
- Master’s thesis -

CONSTRUCTION AND
ANALYSIS OF TRUST
GRAPHS USING HTTP

TRACES

Freie Universität Berlin

Malvin Thiel

Department of Mathematics and Computer Science

Prof. Dr. Ina Schieferdecker

Dr. Edzard Höfig

© 2013

Abstract

Users of the World Wide Web often aren’t aware of the masses of
private data they are revealing while browsing the Web. For the visual-
isation of privacy violations, a browser plug-in that enables transparent
surfing has been developed by Tobias Fielitz, an associate at Freie Uni-
versität Berlin. The possibilities that the data of this plug-in provides
can be intensified by the collection of any plug-in data at a central place.
Beside returning thus gain knowledge to single instances of the plug-in,
whatsoever analysis are feasible using the obtained data set. The explo-
ration of possible analyses is part of this thesis.

The central data server is developed by using the Google Web Toolkit
(GWT) whereas the data itself is stores as RDF triples using a Virtuoso
server. HTTP traces collected by the transparency plug-in are sent to the
data server using RESTful web services. Exemplary analyses are created
to demonstrate the possibilities of the created trust graph. To enable
simple adding and removal, analyses are constructed as modules inside
an evaluation framework. One such analysis is the calculation of a trust
score that’s integrated into the transparency plug-in using the REST web
service.

The trust score that is pictured by the transparency plug-in informs
users about the privacy rating of websites while browsing them. Contrary
to existing trust ratings, the trust score is calculated using objective pa-
rameters only. However, those HTTP traces merely include a part of
possible privacy related information. Created exemplary analyses are ca-
pable of pointing out some interesting findings about the Web. Anyhow,
the underlying trust graph needs protection from intentional falsifications
of HTTP traces.

© 2013 Malvin Thiel II

Statement of Authorship

With this statement I, Malvin Thiel declare, that I have independently
completed this master’s thesis entitled with "Construction and Analysis
of Trust Graphs using HTTP traces".

The thoughts taken directly or indirectly from external sources are prop-
erly marked as such. This thesis was not previously submitted to another
academic institution and has also not yet been published.

Ahnatal, March 27, 2013

Malvin Thiel

© 2013 Malvin Thiel III

Acknowledgements

I would like to thank many people who helped me completing this the-
sis. First of all my parents Irmgard and Jürgen Thiel for their support
through my whole studies. Without their understanding of the impor-
tance of this academic grade, this thesis would not have been possible.

Then Dr. Edzard Höfig, my supervisor, for his valuable support, his help-
ful suggestions and encouragement for this project. The Software Engi-
neering research group at Freie Universität Berlin for the helpful ideas
and motivation they gave me. Prof. Dr. Ina Schieferdecker for making
this thesis possible. Tobias Fielitz for his excellent support about the
transparency plug-in.

I also have to thank Richard Hancock for his help of getting a custom
built version of the Jena framework to run on the Google App Engine.
Gerrit Rindermann for bouncing ideas with me. Stefan Macke for his
LaTeX template.

© 2013 Malvin Thiel IV

Contents

1. Introduction 1
1.1. Background . 1
1.2. Motivation . 2
1.3. Approach . 3

2. Background Information 4
2.1. Hypertext Transfer Protocol 4
2.2. Google App Engine . 7
2.3. Google Web Toolkit . 10
2.4. Metadata . 13
2.5. Resource Description Framework 14

2.5.1. RDF Graph . 15
2.5.2. RDF-XML . 16
2.5.3. RDF-Schema . 18
2.5.4. RDF frameworks 20
2.5.5. SPARQL . 25

2.6. Transparency plug-in . 27

3. Analysis of existing literature 29
3.1. Privacy concerns of third party widgets 29

3.1.1. Methods of user tracking 31
3.1.2. Privacy threats 34
3.1.3. Techniques against tracking 36

3.2. Analysis of HTTP traces 39
3.2.1. Personalised advertising 39
3.2.2. Usability improvements 41
3.2.3. Pattern recognition on the Web 42
3.2.4. Market analyses 44

3.3. Trust among the Web . 44
3.4. Existing trustworthiness ratings 45
3.5. Storage methods for HTTP traces 51

© 2013 Malvin Thiel V

4. The trust graph 53
4.1. Data collection and preparation 53

4.1.1. Collectable data 53
4.1.2. Data separation 58
4.1.3. Data enhancement 59

4.2. Construction of the trust graph 61
4.3. Analysing the trust graph 63

4.3.1. Tracking probabilities and market shares 63
4.3.2. Third party content distribution by country . . . 65
4.3.3. Media caching . 67
4.3.4. Content inclusions by country 68

4.4. Calculation of a trust score 71
4.4.1. Data parameters 71
4.4.2. The algorithm . 72
4.4.3. Evaluation towards existing ratings 74

5. Design and Implementation 75
5.1. RESTful web services . 76
5.2. Analysis modules . 79
5.3. Transparency plug-in modifications 81

6. Conclusion 83
6.1. Results . 83
6.2. Critical review . 83
6.3. Further Work . 84

Glossary 86

Bibliography 88

A. Appendix 102
A.1. RDF Schema of the trust graph 102
A.2. Internet only version: Privacy International ranking . . . 106
A.3. SPARQL queries . 108
A.4. Sourcecode . 114

© 2013 Malvin Thiel VI

List of Figures

2.1. Simple HTTP communication 4
2.2. RDF graphs 1 and 2: Person ages and friends 15
2.3. RDF graph 3 (1 and 2 combined): Person ages and friends 16
2.4. Jena architecture overview [Jen12] 22
2.5. Sesame architecture overview [BH01] 23
2.6. Transparency plug-in . 28

3.1. Overview of an Ad Recommendation System [TMKD09] 40
3.2. McAfee’s SiteAdvisor risk groups [McA13] 47
3.3. The DoNotTrackMe icon shows the number of tracking

attempts made [Abi13] 47
3.4. TrustGauge classes for TrustScore categorisation [Tru09] 48
3.5. HTTP Vocabulary in RDF: Simplified UML diagram . . 52

4.1. HTTP request graph . 54
4.2. Entity-relationship model of the trust graph 62
4.3. Tracker probability and market shares 65
4.4. Third party content distribution by country 66
4.5. Distribution of media caching 68
4.6. Content inclusions by country 70

5.1. Architecture design overview 76
5.2. Sequence diagram of the company retrieval process . . . 78
5.3. Media caching analysis screenshot 80
5.4. UML diagram of IModule 80
5.5. Sequence diagram of an analysis 81
5.6. Trust score visible on browser plug-in icon 82

© 2013 Malvin Thiel VII

List of Tables

2.1. RDF graph 1 and 2 combined and serialised to triples . . 17
2.2. Triple store middlewares useable with Java 20

3.1. TrustGauge factors for TrustScore determination [Tru09] 48

4.1. Request+response information gathered by the plug-in . 56
4.2. Extended request+response information 62

5.1. GWT: Web service URL to entry point mapping 77

A.1. Internet only version: Privacy International ranking . . . 107

© 2013 Malvin Thiel VIII

List of Listings

2.1. HTTP stub of http://spiegel.de/index.html 5
2.2. RDF as XML entities . 17
2.3. RDF as XML attributes 17
2.4. RDF-Schema describing figure 2.3 19
2.5. SPARQL select: everyone who is best friend with Peter . 26
2.6. SPARQL insert: Davids favourite friend 26

4.1. HTTP traces provided by the transparency plug-in . . . 54
4.2. User depended Ajax test 56
4.3. Tracker detection patterns 60
4.4. SPARQL: Tracker probability and market shares 64
4.5. SPARQL: Third party content distribution by country . 65
4.6. SPARQL: Media caching 67
4.7. SPARQL: Content inclusions by country 69
4.8 calculateTrustScore(domain) 72
4.9 calculateTrustScoreForDomain(domain) 73

5.1. GWT: Web service URL to entry point mapping 76
5.2. Turtle RDF extraced from HTTP traces 79
5.3. Javascript code for trust score retrieval 82

A.1. RDF Schema of the trust graph 102
A.2. Average third party cookies over all domains 108
A.3. Average third party cookies of a specific domain domains 109
A.4. Average third party cookies of a specific domain domains 110
A.5. Average trackers of a specific domain 111
A.6. Retrieve a domain’s company 112
A.7. Retrieve the country of a domain 112
A.8. Retrieve all domains operated by a company 113
A.9. Check whether enough information for a trust score cal-

culation is available . 113

© 2013 Malvin Thiel IX

http://spiegel.de/index.html

1. Introduction

1. Introduction

1.1. Background

Back in the days, when the Internet was only a few years old (1994)
and the populace wasn’t using it, there was nothing like a policy but
only some sort of network etiquette [Cra94] which was meant to "pro-
tect" users. In the following few years the size of the World Wide Web
grew enormously. Along with the process of growth, privacy issues came
up. Motivated from the concerns of online user data collection, several
organisations have launched user-empowerment approaches to online pri-
vacy. One such approach was the idea of posting privacy policies on any
specific website. The user was able to read them and decide based on
that privacy policy whether he wants any further interactions. The prob-
lem was, and still today is that they rarely get read [Cra02, p. 3]. The
WC3’s platform for Privacy Preferences Project (P3P) developed a sys-
tem that empowers the user to automatically establish connections only
to websites that match the previously defined privacy criteria of the user
[Cra98]. Even though P3P might sound like an overall solution, only
10% of the Web are supporting P3P in 2003 [BCK03] and not more than
15% in 2009 [RDM09]. Today it seems like we are going back to policies
based on Internet etiquette like the "Do Not Track" HTTP header which
does nothing than kindly ask for not getting tracked [Sch11]. On the
other hand tools and browser extensions got developed to prohibit any
interaction - and therefore any possibility to get tracked - to untrusted
websites or third party widgets (see section 3.4 Existing trustworthiness
ratings).

© 2013 Malvin Thiel 1

1. Introduction

1.2. Motivation

One big reason why browser extensions to prohibit connections to web-
sites that might lower the users online privacy got developed is that users
often have no idea about this problem. When they do, they mostly have
no idea which websites are potentially dangerous and which are not. A
good example is Facebook’s WOT rating (Web of Trust; see section 3.4
Existing trustworthiness ratings). It is well known that the usage of Face-
book is a big privacy issue for the users [WXG11] [Lee11]. However, it
got an excellent rating from users in all categories (including Trustwor-
thiness and Privacy) [WOT13]. That is very deflating since the WOT
rating is especially designed to warn users of such sites. Still this fact
isn’t much of a surprise since most web users haven’t got much expertise
about privacy topics which makes their rating very subjective.

Other extensions, also with the aim to improve user privacy display any
third party widget of the visited website to the user. Ghostery (see section
3.1.3 Techniques against tracking) is one of them. The problem is the
relevance of different widgets, because not all have the same impact on
the users privacy. An experienced user might permit the one and forbid
another, but the big mass can’t distinguish between the bulk of widgets
out there. Indeed, much more information is applicable when browsing
websites including third party widgets than just the visible to the user.
Often it’s not even possible to see what exactly is included when browsing
websites other than with special developer tools and knowledge.

A browser extension that aims to display possible threats of third party
widgets just got developed by Tobias Fielitz, an associate at Freie Uni-
versität Berlin [Fie12]. Based on the data this extension collects, analyses
can be made on the inclusion and privacy violations of third party wid-
gets and its integrating websites. Especially when this data gets collected
from all extensions that are installed in the browsers of many users at one
central place. The possibilities that data is coming with can be used to
provide users with additional information about websites, but also save

© 2013 Malvin Thiel 2

1. Introduction

them from getting tracked. This thesis is about to discover and analyse
the possibilities that arise with the collection of that data.

1.3. Approach

For the construction of the trust graph a data server that is capable of
storing arbitrary data collected by the transparency plug-ins of many
users is needed. By demand, this data server should be using the Google
App Engine combined with any RDF storage (see chapter 2 Background
Information for the final runtime environment). After those HTTP traces
are altogether stored into the trust graph, an evaluation of the graph
designates possible analyses. A couple of exemplary analyses which are
mainly based on SPARQL queries demonstrate the opportunities of the
trust graph. A framework where analyses can be embedded into, enables a
simple way of adding, modifying and removing them. The calculation of a
trust score enhances the awareness of privacy to users of the transparency
plug-in. The transparency plug-in is modified for the retrieval and display
of this trust score towards any browsed website.

© 2013 Malvin Thiel 3

2. Background Information

2. Background Information

This chapter explains and describes technical background knowledge
about technologies whose familiarity is necessary for the comprehension
of this thesis. A reader that is confident about the technologies described
may skip this chapter but consult it when necessary.

Furthermore, information about the technology selection process is cov-
ered in section 2.5.4 RDF frameworks.

2.1. Hypertext Transfer Protocol

The world’s web browsers, servers, even related web applications talk
to each other through the Hypertext Transfer Protocol (HTTP). HTTP
is based on a question-answer model where a client is always asking a
server for something that the server responses. To provide reliability, the
HTTP does not come with a bunch of details about how this is realised,
it just makes use of the Transmission Control Protocol (TCP) for any
connection made [GTS+02, p. 11].

A common HTTP connection sequence could look like figure 2.1.

Figure 2.1.: Simple HTTP communication

A client is making a HTTP GET request to a server for a document
called "index.html". When the server has this specified document and
wants to return it to the client, a positive HTTP response including the

© 2013 Malvin Thiel 4

2. Background Information

desired document is sent. Every HTTP request must specify its goal.
The most common case would probably be the retrieval of a document.
But there are several other methods like deleting or creating documents.
To determine whether the server is returning a positive or a negative
response to the client, status codes are sent within each HTTP response.
Numerous codes exist to describe possible response situations in detail
(e.g. 200 - OK, 404 - Not Found, 500 - Internal Server Error). All possible
status codes and their exact meaning are defined along with every existing
HTTP method in RFC 2616 [F+99].

In addition to these status codes every response and request can also
have numerous header variables to provide the server with more detailed
information about a request than specified in the request method. Those
variables are also used to provide the client with details about the trans-
mitted document.

The whole transmission of an simple HTTP request and response to
"http://spiegel.de/index.html" could look like listing 2.1.

1 # Requets #
2 GET /index.html HTTP/1.1
3 Host: www.spiegel.de
4 User−Agent: Mozilla/5.0 Gecko/20100101 Firefox/15.0.1
5 Accept: text/html,application/xhtml+xml,application/xml;q=0.9
6 Accept−Language: de−de,de;q=0.8,en−us;q=0.5,en;q=0.3
7 Accept−Encoding: gzip, deflate
8 Connection: keep−alive
9

10 # Response #
11 HTTP/1.0 200 OK
12 Date: Tue, 25 Sep 2012 13:00:53 GMT
13 Server: Apache−Coyote/1.1
14 X−Powered−By: Servlet 2.4; JBoss−4.0.3SP1/Tomcat−5.5
15 Cache−Control: max−age=120

© 2013 Malvin Thiel 5

http://spiegel.de/index.html

2. Background Information

16 Expires: Tue, 25 Sep 2012 13:02:54 GMT
17 X−Host: lnxp−2863
18 x−robots−tag: index, follow, noarchive
19 Content−Type: text/html;charset=ISO−8859−1
20 Vary: Accept−Encoding
21 Content−Encoding: gzip
22 X−Cache: MISS from lnxp−3950.srv.mediaways.net
23 X−Cache−Lookup: HIT from lnxp−3950.srv.mediaways.net:100
24 Via: 1.1 www.spiegel.de, 1.0 lnxp−3950.srv.mediaways.net
25 Connection: close
26 [... content]

Listing 2.1: HTTP stub of http://spiegel.de/index.html

The listing has two parts, the request and the response. In the first line of
the request, the clients goal is specified: GET document /index.html as
well as the used protocol version (HTTP 1.1). Numerous HTTP header
variables are sent to provide information about the client what could
help to provide the best suited response possible. Example: the header
field "Accept-Language" shows the server that the client would like the re-
quested resource only in one of the specified languages. The "User-Agent"
information can be used to provide responses optimized for specific user
agent (e.g. web browser or smart phones).

The other part of the listing is the HTTP response of the server. The
first line indicates the protocol version (HTTP 1.0), the status code and
a status message which describes the status code (200 - OK). After a
couple of HTTP headers the actual document is transmitted which is
not shown in the example. Anyhow, the response headers can tell many
things about the server and the requested document; for example:

• Server: The server is using the software Apache-Coyote in version
1.1.

© 2013 Malvin Thiel 6

http://spiegel.de/index.html

2. Background Information

• X-Powered-By: Apache-Coyote is running a JBoss Application
Server with an Tomcat servlet container which tells us the requested
page is probably generated with Java.

• Cache-Control, Expires: Tells how long this document is valid
and whether it could be cached.

• Content-Type: The document type is HTML and is encoded with
the charset ISO-8859-1.

• Content-Encoding: The transmitted document is encoded with
gzip.

There are much more standardised header fields which are not used by
this response, but applications are also free to invent their own home-
brewed headers. All of those can be classified into the following five cat-
egories [GTS+02, p. 51]:

1. General headers - Can appear within the request and response
message

2. Request headers - Provide more information about the request

3. Response headers - Provide more information about the response

4. Entity headers - Describe body size and contents, or the resource
itself

5. Extension headers - New headers that are not defined in the
specification

2.2. Google App Engine

Charles Severance author of the Book "Using Google App Engine" de-
scribed the GAE with the following few words:

Google’s App Engine opens Google’s production infrastruc-
ture to any person in the world at no charge. [Sev09, p. 6]

© 2013 Malvin Thiel 7

2. Background Information

Actually the GAE provides a runtime environment inside the Google’s
data centers (the Google cloud). It lets the developer deploy their appli-
cation on it without telling much details about the insides but that it
will run reliable with high performance. Once deployed in the GAE it is
impossible to tell exactly where the application is running. The Google
Cloud decides which instance in what Google data store is used to ex-
ecute a request [Sev09, p. 11]. That means a request to an application
"example.appspot.com" from the eastern United States might get one
numeric IP address, and in south Africa, a totally different numeric IP
address.

Popular applications might run in a number of different data stores at the
same time. Other non popular ones are probably not running anywhere
most of the time. Anyhow, the application itself has no idea if or where
it is running. Which is fact is a very nice feature about the GAE since
it hides all those details completely from the developer by promising
reliability at the same time.

The Google App Engine provides several possible runtime environments
for applications (i.e. Java, Go, Python). The Java runtime environment
is probably the most used one. But also any other programming language
that compilse to, or run in the Java Virtual Machine can be used, such
as PHP (using Quercus), Ruby (using JRuby) and others [San09, p. 3].

All programs running in the GAE sandbox have their access to the envi-
ronment managed by the Java Datastore API (including Java Persistence
API and Java Data Objects) [Goo12c]. Since some time ago, this API
controls the whole persistency within the App Engine. Normal file access
like on conventional JRE’s is not allowed in the cloud. Now, the App En-
gine provides the developer with two more storage methods: The Google
Cloud SQL and the Google Cloud Storage. The Cloud SQL which is still
pretty new provides the App Engine application with a relational SQL
database which is based on the MySQL database system. The Cloud
Storage which is still experimental and therefore under heavy develop-

© 2013 Malvin Thiel 8

2. Background Information

ment provides a storage service for objects and files up to the huge size
of terabytes.

However, the restrictions of the file access is not the only thing an
App Engine developer has to live with. The App Engine restricts the
JRE (or Java standard library) to a limited set of classes, the JRE
Class White List (https://developers.google.com/appengine/docs/
java/jrewhitelist).

The GAE was set to be the chosen runtime environment for this project
by my supervisor, Dr. Edzard Höfig. Therefore tests were made to get
some hello world programs to run. After this first step, an RDF frame-
work needed to run there as well. The open source Semantic Web frame-
work for Java, Jena, was chosen to be the most suited one. After some
trouble making it runnable on the GAE with the precompiled version and
with some excellent tips from Richard Hancock about a custom built ver-
sion, this problem was solved.

The next step was the data storage. The following options were available
[Goo12c]:

1. TheApp Engine Datastore provides a NoSQL schemaless object
datastore, with a query engine and atomic transactions.

2. Google Cloud SQL provides a relational SQL database service,
based on the MySQL relational database management system.

3. Google Cloud Storage provides a storage service for objects and
files up to terabytes in size.

4. The Memcache Java API provides high performance distributed
in-memory data cache.

5. An external data store provider that is accessed through the GAE.

The Memcache is not suitable since it isn’t a permanent storage method.
A problem with the other internal stored methods is the restriction of
the Java programming language by the GAE. Actually it is not possible

© 2013 Malvin Thiel 9

https://developers.google.com/appengine/docs/java/jrewhitelist
https://developers.google.com/appengine/docs/java/jrewhitelist

2. Background Information

to use java.lang.Thread to create new threads on the GAE [San09, p. 89].
Threads are necessary to run an RDF Framework on it.

Another restriction that the GAE comes with, are connections.

App Engine only supports web requests via HTTP or HTTPS,
and email and XMPP messages via the services. It does not
support other kinds of network connections. For instance, a
client cannot connect to an App Engine application via FTP.
[San09, p. 13]

That implies that it is not possible to create a custom socket connection.
This limitation together with the constraint about the threads makes it
nearly impossible to get any RDF framework to run neither to connect
the GAE to an external one. Using the SPARQL protocol via HTTP
would have been an option, but the RDF frameworks also make use of
threads. A custom implementation or a complex and time-consuming
adaption of the framework code would have been necessary which was
neglect in comparison of the advantages the GAE comes with.

Therefore an alternative needed to be chosen. But a suitable runtime
environment needed to fulfil a couple of requirements:

• A possible programming language had to be Java

• The chosen RDF framework Jena needed to be runnable on it

• It must be free for at least academic projects

The next section contains further information about the chosen runtime
environment.

2.3. Google Web Toolkit

The Google Web Toolkit (GWT) got unveiled to the unsuspecting public
in 2006 at the annual JavaOne conference in San Francisco. The main pur-
pose of GWT is to solve the problem of direct Asynchronous Javascript

© 2013 Malvin Thiel 10

2. Background Information

and XML (Ajax) development which normally is very complicated and
tough to debug. The second speciality about it, is the fact that the
whole Web application (client and server part) is written in Java and
gets compiled to HTML and Javascript code. That hides all browser in-
compatibilities from the software developer which are always problematic
when developing Web applications that should be runnable on multiple
browser-platforms. It also allows the programmer to work in a familiar
Java development environment [Bur06]. New versions of GWT also allow
complete debugging of the application which is very useful when develop-
ing Ajax applications. The fact that far more developers know the Java
programming language than Javascript and that the GWT development
and debugging is possible with famous integrated development environ-
ments like Eclipse or NetBeans it became very famous over the last years.
Even though a Java developer doesn’t know how to create Web appli-
cations, GWT gives them the opportunity to create Web applications
very similar to Swing applications (visual components), setting up event
handlers, debugging, and so forth - all within their familiar IDE. GWT
also provides the developer with an abstracted version of the Document
Object Model (DOM) that hides all differences between browsers behind
easy to extend object-oriented user interface patterns.

But the usage of GWT also comes along with some disadvantages. Since
GWT compiles Java code into Javascript that runs in the clients browser
it is not hard to imagine that this Java code might not be as powerful
as native Java code can be. That’s why Google introduced some restric-
tions that apply on the GWT classes. GWT’s Java Runtime Environment
(JRE) Emulation Reference [Goo12b] starts with the following consider-
ation:

Google Web Toolkit includes a library that emulates a subset
of the Java runtime library. [...] GWT supports only a small
subset of the classes available in the Java 2 Standard and En-
terprise Edition libraries, as these libraries are quite large and
rely on functionality that is unavailable within web browsers.

© 2013 Malvin Thiel 11

2. Background Information

It doesn’t seems that Google tries to change these compatibility issues in
the future since right below that last information they give nothing but
the following hint for not relying on unsupported classes.

You will save yourself a lot of frustration if you make sure that
you use only translatable classes in your client-side code from
the very beginning. To help you identify problems early, your
code is checked against the JRE emulation library whenever
you run in development mode. As a result, most uses of un-
supported libraries will be caught the first time you attempt
to run your application. So, run early and often.

Unfortunately those not supported classes are not only super rarely used
ones. For example the Java 2 Standard class Hashtable is an often used
but not supported class of the GWT runtime environment. Not only
the fact that several classes are not supported, also the whole Java type
system has changes with the browser restrictions GWT comes with. Of
course GWT’s Java is basically the same than the normal Java, but
there are a few differences a developer should be aware of when using
it. Specially tricky data type gadgetry might be a very bad idea since
the primitive type system comes with some caveats. Integer overflows
are behaving pretty different in GWT than in the Java 2 Standard Edi-
tion. The 64-bit integer long is completely emulated by a pair of 32-bit
integers which can result in heavy performance impacts due to the un-
derlying emulation. Operations on float are the same than on double and
result in higher precision. Anyhow developers should be aware of these
restrictions and changes from the Java Standard Edition. See the GWT
Coding Basics - Compatibility with the Java Language and Libraries for
further details [Goo12a].

These restrictions might turn out to be some sort of trouble maker during
the development, but in comparison to the GAE its at least possible
to use Jena, the chosen RDF framework on it (see section 2.5.4 RDF
frameworks). Also, GWT does not only fulfil all requirements of a possible
runtime environment it also provides a very comfortable way of creating

© 2013 Malvin Thiel 12

2. Background Information

Web applications compared to other similar technologies like Java Server
Pages. Therefore the chosen development platform became GWT.

2.4. Metadata

Whatever is returned when de-referencing an URI has several names.
Since many things on the World Wide Web are often human readable
documents it is often referred as a document. Formally it is called a
resource which can be everything addressed by an URI (see RFC 3986).
These resources can be described using Metadata.

In this thesis the term Metadata is used in the context of the Semantic
Web movement towards a perspective of a Federated Knowledge Base
[MS03] where it can be understood as the following:

Metadata is machine understandable information about web
resources or other things [BL97]

The main statement in that sentence is the fact that it is machine un-
derstandable. Often it is only referred as machine readable which makes
a big difference between understanding and reading. The whole World
Wide Web, which is probably one of the biggest knowledge Database
humans every created, is almost completely machine readable. The com-
mon Web format HTML is of course machine readable. The difference
between readable, when a Web-Browser parses and displays a website
and the understanding when a search engine knows what that specific
website is actually about, is enormous.

The format of how Metadata is stored can vary depending on the specific
type of content to describe. The place where to store Metadata can also
be very different since it can be stored either external or internal. When
stored internally the syntax of the Metadata has to fit into the document’s
syntax. Also when stored externally a link between the resource described
and the Metadata needs to be established. An example of how to store
Metadata is shown in section 2.5 Resource Description Framework.

© 2013 Malvin Thiel 13

2. Background Information

2.5. Resource Description Framework

One of the main goals of Metadata is the retrieval of information. A typ-
ical example for this usage are the information systems in libraries where
the librarian can tell where to find a book depending on the Metadata
stored in those systems (conventionally card files; today computer aided
information systems). How Metadata can be used to retrieve information
out of such systems is defined in vocabularies. They can tell computers
where the information about Author and Title is found and stored in
Meta-information systems.

The Resource Description Framework (RDF) is such a system for re-
locating data. As the name implies it is a system for describing re-
sources. These resources are described with Metadata and the vocab-
ularies mentioned before. The structure of RDF is build on the following
rules [Bra01]:

1. Resources can be anything as long as they can be identified with an
URI - therefore pretty much everything from Web pages to specific
elements on them.

2. Named properties which are defined in resources. An example of
such a property would be Author.

3. Statements are the combination of a resource, a property and a
value. Also known as the subject, predicate and object of state-
ments. A simple example of such a statement would be: The Au-
thor of urn:nbn:de:kobv:83-opus-30657 is Edzard Höfig.

Apart from these rules, RDF is designed upon a few criteria.
First of all it is independent. Since properties are nothing more than
resources, everyone can invent their own. Because RDF doesn’t come
with a default set of properties it is also necessary that everyone creates
their own properties. The fact that those created properties are resources
itself described with an URI enables everyone else to use of them.
The format of RDF is interchangeable and not based on a specific

© 2013 Malvin Thiel 14

2. Background Information

representation. The most common one is probably XML, but others like
Notation 3 are existing.
By keeping in mind that RDF is often used to create a semantic Web
and the fact that the Web itself is a gigantic database, it is very handy
that RDF is designed to be highly scalable with its simple format of
three-part records [Bra01].

2.5.1. RDF Graph

RDF can be used to represent information as a graph. This graph con-
tains objects along with connections between them. Figure 2.2 shows two
graphs where the first one contains ages of persons and the second one
the best friend relationship.

Figure 2.2.: RDF graphs 1 and 2: Person ages and friends

The information on the two previously shown graphs is combined into
figure 2.3 using named edges.

This graph can then be read as "Zoe is 30" or "Marc’s best friend is Pe-
ter". Each edge is like the predicate of a triple connecting the subject and
object with each other so that the whole graph represents a set of state-
ments. RDF graphs are not necessarily complete graphs, in fact rarely
they are. Therefore every information on that graph could be left out.

© 2013 Malvin Thiel 15

2. Background Information

Figure 2.3.: RDF graph 3 (1 and 2 combined): Person ages and friends

David’s best friend or Zoe’s age aren’t included in the graph. Those are
problems the Web comes with, but RDF is capable of handling them.

RDF is based upon such graphs, but as mentioned before the final for-
mat is not defined by RDF itself. To exchange RDF data with end points,
a serialisation needs to take place so that generated triples contain the
mentioned subjects, predicates and objects. The predicates of figure 2.3
aren’t containing complete URI’s but only names like ":age" or ":fav".
These names are similar to types in XML where the complete type
can be abbreviated by using namespaces. Before serialising the RDF
graph those types need to be substituted with the complete URI of
the predicates [Gro09]. For this example the properties are defined in
"http://example.com/definitions" which is used as the prefix example.
The substitution then is shown in table 2.1.

2.5.2. RDF-XML

RDF can be displayed in different ways using XML. TheW3C RDF/XML
Syntax Specification from February 2004 recommends several techniques

© 2013 Malvin Thiel 16

2. Background Information

Subject Predicate Object
"Peter" example:fav "David"
"Peter" example:age "21"
"David" example:fav "Peter"
"David" example:age "30"
"Marc" example:fav "Peter"
"Marc" example:age "17"
"Zoe" example:fav "Zoe"
"Zoe" example:age "30"

Table 2.1.: RDF graph 1 and 2 combined and serialised to triples

to do so. Two examples should demonstrate the RDF-XML persistence.
One is written with XML entities the other one with XML attributes.
The first way is shown in listing 2.2.

1 <rdf:RDF
2 xmlns:rdf="http://www.w3.org/1999/02/22−rdf−syntax−ns#"
3 xmlns:example="http://example.com/definitions#">
4

5 <example:Person>
6 <example:name>Peter</example:name>
7 <example:age>21</example:age>
8 <example:fav>David</example>
9 </example:Person>

10 </rdf:RDF>

Listing 2.2: RDF as XML entities

The information shown in this example is actually equal with three triples
of table 2.1. Alternatively the XML can be reduced to display only one
single entity (i.e. the name). That other possibility, to write RDF as XML
attributes is shown in listing 2.3.

© 2013 Malvin Thiel 17

2. Background Information

1 <rdf:RDF
2 xmlns:rdf="http://www.w3.org/1999/02/22−rdf−syntax−ns#"
3 xmlns:example="http://example.com/definitions#">
4

5 <rdf:Description
6 example:name="Peter"
7 example:age="21"
8 example:fav="David"
9 </rdf:Description>

10 </rdf:RDF>

Listing 2.3: RDF as XML attributes

This XML listing contains the same information as the other XML rep-
resentation but stores the data as attributes in the RDF predefined tag
description. Anyhow, all possible RDF-XML persistence methods lack of
performance but come with high redundancy. Other exchange formats
for huge amounts of RDF triples are getting specified. One example is
the ongoing doctoral thesis of Javier D. Fernández which tries to address
efficient formats for publication, exchange and consumption of RDF on a
large scale. The main issue is the format RDF is stored; Fernández is using
an binary serialization format for RDF called Header-Dictionary-Triples
(HDT) in combination with compressed rich-functional structures which
take part of efficient HDT representation. Right now the HDT format
has been accepted as a W3C Member Submission [Fer12].

2.5.3. RDF-Schema

The Resource Description Framework Schema (RDFS) is used to describe
the syntax of RDF models. This is of particular importance when inter-
changing data and can be compared with XML Schema. Anyhow, RDFS
is made to specify the syntax only. For the enrichment of semantic, a
common known vocabulary has to be defined (e.g. Dublin Core [Mes07,

© 2013 Malvin Thiel 18

2. Background Information

p. 4-5]). Another method would be the definition of the syntax together
with the semantic by creating an ontology (i.e. using OWL [MKR04]).

The following listing is an example of how RDFS can be used to syntac-
tically describe the RDF graph shown in figure 2.3. In other words, it
can be treated as the "example"-namespace definition in listing 2.3.

1 <?xml version="1.0"?>
2 <rdf:RDF
3 xmlns:rdf="http://www.w3.org/1999/02/22−rdf−syntax−ns#"
4 xmlns:rdfs="http://www.w3.org/2000/01/rdf−schema#">
5

6 <rdfs:Class rdf:ID="Person" />
7

8 <rdf:Property rdf:ID="name">
9 <rdfs:domain rdf:resource="#Person"/>

10 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema
#string"/>

11 </rdf:Property>
12

13 <rdf:Property rdf:ID="age">
14 <rdfs:domain rdf:resource="#Person"/>
15 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema

#int"/>
16 </rdf:Property>
17

18 <rdf:Property rdf:ID="fav">
19 <rdfs:domain rdf:resource="#Person"/>
20 <rdfs:range rdf:resource="#Person"/>
21 </rdf:Property>
22

23 </rdf:RDF>

Listing 2.4: RDF-Schema describing figure 2.3

© 2013 Malvin Thiel 19

2. Background Information

2.5.4. RDF frameworks

Apart from these RDF exchange formats are RDF stores (also known
as triple stores) that keep the RDF data in a high-performance way to
access, manipulate and find triples. The ease of exchangeability is not goal
of these stores (comparable with the storage of SQL databases and the
backups of them). RDF stores are either used as a middleware or stand-
alone systems which provide access to other applications or users through
APIs or particular query languages. The persistence of the RDF data is
often adapted from relational databases or graph storage methods.

All common RDF store middlewares that are written and accessible with
the Java programming language are shown in table 2.2.

Name Year Storage SPARQL Licence
OntoBroker [Ont12a] N/A Extern Yes Commercial
Jena [CDD+04] 2000 Extern Yes Free (Apache)
Sesame [BH01] 2001 Extern Yes Free (GNU)
Kowari [WGA05] 2005 Intern Partly Free (Mozilla)
YARS [HD05] 2005 Intern No Free (BSD)
SwiftOWLIM [Ont12b] 2005 Intern Yes Commercial
RDFBroker [SK06] 2006 Extern No Free (GNU)
OpenAnzo [The12] 2007 Extern Yes Free (Eclipse)
Bigdata [SYS12] 2008 Intern Yes Free (GPL)
Oracle 11g [Ora12] 2009 Intern Yes Commercial
Smart-M3 [HLBT10] 2010 Intern Partly Free (BSD)
CumulusRDF [LH11] 2011 Intern Partly Free (GNU)
TripleCloud [GKG11] 2011 Extern Yes N/A
Stardog [Cla12] 2011 Intern Yes Commercial

Table 2.2.: Triple store middlewares useable with Java

The table is ordered by the publishing year. The storage column shows
if the RDF is stored internally or if an external storage provider can be
used or is needed. Apart from that is displayed whether the middleware
supports a SPARQL interface as well as if its freeware or not. External
storage is often the case when the framework itself makes use of an re-

© 2013 Malvin Thiel 20

2. Background Information

lational database system which does not provide SPARQL support. But
also to provide high exchangeability through the data layer below.

Two of the oldest, free of cost and promising looking frameworks with an
active developer community were looked up in detail: Jena and Sesame.

2.5.4.1. Jena

Jena is one of the leading Semantic Web toolkits for Java developers that
was first released in 2000. Jena2, (which is just named Jena in the rest of
this document) which is the newest vesion of Jena was introduced in Au-
gust 2003 with an revised internal architecture and many new features.
Due to the fact that the main concept of the Semantic Web recommen-
dation is the RDF graph as a universal data structure which is simply
a set of triples, Jena similarly has the graph as its core interface where
other components are built around [CDD+04].

Jena was built to fulfil two key architectural goals:

1. Multiple as well as flexible presentations of RDF graphs to the
application developer which allows graph data to be accessed and
manipulated through high-level interfaces.

2. A very simple and minimalistic view of the RDF graph to the de-
veloper who wishes to manipulate data triples.

A complete architecture overview is shown in figure 2.4.

One pretty useful design issue about Jena is the Model API which ab-
stracts the whole graph data from the underlying data store. Therefore
Jena can be used either with one of Jena’s provided data store mech-
anisms, completely in-memory or with any external data store that is
compatible with Jena’s Model API (store API options in the figure).

Jena provides two ways of accessing the data store. Either by direct Java
invocation or via the Fuseki HTTP server. The direct Java invocation
access is provided by the Jena RDF API. Using the HTTP server to

© 2013 Malvin Thiel 21

2. Background Information

Figure 2.4.: Jena architecture overview [Jen12]

access or alter data in the RDF store works via an Representational
State Transfer (REST) style API which makes use of HTTP methods
like PUT, POST or DELETE.

By using the RDF API from direct Java invocation different parsers are
provided by Jena to handle incoming and outgoing streams of RDF data
in formats like RDF/XML or N3.

2.5.4.2. Sesame

Sesame was created to provide an architecture for efficient storage as well
as excessive querying of large quantities of RDF data. It was developed
by Aidministrator Nederland b.v. as part of the European IST project
On-To-Knowledge [BH01].

Sesame is a Web-based architecture that allows persistent storage of RDF
data together with RDF schema information. The online querying of that

© 2013 Malvin Thiel 22

2. Background Information

information together with an overview of the Sesame’s architecture is
shown in figure 2.5.

Figure 2.5.: Sesame architecture overview [BH01]

The underlying Repository Abstraction Layer (RAL) provides Sesame
with the same possibility as Jenas’s Model API - an exchangeable scalable
repository for the data storage. Thus Sesame can make use of any kind of
data store for which an implementation of the RAL (such as Relational
database management systems) exist. Sesame’s functional modules are
designed to be clients of the RAL. Originally Sesame came with three of
those modules [BH01]:

• The RQL query module. A module for RQL query evaluation
posed by users.

• The RDF administration module. An interface for incremental
uploading and deletion of RDF data and schema information.

© 2013 Malvin Thiel 23

2. Background Information

• The RDF export module. This module allows the extraction of
schema information together with data in various RDF formats.

Sesame supports different ways of access to the modules which finally
provide access to the RDF stores. Sesame supports an HTTP REST
interface for accessing data which might be the preferred method in a
Web context. It can also be used via Java’s Remote Method Invocation
(RMI) method or with other Web requests methods. For example from a
.NET platform like C# via the Simple Object Access Protocol (SOAP).

2.5.4.3. Selecting a framework

As shown, quite a lot RDF Frameworks are existing today. Table 2.2
shows all well known frameworks that are useable within the Java pro-
gramming language. A first selection was made by dropping all com-
mercial ones which reduces the list of OntoBroker, SwiftOWLIM, Oracle
and Stardog. The CumulusRDF and TripleCloud projects which were
both introduced in 2011 ([LH11], [GKG11]) as mostly academical re-
search results/proposals that are not of practical relevance for the mo-
ment since no implementation is available. Another criteria of the chosen
framework was fully SPARQL support. The SPARQL is emerging as
the de-facto standard for RDF querying and is also a W3C recommen-
dation ([Wor08]). Since YARS only supports N3QL which is classified
being not longer the state of the art, it got dropped as a framework can-
didate. The same applies to RDFBroker which only supports specially
developed Java querys. Smart-M3/Kowari only support some parts of
SPARQL. Since the Google App Engine doesn’t allow direct file access
it was important that the selected framework supports external RDF
stores as the underlying infrastructure to be runnable on the GAE. Big-
data’s storage method is managed internally and is therefore not suited
for this project. OpenAnzo itself is runnable on the GAE, but none of its
supported database systems is.

© 2013 Malvin Thiel 24

2. Background Information

Both of the remaining frameworks (Jena and Sesame) seemed to be pretty
solid and reliable in their development state and community activity.
Benchmarks such as the Berlin SPARQL Benchmark ([BS09]) won’t help
in this decision since they only compare some of Jena’s internal storage
methods with Sesame’s internal storage method and not about the frame-
works itself. Anyway, small performance issues are not of big importance
in this mainly academic work. Therefore my supervisors software engi-
neering working group has been asked for the better framework and Jena
was the collaborated answer.

The selection of the data store itself is anyhow not as important as the
selection of the RDF framework and the runtime environment. Pretty
much the only requirement was the opportunity to be runnable with
the selected RDF framework. Apart from that it could run on the same
server, be completely externally or even hosted by third parties.

Since the requirements to the data store are quite low, a lot of possi-
bilities are available. My supervisor Edzard Höfig made the decision to
Virtuoso.

2.5.5. SPARQL

SPARQL is a recursive acronym for SPARQL Protocol and RDF Query
Language. SPARQL is only one of many existing query languages for
RDF but its the recommended language for RDF querying of the W3C.
Also nowadays, most triple stores support SPARQL (see also table 2.2)
endpoints [HFB+11]. Even if SPARQL is a query language as well as a
protocol, only the language is explained here (the protocol describes how
a client talks with a SPARQL endpoint).

The query language is basically pretty similar to SQL. A small example
in listing 2.5 shows a simple select statement in SPARQL.

© 2013 Malvin Thiel 25

2. Background Information

1 SELECT ?name
2 WHERE {
3 ?name <http://example.com/definitions#fav> "Peter"
4 }

Listing 2.5: SPARQL select: everyone who is best friend with Peter

Note that in contrast to SQL there is no table specified where to select
from. That is not necessary because the whole query is performed on the
graph which was selected by connection instantiation. Terms delimited
by "<>" are parsed as URIs whereas everything delimited by double
quotes("") are literals. Integers or floating points can be written without
any enclosing. Variables start with an "?" (alternatively with "$") and
have global scope in the whole query. Since URIs can be quite long,
SPARQL provides an abbreviation mechanism (PREFIX). See the W3C
SPARQL specification [Wor08] for more details.

The first version of SPARQL didn’t come with a query construct to
insert data. Therefore most SPARQL frameworks provide other mech-
anisms to insert data - mostly unconditional and straight forward (i.e.
graph.add(new Triple(s, p, o));). Anyhow, with the latest version of the
SPARQL specification [GPP13] it is now possible to use an "INSERT"
statement for the insertion of triples into specific graphs. See listing
2.6.

1 PREFIX example: <http://example.com/definitions#>
2 INSERT INTO GRAPH <graph1> {
3 "David" example:fav "Peter"
4 }

Listing 2.6: SPARQL insert: Davids favourite friend

The mentioned abbreviation mechanism is used with the keyword "PRE-
FIX" at the beginning of the query. The prefix statement can be repeated

© 2013 Malvin Thiel 26

2. Background Information

(also to replace an existing prefix) and is directly in effect after its writ-
ten.

However, the SPARQL is still in an active development state and the
release of new versions that support new functionality is very probable.

2.6. Transparency plug-in

The data this work is using and analysing is collected by a browser plug-
in [Fie12] that got developed in the diploma thesis of Tobias Fielitz at
Freie Universität Berlin in October 2012. The plug-in collects and virtu-
alises all data traffic that is generated by the web browser whenever the
user is navigating to any website. Possible data to analyse can be pretty
much everything that is transferred by browsing websites (see chapter
2.1 Hypertext Transfer Protocol for details). Anyhow the plug-in dis-
plays only a very small number of that data to the user. Mostly what
other websites are connected with the current one, what companies are
involved, the country the websites are hosted in and the cryptography
level of the transfers. A request to the website http://www.spiegel.de/
could produce the visualisation as shown in figure 2.6.

The overview shows the following information, marked with a small red
number next to it.

1. Icon of the plug-in extension

2. Number of requests

3. Icon of the website

4. Information about a third party website

5. Information about the requested website

6. Name of the company

7. Domain

© 2013 Malvin Thiel 27

http://www.spiegel.de/

2. Background Information

Figure 2.6.: Transparency plug-in

8. Link to show all requests of the domain

9. Link to block everything from this specific company

10. Shows whenever cookies are set or not

11. Web of Trust Rating

12. Shows whenever the communication is secured

13. The flag of the country the website is hosted in

14. Number of requests from that domain

All those information and more are sent frequently and anonymised for
data storage to the trust graph explained later on.

© 2013 Malvin Thiel 28

3. Analysis of existing literature

3. Analysis of existing literature

This chapter discusses past and current researches about selected im-
portant topics regarding this thesis. The general issues of user privacy,
third party trackers, analyses of tracking behaviour and its outcomes in
form of trustworthiness ratings aren’t new. Therefore numerous research
is done with the expansion and the increasing popularity of the World
Wide Web.

3.1. Privacy concerns of third party widgets

Whenever a user is browsing to a specific website he isn’t afraid of the
fact that this website knows what he is watching on there - of course not.
What this user doesn’t know is that most commercial websites include
several third party widgets where each of them tracks an estimation of
more than 20% of a user’s browsing behavior [RKW12]. Since most web-
sites include trackers and some trackers are very popular, a small number
of companies are able to track users movement across almost all of the
popular Web sites [KW09].

Privacy issues in computer systems are nothing but new. Already in the
70s Denning et al. described "white-collar criminals" as men who learned
stealing only with the help of a computer by taking much less risks than
conventional thieves [DD79]. Even though concerns about user privacy
have risen dramatically with the increasing dependency on the Internet
within the last years nothing very effective happened to protect the user
privacy (see section 3.1.3 Techniques against tracking). One reason why
this process isn’t making much of a progress is of course the lobby of the
big companies who want to track users, but not to disregard is the fact
that even when the average internet user has heard about those privacy
issues he doesn’t care enough about it [Kri01, p. 164]. This discrepancy

© 2013 Malvin Thiel 29

3. Analysis of existing literature

between expressed privacy concerns and actual disclosure behavior is also
known as the privacy paradox [OG11]. It seems that every user has his
own personal definition of privacy which might also differ from time to
time. One definition of privacy taken from literature is the following.

Privacy is the interest that individuals have in sustaining a
"personal space", free from interference by other people and
organisations. [Cla06]

By having third party widgets included into websites it’s pretty obvious
that other people and organisations can interfere users personal space.
The process of interference is enabled through third party tracking. A
very good explanation of how this process works is given in the following
citation.

Third-party web tracking refers to the practice by which an
entity (the tracker), other than the website directly visited
by the user (the site), tracks or assists in tracking the user’s
visit to the site. For instance, if a user visits cnn.com, a third-
party tracker like doubleclick.net - embedded by cnn.com to
provide, for example, targeted advertising - can log the user’s
visit to cnn.com. For most types of third-party tracking, the
tracker will be able to link the user’s visit to cnn.com with
the user’s visit to other sites on which the tracker is also
embedded. [RKW12]

Many different tracking mechanisms exist today. Often, new ways of user
tracking are more likely a side effect that comes across with new tech-
nologies to improve the user experience. Users often have to sacrifice or
at least decrease their user experience for browsing the web with a little
more privacy. Anyhow, the problem behind such tracking methods aren’t
new. Lots of different methods to prevent trackers from doing their job
got introduce and developed. Some of them are shown in section 3.1.3
together with an evaluation of their success. Collected information about
specific problems and negative aspects are listed combined with current
mechanisms of tracking and the way how trackers work nowadays.

© 2013 Malvin Thiel 30

3. Analysis of existing literature

3.1.1. Methods of user tracking

Tracking has become more and more important within the last years.
Studies have proven that the percentage of websites which analyse their
user has increased from 5% in 2006 to about 40% in 2010 [IP11]. To
understand the importance of tracking, the ambiguous term needs to
be explained first. Tracking methods can be divided into two groups.
The technical way of tracking a user and the part to embed third party
trackers into a website.

Most methods have one thing in common, they try to link every user to-
gether with some sort of unique identifier to be able to follow him through
the Web. Other than the methods in the following list are techniques to
re-identify a user with for example the comparison of the IP address.
The problem with such techniques is that the IP-address changes from
time to time. Therefore most ways of tracking a user over a long time are
based on storing some unique information on the users computer.

The following list shows and explains the technical tracking mechanisms.

• HTTP cookie
The oldest and most traditional way of tracking users is done by the
help of cookies. The cookie standardisation process began in April
1995. Originally cookies weren’t invented and used to track peo-
ple, but rather to maintain some state into the otherwise stateless
HTTP (i.e. to build stateful web applications like shopping bas-
kets). As a part of HTTP’s response a server may send arbitrary
information in a "Set-Cookie" response header (see chapter 2.1 Hy-
pertext Transfer Protocol) which will be stored in the browser and
sent back to the server when navigating there once more. [Kri01,
pp. 151-153].

• Local Shared Objects (Flash cookies)
Flash cookies are not like the name might divine similar to HTTP
cookies. Of course they enable the opportunity to store information
on the client side. But in contrast to conventional cookies, flash

© 2013 Malvin Thiel 31

3. Analysis of existing literature

cookies are neither stored in browser nor does the browser itself ever
get to know about them. The flash runtime environment handles
everything regarding to them [SCM+09]. In other words, even when
the browser deletes everything that was stored or even when any
kind of privacy mode is activated, flash cookies are still there and
still completely functioning.

• Silverlight Isolated Storage
Silverlight is the competitor product to flash and comes with pretty
much the same method to store information.

• Google Gears
Gears was an open source project by Google to allow web sites the
storage of data so that it can be used offline. Gears is not longer in
an active developed state.

• IE-userData
Internet Explorer’s userData enables authors to specify an object to
persist on the client during the current and later sessions. Anyhow,
like Google Gears its no longer actively maintained [Lib12].

• DOM storage (HTML5 cookies)
The web storage is an W3C specification from 2009 which is similar
to HTTP cookies, for storing structured data on the client side
[Hic11].

• Browser fingerprinting
Browser fingerprinting is different to all other methods shown be-
fore since it doesn’t stores anything on the client site to iden-
tify a unique user. A algorithm creates an almost unique finger-
print only out of the information included in every HTTP request
a browser sends to a web server. That is possible since current
browsers include masses on information about the users system
into the HTTP request with the aim to provide certain kinds of de-
buggability, which in current browsers is weighted heavily against
privacy [Eck10].

© 2013 Malvin Thiel 32

3. Analysis of existing literature

• Others
Several other techniques are existing to track users. Their difference
to the first ones which were officially developed to store data on the
users computer is, that these methods make use of implementation
gaps or ill-conceived techniques used in the Web. The evercookie
[Kam10] is a cookie implementation that combines several different
tracking techniques together:

– Storing cookies in HTTP ETags

– window.name caching

– Storing cookies in RGB values of auto-generated, force-cached
PNGs using HTML5 Canvas tag to read pixels (cookies) back
out

– Storing cookies in Web History

– Storing cookies in Web cache

Besides from the technical way of tracking is the embedding part. Most
trackers are probably included in a way that isn’t visible to the user.
That could be an included Javascript running in background making
all necessary requests to tracking companies. Another way is the web
bug (well known under several other names like tracking pixel, 1x1 gif
or web beacon) which is often nothing more than a small image (i.e. 1x1
pixel) which is included into the tracked website. The inclusion of such
a pixel could look like that, when browsing the website http://example-
website.de.

<img src="http://tracking-company.com/example-website/pixel.gif"
width="1" height="1" alt="" />

An inexperienced web user might find nothing problematic with that
because its only an image but a versed one knows the threat behind it.
At the point the image gets displayed in the browser the tracking has
already happened. With the HTTP request to the image, all necessary
information to track the user is transferred. The clue behind it, is that

© 2013 Malvin Thiel 33

3. Analysis of existing literature

the "image" is nothing more than a complex script that returns an image
when finished. Since every web resource (images or HTML pages) are
loaded via the same HTTP requests, the same information about the
user is transferred to websites as well as to simple "images".

Advertising like banner ads is used for tracking. Often inconsiderable
looking but absolutely able to do nothing less than what tracking pixel
are able to do. It doesn’t matter whether the ad is an image, a flash
image or just text included via JavaScript.

Social plug-ins which are often even accepted with the user’s pleasure
are pretty well masked trackers [KPKM12]. Nowadays, a very common
one is the social plug-in of facebook. This can be a button, a comment
box and all sorts of things (like Twitter and Google+ [CKB12]). In the
end they are always included via a small Javascript code that has ev-
ery information needed to track the user request to the website the like
button is included in.

Even though the used techniques and the involved privacy issues might
be the same when having two different trackers included, the subjective
stance can differ completely. Most internet users aren’t aware of the fact
that social plug-ins or advertising can track them the same way than
Javascript which is specifically designed to track users. So even when
users know about the tracking issues they might not want to abstain
something.

3.1.2. Privacy threats

A negative issues of tracking is the exploitation of user data against the
users will. Even when some users may not see any issues sharing specific
parts of their personal information, others feel much less comfortable by
doing that. Anyhow, in order to initiate the collection of data, most ser-
vices are enforced by law to have the user agreed with their privacy policy.
Unfortunately in most cases the users are not able to use the service at
all whenever they decline. On the other hand, many websites don’t even

© 2013 Malvin Thiel 34

3. Analysis of existing literature

ask their visitors whether they agree to their privacy policy or not. Quite
often, in such cases personal information is extracted without the users
consent or knowledge. Understandably, some users feel uncomfortable in
such a situation. At the time when a legal framework exists that requires
a privacy policy, it is a clear legal violation of the privacy of a web site
visitor. Thus the definition of privacy depends on individuals as well as
the legal framework in effect [HKS12].

Sometimes it’s frightening how much user information trackers are able
to collect. With the help of data mining techniques, only the knowledge
of a users browsing history and browsing behaviour can tell much infor-
mation about him. This process is referred to Web usage mining which
is further explained in section 3.2.2. Obviously might the obtained in-
formation not be necessarily freed from errors since the involved data
mining process can generate some. Anyway, often enough the forecast is
true. Maybe the most usage of the gathered information is the creation
of personalised ads. Popular web sites such as Yahoo! or the Microsoft
Network (MSN) automatically provide information addressed to users
interests. When it comes to recommendation systems, the probably most
popular one is the online marketplace amazon.com where the system
analyses past purchases together with other information available to cus-
tomise recommendations for the user. Commercial search engines have
associations with commercial marketing companies to create advertise-
ments that are specific to the user and his recent activities on the Web
[EV03, p. 8].

Those referred impacts might actually not even harm the user in first
place, they can be seen as helpful and advantageous. Probably nobody
actually wants to view ads which are neither affecting nor interesting
someone. Another advantage could be the improved user experience while
browsing the web. Finding information could be much easier and quicker
when your browsing behaviour is known and understood. Well, that was
one perception. Is it still wanted when someone else is using the same
computer sharing the same product recommendations? Couldn’t it be

© 2013 Malvin Thiel 35

3. Analysis of existing literature

very private what someone is searching online? The following parts taken
from an article of the Forbes magazine will explain: [Hil12]

An angry man went into a Target outside of Minneapolis, de-
manding to talk to a manager: "My daughter got this in the
mail!" he said. "She’s still in high school, and you’re send-
ing her coupons for baby clothes and cribs? Are you trying
to encourage her to get pregnant?" The manager didn’t have
any idea what the man was talking about. He looked at the
mailer. Sure enough, it was addressed to the man’s daughter
and contained advertisements for maternity clothing, nursery
furniture and pictures of smiling infants. The manager apolo-
gized and then called a few days later to apologize again. On
the phone, though, the father was somewhat abashed. "I had
a talk with my daughter," he said. "It turns out there’s been
some activities in my house I haven’t been completely aware
of. She’s due in August. I owe you an apology."

The title of this article is "How Target Figured Out A Teen Girl Was
Pregnant Before Her Father Did". This is one small example to demon-
strate the power and the risk of tracking.

3.1.3. Techniques against tracking

Since tracking and its privacy threads aren’t something new, several
methods have been introduced to protect the user from unwanted pri-
vacy violations. Those methods can be classified into five different groups
which are explained in the following.

1. Plug-ins
A popular way of improving online privacy is the usage of browser
plug-ins and extensions. Lots of them got developed within the last
years, many with the aim to block advertisers which is some kind
of improvement, but won’t help much against tracking. Others are

© 2013 Malvin Thiel 36

3. Analysis of existing literature

specifically designed to display or even block any connection to
trackers or anything that could be one.

The Ghostery [Gho13] extension is such one. It advertises with
the ability to be able to detect over 1200 trackers as well as giving
the user the ability to get notified of ad networks, behavioural data
providers, web publishers and other companies interested in the
users activity. After knowing about them, the software allows a user
to block trackers of selected companies. After visiting the website
cnn.com, Ghostery found the following invisible inclusions:

• ChartBeat

• DoubleClick DART

• Facebook Social Plug-ins

• NetRatings SiteCensus

• Optimizely

• ScoreCard Research Beacon

• Twitter Button

The problem here is that far too much know-how is needed to be
able to decide which one to block and which not.

2. Disable possible causes
Another way would be the deactivation of all possible privacy vio-
lating causes. This would include

• JavaScript,

• the Adobe Flash Player,

• Microsoft Silverlight and

• cookies.

© 2013 Malvin Thiel 37

3. Analysis of existing literature

Problematic is that some of the described tracking mechanisms
explained in section 3.1.1 would still work. Therefore this solution
does nothing more than decreasing the browsing experience.

3. Delete private data
A popular way to cut off trackers is the deletion of all private data
saved by the browser. However, as described before, so called flash
cookies aren’t in control of the browser and won’t be deleted then.
Special tools for that aim got developed. BetterPrivacy and Glary
Utilities Pro are two of those which are able to delete even flash
cookies [SCM+09].

4. Anti-fingerprinting technologies
Obviously a powerfully and easy way of reducing the own finger-
print would be the decrease of data that’s included. Paradoxically,
anti-fingerprinting technologies can be self-defeating when they are
not used by enough people [Eck10].

5. Privacy arrangements
A very interesting way to achieve privacy are privacy arrangements.
One of them is the HTTP header directiveDoNotTrack which can
be sent together with a request from a web browser to tell the web
server that the user don’t want to be tracked. Unfortunately, not
many of the today’s websites are considering that. A study [May12]
has shown that from 64 companies, only the half of the actual
tracking cookies in place where left dropped after opting out. Even
more disconcerting is the outcome of that study. All companies that
participate in the self-regulatory Network Advertising Initiative do
only pledge to opt out behavioural ad targeting, not tracking.

Another privacy arrangements is the W3C proposed recommen-
dation Platform for Privacy Preferences (P3P). The standard
suggests an infrastructure for the privacy of data interchange where
websites are able to express their privacy practices in a standard-
ised format which can automatically be read by user agents such as
browsers. This simplifies the process of reading policies for the users

© 2013 Malvin Thiel 38

3. Analysis of existing literature

dramatically. Key information about what data gets collected by a
website can automatically be compared with the users preferences
to disclosure tolerances. This thought has the same vulnerability
as DoNotTrack since it must rely on the arrangement without the
chance to check it [EV03, p. 7].

One problem lots of those techniques have is the combination of track-
ing and improved user experience. A user that wants to be able to use
facebook’s like button won’t care of him being tracked by facebook.

3.2. Analysis of HTTP traces

Many analyses of HTTP traces haven been made in the past. The ways of
doing so distinguish each other just like the ambitions of each other. The
following sections organise existing HTTP analysis by their superordinate
targets into five different groups.

3.2.1. Personalised advertising

One big goal of many analysis made in the past aim to a personalise
the user’s experience of the Web. Which is often used as a synonym for
custom-tailored advertising. As mentioned in section 3.1.2, advertising is
a big deal of the personalised Web. In contrast to advertising exists the
concept of usability improvements which are explained in section 3.2.2.
The personalisation of ad recommendations has gain particular interest
within the last years, since most internet business models rely heavily
on advertising. Anyhow, user profiling is a challenging process. A typi-
cal scenario is the following: the user consumes content items (i.e. ads,
articles, annotated videos). The textual data of those items are analysed
in order to extract its semantic information based on domain ontolo-
gies. Improvements can be made by enriching this data with terms in
an offline process. This information is then translated into a set of user

© 2013 Malvin Thiel 39

3. Analysis of existing literature

preferences which are gathered in an automated semantic user profiling
procedure. The calculated user preferences are then matched with the
supplied semantically annotated ads to determine the recommendation
degree of every single ad. The match confidence degree is then used to
rank recommended ads [TMKD09]. The described process architecture
is depicted in figure 3.1.

Figure 3.1.: Overview of an Ad Recommendation System [TMKD09]

Such personalised advertisement can be found on many major online mar-
kets such as amazon.com or ebay.de. When signed into those platforms
it takes a couple of clicks on some products to feed the recommendation
algorithms. Afterwards, many similar products to the viewed ones will
be recommended to you in the future [EV03, p. 8]. Though, personalised
recommendation systems don’t necessarily need a user to be logged into
their system to create user profiles and generate recommendations for
them. Google’s search feature is a good example which is explained in
the following section.

© 2013 Malvin Thiel 40

3. Analysis of existing literature

3.2.2. Usability improvements

Personalising the Web in another way than using the gathered informa-
tion to improve advertisement is the usability enhancement. Of course,
personalised ads can be seen as an improved user experience too. How-
ever, the process of information gathering for customising a website to
the needs of each specific user or sets of users is referred to Web usage
mining which can be regarded as a part of the creation of user profiles.
Both are integrated in the Web personalisation process which tries to en-
hance the users Web experience [EV03]. The Web usage mining process
can be divided into three phases [CMS99]:

1. Data preparation/preprocessing
Data cleaning, user identification, session identification and trans-
action identification is done here. The output gets stored into a
database or a data warehouse.

2. Knowledge Discovery
Specialised algorithm are needed (data mining, clustering and clas-
sification) for the detection of interesting patterns.

3. Pattern Analysis

A famous company makes use of personal data to improve search results.
Google’s search engine provides every user with a personalised search so
that the most relevant results possible will be returned [HK09]. Google
explains this feature with the following example:

For example, since I always search for [recipes] and often click
on results from epicurious.com, Google might rank epicuri-
ous.com higher on the results page the next time I look for
recipes. Other times, when I’m looking for news about Cornell
University’s sports teams, I search for [big red]. Because I fre-
quently click on www.cornellbigred.com, Google might show
me this result first, instead of the Big Red soda company or
others [HK09].

© 2013 Malvin Thiel 41

3. Analysis of existing literature

Previously Google offered this feature only to signed-in users which makes
it pretty obviously that some sort of tracking is involved (see section 3.1.1
Methods of user tracking).

Another way of making use of HTTP traces is the error detection in ex-
isting Web applications. Thought, this technique has nothing to do with
personalisation, it’s a way to improve user experience. Either in a way
that an established website won’t be offline in the near future due to se-
curity problems or so that existing error will be fixed before they restrict
users in their doings. Arachne, a prototype for asynchronous policy eval-
uation is a system to detect various problems in Web applications. Its
sensors are the eyes of the system. Such a sensor could parse an access
log file where each entry represents a step taken by the web server in
response to a request (i.e. HTTP traces). Simplified, those entries then
get checked against previously defined policies. Whenever a request won’t
match, a potential inconsistency is discovered [BK08].

Usability improvements can also be made by analysing the user naviga-
tion path of websites. The Google Analytics tool can be used to track
and analyse navigation path patterns. The website AfterTheInjury.org
made a study about their visitors browsing behaviour with the aim of
achieving usability enhancements. The gain knowledge about the top en-
try pages can provide help for further content optimisations. The same
for observation of navigation path patterns which helps people to find
out the reason users visit their sites. In general, but also in particular
for every entry page. This can help to obtain a more efficient assignment
of the content priorities. Either to extend efforts or maybe even delete
content or pages [YWT+10].

3.2.3. Pattern recognition on the Web

Different to the Web usage mining process which tries to personalise each
users Web experience is the general pattern recognition of the Web. For
example, this could be done to gain further knowledge of the existing

© 2013 Malvin Thiel 42

3. Analysis of existing literature

Web, making general improvements or answering any kind of academic
questions.

A study that investigated on the typical usage of keyword searches across
the Web and their names have been made. They tried to find out whether
a requested URL (taken from HTTP traces) is containing a search, as
well as if they do, the search field and keywords. Its apparently easy to
recognise "q" as the query field in "https://www.google.com/search?
q=berlinale". However it’s a challenge when trying to automate this
task in the long tail of the Web. Such an analysis performed at sites all
across the Web - not just single site like Google could be useful for mar-
keting, building domain specific web directories, discovering competitors
or potential collaborators, positioning products and future development
[FKR10].

Another study is characterising the organisational use of Web based ser-
vices. Traces of HTTP activities from a large enterprise and from a
large university environment have been analysed to identify and char-
acterise Web-based services. As a first step unique service instances have
been identified. They used the HTTP header to identify unique host
names (e.g. www.google.com), domains (e.g. goggle.com), brands (e.g.
google.com, google.de, and google.co.uk is considered to be the same
brand: google), and service instances (e.g. the brands youtube and google
are determined to run as a single service instance). They used the User-
Agent header field to determine what generates the traffic. To do so,
they divided each activity into one of those four categories: browsing,
applications, updates and other. Hence they could analyse changes of
the Web usage during the past decades. Furthermore, many other things
got evaluated and examined. For instance consumer identification, HTTP
method and response code examination, the effectiveness of caching or
heavy tails [GAC+11].

© 2013 Malvin Thiel 43

https://www.google.com/search?q=berlinale
https://www.google.com/search?q=berlinale

3. Analysis of existing literature

3.2.4. Market analyses

Documents from the Web are often used for the identification and aggre-
gation of relevant market statements. Even though, strategic business de-
cision making is highly complex and requires expertise about economics,
politics and technological developments, important tasks such as market
forecasting which relies on identifying and aggregating relevant informa-
tion from the Web may be automated. Analysts who interpret relevant
data may get a reasonable idea about things like the future market vol-
ume, competitors and market shares [WPS10].

A problem about current analyses of market trends is that no single
platform exists which provides a market analysis tool based on combined
trends of the entire web. Tools that analyse search engines or social media
websites only provide specific traffic trends based on their available data.
A generic overview of the whole web would help to understand the current
market and user interest about a specific product or topic. Research
investigations are made to combine the available trends from multiple
search engines and social media websites to provide realistic overall Web
trends [WB10].

3.3. Trust among the Web

Trust among the WWW can have many facets. Depending on the con-
text, trust can refer to completely different definitions. Those differences
can, of course, be summarised into one general term: trust. Anyhow, to
get a comprehensible idea about trust it is necessary to inspect all of
its facets. Probably one of the most often way of understanding trust
is the websites content reliability. With the possibility of everyone to
create websites and publishing content, the substance of the content is
questionable. One reason sources like Wikipedia are treat with caution.
Often it’s fundamental for users to estimate reliability among websites
(i.e. when searching for medical information). Another criteria is the trust

© 2013 Malvin Thiel 44

3. Analysis of existing literature

degree in the context of online market trustworthiness. Customers
want to make sure that a specific online shop is trustworthy before enter-
ing credit card details or the initiation of money transfer. This directly
leads to the third facet: data privacy. One wants to be sure that pri-
vate data (i.e. credit card details) are safely stored from any sort of third
party access. Another big issue comes along with trust when its about
downloads. Unfortunately, nowadays downloads are far away from being
the only possibility of infecting users computer systems. Even though di-
rectly downloaded malicious software might be one of the easiest way
of spreading viruses, but browser exploits or browser extension exploits
(i.e. adobe flash player, java runtime environment) are often even more
dangerous due to their unpredictable character. Therefore, users want to
know about a websites trust before even entering it. A pretty new way
of seeing trust in websites is the legal protection for children and
young persons due to inappropriate age-dependent content. The men-
tioned trust characteristics can be summarised into five concerns.

1. Content reliability

2. E-commerce

3. Data privacy

4. Computer security

5. Youth protection

The following section demonstrates several existing tools and techniques
that are build to protect those listed trust concerns. Every technique is
associated with one or many characteristics.

3.4. Existing trustworthiness ratings

From the wide range of tools and techniques that have been developed
for the measurement and evaluation of trust among the Web, a selection
of them is described and presented in the following.

© 2013 Malvin Thiel 45

3. Analysis of existing literature

• Web of Trust (E-commerce, Data privacy, Computer security,
Youth protection)
The Web of Trust (WOT) is a rating platform for websites which
is making use of swarm intelligence mechanisms. Every user who
has installed the WOT plug-in can rate websites from poor to ex-
cellent on the four different characteristics: trustworthiness, vendor
reliability, privacy and child safety. Other users browsing the same
website see those ratings and therefore will be warned of untrust-
worthy sites [WOT13]. Unfortunately, the ratings of most users are
obviously not very accurate. Since normal users can’t tell whether
a website is untrustworthy, ratings are often based on the particu-
lar degree of respect. The following two examples demonstrate this
disadvantage. It is well known that the usage of Facebook is a big
privacy issue for the users [WXG11] [Lee11]. However, it got an
excellent rating from users in all categories (including Trustworthi-
ness and Privacy) [WOT13]. Wikipedia, the collaboratively edited,
Internet encyclopedia is well known to be imprecise and incom-
plete. Anyhow, it is widely spread, popular and used, therefore its
not very stunning that its average WOT rating is excellent on any
category.

Similar product: Web Security Guard [Cra13]

• McAfee’s SiteAdvisor (Computer security)
The SiteAdvisor performs extensive and frequent heuristics-based
evaluations of websites to measure their level of trustworthiness.
Those evaluations include tests for phishing, infected downloads,
spam, drive-by-downloads, e-commerce vulnerabilities, browser ex-
ploits, popups, etc. Based on the findings, every website is grouped
into one of those risk categories: safe, caution, risky, and untested.
Each category is associated with a color to give users a quick
overview about the site’s reliability (see figure 3.2). This rating
is other than the WOT rating not influenced by subjective user
ratings, but has the same issues than every anti virus software. Yet
unknown risks won’t be discovered by any heuristics.

© 2013 Malvin Thiel 46

3. Analysis of existing literature

Figure 3.2.: McAfee’s SiteAdvisor risk groups [McA13]

Similar product: Norton’s Safe Web [Nor13]

• DoNotTrackMe (Data privacy)
DoNotTrackMe is similar to the Ghostery plug-in [Gho13]. Instead
of informing the user about possible privacy threads it directly
blocks anything that’s on their predefined list. DoNotTrackMe is
not a traditional trustworthiness rating. It can be seen as one when
taking the number of found and blocked trackers as a score (see
figure 3.3), where a low value demonstrates trust. Anyhow, DoNot-
Trackme doesn’t specify any categorisation of this value.

Figure 3.3.: The DoNotTrackMe icon shows the number of tracking at-
tempts made [Abi13]

Similar product: Ghostery [Gho13]

• TrustGauge (E-commerce)
TrustGauge is described to be a quick and easy way to determine
whether a visited website is trustworthy or not. It is part of the
BrowserAccelerator toolbar and helps consumers to determine the
trustworthiness of any site appearing in their browser window. Each
website is assigned to a trust score value from 0 to 10, where 10

© 2013 Malvin Thiel 47

3. Analysis of existing literature

is the best. The score calculation is based on the factors displayed
in table 3.1 which are then compared with the classes displayed in
figure 3.4 [Tru09]. Since the score mechanism is mostly based on

Website Content Points # Website Feature Points #
Email address or feedback form 2 Secure Billing Pages 2
Postal address (not a PO box) 2 Top 100 overall traffic 45
Brick & Mortar to visit 1 Top 1.000 overall traffic 35
Phone number available 1 Top 10.000 traffic 10
Toll free phone number 1 Top 100.000 traffic 5
A person answers the phone 1 Top 1.000.000+ traffic 1
Privacy statement page 2 Top 10 business category 5

Table 3.1.: TrustGauge factors for TrustScore determination [Tru09]

Figure 3.4.: TrustGauge classes for TrustScore categorisation [Tru09]

the website’s traffic and contact possibilities, small and unknown
pages will always get low scores even when trustworthy.

Similar product: TrustScore [Tru13]

• PageTrust (General trustworthiness)
The PageTrust algorithm is a derivation of the PageRank algo-
rithm. Other than the traditional PageRank, which was intended
to order web pages by their importance [PBMW99], the PageTrust
algorithm is able to take negative links into account and converges
to a trust value for each page. This algorithm decreases trust values
of nodes that receive negative links, while trying to ignore negative
link of attackers who wants to decrease trust values of competing

© 2013 Malvin Thiel 48

3. Analysis of existing literature

nodes. The key element of the algorithm is a distrust matrix that
spreads distrust along pages that trust distrusted pages [dKvD08].
Many algorithms are derived from the original PageRank. All try-
ing to add some sort of distrust into the computed value. Those
calculations which are using link graphs are called link analysis.

Other PageRank derivated algorithms: TrustRank [GGMP04], A
novel approach to propagating distrust [BCK+10], Dirichlet
PageRank [CTX11].

• BrowseRank (General trustworthiness)
The BrowseRank algorithm computes page importancy based on
a user browsing graph. This browsing graph contains information
about the pages users visit, the links they clicked on and data about
how long they spend on a specific page. This approach lets users
implicit vote the page importance by providing the algorithm with
his browsing history. Other than PageRank derivated algorithms,
the BrowseRank interprets links and hence weights them. Anyhow,
the calculation of this rank needs detailed browsing information
on a large scale [LGL+08]. Special browser extensions could collect
this data, but also the use of Javascript. The transparency plug-
in (see section 2.6 Transparency plug-in) wouldn’t collect enough
information for a calculation.

• Privacy International ranking (General trustworthiness)
Privacy International (PI) is registered as a charity in the UK. Their
chosen mission is the defence for the right to privacy across the
world, the fight against unlawful surveillance and other intrusions
into private life by governments and corporations. Their knowledge
and findings are, for example, used to advise the Council of Europe,
the European Parliament, the Organisation for Economic Cooper-
ation and Development and the UN Refugee Agency. The Global
Surveillance Monitor is a program of PI that released the global
study "Privacy and Human Rights". This study ranks countries
based on their privacy policies and has become a global bench-

© 2013 Malvin Thiel 49

3. Analysis of existing literature

mark, used by international organisations, regulators and politi-
cians to advance privacy protections in their own countries. The
overall rating of a specific country includes the sub-values of con-
stitutional protection, statutory protection, privacy enforcement,
Identity Cards and Biometrics, data-sharing, visual surveillance,
communication interception, communication data retention, gov-
ernment access to data, workplace monitoring, surveillance of med-
ical, financial, and movement, border and trans-border issues, lead-
ership and democratic safeguards. The mean value of all those
scores yields the final value. The expressiveness of the coming out
value ranges from 1.1 to 5.0 whereas a high value intends a less
invasive policy [Int07]:

4.1 - 5.0 Consistently upholds human rights standards

3.6 - 4.0 Significant protections and safeguards

3.1 - 3.5 Adequate safeguards against abuse

2.6 - 3.0 Some safeguards but weakened protections

2.1 - 2.5 Systemic failure to uphold safeguards

1.6 - 2.0 Extensive surveillance societies

1.1 - 1.5 Endemic surveillance societies

Nevertheless, many indicators are far away from internet privacy
and hence disturbing factors that falsify the values when used for
internet ratings only. Basically the values constitutional protec-
tion (CP), statutory protection (SP), privacy enforcement (PE),
data-sharing (DS), communication interception (CI), communica-
tion data retention (DR) and government access to data (GA) are
merely interesting when talking about the internet privacy. There-
fore an updated version of the Privacy Ranking has been calculated.
This version is based only on the previously defined indicators and
is shown in table A.1.

© 2013 Malvin Thiel 50

3. Analysis of existing literature

This rating can be used to rate a websites trustworthiness based on
their country belonging. However, this rating can hardly be used
directly by users, since they normally have no clue in what country
a specific website is hosted in. Still, this data could be used as an
input for other privacy rating algorithms.

3.5. Storage methods for HTTP traces

Several methods to log HTTP traces exist today. Probably the easiest
way would be the storage of the whole network traffic. Many well known
formats are developed by network analysers and packet sniffer. Anyhow,
this thesis aims only for the storage of HTTP traces.

One method of storing HTTP metadata is the web server’s log files. How-
ever, log files only store little information compared to the data available.
Log files often look like the Common Logfile Format which is defined
by the W3C [htt95] (note that an extended, but very similar version
exists [HBB96]). The format stores seven entries for every HTTP re-
quest, whereas each entry represents the following information according
to [htt95].

1. remotehost: Remote hostname (or IP number if DNS hostname is
not available, or if DNSLookup is Off.

2. rfc931 : The remote logname of the user.

3. authuser : The username as which the user has authenticated him-
self.

4. date: Date and time of the request.

5. request: The request line exactly as it came from the client.

6. status: The HTTP status code returned to the client.

7. bytes: The content-length of the document transferred.

© 2013 Malvin Thiel 51

3. Analysis of existing literature

Several log files similar to this one exist. A list can be found in [IBM04].

The logfile format is not very suitable for the storage of whole HTTP
traces since they contain a varying number of data fields. Even the fields
itself aren’t known due to extensions (see section 2.1 Hypertext Transfer
Protocol). A graph based method for the storage of the whole data that
arises during a HTTP connection is proposed by the W3C. The draft
HTTP Vocabulary in RDF is a RDF schema definition that provides
a representation of the HTTP vocabulary. The terms defined in that vo-
cabulary represent the core HTTP specification defined by RFC 2616,
but also additional headers registered by the Internet Assigned Num-
bers Authority [KVA11]. RDF collections are used to store arbitrary and
variable header fields. The following UML diagram (figure 3.5) shows the
main part of the architecture.

Figure 3.5.: HTTP Vocabulary in RDF: Simplified UML diagram

© 2013 Malvin Thiel 52

4. The trust graph

4. The trust graph

This chapter describes the creation and the analysis of the trust graph.
The graph itself is basically the store of trust related information gath-
ered from HTTP traces. The following sections document every step that
is done during the creation of the graph, but also from the collection and
the separation of incoming data. Furthermore, a trust score is calcu-
lated using the trust graph together with some exemplary analyses that
demonstrate the possibilities the trust graph is offering.

4.1. Data collection and preparation

This section presents the data the transparency plug-in made available.
A discussion about the removal and the addition of specific information
is made to develop the trust graph’s data basis.

4.1.1. Collectable data

The transparency plug-in delivers numerous information in form of HTTP
requests and responses. When browsing a website, normally many more
than one HTTP request needs to be made. After fetching the requested
HTML (or XHTML, etc.) document, the browser requests every em-
bedded source (e.g. images, Javascripts). Such a request graph could
look like the one shown in figure 4.1. The user browsed the website
http://funsporting.de/ which is the middle element of the graph. All
other nodes are embedded elements of the page which are not necessarily
from the same domain. Especially when they aren’t, a tracker might be
in use.

© 2013 Malvin Thiel 53

http://funsporting.de/

4. The trust graph

Figure 4.1.: HTTP request graph

Every node on this graph is the representation of a HTTP request and
response. Those HTTP traces are delivered by the transparency plug-in
via JSON files. A snippet of this data is shown in listing 4.1.

1 { "url" : "http://www.funsporting.de/",
2 "root" : "funsporting.de",
3 " authorities " :[{
4 "domain":"google.com",
5 "ip" : "173.194.69.138" ,
6 "requests" :[{
7 "ip" : "173.194.69.138" ,
8 "method":"GET",
9 "url" : "https://apis .google.com/js/plusone.js",

10 "domain":"google.com",
11 [...]

© 2013 Malvin Thiel 54

4. The trust graph

12 }, {
13 "ip" : "173.194.69.138" ,
14 "url" : "https://apis .google.com/_/scs/apps−stat[...]",
15 [...]
16 }, [...]
17]}]}

Listing 4.1: HTTP traces provided by the transparency plug-in

All information received by every single transfer (request mixed with
response) of one embedded source (e.g. Google plus) is listed in table 4.1,
whereas HTTP headers originate only from the response. Consider that
some of the fields listed aren’t part of any HTTP request or response, but
browser internal information. Also might one HTTP request or response
transfer a couple of different header fields than another (see section 2.1
Hypertext Transfer Protocol or [GTS+02, p. 67-73]).

Before separating out uninteresting fields, which is done in section 4.1.2
a few questions about the completeness of the data need to be asked.

• Are other plug-ins able to falsify the collected data?
By having other plug-ins installed simultaneously with the trans-
parency extension, the risk might be given that those other plug-ins
block HTTP traffic which isn’t registered by the transparency ex-
tension. In fact, plug-ins like Adblock are capable of suppressing
HTTP requests. Whenever that happens, the transparency plug-
in won’t register those requests [Fie12, p. 58-59]. This a possible
source of falsification.

• How are Ajax requests registered?
Ajax requests are different to other embedded resources because
they can be bound to user inputs. A small HTML file (listing 4.2
can be used to test user depended requests.

© 2013 Malvin Thiel 55

4. The trust graph

Field Example value
frameId 0
fromCache true
tabId 1970
requestId 78886
parentFrameId -1
ip 173.194.69.138
method GET
statusCode 200
statusLine HTTP/1.1 200 OK
timeStamp 1362078183891.64
type script
url https://apis.google.com/js/plusone.js
domain google.com
hostname apis.google.com
scheme https
country_code us
header → status 200 OK
header → version HTTP/1.1
header → content-encoding gzip
header → content-type application/javascript; charset=utf-8
header → date Thu, 28 Feb 2013 19:02:48 GMT
header → etag aea6d0e4f974eca55224c8a0d793f26a
header → expires Thu, 28 Feb 2013 19:02:48 GMT
header → set-cookie REMOVED BY EXTENSION

Table 4.1.: Request+response information gathered by the plug-in

1 <script>
2 function performRequest() {
3 var req = new XMLHttpRequest();
4

5 req.onreadystatechange = function() {
6 if (req.readyState == 4) {
7 if (req. status == 200) {
8 alert (req.responseText);
9 } } }

© 2013 Malvin Thiel 56

4. The trust graph

10

11 req.open(’GET’, ’ajaxTest.htm?new=1’, true);
12 req.send(null) ;
13 }
14 </script>
15 ajax

Listing 4.2: User depended Ajax test

By browsing this document all requests transmitted by the plug-in
where analysed. It was found that even depended Ajax requests are
handled the same way as any other embedded resource. This has
to be kept in mind either way, because it could affect the analyses.
Anyhow, Ajax shouldn’t take much affect in tracking because of
the same origin policy which restricts Ajax requests to other pages
than the same site (same protocol, hostname, and port number)
[KSTW07].

• Are cached objects/documents registered?
The question if cached documents are registered by the plug-in is
very important, since it could falsify any analysis. Even though the
field "fromCache" almost answers this questions already, it wasn’t
quite sure how it works. A HTML file which includes an cacheable
Javascript file (defined by header information) is used to test caching.
After loading the HTML page once, the network packet analyser
Wireshark [Fou13] has been used while reloading the site to capture
any HTTP traffic. This experiment has shown how the "fromCache"
field changed from false to true as well as no further traffic to the
cached Javascript file is done. That proves the fact that even cached
files are noticed from the plug-in and therefore caching won’t fal-
sify nothing. Anyhow, this result correlates with the statement of
[Fie12, p. 47].

© 2013 Malvin Thiel 57

4. The trust graph

4.1.2. Data separation

The next step is the data separation. Some of the collected data might
not be interesting and can therefore be sorted out. The following list
shows dropped items together with their respective reasons.

• tabId, requestId
Those fields contain browser internal information only, which can’t
be used or connected to HTTP relevant data.

• parentFrameId, frameId
The parentFrameId is also browser internal information, but it
could be connected to the frameId and therefore be used to fol-
low a call graph of the frames. The problem is that the information
about the parent frame and the child frame could be sent at dif-
ferent points in time. Therefore the receiving part would have to
remember and to distinguish every single client, because the frame
id’s are only unique on one specific browser.

• statusLine, status
Both redundant since header → version and statusCode contains
the same information.

• header → etag
Unfortunately, the entity tag is not standardised. It can be de-
scribed as:

Entity tags are arbitrary labels (quoted strings) attached
to the document. They might contain a serial number or
version name for the document, or a checksum or other
fingerprint of the document content. [GTS+02, p. 180]

Because of the unpredictable and therefore unusable content the
entity tag is dropped.

• timeStamp
The timestamp value represents the time the request was sent. Un-
fortunately, there is no such value about the time the response is

© 2013 Malvin Thiel 58

4. The trust graph

actually arriving the user. Therefore, the only value to compare
with would be the header→ date, which is the server time. Due to
potentially unsynchronised clocks, this comparison would be use-
less. Only the two values header→ date and header→ expires can
be used, because they are both representations of the server time.

4.1.3. Data enhancement

In contrast of removing unusable data the possibility is also given to
add data or either combine existing data to obtain new information. In
addition to the data shown in table 4.1 the following fields have been
added for every request/response connection pair.

• Request reference
The reference of a request is the URL of the page that caused the
browser to perform that request. Without this information it would
be impossible to keep track of the websites that actually include
trackers. Anyhow, this information is given from the tree structure
within the JSON trace file provided by the transparency plug-in. Of
course there won’t be any reference available for the website which
was actually typed in by the user. For such cases, the reference will
be pointed out with null.

• Server location (IP2Country)
IP2Country databases are a well known way to determine the server
location of an IP address. Some providers even claim the accuracy
of being able to track IP addresses down to city level. That is, how-
ever, very questionable even though the country-level geolocation
accuracy performs quite well [PUK+11]. Since IP address and the
corresponding countries change from time to time, it would be to
late to evaluated the respective country while analysing the data.
The used geolocation databse is [Web13].

• Tracker
A pattern database can be used to determine whether a specific

© 2013 Malvin Thiel 59

4. The trust graph

Web resource is involved in user tracking. The Ghostery exten-
sion (see section 3.1.3 Techniques against tracking) uses about 1200
patterns to detect trackers which can easily be extracted from the
browser extension. The patterns are stored in a JSON file which
is basically nothing more than an array of pattern whereas each
is connected with some information about the tracker. Listing 4.3
demonstrates the setup of that list.

1 {
2 "bugs" :[
3 {
4 "type": "ad",
5 "aid" : "2" ,
6 "cid" : "145",
7 "pattern": " static \\. scribefire \\.com\\/ads\\.js",
8 "name":"ScribeFire QuickAds",
9 "id" : "33",

10 " affiliation " : ""
11 },
12 [...]
13]
14 }

Listing 4.3: Tracker detection patterns

• Company
It would be useful having knowledge about the company a website
is operated by. Especially, whensoever one company is well known
to be untrustworthy, it would be nice to know about the other
websites this company is owning. Unfortunately, the logical way of
reading a website’s WHOIS data, which should contain information
about the operating company, is not in a readable format [Fie12,
p. 44]. However, it was found that the knowledge of a websites oper-
ating company is that important so that the existing transparency

© 2013 Malvin Thiel 60

4. The trust graph

plug-in was modified for the collaborated information retrieval of
this information. Unluckily, collaborated editing is pretty much a
synonym for faulty and unreliable data which has to take account
of when analysing. See chapter 5 for further information about the
browser extension customisations.

• Entered
It can be very useful to have every request connected with a times-
tamp when the request was stored in the graph. This timestamp is
in fact pretty much the same than the dropped timestamp in the
previous section, but attention: the dropped timestamp encloses
the time of the client which may not be a true value. Therefore this
data field is added by the time the HTTP trace is stored in the
graph - all based on the same clock.

After the removal and the enhancement of the usable data, the final
information that will be stored as RDF triples is summarised in table 4.2
along with their corresponding data types.

4.2. Construction of the trust graph

After determining the data that needs to be stored, an information ar-
chitecture that is based on the data described in section 4.1 has to be
defined. Existing storage methods described in section 3.5 are not capable
of storing the necessary data. Log files won’t allow the storage of varying
data fields. The "HTTP Vocabulary in RDF" makes massive use of RDF
collections which are poorly supported by the RDF framework Virtuoso
[Sof09]. Also, the data structure would produce a lot of overhead due to
all created classes (i.e. Connection Class, Message Class, Request Class,
MessageHeader Class and so on) which actually aren’t necessary because
the data the transparency plug-in delivers is not ambiguous when every-
thing is stored together (request and response).

© 2013 Malvin Thiel 61

4. The trust graph

Field Type
parentRequest reference
ip string
method string
url string
domain string
hostname string
scheme string
fromCache boolean
statusCode number
countryCode string
contentEncoding string
contentType string
expires timestamp
date timestamp
setCookie boolean
entered timestamp
tracker string
serverLocation string

Table 4.2.: Extended request+response information

The following Entity-relationship model diagram (figure 4.2) demon-
strates an easy and mostly overhead-free approach of storing the data as
a RDF graph. Every data from a request and the corresponding response

Figure 4.2.: Entity-relationship model of the trust graph

is joined into one entity named response. This entity contains every field
from table 4.2 as an attribute. This simple construct contains only one
RDF triple for the definition of a new request, but every other triple can
directly be used to store the incoming data. With the amount of data
that needs to be stored, much overhead would unnecessarily enlarge the

© 2013 Malvin Thiel 62

4. The trust graph

created graph as well as extend and complicate analyses. The proposed
simplified graph will be used to build the trust graph. A RDF schema of
this format is defined in section A.1. The schema, available at the imag-
inary URL http://trustgraph.org/schema will be used to describe RDF
in this document.

4.3. Analysing the trust graph

The trust graph can be used to create multifarious analyses. The avail-
able data provides enough information for analyses of multiple areas such
as the ones shown in section 3.2. Some quintessential ones are picked and
explained within this section to demonstrate the capabilities of the trust
graph. The roots of any analysis starts with SPARQL queries. Sometimes,
nothing more than one query might be needed just as further processing
through programming languages is required in other analyses. One com-
plex usage example of the trust graph is provided by the calculation of
a trust score. This is done in section 4.4. In addition to that, each of the
following sub sections contains an exemplary analysis.

The data set on which each analysis is based on, is gathered by brows-
ing the German top 50 websites (based on unique visitors per month
[Gmb10]) together with America’s top 50 [AI13]. The used browser sends
a German identification (Accept-Language: de-DE) which might redirect
multilingual websites to their German part. This data is, of course, not
a reliable base to gather expressive answers, however, this thesis is about
the possibilities the trust graph is providing and not about precise re-
sults.

4.3.1. Tracking probabilities and market shares

This analysis measures the probability of getting tracked when browsing
the web. It breaks down the different trackers and probabilities of them.

© 2013 Malvin Thiel 63

4. The trust graph

The following SPARQL query returns a list of trackers and their usage
number along all direct requests.

1 PREFIX tg: <http://trustgraph.org/schema#>
2

3 SELECT COUNT(∗) AS ?count ?company WHERE {
4 {
5 SELECT DISTINCT ?parentRequest ?company WHERE {
6 ?parentRequest tg:isA ’Request’ .
7 ?childRequest tg:isA ’Request’ .
8 ?childRequest tg:parentRequest ?parentRequest .
9 ?childRequest tg:tracker ?trackingCompany .

10 ?trackingCompany tg:companyName ?company
11 }
12 }
13 }
14 GROUP BY ?company

Listing 4.4: SPARQL: Tracker probability and market shares

This list of absolute trackers is then relativised and shortened to only
trackers that reach a minimum of 10 percent of all websites. The out-
come is shown in figure 4.3, where the probability of a tracker to appear
on a website is shown on the y-axis and the name of that tracker on the
x-axis. Due to the mentioned data set the results might not be represen-
tative for the whole web, the diagram still shows the tendency of online
tracking: two tracking widgets are capable to track more than 50% of
users browsing behaviour. However, the actual percentage for one track-
ing company might be much higher since the statistic is based on trackers
and not on companies. Obviously, Google is a good example, because it
appears three times in the list: Google Tag Manager, Google Affiliate
Network and Google Website Optimizer. But caution, those three track-
ing values can’t simply be added together, since one website could include
more than one of them at the same time!

© 2013 Malvin Thiel 64

4. The trust graph

Figure 4.3.: Tracker probability and market shares

4.3.2. Third party content distribution by country

A question that might also come along with political background is the
distribution of third party content along the Web. Third party content
refers to anything that’s included by a website that is not hosted on the
same domain than the website itself. The probabilities that a website
hosted in one country receives content from another is evaluated by the
following SPARQL query.

1 PREFIX tg: <http://trustgraph.org/schema#>
2 PREFIX fn: <http://www.w3.org/2005/xpath−functions#>
3

4 SELECT ?childCountry COUNT(∗) AS ?count WHERE {
5 ?childRequest tg:parentRequest ?parentRequest .
6

7 ?childRequest tg:domain ?childDomain .
8 ?parentRequest tg:domain ?parentDomain .
9 ?parentRequest tg:serverLocation ’%s’ .

10 ?childRequest tg:serverLocation ?childCountry .
11

© 2013 Malvin Thiel 65

4. The trust graph

12 FILTER(fn:not(?childDomain = ?parentDomain))
13 }
14 GROUP BY ?childCountry

Listing 4.5: SPARQL: Third party content distribution by country

This analysis is done for three countries: Germany, the United States
of America and China. The probabilities for Germany and the USA are
illustrated in figure 4.4 whereas only countries with a probability greater
than one percent are shown. For the calculation of the Chinese websites,

Figure 4.4.: Third party content distribution by country

a completely new data set is chosen. The HTTP traces generated by
browsing the Chinese top 20 websites [www13] is used. Some of those
websites are actually hosted in Taiwan or Hong Kong. Those ones hosted
in China, include 74% of its third party contents from other websites
hosted in China, 9% from the USA and 7% from Germany. Especially
the China example demonstrates the international interaction between
content distribution. Why else would Chinese websites include that much
content from Germany? However, probably the biggest reason is language
and location optimized advertising.

© 2013 Malvin Thiel 66

4. The trust graph

4.3.3. Media caching

Caching across the Web can significantly improve the browsing speed.
This analysis evaluates the usage of cache specifiers of included media
whereas media can be understood as images, CSS and flash objects. The
ratio of objects that could have been cached, objects that are cached and
objects that are specifically not cachable is evaluated. Objects that are
recognised to be trackers are completely ignored. The following SPARQL
query is capable to retrieve those values.

1 PREFIX tg: <http://trustgraph.org/schema#>
2 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
3

4 SELECT COUNT(∗) WHERE {
5 ?childRequest tg:parentRequest ?parentRequest .
6 ?childRequest tg:contentType ?contentType .
7

8 # Option 1: All
9

10 # Option 2: Cached
11 #?childRequest tg:date ?date .
12 #?childRequest tg:expires ?expires .
13 #FILTER(xsd:dateTime(?expires) > xsd:dateTime(?date))
14

15 # Option 3: Not cacheable
16 #?childRequest tg:date ?date .
17 #?childRequest tg:expires ?expires .
18 #FILTER(xsd:dateTime(?expires) <= xsd:dateTime(?date))
19

20 FILTER(
21 REGEX(?contentType, ’text/css.∗’) OR
22 REGEX(?contentType, ’image.∗’) OR
23 ?contentType = ’application/x−shockwave−flash’

© 2013 Malvin Thiel 67

4. The trust graph

24)
25

26 FILTER NOT EXISTS {
27 ?childRequest tg: tracker ?tracker
28 }
29 }

Listing 4.6: SPARQL: Media caching

The in-line comments explain which part needs to be uncommented for
the calculation of the different values. Figure 4.5 demonstrates the distri-
bution of media objects that are either cached, not cachable or nothing of
the both. Those 9% of objects are either missing the date/expire field or

Figure 4.5.: Distribution of media caching

the value is not well formatted. This might be almost 10% of unnecessary
traffic. However, it is hard to tell why those objects are not containing
any cache specifiers. When unintentionally, a lot of traffic could have
been spared.

4.3.4. Content inclusions by country

This time, the usage of included elements is analysed. Elements refer
to anything that is included via an URL into a website (CSS, images,
Javascript). The average number of inclusions per website is calculated

© 2013 Malvin Thiel 68

4. The trust graph

for every country. At the same time, the number of trackers are counted
separated (a tracker is also an element!). This is done by putting the
results of the following three SPARQL queries together.

1 PREFIX tg: <http://trustgraph.org/schema#>
2

3 #visited websites by country
4 SELECT COUNT(DISTINCT ?parentRequest) AS ?count ?

serverLocation WHERE {
5 ?childRequest tg:parentRequest ?parentRequest .
6 ?parentRequest tg:serverLocation ?serverLocation
7

8 }
9 GROUP BY ?serverLocation

10

11 #content inclusions by country
12 SELECT COUNT(?childRequest) AS ?count ?serverLocation WHERE

{
13 ?childRequest tg:parentRequest ?parentRequest .
14 ?parentRequest tg:serverLocation ?serverLocation
15 }
16 GROUP BY ?serverLocation
17

18 #content inclusions detected as trackers by country
19 SELECT COUNT(?childRequest) AS ?count ?serverLocation WHERE

{
20 ?childRequest tg:parentRequest ?parentRequest .
21 ?parentRequest tg:serverLocation ?serverLocation .
22 ?childRequest tg:tracker ?tracker
23 }
24 GROUP BY ?serverLocation

Listing 4.7: SPARQL: Content inclusions by country

© 2013 Malvin Thiel 69

4. The trust graph

Instead of using client side logic to put the results of those three queries
together, a query using CONSTRUCT as a sub-query could have gen-
erated the same results with only one query. Unfortunately, the latest
W3C SPARQL Recommendation [Wor08] doesn’t allow that. However,
extensions to the existing recommendation have been suggested [AG11]
[Ves12] and the W3C SPARQL working group has discussed this feature
already [wg08], so that it might appear in a further version.

Anyway, the results are illustrated in figure 4.6. The numbers of elements

Figure 4.6.: Content inclusions by country

consists of the number of trackers and the number of other elements. The
quantities shown are absolute values which reflect the average elements
included by websites per country. The data set for China (see section
4.3.2 Third party content distribution by country) has also been used for
this analysis. Then, other countries than Germany, the USA and China
have been dropped.

Whereas the number of trackers is approximately similar, the total num-
ber of included elements is significantly different between the three coun-
tries. Even though this is an interesting fact, the interpretation of it is
not part of this thesis.

© 2013 Malvin Thiel 70

4. The trust graph

4.4. Calculation of a trust score

One practical application of a trust graph analysis is the generation of
a trust score. This score is used to provide users of the transparency
plug-in with trustworthiness information related to the currently viewed
page. The score rates websites on an objective scale (compare with WOT
in section 3.4 Existing trustworthiness ratings) based on previous HTTP
connections which got initiated by loading all contents of a specific site.
A website is considered to contain a top- and second-level-domain. Ad-
dresses including more than two subdomains, but sharing the same top-
and second-level-domain are treat as the same website (i.e. sub.example.com
equals example.com). This score is able to warn users that are about to
browse a specific website based on the information gain when other users
were browsing that site. This can protect the privacy of many users by
making use of information shared by others. However, it seems like no
other trust score has been yet calculated using only the data the trust
graph provides. Any significance of the score needs to be evaluated.

4.4.1. Data parameters

The trust score uses, of course, the data that is provided by the trust
graph. This information needs, however, a semantic interpretation. Espe-
cially when talking about implications of concatenated data. Also graph
external data might be used as an incoming parameter. Still, the algo-
rithm will be based on the provided data. The following list contains a
rule set that represents the basic ideas of the trust score.

• The number of third party trackers a website is including lowers
the trust degree of that website (trackers are identified using the
tracker detection patterns).

• Any third party include that is not identified as a tracker, but still
sending a cookie to the users computer is considered to be a privacy

© 2013 Malvin Thiel 71

4. The trust graph

risk. That is because cookies are the biggest contributor when its
about tracking (see section 3.1.1 Methods of user tracking).

• Previous factors are relativised by the internet privacy related part
provided by the Privacy International ranking (see section 3.4 Ex-
isting trustworthiness ratings), whereas the websites country is al-
located through the mentioned IP2Country database (see section
4.1.3 Data enhancement).

• Websites that are operated through the same company will share
the trust score in some degree, since it can be assumed that one
company handles all websites with approximately the same privacy
policies.

Those parameters will be used for the calculation of the trust score value
that is available for every website for which data is present within the
trust graph. The detailed algorithm that considers and weights every
single rule is explained in the next section.

4.4.2. The algorithm

The trust score algorithm outputs an value that expresses the privacy pro-
tection of a specific domain in relation to other domains. Therefore the
trust score is not a fix value, but rather changes anytime new information
is available (stored into the trust graph). The score can be interpreted as
the factor of how trustworthy a website is compared to others. For exam-
ple, the website example.com obtains a score of 2. Then, example.com
is two times less trustworthy compared to the average. Trustworthiness
is, however, defined as a product of the data parameters defined in the
previous section. The following algorithm, written in pseudo code for
readability reasons, demonstrates the calculation of the trust score. Any-
way, the Java implementation can be found in section A.4 Sourcecode.
The algorithm is split in two functions: calculateTrustScore and calcu-
lateTrustScoreForDomain which are explained as follows.

© 2013 Malvin Thiel 72

4. The trust graph

Algorithm 1 calculateTrustScore(domain)
company ← getCompany(domain)
if company 6= null then

domains← getDomainsOfCompany(company)
score← 0
count← 0
for each domain ∈ domains do

tmpScore← calculateTrustScoreForDomain(domain);
if tmpScore > 0 then

score← score + tmpScore
count← count + 1

end if
end for
return score/count;

else
return calculateTrustScoreforDomain(domain)

end if

This first algorithm is used to perform the trust score calculation over
all domains of a specific company or when not existent over a specific
domain. That implies that the trust score of one domain of a company
is the same as any other domain of that company. The next algorithm
actually calculates a score of one domain without taking other domain
of the same company into account.

Algorithm 2 calculateTrustScoreForDomain(domain)
if not isInformationAvailableforDomain(domain) then
return 0

else
country ← getDomainCountry(domain)
if not set PI[country] then
return 0

end if
trackerRatio← AVGTrackersDomain(domain)/AVGTrackersAll()
PIRatio← PI[country]/AVG(PI)
cookieRatio← AVGCookiesDomain(domain)/AVGCookiesAll()
return PIRatio× trackerRatio× cookieRatio

end if

© 2013 Malvin Thiel 73

4. The trust graph

Both procedures make use of functions that aren’t defined here, but can
be found at section A.3 SPARQL queries. Those functions actually refer
to SPARQL queries performed on the trust graph.

4.4.3. Evaluation towards existing ratings

A big advantage of the trust score is the objectivity of the calculated
rating. Many reports [Rep10] [NT12] [Max12] proved the problem sub-
jective likert-scale based rating system are facing (i.e. WOT). The cal-
culation needs less personalised data compared to the BrowseRank algo-
rithm. Still, transferred data of the trust score might become a privacy
issue when methods for users to remain anonymous are not operating.
But this will be less detailed information than the data gathered by the
BrowseRank algorithm. Another advantage is the spare data that is ac-
tually necessary to calculate the trust score of a specific website. A few
HTTP traces collected from previous users is enough for a calculation. In
contrast to that is PageTrust, an extension to the PageRank algorithm
witch needs information about all websites that are linking to the website
of interest.

One unfortunate issue about using the trust score technique is, that infor-
mation which is available through the TrustGauge or the TrustScore isn’t
available at all. However, the TrustScore is based on subjective data only.
The TrustGauge’s score is calculated by using objective parameters, nev-
ertheless, the method is based on a website’s site notice. Whereas only
the presence of this data implies trustworthiness, which isn’t much of
meaningful information.

Expert knowledge about current viruses and browser exploits that is
provided through McAfee’s SiteAdvisor can’t be evaluated from the given
data the trust score is receiving.

© 2013 Malvin Thiel 74

5. Design and Implementation

5. Design and Implementation

In consequence to the previous commitment of using the GWT (see sec-
tion 2.3 Google Web Toolkit) and the Virtuoso RDF Triple Store (section
2.5.4 RDF frameworks), some basic architectural structure is already
given which needs to be considered. Basically, the architecture design
is made to cover the following two areas: data analyses and a browser
interface. Whereas the browser interface handles: store and retrieve of
company to domain information, retrieval of a domains trust score and
the submission of any performed HTTP traces. This interface is only
used for communications between the transparency plug-in and the data
server (machine to machine communication). A REST based web ser-
vice is easy to handle and to debug and will therefore be used for this
area. Other ways of communication, e.g. handling Java Remote Proce-
dure Calls (RPC) with the transparency plug-in are, anyhow, problem-
atic due to the language restriction of the browser plug-ins (Javascript).
On the other hand, the analyses may require user interactions which are
perfectly fulfilled by GWT. However, the system must be build in a way
that it’s simple to either integrate new analyses, but also modify existing
ones. Therefore, analyses should be coupled loose into the system, but
also remain highly cohesive itself. An interface based plug-in system will
be used.

Before describing the components within the next sections, an overview
diagram is shown in figure 5.1. This demonstrates the involved compo-
nents and gives an overview of the architecture and possible interactions
between the components.

© 2013 Malvin Thiel 75

5. Design and Implementation

Figure 5.1.: Architecture design overview

5.1. RESTful web services

The RESTful web services are made for any communication between the
transparency plug-in and the data server. The structure of every REST
service is already determined by the GWT Servlet mapping. This map-
ping joins an URL or a set of URLs to an entry point (i.e. a method). The
following code demonstrates the mapping of such a REST web services.

© 2013 Malvin Thiel 76

5. Design and Implementation

1 <servlet>
2 <servlet−name>RESTCompanyInterface</servlet−name>
3 <servlet−class>ExternalCompanyService</servlet−class>
4 </servlet>
5

6 <servlet−mapping>
7 <servlet−name>RESTCompanyInterface</servlet−name>
8 <url−pattern>/company/∗</url−pattern>
9 </servlet−mapping>

Listing 5.1: GWT: Web service URL to entry point mapping

This listing creates a web service called RESTCompanyInterface which
is mapped to the entry point class ExternalCompanyService which re-
acts upon URLs that start with "/company/". Equivalent code maps
all created web services (see table 5.1). Every entry point (i.e. REST-

Web service URL Entry point
RESTCompanyInterface /company/* ExternalCompanyService
TrustScoreInterface /trustscore/* ExternalTrustScoreService
RESTLinkInterface /link ExternalLinkService

Table 5.1.: GWT: Web service URL to entry point mapping

CompanyInterface) is actually nothing more than a class derived from
HttpServlet. Such a class can overwrite a set of methods that are able
to handle incoming HTTP requests such as doGet, doPost, doPut, etc.
The word after "do" stand for the handled HTTP method. Naturally, the
insertion of a company would make use of either the PUT or the POST
method whereas the retrieval of a company uses the GET method. De-
pending on the result of the company retrieval process, the returning
value can differ. REST web services are capable of returning multiple
values at the same time. First of all comes the HTTP status code that
is returned to the caller. When no company is found, the returning sta-
tus code will be 404 (defined in HTTP as Not Found). When found, the

© 2013 Malvin Thiel 77

5. Design and Implementation

code 200 (OK) is returned together with the name of that company in
the HTTP message body. That’s the basic principal of how REST based
web services are working. The sequence diagram in figure 5.2 demon-
strates the company retrieval process. All of the three web services work

Figure 5.2.: Sequence diagram of the company retrieval process

pretty much the same way. Relevant SPARQL queries that are used to
perform those operations are explained in chapter 4 or else in A.4 Source-
code. The remaining section is used to describe the insertion part of new
HTTP traces.

The HTTP traces are transferred to the data server by the transparency
plug-in in regular intervals. As explained before, the data exchange is
done with a RESTful POST request where the trace data is covered in-
side the HTTP body. The actual data is encoded in the JSON format an
it’s buildup is described in section 4.2. This JSON data is then parsed to
extract every single request a website is containing. All extracted infor-
mation is then stored in the trust graph as RDF triples connected with
the main request of the website. A demonstration is made with the exam-
ple HTTP traces gathered from a request to http://funsporting.de/
which is shown in listing 4.1. The inserted triples would be:

© 2013 Malvin Thiel 78

http://funsporting.de/

5. Design and Implementation

1 @prefix tg: <http://trustgraph.org/schema#> .
2

3 _:a tg:isA ’Request’ .
4 _:a tg:url ’ http://funsporting.de/’ .
5

6 _:b tg:isA ’Request’ .
7 _:b tg:parentRequest _:a .
8 _:b tg:url ’ https://apis.google.com/js/plusone.js’ .
9 _:b tg:domain ’google.com’ .

10 _:b tg:ip ’173.194.69.138’ .
11 _:b tg:method ’GET’ .
12

13 _:c tg:isA ’Request’ .
14 _:c tg:parentRequest _:a .
15 _:c tg:url ’ https://apis .google.com/_/scs/apps−stat[...]’
16 _:c tg:ip ’173.194.69.138’ .

Listing 5.2: Turtle RDF extraced from HTTP traces

This is an shortened example trace and a real HTTP trace would, of
course, be more complete and would contain more information.

5.2. Analysis modules

All analyses are mapped to an URL as the REST web services are. In
contrast, this mapping is done to only one URL which is a container
that handles all different kinds of all analyses. This container is build-up
as described in [Thi10, p. 28]. Basically a menu that lists all possible
analyses and a content part which is freely filled by the specific analy-
sis. Figure 5.3 shows the container together with the performed media
caching analysis. Each analysis module contains any necessary code that
it needed for the generation and display of the results. Every module is

© 2013 Malvin Thiel 79

5. Design and Implementation

Figure 5.3.: Media caching analysis screenshot

derived from the interface class IModule to fulfil the previously described
plug-in ability of the system. Figure 5.4 shows the UML class diagram of
that interface. All links that an module registers is visible within the cat-

Figure 5.4.: UML diagram of IModule

egory it specifies. Therefore multiple modules can add links to the same
category. With the use of this interface, all existing modules could be
added to the container by making use of reflection. This practice would
be very useful, since no code changes need to be made when adding or re-
moving an analysis. Unfortunately, reflection is not allowed on the client
side of GWT applications, therefore a registration of the modules at the
container is necessary. This makes the insertion and removal of modules
not completely trivial, because after any change a recompilation of the
container code is inevitable. However, only one line of code needs to be
added for the registration of new modules.

© 2013 Malvin Thiel 80

5. Design and Implementation

The execution of an analysis is predefined by GWT: a server side part and
a client site (the users web browser) part. The client side party which is
generated with GWT’s Java to Javascript compiler. Since the Javascript
code is running on the client’s machine, any access data to the SPARQL
endpoint would be readable by everyone using the system. That is where
the GWT RPC is used which is shown in figure 5.1. Every SPARQL query
is therefore not directly performed from the client machine, an indirect
way using RPC to the data server is used. The sequence diagram in figure
5.5 demonstrates the flow of such an operation.

Figure 5.5.: Sequence diagram of an analysis

5.3. Transparency plug-in modifications

The transparency plug-in is modified to provide some additional func-
tionality: retrieval, insertion and display of companies and the retrieval
and display of the trust score. To add these features, the existing model
and view of the Model-View-Controller architecture [Fie12, p. 36] needs
to be extended with corresponding code. The retrieval and insertion part
is done by making use of the previously described REST web services,
which are operated by Ajax requests. Such a requests is basically per-
formed with the following Javascript code which retrieves the trust score
of the domain "cnn.com".

© 2013 Malvin Thiel 81

5. Design and Implementation

1 var req = new XMLHttpRequest();
2 req.open("GET", "http://data−server.org/trustscore/cnn.com", true);
3

4 req.onreadystatechange = function() {
5 if (req.readyState == 4 && req.status == 200) {
6 set_tooltip(req.responseText);
7 }
8 }
9 req.send();

Listing 5.3: Javascript code for trust score retrieval

This asynchronous Ajax request is not delaying the website speed while
loading the company or trust score data. The insertion part is pretty
similar. The basic difference is the change of the HTTP method from
"GET" to "PUT" and the payload that’s added to the HTTP body (i.e.
the company name). For the presentation of the trust score, the Chrome
API function chrome.browserAction.setBadgeText() is chosen to display
the score directly on the plug-in icon which is placed on the browser’s
frontend. The result is shown in figure 5.6.

Figure 5.6.: Trust score visible on browser plug-in icon

All changes within the transparency plug-in are either made inside the
background.js or the tools.js.

© 2013 Malvin Thiel 82

6. Conclusion

6. Conclusion

6.1. Results

A system that stores HTTP traces collected by the transparency plug-in
has been developed. The traces data itself is stored into a trust graph
using RDF triples. The connection that is needed for the data transfer
between the transparency plug-in and the data server is implemented via
REST web services. Those web services are used to store HTTP traces
into the trust graph, to store and retrieve company information about
domains and to retrieve a trust score that is computable for any website.
A possible falsification of those HTTP traces is not given, when com-
pared with robots which could obtain special robot optimized content.
The trust score is calculated based on the trust graph information gained
by previous HTTP traces sent by many plug-in users. Thus, a plug-in user
benefits from the information gained by others. This trust score is, in con-
trast to existing trustworthiness ratings, based on objective parameters
only. Besides the trust score, the trust graph can be used for any further
analyses. A couple of exemplary ones have been implemented and eval-
uated in section 4.3 to demonstrate the possibilities of the graph. Those
analyses are build as modules for a framework that manages a simple
adding, modification and removal. Therefore, only very few changes are
necessary at the data server code when adding a new analysis to it.

6.2. Critical review

Even though the trust score is a helpful privacy indicator of websites,
the data that is used for the calculation is only based on the HTTP
traces that are gathered by users of the transparency plug-in. Certainly,
privacy related issues are not only present in HTTP traces. Several other

© 2013 Malvin Thiel 83

6. Conclusion

characteristics listed in section 3.4 are needed for an all-inclusive trust
score. Therefore, some harmful websites might actually obtain a positive
trust score. Another problem is present in the calculation of the score:
the tracker recognition. While an increasing number of trackers lowers
the trust, the different trackers are not evaluated against each other.

The storage of company related information about domains, but also
the HTTP traces itself are not subject of any verification. Therefore,
deliberate spoofing with the aim of changing a trust score or whatsoever
can easily be done.

Another aspect is the privacy issue that might come up with the storage
of the HTTP traces itself. Even though cookie values are not transferred
by the transparency plug-in, URLs often contain properties that might
enable the identification of unique users. Due to the various possibilities
of transporting user identification attributes within URLs, it’s probably
impossible to securely filter them out.

6.3. Further Work

A very next step before collecting data from a mass of users has to be
the assurance of their privacy. Also, the protection from data spoofing
is a very necessary task to ensure before putting credit into the trust
score or any analysis when random users are able to insert their HTTP
traces into the trust graph. Unfortunately, this activity might be difficult
to fulfil, since any source code of transparency plug-in is visible to every
user. Stress test should be done to test the stability and the run-time of
the system when huge amounts of requests get stored in it. The analysis
modules could be equipped with methods that help diagram creation.
The final visualisation of current analysis shown in 4.3 is done with ex-
ternal software. The transparency plug-in should be modified in a way
that it’s possible to stop connections from even getting initialised on web-
sites with very poor trust scores. This would unfortunately reduce the

© 2013 Malvin Thiel 84

6. Conclusion

browsing speed significantly, since the trust score would be needed to be
fetched before any HTTP request.

© 2013 Malvin Thiel 85

Glossary

Glossary

AJAX Asynchronous JavaScript and XML

API Application programming interface

CSS Cascading Style Sheets

DOM Document Object Model

GAE Google App Engine

GWT The Google Web Toolkit

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IDE Integrated development environment

JRE Java Runtime Environment

JSON JavaScript Object Notation

OWL Web Ontology Language

P3P Platform for Privacy Preferences Project

P3P Platform for Privacy Preferences

RAL Repository Abstraction Layer

RDFS Resource Description Framework Schema

REST Representational State Transfer

RFC Request for Comments

© 2013 Malvin Thiel 86

Glossary

RMI Remote Method Invocation

RPC Remote Procedure Calls

SOAP Simple Object Access Protocol

SPARQL SPARQL Protocol and RDF Query Language

SQL Structured Query Language

TCP Transmission Control Protocol

UML Unified Modeling Language

URI Uniform Resource Identifier

W3C World Wide Web Consortium

WOT Web of Trust

XML Extensible Markup Language

© 2013 Malvin Thiel 87

Bibliography

Bibliography

[Abi13] inc. Abine, Dntme frequently asked questions, Available from:
<http://www.abine.com/dntp/faq.php>, 2013, Accessed
Februar 26, 2013.

[AG11] Renzo Angles and Claudio Gutierrez, Subqueries in sparql, Pro-
ceedings of the 5th Alberto Mendelzon International Workshop
on Foundations of Data Management, Santiago, Chile, May
9-12, 2011, CEUR Workshop Proceedings, vol. 749, CEUR-
WS.org, 2011.

[AI13] Inc. Alexa Internet, Top sites in united states, Available
from: <http://www.alexa.com/topsites/countries/US>,
2013, Accessed March 19, 2013.

[BCK03] Simon Byers, Lorrie Faith Cranor, and David Kormann, Auto-
mated analysis of p3p-enabled web sites, Proceedings of the 5th
international conference on Electronic commerce (New York,
NY, USA), ICEC ’03, ACM, 2003, pp. 326–338.

[BCK+10] Christian Borgs, Jennifer Chayes, Adam Tauman Kalai,
Azarakhsh Malekian, and Moshe Tennenholtz, A novel ap-
proach to propagating distrust, Proceedings of the 6th interna-
tional conference on Internet and network economics (Berlin,
Heidelberg), WINE’10, Springer-Verlag, 2010, pp. 87–105.

[BH01] Jeen Broekstra and Frank Van Harmelen, Sesame: An architec-
ture for storing and querying rdf data and schema information,
Writer 2342 (2001), 1–16.

[BK08] Matthew Burnside and Angelos D. Keromytis, Asynchronous
policy evaluation and enforcement, Proceedings of the 2nd
ACM workshop on Computer security architectures (New
York, NY, USA), CSAW ’08, ACM, 2008, pp. 45–50.

© 2013 Malvin Thiel 88

http://www.abine.com/dntp/faq.php
http://www.alexa.com/topsites/countries/US

Bibliography

[BL97] Tim Berners-Lee, Axioms of web architecture: Metadata, Avail-
able from: <http://www.w3.org/DesignIssues/Metadata.
html>, January 1997, Accessed September 10, 2012.

[Bra01] Tim Bray, What is rdf, Available from: <http://www.
xml.com/pub/a/2001/01/24/rdf1.html>, January 2001, Ac-
cessed September 11, 2012.

[BS09] Christian Bizer and Andreas Schultz, The berlin sparql bench-
mark, International Journal On Semantic Web and Informa-
tion Systems 5 (2009), no. 2, 1–24.

[Bur06] Ed Burnette, Google web toolkit, The Pragmatic Bookshelf, 11
2006.

[CDD+04] Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave
Reynolds, Andy Seaborne, and Kevin Wilkinson, Jena: im-
plementing the semantic web recommendations, Proceedings
of the 13th international World Wide Web conference on Al-
ternate track papers & posters (New York, NY, USA), WWW
Alt. ’04, ACM, 2004, pp. 74–83.

[CKB12] Abdelberi Chaabane, Mohamed Ali Kaafar, and Roksana
Boreli, Big friend is watching you: analyzing online social
networks tracking capabilities, Proceedings of the 2012 ACM
workshop on Workshop on online social networks (New York,
NY, USA), WOSN ’12, ACM, 2012, pp. 7–12.

[Cla06] Roger Clarke, What’s privacy?, Available from: <http://
www.rogerclarke.com/DV/Privacy.html>, 2006, Accessed
Februar 14, 2013.

[Cla12] Clark & Parsia, Stardog: The rdf database, Available from:
<http://stardog.com/>, June 2012, Accessed June 28,
2012.

© 2013 Malvin Thiel 89

http://www.w3.org/DesignIssues/Metadata.html
http://www.w3.org/DesignIssues/Metadata.html
http://www.xml.com/pub/a/2001/01/24/rdf1.html
http://www.xml.com/pub/a/2001/01/24/rdf1.html
http://www.rogerclarke.com/DV/Privacy.html
http://www.rogerclarke.com/DV/Privacy.html
http://stardog.com/

Bibliography

[CMS99] Robert Cooley, Bamshad Mobasher, and Jaideep Srivastava,
Data preparation for mining world wide web browsing patterns,
Knowl. Inf. Syst. 1 (1999), no. 1, 5–32.

[Cra94] Lorrie Faith Cranor, The road less traveled: stop and smell the
policy, Crossroads 1 (1994), no. 1, 3–4.

[Cra98] Lorrie Faith Cranor, Laws, self-regulation, and p3p: Will w3c
s privacy platform help make the web safe for privacy?, Com-
puter Networks 30 (1998), no. 1-7, 751–753.

[Cra02] L. Cranor, Web privacy with p3p, Oreilly Series, O’Reilly Me-
dia, Incorporated, 2002.

[Cra13] Crawler, Internet browser security - get safe, secure brows-
ing - web security guard, Available from: <http://www.
websecurityguard.com>, 2013, Accessed Februar 26, 2013.

[CTX11] Fan Chung, Alexander Tsiatas, and Wensong Xu, Dirichlet
pagerank and trust-based ranking algorithms, Proceedings of
the 8th international conference on Algorithms and models for
the web graph (Berlin, Heidelberg), WAW’11, Springer-Verlag,
2011, pp. 103–114.

[DD79] Dorothy E. Denning and Peter J. Denning, Data security,
ACM Comput. Surv. 11 (1979), no. 3, 227–249.

[dKvD08] C. de Kerchove and P. van Dooren, The PageTrust Algo-
rithm: How to rank web pages when negative links are allowed?,
SIAM: Data Mining Proceedings, 2008, pp. 346+.

[Eck10] Peter Eckersley, How unique is your web browser?, Proceed-
ings of the 10th international conference on Privacy enhancing
technologies (Berlin, Heidelberg), PETS’10, Springer-Verlag,
2010, pp. 1–18.

[EV03] Magdalini Eirinaki and Michalis Vazirgiannis, Web mining for
web personalization, ACM Trans. Internet Technol. 3 (2003),
no. 1, 1–27.

© 2013 Malvin Thiel 90

http://www.websecurityguard.com
http://www.websecurityguard.com

Bibliography

[F+99] R. Fielding et al., Hypertext transfer protocol – http/1.1,
Available from: <http://www.ietf.org/rfc/rfc2616.txt>,
1999, Accessed March 27, 2013.

[Fer12] Javier D. Fernández, Binary rdf for scalable publishing, ex-
changing and consumption in the web of data, Proceedings of
the 21st international conference companion on World Wide
Web (New York, NY, USA), WWW ’12 Companion, ACM,
2012, pp. 133–138.

[Fie12] Tobias Fielitz, Entwicklung eines browser plug-ins für trans-
parentes surfen, Master’s thesis, Freie Universität Berlin, 2012.

[FKR10] George Forman, Evan Kirshenbaum, and Shyamsundar Ra-
jaram, A novel traffic analysis for identifying search fields in
the long tail of web sites, Proceedings of the 19th international
conference on World wide web (New York, NY, USA), WWW
’10, ACM, 2010, pp. 361–370.

[Fou13] Wireshark Foundation, Wireshark go deep, Available from:
<http://www.wireshark.org/>, 2013, Accessed March 01,
2013.

[GAC+11] Phillipa Gill, Martin Arlitt, Niklas Carlsson, Anirban Ma-
hanti, and Carey Williamson, Characterizing organizational
use of web-based services: Methodology, challenges, observa-
tions, and insights, ACM Trans. Web 5 (2011), no. 4, 19:1–
19:23.

[GGMP04] Zoltán Gyöngyi, Hector Garcia-Molina, and Jan Pedersen,
Combating web spam with trustrank, Proceedings of the Thirti-
eth international conference on Very large data bases - Volume
30, VLDB ’04, VLDB Endowment, 2004, pp. 576–587.

[Gho13] Ghostery, Ghostery - about, Available from: <http://www.
ghostery.com/>, 2013, Accessed Februar 16, 2013.

© 2013 Malvin Thiel 91

http://www.ietf.org/rfc/rfc2616.txt
http://www.wireshark.org/
http://www.ghostery.com/
http://www.ghostery.com/

Bibliography

[GKG11] Christophe Gueret, Spyros Kotoulas, and Paul Groth, Triple-
cloud: An infrastructure for exploratory querying over web-
scale rdf data, Proceedings of the 2011 IEEE/WIC/ACM In-
ternational Conferences on Web Intelligence and Intelligent
Agent Technology - Volume 03 (Washington, DC, USA), WI-
IAT ’11, IEEE Computer Society, 2011, pp. 245–248.

[Gmb10] CHIP Xonio Online GmbH, Die 50 beliebtesten websites
der deutschen, Available from: <http://www.chip.de/
bildergalerie/Die-50-beliebtesten-Websites-der-
Deutschen-Stand-Mai-2010-Galerie_43740946.html>,
2010, Accessed March 19, 2013.

[Goo12a] Google, Coding basics - compatibility with the java
language and libraries, Available from: <https:
//developers.google.com/web-toolkit/doc/latest/
DevGuideCodingBasicsCompatibility>, 2012, Accessed
March 27, 2013.

[Goo12b] , Jre emulation reference, Available from:
<https://developers.google.com/web-toolkit/doc/
latest/RefJreEmulation>, 2012, Accessed March 27, 2013.

[Goo12c] Google Developers, Google app engine: Storing data, Avail-
able from: <https://developers.google.com/appengine/
docs/java/datastore/>, 2012, Accessed September 27,
2012.

[GPP13] Paul Gearon, Alexandre Passant, and Axel Polleres, Sparql 1.1
update, Available from: <http://www.w3.org/TR/sparql11-
update/>, 2013, Accessed March 23, 2013.

[Gro09] Michael Grobe, Rdf, jena, sparql and the semantic web, Pro-
ceedings of the 37th annual ACM SIGUCCS fall conference
(New York, NY, USA), SIGUCCS ’09, ACM, 2009, pp. 131–
138.

© 2013 Malvin Thiel 92

http://www.chip.de/bildergalerie/Die-50-beliebtesten-Websites-der-Deutschen-Stand-Mai-2010-Galerie_43740946.html
http://www.chip.de/bildergalerie/Die-50-beliebtesten-Websites-der-Deutschen-Stand-Mai-2010-Galerie_43740946.html
http://www.chip.de/bildergalerie/Die-50-beliebtesten-Websites-der-Deutschen-Stand-Mai-2010-Galerie_43740946.html
https://developers.google.com/web-toolkit/doc/latest/DevGuideCodingBasicsCompatibility
https://developers.google.com/web-toolkit/doc/latest/DevGuideCodingBasicsCompatibility
https://developers.google.com/web-toolkit/doc/latest/DevGuideCodingBasicsCompatibility
https://developers.google.com/web-toolkit/doc/latest/RefJreEmulation
https://developers.google.com/web-toolkit/doc/latest/RefJreEmulation
https://developers.google.com/appengine/docs/java/datastore/
https://developers.google.com/appengine/docs/java/datastore/
http://www.w3.org/TR/sparql11-update/
http://www.w3.org/TR/sparql11-update/

Bibliography

[GTS+02] David Gourley, Brian Totty, Marjorie Sayer, Anshu Aggarwal,
and Sailu Reddy, Http: The definitive guide, 1st ed., O’Reilly
Media, Inc., 2002.

[HBB96] Phillip M. Hallam-Baker and Brian Behlendorf, Extended
log file format, Available from: <http://www.w3.org/TR/WD-
logfile>, 1996, Accessed March 07, 2013.

[HD05] Andreas Harth and Stefan Decker, Optimized index structures
for querying rdf from the web, Proceedings of the Third Latin
American Web Congress (Washington, DC, USA), LA-WEB
’05, IEEE Computer Society, 2005, p. 71.

[HFB+11] J. Hebeler, M. Fisher, R. Blace, A. Perez-Lopez, and M. Dean,
Semantic web programming, ch. 6, Wiley, 2011.

[Hic11] Ian Hickson, Web storage, Available from: <http://www.w3.
org/TR/webstorage/>, 2011, Accessed Februar 15, 2013.

[Hil12] Kashmir Hill, How target figured out a teen girl was
pregnant before her father did, Available from: <http:
//www.forbes.com/sites/kashmirhill/2012/02/16/how-
target-figured-out-a-teen-girl-was-pregnant-
before-her-father-did/>, 2012, Accessed Februar 16,
2013.

[HK09] Bryan Horling and Matthew Kulick, Personalized search for
everyone, Available from: <http://googleblog.blogspot.
de/2009/12/personalized-search-for-everyone.html>,
2009, Accessed Februar 17, 2013.

[HKS12] Hans Hofinger, Alexander Kiening, and Peter Schoo, When
browsing leaves footprints: automatically detect privacy viola-
tions, Proceedings of the First Workshop on Measurement,
Privacy, and Mobility (New York, NY, USA), MPM ’12, ACM,
2012, pp. 9:1–9:6.

© 2013 Malvin Thiel 93

http://www.w3.org/TR/WD-logfile
http://www.w3.org/TR/WD-logfile
http://www.w3.org/TR/webstorage/
http://www.w3.org/TR/webstorage/
http://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did/
http://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did/
http://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did/
http://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did/
http://googleblog.blogspot.de/2009/12/personalized-search-for-everyone.html
http://googleblog.blogspot.de/2009/12/personalized-search-for-everyone.html

Bibliography

[HLBT10] Jukka Honkola, Hannu Laine, Ronald Brown, and Olli
Tyrkko, Smart-m3 information sharing platform, Computers
and Communications, IEEE Symposium on 0 (2010), 1041–
1046.

[htt95] httpd@w3.org, Logging control in w3c httpd, Available from:
<http://www.w3.org/Daemon/User/Config/Logging.
html>, 1995, Accessed March 07, 2013.

[IBM04] IBM, Log file formats, Available from: <http:
//publib.boulder.ibm.com/tividd/td/ITWSA/ITWSA_
info45/en_US/HTML/guide/c-logs.html>, 2004, Accessed
March 07, 2013.

[Int07] Privacy International, Global surveillance monitor, Avail-
able from: <https://www.privacyinternational.org/
projects/global-surveillance-monitor>, 2007, Accessed
March 13, 2013.

[IP11] Sunghwan Ihm and Vivek S. Pai, Towards understanding mod-
ern web traffic, Proceedings of the ACM SIGMETRICS joint
international conference on Measurement and modeling of
computer systems (New York, NY, USA), SIGMETRICS ’11,
ACM, 2011, pp. 143–144.

[Jen12] Apache Jena, Jena architecture overview, Available from:
<http://jena.apache.org/about_jena/architecture.
html>, 2012, Accessed September 14, 2012.

[Kam10] Samy Kamkar, evercookie - virtually irrevocable persistent
cookies, Available from: <http://samy.pl/evercookie/>,
2010, Accessed Februar 15, 2013.

[KPKM12] Georgios Kontaxis, Michalis Polychronakis, Angelos D.
Keromytis, and Evangelos P. Markatos, Privacy-preserving so-
cial plugins, Proceedings of the 21st USENIX conference on Se-
curity symposium (Berkeley, CA, USA), Security’12, USENIX
Association, 2012, pp. 30–30.

© 2013 Malvin Thiel 94

http://www.w3.org/Daemon/User/Config/Logging.html
http://www.w3.org/Daemon/User/Config/Logging.html
http://publib.boulder.ibm.com/tividd/td/ITWSA/ITWSA_info45/en_US/HTML/guide/c-logs.html
http://publib.boulder.ibm.com/tividd/td/ITWSA/ITWSA_info45/en_US/HTML/guide/c-logs.html
http://publib.boulder.ibm.com/tividd/td/ITWSA/ITWSA_info45/en_US/HTML/guide/c-logs.html
https://www.privacyinternational.org/projects/global-surveillance-monitor
https://www.privacyinternational.org/projects/global-surveillance-monitor
http://jena.apache.org/about_jena/architecture.html
http://jena.apache.org/about_jena/architecture.html
http://samy.pl/evercookie/

Bibliography

[Kri01] David M. Kristol, Http cookies: Standards, privacy, and poli-
tics, ACM Trans. Internet Technol. 1 (2001), no. 2, 151–198.

[KSTW07] Chris Karlof, Umesh Shankar, J. D. Tygar, and David Wag-
ner, Dynamic pharming attacks and locked same-origin policies
for web browsers, CCS ’07: Proceedings of the 14th ACM con-
ference on Computer and communications security (New York,
NY, USA), ACM, 2007, pp. 58–71.

[KVA11] Johannes Koch, Carlos A Velasco, and Philip Ackermann, Http
vocabulary in rdf 1.0, Available from: <http://www.w3.org/
TR/HTTP-in-RDF10/>, 2011, Accessed March 07, 2013.

[KW09] Balachander Krishnamurthy and Craig Wills, Privacy diffu-
sion on the web: a longitudinal perspective, Proceedings of the
18th international conference on World wide web (New York,
NY, USA), WWW ’09, ACM, 2009, pp. 541–550.

[Lee11] Ronald Leenes, Who needs facebook or google+ anyway: pri-
vacy and sociality in social network sites, Proceedings of the
7th ACM workshop on Digital identity management (New
York, NY, USA), DIM ’11, ACM, 2011, pp. 31–32.

[LGL+08] Yuting Liu, Bin Gao, Tie-Yan Liu, Ying Zhang, Zhiming Ma,
Shuyuan He, and Hang Li, Browserank: letting web users vote
for page importance, Proceedings of the 31st annual interna-
tional ACM SIGIR conference on Research and development in
information retrieval (New York, NY, USA), SIGIR ’08, ACM,
2008, pp. 451–458.

[LH11] Günter Ladwig and Andreas Harth, Cumulusrdf: Linked data
management on nested key-value stores, Proceedings of the 7th
International Workshop on Scalable Semantic Web Knowledge
Base Systems (SSWS2011) at the 10th International Semantic
Web Conference (ISWC2011), October 2011.

[Lib12] MSDN Library, Introduction to persistence, Available
from: <http://msdn.microsoft.com/en-us/library/

© 2013 Malvin Thiel 95

http://www.w3.org/TR/HTTP-in-RDF10/
http://www.w3.org/TR/HTTP-in-RDF10/
http://msdn.microsoft.com/en-us/library/ms533007(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms533007(v=vs.85).aspx

Bibliography

ms533007(v=vs.85).aspx>, 2012, Accessed Februar 15,
2013.

[Max12] Maximus, Wot - web of trust: Die große volksverarsche
eines unseriösen mozilla-ad-on-anbieters, Available from:
<http://www.kriegsberichterstattung.com/id/1423/
wot-web-of-trust-die-grose-volksverarsche-eines-
unseriosen-mozilla-ad-on-anbieters/>, 2012, Accessed
March 12, 2013.

[May12] Jonathan Mayer, Tracking the trackers: Early results, Available
from: <http://cyberlaw.stanford.edu/node/6694>, 2012,
Accessed Februar 16, 2013.

[McA13] McAfee, Inc., Mcafee siteadvisor-software - site-
sicherheitsbewertungen und sichere suche, Available from:
<http://www.siteadvisor.com/download/windows.
html>, 2013, Accessed Februar 26, 2013.

[Mes07] Oliver Messner, Entwurf und umsetzung eines architek-
turkonzepts zur generierung und nutzung von metadaten in
der unternehmenssoftware minos, Master’s thesis, Hochschule
Karlsruhe, 2007.

[MKR04] Erica Meena, Ashwani Kumar, and Laurent Romary, An ex-
tensible framework for efficient document management using
rdf and owl, Proceeedings of the Workshop on NLP and XML
(NLPXML-2004): RDF/RDFS and OWL in Language Tech-
nology (Stroudsburg, PA, USA), NLPXML ’04, Association
for Computational Linguistics, 2004, pp. 51–58.

[MS03] Catherine C. Marshall and Frank M. Shipman, Which seman-
tic web?, Proceedings of the fourteenth ACM conference on
Hypertext and hypermedia (New York, NY, USA), HYPER-
TEXT ’03, ACM, 2003, pp. 57–66.

© 2013 Malvin Thiel 96

http://msdn.microsoft.com/en-us/library/ms533007(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms533007(v=vs.85).aspx
http://www.kriegsberichterstattung.com/id/1423/wot-web-of-trust-die-grose-volksverarsche-eines-unseriosen-mozilla-ad-on-anbieters/
http://www.kriegsberichterstattung.com/id/1423/wot-web-of-trust-die-grose-volksverarsche-eines-unseriosen-mozilla-ad-on-anbieters/
http://www.kriegsberichterstattung.com/id/1423/wot-web-of-trust-die-grose-volksverarsche-eines-unseriosen-mozilla-ad-on-anbieters/
http://cyberlaw.stanford.edu/node/6694
http://www.siteadvisor.com/download/windows.html
http://www.siteadvisor.com/download/windows.html

Bibliography

[Nor13] Norton, Is this website safe | website security | norton safe
web, Available from: <http://safeweb.norton.com/>, 2013,
Accessed Februar 26, 2013.

[NSD+01] Natalya F. Noy, Michael Sintek, Stefan Decker, Monica
Crubézy, Ray W. Fergerson, and Mark A. Musen, Creating se-
mantic web contents with protégé-2000, IEEE Intelligent Sys-
tems 16 (2001), no. 2, 60–71.

[NT12] Netz-Trends.de, Dubios: Wot web of trust - mozilla
firefox ad-on wenig glaubhaft, Available from: <http:
//www.netz-trends.de/id/1615/Dubios-WOT-Web-of-
Trust---Mozilla-Firefox-ad-on-wenig-glaubhaft/>,
2012, Accessed March 12, 2013.

[OG11] Marie Caroline Oetzel and Tijana Gonja, The online pri-
vacy paradox: a social representations perspective, CHI ’11 Ex-
tended Abstracts on Human Factors in Computing Systems
(New York, NY, USA), CHI EA ’11, ACM, 2011, pp. 2107–
2112.

[Ont12a] Ontoprise, Triplestore professional licenses, Available from:
<http://www.smwplus.com/index.php/Buy_TripleStore_
Professional>, June 2012, Accessed June 25, 2012.

[Ont12b] Ontotext AD, Owlim-se fact sheet, Available from:
<http://owlim.ontotext.com/display/OWLIMv50/OWLIM-
SE+Fact+Sheet>, June 2012, Accessed June 27, 2012.

[Ora12] Oracle Corporation, Oracle database enterprise edition, Avail-
able from: <https://shop.oracle.com/pls/ostore/f?p=
700:6:0::::P6_LPI:4509382199341805719938>, June 2012,
Accessed June 25, 2012.

[PBMW99] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry
Winograd, The pagerank citation ranking: Bringing order to
the web., Technical Report 1999-66, Stanford InfoLab, Novem-
ber 1999.

© 2013 Malvin Thiel 97

http://safeweb.norton.com/
http://www.netz-trends.de/id/1615/Dubios-WOT-Web-of-Trust---Mozilla-Firefox-ad-on-wenig-glaubhaft/
http://www.netz-trends.de/id/1615/Dubios-WOT-Web-of-Trust---Mozilla-Firefox-ad-on-wenig-glaubhaft/
http://www.netz-trends.de/id/1615/Dubios-WOT-Web-of-Trust---Mozilla-Firefox-ad-on-wenig-glaubhaft/
http://www.smwplus.com/index.php/Buy_TripleStore_Professional
http://www.smwplus.com/index.php/Buy_TripleStore_Professional
http://owlim.ontotext.com/display/OWLIMv50/OWLIM-SE+Fact+Sheet
http://owlim.ontotext.com/display/OWLIMv50/OWLIM-SE+Fact+Sheet
https://shop.oracle.com/pls/ostore/f?p=700:6:0::::P6_LPI:4509382199341805719938
https://shop.oracle.com/pls/ostore/f?p=700:6:0::::P6_LPI:4509382199341805719938

Bibliography

[PUK+11] Ingmar Poese, Steve Uhlig, Mohamed Ali Kaafar, Benoit Don-
net, and Bamba Gueye, Ip geolocation databases: unreliable?,
SIGCOMM Comput. Commun. Rev. 41 (2011), no. 2, 53–56.

[RDM09] Ian Reay, Scott Dick, and James Miller, A large-scale empiri-
cal study of p3p privacy policies: Stated actions vs. legal obli-
gations, ACM Trans. Web 3 (2009), no. 2, 6:1–6:34.

[Rep10] Ripoff Report, Complaint review: Web of trust, Avail-
able from: <http://www.ripoffreport.com/internet-
services/web-of-trust/web-of-trust-my-web-of-
trust-c34ad.htm>, 2010, Accessed March 12, 2013.

[RKW12] Franziska Roesner, Tadayoshi Kohno, and David Wetherall,
Detecting and defending against third-party tracking on the
web, Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation (Berkeley, CA, USA),
NSDI’12, USENIX Association, 2012, pp. 12–12.

[San09] Dan Sanderson, Programming google app engine: Build and
run scalable web apps on google’s infrastructure, 1st ed.,
O’Reilly Media, Inc., 2009.

[Sch11] Holger Schmidt, "do not track": Der große streit um den
kleinen befehl, FOCUS (2011), 1.

[SCM+09] A. Soltani, S. Canty, Q. Mayo, L. Thomas, and C. J. Hoof-
nagle, Flash cookies and privacy, Social Science Research Net-
work, Working Paper Series (2009), 1.

[Sev09] Charles Severance, Using google app engine, 1st ed., O’Reilly
Media, Inc., 2009.

[SK06] Michael Sintek and Malte Kiesel, Rdfbroker: a signature-
based high-performance rdf store, Proceedings of the 3rd Eu-
ropean conference on The Semantic Web: research and appli-
cations (Berlin, Heidelberg), ESWC’06, Springer-Verlag, 2006,
pp. 363–377.

© 2013 Malvin Thiel 98

http://www.ripoffreport.com/internet-services/web-of-trust/web-of-trust-my-web-of-trust-c34ad.htm
http://www.ripoffreport.com/internet-services/web-of-trust/web-of-trust-my-web-of-trust-c34ad.htm
http://www.ripoffreport.com/internet-services/web-of-trust/web-of-trust-my-web-of-trust-c34ad.htm

Bibliography

[Sof09] OpenLink Software, 9.32. transitivity in sql, Avail-
able from: <http://docs.openlinksw.com/virtuoso/
transitivityinsQL.html>, 2009, Accessed March 08, 2013.

[SYS12] SYSTAP, Bigdata®, Available from: <http://www.systap.
com/bigdata.htm>, June 2012, Accessed June 28, 2012.

[The12] The Open Anzo project, Introduction, Available from:
<http://www.openanzo.org/projects/openanzo/wiki>,
June 2012, Accessed June 27, 2012.

[Thi10] Malvin Thiel, The development of a web application framework
forcontent management systems, Master’s thesis, Dundalk In-
stitute of Technology, 2010.

[TMKD09] Dorothea Tsatsou, Fotis Menemenis, Ioannis Kompatsiaris,
and Paul C. Davis, A semantic framework for personalized ad
recommendation based on advanced textual analysis, Proceed-
ings of the third ACM conference on Recommender systems
(New York, NY, USA), RecSys ’09, ACM, 2009, pp. 217–220.

[Tru09] TrustGauge.com, Trustgauge, Available from: <http://www.
trustgauge.com/>, 2009, Accessed Februar 26, 2013.

[Tru13] TrustYou, The trustscore, Available from: <http://www.
trustyou.com/products_the_trust_score_en.html>,
2013, Accessed March 11, 2013.

[Ves12] Rob Vesse, Extending sparql with construct sub-queries, Avail-
able from: <http://yarcdata.com/blog/?p=143>, 2012, Ac-
cessed March 21, 2013.

[WB10] Abdul Wahid and Boyan Bontchev, Platform for extraction,
visualization and analysis of search trends, Proceedings of the
8th International Conference on Frontiers of Information Tech-
nology (New York, NY, USA), FIT ’10, ACM, 2010, pp. 13:1–
13:6.

© 2013 Malvin Thiel 99

http://docs.openlinksw.com/virtuoso/transitivityinsQL.html
http://docs.openlinksw.com/virtuoso/transitivityinsQL.html
http://www.systap.com/bigdata.htm
http://www.systap.com/bigdata.htm
http://www.openanzo.org/projects/openanzo/wiki
http://www.trustgauge.com/
http://www.trustgauge.com/
http://www.trustyou.com/products_the_trust_score_en.html
http://www.trustyou.com/products_the_trust_score_en.html
http://yarcdata.com/blog/?p=143

Bibliography

[Web13] Webnet77.com, Ip to country database (ipv4 and ipv6), Avail-
able from: <http://software77.net/geo-ip/>, 2013, Ac-
cessed March 03, 2013.

[wg08] W3C SPARQL working group, Chatlog 2009-05-07, Available
from: <http://www.w3.org/2009/sparql/wiki/Chatlog_
2009-05-07>, 2008, Accessed March 21, 2013.

[WGA05] David Wood, Paul Gearon, and Tom Adams, Kowari: A plat-
form for semantic web storage and analysis, XTech 2005, May
2005.

[Wor08] World Wide Web Consortium, Sparql query language for
rdf, Available from: <http://www.w3.org/TR/rdf-sparql-
query/>, 2008, Accessed September 26, 2012.

[WOT13] WOT Services, Wot reputation scorecard facebook.com,
Available from: <https://www.mywot.com/en/scorecard/
facebook.com>, 2013, Accessed January 23, 2013.

[WPS10] HenningWachsmuth, Peter Prettenhofer, and Benno Stein, Ef-
ficient statement identification for automatic market forecast-
ing, Proceedings of the 23rd International Conference on Com-
putational Linguistics (Stroudsburg, PA, USA), COLING ’10,
Association for Computational Linguistics, 2010, pp. 1128–
1136.

[www13] www.chinesetop100.com, The top 20 of the global chinese web-
site, Available from: <http://www.chinesetop100.com/>,
2013, Accessed March 20, 2013.

[WXG11] Na Wang, Heng Xu, and Jens Grossklags, Third-party apps
on facebook: privacy and the illusion of control, Proceedings
of the 5th ACM Symposium on Computer Human Interaction
for Management of Information Technology (New York, NY,
USA), CHIMIT ’11, ACM, 2011, pp. 4:1–4:10.

© 2013 Malvin Thiel 100

http://software77.net/geo-ip/
http://www.w3.org/2009/sparql/wiki/Chatlog_2009-05-07
http://www.w3.org/2009/sparql/wiki/Chatlog_2009-05-07
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
https://www.mywot.com/en/scorecard/facebook.com
https://www.mywot.com/en/scorecard/facebook.com
http://www.chinesetop100.com/

Bibliography

[YWT+10] Christopher C. Yang, Flaura Winston, Adam Townes, Xun-
ing Tang, and Nancy Kassam-Adams, A study on the user nav-
igation path of a web-based intervention program – afterthein-
jury.org, Proceedings of the 1st ACM International Health In-
formatics Symposium (New York, NY, USA), IHI ’10, ACM,
2010, pp. 449–453.

© 2013 Malvin Thiel 101

A. Appendix

A. Appendix

A.1. RDF Schema of the trust graph

1 <?xml version="1.0"?>
2 <rdf:RDF
3 xmlns:rdf="http://www.w3.org/1999/02/22−rdf−syntax−ns#"
4 xmlns:rdfs="http://www.w3.org/2000/01/rdf−schema#"
5 xml:base="http://www.w3.org/2001/XMLSchema#">
6

7 <rdfs:Class rdf:ID="Response" />
8

9 <rdf:Property rdf:ID="parentRequest">
10 <rdfs:domain rdf:resource="#Response"/>
11 <rdfs:range rdf:resource="#Response"/>
12 </rdf:Property>
13

14 <rdf:Property rdf:ID="ip">
15 <rdfs:domain rdf:resource="#Response"/>
16 <rdfs:range rdf:resource="string"/>
17 <rdfs:comment>The IP address of the webserver</rdfs:comment>
18 </rdf:Property>
19

20 <rdf:Property rdf:ID="method">
21 <rdfs:domain rdf:resource="#Response"/>
22 <rdfs:range rdf:resource="string"/>
23 </rdf:Property>
24

25 <rdf:Property rdf:ID="url">
26 <rdfs:domain rdf:resource="#Response"/>

© 2013 Malvin Thiel 102

A. Appendix

27 <rdfs:range rdf:resource="string"/>
28 </rdf:Property>
29

30 <rdf:Property rdf:ID="domain">
31 <rdfs:domain rdf:resource="#Response"/>
32 <rdfs:range rdf:resource="string"/>
33 </rdf:Property>
34

35 <rdf:Property rdf:ID="hostname">
36 <rdfs:domain rdf:resource="#Response"/>
37 <rdfs:range rdf:resource="string"/>
38 </rdf:Property>
39

40 <rdf:Property rdf:ID="scheme">
41 <rdfs:domain rdf:resource="#Response"/>
42 <rdfs:range rdf:resource="string"/>
43 <rdfs:comment>HTTP access scheme (i.e. http, https)</

rdfs:comment>
44 </rdf:Property>
45

46 <rdf:Property rdf:ID="fromCache">
47 <rdfs:domain rdf:resource="#Response"/>
48 <rdfs:range rdf:resource="boolean"/>
49 <rdfs:comment>Resource derived from the brwosers cache</

rdfs:comment>
50 </rdf:Property>
51

52 <rdf:Property rdf:ID="statusCode">
53 <rdfs:domain rdf:resource="#Response"/>
54 <rdfs:range rdf:resource="positiveInteger"/>
55 </rdf:Property>
56

57 <rdf:Property rdf:ID="countryCode">

© 2013 Malvin Thiel 103

A. Appendix

58 <rdfs:domain rdf:resource="#Response"/>
59 <rdfs:range rdf:resource="string"/>
60 <rdfs:comment>Country code of the contents language</

rdfs:comment>
61 </rdf:Property>
62

63 <rdf:Property rdf:ID="contentEncoding">
64 <rdfs:domain rdf:resource="#Response"/>
65 <rdfs:range rdf:resource="string"/>
66 <rdfs:comment>The encoding of the response content</

rdfs:comment>
67 </rdf:Property>
68

69 <rdf:Property rdf:ID="contentType">
70 <rdfs:domain rdf:resource="#Response"/>
71 <rdfs:range rdf:resource="string"/>
72 </rdf:Property>
73

74 <rdf:Property rdf:ID="expires">
75 <rdfs:domain rdf:resource="#Response"/>
76 <rdfs:range rdf:resource="dateTime"/>
77 <rdfs:comment>Time and date of the expiration date of the

content</rdfs:comment>
78 </rdf:Property>
79

80 <rdf:Property rdf:ID="date">
81 <rdfs:domain rdf:resource="#Response"/>
82 <rdfs:range rdf:resource="dateTime"/>
83 <rdfs:comment>Time and date of the server, when the reponse

was send</rdfs:comment>
84 </rdf:Property>
85

86 <rdf:Property rdf:ID="setCookie">

© 2013 Malvin Thiel 104

A. Appendix

87 <rdfs:domain rdf:resource="#Response"/>
88 <rdfs:range rdf:resource="boolean"/>
89 <rdfs:comment>True whether it was tried to store a cookie on the

client</rdfs:comment>
90 </rdf:Property>
91

92 <rdf:Property rdf:ID="entered">
93 <rdfs:domain rdf:resource="#Response"/>
94 <rdfs:range rdf:resource="dateTime"/>
95 <rdfs:comment>The time when the request is created in the graph

</rdfs:comment>
96 </rdf:Property>
97

98 <rdf:Property rdf:ID="tracker">
99 <rdfs:domain rdf:resource="#Response"/>

100 <rdfs:range rdf:resource="string"/>
101 <rdfs:comment>Name of the tracker when the requested resource

was identified as one</rdfs:comment>
102 </rdf:Property>
103

104 <rdf:Property rdf:ID="company">
105 <rdfs:domain rdf:resource="#Response"/>
106 <rdfs:range rdf:resource="string"/>
107 <rdfs:comment>The company that operates the resource</

rdfs:comment>
108 </rdf:Property>
109

110 <rdf:Property rdf:ID="serverLocation">
111 <rdfs:domain rdf:resource="#Response"/>
112 <rdfs:range rdf:resource="string"/>
113 <rdfs:comment>The Country, the server is operating in</

rdfs:comment>
114 </rdf:Property>

© 2013 Malvin Thiel 105

A. Appendix

115

116 </rdf:RDF>

Listing A.1: RDF Schema of the trust graph

A.2. Internet only version: Privacy
International ranking

Country CP SP PE DS CI DR GA AVG

Greece 4 3 4 - 1 - 3 3
Romania 3 3 4 - 2 3 2 2,8
Hungary 4 4 4 3 1 4 3 3,3
Slovenia 4 4 4 3 2 1 2 2,9
Portugal 4 4 3 2 2 - - 3
Luxembourg 2 3 3 2 2 3 - 2,5
Germany 4 4 4 4 2 1 3 3,1
Italy 4 4 4 - 1 1 2 2,7
Estonia 3 3 4 - 2 - 3 3
Belgium 4 4 4 1 2 2 3 2,9
Czech Republic 4 3 4 1 1 2 2 2,4
Finland 3 3 3 1 3 3 2 2,6
Ireland 2 3 4 2 3 1 2 2,4
Malta 2 4 3 - 2 - 2 2,6
Poland 3 4 3 3 1 1 2 2,4
Spain 3 4 4 - 1 2 2 2,7
Austria 2 3 2 1 2 4 2 2,3
Cyprus 3 3 3 - 1 - - 2,5
Latvia 3 2 2 2 2 - 2 2,2
Netherlands 2 4 4 1 1 1 2 2,1
Slovakia 4 3 3 - 2 1 1 2,3
Sweden 3 2 3 2 2 1 1 2
Denmark 3 2 2 1 2 1 1 1,7

© 2013 Malvin Thiel 106

A. Appendix

Bulgaria 3 2 3 - 1 2 2 2,2
Lithuania 3 3 2 - 1 3 - 2,4
France 3 2 3 1 2 1 1 1,9
UK 1 2 2 1 1 1 2 1,4
Canada 4 4 2 2 3 4 3 3,1
Argentina 4 4 2 2 2 2 - 2,7
Iceland 4 4 4 3 3 2 2 3,1
Switzerland 4 4 2 2 2 2 2 2,6
New Zealand 2 2 3 2 1 3 2 2,1
South Africa 4 1 1 2 2 1 - 1,8
Japan 3 1 1 2 3 4 3 2,4
Australia 1 2 2 2 2 4 2 2,1
Israel 4 3 3 2 2 2 1 2,4
Brazil 3 2 1 2 2 2 2 2
Norway 3 2 3 1 2 2 2 2,1
India 3 1 1 - 1 - 1 1,4
Philippines 3 2 1 - 1 2 1 1,7
US 3 1 1 2 1 3 2 1,9
Thailand 2 2 2 - 1 2 1 1,7
Taiwan 2 2 1 - 1 3 2 1,8
Singapore 1 1 1 2 1 3 1 1,4
Russia 3 2 1 1 1 1 1 1,4
China 2 2 1 1 1 1 1 1,3
Malaysia 1 2 1 1 1 3 1 1,4

Table A.1.: Internet only version: Privacy International ranking

See Privacy International ranking in section 3.4 Existing trustworthi-
ness ratings for explanation of the table entries. Information based on
[Int07].

© 2013 Malvin Thiel 107

A. Appendix

A.3. SPARQL queries

This section contains SPARQL queries that are either used for the cal-
culation of the trust score or other analysis.

Average third party cookies over all domains

1 PREFIX tg: <http://trustgraph.org/schema#>
2 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
3 PREFIX fn: <http://www.w3.org/2005/xpath−functions#>
4

5 SELECT AVG(?cookie) AS ?allAVG WHERE {{
6 SELECT SUM(?cookie) AS ?cookie ?parentRequest ?childDomain

WHERE {{
7 SELECT ?cookie ?parentRequest ?childDomain WHERE {
8 ?childRequest tg:isA ’Request’ .
9 ?parentRequest tg:isA ’Request’ .

10 ?childRequest tg:parentRequest ?parentRequest .
11 ?parentRequest tg:domain ?parentDomain .
12 ?childRequest tg:domain ?childDomain .
13 ?childRequest tg:setCookie ?cookie .
14 FILTER NOT EXISTS { ?childRequest tg:tracker ?tracker } .
15 FILTER(fn:not(?parentDomain = ?childDomain))
16 }
17 } UNION {
18 SELECT "0"^^xsd:float AS ?cookie ?parentRequest ?childDomain

WHERE {
19 ?childRequest tg:isA ’Request’ .
20 ?parentRequest tg:isA ’Request’ .
21 ?childRequest tg:parentRequest ?parentRequest .
22 ?parentRequest tg:domain ?parentDomain .
23 ?childRequest tg:domain ?childDomain .
24 FILTER NOT EXISTS { ?childRequest tg:tracker ?tracker } .

© 2013 Malvin Thiel 108

A. Appendix

25 FILTER NOT EXISTS { ?childRequest tg:setCookie ?cookie } .
26 FILTER(fn:not(?parentDomain = ?childDomain))
27 }
28 }}
29 }}

Listing A.2: Average third party cookies over all domains

Average third party cookies of a specific domain

1 PREFIX tg: <http://trustgraph.org/schema#>
2 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
3

4 SELECT AVG(?cookie) AS ?avg WHERE {{
5 SELECT SUM(?cookie) AS ?cookie ?parentRequest ?childDomain

WHERE {{
6 SELECT ?cookie ?parentRequest ?childDomain WHERE {
7 ?childRequest tg:isA ’Request’ .
8 ?parentRequest tg:isA ’Request’ .
9 ?childRequest tg:parentRequest ?parentRequest .

10 ?parentRequest tg:domain ?parentDomain .
11 ?childRequest tg:domain ?childDomain .
12 ?childRequest tg:setCookie ?cookie .
13 FILTER NOT EXISTS { ?childRequest tg:tracker ?tracker } .
14 FILTER(fn:not(?parentDomain = ?childDomain)) .
15 FILTER(?parentDomain = <%s>)
16 }
17 } UNION {
18 SELECT "0"^^xsd:float AS ?cookie ?parentRequest ?childDomain

WHERE {
19 ?childRequest tg:isA ’Request’ .
20 ?parentRequest tg:isA ’Request’ .
21 ?childRequest tg:parentRequest ?parentRequest .

© 2013 Malvin Thiel 109

A. Appendix

22 ?parentRequest tg:domain ?parentDomain .
23 ?childRequest tg:domain ?childDomain .
24 FILTER NOT EXISTS { ?childRequest tg:tracker ?tracker } .
25 FILTER NOT EXISTS { ?childRequest tg:setCookie ?cookie } .
26 FILTER(fn:not(?parentDomain = ?childDomain)) .
27 FILTER(?parentDomain = <%s>)
28 }
29 }}
30 }}

Listing A.3: Average third party cookies of a specific domain domains

Average trackers of all domains

1 PREFIX tg: <http://trustgraph.org/schema#>
2 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
3

4 SELECT AVG(?tracker) AS ?allAVG WHERE {{
5 SELECT SUM(?tracker) AS ?tracker ?parentRequest ?childDomain

WHERE {{
6 SELECT COUNT(DISTINCT(?tracker)) AS ?tracker ?

parentRequest WHERE {
7 ?childRequest tg:isA ’Request’ .
8 ?parentRequest tg:isA ’Request’ .
9 ?childRequest tg:parentRequest ?parentRequest .

10 ?childRequest tg:tracker ?tracker .
11 ?parentRequest tg:domain ?parentDomain
12 }
13 GROUP BY ?parentRequest
14 } UNION {
15 SELECT "0"^^xsd:float AS ?tracker ?parentRequest WHERE

{
16 ?childRequest tg:isA ’Request’ .

© 2013 Malvin Thiel 110

A. Appendix

17 ?parentRequest tg:isA ’Request’ .
18 ?childRequest tg:parentRequest ?parentRequest .
19 ?parentRequest tg:domain ?parentDomain .
20 FILTER NOT EXISTS { ?childRequest tg:tracker ?tracker }

.
21 }
22 GROUP BY ?parentRequest
23 }}
24 }}

Listing A.4: Average third party cookies of a specific domain domains

Average trackers of a specific domain

1 PREFIX tg: <http://trustgraph.org/schema#>
2 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
3

4 SELECT AVG(?tracker) AS ?avg WHERE {{
5 SELECT SUM(?tracker) AS ?tracker ?parentRequest ?childDomain

WHERE {{
6 SELECT COUNT(DISTINCT(?tracker)) AS ?tracker ?

parentRequest WHERE {
7 ?childRequest tg:isA ’Request’ .
8 ?parentRequest tg:isA ’Request’ .
9 ?childRequest tg:parentRequest ?parentRequest .

10 ?childRequest tg:tracker ?tracker .
11 ?parentRequest tg:domain ?parentDomain .
12 FILTER (?parentDomain = <%s>) .
13 }
14 GROUP BY ?parentRequest
15 } UNION {
16 SELECT "0"^^xsd:float AS ?tracker ?parentRequest WHERE

{

© 2013 Malvin Thiel 111

A. Appendix

17 ?childRequest tg:isA ’Request’ .
18 ?parentRequest tg:isA ’Request’ .
19 ?childRequest tg:parentRequest ?parentRequest .
20 ?parentRequest tg:domain ?parentDomain .
21 FILTER (?parentDomain = <%s>) .
22 FILTER NOT EXISTS { ?childRequest tg:tracker ?tracker }

.
23 }
24 GROUP BY ?parentRequest
25 }}
26 }}

Listing A.5: Average trackers of a specific domain

Retrieve a domain’s company

1 PREFIX tg: <http://trustgraph.org/schema#>
2

3 SELECT ?domain WHERE {
4 ?domain tg:company ?company .
5 FILTER (?company = ’%s’) .
6 }

Listing A.6: Retrieve a domain’s company

Retrieve the country of a domain

1 PREFIX tg: <http://trustgraph.org/schema#>
2

3 SELECT ?country WHERE {
4 ?request tg:isA ’Request’ .
5 ?request tg:domain ?domain .

© 2013 Malvin Thiel 112

A. Appendix

6 ?request tg:serverLocation ?country .
7 FILTER(?domain = <%s>)
8 }
9 GROUP BY ?country

10 ORDER BY DESC(COUNT(?country))
11 LIMIT 1

Listing A.7: Retrieve the country of a domain

Retrieve all domains operated by a company

1 PREFIX tg: <http://trustgraph.org/schema#>
2

3 SELECT ?domain WHERE {
4 ?domain tg:company ?company .
5 FILTER (?company = ’%s’)
6 }

Listing A.8: Retrieve all domains operated by a company

Check whether enough information for a trust score
calculation is available

1 PREFIX tg: <http://trustgraph.org/schema#>
2

3 SELECT COUNT(?request) AS ?count WHERE {
4 ?request tg:isA ’Request’ .
5 ?request tg:domain ?domain .
6 FILTER(?domain = <%s>) .
7 FILTER NOT EXISTS { ?request tg:parentRequest ?parentRequest

}

© 2013 Malvin Thiel 113

A. Appendix

8 }

Listing A.9: Check whether enough information for a trust score
calculation is available

A.4. Sourcecode

The whole source code is provided on the attached CD-ROM.

© 2013 Malvin Thiel 114

	Introduction
	Background
	Motivation
	Approach

	Background Information
	Hypertext Transfer Protocol
	Google App Engine
	Google Web Toolkit
	Metadata
	Resource Description Framework
	RDF Graph
	RDF-XML
	RDF-Schema
	RDF frameworks
	SPARQL

	Transparency plug-in

	Analysis of existing literature
	Privacy concerns of third party widgets
	Methods of user tracking
	Privacy threats
	Techniques against tracking

	Analysis of HTTP traces
	Personalised advertising
	Usability improvements
	Pattern recognition on the Web
	Market analyses

	Trust among the Web
	Existing trustworthiness ratings
	Storage methods for HTTP traces

	The trust graph
	Data collection and preparation
	Collectable data
	Data separation
	Data enhancement

	Construction of the trust graph
	Analysing the trust graph
	Tracking probabilities and market shares
	Third party content distribution by country
	Media caching
	Content inclusions by country

	Calculation of a trust score
	Data parameters
	The algorithm
	Evaluation towards existing ratings

	Design and Implementation
	RESTful web services
	Analysis modules
	Transparency plug-in modifications

	Conclusion
	Results
	Critical review
	Further Work

	Glossary
	Bibliography
	Appendix
	RDF Schema of the trust graph
	Internet only version: Privacy International ranking
	SPARQL queries
	Sourcecode

