our vision of ubiquitous clone tracking
potential future extensions may also contribute further requirements. This section starts with some
examples of potential future uses of CPC, in order to better gauge their potential impact on the
requirements and design of CPC. After which the requirements for CPC are summarised and a list
of limiting assumptions presented.

2.3.1 Potential Extensions

Heuristics and Visualisations

The two most probable areas of customisation are heuristics and clone data visualisations. The
initial implementation of CPC covers these areas only to a very limited degree and further work is
thus clearly needed.

Heuristics are an integral part of CPC which directly affect its usefulness. The current lack of
cloning data and the limited general understanding of the relevant factors indicate that heuristics
are likely to be improved in iterative and potentially incremental steps. This expected volatility
of any heuristic implementation strongly suggests a modularised approach which minimises the
coupling between heuristics and CPC as well as the coupling between heuristics. The three main
types of heuristics; classification, similarity and modification notification are covered in more detail
in chapter 4.

As was already outlined earlier, one of the crucial contributions of CPC is the potentially
increased general awareness of clones among software developers. In order to achieve this goal, CPC
would need to provide a variety of visualisation capabilities which could not be covered during this
thesis. Visualisation contributions and their API requirements are therefore an important point to
be considered.

An example for an interesting CPC visualisation extension would be the reuse of the AJDT
Visualiser which is part of the AspectJ Development Tools project (AJDT) as suggested by Tairas
et al. [56]. They argue that code duplication in software applications has many similarities with

22 CHAPTER 2. REQUIREMENTS

aspects in an aspect oriented software system. Their clone visualisation prototype thus successfully
reused a number of AJDT visualisations.

Change Propagation and Linked Editing

While the current implementation of CPC only passively warns about inconsistent clone modifica-
tions, fully automated propagation of changes to all affected clone instances and ‘linked editing’ as
described by Toomim et al. represent interesting, potential additions [57].

Refactoring

Tool support for refactoring suggestions and automated refactoring has been a topic of active
research for some time. So far such approaches have focused on static program analysis and clone
detection [25, 51]. For some situations, the copy and paste clone data collected by CPC might be
more suited for such a usage scenario than the output of static clone detection utilities.

In light of this possible future use for CPC clone data, it is important to ensure that as much
of the potentially helpful types of information as possible is persisted for later use. The full
modification history of each clone instance in relation to its clone group is an example of such data.
The modification history provides much deeper insight into the differences and commonalities within
a clone group than the simple application of a longest common subsequence based algorithm like
the one implemented by the Unix diff utility.

Automated Template Extraction

Kim et al.’s observations of copy and paste practices and their classification of copy and paste clones
into syntactic templates and semantic templates highlighted a critical point, programmers
often copy code not to reuse its semantics but to reuse its basic structure [38]. Our personal
experience and experience gained from available copy and paste data from a number of experiments
also support this (see also chapter 4 and section 6.2).

An interesting future extension for CPC could be automatic detection and extraction of such
templates. These could then be either added to the existing code templates of Eclipse or be made
available via a separate function. Tailoring of these templates to the programming practices of the
individual developer would be a key factor for the usefulness of such a feature.

XVCL Back Propagation Tool

The Software Engineering Department at the National University of Singapore (NUS) has investi-
gated reasons for cloning in software applications and potential remedies for many years. Jarzabek
et al. advocate the use of a language independent meta programming language called XVCL in
order to address inevitable and desired cloning [58]. As a source code generating meta language
XVCL is facing one of the typical problems of other code generation techniques, back porting of
manual modifications of the generated output.

To address this issue, the XVCL Back Propagation Tool (BP Tool) was developed. It can
automatically detect manual modifications made to the generated XVCL output and can support

2.3. REQUIREMENTS FOR CPC 23

the programmer in situations in which the back propagation of the changes into the meta model is
intended. To allow tracking of sections and their origin within the generated output, the current
implementation adds a large number of special marker comments.

While this approach works, it can lead to poor readability of the generated source code and
tends to distract the developer. Furthermore, the marker comments are vulnerable to accidental
modification and duplication by the programmer. Unintended removal or copying of these com-
ments can potentially lead to incorrect back propagation recommendations and could render the BP
Tool unusable. Thus requiring the developer to manually identify and propagate all modifications.

CPC could provide the base for the next generation of XVCL back propagation support. Instead
of ‘instrumenting’ the generated source code with special comments, the BP Tool could leverage
the clone tracking capabilities of CPC. While the basic tracking requirements would be similar to
a normal CPC installation, the creation, display and final processing would differ considerably.

The BP Tool is one example from a group of potential future use cases of CPC which only reuse
a subset of the available functionality and which might not even be related to clone tracking.

Others

The list of potentially interesting extensions is clearly not limited to the ones listed thus far. Further
ideas have been suggested in different publications (i.e. consistent identifier renaming support as
implemented by CReN [31]) and there are certainly a number of potential extensions which simply
did not occur to the author thus far.

2.3.2 Requirements

You can’t please everyone
so aim to displease everyone equally.

[Joshua Bloch]

When the original vision is combined with potential future extensions as outlined above, a large set
of requirements readily emerges. However, the tight time constraints for this thesis make it crucial
to sensibly prioritise these requirements and to limit the overall project scope to a manageable
subset. This section identifies the main requirements for CPC.

Framework: The key aspect for CPC is extensibility and flexibility. The version implemented dur-
ing this thesis can only cover a very small subset of the interesting and required functionality.
From the very outset it was thus clear that only an iterative and incremental development
approach could possibly lead to the intended results in the long term.

CPC should thus provide a stable, well documented base for future work in the field of clone
tracking within the Eclipse IDE. While this places an emphasis on the typical aspects of good
framework and API design [19, 27], the following considerations are of special interest.

low initial adoption cost: A developer reusing CPC should only need to know the parts
of the API which directly affect his task and should be shielded from details which are

24 CHAPTER 2. REQUIREMENTS

not relevant. The framework should furthermore detect and report incorrect API usage
whenever possible.

high flexibility: Advanced users should be able to customise CPC to fit even uncommon
requirements which were not envisaged during the initial development of CPC as far as
possible.

multi-level reuse: The initial design will not be able to cover all potential future needs.
Depending on the degree of customisation required, it should be possible to reuse CPC
functionality on different levels of granularity. Starting with the contribution of a new
strategy and ending with the replacement of entire subsystems and core services.

stable core: It should be possible to address even unusual needs without having to modify
the CPC core module. Ideally a contributor would include the CPC code from the official
CPC Update Site2 and would provide all modifications within additional plugins. This
would allow contributors to still benefit from CPC improvements and bug fixes, even
when using a heavily modified version, and is also essential for the next point.

3rd party contributions: Multiple parties should be able to contribute extensions to a CPC
installation without introducing the risk of conflicts and incompatibilities. Interaction
between contributions of different parties should be possible via defined channels.

The resulting design and implementation aspects are covered in detail in section 3.2.

Copy and Paste Clone Tracking: The version of CPC developed in the course of this thesis
focuses on clones created by copy and paste actions of the developer. Detection of such
actions and continuous tracking of clone positions across document modifications is thus a
key requirement.

Robustness: Any clone tracking system without instrumentation of the source code is highly
vulnerable to modifications made outside of its supervision. A small modification in an
external editor or any document modifying processing of a source file by other tools could
potentially lead to a loss of clone data. Synchronisation problems could also be caused by a
number of other events like an IDE or OS crash.

CPC should be able to detect all such modifications and should try to reconcile external
changes on a best effort basis. If clone positions can not or only partly be reconciled, CPC
should adopt a graceful fallback strategy and drop any potentially invalidated clone informa-
tion.

Remote Synchronisation: CPC should support distributed development environments in which
multiple programmers are potentially modifying the same source segment concurrently. Such
modifications could potentially cause merge conflicts and network connectivity might only be
available intermittently.

Data Collection: To facilitate further clone research, CPC should be able to collect and export
a wide variety of cloning related data. Of special interest are copy and paste activities by

2Update Sites represent the main software distribution and updating concept of the Eclipse platform.

2.3. REQUIREMENTS FOR CPC 25

the programmer in general, the resulting clone instances as well as the complete modification
history of each clone.

Initial Clone Import: To ‘jump start’ CPC on existing projects, it should be possible to import
static clone detection results. In light of the large number of available static clone detectors
and the ongoing research in this area, the emphasis should lie on the development of a versatile
import API rather than the support of one specific detection tool.

All imported clones should be be clearly marked, as they could represent false positives and
might sometimes need to be treated differently from normal copy and paste clones.

Ease of Use: In order achieve the desired adoption by a broad range of programmers on all kinds
of projects, the installation and setup of CPC should be as simple as possible. Ideally the end
user would just add the CPC Update Site to Eclipse and select the desired CPC modules.

Non-Intrusiveness / Safety: CPC should not affect the normal programming practice of its
users. For common project sizes it should not affect the overall system performance in a
noteable way. It should not leave any visible artifacts within the source code files. And no
conceivable type of CPC failure must be able to affect the integrity of the software application
under construction.

2.3.3 Limitations

Every big computing disaster has come from taking
too many ideas and putting them in one place.

[Gordon Bell]

In order to reduce the scope of this thesis to a manageable subset some limiting assumptions needed
to be made. This section lists the major limitations.

Copy and Paste Clones: This version of CPC only detects and tracks clones which were created
by copy and paste actions of a developer. All other types of cloning are ignored. Additional,
operating system specific copy and paste types like the middle mouse paste functionality on
Linux are not supported. The Eclipse Platform does not provide sufficient information to
track such events.

Homogeneous Environment: All team members use the latest Eclipse IDE and have the CPC
plug-in installed. The CPC version across all workstation matches and there are only minor
differences in configuration.

Java Development: The software under construction consists mainly of Java source files. Cloning
in other types of source files is not taken into account. Support for other languages could easily
be added as only very few areas of CPC need explicit language support (see also chapter 4).

CVS Repository: As none of the two major SVN team provider plug-ins for Eclipse implements
all the required Eclipse team APIs the only supported team provider for the initial version

26 CHAPTER 2. REQUIREMENTS

of CPC is the CVS team provider which ships with the Eclipse IDE. This problem is covered
in-depth in section 3.4.9, 5.4 and 5.4.

Limited External Modification: External modifications to source files outside of the super-
vision of CPC are rare events and usually only affect a small subsection of the software
application under development. Very high rates of external modifications may render CPC
unusable due to the potentially high degree of clone data loss3.

Limited Team Conflicts: Merge conflicts due to concurrent modification of the same source file
by multiple developers do only occur infrequently and only affect a small number of files.
As with external modifications, excessive amounts of merge conflicts may reduce the benefits
which can potentially be derived from adopting CPC considerably.

System Performance: The workstations have sufficiently recent hardware to comfortably run
the Eclipse IDE and a number of 3rd party plugins. On old systems with large projects
and/or a large number of clones the background activities required for clone tracking tasks
could lead to performance degradations.

3External modifications to source files which do not contain clone data are of no concern.

Chapter 3

Design and Implementation

This chapter provides a short introduction into the Eclipse Platform followed by an overview over
the generic design goals and approaches employed during the development of CPC. The chapter
then provides detailed design and implementation information about the CPC core component and
the CPC module components.

3.1 The Eclipse Platform

The Eclipse Platform has already served as a platform for many of the ECG Lab based works and
was introduced in length in the corresponding papers and theses [12]. It will therefore only be
covered very briefly here. Readers who are not familiar with the Eclipse Platform as a modular,
highly extendible framework are encouraged to pause here and take the time to read the Eclipse
Platform Technical Overview1.

While the Eclipse Project is best known for its integrated Java development environment (IDE),
the Eclipse SDK, it offers much more than the Java IDE. The Eclipse RCP core provides a foun-
dation for the development of all kinds of platform independent rich client applications and the
Eclipse Platform is a versatile base for building arbitrary IDEs.

The Eclipse Platform undoubtedly represents a hallmark of modular design. It serves as a
central integration point for a multitude of contributions by other Eclipse Project teams and third
parties. The Eclipse SDK is entirely built upon loosely coupled, reusable components. One of the
main drivers which makes this possible is a key concept of the Eclipse Platform, the plug-in.

Plug-ins are selfcontained modules which can freely modify and extend the functionality and
user interface of the Eclipse Platform. The plug-in framework builds up an in-memory registry of
all installed plugins at startup, resolves dependencies and provides plug-ins with extensive context
information. The life cycle of all plug-ins is managed by the framework which automatically defers
the loading of a plug-in until its functionality is actually being requested by the user or an already
activated plug-in.

Another key concept of the Eclipse Platform is the extension point. Each plug-in can define
its own extension points as well as extensions to extension points of other plugins in its plug-in

1This article is included in the Appendix and Recommended Readings booklet.

27

28 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.1: Basic layout of the Eclipse environment (simplified)

manifest. An extension point can be used to convey information (i.e. specification of a file type
which should be hidden) or to provide implementations of specific API interfaces (i.e. a callback
method to be executed when a specific menu item is selected).

Every plug-in has its own Java class loader which checks and enforces the dependencies and
visibility rules specified in the plug-in manifest. Eclipse defines three additional visibility types for
packages within plug-ins: public, internal and private. Public packages may be accessed by all
plug-ins, once they’ve declared the corresponding dependency in their plug-in manifest. Internal
packages should only be access by so-called ‘friends’, other plug-ins which were specifically listed
as having access to the package. Private packages are only available for plug-in internal use. While
access restrictions are not enforced for internal packages, any access to a private package will result
in a runtime exception.

While the Eclipse API specification clearly states that only official API classes and interfaces
may be accessed by a 3rd party plug-in [11], none of the internal Eclipse packages is marked as
private. This enables plug-ins to fall back to internal non-API segments if this is really required.
The current CPC implementation tries very hard to limit itself to the official APIs. However,
while no part of CPC accesses non-API packages, there are a number of cases were additional
implementation details, which are not part of the specification, need to be taken into account in
order to support some of the CPC core requirements. These cases are covered in section 5.3 and
5.4.

Other interesting aspects are an adapter framework which allows plug-ins to dynamically extend
existing objects at runtime to add new functionality, the Eclipse Platform’s update manager which
can be used to install and update plug-ins (semi-)automatically and many more2.

3.2 Generic Design Goals and Approaches

Simple things should be simple,
complex things should be possible.

[Alan Kay]

The requirements chapter already provided a first glimpse at some of the considerations for the

2The reader is encouraged to refer to the Eclipse Platform Technical Overview as well as the available Eclipse
online resources [12, 5, 6].

3.2. GENERIC DESIGN GOALS AND APPROACHES 29

CPC framework design in section 2.3.2. This section will cover some of these points in more detail
and highlights the implications for CPC and some of the trade-offs required.

Good software design is hard even under the best of circumstances; time pressure, technical
uncertainties and emergent requirements make the task all the more daunting. Should CPC be
adopted by users and developers, it will fail. It is important to realise that no matter to what
extend one goes, one will never be able to conceive all the potential future uses and requirements.
So while one may try to anticipate as many future needs as possible, one should prepare, from the
outset, for the worst.

As Parnas put it years ago, software will ‘age’ and designing for change thus needs to be a
central goal during software development [47]. Under the ‘environmental’ conditions which await
CPC, ‘aging’ will be fast, very fast.

Complexity due to Flexibility

Fortunately the Eclipse Platform, itself a prime example of flexible design, provides the ideal base
for such an endeavour. Its plug-in concept provides a ready to use base framework which can be
leveraged to provide a very flexible yet concise solution. Advanced features like managed lifecycles
and lazy loading of components, dependency management, online installation and updating and
many more can be reused with minimal effort.

However, the flexibility comes at a price. The inherent complexity introduced as a side effect
is considerable (see section 5.3.1). Flexibility versus complexity is just one prominent example of
required trade-offs between different conflicting design goals. There existed a constant need for
such trade-offs during the design and implementation phases.

One such example is lazy loading. While the Eclipse Platform takes care of the entire lifecycle
management, a plug-in needs to take special care when accessing other plug-ins and handling data.
In order to receive all the benefits of lazy loading, the introduction of an additional layer in the
application design is required. All code sections which do not absolutely need a foreign object’s
functionality should make use of descriptor or proxy objects which defer the creation of or access
to the object until one of its methods is actually needed3.

Another example is the trade off between including functionality within an existing plug-in and
encapsulating it within its own plug-in. While a strict segregation of different features into different
plug-ins improves flexibility and reusability it also adds complexity. And while the extra overhead
for a loaded plug-in in Eclipse is small, having a number of plug-ins which contain only one or two
classes is certainly too extreme. Due to its strong focus on flexibility and future reuse potentials,
CPC was split into a large number of relatively small plug-ins. The main rationale behind this
decision was to provide 3rd parties with a way to highly customise certain parts of CPC while still
retaining the default versions of all other components of CPC. This way contributors are still able
to benefit from patches and updates made to the remaining, official components.

3The Eclipse Platform will automatically load a plug-in once any of its classes is accessed.

30 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.2: COD: Example of design for multi-level reuse in CPC

Visibility Rules

The distribution of functionality over a large number of plug-ins, together with the aim to allow
contributors to replace any part of CPC results in another problem. Java package visibility rules
become basically useless. The Eclipse API rules of engagement specify that a plug-in should not
declare code in a package belonging to another component [11]. In effect this means that all classes
and methods which might potentially be of interest to another plug-in need to be declared as public.
The new package-level visibility rules introduced by Eclipse can help to offset this, but only on a
per package level. There is no way of restricting access to specific methods of a class.

To address this issue, CPC adopted a powerful but sometimes complex interface and casting
based solution, which is also employed by the Eclipse Platform. Instead of including a large number
of methods which must not be called by most clients and documenting this fact in their specification,
such methods are distributed over multiple interfaces. The base interface only contains the common
methods and a number of specialised sub-interfaces ‘hide’ all additional methods.

The available sub-interfaces and the corresponding access restrictions are documented as part
of the API specification. An interested client has to explicitly cast the base interface into one of
the specific sub-interfaces in order to access any of the restricted functionality. This approach is
evident in most parts of the CPC framework. One particular elaborate version can be found in the
discussion about the CPC clone data objects in section 3.3.3.

This approach also supports the goal of low initial adoption cost for new developers. By default
they will only see common functionality which reduces the initial conceptual complexity of the
system and spares them from many potential errors which could result from inadvertently using
methods which are not meant for public use.

Multi-level Reuse

To achieve the maximal amount of design flexibility and thus increase future reuse potentials even
in scenarios which were not considered during the development of CPC, a key goal is to enable
contributors to reuse CPC functionality at different levels of granularity.

A contributor using CPC within its intended application domain might just want to extend or
modify some heuristic or add a new view to the user interface. However, once the requirements are
very different from the original goals of CPC a reuse on this level will not be possible. A contributor
might need to replace the entire heuristics subsystem or implement a radically different approach
to clone creation, tracking or persistence. Even some of CPC’s core functions, as described in the

3.2. GENERIC DESIGN GOALS AND APPROACHES 31

next section, might no longer be suitable.

CPC tries to accommodate such needs by enabling a 3rd party to add, modify or remove
functionality at all levels. The typical structure of most CPC modules can be seen in figure 3.2.
Provider X supplies some kind of service to the system. The service is either specified in one of the
CPC Core APIs or represents a new type of service contributed by a 3rd party4. A service provider
implementation typically defines a set of APIs which can be used to customise its behaviour and
one or more extension points to register implementations of those APIs with the service provider.

A contributor could now add, modify or remove strategies registered with the provider. Some
service providers support multiple strategies which are then executed in a specified order. In such
a case a contributor could insert new strategies in a specific place and could decide at runtime
whether any of the following strategies should still be executed. The behaviour of Provider X

could also be changed by modifying some of the other providers on which it, or one of its strategies,
depend for some of the internal processing.

If this does not suffice to address the concrete requirements at hand, a more drastic approach
would be to replace the provider with a new implementation. The implementation could still make
use of Provider X’s registered strategies, if that seems beneficial. The new implementation could
also define a completely different API and provide a new set of strategies.

In the extreme case in which the limitation lies in one of the two central building blocks of CPC,
the service provider registry or the event hub registry (see section 3.3), even their implementations
could be replaced.

General Design

In general, common design patterns were used wherever their adoption was deemed to be beneficial
to the overall design or the understandability of specific areas [27]. Furthermore, the adoption of
certain design patterns in some places is enforced or at least strongly encouraged by some of the
Eclipse Platform APIs.

Furthermore, Joshua Bloch’s principles of good API design as well as other sources were consid-
ered, where applicable [19]. A number of the points highlighted by Bloch and others have already
been addressed above, some others are obvious. Of more interest are those points where CPC
deliberately or perforce deviates from these recommendations.

CPC’s quest for an API which enables it to provide useful services for a large, very heterogeneous
and so far largely unknown number of future extensions and contributions can be seen as a case
of deliberate over engineering. Its APIs are more numerous and detailed than would be strictly
necessary for basic copy and paste clone tracking support.

About this Chapter

The following sections contain a number of diagrams and graphics. It is important to note that
these are meant as examples which illustrate certain aspects of the CPC design and implementation.
They do not represent authoritative specifications of the underlying systems. In many cases they

4It is important to note that multiple external parties may be involved.

32 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.3: COD: The CPC Core module

only display a limited, simplified view. While most diagrams follow the UML standard, they may
deviate in some aspects. The title of each UML diagram starts with a three letter code which
specifies the type of diagram. The codes are explained on page 8.

Furthermore, this chapter often uses abbreviated names for classes and components for the sake
of readability and brevity. At the end of each section the CPC Core API Specification paragraph
lists names of relevant interfaces and classes which may be of interest to the reader. More informa-
tion about these can be found in the provided CPC Core API Specification booklet. The Service
Provider Dependencies paragraph of a section lists service provider APIs which are required by the
corresponding module. The Provider Registry and Event Hub are required by almost all modules
and are therefore not explicitly listed.

3.3 The CPC Core

CPC was designed in a highly modular fashion. A large number of independent components and
plug-ins surround one central integration point, the CPC Core module. The low coupling between
the different components is made possible by two of CPC’s core concepts, the (service) Provider
Registry and the Event Hub Registry as well as a common set of Clone Data Objects.

Figure 3.3 displays the basic structure of the CPC Core module. It specifies a large number
of API interfaces5 as well as default implementations of the Provider Registry and the Event Hub
Registry. Two special extension points allow contributors to replace the default implementations
with their own custom realisations which are then automatically available to all other components.

The remainder of this section describes the Provider Registry, the Event Hub Registry and the
Clone Data Objects in more detail.

CPC Core API Specification:
CPCCorePlugin

5The provider and event hub registry are just some of the specified interfaces, please refer to the CPC Core API
Specification booklet for a complete list.

3.3. THE CPC CORE 33

Figure 3.4: COD: The CPC service provider concept

3.3.1 Service Provider API

Within the CPC framework many components provide services and in turn require the services
provided by other components. The CPC Core module defines a large number of service provider
API interfaces (see section 3.4) which can be implemented by arbitrary plug-ins. The Provider
Registry provides a central exchange point between implementers and users of these service provider
APIs.

The OSGi component model6 adopted by the Eclipse Platform contains a built-in service
provider concept which could support some of the requirements for such an exchange point. Aside
from the additional complexity the OSGi approach would entail, there are a couple of issues which
made a custom implementation more beneficial. The main rationale for this approach was the fact
that the Eclipse OSGi implementation would have negatively affected the flexibility of a core CPC
component and that the effort required for a custom implementation was relatively low. Even the
Eclipse Platform itself makes only limited use of the OSGi service provider concept.

The basic concepts behind the resulting Provider Registry can be seen in figure 3.4. The Provider
Registry, which is itself registered with the CPC Core module, allows arbitrary components to
register implementations for a specific service provider API interface. When registering a provider,
a plug-in can specify the priority of the provided implementation as well as some life cycle details.

For a given service provider API interface, the Provider Registry enables plug-ins to retrieve
an instance of the implementation with the highest priority (the usual case) or descriptor objects
for all registered implementations. This approach enables 3rd party contributions to freely override
any existing provider implementation with a custom replacement.

Further life cycle data can be used by a provider contributor to indicate how requests for an
instance of the provider should be handled. Most service providers are declared as singletons, all
clients requesting an instance will receive a reference to the same provider object. While this is
the most economical approach, there may be provider implementations which require a different
treatment. Other options are to create a new provider instance for each request or to create
multiple instances as part of an instance pool. Special callback methods are used to notify provider
implementations about potentially interesting life cycle changes.

Provider implementations can be either registered via specific CPC Core extension points or

6OSGi – The Dynamic Module System for Java — http://www.osgi.org

http://www.osgi.org

34 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.5: SED: Provider registry usage for initial lookup of a singleton provider

via special subscription methods which are part of the Provider Registry API. A Provider Registry
implementation will internally keep track of all registered provider implementations and might also
engage in other activities like caching, pre-loading or pooling of provider instances.

Figure 3.5 displays the typical interaction between plug-in code which requires the services
specified in a certain service provider API interface and the CPC framework. First the plug-in
obtains a reference to the Provider Registry from the CPC Core module7. Then an instance of
a provider implementing the specified interface is requested from the Provider Registry. For a
non-singleton or the initial request of a singleton provider, the Provider Registry will create a new
instance of the provider implementation with the highest priority and will notify the provider about
the fact that it will be handed to a client. The client can then interact with the provider as specified
by the corresponding API. A singleton provider will also be notified about an imminent shutdown
of the Eclipse IDE.

CPC Core API Specification:
IProviderRegistry*8, IProvider*

3.3.2 Event Hub API

The Event Hub represents another key concept of the CPC framework. It promotes loose coupling
between components by providing a centralised, defined way of exchanging arbitrary data between
interested components.

Figure 3.6 provides a simplified overview. A component which intends to process events of a
specific type or events of a specific category can register an event listener with the Event Hub.
Listeners are registered either via a corresponding extension point of the CPC Core module or
via special methods of the Event Hub API. When registering a listener, a component can specify
its priority and whether it wishes to receive event notifications synchronously or asynchronously.

7This might yield a 3rd party Provider Registry implementation.
8Indicates the existence of further relevant sub-interfaces or sub-classes.

3.3. THE CPC CORE 35

Figure 3.6: COD: The CPC event hub concept

Figure 3.7: SED: Event hub registry usage with synchronous and asynchronous listeners

That is, whether the event sender should be blocked for the duration of the event processing by
the listener or whether the sender may continue its execution concurrently. Once an event of the
specified type or category is created by any component and sent to the Event Hub, it will be
dispatched to all registered listeners in the order of their priorities9.

Figure 3.7 displays the interactions between an event generating plug-in and the CPC frame-
work. As with the Provider Registry, initially a reference to the current Event Hub implementation
is retrieved from the CPC Core module. This way a different Event Hub implementation can
easily be plugged in. However, the interesting aspect here is the handling of synchronous and
asynchronous listeners.

The Event Hub will block the sender of an event until all synchronous listeners have finished
processing the event. This allows listeners to partly affect the future execution of the event sender
by modifying central clone data elements or sending further events. It also ensures that no further
actions of the sender can lead to an illegal state or invalidate any globally accessible data which
might be of interest to a listener. One example of such a case is the opening of a source file in an
editor. In this case the CPC Track module needs to load the clone position data for the new file
before the user can modify the file in the editor. By using a synchronous listener, the CPC Track
module can be sure that the editor window will only open once its listener loaded all the required
data.

While the default CPC implementation uses a number of synchronous listeners, the majority

9The dispatching order for multiple listeners with equal priorities is not specified.

36 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.8: CLD: The CPC Event hierarchy (simplified)

are asynchronous listeners. Asynchronous listeners have the benefit of not blocking the executing
thread. As a large number of events typically originate from the main user interface (UI) thread,
use of a synchronous listener always entails the risk of making the UI ‘lag’ due to long running
processing within the listener.

Asynchronous listeners are notified about an event once all synchronous listeners have finished
their processing. It is up to the Event Hub implementation whether events are dispatched to
asynchronous listeners from one or multiple background threads. A listener can indicate whether
it is thread safe or not. Non-thread safe listeners are guaranteed to never receive notifications
concurrently from multiple background dispatching threads.

Event Types

The CPC Core module defines a number of event types. Figure 3.8 provides a simplified overview
of the available events.

Eclipse related Events: Events of this category are directly caused by activities within the
Eclipse IDE and are generated primarily by the CPC Sensor module (see section 3.4.1).
Such events are mainly of interest to ‘primary’ event consumers10 which in turn might gen-
erate further ‘Clone Data related Events’ during the processing of these events. All events of
this type contain information about the current user, the name of the project and the path
of the affected file.

CutCopyPaste: This event is generated whenever the developer executes a cut, copy or
paste operation. It provides information about the clipboard content, the selected text
and the current document content.

EditorPart: This event is generated whenever an editor window is opened or closed or when
an editor window gains or looses the input focus. It does not contain any payload aside
of the event type.

FileAccess: This event is generated whenever a file is opened or closed. It lists the affected
file, the type of the event and contains a reference to the document object for the file.

10As opposed to consumers which are only interested in CPC related changes like clone additions and modifications.

3.3. THE CPC CORE 37

Events are generated for files opened and closed in an editor as well as for files which
are accessed by background tasks.

FileChange: This event is generated whenever a file is moved, renamed or deleted. It
contains the type of the event and optionally the new project name and file path.

ResourcePersistence: This event is generated whenever a file is saved or reverted. It
contains information about the affected file, the type of operation and whether the file
was modified by some background activity or whether it was modified inside a visible
editor.

Clone Data related Events: Events of this category are generated by CPC components in re-
sponse to other events or actions which affected the clone data.

Modification: This event is generated by the Store Provider (see section 3.4.3) at the end
of a transaction which modified the persisted clone data. It contains a detailed listing of
the modifications made and provides updated, shared clone objects which can be used
by listeners which want to keep a local cache of clone data up to date. This event is one
of the key events in the CPC framework. Most contributors will be interested in it.

Notification: This event can be generated by any component that detected a potential clone
related update anomaly which the user should be notified about. Usually such events are
generated by the CPC Notification module (see section 3.4.7). The CPC Notification
UI module is a typical consumer of such events.

Persistence: This event is generated by the Store Provider whenever the cached and po-
tentially dirty clone data for a file is written to disk. This typically happens when the
user saves a modified file in an editor. Events of this type are of interest to components
which need to keep track of the state of the persisted clone data for some files.

The set of events is not limited to these predefined types. A 3rd party can freely add its own event
types. Non-standard events can obviously only be used to transmit data between components
which are aware of the new event type. However, it is also possible to subclass one of the existing
event types to add additional payload to an event. In that case components which are aware of the
new sub-type can process all of the payload while other components will still be able to handle the
event, but will only see the default payload set.

CPC Core API Specification:
IEventHubRegistry*, IEventHubListener, CPCEvent*

3.3.3 Clone Data Objects

At first glance the design of a data object to represent a clone seems trivial. One approach which
comes to mind is a simple POJO11 or, similar to Markers in Eclipse (see section 5.3.2), a HashMap.
However, if one carefully examines the requirements for CPC, a number of issues surface which can
not all be solved with such simple approaches.

11Plain Old Java Object — http://www.martinfowler.com/bliki/POJO.html

http://www.martinfowler.com/bliki/POJO.html

38 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.9: The CPC Clone Data Object

Extendible: A clone data object needs to be extendible. There are a large number of applications
for CPC which are likely to require additional data to be stored together with the clone
object.

Multiple Contributors: It is not enough to allow one contributor to supply a new clone data
object implementation. There might be multiple parties who need to store additional, custom
data within the same installation of CPC.12

Complex Data: The additional data may not always be in a simple, flat form. Some contributors
might want to store large element lists. Some of these lists might be large enough to require
a lazy loading approach.

Private Data: It should be possible to clearly mark certain data elements as being ‘private’ and
only meant for access by a specific component.

Persistence Independence: Extending the clone data object with additional data should not
affect the persistence services of CPC. The Store Provider should not need to be modified in
order to persist the new data.

Fallback Option: If the clone data object design really can not accommodate a specific require-
ment. Entirely replacing the object with a custom implementation should be possible.

The design approach chosen for CPC is reflected in figure 3.9. CPC defines a POJO-like clone data
object which contains public and private data elements and which can be extended by additional
extension objects. Access restrictions for the default data elements are realised via additional sub-
interfaces (see section 3.2). The main interface for a clone data object, IClone, only provides
getters and setters for the publicly available data elements and only getters for read-only elements.
Elements which are only meant for use by specific components can only be accessed by casting the
clone data object to the corresponding sub-interface, i.e. ICreatorClone.

12I.e. if the user installs multiple 3rd party extensions from different sources.

3.3. THE CPC CORE 39

Figure 3.10: CLD: The CPC Clone Data hierarchy (simplified)

Figure 3.10 shows the adopted approach in more detail. Besides the core clone data object
IClone itself, there are additional objects to represent files and clone groups. These ICloneObjects
can be extended by an arbitrary number of ICloneObjectExtensions. While all ICloneObjects
need persistence, it is up to the implementer of an extension to specify whether it should be persisted
together with the corresponding ICloneObject or whether it is transient in nature and is only
meant to exist for the current session. An extension object can also implement special interfaces
to support persistence of non-flat data structures and lazy loading. Persistence independence is
achieved by use of the IStatefulObject interface. It prevents a persistence provider from requiring
any knowledge about the types and internal structure of clone data objects. Some of the design
goals for the Store Provider also affected the clone data object design (see section 3.4.3).

All instances of clone data objects are created by a central Clone Factory Provider which can
be obtained via the Provider Registry. All parts of CPC which need to create new clone data object
instances exclusively do so via the Clone Factory Provider. There is no place in the CPC framework
where the implementation of clone data objects is directly referenced. The Clone Factory Provider
itself obtains information about the available implementations from the corresponding CPC Core
module extension point and each registered clone data object has an assigned priority. This allows
3rd parties to contribute custom clone data object implementations and to replace or modify existing
data objects, if required. The default Clone Factory Provider itself can also be replaced with a
custom implementation, if needed.

Clone data objects are also integrated into the Eclipse Platform adapter framework. This en-
ables a tight integration of CPC data objects with the Eclipse IDE. One example of such integration
is the built-in Eclipse properties view. If a CPC clone data object is selected in a CPC UI view,
the properties view will automatically display the relevant properties for the selected object.

CPC Core API Specification:
ICloneDataElement*, IStatefulObject*, ICloneFactoryProvider

40 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.11: CUD: Module collaboration during the handling of a paste operation (simplified)

3.4 The CPC Modules

While the CPC Core module provides the essential backbone for the entire CPC framework, it does
not include any functionality in itself. It deliberately limits itself to providing basic communication
services and API specifications. A number of loosely coupled components, the CPC modules,
provide specific functionality which, when orchestrated correctly, yields the CPC Eclipse plug-in as
it is visible to the end user.

Figure 3.11 displays a simplified example of the collaboration between CPC modules. In this
case a developer’s paste operation triggers multiple events and is processed by a number of CPC
components before the new clone entry is finally visible in the user interface. It is important to
note that the only coupling in this scenario is the dependency of the CPC Track module on the
Classification Provider and Store Provider API interfaces. There is no coupling between the CPC
Track, CPC Classification and CPC Store modules.

3.4.1 CPC Sensor - Eclipse Event Hooks

CPC is highly dependent on receiving information about actions within the Eclipse IDE. Fortu-
nately, the loosely coupled, modular nature of the Eclipse Platform makes it possible to register
listeners, callbacks and other means of observing programmer actions. In order to prevent such,
sometimes complex interactions with the Eclipse Platform from spreading though all CPC modules,
which require notifications about some type of event, they are encapsulated in one central module,
the CPC Sensor.

The internal workings of the CPC Sensor are similar to the ECG Eclipse Sensor of the ECG
Lab. However, it has been considerably trimmed down and extended to other event types which
are of interest to CPC. Initial versions of CPC also made direct use of the ECG Eclipse Sensor (see
section 5.2).

While registration for specific events within the Eclipse Platform is straight forward for com-
monly needed events, it can become an extremely time consuming topic for other event types.
Section 3.4.9 and 5.3.2 describe some of the problematic cases.

Many of the events covered in the Event Hub API section (3.3.2) are generated by this module.

3.4. THE CPC MODULES 41

Figure 3.12: SMD: Internal states during cut, copy and paste events (simplified)

CPC Core API Specification:
EclipseEvent*, IEventHubRegistry

3.4.2 CPC Track - Clone Tracking

The CPC Track module is where most of the actual copy and paste clone tracking activity takes
place. This module listens for copy and paste events from the CPC Sensor and potentially creates
new clone entries on paste actions of the programmer. The module is furthermore responsible for
updating the positions of all known clones during document modifications.

The complexity of this module largely stems from the inadequate Eclipse support for position
tracking within documents. Instead of using the built-in, high-level position tracking concept of
Markers, the CPC Track module needs to fall back to low-level Position elements. This is discussed
in more detail in section 5.3.2.

The main events of interest for the CPC Track module are the file-access, cut-copy-paste and
resource-persistence events. All actions of the module are triggered by either such events or docu-
ment modifications by the developer.

Clone Creation

New clone instances are created as a result of cut-copy-paste events. Figure 3.12 displays a simplified
overview of the potential internal states.

The first important distinctions are those between cut and copy operations and those between
internal and external copy operations13. In case of a cut operation or an external copy operation
the clipboard content has no corresponding source location within the software system. A paste
does thus not create a clone according to CPC’s clone definition. Even if the source was originally
part of the software system, it might be deleted while its copy resides in the clipboard, resulting in
the same situation.

In the event of a paste operation, if the clipboard content has a source, the similarity between
the origin and the clipboard content is reevaluated with help of a Similarity Provider. In cases
where the origin has been modified and the similarity has fallen significantly, the pasted code will

13Actions inside or outside of the Eclipse IDE and therefore under or not under CPC supervision.

42 CHAPTER 3. DESIGN AND IMPLEMENTATION

not be considered as a clone. The potential new clone is then passed to a Classification Provider
for classification. The clone is either accepted and classified or rejected by the provider. If the
clone was accepted, it is sent to the Store Provider for storage. The Store Provider will then
automatically notify interested parties about the new clone instance.

If the clipboard content is pasted multiple times, each paste operation creates a new clone
instance and all instances share the same clone group. If the origin of the copy operation is already
a clone, the new clone instance will become a member of its clone group. Matching of copied source
selections and existing clone entries is done via a Fuzzy Position to Clone Matching Provider. For
a given start and end offset this provider checks whether any existing clone closely fits the specified
range. It is up to the provider implementation to decide how ‘loose’ the match may be.

Another special case is the automated source reformatting functionality of the Eclipse IDE.
Depending on the workspace configuration, pasted code might be reformatted on insertion, resulting
in a situation where the clipboard content during a paste operation does not match the content
actually inserted into the document.

A simplified version of the module interaction during a paste event is also shown in figure 3.11.

Position Tracking

The key responsibility of the CPC Track module is the continuous tracking of clone positions
across document modifications. This is achieved by listening (synchronously) for file-access events
for newly opened or closed files. When a file is opened the CPC Track module retrieves its current
clone data from the Store Provider and adds it as Positions14 to the internal Eclipse document.
The Positions are extracted and stored again once the file is closed or after a specific timeout was
exceeded. Some of the module interactions during this phase are also shown in figure 3.15.

The Position objects, which represent all clones within the file in question, are updated during
document modifications by means of a custom CPC Position Updater15 and a document modifica-
tion listener which are added to each document when it is opened or created. The decision about
how a given modification should affect a clone is delegated to a Position Update Strategy Provider.

During the clone tracking process, all modifications made to the contents of clone instances are
extracted and logged within a Modification History Extension of the corresponding clone object.
This enables CPC to provide a complete history of the long term development of all clone instances
within a software system.

Performance

The performance of the clone tracking process is of crucial importance. Early, ECG Eclipse Sensor
based, versions of CPC failed to cope with the large number of document modification events which
can be generated during the use of special Eclipse features like in-place rename refactoring. This
is discussed in more detail in section 5.2.

The current implementation makes heavy use of caching opportunities. Modified clone positions
are not written back to the clone data objects until some other component tries to access the clone

14In Eclipse Positions are small objects, describing a segment of the document to which they are attached.
15A Position Updater is a strategy which can be registered with a document to update Positions of a given type.

3.4. THE CPC MODULES 43

Figure 3.13: COD: The Store Provider concept

data. When this happens the other component is suspended and all cached changes are transmitted
back to the Store Provider (see section 3.4.3). If no other component actively requests the clone
data, the cache is persisted automatically after a certain period of inactivity.

Additional Tasks

Aside of these main responsibilities, the CPC Track module also listens for file rename and move
operations in order to keep the mapping between file path and clone data up to date. Furthermore,
it supervises resource persistence operations like save and revert in order to synchronise source file
persistence and clone data persistence events.

CPC Core API Specification:
EclipseEvent*, ICloneModificationHistoryExtension

Service Provider Dependencies:
IStoreProvider, ICloneFactoryProvider, ISimilarityProvider, IClassificationProvider,

IFuzzyPositionToCloneMatchingProvider, IPositionUpdateStrategyProvider

3.4.3 CPC Store - Data Persistence

The Store Provider is a key component of the CPC framework. It represents the central persistence
provider for all clone data objects. Its API enables other components to retrieve clone data for
specific files, file segments or groups and also provides other key services. The clone modification
events generated by the Store Provider, whenever a component modifies the persisted clone data,
are some of the most important events in the CPC framework (also shown in figure 3.11).

One of the key design goals for the Store Provider API was to achieve the greatest possible
independence from the underlying persistence implementation. The API should not limit the set
of possible persistence approaches of future Store Provider implementations by us or 3rd parties.
However, the highly flexible clone data object model chosen for CPC (see section 3.3.3) inevitably
requires a certain degree of sophistication on the part of the Store Provider.

In order to allow a maximum implementation flexibility a number of API simplifications were
made. Some of these considerations also affected the clone data object design.

44 CHAPTER 3. DESIGN AND IMPLEMENTATION

Non-Object Oriented: Some of the potential future persistence providers might be inherently
non-object oriented. An API which puts too much emphasis on object oriented approaches
might thus prove to be a limitation for the implementation of persistence services based on
such providers.

Concurrency and Transactions: A potential persistence provider might not allow concurrent
access to stored data or it might not support transactions or guarantee transactional proper-
ties such as ACID 16. An example would be a simple file based persistence implementation.

Performance: Accessing data stored with some persistence providers might be time consuming.
The API should thus provide enough information to allow effective caching approaches.

Simple: The effort required to implement a Store Provider wrapper for a new persistence imple-
mentation should be relatively low.

A number of steps were taken to address these main issues. Some of these steps address more than
one of the points mentioned above.

Passive Data Objects: To reduce the complexity of Store Provider implementations, clone data
objects are passive, shallow and detached from their persisted instances. Abstaining from lazy
loading object graphs which can be traversed at will, reduces the complexity considerably.
This way a Store Provider is freed from the obligation of providing or supporting special
proxy data objects which would need to be kept in sync with the main clone data objects.

On the other hand this may somewhat reduce the usability of clone data objects as an
additional, explicit round trip to the Store Provider is required, whenever extra data is needed.
I.e. a clone file object contains no direct references to the contained clone objects and a clone
object has no direct reference to the corresponding clone file object.

The IStatefulObject interface, which is implemented by all clone data objects, enables a
Store Provider to persist and restore objects without any knowledge of their internal structure.

Locking: To address the concurrency and transaction problem, the Store Provider API adopts a
read/write locking approach. The greatly reduced internal complexity, which is gained by em-
ploying exclusive write locks, clearly outweights the potential loss in concurrency. Especially
if the specific situation within the Eclipse Platform is taken into account. Most activities,
which are of interest to CPC, originate from a single thread, the main UI thread.

An exclusive write lock ‘session’ represents CPC’s concept of a unit of work. The Store
Provider will enqueue all clone data modifications until the end of the session, before the
corresponding clone modification events are generated. However, the Store Provider API
makes no guarantees about transactional properties.

To improve overall performance, one component can assume a special role in relation to the
Store Provider. It is granted an implicit write lock and may freely modify its cached clone
data. Once another component tries to acquire an exclusive write lock, the implicit write lock

16Atomicity, Consistency, Isolation and Durability

3.4. THE CPC MODULES 45

is withdrawn and the component is given a chance to copy its modified clone data back into
the Store Provider before the exclusive write lock request is granted. This is usually done by
the CPC Track module.

Abstract Super-Class: To simplify future Store Provider implementations, an abstract super-
class for store providers is provided. It addresses most of the not directly persistence provider
related tasks like locking, caching and event generation. The implementor of a new Store
Provider can therefore concentrate entirely on the persistence provider specific issues.

The Store Provider API thus provides a flexible base for the implementation of arbitrary persistence
provider wrappers.

Default Implementation

Initially, a number of different persistence approaches for the default Store Provider implementation
were evaluated. While all of the examined persistence solutions could have been used to implement
the Store Provider API, an HSQL DB based approach was finally adopted [7].

File Based: The initial idea was to store clone data in XML files within the plug-in state direc-
tory. And while this entails the lowest runtime overhead in terms of libraries and additional
persistence applications, creation and maintenance of the required caching structures, to al-
low fast clone data access even within large projects, would have required a considerable
implementation and testing effort.

Other evaluated approaches which fall into this category are use of the Java Serializable

infrastructure and the Castor persistence framework [3].

OO DB Based: The evaluated open source object database db4o provided some very interesting
capabilities. However, its lack of built-in uniqueness and integrity constraints was considered
a severe shortcoming [4].

SQL DB Based: A SQL based approach has the interesting property of being able to support
internal and external databases without additional effort. HSQL DB emerged as the most
promising candidate for an integrated DBMS with a footprint actually small enough to be run
inside the Eclipse IDE. Furthermore, PostgreSQL was evaluated as an external DBMS [9].

However, the object-relational mapping of CPC clone data objects to an SQL DBMS proved
to be problematic. The evaluated solutions were either too heavy weight for use within the
Eclipse IDE (i.e. Hibernate) or did not provide the required flexibility to allow a truly clone
data object independent mapping. One of the design goals was to keep the data object and
the persistence implementations strictly separated. Any mapping approach which can’t be
configured to make use of the IStatefulObject interface will not be able to achieve this goal.
The implementation of a small, custom mapper for the IStatefulObject interface was thus
required.

The current default Store Provider can be used to either store clone data in an internal HSQL DB
database or an external PostgreSQL database. By default the internal HSQL DB database is used.

46 CHAPTER 3. DESIGN AND IMPLEMENTATION

However, there may be scenarios in which use of an external database provides additional benefits.
A locally running, external database may provide performance improvements for very large projects
and a central database may offer very interesting, real time cloning information which could be
helpful in experimental setups. Support for other SQL databases could be added with minimal
effort.

CPC Core API Specification:
IStoreProvider*, IStoreProviderWriteLockHook, IStatefulObject

3.4.4 CPC Mapping - Data Mapping

A Mapping Provider enables other components to map CPC clone data objects into a string repre-
sentation and to convert such representations back into clone data objects. Each Mapping Provider
implementation can freely define its own string representation format and multiple such implemen-
tations can coexist within the CPC framework.

The Mapping Registry enables a component to parse an arbitrary string representation as long
as it is supported by at least one of the installed Mapping Providers. This enables free transitions
from one Mapping Provider implementation to another without a need for explicitly converting any
of the old data.

CPC ships with a simple XML Mapping Provider which can be used to convert CPC clone data
into a XML representation. Mapping Providers are used by a number of components within the
CPC framework. Most notably by the CPC Store Remote module (see section 3.4.9) and the CPC
Exports module (see section 3.4.10).

CPC Core API Specification:
IMappingProvider, IMappingRegistry

3.4.5 CPC Classification - Clone Categorisation

CPC classifies each clone on creation and potentially re-classifies clones at specific points during
their life time, i.e. after a major modification of the content of a clone. A Classification Provider
provides the necessary services to all interested parties within the CPC framework.

It serves two main purposes. First, it can reject a clone instance during evaluation. This can
be used to filter out specific types of clones. A typical example would be to reject all clones which
fail to reach a specific minimal size or complexity. And second, it can attach an arbitrary number
of classifications to each clone which are then persisted as part of the clone object and can from
there on be used by other components in their decision making.

Classifications are simple string values and while the Classification Provider API specifies some
predefined classifications, contributors are free to add their own. A Classification Provider receives
additional context information on each classification request. The provider and its strategies can
thus also alter their processing dependent on factors other than the content of a clone, like the
type of the classification (initial, incremental, re-classification) or the properties of its origin. The
default classifications as well as the implemented classification strategies are covered in section 4.1.

3.4. THE CPC MODULES 47

CPC Core API Specification:
IClassificationProvider, IClassificationStrategy

3.4.6 CPC Similarity - Semantic Equivalence and Differences

Determining the similarity between two clones is a very common problem in the CPC framework.
A Similarity Provider enables other components to easily calculate the percentage of similarity
between two clone instances.

The API specification defines neither how similarity is to be calculated nor the exact meaning
of the returned similarity value. Only a similarity of 100% is clearly defined. It requires guaranteed
semantic equivalence between two clones.

The key users of Similarity Providers are the CPC Track and CPC Notification modules. The
supplied default Similarity Provider implementation and its employed strategies for similarity eval-
uations are described in section 4.2.

CPC Core API Specification:
ISimilarityProvider, ISimilarityStrategy, ISimilarityStrategyTask

3.4.7 CPC Notification - Clone Modification Warnings

Providing the developer with relevant warnings about potential update anomalies is one of the main
goals of CPC. However, so far the general understanding of the underlying processes and problems
is very limited. For the short and medium term, a flexible, heuristics based approach seems most
likely to be able to provide tangible benefits.

The CPC framework tries to address the high uncertainty about future developments in this
area with a multi-tiered approach. The CPC Notification module provides a generic harness for
notification handling. The actual decisions about clone modifications are delegated to a Notifica-
tion Evaluation Provider and a Notification Delay Provider is used to provide support for delayed
warnings.

Figure 3.14 displays the interactions between the components after the modification of a clone.
If a developer modifies the contents of a clone, the CPC Notification module will, after some
intermediate stages, receive a clone modification event. It will then ask a Notification Evaluation
Provider to evaluate the modification. The provider has a number of options. A typical response to
an initial evaluation might be to delay it until it has become clear that the developer has finished his
current task. In this case, the CPC Notification module will relay the information to a Notification
Delay Provider which will enqueue it for future processing.

It is up to the Notification Delay Provider implementation how queued events are handled.
Typical scenarios might be to reevaluate queued events after a specific amount of time has passed
or once the file in question is closed by the developer. Once a Notification Delay Provider has
determined that a queued event is ready for reevaluation, it will again be relayed to a Notification
Evaluation Provider. By now actions of the developer might have made the notification unnecessary.
If the notification is still appropriate, it will be dispatched to the CPC Notification UI module.

48 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.14: CUD: Module collaboration during the handling of a clone modification (simplified)

It will display the notifications to the user and it furthermore handles all notification related user
interactions (see section 3.4.11).

The concrete Notification Evaluation Provider and Notification Delay Provider implementations
provided by CPC and their strategies are discussed in detail in section 4.3.

CPC Core API Specification:
INotificationEvaluationProvider, IEvaluationResult, INotificationDelayProvider

3.4.8 CPC Reconciler - External Modification Handling

While modification of source code files by external tools outside of the supervision of the Eclipse IDE
(and therefore CPC) is strongly discouraged, such modifications can never be entirely ruled out.
Resilience against such modifications was thus one of the key requirements for CPC and constitutes
one of the main advantages of the adopted clone data storage mechanisms when compared with
the built-in Marker support of Eclipse (see section 5.3.2).

The CPC Reconciler module listens for file access events and checks every opened file for poten-
tial external modifications before it is displayed to the user. No other CPC module has any notion
about ‘reconciliation’ or any dependency on the CPC Reconciler module. The high priority of the
registered synchronous event listener ensures that the CPC Reconciler module can examine and
reconcile opened files before the CPC Track module, which reacts to the the same event, is notified
about them (shown in figure 3.15, event hub and some events have been omitted for brevity).

Reconciliation is made possible by the fact that the Store Provider keeps a copy of the source file
content and clone contents at the time of the last successful save point. The file size and modification
date fields which are part of the ICloneFile data object furthermore allow fast checking of files
for external modifications.

3.4. THE CPC MODULES 49

Figure 3.15: CUD: Module interaction during reconciliation of external modifications (simplified)

The Reconciler Provider API specification does not define how clone positions are to be recon-
ciled. This is left to the implementation and it is believed that this is an area with considerable
potential for improvement.

Default Implementation

The default Reconciler Provider implementation uses a strategy based approach as outlined in sec-
tion on multi-level reuse (3.2). Strategies can be contributed via the corresponding CPC Reconciler
extension point. First the file is checked for external modifications. If the file has not been modified
since it has last been saved under supervision of CPC nothing needs to be done. Files which do
not contain any clones are also ignored.

The Reconciler Provider then executes some common calculations and builds up some data
structures which are likely to be needed by a number of strategies. This is done to improve
performance by allowing strategies to reuse the pre-processed data. The most important pre-
processing is the application of a character based diff algorithm provided by a Diff Provider in
order to approximate the potential nature of the external modification17.

The actual processing is then passed on to the registered strategies which are executed in order
of their priority. The default implementation ships with the following three strategies (listed in
order of execution).

All Changes After Clones: The first strategy checks whether the modification in the file might
be located after all the known clone areas. In this case nothing needs to be done as the
positions of the corresponding clone entries will not have been affected in any way.

Whitespace Only Change: The second strategy checks whether the modification affected only
whitespace characters. This is typically caused by automated source code reformat operations.
If this is the case, the ‘non-whitespace position’ of each clone in the original document is
calculated and is then used to extract the new clone positions within the modified document.

17The current Diff Provider uses Google’s implementation of Myer’s diff algorithm: http://code.google.com/p/

google-diff-match-patch

http://code.google.com/p/google-diff-match-patch
http://code.google.com/p/google-diff-match-patch

50 CHAPTER 3. DESIGN AND IMPLEMENTATION

Diff-based Approach: If all earlier strategies fail to reconcile the modification, the edits ex-
tracted by the diff algorithm are used to ‘replay’ all modifications which were made to the
document. The position updating is delegated to the normal CPC position tracking code (see
section 3.4.2).

The three default strategies yield very good reconciliation results for most situations. Though their
inherent reliance on the results of a diff algorithm is their weakness. A diff algorithm only returns
one of the potential edits which could result in the final document state. There is no guarantee
that the result actually represents the real modifications made. As such the reconciliation results
obtained are only reliable in situations where the diff algorithm returned sensible output.

Future Improvements

There are a number of possible, future improvements. Of key importance would be the addition of
some strategies which do not rely on the output of a diff algorithm and which could thus provide
a safety harness for situations in which the diff algorithm could potentially endanger the integrity
of the clone positions.

Some starting points could be the fact that the current strategies make no use of the known
clone contents, a string based search might be able to reidentify clones which were only moved but
not modified. Kim et al. provide some interesting ideas in this area [39]. As well as the application
of more robust, approximate position tracking schemes like Clone Region Descriptors [23].

CPC Core API Specification:
IReconcilerProvider, IReconcilerStrategy

Service Provider Dependencies:
IDiffProvider, IPositionUpdateStrategyProvider

3.4.9 CPC Store Remote - Remote Synchronisation

Automated synchronisation of clone data across all workstations of a development team was one of
the key requirements for CPC. Such synchronisation can be achieved in a number of ways. After
some consideration, a synchronisation scheme which is aligned with repository operations of the
developer and which exchanges CPC clone data either via a source code repository or via a central
SQL DBMS emerged as the most interesting approach.

In such a scheme the CPC clone data for a file would need to be written to the central CPC data
storage whenever the file is committed and data would need to be read from the central storage
whenever a local file is updated. The same goes for all other repository operations like checkouts,
rollbacks or branch/tag changes. The correct alignment of these operations at all times is crucial.

When using a source code repository for synchronisation, a central question emerges, should
the CPC data be stored within the same repository as the source of the software application or in
a different repository? The reduced configuration and administration overhead of using a shared
repository would be likely to make this approach attractive for a large user base. On the other

3.4. THE CPC MODULES 51

Figure 3.16: COD: Structure of the CPC Remote Synchronisation framework (simplified)

hand CPC data files would clutter the repository and might accidentally be modified or deleted by
a user.

The CPC remote synchronisation framework strives to support most interesting scenarios. Un-
fortunately, clone data storage within the same repository as the source code requires the use of a
specific set of Eclipse APIs which don’t integrate well with the remaining approaches. CPC thus
offers two separate remote synchronisation modules which share some common code but adapt to
different Eclipse APIs.

Figure 3.16 shows a simplified version of the resulting remote synchronisation framework. Of
key importance is the CPC Team Sensor which detects repository operations of the developer and
generates corresponding CPC events. The CPC Store Remote LMI module provides synchronisation
support based on storing CPC data within the same repository as the source code. The CPC Store
Remote RP module provides the harness for synchronisation approaches which store the clone data
in other locations and can use all available CPC Repository Providers as adapters for the actual
storage backends. Both modules make use of some common functionality like the CPC Merge
Provider.

The following sections provide more details about the design and implementation of these
components. Most sections refer to the Challenges and Setbacks – Team Providers section 5.4 for
more details about related problems and limitations.

CPC Team Sensor

The CPC Team Sensor has emerged as one of the most problematic aspects of the remote syn-
chronisation framework. Neither Eclipse nor the common team provider plug-ins provide an API
for registering team operation listeners. This seemingly simple but absolutely crucial module thus
became the main obstacle for the successful completion of CPC. Section 5.4 provides an extensive
overview of the problems faced and the current status.

Once this sensor detects a repository operation it generates a team event which includes in-
formation about the type of operation, the affected resource as well as the old and new revision
identifiers of the resource as provided by the repository. With the current Eclipse team APIs, a
separate team sensor for each source code repository team provider plug-in (CVS, Subversive SVN,
Subclipse SVN, ...) is required. This module would become superfluous, should the ongoing dis-
cussion about potential listener extensions to the Eclipse team API result in corresponding API
changes (see section 5.4), as the team event generation could then be included in the normal CPC

52 CHAPTER 3. DESIGN AND IMPLEMENTATION

Sensor module.

CPC Core API Specification:
EclipseTeamEvent

CPC Store Remote LMI

Eclipse 3.2 introduced the notion of Logical Model Integration (LMI), a special set of APIs which
allow model providers to participate in team operations [10]. The LMI API is aimed at plug-ins
which contribute new data models which can not be directly mapped to a specific file resource.
One example would be a new UML editor which persists the data of one UML model in multiple
files. The LMI API allows a plug-in to specify that certain sets of files should always be grouped
together for repository operations. It furtheremore allows a plug-in to participate in the handling
of merge conflicts.

While this API was not designed for the needs of CPC, it does provide a good starting point.
The CPC Store Remote LMI module ensures that the latest CPC clone data is always stored in
a hidden ‘.cpc’ directory and contributes a new LMI model which groups each source file with
its corresponding CPC clone data file. The clone data files are kept up to date by listening for
persistence events generated by the Store Provider and are created by using a Mapping Provider
to convert the CPC clone data objects into a string representation which can be written to the
CPC clone data file. This way the CPC data will automatically be transmitted to the repository
whenever the user commits a file.

Unfortunately, there are some important aspects of the LMI API which do not align well with
some of the needs of CPC. This leads to inconveniences and serious problems. This is also covered
in section 5.4.

Service Provider Dependencies:
IMappingProvider, IMergeProvider

CPC Store Remote RP

As the Eclipse LMI API is currently only implemented by a single team provider, the CVS provider
which ships with Eclipse, the CPC Store Remote RP module takes a different approach and com-
pletely avoids the LMI API. Instead it is based on CPC Repository Providers which act as adapters
to arbitrary storage backends. This also includes source repositories and in theory this approach
could also be used to commit CPC data files to the same repository as the source files, though this
could lead to problems as the data would be committed in two separate transactions18.

The CPC Store Remote RP module listens for team events generated by the CPC Team Sensor
module and sends or retrieves the corresponding data via the configured CPC Repository Provider.
In case a source file needs to be merged, the CPC Store Remote RP module will use the available
Eclipse team APIs and the CPC Repository Provider to collect a full set of source and clone data
for the base, local and remote revisions and will delegate the merge to a Merge Provider.

18For source code repositories which don’t support transactions, like CVS, there would be little difference.

3.4. THE CPC MODULES 53

One of the potential problems of such a separated approach are concurrent commit and update
operations for the same file. By always accessing or updating the CPC Repository Provider based
data after the corresponding repository operation has finished and by using the unique revision
identifiers returned by the repository as lookup and storage keys the repository itself can be used
as a synchronising central entity. This way, most timing issues can be addressed by reexecuting
failed CPC Repository Provider lookups after a specific delay.

However, one central problem remains. Due to a network connectivity failure or other similar
events it is possible for CPC clone data and source files to reach a non-synchronised state. I.e.
the network connection could drop right after a source file was committed to the repository but
before CPC could send the corresponding clone data or the connection might drop during an update
operation, right after the local source file was updated but before the corresponding CPC clone data
could be retrieved. As one of the CPC requirements explicitly stated that CPC should not affect
the normal programming practice of its users, any approach which would prevent the developer
from working on the non-synchronised file is clearly out of question. In such situations CPC can
thus only fall back to the available clone data and treat the changes in the source file like external
file modifications.

Service Provider Dependencies:
ICPCRepositoryProvider, IMergeProvider

CPC Repository Provider

A CPC Repository Provider represents an adapter for a specific storage back end. A SQL DBMS,
a source code repository or a central network share are just some examples of potential storage
back ends which might be of interest. The CPC Repository Provider API specifies only a small
number of simple operations to store and retrieve a set of clone data objects by revision identifier
and file identifier. It does not require an implementation to provide full transactional properties
and only specifies that concurrent store and retrieve operations must not return partial or corrupt
data. Most CPC Repository Providers are likely to internaly use a Mapping Provider in order to
convert the clone data objects into a string representation which can be written to a file.

Currently only a simple, SQL DBMS based CPC Repository Provider is available, but further
providers could easily be added due to the limited requirements of the CPC Repository Provider
API. Even implementations based on very simple protocols like FTP would be possible as long as
a test-and-set operation or some other means of locking resources exist.

CPC Core API Specification:
ICPCRepositoryProvider

Service Provider Dependencies:
IMappingProvider

CPC Merge Provider

A CPC Merge Provider uses the clone and content data for the base, local and remote revisions of a
source file and tries to reconcile any conflicts by merging the clone data to correctly reflect the new

54 CHAPTER 3. DESIGN AND IMPLEMENTATION

contents of the merged source file. The merging of the source file itself is left to the Eclipse team
repository plug-in implementation19 and has to occur before the CPC Merge Provider is executed.
The presence of CPC thus does not affect the merging of source files.

Like many other CPC providers the CPC Merge Provider delegates the merge task to the
registered Merge Strategies. The following list provides an overview of the currently implemented
strategies in order of their execution.

Locally Unmodified: This is the simplest case. If the content of the local source file prior to the
merge equals the content of the base revision, the remote clone data can simply be copied
over as the resulting content of the ‘merged’ source file will correspond to the remote source
content.

Clone Deletions: This strategy represents part of a three-way-merge. It compares the local and
remote clone data with the clone data of the base revision and detects clone instances which
were locally or remotely deleted. In this simple approach any clone instance which was deleted
locally or remotely is filtered out and will not be part of the final merge result.

The rare situation in which a clone instance was deleted locally or remotely but where a merge
conflict between the local and remote source files resulted in a merged file which still contains
the removed clone’s code is a special case which is not covered by the current implementation.

Full Merge: This strategy implements the remaining part of a three-way-merge. First the new
clone positions in the merged source file for the local and remote clone data are extracted
with help of a Reconciler Provider20. Clones which were locally or remotely added form part
of the final merge result. This leaves only clones which exist locally and remotely. Such clones
are added to the merge result as long as either the local or the remote clone could still be
identified within the merged source file.

Clones which can not be found within the merged source file represent a special case which
is currently not handled and are discarded. This also applies to clones for which the recon-
ciliation yields different positions according to the local and remote clone data.

3rd parties can contribute additional Merge Strategies as well as special Clone Object Extension
Merge Strategies which can be used to provide special merge semantics for 3rd party clone data
object extensions. Overall the currently implemented strategies should cover most of the common
situations but fail to take care of certain special cases.

CPC Core API Specification:
IMergeProvider, IMergeStrategy, ICloneObjectExtensionMerger,

ICloneObjectExtensionMergeStrategy

3.4.10 CPC Imports and Exports

Clone data import and export are an important functionality within the CPC framework. Reuse
possibilities, due to the obvious commonalities between import and export activities, are leveraged

19I.e. CVS, Subversive SVN, Subclipse SVN and others
20The merged source file is treated similar to an external modification.

3.4. THE CPC MODULES 55

Figure 3.17: COD: Structure of the CPC Imports/Exports framework (simplified)

by means of a common imports/exports core. This core is then extended by flexible imports and
exports subsystems which in turn delegate most of the key functionality to a set of registered
adapters and strategies (see figure 3.17).

The Common Core

Most of the imports and exports related codebase is part of the generic imports/exports core. A
typical example of the reuse possibilities are the UI wizards used during im- and export, they
are highly similar. The overall processing and the employed extension strategies are other points
of high similarity. The common core helps to lower the complexity of the imports and exports
subsystems considerably.

Both, imports and exports subsystem are strictly separated into a UI and a backend part. This
allows other components of the CPC framework to employ the services of these subsystem backends
as well, if they are required.

The Imports Subsystem

One of the major, potential obstacles for the adoption of CPC is the fact that most cloning activities
will already have happened if CPC is introduced into a running project. One potential remedy for
this limitation could be the use of static clone detection techniques to ‘jump start’ the CPC clone
database. The CPC Imports module thus provides a generic framework for all kinds of clone data
import approaches.

The CPC Imports module introduces the notion of Import Tool Adapters, special modules which
act as a bridge between the interfaces required by the CPC Imports module and any potential
clone detection tool. Import Filter Strategies furthermore support the post-processing of static
clone detection results to prune out potential false positives and clones which are not of interest
to CPC. Arbitrary Import Tool Adapters and Import Filter Strategies can be registered via the
corresponding extension point of the CPC Imports module.

The import wizard UI of the CPC Imports UI module offers a selection of all registered Import
Tool Adapters and provides the user with all available configuration options for the selected adapter.
Simple configuration scenarios can be realised purely declaratively and do not require any code
contribution by an Import Tool Adapter. More advanced adapters can contribute their own wizard

56 CHAPTER 3. DESIGN AND IMPLEMENTATION

pages and dialogs.

To emphasise the fact that a considerable number of the imported clones may represent false
positives or accidental clones [13], each imported clone is clearly marked and other CPC components
can take this fact into account during their processing of an imported clone instance.

While the legacy clone data import itself was not part of the goals of this thesis, a proof of
concept implementation was required to ensure the adequateness of the imports APIs. To this end
three static clone detectors were evaluated. CCFinder, a token based clone detector developed at
Osaka University, well known for its high recall and speed [36]. CloneMiner, another token based
clone detection tool developed at the National University of Singapore [15, 16]. As well as, SDD
for Eclipse, a small Eclipse plug-in using the SDD clone detection algorithm [34, 35].

Even though CCFinder and CloneMiner produced better clone detection results other limi-
tations made their adoption as a proof of concept implementation impractical. Both tools are
platform dependent and only run on Windows systems. This limits the potential userbase for such
an approach and also implies that a tight integration into a Java based Import Tool Adapter is not
easy. Distribution rights are another problematic aspect. CCFinder may not be distributed, every
user of a CCFinder based Import Tool Adapter would thus have to manually request a free licence
via the CCFinder website. CloneMiner is still under development and is currently not publicly
available.

SDD for Eclipse was thus chosen as base for the proof of concept Import Tool Adapter imple-
mentation. It could be tightly integrated into the CPC system and its use requires no additional
software installation or configuration by the end user. In the long run Import Tool Adapters for
better clone detection tools and sophisticated Import Filter Strategies would be needed to provide
a good starting point for the introduction of CPC into running projects.

CPC Core API Specification:
IImportController, IImportToolAdapter, IImportFilterStrategy

The Exports Subsystem

In order to facilitate data collection for future improvements of CPC a way of exporting clone
data in a Store Provider independent21 way was required. The CPC Exports module provides the
required functionality and is very similar in structure to the CPC Imports module.

The actual export functionality is encapsulated by an Export Tool Adapter. Currently CPC
ships with an adapter which provides file based exports and uses one of the available Mapping
Providers to determine the internal format of the export data files22.

However, an Export Tool Adapter is not limited to exporting clone data into files. Other future
possibilities could be adapters for export of clone data into databases or adapters for transmission
of clone data to special clone data servers. Such adapters could be used as a base for future,
automated online clone data submittions by interested parties.

21Simply copying the internal data files of a Store Provider would be a possibility.
22As there is currently only a XML based Mapping Provider shipped with CPC, XML data files are the only export

format available.

3.4. THE CPC MODULES 57

Figure 3.18: CPC UI clone marking via coloured bars (rulers)

CPC Core API Specification:
IExportController, IExportToolAdapter

Service Provider Dependencies:
IMappingProvider

3.4.11 CPC UI and Notifications UI

The CPC UI and CPC Notification UI as well as the CPC Imports UI and CPC Exports UI
contribute a number of user interface additions to the Eclipse IDE. Overall the current CPC user-
interface clearly falls short of our long-term vision. The provided visualisations are relatively simple
and fail to convey a good overview of the cloning situation on a project level. Extendibility and
flexibility were thus, once again, the most important factors in the design phase.

All the UI modules are strictly separated from the underlying program logic of CPC and can
easily be extended or replaced. A 3rd party contributor has access to all data and the full range of
APIs and can thus implement completely new clone data visualisations. Specific extension points
also allow addition of new functionalities to the existing CPC views, i.e. a new context menu
option. This enables future UI plug-ins to tightly integrate with the existing CPC views.

The remainder of this section will give a very brief overview over some of the current CPC UI
elements. Further screenshots and descriptions can be found on the CPC website23.

The CPC User Interface

One of the key goals of CPC is the improvement of the overall awareness of the cloning situation
within a software system. It was thus decided that one of the best initial approaches towards this
long-term goal would be a non-intrusive but constant clone information feedback for the developer.
This is achieved by adding a small coloured bar at the left side of the screen as shown in figure 3.18,
these so called rulers are displayed next to each clone instance.

23Official CPC website: http://cpc.anetwork.de

http://cpc.anetwork.de

58 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.19: Actions available via the notification icon in the editor ruler

Figure 3.20: CPC notification in problems view

The colour provides immediate feedback about the state of the corresponding clone. A green
ruler marks clones which are semantically equal24 with all other members of their respective clone
group. Once one of the group members was modified, the ruler switches to a blue colour. Clones
for which the notification framework has issued an update anomaly notification are highlighted
with a yellow ruler or, in case of warnings, a red ruler. Further ruler colours are grey for orphans,
light grey for ignored clones and black for lines which contain more than one clone. If a contributor
requires more colours, the ruler implementation could easily be extended.

A click on the ruler will highlight the exact extent of the clone25 and selects the clone in all
CPC clone data views. Hovering over the ruler furthermore displays a small tooltip with additional
information like the size of the clone, its state and a listing of all files which contain members of
the clone’s group.

Update anomaly notifications are additionally marked with an Eclipse information marker.
Clicking on such a marker will reveal the CPC quick fix context menu which provides the developer
with a number of options as seen in figure 3.19. By default CPC offers three choices which can
easily be extended with contributions by 3rd party plug-ins. A clone can be marked as ignored, no
more notifications will be generated but the clone’s position is still tracked. The notification itself
can be dismissed in which case the notification is removed and the clone enters the modified state
until a new modification of the clone content triggers a new notification. The third option removes
the clone entirely.

As can be seen in figure 3.20, update anomaly notifications will also be visible in the Eclipse
problems view. The visible description in the problems view as well as the marker tooltips cor-
responds to the message returned by the Notification Evaluation Provider. Notifications are also
indicated in the overview ruler at the right side of all Eclipse editors.

Figure 3.21 and figure 3.22 show the two main clone data views available in the current version

24According to the installed Similarity Provider and Notification Evaluation Provider.
25A ruler can only convey line range information. By clicking on the ruler the user can also see the exact start and

end positions within the first and last line.

3.4. THE CPC MODULES 59

Figure 3.21: Simple CPC clone data in list viewer

Figure 3.22: CPC clone data tree viewer

of CPC. A list based, simple view lists all clones within the current file whereas a tree based view
can be used to obtain an overview of clone groups. The Tree Clone View displays all clone groups
for which at least one member is located within the currently open source editor. Aside of the ruler
tooltips this is another way of obtaining an overview of all files which contain members of a specific
clone group.

The large amount of information about clone modifications which CPC needs to collect in order
to provide sophisticated notification strategies and other potential future extensions like refactoring
support with a set of data to work on can also be accessed by the developer via a special Clone Replay
View shown in figure 3.23. The view is based on prior work at the Freie Universität Berlin [41] and
enables the user to examine the evolution of a clone step by step. Specific modifications can be
selected individually or the modification process can be ‘replayed’ like a movie, either in real time
or at a specified event rate.

Figure 3.24 displays a part of the CPC preferences dialog. By tightly integrating with the
Eclipse preferences system, CPC allows 3rd parties to contribute additional preferences pages with
minimal effort. The adopted, loose structure of the preferences dialog leaves ample room for future
expansion. A new plug-in would typically add a new subtree to the configuration tree whereas a
new strategy would add its new pages below the entry of the plug-in which it is extending. If needed
all preferences settings can also be directly specified via configuration files or programmatically by
means of the Eclipse preferences API.

60 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.23: CPC clone history replay view

Figure 3.24: Extendible CPC preferences dialogs

Chapter 4

Heuristics

It’s not at all important to get it right the first time.
It’s vitally important to get it right the last time.

[Andrew Hunt and David Thomas]

It was clear from the very outset of this project that the first version of CPC would only be able to
provide very basic heuristics as neither the copy-and-paste and cloning data nor the time needed
for the development of sophisticated and sound heuristics was available. This chapter describes
the basic heuristics which are currently part of CPC and provides an outlook on potential future
possibilities.

4.1 Clone Classification

The ‘correct’ classification of a clone instance is the first step towards the automated detection
of potential clone related update anomalies. However, even after more than a decade of cloning
research, this first step still holds unsolved problems.

Related Work

Past efforts in the field of cloning research have produced a multitude of classification systems
focusing on all kinds of aspects of code duplication [51]. Yet, most of these approaches are focusing
on commonalities and differences between clones and are thus more suited for discussion in the
following clone similarity section.

The classification of clones into syntactic templates and semantic templates introduced by Kim
et al. focuses more on the intention of the programmer [38]. They argue that a programmer
either wishes to reuse the syntax or the semantics of a copied code section. They further subdi-
vide semantic templates into four subcategories: design pattern, usage of a module, implementation
of a module and control structure. It remains unclear whether a classification according to these
subcategories, assuming that it would be feasible, would be beneficial for CPC. However, a classi-
fication into syntactic templates and semantic templates would be very interesting. Unfortunately
the distinction between these two classifications poses a real challenge. The CPC classification API

61

62 CHAPTER 4. HEURISTICS

by default contains a ‘template’ category for use in cases where a clone most likely represents a
syntactic template.

Another classification presented focuses on the type of region the clone is located in. I.e.
whether it represents an entire class, an entire method, the beginning or the end of a method, parts
within a method, a loop, parts within a loop or conditional statements.

A separate area of discussion within the static clone detection research community is the minimal
size or complexity of a clone [51, 13, 45]. It is argued that knowledge about trivial clones provides
no tangible benefits and increases the risk of false positives. False positives are of no concern
for the copy and paste based approach of CPC. However, a suitable minimal threshold for clone
sizes provides a good filter which can reduce the number of tracked clones significantly. Typical
thresholds found in literature are 20 to 30 tokens for token based approaches and 5 to 50 lines for
textual matching based approaches. It remains unclear what the best threshold for CPC would be.

Current Approach

The CPC Classifier module is structured like most other CPC modules (see section 3.2) and
delegates all processing and decision making to a number of registered strategies. The classification
strategies currently shipped with CPC are very basic and leave a lot of room for improvement.

Minimal Length: The first strategy checks whether the clone satisfies the minimal size require-
ment. Clones which are too small or too simple are likely to be of no or only very little interest
and will be rejected by this strategy. Size is measured in characters and lines. Complexity is
measured in number of tokens. A clone needs to pass the configured thresholds for all three
metrics to be accepted.

Classification of Origin: The Classification Provider Strategy API provides context information
for each classification request. This strategy only applies to initial classifications of new clone
instances for which the origin clone is available.

In this case the strategy checks whether the content of the clone matches that of its origin
and if it does, all classifications of the origin are copied over to the new clone instance. The
processing is aborted at this point and no further strategies will be executed.

The rationale for this approach is twofold. First, some classification strategies may depend
on syntactic validity of a clone for their processing and the pasted code may not be valid in
its new location whereas the likelihood of validity at the origin is much higher. And second, if
the contents of the pasted clone and its origin match, their classifications will usually match
too. In this case copying the classifications of the origin yields a performance improvement.

Classification by Content: If none of the previous classifications rejected the clone or aborted
the classification process, this strategy will make use of the internal AST of Eclipse to classify
the clone according to the Java language elements it contains.

The resulting classifications indicate whether the clone contains a class, one or more meth-
ods, loops or conditional expressions. Furthermore, some checks for very simple cases are

4.2. CLONE SIMILARITY 63

performed and matching clones are classified accordingly. Namely clones which exactly rep-
resent an identifier and clones which contain only comments and/or whitespaces.

Additionally, all language elements which are part of the clone are assigned specific weights
and an overall complexity value for the entire clone content is calculated. If this value exceeds
a configured threshold, the clone is marked as ‘complex’.

The Classification Provider API also specifies the classification ‘template’, however simple, experi-
mental strategy implementations for classifications of this type have failed to produce any significant
results and are therefore currently not part of CPC.

Future Improvements

A first step toward improving the classification results could be to devise additional classifications
which might be of interest. The currently defined classifications only cover complete language
constructs. While this information is certainly important, it may not be enough for a broad
classification of typical clones (see section 6.2.2).

A reliable detection of syntactic templates would provide a considerable improvement in the
overall accuracy of the general clone modification evaluation of CPC. If a clone was never meant
to copy the semantics of its origin, all potential modification warnings issued by CPC are by
definition false positives. Unfortunately, a general solution of this classification problem seems to
be unrealistic, at least in the short term.

Two more promising approaches might be to base the classification on specific examples of
syntactic templates which could be either collected in experiments and observations or could be
extracted from the copy and paste behaviour of the programmer. I.e. if a programmer repeatedly
copies a specific, short source fragment from seemingly random locations1, there might be a high
likelihood that the fragment represents a syntactic template.

Overall the copy and paste practices are likely to differ considerably between programmers.
Approaches which can be tailored to the practices of a specific developer might thus be the most
promising solution in the long run. Employment of artificial intelligence based solutions might be
an interesting option in this area.

4.2 Clone Similarity

One of the key questions when considering clone relations are the commonalities and differences
between the clone instances of a clone group. The degree of similarity between two clone instances
lies at the root of this problem.

Related Work

Roy and Cordy have tried to combine the large number of different classification approaches for
the differences between two clone instances, which can be found in the clone research literature,

1Simply the first location where the programmer found a very common snippet which was needed in a given
situation.

64 CHAPTER 4. HEURISTICS

into a common classification [51]. They define four basic types for the relation between two clone
instances. The first three are based on textual similarity and the fourth on functional similarity.

Type I: Identical code fragments except for variations in whitespace, layout and comments.

Type II: Structurally/syntactically identical fragments except for variations in identifiers, literals,
types, layout and comments.

Type III: Code fragments with modified, added or removed statements in addition to variations
in identifiers, literals, types, layout and comments.

Type IV: Code fragments which perform the same computation but are implemented through
different syntactic variants.

Of these types, Type I and Type II are most likely to be of importance to CPC. As they represent
situations which can be automatically detected and indicate that there is no ‘real’ difference between
two given clones. Whether CPC should also ignore changes to literals and types is questionable
though. Reliable detection of some cases of Type IV clones, while of less importance to CPC
compared to static clone detection approaches, would also be beneficial.

Another interesting area are so called metrics based approaches. As they are inherently based
on numeric representations of similarity, they seem to be predestined for the task. A potential
problem might be the high degree of approximation in most approaches. In general, most static
clone detectors make heavy use of different source code normalisation techniques. I.e. a common
approach is to replace all identifiers2 with a single placeholder, effectively ignoring all differences
between identifiers.

Current Approach

Similar to the CPC Classifier module, the CPC Similarity module also delegates all processing
to the registered strategies. A strategy can contribute pre-parsing and/or similarity evaluation
functionality. The default CPC package ships with the following strategies.

Pre-Parser Strategies: A pre-parser evaluates the contents of the clones in question and may
create a special normalised, temporary representation which can then be used by the similarity
strategies to gauge clone similarity without interference of irrelevant details like whitespace
changes.

Whitespace Normalisation: The first pre-parser will normalise whitespace in all clones,
unless the content type has been specified as plain text. Changes in spaces, tabs or
newlines are filtered out.

Java Tokeniser: If the clones contain Java code, they are ‘tokenised’ with a Java tokeniser.
The results are then used to generate a normalised version of the clone contents. In this
process all comments are filtered out. Changes which only affect comments are thus
ignored during all following stages of the similarity evaluation.

2The same is often done for literals too.

4.2. CLONE SIMILARITY 65

Similarity Strategies: A similarity strategy tries to evaluate the similarity and differences be-
tween two clones. The overall result is built up incrementally by the joint work of all registered
strategies.

Levenshtein Distance: The only currently included strategy is based on the Levenshtein
distance, the number of simple, one character operations needed to transform one clone
into the other. This metric thus mimics the way in which the programmer modifies
source code and was also used as a similarity metric by other clone detection tools [23].

The Levenshtein distance is converted into a similarity percentage by evaluating it in
relation to the length of the longer of the two clones.

CPC does not currently ship with a strategy which detects renamed identifiers. While it is relatively
easy to ignore all identifiers during comparison or to replace each identifier with a special, unique
placeholder, such a simple approach would not be enough. It is crucial to ensure that the renaming
is truly semantically equivalent. Otherwise developers which rely on CPC’s assertions that a clone
is synchronised with its clone group might overlook critical modifications3.

Future Improvements

Currently the Similarity Provider does only handle Type I clones completely. Support for renamed
identifiers and thus coverage of the most important aspect of Type II clones would be the next
important step. However, as was already outlined, the implementation of a corresponding strategy
is not easy. It is important to keep in mind that there is no guarantee that the clone itself covers
a complete construct of the programming language or that the file it is located in is syntactically
correct. In this way the problem facing CPC differs from those faced by static clone detectors
which can usually assume that the underlying source files are all syntactically correct. There may
well be no viable approach which produces good results under these circumstances. A strategy
implementation which first checks the syntactic correctness of the source file and only normalises
renamed identifiers if there are no parsing errors might be the only realistic approach.

Once Type II clones are sufficiently covered, the next question would be if there are more
appropriate algorithms which could be used for the similarity calculation. As this problem is very
similar to those faced in the area of static clone detection, it might be very interesting to experiment
with some of the techniques used in that field. Some studies have even applied CCFinder, a static
clone detector which does not tolerate statement insertions or removals, to the contents of two clones
and have used the amount of reported duplicated tokens as a measure of clone similarity [36, 40].

One potential approach would be to use a token based comparison instead of the current char-
acter based approach. Even combinations of both approaches might yield good results. It might
be beneficial to treat multiple changes in different locations differently from one big modification in
one location. One could also handle statement modifications, insertions and removals in different
ways.

3A potential problem for consistent identifier renaming, which has been described as one of the most common
update anomalies [30, 42].

66 CHAPTER 4. HEURISTICS

Approaches of a completely different nature, which are also very prominent in the field of static
clone detection, would be metrics or control flow based evaluations of similarities. Past research
has produced a vast amount of findings in this area.

Another, CPC specific, possibility would be to leverage the fact that the complete modification
histories of all clone entries are available. The knowledge about all past modifications and the
detailed evolution of the clone since it was originally copied from its origin might prove to be
helpful.

4.3 Clone Modification Notifications

The detection of potential, clone related update anomalies represents the main purpose of CPC. The
corresponding heuristics are therefore of key importance for future versions of CPC and providing
a base for such heuristics was thus a key requirement for this project.

The CPC notification framework is subdivided into multiple, loosely coupled parts on multiple
levels, which enable contributors to provide replacements for parts of the implementation. It is
furthermore completely separated from the remaining CPC components which also makes it possible
to replace the entire notification framework with a completely different approach if desired. The
individual components of the notification framework and their interactions were also covered in
section 3.4.7.

Related Work

The available work which specifically covers the problem of update anomalies in relation to clone
charactersistics is very limited. However, a number of general considerations found in the research
area of static clone detection may be helpful.

Some publications have noted that the proximity of clone instances has an effect on the likelihood
of update anomalies [14, 51]. If all members of a clone group are located within one class there
is a higher probability that they will always be modified consistently. Further distinctions made
are clones within the same region4, clones in files within the same directory and clones in files in
different directories.

The timing of modifications may also be relevant. Kim et al. and others argue that programmers
tend to propagate modifications correctly most of the time [38, 51]. Programmers regularly use
their own memories about copy and paste operations to guide their actions. Issuing modification
notifications about a clone which was just recently created is therefore likely to be of little use.

4.3.1 Modification Evaluation

Once the contents of a clone are modified, the question arises whether these modifications should be
propagated to other members of the clone group. The modifications might also be of no consequence
or the clone instance might be evolving separately from the rest of its group.

4Within the same method or within the same code block within a method.

4.3. CLONE MODIFICATION NOTIFICATIONS 67

Current Approach

The current Notification Evaluation Provider is, like other providers, constructed in a very flexible
and loosely coupled way. Each registered strategy is executed in order of its priority and the final
evaluation result is based on the joint work of all strategies.

Each strategy can ‘vote’ for one or more evaluation results and can assign different weights to
each of its ‘votes’. A strategy can also attach a human readable message to its decision which will
be displayed to the user, if the strategy is not overruled by other strategies. The following listing
contains some of the common evaluation results.

Ignore: The modification will be silently ignored.

Synchronised: The modification either returned all members of the clone group into a synchro-
nised state or did not compromise an existing synchronisation. All members of the clone
group will be marked as synchronised.

Modified: The modification was not significant enough to warrant a notification of the user.
However, it nevertheless led to a non-synchronised state. All members of the clone group will
be marked as modified.

Notification: The modification should be propagated to other members of the clone group. A
notification for the modified clone will be generated and all other group members will be
marked as modified5. A notification can be marked as either instant or delayed.

Warning: The modification was deemed to be especially critical and the developer should be
notified more prominently about the problem. Otherwise this state is similar to ‘Notification’.

Leave Group: The modification may have changed the contents of the clone to a degree where
it no longer has any significant commonalities with the other members of its clone group. In
this case the clone should no longer be considered to be a part of the group. Depending on
the configuration settings, such clones are either marked as orphans or are deleted.

The Notification Evaluation Provider currently ships with the following limited set of simple strate-
gies. Strategies are executed in order of priority6 and each strategy can specify whether the pro-
cessing should continue with the next strategy or whether it should be aborted.

Classification Check: First the classifications of the modified clone are evaluated. Clones which
are classified as ‘template’ will be filtered out7. There is no need to notify the developer
about such modifications as template clones have no semantic commonalities.

Whitespace only Modification: Additionally all modifications which exclusively consist of whites-
pace changes are also filtered out.

5Group members which already have a notification pending are ignored.
6The following listing is sorted by priority and represents the actual execution order.
7An ‘ignore’ result is returned and further processing of strategies is aborted.

68 CHAPTER 4. HEURISTICS

Self Similarity: As the modification evaluation process is potentially expensive, this strategy
checks whether the current clone content significantly differs from the clone content prior to
the modification. This is done by calculating the similarity between the old and the new
content by use of a Similarity Provider. If the similarity is still 100%, the modification is
filtered out.

Depending on the capabilities and configuration of the Similarity Provider implementation,
this will filter out modifications which only affected comments and modifications which mod-
ified the code in other, semantically irrelevant, ways (i.e. consistently renamed local identi-
fiers).

Full Similarity: This strategy evaluates the similarity (via a Similarity Provider) between the
content of the modified clone and the contents of all members of its clone group. Special
emphasis is placed on the synchronisation state between the modified clone and its origin.

If the clone is fully synchronised with all of its group members the strategy returns a ‘synchro-
nised’ result and prevents the processing of further strategies. If the group is not synchronised
but the modified clone still matches its origin, a ‘modified’ result is returned. The handling
of potential update anomalies in the cases were the origin does not match the modified clone
is left to follow-up strategies.

Minimal Age: This strategy suppresses notifications for newly created, modified clones with an
age below a specific threshold as the developer is likely to still remember the other clone
instances [38, 51].

Clone Location: This strategy suppresses notifications for modified clones if all group members
are located within the same file as these are less likely to result in update anomalies [14, 51].

Default Notify: By default the current Notification Evaluation Provider implementation would
‘ignore’ all clone modifications which are not handled by one of the registered strategies. This
strategy is a fallback strategy which returns a ‘notify’ result with a generic message for every
modified clone.

Future Improvements

Nowhere else is the need for improvement as visible as in the area of notification generation.
Other, much needed improvements in the Classification Provider and Similarity Provider have the
potential of greatly supporting the notification generation. The first three strategies described here
will automatically benefit from most improvements in these providers. A strategy for removing
highly modified clones from their clone groups is currently even suspended, as missing handling of
identifier renaming by the Similarity Provider makes use of the similarity result for this purpose
problematic. However, the key to better update anomaly notifications definitely lies in sophisticated
notification strategies.

The most obvious improvement would be to leverage the available modification history of the
clone instances. Modifications which are made right after the creation of a clone are likely to

4.3. CLONE MODIFICATION NOTIFICATIONS 69

represent the ‘parameterisation’ of the clone and do not constitute changes which need to be
propagated to other clone instances. Such parameterised clones could also be highlighted differently
as they are neither synchronised nor truely modified. The CPC framework already includes the
necessary support and is currently only missing the corresponding notification strategy.

It might also be worthwhile to investigate the effects of other clone location relations besides
the ‘same file’ approach taken so far. Aversano et al. argue that other aspects like the distance
in the package or class hierarchy have a direct influence too [14]. They also argue that there are
specific types of changes which usually don’t need to be propagated right away as a delay does not
introduce risk. One of their examples are code restructuring efforts which do not directly affect the
functionality of the code. It remains open whether some of these cases could be reliably detected
in an automated way.

In the long term, it might be interesting to reconsider the appropriateness of the current ‘black
list’ approach8. If it emerges that a number of specific cases are typical causes for update anoma-
lies, strategies could specifically target these cases and the default action could be to ignore a
modification. Realising this would be no problem with the current CPC notification framework.

Overall, really tangible improvements in this area are likely to require an insight into copy
and paste activities and clone modifications which can only be obtained by evaluating considerable
amounts of real world data about cloning activities.

4.3.2 Delayed Notifications

If the registered modification evaluation strategies come to the conclusion that a recent modification
should be propagated to other members of the corresponding clone group it might be prudent to
delay the notification of the developer until it is certain that he is unlikely to do these modifications
on his own. Instant notifications, while possible9, may often be counter productive as past studies
have shown that developers tend to maintain clone groups consistently [14, 38, 40, 51].

Current Approach

The current, rather simple Notification Delay Provider implementation enqueues notification events
which were not marked as instant notifications and reevaluates them once one of the following
conditions are met.

Timeout: A configurable amount of time has passed since the last modification of the clone.

File Closure: The file which contains the clone was closed by the programmer.

After the reevaluation was triggered, the reevaluation result of a notification event decides whether
the event is displayed to the developer or whether it is silently dropped. The high inhomogeneity
of the interface requirements of potential extensions made a strategy based approach problematic.
Contributors are therefore encouraged to provide their own Notification Delay Provider implemen-
tations. The current implementation can be extended by a contributor and provides a good base
to start from.

8The current strategies only filter out cases where a notification is likely to be unneeded.
9A modification evaluation strategy can indicate that a specific modification should trigger an instant warning.

70 CHAPTER 4. HEURISTICS

Future Improvements

The best approach to delayed notifications remains unclear. If they are displayed in a very unin-
trusive way, as is currently the case, delaying of notifications might not even be required as any
notification would automatically be removed once the developer propagates the modification to the
remaining clone group members. However, the presentation of notifications to the user is not within
the control of the CPC Notification module and UI contributors might opt for a more aggressive
notification style.

A number of additional conditions seem to be interesting candidates for inclusion in the Noti-
fication Delay Provider. The currently visible area of the source code might provide an indication
about the state of a modification. Once the developer starts to work in an area where neither
the modified clone nor any of its group members are visible, the modification might be complete.
It would furthermore be interesting to check whether any of the currently opened files contains
group members of the modified clone or when the last modification to any group member has taken
place.

Chapter 5

Challenges and Setbacks

This chapter describes some of the challenges faced during the course of this thesis and highlights
areas which have proven to be much more work intensive than one might initially expect.

5.1 Planning and Risk Assessment

The perfect project plan is possible
if one first documents a list of all the unknowns.

[Bill Langley]

Right at the outset of this thesis, during the preliminary prototyping phase a large number of
potential problems became apparent. These problems could be attributed mainly to two factors;
CPC’s needs to interact with the Eclipse IDE in very uncommon ways and the general complexity
of the Eclipse platform.

It is interesting to note that all of the problems faced during the course of this thesis were
already identified in the initial topic proposal1. However, even though these risks were known
and were continuously tracked and reassessed during the course of this thesis, most could not be
completely mitigated.

One of overarching challenges posed during this thesis was the futility of any long term planning.
The size and complexity of the Eclipse API made it all but impossible to adequately estimate the
work effort required for a particular task. Without in-depth knowledge of the corresponding APIs,
it often remained highly uncertain whether hours or weeks would be needed for the implementation
a specific feature.

In many cases the only way to achieve the required indepth knowledge was the implementation of
a prototype which already encompassed most of the functionality of the final implementation. This
resulted in a number of cases where the required effort remained uncertain until the implementation
of the specific feature itself was almost completed. This also meant that for some design and
implementation decisions two time consuming prototypes needed to be constructed before any
conclusion could be reached.

1Included in the Appendix and Recommended Readings booklet.

71

72 CHAPTER 5. CHALLENGES AND SETBACKS

5.2 Reuse and Performance

Two of the initial design goals for CPC were the reuse of ECG functionality as well as highly
decoupled operation from Eclipse. While both aspects are desirable, it later became apparent
that they are not, or only partly, feasible due to their potentially negative effect on overall system
performance.

Reusing the ECG Sensor

The existing ECG Sensor, which was developed as part of the ECG Lab, was able to provide
information about a large set of activities inside the Eclipse IDE [52]. Among these activities were
copy and paste actions by the developer as well as document modifications. While the sensor did
not provide all the required data, it seemed like a good base to start from. Some of the additional
event types required for CPC were also deemed to be useful for future experimental setups with
the ECG Lab.

Thus one of the first steps during the early prototyping and initial implementation phases was
a complete restructuring and modularisation of the existing ECG Sensor in order to allow its use
by CPC and ECG Lab. Initially the tight coupling of the ECG Sensor to the HackyStat Sensor,
on which it was based, obstructed the restructuring effort. Its core design only supported the
communication of programmer activities via SOAP or Java RMI. And the only communication
format, even for Java RMI, was XML.

The resulting, improved version of the ECG Sensor creates internal event objects instead of
directly producing XML output. These events are then handled by an internal event dispatching
registry which, depending on the registered listeners, dispatches the events via SOAP, Java RMI
or directly as a callback to a registered listener object. Multiple listeners of different types are
supported, allowing CPC and ECG Lab to use the same ECG Sensor instance. This fact also
allowed CPC to optionally output ECG Lab style log files, if requested.

However, the ECG Sensor had some short comings which required further modifications to allow
its use as part of CPC. The original version of the sensor did not provide detailed information
about document modifications. Instead it simply resent the entire document after two seconds
of inactivity. The ECG Lab extracted modification information from these document events by
applying a line based diff-style algorithm. But the resulting approximation of the real document
modification was too inaccurate for use in CPC. Thus new event types with fine grained modification
information and better caching/purging strategies were added and some of the existing events were
extended.

Furthermore a couple of additional improvements and bug fixes were introduced. Though a
couple of problems could not be solved during the initial restructuring effort. The ECG Sensor
depends on a HackyStat library which is no longer supported, contains known bugs and for which
the source code is no longer available. This can result in index out of bounds and null pointer
exceptions within the library which are very hard to work around in the ECG Sensor code.

The resulting version of the ECG Sensor was used by CPC for roughly two months before it
had to be replaced for performance reasons.

5.3. THE ECLIPSE API 73

Decoupled Operation

Decoupling as much of the CPC code as possible from the specifics of the current Eclipse API
was one of the key design goals. The necessity for this becomes very apparent when looking at
some of the older Eclipse plugins. While the Eclipse community tries to limit the number of API
breaking changes between releases, it is very common for older, no longer maintained plugins to
be incompatible with newer Eclipse versions. This especially affects plugins which use a lot of low
level APIs like CPC or CbR [28].

While decoupling is desirable, it does impose potential performance penalties and may be
impossible in some areas due to other constraints. The initial CPC design tried very hard to limit
most of the interaction between Eclipse and CPC to the ECG Sensor. An approach which was
later partly reconsidered due to its considerable performance impact (see next section).

Performance Impact

The initial prototyping phase and tests with early versions of CPC did not uncover any major per-
formance issues. An ECG Sensor based architecture was thus adopted and it was believed that any
potential future performance issues would be addressable by introducing additional optimisations
and a degree of caching.

However, the Eclipse 3.3 Europa release2 added a new in-place rename refactoring feature which
‘renames’ Java identifiers on the fly. During such a rename operation, all occurrences of an identifier
within the current file are updated with each key press. The actual refactoring is still performed
by the old rename refactoring backend. Basically the initial modifications to the editor are only a
preview. Once the programmer confirms the rename operation, Eclipse undoes the modification of
the document and then performs the normal refactoring operation.

For a large Java class with an often referenced member variable this could result in hundreds or
even thousands of document updates for each key press of the developer. Each document update
potentially moving or modifying existing clones within the file. In some artificial tests carried out
it was easily possible to block Eclipse for seconds up to minutes on each key press if CPC was
activated. Even without CPC this feature has been reported to be very slow in certain situations3.

A redesign of some of the CPC core components was thus required to provide adequate perfor-
mance even for situations with very high rates of document updates. The strong modularisation
of the CPC architecture meant that this switch affected only a very small part of the overall CPC
code base. The resulting design was presented in chapter 3.

5.3 The Eclipse API

5.3.1 General Complexity and Documentation

While the Eclipse IDE undoubtedly represents a hallmark of modular design and extensibility, its
complexity and sheer size pose serious challenges. With a total of over 17 million lines of code, the

22007-06-27 — http://www.eclipse.org/org/press-release/20070627_europarelease.php
3Eclipse Bug: 185050 — http://bugs.eclipse.org

http://www.eclipse.org/org/press-release/20070627_europarelease.php
http://bugs.eclipse.org

74 CHAPTER 5. CHALLENGES AND SETBACKS

Eclipse IDE easily outclasses many major open source projects. Without good documentation an
API of this size is very hard to use. In general the Eclipse API is documented on three levels:

1. All API interfaces and classes contain JavaDoc documentation and all extension points contain
basic documentation as part of their schema definition.

2. The major APIs are described in the Eclipse online help [5]. In most cases special example
applications demonstrating the correct use of these APIs can be found in the Eclipse source
repository4.

3. A small selection of key API topics is presented in special articles on the Eclipse website [6].

As long as the problem to be solved follows one of the common extension use cases, the Eclipse
documentation is very good. The online help provides a broad overview and examples, articles on
the website provide step by step guides and exhaustive example applications can easily be obtained.
Other articles improve the understanding of key areas and often cover even the small details which
might prove to be potential pitfalls for new developers. Furthermore, a number of good books
covering the internals of the Eclipse platform are available.

However, projects like CPC which venture off the beaten track are an entirely different story. In
many cases parts of the required API are only covered by the JavaDoc documentation and even that
may leave many questions unanswered. So far the Eclipse community has adopted the practice of
specifying as little as possible in the API documentation to retain as much implementation freedom
as possible. While this simplifies the development of the Eclipse workbench and reduces the risk
of breaking specified API behaviour it may force plug-in developers to rely on aspects of the
implementation which are not officially part of the API.

Another serious problem which arises in these situations is the discovery of API sections which
can be used to address a specific requirement. The search for the right API to solve a given task
may require reading large sections of Eclipse source code to determine which packages and classes
take part in the processing of the data of interest, followed by examination of all API classes and
interfaces found.

The situation is escalated even further by the fact that there are often multiple ways of achieving
a certain goal but not all of them might be equally well suited for the task. This implies that even
after finding an API which can be used to solve the issue at hand, there remains a possibility that
a better API might have been overlooked.

This becomes even more probable due to the fact that the naming of an API package or interface
is usually related to its primary use case. However, many parts of the API can be used for more
than their main purpose. This results in a situation where simply looking at the package and class
names of the Eclipse API is not enough.

Thus the question of whether there exists any API for a particular task and where to find it can
easily become very time consuming to answer. And even once an answer is found, the confidence
in its correctness is often limited.

4Eclipse CVS Repository: :pserver:anonymous@dev.eclipse.org:/cvsroot/eclipse

:pserver:anonymous@dev.eclipse.org:/cvsroot/eclipse

5.3. THE ECLIPSE API 75

5.3.2 Inconsistent, Inappropriate or Missing APIs

Unfortunately there are a number of cases where core CPC requirements are not well aligned with
the existing Eclipse APIs. For some areas API coverage is simply non existent. For other parts an
API is provided but does not behave consistently or is so ill matched to the task at hand that a lot
of additional work is required for its use. This section provides a non exhaustive list of examples
of such cases. Team provider related issues will be covered in section 5.4.

Rename Refactoring

Refactoring operations overall and rename refactorings specifically are of high importance to CPC.
It is vital for CPC to be able to participate in all types of document modifications which could
potentially move or modify clone instances. As was already partly covered in section 3.4.2, this
participation is made possible by tracking low level file buffer changes inside the Eclipse workbench.

While this approach works very well for most refactoring operations and could in theory work
for all such operations, it fails for rename refactorings. For some reason the current JDT5 Java class
rename refactoring partly circumvents the Eclipse file buffer framework. All modifications to other
affected classes6 are executed through the buffer framework as expected. However, for some reason
modifications to the renamed class itself are done in a manner which circumvents the file buffer
framework and thus prevents interested parties from being notified about these modifications.

As there is no specification which explicitly states that all modifications have to be made through
the buffer framework, the observed behaviour does not constitute a failure. However, it clearly is
an inconsistency which should be addressed. This matter was therefore filed as a bugreport by the
author of this thesis7. Even though no alternative API or workaround exists, it remains unclear
whether this issue will be addressed anytime soon.

Another important task relating to rename refactorings is the detection of rename and move
operations and the correct updating of the corresponding clone data to reflect the change. While
Eclipse offers a special notification API for file resource changes which also provides information
about file moves, correct handling of rename and move operations is still problematic.

The high concurrency present within the Eclipse workbench can cause situations in which the
different notifications required may reach an interested party out of order. I.e. the file open event
for the new file location may be received before the file move notification.

There are furthermore situations in which other plug-ins can cause problems. The Subversive
SVN provider, which is bound to become the official Eclipse SVN team provider in the future, hooks
into the resource modification process in a way which prevents file resource change notifications
from being generated correctly. If a file is under supervision of this team provider, rename and
move operations will be reported as deletions and additions, without any context information which
could be used to identify the underlying file move. A bugreport for this behaviour was also filed
by the author8.

5Java Development Toolkit
6Renaming all occurrences of the refactored class name in classes where it is referenced.
7Eclipse Bug: 213984 — http://bugs.eclipse.org
8Eclipse Bug: 213991 — http://bugs.eclipse.org

http://bugs.eclipse.org
http://bugs.eclipse.org

76 CHAPTER 5. CHALLENGES AND SETBACKS

Multiple steps were taken to support file move and rename operations in CPC despite these
problems. The concurrency issue is bound to remain, even if the two ‘defects’ mentioned above
are fixed in a newer version of Eclipse. CPC addresses this by checking for file location changes in
multiple locations and by keeping track of already processed changes. This way it does not matter
whether the information about the location change reaches CPC first as a file move notification, a
file open event with the new location or another event. It will be correctly processed.

A workaround for the fact that the rename refactoring is partly bypassing the file buffer frame-
work was also implemented. These situations are automatically detected once the file is first opened
in the new location. The potentially out of sync clone data is then handed to the current default
Reconciliation Provider for reconciliation. As file rename or move operations typically only change
the package and/or class name the reconciliation should in most cases be successful without any
loss of clone data.

Special handling for the missing file move notification for files under Subversive SVN control
is currently not implemented as the required information is not easy to obtain at the point in
time where these notifications are received. Instead these situations will currently cause a graceful
fallback which will invalidate all clone data for the affected file to prevent inconsistencies. Use of
a rename refactoring within Subversive SVN projects will thus lead to controlled clone data loss
until the corresponding defect in the team provider is fixed.

Marker Support

The Eclipse workbench provides support for persistent annotations on file system resources and on
sections within files. In theory, these so called Markers are exactly what CPC would need to store
the clone data for each file. However, the initial evaluation uncovered a number of serious problems
of the current marker implementation.

First and foremost is the fact that the exact behaviour of markers is neither specified nor
documented. It is thus impossible to make any decisions based on API specifications. Instead
examination of relevant sections of the Eclipse source code and experimentation are the only means
of building grounded assumptions about their expected behaviour. A time consuming, potentially
error prone process which provides no guarantee that the observed behaviour will remain unchanged
in future Eclipse versions.

Another aspect is reliability. Inside the Eclipse workbench markers are used primarily for storage
of position data which can easily be recomputed. I.e. compiler warning and error markers which
are dropped and recreated on each compilation. This typical use case of using markers mainly for
‘caching’ purposes puts only a low priority on the long term correctness of marker position updates.

‘There’s no built-in concept of markers always being up to date: anyone can change a
file and there’s no guarantee that this client correctly updates the attached markers.’ 9

The results of the missing emphasis on reliability can be observed in many areas.

9Daniel Megert <daniel_megert@ch.ibm.com>, official maintainer of Eclipse marker support, Eclipse platform
newsgroup, in reply to an inquiry by the author

daniel_megert@ch.ibm.com

5.3. THE ECLIPSE API 77

A large number of open bug reports for Eclipse marker support can be found on the bug tracker.
Some entries dating back to 2001. The remainder of this section will highlight some of the issues
which would prove to be problematic for CPC.

The Eclipse markers framework has no notion of external modifications to a file. This will lead
to corrupted and lost markers if a resource is modified outside of Eclipse10. Even modifications
inside the Eclipse workbench can be problematic if a plug-in directly accesses the underlying file.

Furthermore, the control over marker position updates is limited. Positions are updated by
the default Eclipse position updater and customising the position updating strategy would be
problematic. In certain situations positions may be updated incorrectly too11.

Markers are also not part of the Eclipse undo/redo framework and undo/redo actions by the
programmer can thus lead to the loss of marker position data. While this is also true for the
current CPC implementation, a marker based approach would be fundamentally unable to support
undo/redo, whereas the current CPC implementation could in theory support undo/redo (see next
section).

It also remains unclear how well a marker based approach would scale as CPC clone data entries
are likely to considerably outnumber the common Eclipse markers. The existing marker APIs do
not allow marker lookups over the entire project at an acceptable cost. As such even with a marker
based approach some additional backend storage infrastructure would be needed to support fast
global access to clone related data.

All in all the current marker implementation was deemed to be unfit for use in CPC. In order
to make it suitable for the requirements of CPC, extensive modifications to the current imple-
mentation, affecting a number of low level Eclipse components, would be required. The work
effort entailed in designing a patch which addresses these issues and the expected duration of the
acceptance process made any marker based approach infeasible.

However, in the long run, once these problems have been addressed, such a marker based
approach to clone tracking would seem highly attractive. The author is convinced that, should
clone tracking functionalities ever be introduced as part of the official Eclipse distribution, they
would most likely be marker based.

Undo and Redo

The Eclipse API provides an extensive undo/redo framework which tries to encompass all activities
of a programmer. Plug-in contributors are encouraged to use these APIs to provide a seamless
undo/redo experience and it is considered bad practice to circumvent them. However, maintaining
undo/redo stacks adds additional overhead to operations. For very common, small operations the
overhead can exceed the cost of the operation itself.

As a result, the Eclipse workbench does not maintain undo/redo information for document
markers and position updates. These areas have been identified as being especially performance
critical due to their typically very high update rates. Position objects are even updated using direct
access to the member values, circumventing the getters and setters, to increase performance.

10Eclipse Bug: 35696, 3551 — http://bugs.eclipse.org
11Eclipse Bug: 186118 — http://bugs.eclipse.org

http://bugs.eclipse.org
http://bugs.eclipse.org

78 CHAPTER 5. CHALLENGES AND SETBACKS

CPC is based on the Eclipse document position APIs and all modifications made to positions
are thus not reflected in the undo/redo stack. Experimental prototypes have shown that undo/redo
support would be possible. However, the lack of applicable Eclipse undo/redo APIs implies that
such support would require a custom undo/redo implementation which would have to rely on
certain aspects of the Eclipse position and document update handling which are not part of the
API specification and documentation. Furthermore, the entailed performance overhead would be
potentially considerable.

The current implementation thus does not provide explicit undo/redo support. However, as
undo/redo actions produce normal document update events, their use will only lead to clone data
loss in very specific situations. One example would be the deletion of a section in a source file which
encloses a clone. The deletion will remove the clone data for the enclosed clone and a potentially
following undo action will not restore it.

Concurrency and Document Locking

Another area of concern is the high concurrency within the Eclipse platform and the large number
of potential points of lock contention. More than 30 active threads at any given time are a common
situation. Once a plug-in contributes functionality which requires its own internal locking, extreme
care needs to be taken to avoid potential dead locks.

It is crucial to ensure that all parties acquire locks in the same order. This is made more
complicated by the fact that some listener APIs do not clearly specify which locks the caller might
be holding. The reliance on the synchronized locking scheme of Java in certain areas, furthermore
makes it impossible to partly circumvent this problem by acquiring multiple locks in one atomic
operation.

The Eclipse platform addresses this issue by introducing the concept of a Job. Jobs are bundles
of work which can be scheduled with a job execution framework for asynchronous execution. Each
job specifies its locking requirements as a scheduling rule and the job execution framework takes
care of the correct ordering and scheduling of all waiting jobs. A job will automatically be queued
until all of its resource requirements can be met. The strict limitation to upfront lock acquisition
ensures that no deadlocks can occur.

Unfortunately, such an asynchronous approach is not suitable for many areas of CPC where
access to synchronised resources is needed directly and where the result of such operations has
immediate effects on further processing within that thread. Due to the large number of listener
callbacks which provide CPC with detailed information about the current state of the Eclipse IDE,
the same section of CPC code could be executed within a variety of different threads which might
potentially be holding a number of locks.

The main UI thread is another typical point of lock contention as access to SWT UI elements
is restricted exclusively to the UI thread. Any background process which wishes to display data to
the user in a synchronous fashion thus has to take extreme care. Any lock it holds could potentially
cause a dead lock scenario. The same applies to code sections which are already holding some kind
of lock and are calling Eclipse API methods as some of these may internally acquire specific locks.

Situations where the caller of an API listener is always holding a specific lock can furthermore

5.3. THE ECLIPSE API 79

result in another curious situation, if the called listener method also requires some locks. As the
locking order can not be changed in this scenario, all other places need to be modified to match
this particular locking order. In CPC this resulted in one case where the lock on a document needs
to be acquired before a lock on a document registry which is needed to retrieve the document.

The locking problem has also increased the complexity of some parts of CPC. In very rare
situations it may happen that a required resource can not be acquired without causing a deadlock.
The current CPC implementation handles such special cases by enqueuing information about all
operations and automatically ‘replaying’ them, once the resource becomes available again. I.e. the
processing of document modifications happens synchronously and requires the availability of the
clone data for the modified document. If the clone data can not be obtained without potentially
causing a dead lock, all modifications are enqueued until the clone data becomes available.

Minor Issues

During the course of this project, a number of smaller issues surfaced. While these are not critical,
they may still represent worthwhile candidates for future Eclipse API improvements.

Aside of the general file buffer related problems which were already addressed in earlier sections,
a somewhat peculiar fact is that Eclipse offers no straight forward means of receiving notifications
about the execution of a revert operation. While monitoring of the file modification date and some
file buffer API methods yields a very good approximation, there may still be cases were such a
makeshift approach breaks. A clear distinction between save and revert actions within the file
buffer framework would thus be very helpful.

With its strong emphasis on tight integration and interoperability of contributions, the very
limited data persistence services offered by the Eclipse Platform simply don’t fit. As a result every
somewhat sophisticated plug-in, which is not solely file based, has its own persistence approach.

5.3.3 Conservative Development

Public APIs, like diamonds, are forever.
You have one chance to get it right so give it your best.

[Joshua Bloch]

The overall style of development in the Eclipse community is rather conservative. This fact has
already been partly addressed in multiple other sections within this thesis. It is thus covered only
very shortly here.

When looking at the Eclipse bug tracker12 a bit more indepth, the first thing that strikes the
eye are a number of very old and still pending bug reports and feature requests. These fit well
with the author’s general impression to date. As is to be expected, the time required for a bug
fix or feature request to become part of the next release is in most cases closely related to the
controversiality of the change.

If a submitted patch addresses an issue which is undisputedly a defect and if the suggested fix
is the only viable solution, patches are usually integrated into the upstream repository within a

12http://bugs.eclipse.org

http://bugs.eclipse.org

80 CHAPTER 5. CHALLENGES AND SETBACKS

very short time frame. Often hours rather than days. However, due to the adopted release cycle it
may still take more than half a year for a fix to appear in a stable release.

If, on the other hand, the issue addressed is not clearly a defect or if there are multiple possible
approaches to fixing an acknowledged issue the adoption of a final fix is likely to take much longer.
For cases which affect the API, even in non-breaking ways, discussions can stretch over multiple
releases and can extend over years. There are even cases where official Eclipse projects opted for
permanently dropping functionality which required internal API access rather than waiting for the
required extension of the official Eclipse API13.

Another aspect responsible for the slow adoption of some of the, often very reasonable, sug-
gestions found on the bug tracker is a general shortage of staff. While Eclipse is an open source
project, a considerable part of the development still seems to be done by IBM employees. It is quite
common for acknowledged feature requests to be postponed to the next release multiple times and
to finally end up being delayed indefinitely due to a lack of ‘cycles’.

5.4 Team Providers

From the outset of this project it was clearly evident that the remote synchronisation aspects of CPC
would pose one of the biggest technical challenges. Experimentation with initial prototypes quickly
showed that the available Eclipse and team provider APIs were ill suited for the requirements of
CPC. This section highlights the corresponding key problems and limitations.

Team Operation Listeners — The History

One of the basic requirements for CPC support of distributed development teams and source
repositories is a way to detect repository operations like commits, updates, merges, checkouts and
others. While a listener API for such events might seem straight forward, there is currently no way
to obtain such notifications in Eclipse.

‘There currently isn’t any repository independent API for commit/update/merge notifi-
cation and there is no way to do what you are asking with the CVS client.’ 14

This short coming was first reported in 2002 and support for team provider operation notifications
has since been requested again and again15. The same holds for the Subversive SVN team provider
which has recently obtained the status of an Eclipse project in incubation and is poised to become
the official Eclipse SVN team provider in the future.

‘At the current moment Subversive does not provide corresponding interfaces.’ 16

13TPTP banned internal API access: http://wiki.eclipse.org/index.php/TPTP_Jan_07_face_to_face
14Michael Valenta <michael_valenta@ca.ibm.com>, official maintainer of Eclipse CVS team provider, Eclipse

platform newsgroup, in reply to an inquiry by the author
15Eclipse Bug: 24882, 26634, 40623, 44923, 78133 — http://bugs.eclipse.org
16Alexander Gurov <alexander.gurov@polarion.org>, official maintainer of the Subversive SVN team provider,

Subversive forum – http://forums.polarion.org/viewtopic.php?t=2661, in reply to an inquiry by the author

http://wiki.eclipse.org/index.php/TPTP_Jan_07_face_to_face
michael_valenta@ca.ibm.com
http://bugs.eclipse.org
alexander.gurov@polarion.org
http://forums.polarion.org/viewtopic.php?t=2661

5.4. TEAM PROVIDERS 81

One interesting approach, which would also benefit a large number of other users of the team
provider APIs, would thus be the development of such a notification API. The author has submitted
an API proposal17 and has spent some time investigating potential implementation paths.

However, in light of the complexity of the Eclipse team provider framework and the currently
ongoing transition of the Subversive SVN team provider into this framework, the required effort was
estimated to be considerable. The calls for a notification API which have remained unanswered for
almost five years, furthermore fuelled doubts about the interest of the team support maintainers.
The risk of spending weeks on the development of a notification API patch to finally see it denied
was perceived as being considerable.

After much consideration, it was decided that the only viable approach which could potentially
provide a working solution within the timeframe of this thesis was a custom sensor for repository
provider operations which does not require any modifications of the Eclipse code base.

By its very nature such a sensor is team provider specific and is likely to rely on internal,
non-API aspects of the team provider and potentially the Eclipse platform. The decision for this
approach thus made it necessary to focus the development effort on a specific team provider. After
an initial evaluation, the Eclipse internal CVS team provider was chosen as the primary target as it
represents the only team provider which implements all Eclipse team APIs. Strict modularisation
was applied to ensure that additional sensors for other team providers could easily be added.

Team Operation Listeners — The Implementation

The CPC Team Sensor was already briefly described in section 3.4.9. It tries to detect repository
operations of the Eclipse CVS team provider by listening for callbacks via multiple other related
APIs and by inspecting the internal state of the system. The Eclipse platform provides two APIs
which can be exploited to this end, Subscriber Change Listeners and Job Change Listeners.

A Subscriber Change Listener provides Eclipse UI elements with team provider specific resource
decoration information such as the current revision identifier of the resource and a number of status
flags. This fact can be used to detect potential team provider actions as a commit or update
operation always modifies the revision identifier of the corresponding file. Unfortunately, Eclipse
generates these Subscriber Change Events at more or less arbitrary times. By keeping its own
storage of revision identifier data for each resource18, the CPC Team Sensor can filter out all
Subscriber Change Events which did not change the revision identifier of the underlying resource.

However, for CPC it is crucial to distinguish between commit and update operations which
is impossible with just the data available in Subscriber Change Events. The CPC Team Sensor
therefore also registers a Job Change Listener. Job Change Listeners provide information about
scheduled and currently running background tasks within the Eclipse platform. By making use of
the unspecified fact that the CVS team provider uses background Jobs to execute its operations, the
CPC Team Sensor can gain additional insight into the current team provider state. Unfortunately,
the corresponding Job Change Events do not provide enough information to reliably identify and
distinguish the different CVS team provider operations. The CPC Team Sensor therefore has to

17Part of the Appendix and Recommended Readings booklet and submitted under Eclipse Bug: 78133
18In Eclipse arbitrary string data can be ‘attached’ to a resource by means of so called persistent properties.

82 CHAPTER 5. CHALLENGES AND SETBACKS

fall back to the Java Reflection API in order to extract additional information from private fields
and classes.

Overall, the CPC Team Sensor relies heavily on a number of implementation details of the CVS
team provider which are not part of its specification. This leads to a number of problems. In the
long term, any new Eclipse platform or CVS team provider version might change some crucial part
of the implementation which could break the CPC Team Sensor. While this might be an acceptable
limitation in light of the lack of viable alternatives, the following short term problem is much more
significant.

As the internal behaviour of the CVS team provider and its use of background Jobs is not
specified, experimentation and source code reviews are the only means by which the required
understanding for the internals can be gained. This is considerably complicated by the fact that
different ways of executing team operations often result in a different internal processing and that
the timing of concurrently executed operations may change. I.e. it makes a difference whether
an update operation is started from the context menu of a resource or from the synchronisation
view. The resulting heterogeneity makes it all but impossible to ensure that all potential paths are
correctly handled by the CPC Team Sensor.

Furthermore, the work on a CPC Team Sensor implementation for the Subversive SVN team
provider has been stalled because the team provider does not implement one of the Eclipse team
APIs correctly. A simple yet crucial method of the API currently only contains an empty body
and an autogenerated ‘todo/stub’ comment. The author has reported this fact on the Subversive
SVN forum and the Eclipse bug tracker19. So far the issue remains unsolved.

Logical Model Integration

The CPC Store Remote LMI module which was covered in section 3.4.9 also relies heavily on
the CPC Team Sensor for notifications about team provider operations. Additionally there are a
number of other LMI API related issues worth noting.

The default CVS team provider configuration explicitly disables LMI API support. Any LMI
API based approach thus needs to inform the user about the required configuration settings. This
is especially critical as incorrect settings could lead to CPC clone data loss. The corresponding
configuration setting is furthermore not ‘side effect’ free as enabling LMI API support also requires
the selection of a specific, non-default CVS team provider stack20 which handles team operations
and especially merge conflicts very different from the default stack.

Another usability problem is the default commit dialog of the CVS team provider. If any plug-
in contributes LMI models which add files to the scope of a repository operation, the user will
always be presented with a special confirmation dialog which lists all the resources which are to be
included in the operation. This additional dialog can not be disabled and it furthermore contains
a small check box at the bottom which indicates whether the changes should be displayed in the
synchronisation view. By default this option is checked as soon as any LMI model contribution is

19Eclipse Bug: 211251 — http://bugs.eclipse.org
20The CVS team provider offers two modes of operation, a compatibility mode with the CVS command line utility

and an Eclipse specific mode. The compatibility mode is the default.

http://bugs.eclipse.org

5.4. TEAM PROVIDERS 83

present and the state of the checkbox is not persisted. This requires a developer who is used to the
default CVS team provider behaviour to always disable the corresponding checkbox on each team
operation in order to retain the old behaviour. Both aspects are likely to be irritating for users of
CPC.

Of real concern are two other aspects of the current LMI API specification itself and their
implementation within the Eclipse platform. The basic design of the LMI API assumes that all
files of one model are always under the control of the same model provider. The approach taken
by CPC to combine a CPC clone data file and a Java source file in one LMI mapping does not
fit this assumption as the JDT plug-in provides special merge handling semantics for Java source
files. When contributing a LMI model, a plug-in can specify that its model contribution should
be given a higher priority than specific other LMI models. This enables a plug-in to ensure that
its model contributions are executed before specific contributions of other plug-ins. However, it is
not possible to specify the need to be executed after another model and it is also not possible to
delegate the handling of a specific file to another model.

This poses a serious problem for the CPC Store Remote LMI module in the case of a merge
operation. The clone data for the merged file can only be calculated after the merge of the source
file was executed. The LMI API does not allow CPC to specify its need to be executed after the
JDT plug-in’s Java merge handling. And the other option, to handle the CPC model first, would
require CPC to handle the source file merging. An approach which would violate one of the key
requirements of CPC as the presence of CPC could then affect the merge results of source files.

This was addressed by storing clone data in a temporary directory and processing it once the
team operation was completed. While this approach works, it increases the complexity of the
solution considerably and may also slow down team operations as some of the required data may
need to be retrieved from the repository multiple times. Together with the fact that the contributed
LMI model code is never executed if a simple update does not produce any conflict, this represents
the main reason for the critical dependency of the CPC Store Remote LMI module on the CPC
Team Sensor.

Another point of concern is the separation of headless and UI based LMI model operations
practised by the Eclipse platform. While a LMI model contribution can enforce that specific sets
of files may only be checked in and checked out together, this restriction does not hold for actions
issued from within the synchronisation view. Instead a LMI model contributor has to provide new
UI elements for the synchronisation view which enforce these restrictions. While this approach
leaves plug-in authors a large degree of freedom, it is seriously encumbered by the LMI APIs
underlying assumption that all parts of a model originate from the same contributor. There is no
straight forward way of enforcing the combined handling of CPC data files and Java source files
without circumventing the Java merging for the JDT plug-in in the process.

Current Status

All in all two serious problems with both remote synchronisation approaches of CPC remain. The
inherent low reliability of the CPC Team Sensor and the limitations of the Eclipse LMI APIs. As a
result the current remote synchronisation functionality of CPC should be considered as a prototype

84 CHAPTER 5. CHALLENGES AND SETBACKS

implementation and remote synchronisation support is thus currently not shipped with CPC.
Future work in this area would be additional, extensive testing of the CPC Team Sensor and its

extension to team operation execution scenarios which might currently not be handled correctly.
However, the much more sensible long term approach, would be to further push for the introduction
of an official Eclipse team operation listener API21. While the LMI model execution order problem
can be circumvented by delayed processing and heavy reliance on the CPC Team Sensor, there is
currently no solution which would address the problem of team operations issued from the syn-
chronisation view not honouring model constraints. A reliable LMI based remote synchronisation
approach might require changes to the Eclipse LMI APIs. The author will continue to pursue these
issues.

5.5 Failures, Defects and Solutions

There are two ways to write error-free programs;
only the third works.

[Alan J. Perlis]

During the course of this thesis a number of Eclipse failures were observed and some defects could
be located within the Eclipse source code. Some of these were already covered in other sections.
For the sake of briefness, this part thus only addresses the remaining failures and defects.

While investigating potential approaches for undo/redo support in CPC, it became apparent
that the Eclipse undo/redo framework did not generate redo events correctly in certain situations.
The defect was located within the Eclipse source and a patch was submitted22. The issue has now
been fixed in the upstream repository and the fix will be part of Eclipse 3.4.

Furthermore, a large number of seemingly random crashes of Eclipse text editors during editing
of large text files was observed. The issue, though happening frequently, proved hard to reproduce.
After a lengthy exchange on the bug tracker, the author submitted a JUnit test which managed
to reproduce the problem with a high probability and provided further details about the nature of
the problem23. The issue is now fixed in the upstream repository.

Twice, extended amounts of time were wasted on the investigation of strange crashes and
misbehaviours of CPC. In both cases the issues turned out to be entirely Eclipse related.

During the initial prototyping phases strange problems with the copy action became apparent.
While working without problems under Windows, use of a copy hotkey sometimes had no effect
under Linux. It finally emerged that these problems were caused by an incompatibility between
the Eclipse IDE and the Linux clipboard management application Klipper24.

Another time consuming problem resulted in seemingly random out of memory crashes of the
entire Eclipse IDE. Exactly one day after a large and complex modification to the CPC core
internals. Multiple days of debugging and testing effort, aimed at CPC, remained fruitless. It later
emerged that an automatic update feature of the Eclipse IDE had updated the Eclipse installation

21See also: corresponding API proposal in the Appendix and Recommended Readings booklet.
22Eclipse Bug: 206305 — http://bugs.eclipse.org
23Eclipse Bug: 150934 — http://bugs.eclipse.org
24Eclipse Bug: 153809 — http://bugs.eclipse.org

http://bugs.eclipse.org
http://bugs.eclipse.org
http://bugs.eclipse.org

5.5. FAILURES, DEFECTS AND SOLUTIONS 85

from version 3.3 to version 3.3.1. Unfortunately, 3.3.1 had a crucial defect which prevented Eclipse
from setting the memory limits correctly at startup25. The later released hotfix version 3.3.1.1
solved the problem, after all the debugging and testing effort had been wasted.

25Eclipse Bug: 203325, 206775 — http://bugs.eclipse.org

http://bugs.eclipse.org

Chapter 6

Testing and Evaluation

6.1 Testing

Any sufficiently advanced bug is indistinguishable from a feature.
[Bruce Brown]

In order to support the testing and debugging effort of the CPC framework a number of best
practices have been adopted during the development of CPC. This section tries to provide an
overview about the main points.

6.1.1 Testing and Debugging Support

Logging

Error and debug logging plays a crucial supporting role within the CPC framework. Its contribution
is twofold.

First, during the exploratory prototyping phases it provided much needed support for the un-
derstanding of the internal workings of the Eclipse IDE. While the use of a debugger is possible,
single stepping through large amounts of code represents a very inefficient way of promoting com-
prehension of the interactions between multiple components in a complex and highly concurrent
environment like the Eclipse platform. In such an environment, the concurrency aspects are bound
to especially pose a problem.

And second, logging provides much needed information which can help in locating a defect once
a failure of CPC was observed. This is especially crucial as some failures may be very hard to
reproduce and may only occur very infrequently. Care has been taken to include all potentially
important state information in the debug and trace logging messages. A CPC trace log file con-
tains all the information required to precisely reconstruct the events and interactions which led
to a specific situation and can thus provide the same insights as a debugger session in almost all
cases. This is especially important as CPC failures within a production environment may not be
reproducible without access to the entire workspace and clone data of the developer. However, in
a commercial environment these are likely to be confidential.

87

88 CHAPTER 6. TESTING AND EVALUATION

The CPC codebase is largely kept free of dependencies on any particular logging implementation
by thorough use of the Apache Commons Logging framework [1]. A special CPC logging module
takes care of most of the logging internals and also provides further logging related services to the
rest of the CPC framework. The current implementation is based on log4j [2].

A comprehensive configuration file allows the behaviour of the CPC logging subsystem to be
modified as needed1. The underlying log4j implementation permits the realisation of even uncon-
ventional logging setups.

The degree to which logging penetrates all layers of the CPC framework is best emphasised
with a number. The current implementation contains around three thousand logging statements2

and can, with full trace logging, produce very large amounts of logging output in a short amount
of time.

API Pre-/Post-Condition and Integrity Checking

In line with good programming practices and API guidelines, the CPC framework uses a large num-
ber of assertion checks to ensure that pre- and postconditions defined in the CPC API specifications
hold at all times. The resulting seven hundred assertion checks3 enable the current implementation
to fail fast in many typical cases of incorrect API usage.

The CPC framework furthermore includes a large number of internal integrity checks which can
detect a large variety of potential error states. In many cases these integrity checks can successfully
prevent corrupted data from spreading between CPC components or between processing stages of
one component. This approach has proven to be invaluable in supporting the testing and debugging
efforts as it ensures that most internal failures are detected at an early stage and do not propagate
through multiple layers of processing first, before they cause a visible failure.

Due to their potential, negative impact on overall system performance the processing intensive
integrity checks can be switched on and off via a central configuration option. By default they are
switched off.

6.1.2 Unit Testing

In addition to extensive manual testing a number of automated JUnit unit tests have been imple-
mented. As the implementation of unit tests for GUI based applications is a very time consuming
task, the focus was placed on the development of automated tests for components which are either
critical or for which manual testing is very tedious. CPC currently includes 53 unit tests with a
total runtime of roughly 17 minutes.

Most of the unit tests simulate actions of a developer and verify their effects on the internal
clone data. A typical example is the simulation of a user who opens a Java file and starts to make
a number of modifications to the document while at the same time issuing copy and paste actions
every now and then. The unit test verifies the correct creation, modification and position updating

1All logging aspects can be fine tuned. CPC currently ships with a 300 line logging configuration file.
2Each statement potentially producing one or multiple lines of log output.
3The number of assert statements in the code base. One statement typically covers multiple checks.

6.2. EVALUATION 89

Figure 6.1: Comparison of average clone creation rate per hour

of all clone entries after each simulated user action. Some of the other user simulated actions are
external file modifications, refactoring operations and source code reformatting.

The large number of internal integrity checks mentioned in section 6.1.1 furthermore allows the
use of random data for some tests. While the correct position data is not hard coded in these cases,
these tests still offer the possibility of uncovering internal defects which lead to a data corruption
that can be detected by one of the internal integrity checks.

A number of tests also target critical, internal APIs like the Store Provider directly. The test
suite also includes a few load tests.

6.2 Evaluation

Good judgment comes from experience,
and experience comes from bad judgment.

[Frederick P. Brooks]

6.2.1 Survey of Existing Data

To increase the general understanding of copy and paste practices of different developers across
different projects and tasks, some of the data collected in earlier experiments and case studies
was analysed anew with an emphasis on copy and paste actions. The main focus was placed on
the frequency of cloning activities and the size distribution of typical clones in order to obtain
additional support for the claim of Kim et al. concerning their observed high rates of large copy
and paste clones [38].

This yielded 8,004 copy and paste actions by 15 developers, creating 4,363 clones over a total
of 247 programming hours4. The following section gives a short description of the basic settings
and highlights some of the interesting similarities and differences.

4Working time is measured from the first to the last copy and paste operation within a programming session.
Breaks with a duration of one hour or longer are subtracted.

90 CHAPTER 6. TESTING AND EVALUATION

Tapestry Workshop (wk)

In 2007 an experiment aimed at investigating the differences between pair programming and side
by side programming required five programming teams of two students each to solve a specific
web-development task [54]. The five teams were given a three day introduction into the Tapestry
web-application framework prior to the experiment which lasted one day.

The experiment consisted of a morning and an afternoon session. During the morning session
the participants were allowed to work in either a pair programming or a side by side programming
mode and could freely switch between programming modes. During the afternoon session all teams
were limited to one computer per team and had to adopt a pair programming approach.

It is important to note that this setup makes it impossible to distinguish between the two
developers in each team as they could freely change computers and spent prolonged periods of time
in front of the same computer. The members of team 2 even spent all of their time in the pair
programming mode.

During the experiment the teams had to implement a new database entity and a number of
additional functionalities for an existing web-application which each team had implemented during
the initial three day workshop. The new requirements were very similar to other problems which
were already covered during the workshop. The experimental setup thus strongly encouraged
copying code segments from the existing parts of the web-application.

On average the participants created 25.07 new clones per hour. The majority of these clones
were very short and were unlikely to introduce any adverse effects. However, among these clones
were 7.76 clones per hour which were larger than 80 characters and 2.56 clones per hour which
exceeded 250 characters in size (median: 22.36, 6.86 and 2.57 respectively). This is also shown in
figure 6.1.

Plat Forms (pf)

In 2007 the Freie Universität Berlin hosted an international programming contest aimed at com-
paring different technological platforms for developing web-based applications. Nine professional
teams of three developers each had 30 hours to complete a specific task. Each team was free to use
its preferred programming language and tools to solve the task [48, 49].

Two members of one of the Perl teams used an instrumented version of the Eclipse IDE which
logged all programmer actions. The 1,033 copy and paste actions recorded during the 19 hours of
development yielded a total of 587 clones.

It is interesting to note that, while this observation is the only one which was not based on
Java programming, the average cloning rates and the clone size distribution are still very similar
to those obtained in other observations.

ECG Clone Tracking Evaluation (cnp)

Prior copy and paste related work at the Freie Universität Berlin provided an additional data
set [46]. As part of an older, copy and paste related thesis a developer was observed for five hours

6.2. EVALUATION 91

Clone size in characters

cnp

id1

id2

pf

wk

0 200 400 600 800 1000

●
M

●
M

●
M

●
M

●
M

Figure 6.2: Comparison of clone size distribution

while trying to solve the Rubik’s Cube Solver problem, as specified for the ACM South Central
Region 2002 Programming Contest5.

The task was specifically selected because it was believed that the structure of the problem
would result in a large number of copy and paste actions. Knowledge about the copy and paste
related nature of the experiment is another factor which may have increased the number of copy
and paste operations by the observed programmer.

This experiment displayed the highest cloning rate observed so far. The developer executed 326
copy and paste actions which created a total of 235 clones. This translates to 54.65 new clones per
hour of which 10.23 and 7.21 per hour where larger than 80 or 250 characters.

Individual Developers (id1/id2)

The three experimental setups outlined above have a potentially crucial short coming. Considering
the artificial nature of the tasks and their limited scope, it seems plausible that the copy and paste
behaviour of the developers might have been affected by the experiments. Especially the tight time
constraints and the prospect of not having to maintain the created software afterwards could entice
programmers to adopt a more cloning intensive development style than they normally would.

To address this limitation, two additional programmers were observed during their normal
programming work in their usual work environment. This resulted in 5,067 copy and paste actions
and 2,688 clones over a total working time of 153 hours.

Results of Interest

While the small sample of only two developers does not allow any general conclusions, the results
do at least provide some support for our doubts about the validity of copy and paste related results
obtained from short, artificial experimental setups. Figure 6.2 displays the clone size distribution
for the three experiments and the two observed developers. There seems to be a noteable shift

5http://acm2002.csc.lsu.edu/problems/

http://acm2002.csc.lsu.edu/problems/

92 CHAPTER 6. TESTING AND EVALUATION

Figure 6.3: Comparison of cut, copy and paste event distribution

towards larger clone sizes when looking at long term programming efforts on normal projects,
compared to the three experiments.

During these experiments, the clone size distribution was fairly similar with a large number of
small clones. Between 63 and 69 percent of all clones were smaller than 50 characters. However,
only 41 to 47 percent of the clones created by the two observed programmers were in this size
range.

A potential cause for this trend could be the perceived time pressure by the developers during
the three experiments with fixed ‘deadlines’, leading to a lot of copy and paste actions for identifiers
and other small code segments which might otherwise be typed in manually.

However, it remains unclear whether the observed effect might be mainly related to the nature
of the tasks chosen for the experiments and the characteristics of the project work done by the
observed programmers, to the characteristics of the individual developers or whether this constitutes
a general effect. It is to be expected that all three factors are involved. Though their individual
weights are unknown.

It is furthermore interesting to note that the highly copy and paste intensive Rubik’s Cube Solver
task (cnp) also displayed a different distribution of cut, copy and paste actions. The developer
tended to paste the same code part multiple times and almost never executed a cut operation.
This might be an indication for use of syntactic templates as defined by Kim et. al [38].

Conclusion

Overall, the obtained results confirm the observations of Kim et al. [38]. Programmers seem to
produce a large number of copy and paste clones during software development tasks and while the
large majority of these clones are too small to be of interest, the number of larger clones is still
considerable.

During the analysed experiments and observations, programmers created an average of 24.76
new clones per hour. On average, 7.25 of these were larger than 80 characters and 2.7 were even
larger than 250 characters. This means that an 8 hour working day would result in more than 50

6.2. EVALUATION 93

Clone size in characters

p1

p2

p3

0 50 100 150 200

●
M

●
M

●
M

●● ● ● ●● ●●●●●● ● ●●●●
● ● ●●● ● ●

● ● ● ● ●

Figure 6.4: Comparison of clone size distribution

large clones (more than 250 a week and 1000 a month).

These findings hint at the potential seriousness of copy and paste cloning during software
development and thus provide additional justification for this thesis.

6.2.2 CPC

Practical Application

Early prototype versions of CPC have been distributed to a number of people to facilitate the
collection of initial feedback. This initial prototyping phase uncovered a couple of problems which
were addressed in subsequent prototype versions. Unfortunately, a reliable collection of clone data
was not possible during this phase. A number of changes made to the way clones are tracked and
the clone data storage format required a number of resets of the clone database.

Starting in November a pre-release of the CPC plug-in entered its active testing phase. Since
then CPC has been used by the author and two other programmers during their normal day to
day programming work under Linux, MacOS and Windows. Thus covering many weeks of full time
software development work6.

Aside of the rename refactoring problem described in section 5.3.2, no critical problem was
reported and no further reset of the clone database was required. The clone data available for
evaluation thus begins on the 14. November 2007, roughly two months before the deadline for this
thesis.

Collected Data

During the two month long testing phase with three developers a total of 6,464 copy and paste
clones were created under the supervision of CPC. The different data collection approach means
that the obtained results can not be directly compared to the ECG Lab based data covered in
section 6.2.1.

6The third programmer was not currently engaged in implementation tasks and thus created only a very small
number of clones. All values for p3 should therefore be taken with a grain of salt.

94 CHAPTER 6. TESTING AND EVALUATION

Figure 6.5: Clone content classifications and modification states

Figure 6.4 displays the size distribution of the created clones. It shows an expected trend, most
clones created by developers during their day to day work were very small. For programmer 1
the median of the clone length in characters was 26 and for programmer 2 it was even only 21.
Programmer 3’s relatively ‘high’ median of 50 needs to be considered with some caution, as was
already outlined before. Even though large clones up to ten thousand characters in size did occur,
they were very rare.

While the values may not be directly comparable, it is interesting to note that these values seem
to contradict our assessment in section 6.2.1 in part. When compared with the size distribution in
figure 6.2, the size distribution of the clones collected by CPC seems to resemble that of the clones
collected during the three experiments more than it resembles the one of the clones produced by
the two observed developers. More data will be required to provide a clear answer to our initial
doubts about the validity of copy and paste data collected in short, artificial experimental setups.

Figure 6.5 shows the distribution of clone classifications as produced by the current Classification
Provider implementation (see section 4.1). The high percentage of clones without classification
makes it obvious that additional classification approaches are needed. Typical clones which do
currently not receive any classification are collections of one or more lines that do not contain any
control structures or clones which only cover a part of a programming construct, i.e. a method
header and the first three lines of the method.

Aside from this obvious fact, the sample of three developers was too small and the variation
between developers too high for any general conclusions. The high degree of cloning activities
within comments observed for programmer 1 compared to programmer 2 might be related to their
corresponding tasks. Programmer 1 primarily worked on a final implementation while programmer
2 mostly worked on a prototype implementation. Source documentation might thus have had more
importance for programmer 1.

Figure 6.5 also displays the modification state distribution for all three developers. The majority

6.2. EVALUATION 95

Clone size in characters

modified

orphan

unchanged

0 100 200 300 400 500

●
M

●
M

●
M

Figure 6.6: Size distribution of clones by clone state

Figure 6.7: Clone state distribution by clone size category

of all created clones was never modified7 and a noteable percentage entered the orphan state8.

It is furthermore interesting to look at the the modification state in relation to the size of
the clones. Figure 6.6 shows quite clearly that most clones which remained unchanged were very
small and that the average size of clones which actually ‘evolved’ in one way or another, be it a
modification or the transition into the orphan state, was much larger. Which was to be expected
as it seems generally very plausible that the chance of modification is strongly related to the size
of a clone. This is also visible in figure 6.7, the majority of larger clones have been modified in one
way or another.

The modified clones have been examined in a bit more detail. Figure 6.8 visualises the changes
made to the modified clones in two metrics. On the left it shows the distribution of differences
between the clone sizes before and after all modifications. It is interesting to see that the overall
size of most modified clones changed by less than 10 characters during their lifetime. On the other
hand, even ten characters can already represent a size change of more than ten percent for many
clones (the median length for modified clones is 82 characters, see also figure 6.6).

However, a number of modifications may change a clone without affecting its size considerably.
The left side of figure 6.8 displays the difference distribution by means of the Levenshtein distance
between the contents prior and after all modifications9. Even though the difference between simply

7Orphaned clones can either be unchanged or modified. The total unchanged percentage is thus likely to be even
higher than displayed here.

8A clone becomes an orphan once all other members of its clone group have been removed.
9Plain Levenshtein distance without any prior source code normalisation.

96 CHAPTER 6. TESTING AND EVALUATION

Figure 6.8: Size of clone modifications in content length difference and Levenshtein distance

Group size in clones

groupsize

1 2 3 4

●
M

Figure 6.9: Size distribution of clone groups

using the clone length change and the Levenshtein distance is noticeable, the average modification
made to each clone still remains relatively low.

By keeping track of the entire modification history of each clone CPC provides a new granularity
of clone data which has so far not been available as existing static clone detection approaches are
limited to the use of source code repository version histories which do not provide information
about individual modifications. The remainder of this section lists some examples of such data.

While some clone groups had up to 72 members, most clone groups remained very small in size
as can be seen in figure 6.9. Most clone groups, even those with more than two members, were
entirely created shortly after the group itself was created. The median delay between the creation
of the first and last member of a clone group is just 19 seconds which indicates that most groups

Group growth delay in minutes

growth

0 10 20 30 40 50 60

●

Figure 6.10: Delay between creation of first and last clone in group

6.2. EVALUATION 97

Last change delay in hours

delay

0 100 200 300 400

●
M

Figure 6.11: Delay in hours between clone creation and last modification

Number of modifications made to clone content

modifications

0 5 10 15 20 25 30

●
M

Figure 6.12: Number of modifications made to a clone’s content

of a size larger than two were created by pasting the same clipboard content multiple times. This
is also visible in figure 6.10. It should be noted that these values would be likely to increase if a
more lenient Fuzzy Position to Clone Matching Provider would be employed (see section 3.4.2).

Figure 6.11 displays the distribution of the delay between clone creation and last modification.
As expected a large number of clones were modified shortly after their creation and remained static
from that point onwards. The median lies at two minutes and 37 seconds. Figure 6.12 represents
another example. It shows the number of modifications CPC has collected for modified clones.
While the number of modifications per clone tended to be low, most clones underwent multiple
modifications before reaching their ‘final’ state. In most cases these modifications were small and
happened in rapid succession. Figure 6.13 furthermore shows that the individual modifications
tended to be rather small.

Conclusion

Considering the small developer sample and the time frame the collected data has already proven
to be quite interesting. So far the data has mostly been used as means of feedback for areas of the
CPC framework which need improvement but the author is quite confident that CPC based large
scale data collection is likely to provide much better insights.

Size of modification in characters

size

0 5 10 15 20

●
M

Figure 6.13: Size distribution of modifications made to a clone’s content

98 CHAPTER 6. TESTING AND EVALUATION

However, development of tools and approaches to handle the resulting wealth of data is a crucial
aspect of future work. Even now a large part of the information collected by CPC could only be
examined very superficially. The 6,464 collected clones are accompanied by detailed information
about 40,606 modifications which are likely to hold a number of interesting insights.

Chapter 7

Conclusion and Future Work

7.1 Looking back

The enormous complexity of the Eclipse platform posed one of the main challenges. Together with
the fact that seldomly used APIs tend to be less well documented this made the adoption of a
structured well planned approach very hard. A large part of the time invested during this project
was spent on exploring and understanding documented and undocumented parts of the Eclipse
platform and its APIs.

As was already expected at the outset of this thesis, missing and inappropriate APIs emerged
as the key problems for CPC, especially in the area of remote synchronisation. The integrated CVS
team provider of Eclipse is the only team provider which implements all Eclipse team APIs. I.e.
the Logical Model Integration API, a major Eclipse team API, is not implemented by any of the
available SVN team providers. And even when APIs are supported by a team plug-in, they are not
always implemented completely. At other times existing APIs are implemented but do not align
well with key requirements of CPC or crucially needed APIs, like a Team operation listener API,
are missing completely.

Another point of serious concern were implementation details which, though important, were
not part of the official specification. The Eclipse file buffer framework is a good example. While
all plug-in contributors are encouraged to access documents only via this framework, direct access
to the underlying file is still acceptable. Plug-ins like CPC which rely on observing all document
modifications thus need to spend considerable effort on detecting and recovering from such situa-
tions.

Defects and failures in Eclipse components and other plug-ins represented another time con-
suming area as time spent on identifying the responsible parties and in some cases even debugging
and patching them could have been put to better use. It was furthermore unfortunate that a reuse
of the existing ECG Sensor proved to be infeasible rather late in the development cycle after con-
siderable effort had been put into its restructuring and extending. In later stages of the project,
the remote synchronisation aspects of CPC emerged as the main hindrance to CPC’s progress.
Even with a lot of effort spent, a good reliable solution could not be achieved without requiring
modifications or extensions to some of the Eclipse team APIs.

99

100 CHAPTER 7. CONCLUSION AND FUTURE WORK

7.2 Looking ahead

In the short run, the way ahead is clear. Due to the time constraints for this thesis many parts of
CPC only cover the basic requirements. Heuristics and strategies in general are prime examples.
The overall usefulness of CPC can be improved considerably by providing additional strategies for
the clone classification, similarity and modification notification heuristics. The interesting aspect of
better strategy and provider implementations is their tendency to benefit a large number of other
components within the CPC framework.

Additional clone data visualisations are another area which could greatly benefit CPC. The
static clone detection research community has published a wealth of ideas on the topic such visual-
isations. Some available implementations are even based on Eclipse and might provide interesting
reuse opportunities.

Once the Eclipse team API situation has improved, further progress on the topic of remote
synchronisation would be highly interesting as it would open up a whole new target audience for
CPC. In other areas Eclipse API improvements could lead to a reduction in complexity of the CPC
framework if fewer special cases need to be handled. There is moreover no reason why CPC could
not be extended to support other languages besides Java. All language specific areas of CPC are
located within registered strategies and additional strategies for new languages could thus be easily
added.

Section 2.3.1 furthermore introduced a number of potential future extensions which are not
covered here again for the sake of briefness. However, an especially interesting aspect of CPC
will be its potential as a source for large amounts of data on the copy and paste activities of
programmers. If CPC is adopted by a large user base, it could help provide new insights into the
micro-process of software development. In which case an entirely different topic might achieve a high
relevance, data privacy. Large scale data collection is likely to not only require an automated data
submittion system, which CPC could easily support, but may also require automated anonymisation
and obfuscation approaches, for users and source code. In case of a high adoption rate of CPC
another interesting option might furthermore be the integration of a trimmed down ECG Sensor
which could be used to optionally enrich the copy and paste data collected by CPC with further
micro-activity data.

A very interesting topic for the near future will be the potential reuse possibilities between
CPC and the copy and paste tracking tool CnP which is currently being developed at Clarkson
University (see section 2.2.1). The very high overlap between the goals of both tools makes them
almost predestined to exchange experiences and very likely to also reuse implementation aspects.
Discussion with the author of CnP are currently ongoing and CPC may well emerge as the base
framework for future versions of CnP.

Developments at the National University of Singapore (NUS) may also prove to be interesting.
Some of the potential use cases for CPC at the NUS have already been outlined in section 2.2.1 and
still others can readily be envisioned. The strong focus on cloning in software applications and on
all the associated areas of reseach have resulted in a large number of tools like XVCL, CloneMiner
and others which clearly hold collaboration possibilities [15, 58].

7.3. CONCLUSION 101

7.3 Conclusion

This thesis has presented a highly flexible framework for clone tracking within the Eclipse IDE.
The strong emphasis on flexibility and future reuse has resulted in a complex but versatile im-
plementation which currently consists of a collection of 28 highly independent plug-ins, 14 service
providers, 101 interfaces, 355 classes and 66,573 lines of code1.

CPC represents the very first copy and paste clone tracking utility available for the Eclipse
platform which is ready for general use. It supplies the Eclipse IDE with a central integration
point for clone tracking activities and represents an ideal base for all kinds of tools which require
clone or position tracking functionality. CPC provides such extensions with a degree of resilience
against external file modifications which has so far not been available within the Eclipse platform.
The very open and loosely coupled nature of the CPC framework enables 3rd parties to reuse or
exchange arbitrary parts of the implementation easily and ensures that contributions from different
parties can coexist within the same CPC installation.

This project has furthermore uncovered multiple defects in the Eclipse platform and its team
provider plug-ins and has provided patches and valuable information to aid in their removal. A
proposal for a strongly needed new Team operation listener API was submitted and a number of
other recommendations for improvements in the Eclipse platform and team provider APIs were
made.

Feedback received from developers who were involved in the testing phases of CPC was over-
whelmingly positive. It was reported that even very early versions which did not include any
functionality aside of basic clone tracking and marking provided valuable information to the users.
This is in line with our initial expectation that the clone tracking and visualisation features of CPC
might provide improved awareness of the cloning situation within a software application. It is quite
plausible that such increased awareness could lead to fewer clone related defects.

The evaluation of existing copy and paste data as well as new data collected during the testing
phase of CPC yielded results on average cloning rates and the pervasiveness of copy and paste
clones which confirmed earlier published findings. The detailed clone data collected by CPC,
especially the clone modification histories and general clone evolution information, provides a new
level of granularity much finer than available before. The employed copy and paste based approach
furthermore provides a much higher precision than any static clone detection approach. Application
of CPC might thus be able to provide new insights into copy and paste operations and the micro-
process in general.

The large number of potentially very interesting extensions to CPC and the considerable interest
at the Clarkson University and the National University of Singapore are likely to ensure continued
progress and development. All in all, the future of CPC looks quite promising.

1Figure does not include reused and automatically generated source code or blank lines.

Software and cathedrals are much the same
— first we build them, then we pray.

Bibliography

[1] Apache commons logging. http://commons.apache.org/logging/.

[2] Apache log4j — logging library. http://logging.apache.org/log4j/.

[3] Castor — XML data binding framework for Java. http://www.castor.org.

[4] db4objects — object database for java. http://www.db4o.com.

[5] Eclipse online help. http://help.eclipse.org.

[6] Eclipse online resources. http://www.eclipse.org/resources/.

[7] Hsqldb — the lightweight 100http://www.hsqldb.org/.

[8] PMD plug-in for Eclipse. http://pmd.sourceforge.net.

[9] PostgreSQL — SQL DBMS. http://www.postgresql.org.

[10] Team support for logical model integration. http://help.eclipse.org/help33/topic/org.
eclipse.platform.doc.isv/guide/team_model.htm.

[11] Eclipse platform — API rules of engagement. http://help.eclipse.org/help33/topic/

org.eclipse.platform.doc.isv/reference/misc/api-usage-rules.html, May 2001.

[12] Eclipse platform overview. http://www.eclipse.org/platform/overview.php, 2006.

[13] R. Al-Ekram, C. Kapser, R. C. Holt, and M. W. Godfrey. Cloning by accident: an empirical
study of source code cloning across software systems. In ISESE, pages 376–385. IEEE, 2005.

[14] L. Aversano, L. Cerulo, and M. D. Penta. How clones are maintained: An empirical study. In
R. L. Krikhaar, C. Verhoef, and G. A. D. Lucca, editors, CSMR, pages 81–90. IEEE Computer
Society, 2007.

[15] H. A. Basit and S. Jarzabek. Detecting higher-level similarity patterns in programs. In
M. Wermelinger and H. Gall, editors, ESEC/SIGSOFT FSE, pages 156–165. ACM, 2005.

[16] H. A. Basit and S. Jarzabek. Efficient token based clone detection with flexible tokenization.
In I. Crnkovic and A. Bertolino, editors, ESEC/SIGSOFT FSE, pages 513–516. ACM, 2007.

103

http://commons.apache.org/logging/
http://logging.apache.org/log4j/
http://www.castor.org
http://www.db4o.com
http://help.eclipse.org
http://www.eclipse.org/resources/
http://www.hsqldb.org/
http://pmd.sourceforge.net
http://www.postgresql.org
http://help.eclipse.org/help33/topic/org.eclipse.platform.doc.isv/guide/team_model.htm
http://help.eclipse.org/help33/topic/org.eclipse.platform.doc.isv/guide/team_model.htm
http://help.eclipse.org/help33/topic/org.eclipse.platform.doc.isv/reference/misc/api-usage-rules.html
http://help.eclipse.org/help33/topic/org.eclipse.platform.doc.isv/reference/misc/api-usage-rules.html
http://www.eclipse.org/platform/overview.php

104 BIBLIOGRAPHY

[17] H. A. Basit, D. C. Rajapakse, and S. Jarzabek. Beyond templates: a study of clones in the stl
and some general implications. In G.-C. Roman, W. G. Griswold, and B. Nuseibeh, editors,
ICSE, pages 451–459. ACM, 2005.

[18] H. A. Basit, D. C. Rajapakse, and S. Jarzabek. An empirical study on limits of clone unification
using generics. In W. C. Chu, N. J. Juzgado, and W. E. Wong, editors, SEKE, pages 109–114,
2005.

[19] J. Bloch. How to design a good api and why it matters. In OOPSLA ’06: Companion to
the 21st ACM SIGPLAN conference on Object-oriented programming systems, languages, and
applications, pages 506–507, New York, NY, USA, 2006. ACM Press.

[20] U. Borkowski. C4d website. http://www.udo-borkowski.de/C4D/, 2004.

[21] B. E. Bulgaria. Simscan for eclipse. http://blue-edge.bg/simscan/simscan_help_r1.htm.

[22] J. Cordy. Comprehending reality: Practical challenges to software maintenance automation.
In Int’l Workshop on Program Comprehension, pages 196–206. IEEE Computer Society Press,
2003.

[23] E. Duala-Ekoko and M. P. Robillard. Tracking code clones in evolving software. In ICSE,
pages 158–167. IEEE Computer Society, 2007.

[24] S. Ducasse, M. Rieger, and S. Demeyer. A language independent approach for detecting
duplicated code. In ICSM, pages 109–118, 1999.

[25] T. Dudziak and J. Wloka. Tool-supported discovery and refactoring of structural weaknesses
in code. Master’s thesis, Technical University of Berlin, 2002.

[26] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: improving the design
of existing code. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[27] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns - Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional, 1995.

[28] S. Giesecke. Clone-based Reengineering für Java auf der Eclipse-Plattform. Master’s thesis,
Carl von Ossietzky Universität Oldenburg, 2003.

[29] P. Jablonski. Dissertation proposal - techniques for detecting and preventing copy-
and-paste errors during software development. http://copypastecode.googlepages.com/

Detecting-and-Preventing-Errors.pdf, 2007.

[30] P. Jablonski. Managing the copy-and-paste programming practice in modern ides. In R. P.
Gabriel, D. F. Bacon, C. V. Lopes, and G. L. S. Jr., editors, OOPSLA Companion, pages
933–934. ACM, 2007.

[31] P. Jablonski and D. Hou. Cren: A tool for tracking copy-and-paste code clones and renaming
identifiers consistently in the ide. OOPSLA - Workshop: Eclipse Technology Exchange, 2007.

http://www.udo-borkowski.de/C4D/
http://blue-edge.bg/simscan/simscan_help_r1.htm
http://copypastecode.googlepages.com/Detecting-and-Preventing-Errors.pdf
http://copypastecode.googlepages.com/Detecting-and-Preventing-Errors.pdf

BIBLIOGRAPHY 105

[32] S. Jekutsch. Der Mikroprozess von Programmierfehlern. In Software Engineering 2007 -
Beiträge zu den Workshops, Nachwuchsworkshop der Software Engineering Konferenz 2007.
Gesellschaft für Informatik.

[33] S. Jekutsch. Micro-process of software development website. https://www.inf.fu-berlin.

de/w/SE/MicroprocessHome.

[34] I. Jeong. Sdd for eclipse. http://wiki.eclipse.org/index.php/Duplicated_code_

detection_tool_(SDD).

[35] I. Jeong and S. Lee. Sdd: high performance code clone detection system for large scale source
code. In R. Johnson and R. P. Gabriel, editors, OOPSLA Companion, pages 140–141. ACM,
2005.

[36] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: A multilinguistic token-based code clone
detection system for large scale source code. IEEE Trans. Software Eng., 28(7):654–670, 2002.

[37] C. Kapser and M. W. Godfrey. ”cloning considered harmful” considered harmful. In WCRE,
pages 19–28. IEEE Computer Society, 2006.

[38] M. Kim, L. Bergman, T. Lau, and D. Notkin. An ethnographic study of copy and paste
programming practices in oopl. In ISESE ’04: Proceedings of the 2004 International Sym-
posium on Empirical Software Engineering, pages 83–92, Washington, DC, USA, 2004. IEEE
Computer Society.

[39] M. Kim and D. Notkin. Program element matching for multi-version program analyses. In
S. Diehl, H. Gall, and A. E. Hassan, editors, MSR, pages 58–64. ACM, 2006.

[40] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empirical study of code clone genealo-
gies. In ESEC/FSE-13: Proceedings of the 10th European software engineering conference
held jointly with 13th ACM SIGSOFT international symposium on Foundations of software
engineering, pages 187–196, New York, NY, USA, 2005. ACM.

[41] M. Kranz. Animation vergangener Codeänderungen von Java-Methoden. https://www.inf.

fu-berlin.de/w/SE/ThesisCodeMetamorphoses.

[42] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: Finding copy-paste and related bugs in
large-scale software code. IEEE Trans. Software Eng., 32(3):176–192, 2006.

[43] A. Lozano, M. Wermelinger, and B. Nuseibeh. Evaluating the harmfulness of cloning: A
change based experiment. In MSR, page 18. IEEE Computer Society, 2007.

[44] Z. A. Mann. Three public enemies: Cut, copy, and paste. Computer, 39(7):31–35, 2006.

[45] F. Mitter. Tracking source code propagation in software systems via release history data and
code clone detection. Master’s thesis, Technische Universität Wien, 2006.

https://www.inf.fu-berlin.de/w/SE/MicroprocessHome
https://www.inf.fu-berlin.de/w/SE/MicroprocessHome
http://wiki.eclipse.org/index.php/Duplicated_code_detection_tool_(SDD)
http://wiki.eclipse.org/index.php/Duplicated_code_detection_tool_(SDD)
https://www.inf.fu-berlin.de/w/SE/ThesisCodeMetamorphoses
https://www.inf.fu-berlin.de/w/SE/ThesisCodeMetamorphoses

106 BIBLIOGRAPHY

[46] S. Papadopoulos. Verfolgen von Kodekopien zur Defektvermeidung in Eclipse. Master’s thesis,
Free University of Berlin, 2007.

[47] D. L. Parnas. Software aging. In ICSE, pages 279–287, 1994.

[48] L. Prechelt. Plat forms 2007 task: Pbt. Technical Report B 07-03, Institut für Informatik,
Freie Universität Berlin, 2007.

[49] L. Prechelt. Plat forms 2007: The web development platform comparison — evaluation and
results. Technical Report B 07-10, Institut für Informatik, Freie Universität Berlin, 2007.

[50] D. C. Rajapakse and S. Jarzabek. An investigation of cloning in web applications. In D. Lowe
and M. Gaedke, editors, ICWE, volume 3579 of Lecture Notes in Computer Science, pages
252–262. Springer, 2005.

[51] C. K. Roy and J. R. Cordy. A survey on software clone detection research. Technical Report
2007-541, Queen’s University at Kingston, 2007.

[52] F. Schlesinger. Protokollierung von Programmiertätigkeiten in der Eclipse-Umgebung. Mas-
ter’s thesis, Free University of Berlin, 2005.

[53] F. Schlesinger and S. Jekutsch. ElectroCodeoGram: An Environment for Studying Pro-
gramming. Workshop on ”Ethnographies of Code” at Lancaster University — https:

//www.mi.fu-berlin.de/wiki/pub/SE/ElectroCodeoGram/lancaster.pdf, March 2006.

[54] U. Stärk. Empirische Untersuchungen des Side-by-Side Programming. https://www.inf.

fu-berlin.de/w/SE/ThesisSBSP.

[55] R. Tairas. Clone detection literature overview. http://www.cis.uab.edu/tairasr/clones/

literature/.

[56] R. Tairas, J. Gray, and I. Baxter. Visualization of clone detection results. In eclipse ’06:
Proceedings of the 2006 OOPSLA workshop on eclipse technology eXchange, pages 50–54, New
York, NY, USA, 2006. ACM.

[57] M. Toomim, A. Begel, and S. L. Graham. Managing duplicated code with linked editing. In
VL/HCC, pages 173–180. IEEE Computer Society, 2004.

[58] H. Zhang and S. Jarzabek. XVCL: a mechanism for handling variants in software product
lines. Science of Computer Programming, 53(3):381–407, 2004.

Unless otherwise stated all provided URLs were valid on 2008-01-23.

https://www.mi.fu-berlin.de/wiki/pub/SE/ElectroCodeoGram/lancaster.pdf
https://www.mi.fu-berlin.de/wiki/pub/SE/ElectroCodeoGram/lancaster.pdf
https://www.inf.fu-berlin.de/w/SE/ThesisSBSP
https://www.inf.fu-berlin.de/w/SE/ThesisSBSP
http://www.cis.uab.edu/tairasr/clones/literature/
http://www.cis.uab.edu/tairasr/clones/literature/

	Introduction
	The Micro-process and ECG
	Terminology
	Clone Research
	Pervasiveness of Cloning
	Copy and Paste
	Risks and Benefits
	Summary and Conclusion

	Goals of this Thesis
	Outline of this Thesis

	Requirements
	Vision
	Related Work
	CnP and CReN
	CloneTracker
	CbR - Clone-based Reengineering
	Others
	Related Work at FU Berlin

	Requirements for CPC
	Potential Extensions
	Requirements
	Limitations

	Design and Implementation
	The Eclipse Platform
	Generic Design Goals and Approaches
	The CPC Core
	Service Provider API
	Event Hub API
	Clone Data Objects

	The CPC Modules
	CPC Sensor - Eclipse Event Hooks
	CPC Track - Clone Tracking
	CPC Store - Data Persistence
	CPC Mapping - Data Mapping
	CPC Classification - Clone Categorisation
	CPC Similarity - Semantic Equivalence and Differences
	CPC Notification - Clone Modification Warnings
	CPC Reconciler - External Modification Handling
	CPC Store Remote - Remote Synchronisation
	CPC Imports and Exports
	CPC UI and Notifications UI

	Heuristics
	Clone Classification
	Clone Similarity
	Clone Modification Notifications
	Modification Evaluation
	Delayed Notifications

	Challenges and Setbacks
	Planning and Risk Assessment
	Reuse and Performance
	The Eclipse API
	General Complexity and Documentation
	Inconsistent, Inappropriate or Missing APIs
	Conservative Development

	Team Providers
	Failures, Defects and Solutions

	Testing and Evaluation
	Testing
	Testing and Debugging Support
	Unit Testing

	Evaluation
	Survey of Existing Data
	CPC

	Conclusion and Future Work
	Looking back
	Looking ahead
	Conclusion

	Bibliography

