
Process Innovations For Security
Vulnerability Prevention In Open

Source Web Applications

Diploma Thesis

Florian Thiel

April 30, 2009

Department of Mathematics and Computer Science
Institute for Computer Science

Software Engineering Working Group

Responsible University Professor: Prof. Dr. Lutz Prechelt
Supervisor: Dipl.-Medieninf. Martin Gruhn

This work is licensed under the Creative Commons Attribution 3.0 Germany
License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/3.0/de/ or send a letter to
Creative Commons, 171 Second Street, Suite 300, San Francisco, California,

94105, USA.

Please note:
Pictures in this work are not licensed under a Creative Commons Attribution

license and may not be copied as freely as the rest of this work.
Comic strips in this work are by Randall Munroe of xkcd and licensed under a
Creative Commons Attribution-NonCommercial 2.5 license. The picture on
the title page is by Matteo Carli and licensed under a Creative Commons

Attribution-NonCommercial-ShareAlike 2.0 license. It is available at
http://www.flickr.com/photos/matteocarli/2489736887/.

http://creativecommons.org/licenses/by/3.0/de/
http://www.xkcd.com
http://www.flickr.com/photos/matteocarli/2489736887/

Affirmation Of Independent Work
I hereby declare that I wrote this thesis myself without sources other than those
indicated herein. All parts taken from published and unpublished scripts are
indicated as such.

Berlin, April 30, 2009

ii

Acknowledgments
First of all, I would like to thank Professor Lutz Prechelt who suggested and
supported the topic of this thesis and enabled me to spend months of interesting
research in the fascinating world of security research. I also owe a lot to Martin
Gruhn, my supervisor, who provided lots of feedback and was especially helpful
to flesh out the argumentation and create a good narrative.

This thesis would not have been possible without the support of my parents,
who enabled me to do what I love in the first place, provided feedback and tons
of emotional (and nutritional) support throughout the time of writing.

I am also very grateful to all of my friends who provided additional feedback,
did proofreading, joined me in the library, had countless cups of coffee with me
or took my mind off of work for some time. You know who you are!

I dedicate this thesis to my past and current flat-mates of WG Graf Lotte
who are the best people you could wish to live with. Thanks for the great time
we had so far!

iii

Abstract

SQL Injection Attack (SQLIA) and Cross-Site Scripting (XSS) are abounding
vulnerabilities in web applications. This work describes the technical back-
ground of both vulnerabilities and develops an annotation-based practice for
the prevention of these vulnerabilities in open source web applications. Find-
ings from the introduction of the practice into real-life applications are given
and refinement recommendations for further research are provided. In addition,
this thesis analyses nine open source web application projects. The analysis
identifies social and technological factors which influence the applicability of
the developed practice and the ability of the projects to innovate in general.

Contents

1 Introduction 1
1.1 New Old Threats . 1
1.2 Open Source Software . 2

1.2.1 Security And Open Source Development 3
1.3 On Security . 3
1.4 Goals Of This Thesis . 3

1.4.1 Research Questions . 4
1.4.2 Core Tasks . 5

1.5 Classification Of This Thesis . 5
1.6 A Note On Sources . 6
1.7 Definition Of Fundamental Terminology 6

1.7.1 Concepts . 6
1.7.2 Security Term Definitions 7

1.8 Secure Web Applications . 7

2 The Weaknesses 9
2.1 User Input . 9

2.1.1 Sources . 9
2.2 SQL Injection . 10

2.2.1 Relational Databases . 11
2.2.2 A Simple Example . 13
2.2.3 Threats . 15
2.2.4 SQL Injection Vulnerability Preventions 16
2.2.5 Bad Practice SQL Injection Mitigations 21
2.2.6 Real-World SQL Injection Walk-Through 22
2.2.7 Advanced SQL Injection 25
2.2.8 More SQL Injection Prevention Techniques 26
2.2.9 SQL Injection Vulnerability Detection Techniques 27
2.2.10 Summary . 27

2.3 Cross-Site Scripting . 29
2.3.1 Threats . 29
2.3.2 Other XSS Threats . 30
2.3.3 Introducing JavaScript . 31
2.3.4 Types Of XSS . 35
2.3.5 Browser Security Concepts 36
2.3.6 Additional XSS Mitigations 37

ii

2.3.7 Summary . 38
2.4 Input Or Output Filtering . 39
2.5 General Security Practices . 39

2.5.1 Code Reuse . 40
2.5.2 Defensive Design . 40
2.5.3 Defense In Depth . 40
2.5.4 White-listing . 40
2.5.5 Blacklisting . 41

2.6 Building The Ultimate Framework 42
2.6.1 Data Modeling . 43

3 The Process Improvement Idea 45
3.1 Why Annotations? . 45
3.2 The Annotations . 46

3.2.1 Reviews . 46
3.2.2 Benefits Over Issue Tracking Software 47
3.2.3 Structure Of The Annotations 48
3.2.4 Innovation Introduction 50
3.2.5 Data Collection . 51

3.3 Project Analysis Approach . 51
3.3.1 Data Collection . 51

4 The Cases 53
4.1 Candidate Selection . 53

4.1.1 Scope . 54
4.1.2 Notation . 54

4.2 Innovation Introduction . 54
4.2.1 WordPress . 55
4.2.2 Mambo CMS . 67

4.3 Project Analysis . 77
4.3.1 Joomla . 77
4.3.2 habari . 81
4.3.3 phpBB . 85
4.3.4 Zikula . 88

4.4 Projects In Brief . 91
4.4.1 Typo3 . 91
4.4.2 Drupal . 91
4.4.3 Riotfamily . 91

4.5 Concepts Observed . 93
4.6 Assessment Of The Concepts . 99

5 Conclusion 101
5.1 Open Source Web Application Security 102
5.2 Validity And Relevance . 104
5.3 Future Research . 104

Bibliography 112

iii

A Appendix 113
A.1 Guides To External Data . 113

A.1.1 Annotation Diff Instructions 113
A.1.2 Source Code Repositories 114
A.1.3 Mail Correspondence Instructions 115
A.1.4 Chat Transcript Instructions 116

A.2 Data Excerpts . 117
A.2.1 Selected Correspondence 117
A.2.2 Additional Annotation Excerpts 123

A.3 Syntax Guides . 124
A.3.1 Python Syntax Used . 124

A.4 Legitimacy Of Online Sources . 125
A.4.1 Citing Wikis . 125
A.4.2 Linking to MediaWiki . 125

A.5 Open Web Application Security Project (OWASP) 127
A.6 The Common Weakness Enumeration Project 128
A.7 Acronyms Used . 129
Listings . 132
List of Figures . 133
List of Tables . 134

iv

Chapter 1

Introduction

Mr. McKitrick, after careful consideration I have come to
the conclusion that your defense system sucks.

General Beringer
WarGames

Web applications are on the rise. Lightweight, ubiquitous alternatives to
classical desktop applications become part of the work-flow. So-called social
networks

Social Networks
Social networks are applications where the rela-
tionship between users plays a central role. All
content is generated by users and the web appli-
cation only provides the framework, The large
proportion of user input makes these kinds of
applications a prime target for attacks.

establish comple-
tely new forms of ap-
plications that are in-
trinsically based on
communication. All
these new applications
run inside the web browser.
The web browser be-
comes the execution

environment, taking over the importance that was once reserved for the oper-
ating system.

The web application paradigm not only changed the execution environment,
it brought new technologies, languages, interaction models, and, most impor-
tantly, public access to applications1. Web applications make extensive use of
client-side scripting languages like JavaScript and interactions rely on clien-
t/server communication. The web browser becomes the universal client to all
web applications. Not one of these ingredients is new, but their combination
exposes applications and their users to new threats.

1.1 New Old Threats

Public exposure of private data, data manipulation or erasure were serious
threats in the age of desktop applications. But as data was stored locally at

1or at least their entry pages

1

1.2. OPEN SOURCE SOFTWARE Florian Thiel

private computers or in a company’s data center which was not directly con-
nected to the outside world, the cost of attacks was significant, and computers
and companies had to be attacked individually.

The cost/benefit ratio turned in favor of the attacker. Data stored in web
applications has a common access point (the web application interface) and a
single attack can affect many users. Furthermore, with ubiquitous networking,
identity data is much more valuable. Individuals as well as large companies
carry out substantial financial transactions through web applications such as
web shops or online banking portals. Rich personal profiles are now stored
online and immensely valuable for advertising purposes. Impersonation is also
a serious additional threat when more and more of personal life happens in the
Internet. E-Government will take that even further.

The Open Web Application Security Project (OWASP), a project that
collects and publishes information concerning web application security (see
also A.5 on page 127), published a list of the top 10 web application vulnera-
bilities in 2007 [Wik09c]. XSS and SQLIA placed first and second, respectively,
based on a vulnerability trend analysis by MITRE [CM07a]. The analysis also
found that the total number of web application vulnerabilities surpassed the
number of buffer overflow vulnerabilities, the previous most common vulner-
ability in a world of languages lacking automatic memory management. A
proliferation of amateur software (due to easy access to programming envi-
ronments that enable quick deployment of applications, even by inexperienced
developers) and the ease of exploitation of web applications are the primary
reasons for this trend, according to the authors [CM07b].

Security professional Jeremiah Grossman did an informal survey on money
spent for security in professional software development. Application security
came last, after network and host security [Gro09a]. Analysts from the Gartner
group showed convincing evidence on why this is the case, notwithstanding de-
velopers knowing better: Network and host security measures provide quick one-
stop solutions with measurable impact while application security needs costly
and time-consuming training of developers, process changes etc.

It does not matter whether you look at professional or amateur web applica-
tion development, application security and the respective development processes
play a major role in the overall security of a deployed web application.

1.2 Open Source Software

Open source development describes a software development model where source
code is licensed to be open to the public, freely modifiable and redistributable,
as long as the derived software uses the same license. Many popular web appli-
cation projects are developed as open source software.

The Open Source Initiative (OSI) is the authoritative source of the defini-
tion for open source software and certifies licenses for compatibility with their
criteria. Their definition of open source includes additional criteria such as
non-discrimination against technology and uses of the software or other soft-
ware [Coa06], but the interesting property for the discussion in this thesis is the

2

Florian Thiel 1.3. ON SECURITY

accessibility of the source code and the transparency of development processes.
Unlike most closed source software2, open source developers communicate

via public mailing lists, use public web sites or wikis for documentation and
coordination. Issue trackers and mailing lists are also mostly public. These
properties make open source web applications a great target for research — not
only on the development results (the source code and the application) — but
also on the development process itself. This thesis therefore focuses on open
source applications.

1.2.1 Security And Open Source Development

There has been much discussion about whether open source development pro-
vides better application security as the closed source model. On the one hand,
the visibility of the source code allows more people to look at the source code
and find vulnerabilities, on the other hand attackers don’t have to rely on black-
box testing for identifying flaws [Cow03]. Much of the discussion about security
of open source software is based on anecdotal evidence and common-sense argu-
ments (“with closed source software, customers are at the mercy of the software
provider”; “in open source software development, nobody forces developers to
do code reviews, so nobody does them”, cp. [Oba02]) and there is not much
hard evidence which model has the better security track record. In this thesis I
will ignore this discussion and limit myself to open source projects purely due
to their research-friendly properties.

1.3 On Security

This thesis is about application security. Application security, as opposed to
network or host/system security deals with the security properties of an ap-
plication itself, not of the surrounding elements (operating system, network,
firewalls, etc.). A comprehensive approach to security would use security fea-
tures of all the components making up the web application’s environment (web
server, database, operating system) but the discussion here is limited to issues
directly related to the application. This does not imply that all vulnerability
defenses should be in the application itself. Grossman makes a point saying
that a Web Application Firewall (WAF) may be the more cost-efficient choice
for businesses in some cases [Gro09a].

1.4 Goals Of This Thesis

The overarching goal of this thesis is to develop a process innovation to prevent
security vulnerabilities in open source web applications. Part of my work con-
sisted of discovering and formulating specific research questions and strategies.
Dealing with the two most common vulnerabilities according to OWASP’s top
ten was a given to limit the scope of the research.

2throughout this thesis, I will use this term for all software that is not open source

3

1.4. GOALS OF THIS THESIS Florian Thiel

Figure 1.1: There are always multiple ways to attack a system
by xckd, http://xkcd.com/538/, used with permission

I started with research into the technical background of two vulnerabilities
— called SQL Injection Attack (SQLIA) and Cross-Site Scripting (XSS) — and
also web application security in general. The results can be found in chapter 2.
After looking at the source code of the first web application project (WordPress,
see 4.2.1 on page 55), I decided to design and evaluate an innovation that targets
improving the architecture of an application. The main reasons for this direction
of research was that it turned out that best practices and technology to prevent
SQLIA and XSS are readily available but not used everywhere (my first look
at WordPress also indicated as much).

The innovation developed (see chapter 3) was presented to two web appli-
cation projects (see case studies, chapter 4 on page 53). It became clear that
technological and process-related properties for security in the web applications
under discussion were not yet sufficiently understood and needed more back-
ground research. That’s why the scope of this thesis was extended to identify
properties (called concepts in this thesis, see chapters 2 and 4 for details) of
open source web application projects that influence the introduction of process
innovations. Seven more web application projects were analyzed to gain insight
about these concepts.

1.4.1 Research Questions

Three questions were devised after enough up-front research to clarify that the
development process is the major factor in web security vulnerability prevention.
They align with the goals stated above. I will come back to these questions in
the respective parts of the thesis.

Q1 How do SQL Injection Attacks and Cross-Site Scripting work and how can
they be prevented?

Q2 Is the innovation that is developed in this thesis useful to prevent the
vulnerabilities under discussion?

Q3 Which properties of the projects determine the usefulness of the innovation?

4

http://xkcd.com/538/

Florian Thiel 1.5. CLASSIFICATION OF THIS THESIS

1.4.2 Core Tasks – Structure Of The Thesis

The chapter structure of the thesis corresponds to the core tasks of the research.

1. Threats and technical background — In chapter 2 I explain the vul-
nerabilities under discussion in this thesis in depth. The discussion in-
cludes threats posed by the vulnerabilities, state of the art attacks and
insight into the root nature of the vulnerabilities.

2. Ideas for improvement — The insight gained in chapter 2 led to ideas
for vulnerability prevention techniques. I present the most promising idea
in chapter 3. The chapter also contains the details on research method-
ology and candidate selection for the case studies in chapter 4.

3. Case analysis— Chapter 4 contains the actual analysis of the real-world
web application projects. The documentation includes the validation of
the process-based improvement idea presented in chapter 3 and the anal-
ysis of vulnerability prevention concepts of the source code and the de-
velopment process. These concepts relate to those identified in chapter
2 and to concepts discovered while conducting the studies, also covered
here.

4. Conclusion and further research — If you are only interested in the
results of this thesis, skip to chapter 5. The chapter presents a summary of
the results from the previous chapters, identifies questions left unanswered
and newly opened questions. The chapter also presents qualifications for
the validity and relevance of the research conducted herein.

The chapters are all loosely coupled, with the exception of chapter 4, con-
cerning the case studies. That chapter heavily relies on the ideas introduced in
chapter 3 which should be read before. Chapter 2 can be skipped if one is very
familiar with SQLIA and XSS. Chapter 5 — containing the conclusion — can
be read independently for a quick glance at the results but interesting facts will
be lost when skipping all other chapters.

1.5 Classification Of This Thesis

From a research methodological standpoint, this thesis is situated in the field
of qualitative case study research. Case studies were conducted for this thesis,
leveraging documentation analysis (source code and project web sites), archival
records (mailing lists and source code repositories), interviews (questionnaires
with feedback) and participant-observation (project interaction and innovation
introduction attempts)3.

From a research topic standpoint, this thesis touches application security,
code analysis, software architecture, software development processes and open
source software development. The specific research topic is software vulnera-
bility prevention in open source software. Since architectural improvements of

3terms after Yin [Yin08]

5

1.6. A NOTE ON SOURCES Florian Thiel

Computer Science

Software Engineering

Quality Assurance

Security Assurance

Vulnerability Prevention

Vulnerability Removal

Open Source
 Software

Closed Source
 Software

Figure 1.2: Classification of this thesis’ topic in the scientific context

existing applications, which are part of this thesis, can also remove vulnerabili-
ties, to a lesser degree this thesis also handles vulnerability removal. See figure
1.2 for a visualization for this thesis’ research focus.

1.6 A Note On Sources

This thesis uses online sources as well as traditional reviewed ones. Section A.4
on page 125 in the appendix contains information about the reasons to include
these sources and explanations of their use.

1.7 Definition Of Fundamental Terminology

1.7.1 Concepts

The concept is a fundamental term throughout this thesis. Concept is used lit-
erally to refer to the concept behind a phenomenon. It serves to tie phenomena
in the projects under discussion to the same roots, the same concepts. Chapter
2 will identify technical concepts that are related to best practices and anti-
patterns. These concepts were identified during the research on the security
vulnerabilities considered on this study.

Chapter 4 introduces more concepts. These concepts were not known up-
front but discovered during the innovation introductions or the project analysis.
Discovered concepts are explained at the end of chapter 4 in section 4.5.

Definitions of technical concepts in chapter 2 are marked at the page margin
with the name given to the respective concept. Occurrences of concepts in
actual web application projects are marked at the page margin with the name
of the concept and the page number of the page where the concept was originally
defined.

6

Florian Thiel 1.8. SECURE WEB APPLICATIONS

These concepts play an important role in the analysis of the applicability of
process innovations to open source web applications in chapters 4 and 5.

1.7.2 Security Term Definitions

Security has many aspects, not all of which can be separated intuitively. The
following definitions are used throughout this thesis. Note that these definitions
are not universal and you should not rely on them being well-defined (or being
shared) in all literature.

Security — Security can mean a lot of different things in different contexts.
Since it’s most appropriate to the topic at hand, I will use the definition for
information security found in Wikipedia[Wik09k]: Security means keep-
ing information confidential, integer, and available. As you will see, all
the weaknesses under discussion in this thesis can be classified according
to these three threats.

Error — An error is an (intended or unintended) event during system con-
struction that leads to a defect.

Defect — A defect is a structural deficiency (in relation to the requirements)
in a system, caused by an error. Every defect is caused by an error.

Weakness/Vulnerability — A weakness or vulnerability is a security-related
defect. I use both terms interchangeably in this thesis.

Attack — An attack is an attempt (by an attacker) to use a vulnerability to
affect system behavior.

Exploit — An exploit is a successful (from the attacker’s perspective) attack
on a vulnerability. An exploit is also used for a piece of software that
conducts a specific attack.

Risk — Risk is the product of the probability of an attack and the resulting
loss, often quantified monetarily. Risk serves as a useful metric for the
amount of protection against a certain threat should be implemented.

1.8 Secure Web Applications

Making secure software is challenging and there is a lot of literature [RvW03]
[HL02] about how to architect or write software that is secure enough for its
intended applications4.

Securing web applications does not involve any fundamentally new tech-
niques. Maliciously crafted user input has been the cause of buffer overflows, a
major problem in languages without automatic memory management [RvW03,

4Security is not binary. There is no totally secure system. Protection against a certain
threat is always associated with costs and a tradeoff has to be made between the costs of
implementing the security measures and the risk (see also [Sch06])

7

1.8. SECURE WEB APPLICATIONS Florian Thiel

p. 101]. For traditional networked applications like remote shells, buffer over-
flows (and therefore user input) were already important, but it took targeted
attacks and inside knowledge to gather important data.

With web applications and worldwide access the attack surface increased.
Application providers cannot control who enters data into their applications
and basically have no control over the clients that send data. Furthermore,
attack scenarios became much simpler. Unification of technology (there are
only a couple of different web browsers or databases to attack) and unification
of interaction structures (page logins work similarly everywhere) lead to an
explosion of attack opportunities.

Remember that the fundamentals of application security did not change
when web applications appeared. Things got more complicated since there are
many more new ways of interacting with web application users and many new
technologies involved. However, traditional security principles did not become
obsolete through the introduction of web applications.

8

Chapter 2

The Weaknesses -
Background, Threats,
Prevention

If you think technology can solve your security problems,
then you don’t understand the problems and you don’t
understand the technology.

Bruce Schneier

This chapter covers the technical background of the two vulnerabilities dis-
cussed in this thesis, SQLIA and XSS. It discusses the fundamental problems
posed by untrusted input in the world of web application and then presents
the two vulnerabilities and their mitigations in detail. This chapter provides
answers to the first research question, Q1: How do SQLIA and XSS work and
how they can be prevented.

2.1 What Is User Input?

In web applications, all data not directly under the application’s control is con-
sidered untrusted. It is critical that all untrusted input is sanitized appropri-
ately. What is appropriate often depends on the context. The vulnerabilities
under discussion in this thesis are a consequence of putting untrusted data
where it could be harmful without prior sanitation.

2.1.1 Sources

There are different sources of untrusted input which have to considered when
building web applications:

GET/POST Parameters —GET and POST are HyperText Transfer Protocol
(HTTP) methods that take parameters to submit data to the web server1.

1PUT requests are also part of HTTP but browsers usually do not support it; in principle,
PUT should be handled similarly to GET and POST

9

2.2. SQL INJECTION Florian Thiel

This is the most direct form of getting data into the web application.
GET/POST requests can also be submitted in an asynchronous man-
ner using XMLHttpRequest, also known as Asynchronous JavaScript and
XML (AJAX), a technology that allows network communication without
a complete page reload in the browser.

Cookies Cookies are set by the web server and saved on the user’s browser
but are also transmitted back by the user’s browser on each request and
could have been manipulated in-between. Therefore, the data in cookies
has to be treated as untrusted.

HTTP Headers — HTTP headers like Referer2[sic!] are generated by the
user’s browser, too. Browsers usually don’t provide a user interface to
manipulate their values but they can be modified by browser plug-ins or
while on the wire.

The Database — The database (or other means used for persistent storage)
should not be considered a safe source. Other applications could be using
the same database or data could have been written to the database with-
out being sanitized (intentionally or unintentionally). This can also occur
if sanitation behavior changes between versions of the same application.

SOAP Web Service Requests — SOAP [Wik09n] web service requests are
semantically similar to GET/POST requests. They are not handled ex-
plicitly in this thesis but the same principles that should be used for data
coming from GET/POST requests apply to web service requests.

In this thesis, user input refers to any of these sources. The exact submission
formats and constraints may be different between the sources, but the general
principle of untrusted input must be applied to data from any of these sources.

Other local sources of untrusted data like environment variables that could
be controlled by local users on the web server’s system are not inside the scope
of this thesis.

2.2 SQL Injection

Web applications usually use relational databases3 to store persistent data. This
includes data concerned with the application domain (e.g. address datasets for
a phone book application) as well as data concerned with the technical domain
(like user accounts, passwords or authorization settings). The interface to the
database is usually the Structured Query Language (SQL), a standardized lan-
guage for querying and modifying data in relational databases. Although the

2contains the Uniform Resource Locator (URL) of the page that led the browser to the
current page

3the injection problem is in no way limited to relational databases; the main cause, the
dynamic creation of parameterized queries also exists for XML-based querying [Tea08] and
basically for all cases of dynamic code generation that is dependent on data not under the
system’s control; all web applications discussed in this thesis use a relational database

10

Florian Thiel 2.2. SQL INJECTION

SQL standard undergoes regular revisions and database vendors add propri-
etary extensions to their database products, the issues with SQLIA discussed
here are fundamental to SQL and the usage patterns in web applications and
not specific to any implementation.

2.2.1 Relational Databases

Relational databases consist of tables, which contain the actual data in rows.
A table has a predefined set of columns, each of which have a specific type.
Some databases have an abundance of types available4 but most real use in ap-
plications is limited to 4 basic types: numerics, strings, dates and byte streams.
Unfortunately, mapping database types to the types of a web application lan-
guage is not trivial because there no 1:1 relation between the types. Listing 2.1
shows an example of an SQL table with types, listing 2.2 shows an example of
actual data in table rows.

+−−−−−−−−−−−−−+−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+
| F i e ld | Type | Nul l | Key | Defau l t |
+−−−−−−−−−−−−−+−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+
user_id	i n t (11)	NO	PRI	NULL
name	varchar (255)	YES		NULL
d e s c r i p t i o n	t ex t	YES		NULL
l o g i n	varchar (50)	NO		NULL
psw	varchar (50)	NO		NULL
s t a tu s	varchar (5)	NO		NULL
r i g h t s	t ex t	NO		NULL
l o g i n_ t r i e s	t i n y i n t (4)	YES		0
c r e a t eu s e r	varchar (255)	NO		NULL
updateuser	varchar (255)	NO		NULL
c r ea t eda t e	i n t (11)	NO		NULL
updatedate	i n t (11)	NO		NULL
l a s t t r y d a t e	i n t (11)	YES		0
s e s s i on_id	varchar (255)	YES		NULL
cook iekey	varchar (255)	YES		NULL
r e v i s i o n	i n t (11)	YES		NULL
+−−−−−−−−−−−−−+−−−−−−−−−−−−−−+−−−−−−+−−−−−+−−−−−−−−−+

Listing 2.1: structure of Redaxo4’s rex_user table

mysql> s e l e c t ∗ from Users ;
+−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−+−−−−−−−−−−+
| uid | f i r s tname | lastname | age | password |
+−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−+−−−−−−−−−−+
| jo e | Joe | Bloggs | 47 | s e c r e t |
| mary | Mary | Smith | 29 | password |
+−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−+−−−−−−−−−−+

Listing 2.2: an example of a table’s rows (MySQL)

4the popular open source database PostgreSQL even has types for geometry or computer
network addressing [Gro09b]

11

2.2. SQL INJECTION Florian Thiel

A SQL statement consists of several clauses which define the action the
statement executes. Clauses can select database columns or rows that are af-
fected by the query or join tables together using relational algebra [Wik09m].
This introduction only includes the parts of SQL relevant to the discussion here.
The complete SQL ISO/IEC standard (ISO/IEC 9075) is very detailed, consists
of multiple parts and is not available free of charge5.

SELECT f i r s tname , lastname FROM Users WHERE uid=’ j o e ’ ;

Listing 2.3: Simple SQL query to fetch user names from a Users table

SELECT Users . f i r s tname , Users . lastname , Department . name
FROM Users , Departments
WHERE Users . dept id = Department . id ;

Listing 2.4: A simple SQL join on two tables

Listing 2.3 gives an example of a very simple SQL SELECT query. The rele-
vant part of the SQL for discussion in this thesis is the so-called Data Manipula-
tion Language (DML), a subset of SQL containing only INSERT INTO (adding
a new dataset), SELECT (querying existing data), UPDATE (updating exist-
ing datasets) and DELETE (deleting datasets) statements. Other statements
(for creating or altering tables, creating indexes for faster access or managing
databases) are equally vulnerable to SQLIA but usually not used with user in-
put (since they are mostly relevant at deployment time) and their exploitation
provides no further insight relevant to this thesis.

The example in listing 2.3 demonstrates column and table selectors and
predicates. The result of the query is a list of the firstname and lastname
columns of the Users table. The WHERE evaluates to true when the uid column
is equal to joe, essentially limiting the rows returned by SELECT.

The query in listing 2.4 demonstrates how to join together data from mul-
tiple tables (database modeling uses normalization [Cod70] to eliminate redun-
dancies, so information is usually distributed amongst multiple tables). Since
column names might not be unique between tables, they are given in fully
qualified notation. The predicate to WHERE now only evaluates to true when
the value in the User’s deptid column matches the id column’s value in the
Department table.

The DELETE clause (listing 2.5) only takes a database name and an optional
predicate and removes all the rows where the predicate evaluates to true. Else,
all rows are removed.

DELETEFROM Users WHERE uid=’ j o e ’ ;

Listing 2.5: A simple DELETE statement with predicate

5International Electrotechnical Commission (IEC) web store: http://webstore.iec.ch/
webstore/webstore.nsf/artnum/041727

12

http://webstore.iec.ch/webstore/webstore.nsf/artnum/041727
http://webstore.iec.ch/webstore/webstore.nsf/artnum/041727

Florian Thiel 2.2. SQL INJECTION

Figure 2.1: Simple SQL Injection by xckd, http://xkcd.com/327/, used with permission

The UPDATE clause (listing 2.6) takes the table to operate on, the columns
to modify, the values to set and an optional predicate (again, without a predi-
cate, the values are set for all rows).

UPDATE Users SET age=47 WHERE uid=’ j o e ’ ;

Listing 2.6: Simple example for an UPDATE statement

Adding new rows is done using the INSERT INTO clause (listing 2.7) which
also takes a table name, then a list of the columns to set and at last the values
to set (in the same order as the columns).

INSERT INTO Users (uid , age , password) VALUES(’ j o e ’ ,47 , ’ f oo ’) ;

Listing 2.7: Simple example for an INSERT INTO statement

All these examples are static queries. SQL injection can only happen when
parts of the query can be manipulated by an attacker at runtime. In a real-
istic application, the uid joe will not be hard coded but come from external
data, probably from values under the user’s control (see section 2.1 on page 9).
There is no special mark-up in SQL for query arguments (like arguments to a
WHERE clause). This is not a problem of the language itself6, but a problem
of usage patterns in applications: SQL commands are often constructed using
string concatenation in the calling application, making it impossible to separate
(unsafe) user input and the fixed part of the statement (see examples in 2.2.6
on page 22).

2.2.2 A Simple Example

Since there is no differentiation between “argument” data and control data,
passing crafted data can not only change the “arguments”7 of the query but
may lead to a completely different query. Consider the seminal8 comic in figure
2.1:

uid , password = (<user input >)

6you could say the same thing about all languages that allow runtime evaluation of code
7they are not arguments from the standpoint of SQL; they are arguments because of the

way the query is created
8by web standards

13

http://xkcd.com/327/

2.2. SQL INJECTION Florian Thiel

Figure 2.2: Example login screen

query = ‘ ‘SELECT ful lname FROM Students
WHERE (uid=’%s ’ AND password=’%s ’) ; ’ ’ % (uid , password)

Listing 2.8: SQL Example with external data

Listing 2.8 on the preceding page shows what the code of the school’s soft-
ware might look like (the example is written in Python; see section A.3.1 on
page 124 in the appendix for information on the use of Python in the examples
in this thesis). The query should return the full name of the student if a user id
with the given password exists and no results at all if uid and password don’t
match9. Assume the uid and password strings come from a web page form like
the one shown in illustration 2.2.

If these values make their way into the uid and password variables without
appropriate filtering or sanitation, the code shown in listing 2.8 is vulnerable to
SQL injection. The resulting SQL query, given the input shown in illustration
2.2 would look like listing 2.9.

SELECT fu l lname FROM Students WHERE (uid=’ Robert ’) ;
DROP TABLE Students ;−− ’) ; AND password=’somepassword ’ ;

Listing 2.9: SQL injection example

The carefully crafted parentheses and quotation marks terminate the first
query and add another one, deleting the table with the student’s credentials
from the database. The attacker uses hyphens (–) to mark the remainder of
the query string as a comment. This eliminates the rest of the query10 and
prevents further clauses not under the control of the attacker from interfering
with his injection. Note that in this example, the attacker does not even need
a valid student account since he was able to eliminate the password check. The
attacker was able to have the database treat his input as control data because
the query construction was not done carefully enough.

9This is a very poor design practice as it assumes unencrypted passwords are stored in the
database. Nevertheless, the problems with this query would not disappear when encryption
or password-checking outside the database would be used.

10technically, the rest of the line

14

Florian Thiel 2.2. SQL INJECTION

2.2.3 Threats

The attack seen in section 2.2.2 targets data integrity. By deleting the Students
table, which appears to be used for authentication purposes in the school’s
system, it is also a denial of service attack. With the table missing, no other
students are able to log in, and – depending on the design of the school’s system
– it might stop working altogether.

Data manipulation and denial of service are popular examples but there are
more threats due to SQL injections:

Accountability If an attacker is able to bypass the password check required
for system login by exploiting an SQLIA vulnerability, the attacker can
impersonate other users of the system. The other user cannot be held
accountable for actions taken “in his name” and forensic analysis might
be much more difficult.

‘ ‘SELECT f i r s tname , lastname , pe rmi s s i ons
FROM Users WHERE log i n=’%s ’ AND

password=’%s ’ ; ’ ’ % (log in , password)

Listing 2.10: SQL injection vulnerability, login circumvention

l o g i n = ‘ ‘ johnsmith ’ ’
password = ‘ ‘1 ’ OR 1=1;−− ’ ’
SELECT f i r s tname , lastname , pe rmi s s i ons

FROM Users WHERE log i n=’ johnsmith ’
AND password=’ 1 ’ OR 1=1;−− ’

Listing 2.11: SQL injection vulnerability, login circumvention example

The OR 1=1 part makes the password condition a tautology, so the SQL
statement always returns the user data for the user with the given login.

Confidentiality Confidentiality is violated when an attacker is able to modify
a query in a way so that it includes data not normally visible with the
attacker’s privileges. Confidentiality evasion is commonly done using an
UNION SELECT11 attack [HVO06], an SQL statement which combines the
result of multiple SELECT statements.

‘ ‘SELECT f i r s tname , lastname FROM Users
WHERE department=%s ’ ’ % dept id

Listing 2.12: SQL injection vulnerability, access control circumvention

dept id = ‘ ‘5 UNION SELECT Accounts . f i r s tname , Accounts .
i d e n t i f i e r FROM Accounts ;−− ’ ’

SELECT f i r s tname , lastname FROM Users

11http://www.w3schools.com/sql/sql_union.asp

15

http://www.w3schools.com/sql/sql_union.asp

2.2. SQL INJECTION Florian Thiel

WHERE department=5 UNION SELECT Accounts . f i r s tname ,
Accounts . i d e n t i f i e r FROM Accounts ;−−

Listing 2.13: SQL injection vulnerability, access control circumvention example

The maliciously constructed statement now contains not only the data
from the Users table but also (probably sensitive) financial data from the
Accounts table. The data from the Accounts table is appended to the
original list of names, exposing the account identifiers.

Use as an attack vector Since some database engines support operating sys-
tem interaction commands, an attacker might be able to inject SQL code
to run system commands with the database’s privileges. Microsoft’s MS
SQL Server provides support for shell command execution and even ac-
cess to linked SQL servers (possibly putting servers that are normally pro-
tected from the outside world by a firewall at risk). Using SQL servers as
an attack vector requires knowledge of the specific server in use since it de-
pends on proprietary extension to the SQL standard. Security researcher
Victor Chapela presented some examples, including uploading files from
an SQL server to the attacker’s machine through a reverse connection and
network exploration at an OWASP conference in 2005 [Cha05].

2.2.4 SQL Injection Vulnerability Preventions

Injection Flaws

The main issue, allowing SQL injections in the first place, is the missing differ-
entiation between data and control statements in the query construction [GE08]
when using simple string concatenation. For string concatenation to be safe,
the unsafe data to be used in the string has to be sanitized first, making it
impossible for user input to be interpreted as control data.

‘ ‘SELECT name FROM Users WHERE departmentid=%s AND
lastname=’%s ’ LIMIT %s ’ ’ % (deptid , lastname , l im i t)

Listing 2.14: Simple SELECT query with numeric and string parameter in
selector

Let’s look at a simple example that includes 3 values that get inserted into
the query string (2.14). deptid and limit should be numeric, lastname is a
string.

Before any validation or filtering takes place, data has to be canonicalized
(see section 2.1 on page 9). Otherwise, all methods operate on data in an
unknown format12 and malicious data may pass undetected.

12note that data does not inherently carry information on how it should be interpreted;
guessing the format by the presence of certain characters gives attackers the opportunity to
decide how their input should be interpreted and thus increases the attack surface

16

Florian Thiel 2.2. SQL INJECTION

Escaping

To separate string data and control statements, strings have to be placed in
quotation marks. To prevent the quotation marks contained in the string itself
from terminating the string early (and thus returning to control mode), they
have to be escaped, usually using backslashes (’\’). Backslashes themselves also escaping
have to be escaped by prepending another backslash.

Quoting and escaping can only be used for strings, not for numbers, table
names, LIMITs or ordering directions (DESC/ASC). All the latter ones have to
be validated correctly before insertion.

Data Validation

Validation against SQL injections is relatively straight-forward for non-string validation
data. Numbers have to be made a proper numeric type (by casting, depending
on the language), arguments to LIMIT have to be positive integers; column
names have to refer to existing columns and the only valid directional arguments
for row ordering (ORDER BY) are ASC and DESC. Having said that, doing
correct validation requires knowing the type of the data one is dealing with (“is
this an argument toWHERE or to LIMIT?”). Applying validations for the wrong
type can have disastrous results. Unfortunately, automatic validation requires
an explicit type modeling so that code (maybe a framework) can establish which
validation to apply.

These rather simple rules make non-string types safe to use if they are
consistently applied (this is a big if !). For strings, some pitfalls exist.

Multi-Byte Characters

Putting backslashes into strings sounds simple, and it usually is as long as one
is dealing with character encodings that only use one byte per character, e.g.
ASCII [Wik09g]. Multi-byte encodings use more than one byte of memory to
represent a single character. They appear in character encoding schemes like
the ones used by Unicode [Wik09o]. If the code that does the escaping is does
not detect how the data is encoded, escaping may fail to prevent code injections.
If there are valid characters in the encoding where the second (or any following)
byte is a quotation or backslash character when interpreted as a single byte,
code injection is possible.

Consider the following example, where the attacker is able to inject the
string X’ OR 1=1/∗ after the login= part.

SELECT ∗ FROM Users WHERE l o g i n=’X ’ OR 1=1/∗ ’ AND password=’
sec re t ’

SELECT ∗ FROM Users WHERE l o g i n=’X\ ’ OR 1=1/∗ ’ AND password=’
sec re t ’

Listing 2.15: Example of defeating escaping using multi-byte characters

If the code doing the escaping and the database are aware of the use of multi-
byte characters, the login column will be matched against the injected string,

17

2.2. SQL INJECTION Florian Thiel

which – most certainly – will not return any results. But if the web application
is not aware of multi-byte characters but the database is, the escaping code
will insert a \ in-between the two bytes of the multi-byte character, leading
to X\’. If X\ is a valid multi-byte encoding of a character (which is true for
the Asian encodings like GBK or SJIS [Han07]), the byte that appeared as a
backslash becomes part of the multi-byte character and the single quote goes
unescaped, terminating the string. The attacker successfully injects a tautology
(which makes the WHERE clause return all rows of the table) and removes the
password checking condition.13.

For escaping to work properly, it is therefore important that the whole
system (web application, database and all other components involved) is aware
of the character encoding used. This issue is similar to canonicalization: a
component always has to be aware of the format of the data it handles.

Early Escaping/Late Modification

Escaping must be applied as late as possible. Modifying escaped data can undoearly escap-
ing the escaping or enable attacks impossible without escaping [GE08]. Consider

the example in listing 2.16 that truncates the length of user names:

or ig ina lu se rname = " j o eu s e r ’ "
escapedName = escape (username) # username == " joeuse r \ ’"
i n j e c t i o n = escapedName [: 8] # in j e c t i o n == " joeuse r \"
"SELECT ∗ FROM Users WHERE log i n=’%s ’ AND password=’%s ’ " %(

i n j e c t i o n , password)

Listing 2.16: Early escaping leads to vulnerability

Injecting an original username of joeuser ’ and a password of OR 1=1 −−
leads to the following, incorrectly quoted SQL statement:

SELECT ∗ FROM Users WHERE l o g i n=’ j o eu s e r \ ’ AND password=’ OR
1=1 −− ’

Listing 2.17: Truncated variable breaks SQL escaping

The trailing backspace in the username escapes the ending quote and so
the login selector terminates at the (originally) opening quote of the password
selector. The tautology selects all the rows and the opening comment renders
the closing quote of the password selector meaningless.

This example should make clear why it is good practice to delay escaping
until the actual construction of the final query string. There is another reason
that concerns trace-ability: If escaping happens where the data gets passed to
another execution environment (e.g. the database), it is immediately obvious to
any reader of the code that escaping is taken care of and how escaping is being
done. If escaping happened somewhere else, it would have to be codified and
enforced throughout the project (e.g. by using a layered architecture, see the

13This example was adapted from a talk by PHP security expert Stefan Esser [GE08]

18

Florian Thiel 2.2. SQL INJECTION

ultimate framework in section 2.6 on page 42) so that developers can rely on it
(cp. barricade concept in [McC04, pp. 203]). Otherwise, a code reviewer would
have to trace the code back to the place where escaping actually happened,
which is cumbersome and error-prone.

Prepared Statements

Prepared statements were designed as a mechanism to improve the performance prepared
statementsof database queries. Queries which are repeated many times using different

parameters (e.g. different values in WHERE selectors) can be optimized and
pre-compiled by the database. Prepared statements are usually part of the
database Application Programming Interface (API) as they are closely tied to
the database implementation.

Prepared queries became the weapon of choice for SQL injection vulner-
ability prevention as they effectively restore the separation between control
statements and parameters. Prepared statements are always static, as pre-
compilation only works for a fixed statement structure. The variable parts of
the query are marked with place-holders, which are later bound to a specific
value.

PreparedStatement updateSa les = con . prepareStatement (
"UPDATE COFFEES SET SALES = ? WHERE COF_NAME LIKE ? ")

;
updateSa les . s e t I n t (1 , 75) ;
updateSa les . s e t S t r i n g (2 , " Colombian ") ;
updateSa les . executeUpdate () :

Listing 2.18: Java JDBC style prepared statement

$ sq l = ’SELECT name , co lour , c a l o r i e s FROM f r u i t
WHERE c a l o r i e s < : c a l o r i e s AND co lour = : co l our ’ ;

$sth = $dbh−>prepare ($sq l , array (PDO: :ATTR_CURSOR => PDO: :
CURSOR_FWDONLY)) ;

$sth−>execute (array (’ : c a l o r i e s ’ => 150 , ’ : c o l ou r ’ => ’ red ’)) ;

Listing 2.19: PHP PDO prepared statement, named parameters

Listings 2.18 (for Java) and 2.19 (for PHP) show two examples of prepared
statements. Note that the Java example uses types when binding the placehold-
ers to actual values while the PHP version does not. When binding variable
values, the developer should make sure that they conform to the correct type
(e.g. by casting) in PHP. Failing to ensure correct typing does not directly af-
fect SQL injection as the prepared statement handler always correctly escapes
and quotes values for their specific type.

Limitations Of Prepared Statements

Prepared statements can solve the problem of character encoding mismatch
between application and database (see section 2.2.4 on page 17). They are

19

2.2. SQL INJECTION Florian Thiel

usually part of a database abstraction library, which contains specific drivers
for the various database backends the library supports. It is up to the driver
to detect encodings and translate accordingly. Unfortunately, some database
backend drivers (or for particular databases, some versions) do not support
prepared statements at all and in this case the abstraction library falls back to
emulation, without native access to database internals. So, in the end, users of
database abstraction libraries still have to be aware of how prepared statements
are implemented, in regard to the specific database in use. Switching databases
without re-evaluating the use of prepared statements can make an application
insecure.

Furthermore, as prepared statements were not designed as a tool to prevent
SQLIA but to increase performance, they lack some essential properties to solve
the SQLIA problem in its entirety:

1. Prepared statements only work for numbers and strings, not for table
or column names, LIMITs, ordering (ORDER BY) or queries using IN.
Additional validation still has to be used for these types.
Furthermore, not all prepared statement implementations support all
query types [Fis09]. If unsupported query types are needed, the developer
is back to square one and has to manually implement strong escaping.

2. Prepared statement abstraction support is not available in older ver-
sions of of some languages. PHP only has an abstraction library to use
database-side prepared statements since version 5.1 (released in 2005) [Fis09,
Gro09e]. This prevents some projects from using the native support,
sometimes implementing their own prepared statements (see the Word-
Press episode in section 4.2.1 on page 57).
The Java database abstraction interface JDBC gained support for pre-
pared statements in 2001 [Hei01]. Database abstraction implementations
with support for prepared statements also exist for modern scripting lan-
guages like Ruby or Python and is part of most contemporary web devel-
opment framework.

3. Prepared statements only work on static queries. If the number of param-
eters or the query structure depends on the parameters, prepared state-
ments cannot be used. If there is just a limited set of different queries
that can occur, it is possible to explicitly code all possible queries. The
laws of combinatorics quickly make this approach cumbersome but be-
ing able to avoid dynamic queries is a major gain in the battle against
SQLIA [FLS08].

4. Prepared statements are usually not type-safe (Java’s JDBC is an excep-
tion, as are Safe Query Objects (see section 2.2.8 on page 26)). They can
safely escape data into the place-holders but they can’t guarantee that
the id is actually a number. This has to be taken care of by validation or
manual type-checking or casting.

Despite some shortcomings, prepared statements are the single most effec-
tive measure against SQLIA. If real prepared statement support is available

20

Florian Thiel 2.2. SQL INJECTION

in the language libraries and the database and the use of dynamic queries can
be avoided (or at least minimized) most SQL injection vulnerabilities can be
prevented simply through the use of prepared statements.

Object-Relational Mapping / Model-Driven Design

For object-based languages, Object-Relational Mapping (ORM) techniques can ORM
make data access to a relational database mostly transparent to the application.
ORM provides rules on how to persist domain objects into relational databases
and how to re-retrieve them. The exact mapping is either done by convention
(the ActiveRecord implementation of Ruby’s Ruby on Rails web framework
automatically maps class names to a table of the same name, with the class
attributes as columns) or by explicit configuration (Hibernate, a popular Java
ORM tool, can use eXtensible Markup Language (XML) configuration files14

or Java annotations15).
An ORM can take care of most of the queries which would have to be writ-

ten manually otherwise. Since ORMs usually use prepared statements internally
and can do some automatic validation, many opportunities for introducing vul-
nerabilities are eliminated. ORMs rely on an explicit data model because they
have to derive queries and dependencies from the object graph.

In some cases, ORMs do not eliminate the need to write raw SQL queries
entirely, but usually support an abstract query language that is simpler than
plain SQL, portable between databases and not prone to injection attacks.
This is possible because this internal language is much simpler than plain SQL
and the ORM knows the semantics of the query, restoring the differentiation
between control and data for the query construction.

ORM tools are available for all popular web application languages, but they
are not ubiquitously used. Only one of the applications I discuss in the case
studies uses an ORM. I explore the reasons for the limited use in chapter 4 on
page 53.

In summary ORM is a very effective way to prevent SQLIA, because it
minimizes hand-written SQL, takes care of sane escaping automatically and
also provides some validation. For most ORMs, the advantages of prepared
statements also apply because they are used internally.

The only scenario where ORMs cannot be easily used are applications with-
out an explicit data model.

2.2.5 Bad Practice SQL Injection Mitigations

Web application projects use various, often home-grown, methods for SQL in-
jection prevention (see the discussion of WordPress in section 4.2.1 on page 55).
Some of them are widely known to be ineffective or even dangerous but still

14http://www.hibernate.org/hib_docs/v3/reference/en/html/tutorial-firstapp.
html

15http://www.hibernate.org/hib_docs/annotations/reference/en/html/entity.
html#entity-mapping

21

http://www.hibernate.org/hib_docs/v3/reference/en/html/tutorial-firstapp.html
http://www.hibernate.org/hib_docs/v3/reference/en/html/tutorial-firstapp.html
http://www.hibernate.org/hib_docs/annotations/reference/en/html/entity.html#entity-mapping
http://www.hibernate.org/hib_docs/annotations/reference/en/html/entity.html#entity-mapping

2.2. SQL INJECTION Florian Thiel

in wide use. I discuss some popular mitigations that do not keep up to the
promise.

False Friends - Ineffective Mitigation Functions

PHP16 contains a couple of functions that were designed as security devicesinferior
methods but are severely flawed. Better alternatives are available, but old habits seem

to die hard.

addslashes — addslashes () [Gro09c] escapes strings with backslashes for database
queries. It is not aware of character encoding and other intricacies of the
database used. Security researcher Chris Shifflet wrote a blog post on
how to exploit an SQL query protected by addslashes () using multi-byte
characters[Shi06]. Also see section 2.2.4 for details on the encoding prob-
lem. mysql_real_escape is available in PHP and does character set-aware
escaping for MySQL. Note that addslashes () does not work for escaping
URLs due to the differing encoding rules.

magic_quotes_gpc — magic_quotes_gpc() [Gro09d] is a configuration op-
tion for PHP that enables automatic escaping using addslashes () for
all operations that use data from GET or POST requests and cookies.
Since it uses addslashes () to do the escaping, the encoding problem men-
tioned above also applies to magic_quotes_gpc(). In fact, switching it
on makes it impossible to prevent incorrect escaping of data acquired
from GET, POST or cookies. According to Bernardo Damele, security
researcher and author of the sqlmap injection automation tool [Dam],
the magic_quotes_gpc() feature can even be used as an attack vector for
SQLIA [Dam09].

magic_quotes_gpc() has been deprecated as of PHP 5.3 and will disappear
in PHP 6 [Gro09d].

The methods mentioned above are still in popular use, especially in projects
that still want to support PHP 4. In PHP 4, the data access abstraction PDO
or the mysqli extension cannot be used, preventing the use of secure alternatives
to the above methods.

2.2.6 Not That Easy – Real-World SQL InjectionWalk-Through

The examples given in 2.2.3 on page 15 are idealized, naïve versions of SQL
injection vulnerabilities which seldomly appear in real-world web applications.
Exploiting a vulnerability usually involves a lot of up-front research and trial-
and-error, and depends on the overall structure and the intricacies of the system.
Usually, attackers don’t have access to the source code, either, so they have
to fall back to black-box testing strategies. Since this thesis deals with open
source web applications and aims to provide insight into how to help these

16other languages may also have such “false friends” but the ones in PHP seem to be the
best known

22

Florian Thiel 2.2. SQL INJECTION

applications become more secure, I use all available means to gain knowledge
about the project. This includes source code.

As an introduction, I discuss a very simple, dynamically generated SQL
query used by Mambo, a PHP web content management system, and line out
some ways that could be tried to exploit this query17. An in-depth discussion of
Mambo, including the innovation introduction, can be found in the case studies
chapter (section 4.2.2 on page 67).

1485 $query = "SELECT name FROM #__sections WHERE id=’ $ s e c t i on ’ " ;
1486 $database−>setQuery ($query) ;
1487 $section_name = $database−>loadResu l t () ;

Listing 2.20: Mambo: administrator/components/com_categories/
admin.categories.php, (revision 125)

The example in listing 2.20, taken from a method called showCategories in
the Mambo project code-base18, shows a common usage pattern of SQL in that
project. The query is constructed as a string, this string is then passed on to
a small “database abstraction” layer (setQuery()), the query is executed on the
database and the result is returned (loadResult ()).

The variable $section is used to dynamically construct the query, making it
a potential vector for an injection attack. As it turns out, the variable even is
an argument to the method containing these three lines of code. The method
does not have any kind of control on the contents of the variable.

Calling setQuery() on $database sets the query to be executed next. Since
the method only has one parameter, which is a string, the setQuery() method
can not have any semantic knowledge about the query. Best practice dictates
that developers should use a prepared statement which keeps control statements
and arguments separate.

The loadResult () method calls another method on the "abstraction layer"
that actually executes the query. Mambo uses the mysql_query19 PHP method,
which calls the actual PHP database driver for MySQL. The mysql_query
method only supports the execution of a single query. This prevents any kind
of SQL injection attacks that involve piggy-backing attacks [HVO06], where an
attacker is able to modify the query string in a way that results in it containing
two statements. An example is shown in 2.21.

SELECT name FROM Users where uid=’ j o e ’ ; DROP TABLE Users ;

Listing 2.21: Multiple SQL queries

Ensuring that only single queries are possible is a case of defensive design and
a known good practice.

17I don’t believe this query is exploitable under realistic conditions (I would have notified
the developers), the discussion is merely a walk-through of the data flow in a web application
using SQL.

18see appendix A.1.2 on page 114 for information about how source code was acquired and
how to acess the exact file versions referenced in this thesis

19http://de.php.net/mysql_query

23

http://de.php.net/mysql_query

2.2. SQL INJECTION Florian Thiel

Since there is no way to manipulate stored data through SQL with a SELECT
query20, attacks targeting the integrity of the database cannot be mounted using
this query.

The result of the database query is returned to the caller by the loadResult ()
method. This method only returns the first column of the first row of the re-
turned dataset21. This also limits the applicability of injection attacks targeted
on gaining privileged information. Even if an attacker is able to inject SQL code
into the query, the application code will only allow him to access the first col-
umn of the first row. If, in addition, he is able to add columns to the query, he
would not be able to reorder columns, effectively rendering the attacks useless.

How It Got Here – Input Validation

Having covered output filtering, this section describes how input validation
and filtering happens in the Mambo example. Note that the result of input
processing defines the state of all data inside the application (see section 2.1 on
page 9 for a more detailed description).

The $section variable got passed as an argument to the method showCategories()
and gets passed on to the database without any manipulation or validation.
This seems to be safe here22 but it is impossible to conclude safety just from
this piece of code. Someone doing code review would have to have knowledge
about where sanitation happens in the system and then conclude if all the
data entering the showCategories() has undergone sanitation for output to the
database. This is very hard to decide with certainty unless the application has
a defined and enforced component structure with interfaces. It becomes clear
in the next paragraph that $section has been filtered before but this is not ex-
plicitly codified and can only be verified by looking at the data flow manually.

The $section variable is called from administrator/components/com_categories/
admin.categories.php upon initialization of that file. The variable comes
from an HTTP GET or POST request (see 2.1.1 on page 9). In Mambo, a san-
itation method called mosGetParam() is used on data supplied through cookies
or GET/POST requests. This method is the generic input filtering method of
Mambo. Developers have to explicitly call this function to retrieve parameters
from requests. Otherwise, no input validation/sanitation takes place.

By default, mosGetParam() removes leading or trailing whitespace, encodes
Hypertext Markup Language (HTML) (see 2.3.3 on page 32), and converts
strings with a numeric value to proper integer values. This is (as indicated
by the in-line documentation for the method) done for security reasons and
contains a mixed bag of countermeasures:

1. Removing whitespace does not have any clear security implications. This
seems to be done for formatting reasons only.

20the only useful queries would involve a UNION SELECT or a subselect, neither of which
can manipulate data

21the dataset only has one column since the SQL query string only selected the name column;
since the WHERE clause contains the section id which is presumably unique, the query should
also only return one row

22which only means that I can not see a way in which it could be exploitable

24

Florian Thiel 2.2. SQL INJECTION

2. Encoding HTML prevents the input from containing HTML or JavaScript-
code and is generally used to prevent XSS vulnerabilities. In Mambo, this
happens upon data entering the system. This is an instance of the early
escaping concept.

3. Conversion to proper numeric types is a defensive practice against SQL
injections, ensuring partial type safety. mosGetParam() takes an argument
that defines the default value that is returned when the requested value is
not present. It also determines if the returned value has to be a number. If
the default value is numeric, the requested value is converted to a number,
too. This is an effective prevention for injection attacks on numeric fields
(which are not delimited by parentheses).

The Mambo example looks safe but highlights some architectural weaknesses
that make code review – especially for security – particularly hard. We will see
more of these issues in the case study in chapter 4.

2.2.7 Advanced SQL Injection

The cases discussed until now are plain SQL injections to manipulate queries.
For the sake of completeness, the use of SQL injections for information gathering
and the technique of blind SQL injections (which is related) are explained. The
possibility of blind SQL injections should be an even stronger motivator to
implement strong injection prevention measures.

Information Gathering

Victor Chapela of the OWASP explains how to use crafted SQL queries to
gather information about the software in use, its versions, configuration and
the structure of queries [Cha05]. Knowing the type of database — for instance
— lets the attacker focus on attacks feasible with that specific database. This is
often useful for advanced features like calling external programs or establishing
network connections (see also section 2.2.3 on page 15).

Detection of database type and version is possible through knowledge of
behavior specific to database types or versions. Databases adhering to the SQL
standard support different extraneous features whose presence can be checked
by provoking errors that are caused by missing features. Query responses also
vary slightly between databases but still stay inside the limits given by the
SQL standard. These differences can be probed for and there is no obvious way
to prevent this. Bernardo Damele created an automatic scanner called sqlmap
that uses these signatures to identify databases and configuration [Dam09].

Blind SQL Injection

Maor and Shulmann [MS08] offer insight into techniques to find SQL injection
vulnerabilities in the absence of error messages and database signatures. The
strategies they apply use structured exploration of the context where injectable
data would be included and moving forward from there to get quoting right.

25

2.2. SQL INJECTION Florian Thiel

They propose a way to figure out the number of columns and their respective
types without any feedback from the database. Knowledge about the table
structure is important for all targeted real-world attacks.

2.2.8 More SQL Injection Prevention Techniques

There are some advanced SQL injection prevention techniques which can pro-
vide a very high level of protection but require a lot of effort or restructuring
of the application. I have not seen any of these in the projects I looked at in
chapter 4 on page 53. I present them here anyway to further show that very
strong prevention methods exist and that missing technological support is not
the reason for the abundance of SQL injection vulnerabilities.

Stored Procedures Stored Procedures are predefined queries, stored in thestored pro-
cedure database. They look like function definitions but use the native SQL

dialect of the database. The procedures can be parameterized and exe-
cuted, similar to prepared statements. Type checking for the functions
is available in most implementations, so stored procedures can provide
a high level of protection. Nevertheless stored procedures can only be
used together with correct escaping techniques since malicious input may
modify the procedure and provide an injection vector.

Create procedure user_log in @username varchar (20) , @passwd
varchar (20) As

Declare @sq l s t r i ng varchar (250)
Set @sq l s t r i ng = ’ S e l e c t 1 from use r s
Where username = ’ + @username + ’ and passwd = ’ +

@passwd
exec (@sq l s t r i ng)

Go

Listing 2.22: Stored procedure definition in MS SQL

The example shown in listing 2.2223 shows a stored procedure definition
in MS SQL Server. username and password are vulnerable to injection if
escaping is not taken care of outside the procedure [ABC+08].
Stored procedures also share the problem of dynamically generated queries
with prepared statements. If it is necessary to support dynamic queries,
all bets are off and all precautions that apply to using simple string con-
catenation to construct queries have to be done manually (see section 2.2.4
on page 19).
Stored procedures are usually not portable between database backends
making the database layer harder to maintain if support for different
databases is required. Stored procedures can be useful if they cover all
database operations and are not modifiable at runtime. If they are com-
bined with sensible escaping they provide a high level of security.

Strongly typed queries Cook and Rai [CR05] describe a method called Safetyped
queries 23taken from the OWASP Testing Guide [ABC+08]

26

Florian Thiel 2.2. SQL INJECTION

Query Objects which is a kind of “advanced prepared statement” for Java
that also bridges the type gap between the application’s type system and
the database’s. Since SQL queries are evaluated at runtime, the applica-
tion cannot know which type the database expects for each place-holder.
Safe Query Objects move all the type-checking to the Java language, ef-
fectively preventing all attacks enabled by type mismatch.
The Safe Query Objects method is very powerful but requires fundamental
changes to the way queries are constructed, is limited to Java and only
provides real advantage if the query structure is static.
In Java, the prepared statement implementation of JDBC (Java’s database
abstraction library) also use Java’s type system when inserting user data
into the query, providing part of the value of Safe Query Objects24

2.2.9 SQL Injection Vulnerability Detection Techniques

These techniques are alternatives to code review for detecting SQL vulnerabil-
ities. They are helpful for benchmarking but should only be used to augment
safe development practices25.

Black-Box Checking — Black-box checking puts input that could be useful
for an injection attack into all publicly accessible form fields, cookies, etc.
It is very useful as a quick check for vulnerabilities as it can be automated
and tools are readily available. OWASP hosts the SQLiX project [Wik08]
which provides automated testing tools for SQL injection vulnerabilities.

Taint-Based Flow Analysis — As one of the root problems of SQLIA is
missing validation of user input, tracing the flow of user input through
the system is a reasonable approach to prevent unsanitized input from
reaching the database. Taint-based approaches mark (taint) data that
originates in sources external to the application and only remove the taint
marker when the data is sanitized. This happens either implicitly when
the string is modified or explicitly when the developer untaints the data.
Taint analysis has a performance penalty and does not guarantee that
the right sanitations are applied26, but it is a powerful method to find
missing sanitation or validation. Perl introduced a taint mode long ago
when web applications were still simple CGI scripts [chr04]. The Ruby
language core also has support for tainting [TFH04, 397].

2.2.10 Summary

Although the field of SQL injection and injection prevention is rich with tools
and techniques of varying quality, three essential and very effective methods

24this does not make JDBC understand the query, it just catches type errors because the
developer is forced to explicitly give a type when inserting data into the query

25as the famous saying, attributed to Edsger W. Dĳkstra, goes: “Testing shows the presence,
not the absence of bugs”

26it only guarantees that someone decided “it’s safe now” before

27

2.2. SQL INJECTION Florian Thiel

stand out: input validation plus prepared statements or ORM provide very
effective injection prevention, if the overall system configuration is sound (per-
missions, character encodings, etc.).

All three of these prevention methods are much easier to implement when all
data types that occur in the system are well defined. That means that allowed
characters and other constraints for every type are either centrally documented
and enforced by developers or even enforced by a framework that automatically
does validation and filtering.

Furthermore, the consistency of the use of the prevention methods benefits
from defined layers for input validation and database abstraction, possibly using
ORM. With a defined and uniform location, it is always clear which measures
data has already passed through and thus which sanitations have been applied.

This uniform location can be codified in developer documentation and be
baked into the architecture of the application, forcing the use of the security
features. The section on the ultimate framework (page 42) shows how such a
framework-based approach could look like.

The technical means to counter SQL injection vulnerabilities are available
but architecture plays an important role to be able to consistently use them.
The case studies in chapter 4 shows how open source web application projects
actually protect themselves from SQL injections.

28

Florian Thiel 2.3. CROSS-SITE SCRIPTING

2.3 Cross-Site Scripting

Modern web browsers do not merely display static information, but act as
an execution environment for web applications, complete with event handling
and one or more client-side languages. Today’s applications use user-supplied
data to generate the web pages. Besides HTML code for the page’s structure,
pages include code for the client-side languages, which a user’s web browser will
happily execute. Data delivered to a web browser not only control the page’s
layout, but also its behavior.

Since modern web browsers are supposed to run the applications delivered
and under the control of a web server, trust between web server and the user’s
browser is crucial. Client-side languages therefore usually run in a sand-boxed
environment and only have access to functions related to the site the user is
visiting in the web browser. The same-origin policy [Zal09a] dictates that
browsers only execute server-supplied code for sites originating from the same
server. Unfortunately, in the presence of injection vulnerabilities, browsers can
be tricked into executing code that is not under the control of the site that
delivered it but under the control of an attacker.

In this section, I discuss the technical background, threats and mitigation
practices for client-side script injections known as XSS. I also take a look at
popular but ineffective mitigation practices.

The discussion in this thesis is limited to JavaScript-based XSS. XSS affects
all client-side languages that execute server-provided code, but the principles
for script injection prevention will be similar.

2.3.1 Threats

Cookie Theft

The single most popular threat posed by XSS is cookie theft. The HTTP pro-
tocol, which is used to transfer web pages, is state-less. To be able to handle
transactions that require multiple page requests (such as shopping carts in a
web shop), the requests have to be connected to a single user identity. This is
often done using cookies. Cookies are small strings which are saved to the user’s
browser and then transmitted back on all requests to the site that provided the
cookie. Setting a cookie that identifies the user after the user has logged in to
a site provides the site with the user’s identity on all subsequent requests.

If an attacker is able to get a hold of such an identifier stored in a cookie,
he is able to impersonate the person that the identifier was generated for. This
enables the attacker to read the victim’s emails and contacts in a web-based mail
application, use the victim’s instant messaging service, post to the victim’s web-
log or transfer money from the victim’s bank account, using an online banking
site27.

27online banking applications usually require another authentication factor for money trans-
fers; at least for German banks, being logged in usually does not allow money transfers without
further authentication using e.g. transaction numbers

29

2.3. CROSS-SITE SCRIPTING Florian Thiel

2.3.2 Other XSS Threats

Since XSS enables (in principle) arbitrary rewriting of web pages, the only
limiting factor to XSS attacks is the sand-box that contains the script (see
section 2.3.5 on the browser security model). Popular XSS attacks include web
site defacement28 or phishing29.

The popular MySpace30 social network became prey to a famous XSS at-
tack that turned out to be the first XSS worm. A user called Samy planted
JavaScript code in his public MySpace profile that replicated into the profile
of everyone who visited Samy’s MySpace page. Furthermore, the code added
Samy and other random MySpace members as the victim’s friends. The code
replicated very quickly and initiated so many friend requests that MySpace
could not handle the load and had to be taken offline for a short time [Moo05].
A dissection of the worm’s internals and the reasons why MySpace was suscep-
tible to the XSS attack is available from Google’s Evan Martin [Mar08].

Lam et al. identified threats posed by the possibility to misuse unexpecting
user’s web browsers to conduct denial-of-service attacks driven by JavaScript
code [LAAA06]. Finding injection vulnerabilities in popular web sites could
open up vast numbers of participating “attacking” browsers.

A recent addition to the XSS threat zoo is clickjacking. An attacker can
modify a web page so that it invisibly includes parts of another page. A user
clicking an innocuous-looking button may in fact interact with a different button
on another page and (considering he is logged in to that other page) initiate an
action on the other page on the attacker’s behalf. This could involve bidding
for an item in an ebay31 auction. The issue was about to be made public at
the OWASP NYC conference in 2008, but Grossman and Hansen (who had
discovered the issue) canceled the talk after they discovered a proof of concept
on how to use the attack to hĳack microphones and web cameras for use as
a surveillance device. The publication was delayed to give Adobe, maker of
the popular Flash32 plug-in for web browsers, time to update the plug-in, as it
played a critical role in the proof of concept attack [Han08]. Flash provides an
additional execution environment for server-provided code running inside web
browsers, which is also able to access computer hardware.

<html xmlns=" http ://www.w3 . org /1999/ xhtml "
v e r s i on="XHTML 1 .2 " xml : lang=" en ">

<head>
<t i t l e>Demo Page</ t i t l e>

</head>
<body>

<h1>This i s a demo page</h1>

28modifying the layout or contents of a web page in order to humiliate the owner of the
page or to disturb his business

29tricking users to enter credentials (e.g. for banking applications) by creating a web site
that poses as the real page but logs the user’s credentials; XSS makes it possible to modify
the original page, enabling attacks where server certificates are still valid

30http://www.myspace.com
31http://www.ebay.com
32http://www.adobe.com/products/flashplayer/

30

http://www.myspace.com
http://www.ebay.com
http://www.adobe.com/products/flashplayer/

Florian Thiel 2.3. CROSS-SITE SCRIPTING

Figure 2.3: Simple browser pop-up created by JavaScript

</body>
</html>

Listing 2.23: Simple XHTML page

2.3.3 Introducing JavaScript

HTML33 is the most popular mark-up language for the web. It describes the
structure of a web page and its elements. Every element is written as a tag (e.g.
<table>) with optional arguments (e.g.).

The source code of a very basic HTML page looks like the example given
in listing 2.23 on the preceding page. The parts inside the <head> tag contain
meta information about the page, the parts inside the <body> tags contain the
actual (visible) part of the page.

All modern browsers have built-in support for JavaScript34, a dynamic,
weakly typed, prototype-based language with first-class functions. It is the
most popular language for client-side scripting of web pages. Uses include the
animation of objects, drop-down menus or graphics, support for drag-and-drop
of objects on web pages and support for partial reloading of web pages through
XMLHttpRequest, creating a more desktop-like user experience. It should be
obvious that having an attacker control the behavior of a web application can
be dangerous.

Types Of JavaScript

JavaScript is executed by the browser’s JavaScript engine if it is encountered in
a web page. If an attacker is able to inject code into a web page he usually tries
to inject JavaScript, because having control over the behavior of the web page
is much more valuable than just manipulating layout (which would be possible
by just injecting HTML). The pop-up window shown in illustration 2.3 was
created using the JavaScript code from listing 2.24 on the following page.

33I use HTML and its XML counterpart Extensible Hypertext Markup Language (XHTML)
interchangeably in this thesis, except where the differences are important for the discussion

34I use JavaScript throughout this thesis to refer to any languages compatible to ECMA-262
ECMAScript [Wik09j]. The existing differences between the dialects are not relevant to the
fundamental issues with XSS discussed in this thesis.

31

2.3. CROSS-SITE SCRIPTING Florian Thiel

<html>
<body>

<form>
<script>a l e r t (’ you have been XSSed ! ’)</ script>
<h1>Student l o g i n</h1>
Enter your l o g i n name :
<input type=" text " s ize=" 40 ">
<input type=" submit " value="Log in ! ">

</form>
</body>

</html>

Listing 2.24: Trivial example of JavaScript in a web page

Encoding For JavaScript

Escaping is used to strip syntax-significant (in terms of HTML) characters ofescaping
their special meaning. In HTML, character encodings [DYI+05] are used, which
look like this: < or <. Both examples encode a less-than (’<’) sign. The
first one uses a symbolic name, the second one the Unicode enumeration. Both
prevent the character from being parsed as a mark-up delimiter.

What is interpreted as JavaScript depends on the context in which it ap-
pears. Therefore, different injection preventions have to be chosen, depend-
ing on the context. As not all contexts have reliable prevention patterns, the
OWASP XSS prevention cheat sheet [Wik09e] suggests not using dynamic val-
ues in some contexts. These are

1. script tags: <script>$input</script>

2. an HTML comment: <!-- $input -->

3. an HTML attribute name: <p $input="foo">

4. an HTML element name: <$input foo="3">

The other contexts each need different encoding strategies but can be safely
used.

Encoding for HTML element contents If the user input is to be displayed
inside an HTML element (e.g. inside a <p> paragraph), OWASP’s XSS
prevention cheat sheet suggests the characters in table 2.1 on the next
page be HTML encoded in order to prevent attackers from being able
to switch in or out of a script execution context: This case is straight-
forward. A code example that would need this type of escaping looks like
listing 2.25, where name is the variable that needs escaping:

print "<div>" + name + "</div>"

Listing 2.25: Escaping needed for HTML element

32

Florian Thiel 2.3. CROSS-SITE SCRIPTING

character encoding
& &
< <
> >
" "
’ '
/ /

Table 2.1: Character encoding for XSS prevention in HTML element contents

Escaping for HTML tag attributes In , color
is an attribute to the tag. If the contents of a tag attribute is dy-
namically generated from user input, care has to be taken that breaking
out of the parentheses is not possible.

<form type="POST">
. . .
<button color=%s>
</form>

Listing 2.26: tag attribute injection example

The color attribute value of the button comes from a string possibly un-
der an attacker’s control. Since it is not quoted, an exploit would be possi-
ble if the attacker manages to inject #00ff00 onload=very_evil_method().
The resulting HTML would then look like 2.27.

<form type="POST">
. . .
<button color=#00f f 0 0 onload=very_evil_method ()>
</form>

Listing 2.27: tag attribute injection exploit

In well-formed XHTML, all attribute values have to be quoted, but some
browsers interpret unquoted attributes anyway. If HTML attributes are
not quoted, JavaScript injection is very difficult to prevent. It is therefore
good practice that attributes are always quoted. Quoted attributes can
only be broken out of using the corresponding quote (either ’ or ‘‘).
OWASP’s cheat sheet suggests a very strict white-listing approach to
also protect attributes that are not quoted. Complete protection can
only be achieved if all characters, besides alphanumerics with American
Standard Code for Information Interchange (ASCII) values below 256, are
HTML encoded. Alpha-numeric characters never have any syntactically
delimiting function in HTML and are therefore safe.
Note that the injection in listing 2.27 does not rely on quotes. With
little modification, the injected string could further reduce the number
of non alpha-numerical characters, avoiding even more black-list filtering
approaches.

33

2.3. CROSS-SITE SCRIPTING Florian Thiel

The use of the onload event handler attribute causes the browser to
execute the attribute value as JavaScript when the page is loaded. No
user interaction is necessary.

The OWASP cheat sheet lists three more different injection contexts (as
JavaScript data, in Cascading Style Sheet (CSS) properties and in URL at-
tributes). OWASP suggests to encode all non-alphanumeric characters, as for
HTML attributes in general.

For the different contexts, only certain parts can be generated dynami-
cally while retaining injection protection. For URLs, the access protocol (e.g.
http://...) should always be fixed, as javascript: is also a valid proto-
col, but executes the rest of the attribute as JavaScript. For insertion into a
JavaScript context, only literals (e.g. variable values) may be inserted and have
to be correctly escaped. Otherwise, it is possible for the attacker to disrupt the
control flow. The examples from the OWASP page35 in listing 2.28 illustrate
the correct use of dynamic data in HTML pages.

<script>a l e r t (’ . . . ESCAPE UNTRUSTED DATA BEFORE PUTTING
HERE. . . ’)</ script>

<span style=property : . . . ESCAPE UNTRUSTED DATA BEFORE PUTTING
HERE . . . ;>text</ style>

<a href=http : / / . . .ESCAPE UNTRUSTED DATA BEFORE PUTTING
HERE . . .>l i n k

Listing 2.28: JavaScript data, CSS property in attributes and URL in attributes

The basic problem of all these encoding approaches is that it completely
prevents the use of user-provided HTML. Web site providers might want to
allow users to use mark-up to structure contents or use images. Web logs,
auctioning platforms and web forums often allow custom mark-up. There are
three ways to allow mark-up without compromising robustness against XSS
vulnerabilities:

1. Use a limited non-HTML mark-up language. Textile36 and Markdown37

are two simple mark-up languages that provide a subset of HTML’s func-
tionality. Scripting is not included. The mark-up is translated into proper
HTML by the web server upon delivery to the web browser. The reduced
mark-up languages themselves do not use characters that have special
meaning in HTML (like <,> or &) and thus all characters can be HTML
encoded, while still retaining mark-up capabilities for user input.

Security of this method relies on the security of the transformation process
to HTML, but as the transformation code can be used as a component,
updating the component suffices to stay secure if vulnerabilities are found.

35http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_
Sheet#Untrusted_Data

36http://www.textism.com/tools/textile/
37http://daringfireball.net/projects/markdown/

34

http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet#Untrusted_Data
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet#Untrusted_Data
http://www.textism.com/tools/textile/
http://daringfireball.net/projects/markdown/

Florian Thiel 2.3. CROSS-SITE SCRIPTING

These mark-up languages still depend on proper validation and filtering
of input values, since e.g. HTML links are usually supported by the mark-
up. The use of the JavaScript protocol in an URL would still introduce a
CSS vulnerability (also see section 2.3.3 on page 32).

2. Use a parsing filter like AntiSAMY [Wik09b]. AntiSAMY is a project
hosted at OWASP which provides sophisticated filtering for HTML. It
uses a policy definition file to determine which tags and attributes are
allowed in a piece of HTML and strips the rest. It internally builds
and validates the HTML tree to overcome injections using broken HTML
(which some browsers try to repair). AntiSAMY is available for Java and
.NET.
AntiSAMY provides a high level of security against XSS attacks but re-
quires profiles that define what HTML elements and attributes are allowed
in which input.
HTMLPurifier38 is an alternative to AntiSAMY for PHP. It relies exclu-
sively on an audited white-list and also enforces well-formed HTML. It
does not support a sophisticated rule model like AntiSAMY but requires
less configuration.

3. Use a context-aware HTML templating language. A recent addition to the
pool of effective XSS mitigations is Google’s Automatic Context-Aware
Escaping, called Auto-Escape [Bou09]. It is an HTML template language
which supports insertion of variable contents. It releases the template pro-
grammer from applying the right encoding depending on the context (see
section 2.3.3, Encoding for JavaScript), thereby enabling fully automated
XSS prevention.

2.3.4 Types Of XSS

XSS attacks are classified into three categories, depending on how they can be
exploited [HVO06, Wik09h]:

DOM-based (type 0) local attacks that appear within a page that itself gen-
erates HTML via JavaScript without any server interaction; I do not dis-
cuss this case in this thesis because it is rare; most web applications do
round-trip communication to the web server

non-persistent/reflected (type 1) occurs when malicious input is directly
used to generate output to a page which then contains the attack code;
the attack is usually targeted to a single user

persistent (type 2) the attack code is not directly returned to a user’s web
browser but written to a persistent store (e.g. a database); the actual
attack happens when the data is used to generate a page; this kind of
attack has much higher reach and is harder to detect (since the time of
the exploitation and the time of the actual attack differ)

38http://htmlpurifier.org

35

http://htmlpurifier.org

2.3. CROSS-SITE SCRIPTING Florian Thiel

Persistent (type 2) exploits are one of the main reasons why sanitation
of HTML has to take place when the web page is generated. Relying only
on input validation/filtering is not enough, since it is often not clear what
to validate/filter for (cp. section 2.2.6 on page 24 on user input). Even if
current prevention mechanisms do not allow malicious HTML to be stored in
the database, older versions of the software might have been vulnerable and the
database may already contain data unsafe for output without correct escaping39.

2.3.5 Browser Security Concepts

Since JavaScript is a powerful language and running network-provided code on
user’s machines is inherently risky, web browsers provide different mechanisms
to limit the permissions code running in the browser has. First of all, all
JavaScript code is sand-boxed inside the browser, so there is no way to access
the outside system. Access inside the browser is restricted to some browser
APIs and the Document Object Model (DOM). The DOM is a tree-structured
representation of a web page including all of its properties. HTML elements can
be accessed and modified programmatically, cookies can be read and windows
can be resized and navigated (e.g. to a new URL).

Access inside the browser is also restricted. Browsers can display different
pages at the same time, belonging to different sessions. For example, scripts
running on a yellow pages web site must not interfere with an online banking
site. Without any access controls, the pages could manipulate each other’s
content and functionality at will and retrieve private information.

Access control between web pages is provided by the same-origin policy.
For DOM access, the access control mechanism works like this: Every page
(called a document) has a domain property. Another document can access the
complete DOM of that page if the protocol, hostname and port number of both
domain properties match. This rule models a trust relationship between all the
contents hosted under a single hostname. If two pages want to collaborate but
are not hosted under the same hostname, both can reset the domain property
to a right-hand, fully-qualified fragment [Zal09a] of their current domain. This
means that hosta.example.com and hostb.example.com can both set their
domain properties to example.com but not to somethingelse.com40.

Michal Zalewski explains some serious shortcomings of the same-origin pol-
icy for the DOM in [Zal09a]. According to Zalewski, the basic problem is that
the same-origin policy provides no security framework for real cross-site inter-
action. Cross-site interaction is desirable for sites collaborating and re-using
other site’s services, but the current browser security features do not provide a
secure way to configure trusted collaboration among sites.

The same-origin policy is only partly relevant to the discussion of XSS in
this thesis, as collaborating sites should still be treated as sources of potentially
malicious data and proper validation and sanitation is needed.

39for cleaning databases of XSS code see section 2.3.6 on page 38
40Setting the domain to a top-level domain is also not allowed to prevent too permissive

settings but lists of top-level domains are not always up-to-date in web browsers

36

Florian Thiel 2.3. CROSS-SITE SCRIPTING

Many current attacks inject data directly into a single page and do not rely
on the interaction of different sites. In this case, the same-origin policy does
not prevent the code from being run. It appears to come from the same server
(which it in fact does as it is included in a legitimate page) as the rest of the
page and is thus safe by definition.

For the same-origin policy for cookies (which semantically differs from the
DOM policy, see [Zal09a]) the same circumvention holds. Cookies for a page
are accessible to code injected to the web page.

2.3.6 Additional XSS Mitigations

Defense-in-depth approaches for XSS are very important because of the abun-
dance of XSS vulnerabilities. Programmers and web browser users can both
reduce the threat posed by XSS significantly by the measures explained here.
Note that these techniques don’t solve the problem of XSS so it is still the appli-
cation developer’s (and architect’s) responsibility to prevent XSS vulnerabilities
in the first place.

HttpOnly Cookies

Cookies are normally accessible to JavaScript code through the DOM. Injected
code could read the cookie and navigate the browser to a site of the attacker’s
choice, submitting the cookie’s value as a parameter (or, if possible, even use an
XMLHttpRequest, so the submission is invisible to the user). Most browsers
nowadays support a flag on cookies called HttpOnly which causes cookies to
be inaccessible to scripts through the DOM. Unfortunately, requests through
XMLHttpRequest receive the full response from the web server which includes
the cookies to set. Michal Zalewski found [Zal09b] that some browser imple-
mentations don’t hide the HttpOnly cookies from these types of requests so
they are still accessible to scripts by parsing the web server response. This gap
seems to get closed by current browser generations but it cannot be relied on
that HttpOnly cookies are not accessible to scripts.

Client-Side Script Blockers

NoScript41 is an extension to the popular Firefox42 browser and prevents script
execution on web pages by default. This provides perfect protection from XSS
but renders many pages unusable. Users can selectively activate scripting for
pages they trust.

Additionally, NoScript provides an Anti-XSS filter that sanitizes parameters
before they are sent to a web server. It sanitizes parameters getting submitted
from trusted sites to untrusted sites and can thus prevent many users from
being attacked in the presence of XSS vulnerabilities in a trusted web page.

NoScript requires manual installation by the user and will thus probably not
cover all installations of Firefox anytime soon. Additionally, Firefox is still a

41http://noscript.net/
42http://www.mozilla.com/en-US/firefox/firefox.html

37

http://noscript.net/
http://www.mozilla.com/en-US/firefox/firefox.html

2.3. CROSS-SITE SCRIPTING Florian Thiel

minority amongst the web browsers in use. Microsoft’s Internet Explorer 8 will
include XSS filtering facilities in the standard distribution, bringing client-side
filtering to a more general audience.

As a caveat, client-side script blockers can only protect against type 0 and
type 1 XSS attacks (see section 2.3.4 on page 35 on XSS attack types). Type
2 (persistent) attack code is already present at the web page visited and does
not pass through the client-side filter. Nevertheless, browser-based filtering is
a good choice in a defense-in-depth strategy.

Static Analysis Of Persistent Storage

Buying into the defense-in-depth argument that someone might have already
circumvented a web site’s protective measures, the Scrubbr tool [Sul09] provides
after-the-fact sanitation. Scrubbr scans a database’s contents to find content
that does not conform to a policy file. The tool uses the same policy engine
as AntiSAMY (see section 2 on page 35). The web site provider still has to
provide a policy file that corresponds to his needs which can take a lot of effort
if the business data is diverse and uses complex formats.

2.3.7 Summary

XSS vulnerabilities are much harder to prevent than SQL injection vulnerabil-
ities since the attack surface is larger. Virtually all user input can carry XSS
which eventually becomes included in a web page. For SQLIA, it suffices to
protect data going into the database.

In addition, sanitation for XSS is much harder since there are different con-
texts that require different sanitations and — to make things worse — browsers
are very liberal when it comes to treating strings as valid HTML. For SQLIA,
only using standard SQL features results in very predictable behavior for vir-
tually all databases.

Nevertheless, workable preventions for XSS vulnerabilities are available.
The OWASP cheat sheet provides very secure white-listing methods, numer-
ous libraries for XSS sanitation are available, even “automatic” solutions (like
Google’s AutoEscape). The only remaining difficulty is to decide where to
put the sanitations. In an Model-View-Controller (MVC) architecture, the re-
sponsibility clearly falls to the view. Without a clear architectural separation,
explicit codification (as in policy documentation) is necessary to ensure that all
data is consistently sanitized.

Even though the correct sanitation of XSS is harder than sanitation for
SQLIA, in the end it also boils down to having clear responsibilities for san-
itation. I find it surprising that the seminal book about XSS, XSS Attacks:
Cross Site Scripting Exploits And Defenses[Han08], co-authored by expert prac-
ticioners like Hansen and Grossman, limits itself to the technical complications
of XSS, without mentioning application architecture as a way to effectively put
the presented mitigation methods to effective use.

38

Florian Thiel 2.4. INPUT OR OUTPUT FILTERING

2.4 Input Or Output Filtering

The Common Weakness Enumeration (CWE), a comprehensive classification of
security weaknesses (see section A.6 on page 128 in the appendix), lists Failure
to Sanitize Data into a Different Plane (aka ’Injection’) [DVT09a] as the root
cause of both SQL43 injection and XSS44.

The root cause in fact is missing sanitation of data that gets passed to
a different execution context where data safe for local use may be dangerous
(the web application doesn’t mind SQL queries with an SQL injection inside).
From a conceptual standpoint, the vulnerabilities could be tackled by only using
output filtering when changing planes.

Nevertheless, input and output filtering both have advantages and disadvan-
tages and combining them makes preventing vulnerabilities easier. Consistent
input filtering touches all incoming data, providing a single point all data passes.
At that time, it is not always clear what happens to user input. Input filtering
cannot always tell if the data gets written to the database or if it will appear
on a web page. Therefore, input filtering should ensure that data conforms to
the expectation of the web application itself (probably dictated by the business
rules), not the format needed for output to the database or a web page. This
requires clear type definitions for all data the application will encounter (see
section 2.6 on page 42).

Output filtering can be aware of the context the data is actually used in, if
there are multiple possibilities. Therefore, specific filtering can take place here.
Also, output filtering is only used on the data that actually needs filtering,
which has performance benefits for complex filtering needs.

Independent of the type of filtering, the use of input and output filtering
has to be consistent. It has to be clear throughout the web application in which
state data is. Multiple sanitations can have adverse effects and even remove the
sanitation effect completely (also see section 2.2.4 on page 18 on early escaping).

I created a description of a best practice web application architecture (see
section 2.6 on page 42) after looking at the first web application project (Word-
Press, see section 4.2.1 in the case study chapter). It shows what is possible
when applications leverage data modeling in a web application framework.

2.5 General Security Practices

This section contains some general practices of secure software development
which are not specific to the vulnerabilities under discussion in this thesis but
cover sane software development practices in general. I discuss them because I
found some of these best practices missing in the projects discussed in the case
studies in chapter 4. These concepts can help with reasoning about the kind of
process innovations that are helpful in actually preventing security vulnerabil-
ities in open source web applications.

43Failure to Preserve SQL Query Structure (aka ’SQL Injection’) [DAVT08]
44Failure to Preserve Web Page Structure (aka ’Cross-site Scripting’) [DVT09b]

39

2.5. GENERAL SECURITY PRACTICES Florian Thiel

2.5.1 Don’t Build It Yourself - Code Reuse

Developing software is error-prone, especially for security purposes. Inputcode reuse
and output sanitation are especially tricky because of many exceptions and
implementation details [Wil09].

Ready-to-use components for many security-related aspects are available
from web application frameworks or as stand-alone components (see the discus-
sions in the respective sections: Scrubbr (2.3.6), ORMs (2.2.4) or AntiSAMY
(2.3.3)). OWASP takes this a step further, collecting best practice security com-
ponents into a single library, the OWASP Enterprise Security API (ESAPI).
The ESAPI covers input and output validation, logging and intrusion detection
and is available for various programming languages [OWA09].

The use of available components (in general, but especially for security
purposes) constitutes a best practice since it saves effort and reduces defects in
the software [BBM96] [RvW03, p. 49].

2.5.2 Defensive Design

Defensive design (or defensive programming) [McC04, pp. 187] expects thingsdefensive
design to go wrong. It uses secure defaults in programming and expects and handles

exceptional cases in a secure way (related to graceful degradation [RvW03, p.
43]) .

The principle of least privilege [RvW03, p.40] is also part of defensive de-
sign. It states that a component should always only have the privileges it
absolutely needs. The principle is related to software development but is also
very important for the configuration and deployment of software.

2.5.3 Defense In Depth

Defense in depth (or layered security) [McC04, pp. 203] [RvW03, p.48] acknowl-defense in
depth edges that security measures may fail. Implementing multiple layered measures

reduces the risk of a complete security breach. Defense in depth is not “adding
a little of this, and a little of that” but requires a comprehensive concept for
the defense measures to be effective together. Defense in depth is especially
valuable when attack patterns are fuzzy and not completely guaranteed to be
detected by a single measure or in high risk environments. Defense in depth
can also be useful for cost-savings. Security practitioner Grossman counts Web
Application Firewall (WAF)s45 as a cheap measure to prevent known attacks
on applications without having to fix the application code [Gro09a].

2.5.4 White-listing

White-listing is the defensive design approach to filtering and validation. White-white-listing
listing uses a definition of known good input and filters out or fails on the
rest [McC04, p. 188]. Its “evil twin”, blacklisting (2.5.5) is still in wide use (see
chapter 4), despite of known shortcomings.

45which only filter user input for known attack signatures but do not fix the application
defects

40

Florian Thiel 2.5. GENERAL SECURITY PRACTICES

2.5.5 Blacklisting

Blacklisting uses a definition of “known bad” data and lets the rest pass. It is blacklisting
known as a bad practice as it is easy to forget input patterns that can be put
to malicious use. Also, attack techniques evolve and attackers find new ways
to use seemingly innocent input for exploits. White-listing is more resilient to
new attacks. Blacklisting should only be used to supplement white-listing for
adding known exceptions.

41

2.6. BUILDING THE ULTIMATE FRAMEWORK Florian Thiel

2.6 Building The Ultimate Framework

After having done the research about SQLIA, XSS it was clear that sufficiently
advanced technology to prevent both vulnerabilities was available (for details
see sections 2.2 and 2.3).

I thought about how a best practice web application framework could au-
tomatically apply the techniques needed to prevent SQLIA and XSS.

Having database access, HTML output filtering and other sanitation meth-
ods in one single place respectively (a layer) clearly makes these methods much
more maintainable. It also helps making the responsibilities for sanitation clear
and defines which state user input is in after having passed through a cer-
tain layer (cp. the discussion of input and output sanitation in section 2.4 on
page 39).

However, developers would still be responsible to apply the right sanitations
or validations in the right places.

Explicit data modeling can help. Existing web application frameworks like
CakePHP, Django or sophisticated web application stacks like Java EE or Spring
use an MVC-like architecture and explicitly declare business objects with their
attributes. Having a centralized declaration of data types and constraints allows
the framework to make appropriate decisions about validation and filtering.

Basically out of frustration with WordPress not using any framework and
data modeling (see section 4.2.1 in the case study chapter for details), I spent
some days thinking about a solution that would automate all input and output
filtering in the application framework, freeing the developers from caring about
these issues once and for all.

The idea depended on having very rich type definitions. Web applications
often deal with types supported by the database (which are basically numbers
and strings, see section 2.2.1 at the beginning of this thesis). Most non-numeric
types are treated as strings, without any further semantics attached. If develop-
ers could use types like username that have stricter constraints (like a specific
length or allowed characters), the framework could take over all validation and
sanitation. ORMs could be used for database access, preventing SQL injections
(given proper input validation enforced by the framework, this would be safe)
and the problem of selectively allowing HTML as user input could be solved:
a rich type could contain a definition of allowed HTML, e.g. an AntiSAMY
policy file (see section 2.3.3 on page 32) which could automatically sanitize user
input into HTML.

This approach would have required a large standard library of different
commonly used rich types because sanitation needs could be vastly different for
different data formats. I figured that unless support for the most commonly
needed types in web applications was built-in, developers would just rely on
simple types like strings, losing the semantics provided by rich types.

The type definition prototype I came up with looked like listing 2.29. The
code is a fictional example of a model in the Django [Fou09] web application
framework (which I had worked with in an earlier version) for a special text
field that may contain HTML heading tags but no other tags. The special text
field would inherit from normal Django Fields and add custom validation and

42

Florian Thiel 2.6. BUILDING THE ULTIMATE FRAMEWORK

transformation to HTML.

class MyTextField (models . F i e ld) :
may only conta in <H1>
htmltrans format ion = AntiSamy (H1Pro f i l e) # to HTML
va l i d a t o r = HtmlValidator (tagsAl lowed=(h1))

Listing 2.29: Rich data model example

I discovered that Django actually used much of what I had in mind. Django
is a good example for a web application framework because it demonstrates
many best practices and stays pragmatic enough to not overburden developers
(with highly theoretical ideas like mine)46.

2.6.1 Data Modeling

In Django, a data model looks like listing 2.3047.

class Donor (models . Model) :
c ho i c e s = ((’A ’ , ’ add ’) , (’D ’ , ’ d e l e t e ’))
opera t i on = models . CharField (max_length=1, cho i c e s=cho i ce s

, d e f au l t=’A ’)
approved = models . BooleanFie ld (d e f au l t=False)
ceo = models . ForeignKey (Ceo)
f irst_name = models . CharField (max_length=63)
last_name = models . CharField (max_length=63)
donor_address = models . ForeignKey (Address)
ctime = models . DateTimeField (auto_now_add=True)
mtime = models . DateTimeField (auto_now=True)
ob j e c t s = DonorManager ()

Listing 2.30: Django data model example

Listing 2.30 shows a Donor class with several attributes operation , approved,
etc. The attribute types in this example are tied to types available in SQL, but
Django also supports types not directly available in SQL. Types are modeled
as classes and can implement their own validation code. Thanks to the object-
oriented nature of types in Django, types can be based on already available
similar types. The framework uses this type and data model for client-side
validation of web forms generated through its forms API, for sanitation and
validation on the server side and for communication with the database. The
concept of having semantically rich “real” types for the data dealt with in the
application unifies a lot of validation and filtering.

The database layer is completely abstracted using a custom ORM, though
it is possible to use raw SQL. For specific requests not covered by general

46there are other frameworks with similar features; I chose Django because I was partly
familiar with it

47excerpt of http://github.com/thejefflarson/ceo_campaign_contributions/blob/
9e65f2d4377d4ed188671d603e9085946cb50a87/finance/models.py

43

http://github.com/thejefflarson/ceo_campaign_contributions/blob/9e65f2d4377d4ed188671d603e9085946cb50a87/finance/models.py
http://github.com/thejefflarson/ceo_campaign_contributions/blob/9e65f2d4377d4ed188671d603e9085946cb50a87/finance/models.py

2.6. BUILDING THE ULTIMATE FRAMEWORK Florian Thiel

ORM functionality, models can be extended with the necessary queries. Django
supports prepared statements.

Django also already contains a library of commonly used data types which
are not covered by SQL, like IP addresses or files.

There is one big difference between my idea of the ultimate framework and
Django: Django does not allow HTML user input by default. All input is entity-
encoded by default and mark-up is provided through Markdown, a non-HTML
mark-up language (previously discussed in section 2.3.3 on page 32). This
obsoletes the need of many data types that would only differ in the HTML tag
that would be allowed in the input. This reduces the number of different types
needed to a manageable level. Django’s diverse built-in types further reduce
the need to introduce new types.

Django is a prime example on how having an explicit data model and a
framework to support it helps with most of the issues involved in SQLIA and
XSS. Django has had XSS vulnerabilities in the core code48 and it cannot pre-
vent all types of XSS attacks automatically (since the dependence of scripting
on context makes automatic solutions impossible) but it would prevent most of
what has been found in the open source web applications discussed in chapter 4
on page 53.

Django provides a solution that has most of the benefits of my rich type
idea but is much simpler: Using a non-HTML mark-up library for all user
input allows the HTML encoding of all user input while allowing the use of
mark-up. This approach does not require specific types for different HTML
transformation rules and as such does not overwhelm the developer with the
need of many different types just for the sake of correct HTML encoding.

In the presence of inherently safe mark-up languages, my complicated ap-
proach to XSS did not seem to be worth it. Being able to use the rich formatting
and layout options provided by HTML is seldom necessary for user input since
it usually represents a single element of a web page, not the page itself. The
ultimate framework remained a thought experiment which proved to be too
complicated in a world with nearly-ultimate frameworks readily available.

The essential lesson to take away from this story is that an ultimate frame-
work would use data modeling and strong compartmentalization of sanitation
responsibilities.

48http://www.djangoproject.com/weblog/2008/may/14/security/

44

http://www.djangoproject.com/weblog/2008/may/14/security/

Chapter 3

The Process Improvement
Idea

An abstraction is one thing that represents several real
things equally well.

Edsger W. Dĳkstra

As laid out in chapter 2, prevention of SQLIA and XSS is not technically
hard when using well-known best practices. Furthermore, clear software archi-
tecture that isolates interaction with external systems (the user’s browser, a
database, etc.) provides clear separation of concerns, a prerequisite for consis-
tent use of the vulnerability preventions throughout the system (see section 2.6
on page 42 on the idea of an ultimate framework).

Having looked at WordPress as the first web application project (see section
4.2.1) and finding no clear architectural separation of concerns, I decided to
concentrate on a process innovation targeting architecture.

3.1 Why Annotations?
There are other ways to try to prevent security vulnerabilities, like integrating
automatic static analysis checking tools into the development process or using
black-box penetration testing on the application. I focus on the architecture
level because it increases overall application security. Static checking or black-
box testing can only find defects, single instances of vulnerabilities. These
methods do not provide much information about the principle behind these
vulnerabilities, which would allow developers to prevent most (or all) related
defects (see the episode in section 4.2.1 about WordPress). Still other methods
for vulnerability prevention, such as mandatory developer training or a security
awareness campaign, might not fit too well into an open source application
project with volunteer developers. Architectural improvements seemed to have
the most long-term benefits.

Open source projects are, due to the openness of the development process,
developed evolutionary. It is difficult to make fundamental changes1. The

1fundamental disagreements often lead to forks, multiple projects continuing in different

45

3.2. THE ANNOTATIONS Florian Thiel

process innovation therefore has to support incremental development. Moving
towards an ultimate framework (cp. section 2.6) is hard for projects that do not
already have strong data modeling, as it often changes the architecture of the
application completely.

So, to provide web applications with an incremental path to architecture, I
chose to use source code annotations that would mark the places that needed
change. For reasons why I consider annotations especially well suited for an
evolutionary approach, see section 3.2 with details on the annotations. During
my research, I asked several web application projects if they liked the idea of
the annotations and if they were willing to accept a patch from me that would
provide annotations for one specific change (either related to SQLIA or XSS).
All the details can be found in chapter 4.

I found some recurring fundamental concepts that obviously had an in-
fluence on the capabilities of the projects to accept my process innovations.
Therefore, I added some additional projects to the analysis where I did not try
an innovation introduction but only looked at the source code and some process
properties to see if these concepts discovered were even more widespread (cp.
section 4.3 on page 77).

3.2 Context Provided - The Annotations

3.2.1 Reviews

Code reviews are a popular means for improving software quality, especially for
security [Lai98] [RvW03, p. 141] [FH06]. Their value is mainly determined by
the number of anomalies or defects they find and by the probability that the
issues get corrected. Reviews are not only useful to find individual defects (that
can often be done more efficiently with automated testing) but also to point
out architectural issues or smells2.

In this thesis I discuss annotations meant for the refactoring34 towards isola-
tion of functionality relevant for prevention of SQLIA and XSS vulnerabilities.
In-code annotations are a good companion to code reviews since they capture
the insight gained in the review directly in the code. The basic process I de-
signed and then validated with open source web application projects consists
of two parts:

1. a detailed description of the current problem, a goal definition (“how does
the code look when we’re there?”) and a description of the refactoring
process, including what the associated annotation looks like and what the
different variants (if any) of the annotation mean; this description could

directions
2this term, signifying a deeper problem in the code than a simple defect, became popular

after the release of the now-seminal book Refactoring by Fowler et al. [FBB+99]
3refactoring, according to Fowler [FBB+99], is improving the structure of code without

changing its functionality
4in a strict sense, this is not refactoring: it is supposed to change the functionality to

consistently use filtering and validation, which may not be the case before

46

Florian Thiel 3.2. THE ANNOTATIONS

be captured by the external issue tracker, the project Wiki or some other
public documentation facility; this is called the issue document;

2. a patch (or multiple patches), containing the annotations; this is called
the annotation set

The detailed description accompanying the annotations is really important
as the annotations — having mnemonic but short identifiers as names — cannot
themselves explain the whole refactoring process. The description is also the
base on which communication with the project members takes place. Therefore,
the goals and the way to get there have to be presented convincingly. It helps
to have spoken to project members before, to make sure that the direction of
the refactoring coincides with the direction the project is heading (see examples
in the case studies, chapter 4).

3.2.2 Benefits Over Issue Tracking Software

Many software projects use an issue tracker (or bug tracker) to manage defects,
larger issues and tasks of the project. These tools do not work well with issues
related to multiple (possibly lots of) places in the code (see the anecdote about
the WordPress bug tracker in section 4.2.1 on page 61).

For WordPress, my first try to use the annotation method in a real world
project, there were around 450 places in the code that I suggested to be changed.
Filing 450 single tickets in the issue tracker would require lots of effort to set
up and then to mark as done. Using a single ticket and referencing (by line
number, e.g.) the offending places would require constant updating of the ticket
while the code is incrementally cleaned up.

Such a task is incompatible with traditional issue trackers alone for the
following reasons:

1. Filing a single task is too coarse-grained. It would take months to com-
plete and does not provide any milestones to use for orientation or moti-
vation.

2. There’s no easy and maintainable way to connect the task in the tracker
to the code that needs changing. Either filing multiple tasks or having
one task description with a list of places is cumbersome.

3. In order to be able to see the progress of the task, one would again need
to file it as multiple issues or constantly updated the references in a single
issue.

Putting annotations directly into the code solves these problems:

1. Removing an annotation because the concerned issue has been fixed is
a measurable achievement. A developer can fix any number of issues in
one go and always have a closed package of work (annotations may not
depend on another annotation in the same annotation set). The time
span between the achievement (fixing some code) and the reward (getting
to remove an annotation) is much shorter with annotations. Having a

47

3.2. THE ANNOTATIONS Florian Thiel

single issue in the tracker can take months to fix all the related issues.
The direct feedback in the code should be a positive motivational factor
for fixing the issues indicated by the annotations.

2. The annotation is where the offending code segment is. This provides
developers with an immediate connection to the context for the issue at
hand. Because the annotations have a clearly defined structure, it is easy
to find them, even with a simple text editor that supports string searches.

3. Writing a small script that counts remaining annotations, even specific
types of annotations (see also section 3.2.3), is trivial. Progress feed-
back could also easily be added to a standard Integrated Development
Environment (IDE).

One can think of more advantages that annotations might have in compar-
ison to traditional external issue tracking. Having the annotations directly in
the code raises awareness of the presence of the issues encoded into the an-
notation. Issues are no longer hidden away in an external context (maybe a
developer has to use a completely different application to view issues in the issue
tracker). Working with the code also means working with the annotations. The
desire to get rid of the annotations might be larger than with external solutions.
Substantiating these assumptions is not possible with the data collected in this
thesis and would require further research.

One disadvantage which is often attributed to code annotations is the ten-
dency for the program code and the annotations to disconnect over time (when
code is changed) or to create additional maintenance work to keep the source
code and the annotations synchronized. This does not apply to the annotations
presented here since annotations are removed from the source code after the
issue they annotated is resolved.

In conjunction with security issues, annotations also show one actual dis-
advantage: They can only be used to outline structural weaknesses and not to
mark concrete vulnerabilities. Since the annotations will be committed to the
public source code repository of the respective project, attackers could monitor
the repository for annotations that mark a vulnerability. This would save them
a lot of time searching for vulnerabilities by themselves. Using annotations in
the way this thesis suggests is mostly harmless. The presence of annotations
could be taken as a hint that an application has structural deficiencies, but a
potential attacker would still have to go through the source code, understand
the issue the annotation is about and then find vulnerable spots.

3.2.3 How Does It Look Like? - Structure Of The Annotations

To be portable across programming languages and projects, the annotations
have to be simple and not use features specific to a language or development
culture. An example annotation looks like listing 3.1:

// @RawSQLUse, t r i v ia l_ imp lementa t ion , SELECT

Listing 3.1: An annotation example for the case of raw SQL use

48

Florian Thiel 3.2. THE ANNOTATIONS

Annotations are placed inside comments, using the standard comment construct
of the respective language. Most languages have simple mark-up for one line
or multi-line comments. //, for example, works in languages like C, Java, or
PHP, while Python or shell scripts use #. Placing the annotations in comments
prevents them from interfering with the language-specific parser. Prepending
@ differentiates the annotations from normal comments and makes them stand
out visually. Java, PHP’s documentation system and Python also prepend @ to
annotations5, so the notation will be familiar to many developers.

Annotations can consist of up to 3 parts. Originally, annotations only had
an identifier, the so-called issueName. The issueName is unique to an annota-
tion set and can be used to refer to it. It can also be used as a search keyword
to find all instances in an annotation set. The issueName is designed to be
mnemonic to be easy to remember, and also to be used as a name when com-
municating about an annotation6. I describe the development of the two other
annotation parts using examples from the WordPress episode, in which I devel-
oped annotations for consistent use of SQL sanitation (details can be found in
section 4.2.1). The two additional parts developed for SQL annotations are also
useful for annotations targeting XSS prevention (see section 4.2.2 on page 74
in the Mambo episode) but may not be generally applicable for all projects or
vulnerabilities.

While annotating the first project (SQL in WordPress, see section 4.2.1 on
page 55), I decided to include a second element that classified the effort required
to resolve a particular annotation instance. Since the annotation method pro-
duced lots of annotation instances, I found it useful to give developers an easy
way to find the low hanging fruit. The effortIndicator gives a rough estimate
of the effort required to resolve the respective annotation instance. The val-
ues are specific to the annotation set, since different refactorings can require
vastly different levels of effort. The example in listing 3.1, taken from the
WordPress project, uses an effortIndicator value of trivial_implementation
to signify that resolving this particular annotation instance requires implement-
ing a method, but that similar methods, which could be used as an example,
already existed. What the respective effortIndicators mean is specified in the
issue document. Detailed discussion of the values used for each of the annota-
tions can be found in the respective episodes in chapter 4.

I later introduced a third part I deemed helpful: requiresFeatures is a very
lightweight way to express dependency on certain features. This can best be
explained with an example: For the abstraction of raw SQL into functions that
produce SQL in WordPress, several functions would have been needed to con-
struct parts of an SQL statement, e.g. a WHERE clause. If a certain annotation
mentioned WHERE in requiresFeatures, a developer could easily find all the an-
notations he could resolve after implementing the function needed for WHERE.
Developers do not have to revisit all annotation instances after implementing
one feature but can easily search for just the ones that depend on the feature

5which have language-specific semantics
6see Evan’s “Domain-Driven Design” [Eva03] for the importance of a common vocabulary

in software projects

49

3.2. THE ANNOTATIONS Florian Thiel

implemented. Note that in order to keep the methodology lightweight, only the
issueName is mandatory. The effortIndicator and requiresFeatures can be used
if the annotator considers them helpful.

As you have seen, the annotations are a low-tech approach to encourage
refactoring. The annotations are designed for human consumption. Tools can
be used to make dealing with the annotations more efficient by providing quick
access through search, but there is no intrinsic need for tools. Using plain
strings with a clearly distinguishable format (through the use of @ and an
unique issueName) only requires very basic tool support to use the annotations
to their full potential7.

Prerequisites

Obviously, the annotations cannot be used for all projects. I assume the fol-
lowing as given for any project the annotations can be used with.

• The project community values quality, especially system security. If this
would not be the case, no changes to the development process targeting
security would be accepted by the community.

• The project community is generally aware of SQLIA and XSS vulnerabil-
ities. Teaching the community about the vulnerabilities first would take
too much effort.

• The application does not yet have most of the properties of an Ultimate
Framework (section 2.6) as the annotations could not provide major ben-
efits in this case.

For the candidate selection for the annotation introduction I used these
prerequisites in the following way: I would not consider a project for the an-
notations if it did not have any protection against SQLIA or XSS yet (this is
easy to determine by looking at the web page of the project or skimming source
code) or if it already uses a comprehensive explicit data model (which can be
determined by the same means).

3.2.4 Trying Out The Annotations - Innovation Introduction

After designing the annotation technique I validated the method with open
source web application projects (see the case studies for WordPress (section
4.2.1) and Mambo (section 4.2.2)). Since I was not able to do an in-depth long
term study to observe the number of vulnerabilities over time, I chose accep-
tance (meaning the community agrees to have the annotations added to the
official source code repository) of the annotations as the goal for the annota-
tion introduction. One can expect the community of a popular web application
project to be proficient enough in development practices to tell if the project
benefits from a practice or not. Assessment of the effect the annotations have in
the project and if security really benefits from the annotation method requires
further research.

7namely string search which is available in virtually all text-editing software

50

Florian Thiel 3.3. PROJECT ANALYSIS APPROACH

Getting a project to just adopt a till-then unknown practice as complex as
the annotations (the practice is not an especially complex practice but it is not
immediately obvious and needs time to get used to) and then run with it is
illusory. Therefore, I wrote the issue document and made an annotation set
for the project and planned to let the developers do the implementation. If
that would work out, I would encourage them to use the full-blown process on
another issue. See chapter 4 for details.

3.2.5 Data Collection

I attempted 3 introductions of the annotations idea into web application projects.
An introduction attempt is called an episode and consists of the following
phases:

1. I suggest the annotation idea with a concrete plan for architectural refac-
toring to the respective project community, including the first annotation
set.

2. I discuss the suggestion with the community and possibly integrate helpful
suggestions.

3. The community includes the annotations into the source code repository.

4. The development community works with the annotations.

All interaction data produced during this interaction is used to provide
answers to research questions Q2 (suitability of annotation approach) and Q3
(properties of projects influencing usefulness of annotations). Note that phase
4 was not reached in any of the episodes.

3.3 Code, Process, Fixes - Project Analysis Approach

The concepts discovered in the innovation introduction episodes encouraged me
to look at a bunch of other open source web applications to see if the concepts
were specific to the two projects I had chosen.

3.3.1 Data Collection

I extended the case study to more web applications where I would not try
to do an innovation introduction but just look at the project to see if similar
concepts to those discovered with WordPress and Mambo would emerge. I used
two sources of data for each project:

1. The source code: I looked for recurring concepts (the significance of con-
cepts is discussed in the section about fundamental terms on page 7),
best practices or patterns that relate to security concepts in the technical
discussion in chapter 2.

51

3.3. PROJECT ANALYSIS APPROACH Florian Thiel

2. Public documentation and interviews: Web sites, Wikis and other forms
of public documentation tell about process-related concepts which are
present in the respective projects. I augmented public information with
informal interviews to tap into more implicit knowledge that is not codi-
fied publicly.

I extracted concepts that identified important properties of the project re-
lated to the ability to accept architectural changes as suggested by the annota-
tion method.

The project analysis makes use of some ideas of Grounded Theory according
to Charmaz [Cha06]. The findings emerged from looking at raw data and
distilling — at first very concrete, then more abstract — concepts that recur
in different projects. I found this technique, which is closely related to what
Charmaz calls initial coding and focused coding, very useful. I did not collect
the amount of rich data Charmaz deems necessary for Grounded Theory, so the
analysis does not live up to the standards of real Grounded Theory research.
Nevertheless, the ideas of conceptualization and grounding theory on the data
helped me to concentrate on what is really there and avoid speculation.

Project Questionnaire

To augment and ground the concepts I found in the analysis of the source code
and online documentation, I designed a short questionnaire. The questionnaire
focused on technical mitigation concepts used by the projects and on process
properties which relate to discovered concepts. The latter includes the explicit
codification of sanitation behavior and APIs.

The questionnaire can be found in the appendix in section A.4 on page 122
in an email sent to the Joomla! development mailing list. The same email was
sent to all projects I looked at in this thesis but some did not respond (including
WordPress and Mambo). The discussion of the answers to the questionnaire
are included in the respective project discussions in chapter 4.

52

Chapter 4

The Cases

Architecture is easy: you just stare at the paper until
droplets of blood appear on your forehead.

Anonymous

This chapter describes the case studies conducted for this thesis. I discuss
the selection of the candidates chosen for the case studies and document the
case studies in depth, including the extraction of concepts observed in each case
(cp. fundamental terms on page 7).

The chapter closes with a discussion of the concepts observed in the various
projects. Note that none of the concepts attributed to the various projects do
imply the presence of vulnerabilities in any way. They only represent findings
about the projects I deem relevant for application quality, especially in respect
to the vulnerabilities presented in this thesis.

4.1 Candidate Selection

Initially, I simply looked at open source web application projects I already knew
and which had a history of either SQLIA or XSS vulnerabilities. This way I
started off with WordPress as my first candidate.

The other projects included in the analysis present well-known names like
TYPO3, Joomla!, Drupal and phpBB.

Some projects were added to the candidates because they were forks of
projects already in the analysis (or were founded in response to such a project)
and had a different approach as the original (habari and Zikula). One project,
Mambo, was added to the list of candidates following a suggestion in the Word-
Press mailing list.

I included one more project after receiving some suggestions from a friend
— riotfamily — because it is a web publishing platform written in Java and
because it shows many of the properties attributed to the Ultimate Framework.

One may wonder why all these applications are more or less in the web
publishing or Content Management System (CMS) domain and are all written in
PHP. Web publishing systems are very exposed to user input which makes them
a natural target for the kind of research done in this thesis. Applications that

53

4.2. INNOVATION INTRODUCTION Florian Thiel

have a closed user group (like an internal Customer Relationship Management
(CRM) or Enterprise Resource Planning (ERP) system) are often not directly
exposed to the Internet, making them unavailable for remote testing by security
researchers, resulting in less advisories and less awareness.

For web publishing systems, PHP seems to be the language of choice. The
projects chosen for the analysis here are the most well-known applications. I
did a search on freshmeat.net1 in order to include other projects in the research
but I did not find anything with a substantial amount of popularity2.

4.1.1 Scope

Most of the applications analyzed here support plug-ins which extend the func-
tionality of the core application or modify the behavior of the application itself.
Plug-ins (known under various names in the different projects) are developed
completely independently from the application core, in most cases by differ-
ent developers. My research is limited to the application core. Plug-ins have
vulnerabilities of their own and are treated as independent projects. Plug-ins
are only relevant to the research in this thesis as they are dependent on APIs
provided by the application cores (cp. the missing interface concept on page
95).

4.1.2 Notation

Cases contain references on the page margins. These are used to mark oc-
currences of concepts observed in the respective case as a help for the reader.
Concepts referenced either come from technicalities in chapter 2 or, if they were
first discovered in the case study, are explained in section 4.5 on page 93, later
in this chapter.

4.2 Innovation Introduction
This section describes the two projects where I attempted to introduce the pro-
cess innovation presented in section 3.2 on page 46. An in-depth code analysis is
provided for each of the projects and the course of the discussion about the in-
novation introduction is depicted, including an analysis of noteworthy concepts
discovered while interacting with the projects.

1http://freshmeat.net
2as indicated by the developer numbers on sourceforge.net, freshmeat’s project repository

54

http://freshmeat.net

Florian Thiel 4.2. INNOVATION INTRODUCTION

4.2.1 WordPress

My journey into the world of web
application security began withWord-
Press.

WordPress is a popular web-logging
platform licensed under the General

Public License (GPL) and written in PHP. It appeared as a fork of the b2\cafelog
software in 2003 and is its official successor. WordPress development is led by
Matt Mullenweg, its original developer, and Ryan Boren. The two team leaders
and 6 contributing developers have commit access to the source code repository,
although many code contributions come from the community. Mullenweg also
heads the company automattic3 which provides commercial services like hosting
or plug-in development for WordPress.

WordPress considers itself a web publishing platform and supports so-called
plug-ins. Plug-ins are available4 for caching support, aggregating contents from
other web pages, changing the way commenting on blog articles works and many
other things. Plug-ins can significantly alter the way WordPress works and are
developed separately from the WordPress core.

Code Analysis

WordPress is a PHP web application. As there is no application server present,
the interaction model is request based. WordPress is called and initialized for
every request. There is no internal persistence, data has to be written out to
the database at the end of each request.

WordPress only supports MySQL databases for persistent storage. There
is no dependency on external PHP libraries and no support for HTML tem-
plating languages. WordPress requires PHP 4.3 or newer and MySQL 4.0 or
higher [Wor09b]5.

Code Structure The WordPress source code consists of 4 major parts, sep-
arated into directories6:

wp-admin contains code relevant to the administration interface

wp-content contains themes (which determine the layout and design of the
pages generated by WordPress) and plug-ins

wp-includes contains code used throughout the system (for things like database
access or support for RSS).

the base directory which contains the entry points to the application for
web browsers (index.php), feed readers (wp-feed.php) and for Remote

3http://www.automattic.com
4http://wordpress.org/extend/plugins/
5this is relevant for the compatibility with external libraries
6for access to the WordPress source code repository, see section A.1.2 on page 114 in the

appendix

55

http://www.automattic.com
http://wordpress.org/extend/plugins/

4.2. INNOVATION INTRODUCTION Florian Thiel

Procedure Call (RPC)s (xmlrpc.php), the login page and configuration
files.

The flow through a request in WordPress is similar for all request types.
WordPress reads configuration files (which contain the access configuration
for the database), then checks what kind of request came in, connects to the
database to fetch the necessary data and then calls the respective method to
display the data.

The interesting parts for this discussion are input handling, database access
and the way HTML is displayed.

Input Handling

In WordPress, all data coming in through GET/POST parameters or cookies
is automatically quoted and escaped for database output (see listing 4.1). If the
execution environment is configured to use automatic quoting (get_magic_quotes_gpc(),
cp. section 2.2.5 on page 22), the data is un-escaped beforehand. There is no
type based input validation in the input layer.

500 // I f a l r eady s lashed , s t r i p .
501 i f (get_magic_quotes_gpc ()) {
502 $_GET = st r i p s l a she s_deep ($_GET) ;
503 $_POST = st r i p s l a she s_deep ($_POST) ;
504 $_COOKIE = st r i p s l a she s_deep ($_COOKIE) ;
505 }
506
507 // Escape wi th wpdb .
508 $_GET = add_magic_quotes ($_GET) ;
509 $_POST = add_magic_quotes ($_POST) ;
510 $_COOKIE = add_magic_quotes ($_COOKIE) ;
511 $_SERVER = add_magic_quotes ($_SERVER) ;

Listing 4.1: WordPress: wp-settings.php, (revision 10443)

A look into the add_magic_quotes() method reveals a case of Early Escap-
ing. The method calls escape() on the database object. One would expect byEarly

Escaping
→p. 18

the name that this method does escaping relevant to the safe insertion into a
database. But it is not clear at this point if the data will actually make its
way to the database. Data is escaped to be safe for insertion into a database
regardless of destination. Combined with unclear responsibilities for escaping
(concept Inconsistent Use Of Sanitation), this can lead to vulnerabilities.

Furthermore, the escape() method actually only calls addslashes () on its
argument and we got to know this method as a weak security mitigation. TheUse Of

Inferior
Method
→p. 22

method seemed to call mysql_real_escape() which would be safe against charac-
ter set evasions (see description in chapter 2, section 2.2.5) but it is commented
out with the comment: causing problems7.

7WordPress wp-includes/wp-db.php:430 (rev. 9953)

56

Florian Thiel 4.2. INNOVATION INTRODUCTION

Data Access Abstraction

WordPress only supports MySQL, so there is no need for a database abstraction
layer. All database requests, however, are done through methods in wp-db.php8.
I refer to this file as the database layer in the following.

Currently, there are two different ways SQL queries are passed to the database
layer. In the example in listing 4.2, the calling code is responsible for all san-
itation and escaping. The query() method directly executes queries on the
database. Since the database layer only gets the full SQL string, it does not have
any information about the semantics of the individual parts (cp. section 2.2.4
on page 17). The database layer cannot do any sensible sanitation before exe-
cution. As it appears, this way of doing SQL queries is mostly used in simple
cases, where there are only one or two variables in the query. Injections are
prevented in this case by type-casting variables (for integers)9 and by calling
escape methods for string types. This is usually done only a few lines away
from the actual query, but it sometimes requires some looking around to see
where variables come from and how they were treated.

22 $deleted_spam = $wpdb−>query ("DELETE FROM $wpdb−>comments
WHERE

23 comment_approved = ’ spam ’ AND ’ $delete_time ’ >
comment_date_gmt ") ;

Listing 4.2: WordPress: wp-admin/edit-comments.php, (revision 10438)

Yet, most queries use a custom implementation of prepared statements.
WordPress has a prepare() function which uses printf () (similar to the C printf ())
to insert variables into a string. Listing 4.3 is an example that uses this method.
There is no obvious reason to have different methods for database access and
this can create problems with the consistency of data treatment. Therefore, I
promote this to a concept called Non-Uniform Database Access. Non-

Uniform
DB Access
→p. 95

681 $wpdb−>query ($wpdb−>prepare ("UPDATE {$wpdb−>post s } SET
682 post_parent = %d WHERE ID = %d" , $local_parent_id ,

$ loca l_ch i ld_id)) ;

Listing 4.3: WordPress: wp-admin/import/wordpress.php, (revision 10339)

Using printf () has the advantage of being able to have typed variable in-
sertions. The %ds in the excerpt guarantee that the inserted value is inserted
as a digit.

The prepare() method takes a format string and an array of values to be
inserted into the format string as arguments. It simply removes single quotes
and double quotes around the format string placeholders and finally single-
quotes them. All the extra arguments (the values inserted into the format

8WordPress wp-includes/wp-db.php (rev. 9953)
9type-casting to integers in PHP removes the non-integer part of the value and always

returns a proper integer, thereby preventing injections for numeric columns

57

4.2. INNOVATION INTRODUCTION Florian Thiel

string) are escaped using the escape() function10 and then the final string is
constructed using vsprintf ()11.

WordPress developed their own version of prepared statements (cp. 2.2.4 on
page 19) which does not provide the performance benefits of a native library for
prepared statements by the database provider. The possibility of SQLIA using
character set inconsistencies (cp. section 2.2.4 on page 17 in chapter 2) is also
present, since the implementation of prepare() is separate from the database.

There is a PHP library for the use of MySQL databases, called mysqli
(for MySQL improved). It supports real prepared statements and is native to
PHP. WordPress cannot use this library because it is only officially part of
PHP since PHP 5.312 and the WordPress community insists on supporting
PHP versions 4.3 and up. They mainly justify this with lacking support for
PHP 5 with some web hosters [Wor09b]. Time and time again, the debate
about migrating to PHP 5 comes up on the WordPress developer mailing list
(e.g. the thread emerging from a new developer’s request in [wp:24350]). The
recurring discussions prompted Matt Mullenweg, the project lead, to write a
blog post [Mul07] clarifying his support for PHP 4, citing low adoption rates and
the lack of convincing new features in PHP 5 to make the change worthwhile.

The arguments provided for sticking with PHP 4 exchanged on the mailing
list also boil down to missing or not-trivial-to-setup support for PHP 5 by web
hosters. The convenience of users of WordPress seems to be the major concern
in discussions (see [wp:24353]).

PHP 5 is incompatible to PHP 4 in some minor areas [Gro09d]. It provides
improvements for object-oriented programming, database access, performance
and XML handling [Fel04]. Developers seem to prefer writing for PHP 5, but
respect the decision by Mullenweg ([wp:24535]).

The presence of advocacy projects for PHP 5, which list projects and hosters
that already support PHP 5 (like GoPHP5 [DGD+08]) indicates that there are
indeed issues in upgrading web hosters to PHP 5. Many old applications rely
on PHP 4 so the hoster cannot upgrade; applications don’t update to PHP 5
because the hoster does not provide PHP 5 support; it is apparently not trivial
to support both PHP 4 and PHP 5 at the same time13.

Nevertheless, after 4 years of PHP 5’s availability and the discontinuation
of PHP 4 [Gro08], the move to PHP 5 seems to be necessary, especially be-
cause it is required by functionality very useful for a project like WordPress.
The mysqli library, which would add real prepared statements to WordPress,
or HTMLPurifier (cp. section on HTML escaping on page 32) would be very
helpful to WordPress as both provide the state of the art for SQLIA and XSS
mitigation, respectively. I call the concept of not using a desirable technology
because of version dependencies a Legacy Constraint. The concepts Use Oflegacy

constraint
→p. 97

Inferior Method and Structural Conservatism also apply here.

Use Of
Inferior
Method
→p. 22
structural
conser-
vatism
→p. 97

10again with addslashes see section 4.2.1 on page 56
11which is functionally equivalent to sprintf () but takes an array of arguments
12http://de.php.net/manual/en/mysqli.mysqlnd.php
13it needs howtos and some trickery as in http://www.howtoforge.com/apache2_with_

php5_and_php4

58

http://article.gmane.org/gmane.comp.web.wordpress.devel/{24350}
http://article.gmane.org/gmane.comp.web.wordpress.devel/{24353}
http://article.gmane.org/gmane.comp.web.wordpress.devel/{24535}
http://de.php.net/manual/en/mysqli.mysqlnd.php
http://www.howtoforge.com/apache2_with_php5_and_php4
http://www.howtoforge.com/apache2_with_php5_and_php4

Florian Thiel 4.2. INNOVATION INTRODUCTION

HTML Output Encoding

Output to HTML happens in so-called templates. The WordPress template
language uses PHP functions that act as template tags and generate HTML.
So-called themes control the layout of the pages by calling template functions.
Themes can be replaced by the administrator of the WordPress installation and
provide a great deal of freedom concerning layout.

13 <h2><?php th e_t i t l e () ; ?></h2>

Listing 4.4: WordPress: wp-content/themes/default/page.php, (revision
8999)

Listing 4.4 shows how the title of a blog post is rendered in WordPress’s
default theme. WordPress does not use plain variables (besides very few exep-
tions) in the theme files. All the dynamic data is provided through function
calls.

In WordPress, it is the responsibility of template methods to do sanitation
and escaping for HTML. This is reasonable as people designing the themes
might not possess the technical skills necessary to deal with escaping issues.
However, this behavior would require explicit codification of the details of the
encoding mechanism. Without codification it is difficult to know if and how
data has been sanitized by just looking at the theme code. In addition, since
the template tags cannot know where the produced output will be inserted, the
use of generic template tags makes it impossible to deal with differing escaping
needs (cp. section 2.3.3 on page 32).

Most of the template tags use WordPress’s built-in filtering functionality.
WordPress supports named filter chains that can be applied to data. Filters are
simple functions that do things like escaping, re-formatting or tag balancing.
Filters exist for encoding quotes into HTML entities, removing HTML tags,
obfuscating email addresses as an anti-spam measure and many other things.
Excerpt 4.5 shows an excerpt of the default filter setup.

50 // Disp lay URL
51 $ f i l t e r s = array (’ user_ur l ’ , ’ l i nk_ur l ’ , ’ l ink_image ’ , ’

l i nk_r s s ’ , ’ comment_url ’) ;
52 foreach ($ f i l t e r s as $ f i l t e r) {
53 add_f i l t e r ($ f i l t e r , ’ s t r i p_tags ’) ;
54 add_f i l t e r ($ f i l t e r , ’ tr im ’) ;
55 add_f i l t e r ($ f i l t e r , ’ c l ean_ur l ’) ;
56 add_f i l t e r ($ f i l t e r , ’ wp_f i l ter_kses ’) ;
57 }

Listing 4.5: WordPress: wp-includes/default-filters.php, (revision 10442)

Yet, not all the template tag methods work as consistently as expected.
the_title_attribute ()14 returns a blog post title with HTML stripped, the_title ()15

14WordPress wp-includes/post-templates.php:74 (rev. 10339)
15WordPress wp-includes/post-templates.php:45 (rev. 10339)

59

4.2. INNOVATION INTRODUCTION Florian Thiel

returns the title without stripping it. If an attacker succeeds to get JavaScript
code into the database field for blog post titles, WordPress is vulnerable to XSS
attacks16.

WordPress is not directly vulnerable in this case since WordPress entity-
encodes post data before writing it to the database17. Nevertheless, this is not
defense-in-depth. As highlighted by the existence of persistent XSS removal
tools and the argumentation in section 2.3.6 on legacy XSS contained in the
database, relying only on input filtering is ill-advised. Moreover, the docu-Reliance On

Input
Filtering
→p. 95

mentation of the_title () does not state that the return values of the template
tag need additional sanitation18. For the_title_attribute (), the documentation
notes that it duplicates the functionality of the former in a safe way, but not vice
versa. This must obviously lead to confusion among developers. Probably such
knowledge is passed on verbally and seasoned developers know it. For people
not that experienced in WordPress development (and maybe sometimes other,
too) this creates an ambiguous interface to output sanitation and may lead to
vulnerabilities. WordPress has documentation on data validation [Wor09a], but
the document fails to explain who is responsible for validation and where that
should happen. In the big picture, this is Inconsistent Use Of Sanitation.Inconsistent

Use Of
Sanitation
→p. 95

An even larger issue is connected to the development of plug-ins. Plug-ins
use the same functionality as theWordPress core. There is no defined interface19

for the plug-ins. They can use the same raw database querying functionality
the WordPress core uses, passing literal SQL to the database. There are two
problems related to this. Firstly, plug-ins can mess with all the data in the
WordPress database and bugs in plug-ins affect the whole system. Secondly, the
lack of a defined interface exposes internal changes of functionality to all plug-
ins. This is sometimes cited on the mailing list as a reason against changes to
functionality in the WordPress core ([wp:24358]) and prevents evolution of the
application. Both problems have the common reason of the lack of an interface
to the functionality provided by the WordPress core. This lack is expressed in
two different ways: The first one is missing protection from third party plug-ins
by lack of isolation. The second one is the other way round, missing protection
for third party plug-ins against spillage of internal changes. I call the base
concept Missing Interface. I found further examples of the implications of thatMissing

Interface
→p. 95

concept during the innovation introduction (see the discussion in section 4.2.1
later in this chapter).

Handling Of Past Vulnerabilities

Jeremias Reith found an XSS vulnerability in WordPress which relied on the
undifferentiated escaping of all input data for database use (explained earlier in
section 4.2.1) [Rei09]. The host header of the HTTP protocol (which is used
by WordPress to determine which instance of WordPress to access if multiple

16I tried it with the_title () and the_author_url(), it worked in both cases.
17[WordPress: (rev.])wp-includes/post.php135610400
18http://codex.wordpress.org/Template_Tags/the_title
19besides the Plug-in API, which only provides hooks for plug-ins to modify the behavior

of WordPress but does not offer any contracts

60

http://article.gmane.org/gmane.comp.web.wordpress.devel/{24358}
http://codex.wordpress.org/Template_Tags/the_title

Florian Thiel 4.2. INNOVATION INTRODUCTION

WordPress installations share the same IP address) counts as user input as it is
set by the user’s web browser (or by a malicious user himself). The header passes
the blanket sanitation all input goes through in WordPress but the sanitation
is concerned with safety for insertion into databases. It is not useful in a
context for URLs (cp. section 2.3.3 about JavaScript contexts) where the result
is interpreted by a web browser.

The fix20 led to the use of clean_url () on the incriminating data, which
does safe sanitation for URLs but the default behavior of escaping the host
header for database use did not change. Having a comprehensive data model
would have enabled the WordPress community to include the host header as
an URL data type and it would automatically be sanitized accordingly in all
occurrences. The actual fix only prevented this specific vulnerability, ignoring
a long-term solution.

The Proposal

I perceive SQLIA as easier to fix than XSS as there is only one target sanitation
context for data (the database). This is why I chose to deal with annotations
for architectural improvement of the database layer in my first innovation in-
troduction.

As explained above, database interaction in WordPress always happens
through a single "layer"21, but this layer is very thin. It basically provides
a method to set the SQL statement to execute, the custom implementation of
prepared statements, some helpers for data sanitation and various methods to
access the result of the query. There are also abstractions of INSERT22 and
UPDATE that only take the table, columns and values to set and construct a
static query in wp-db.php. The abstraction for INSERT, insert (), is replicated
in the excerpt 4.6 as an example.

661 func t i on i n s e r t ($table , $data) {
662 $data = add_magic_quotes ($data) ;
663 $ f i e l d s = array_keys ($data) ;
664 re turn $th i s−>query ("INSERT INTO $tab l e (‘ " . implode (’ ‘ , ‘

’ , $ f i e l d s) . " ‘) VALUES (’ " . implode (" ’ , ’ " , $data) . " ’) ") ;
665 }

Listing 4.6: WordPress: wp-includes/wp-db.php, (revision 9935)

At the time I wrote the annotations (January 2009), there were two tickets
in WordPress’ issue tracker related to these methods: The first one was a
suggestion to add type information for the values passed to the methods,23

which would allow type-specific sanitation. The second one suggested to make
remaining raw INSERT and UPDATE statements throughout the code use the

20http://core.trac.wordpress.org/changeset?new=9754%40branches%2F2.6%
2Fwp-includes%2Ffeed.php&old=8336%40branches%2F2.6%2Fwp-includes%2Ffeed.php

21WordPress wp-includes/wp-db.php (rev. 9935)
22WordPress wp-includes/wp-db.php:661 (rev. 9935)
23http://core.trac.wordpress.org/ticket/7171

61

http://core.trac.wordpress.org/changeset?new=9754%40branches%2F2.6%2Fwp-includes%2Ffeed.php&old=8336%40branches%2F2.6%2Fwp-includes%2Ffeed.php
http://core.trac.wordpress.org/changeset?new=9754%40branches%2F2.6%2Fwp-includes%2Ffeed.php&old=8336%40branches%2F2.6%2Fwp-includes%2Ffeed.php
http://core.trac.wordpress.org/ticket/7171

4.2. INNOVATION INTRODUCTION Florian Thiel

abstraction methods instead24. The second ticket was already 8 months old at
that time.

These tickets seemed to be a good fit for the annotation approach. My
goal was not only to help move the INSERT and UPDATE statements to the
abstraction layer but also to abstract as many other statements as possible.
The ultimate goal would have been to only use the abstraction methods to
communicate with the database and get rid of raw SQL outside the database
"layer" altogether. This seemed a bit to ambitious for a first contribution to
an open source project, so I did not state this goal in the issue document. As
the annotation process supports increments, further abstractions could easily
be added later.

I labeled the annotation RawSQLUse and started annotating (using simple
string searching for wpdb->query). Looking at the use of raw SQL, I was able
to make out three distinct effort levels required to abstract one particular SQL
statement. These became the effortIndicators as introduced in the annotation
presentation in chapter 3. They are defined as follows:

method_exists An abstraction method already exists, it only has to be used.
There were 85 cases like these. These were the INSERT and UPDATE
statements mentioned earlier. Listing 4.7 shows an example.

trivial_implementation A similar abstraction to the one needed already ex-
ists for another type of SQL query. It requires very little effort to intro-
duce the new abstraction. I found 172 queries that fit into this category.
Listing 4.8 is an example of this type of annotation.

simple_code Abstracting queries of this type would require an abstraction
method for an SQL clause that is not yet supported in any other method
in the "abstraction layer" but the feature does not require any complex
programming logic. This applies to support for SQL functions like SUM25.
I put 111 queries into this category. Listing 4.9 illustrates this kind of
annotation.

algorithmic The query is structurally complex or in some other way unique.
Introducing a generalized abstraction requires sophisticated construction
of SQL clauses26. The remaining 74 queries required such sophisticated
handling. Listing A.5, showing an example, can be found in the appendix
on page 123 since the query building takes numerous lines.

680 // @RawSQLUse, method_exists
681 $wpdb−>query ($wpdb−>prepare ("UPDATE {$wpdb−>post s }
682 SET post_parent = %d WHERE ID = %d" , $local_parent_id ,

$ loca l_ch i ld_id)) ;

Listing 4.7: WordPress: wp-admin/import/wordpress.php, (revision 10339
(locally modified))

24http://core.trac.wordpress.org/ticket/6836
25used on a column and replaces the list of values in that column by the sum of its values
26an example would be to support WHERE clauses with parentheses, AND, OR, and NOT

62

http://core.trac.wordpress.org/ticket/6836

Florian Thiel 4.2. INNOVATION INTRODUCTION

688 // @RawSQLUse, t r i v i a l_ imp l emen ta t i on
689 $post_ids = (array) $wpdb−>get_col ($wpdb−>prepare ("SELECT

post_id
690 FROM $wpdb−>postmeta WHERE meta_key = ’ blogger_blog ’
691 AND meta_value = %s " , $host)) ;

Listing 4.8: WordPress: wp-admin/import/blogger.php, (revision 10339
(locally modified))

1021 // @RawSQLUse, simple_code
1022 return $wpdb−>get_var ($wpdb−>prepare ("SELECT COUNT(∗)
1023 FROM $wpdb−>term_taxonomy WHERE taxonomy = %s $where " ,

$taxonomy)) ;

Listing 4.9: WordPress: wp-includes/taxonomy.php, (revision 10428 (locally
modified))

As stated above, finding the uses of raw SQL was straight-forward using
string search and led to reliable results. The classification for the effortIndi-
cator is also reliable because of its coarse-grainedness. Since the database ab-
straction resided in only one file, it was trivial to find out if an abstraction
already existed or if needed helper functions would be provided. All the cases
that did not fit into the three easily distinguishable classes (method_exists,
trivial_implementation and simple_code) was attributed to algorithmic.
This catch-all class obsoletes the need for exact knowledge of the intricacies of
the project and the database abstraction layer, knowledge someone new to the
project (like me) would not have. Therefore, I am convinced that the classifi-
cation is valid.

Suggesting Changes

I wrote an explanation on what I was trying to do and where I thought Word-
Press should go, including the patch I created. To get a better chance of being
heard (and taking advice from the little innovator’s guide (contained in [Oez])
I first wrote to the WordPress core developers27. I wanted to make sure they
would not object to my suggestion and immediately shoot it down in the dis-
cussion on the mailing list. Therefore, I sent an identical mail to each of the
core developers, explaining what I was was planning for WordPress (see one
mail in A.1 on page 117 in the appendix).

I got answers from three developers. The first one (Alex King) told me
that he was not against the proposal but that he was also not the person that
needed to be convinced2829. The other two were very positive: Ryan Boren
forwarded the mail to WordPress’ closed security mailing list, told me about
the two tickets related to my plan30 and asked me to follow up31. Mark Jacquith

27whom I found at http://codex.wordpress.org/Copyright_Holders
28[wp:wp_alexking.txt]
29whatever that meant
30on which my suggestions were actually based on
31[wp:wp_ryanboren.txt]

63

http://codex.wordpress.org/Copyright_Holders
file:correspondence/wordpress/wp_alexking.txt
file:correspondence/wordpress/wp_ryanboren.txt

4.2. INNOVATION INTRODUCTION Florian Thiel

considered the annotations the way to go for insert and update and expressed
support32.

I felt encouraged and addressed theWordPress community at large ([wp:25220]).

Discussion

The first bunch of responses was full of misunderstandings: One developer
assumed that I wanted to move all SQL to the database layer to enable sup-
port for different database back-ends [wp:25240]. Someone else questioned my
notion of having raw SQL access throughout all parts of the code was a bad
thing [wp:25233]. I clarified my point of centralizing database access [wp:25245].

The discussion that followed (with some more clarifications from my side
from time to time) brought the following interesting observations:

1. Plug-in developers were considered as not as skilled, especially concerning
security issues, and were known to mostly write quick and dirty code.
([wp:25254], [wp:25386])

2. A few developers expressed that using raw SQL was not a bad thing.
Someone argued SQL was the dominant data access language and that
nobody had found a reason to move away from it [wp:25384]. It even
went that far that one developer claimed that I thought WordPress de-
velopers were "idiots" because they could not write safe SQL statements
[wp:25258].

3. One developer argued strongly against the use of abstractions known
from frameworks like Zend or CakePHP on the basis that it "holds your
hand" [wp:25258] and that developers would have to learn a new lan-
guage [wp:25384]. Another one argued that abstractions were never as
well thought-out than the original language [wp:25365].
Some developers also insisted that developers would program their way
around abstractions because they would miss powerful features or it would
be more complicated if they used the abstractions [wp:25385], [wp:25384].

4. Several developers stated that my suggestions would not improve the
security of WordPress, because it already was on a reasonable level.
([wp:25248], [wp:25384], [wp:25386])

5. The community argued strongly against my entire suggestion as they felt
it made things more complicated. ([wp:25370], [wp:25382], [wp:25381],
[wp:25365])

6. There was a short side-tracked discussion, initiated by two list members
who provided arguments for the large benefits to be had using database
abstractions offered by frameworks (CakePHP and Zend in their case).
The discussion went on for a while and even brought up arguments for
abstraction in general ("not everyone’s [code] is [perfect]" [wp:25361]) but

32[wp:wp_markjacquith.txt]

64

http://article.gmane.org/gmane.comp.web.wordpress.devel/{25220}
http://article.gmane.org/gmane.comp.web.wordpress.devel/{25240}
http://article.gmane.org/gmane.comp.web.wordpress.devel/{25233}
http://article.gmane.org/gmane.comp.web.wordpress.devel/{25245}
http://article.gmane.org/gmane.comp.web.wordpress.devel/{25254}
http://article.gmane.org/gmane.comp.web.wordpress.devel/{25386}
http://article.gmane.org/gmane.comp.web.wordpress.devel/{25384}
http://article.gmane.org/gmane.comp.web.wordpress.devel/{25258}
http://article.gmane.org/gmane.comp.web.wordpress.devel/{25258}
http://article.gmane.org/gmane.comp.web.wordpress.devel/{25384}
http://article.gmane.org/gmane.comp.web.wordpress.devel/{25365}
http://article.gmane.org/gmane.comp.web.wordpress.devel/{25385}
http://article.gmane.org/gmane.comp.web.wordpress.devel/{25384}
http://article.gmane.org/gmane.comp.web.wordpress.devel/{25248}
http://article.gmane.org/gmane.comp.web.wordpress.devel/{25384}
http://article.gmane.org/gmane.comp.web.wordpress.devel/{25386}
http://article.gmane.org/gmane.comp.web.wordpress.devel/{25370}
http://article.gmane.org/gmane.comp.web.wordpress.devel/{25382}
http://article.gmane.org/gmane.comp.web.wordpress.devel/{25381}
http://article.gmane.org/gmane.comp.web.wordpress.devel/{25365}
http://article.gmane.org/gmane.comp.web.wordpress.devel/{25361}
file:correspondence/wordpress/wp_markjacquith.txt

Florian Thiel 4.2. INNOVATION INTRODUCTION

it ran dry without any conclusions. ([wp:25326], [wp:25255], [wp:25362],
[wp:25366])

Observation 1 ("unskilled developers") supports the problem explained in
the concept Missing Interface. Plug-in developers are seen as not skilled for Missing

Interface
→p. 95

secure programming. Not having a safe interface for them puts WordPress as a
whole at risk. Furthermore, developers argued against changing the "interface"
for plug-ins because it would force the plug-in developers to update their plug-
ins. [wp:25385]. This is also related to the concept of Missing Interface because
the reverse dependency of WordPress on the support for plug-ins hinders the
advancement of WordPress development.

Observation 2 ("raw SQL is not bad") highlights the basic problem of SQL
in web applications. Although there is nothing intrinsically wrong with SQL as
a data access language, including user input into the construction of statements
is dangerous and should be done in a controlled fashion. Even if WordPress
core developers are really skilled, errors are still possible and can be better
contained if construction of SQL statements only happens in a limited number
of places. I do not promote this observation to a concept as there is too little
evidence as to what these arguments were grounded on.

I call the concept behind observation 3 ("abstractions hold your hand") Fear
Of Loss Of Power . This might sound a bit drastic, but WordPress developers Fear Of

Loss Of
Power
→p. 97

seem to be unwilling to adopt methods that would limit access to WordPress
internals. This might fit into the WordPress development model because there is
no explicit system design which codifies which functionality WordPress provides
to third parties and where the boundaries are. Without a common boundary
definition, there is no way to communicate what is supposed to be accessible
from outside of the core and what is not. The issue with Fear Of Loss Of Power
is that it prevents the introduction of an application core that is only accessible
through an API and thus manifests tight coupling between components of the
application.

Observation 4 ("does not improve security") is based on the notion that
appropriate methods to prevent SQLIA and XSS are already available to devel-
opers and are in actual use inside WordPress. This is true, the custom prepare()
statement, type-casting and the use of filters for data goes a long way to pre-
vent vulnerabilities. The problem, as also was one of the starting points for
trying to introduce process innovations, is that these methods are not applied
consistently (see also the discussion on WordPress source code earlier in this
chapter). This is also exemplified by a suggestion to just file an issue in the
tracker for missing sanitation [wp:25384] in a certain spot. This does not solve
the fundamental problem that sanitation can be easily forgotten. The Word-
Press project does not have a comprehensive vision and approach for security
in the project. There is a good document on how to do data validation on
the WordPress web site [Wor09a], but it concentrates on the technical meth-
ods available for SQLIA and XSS prevention in WordPress and only says that
data validation has to take place both on input and output. It fails to mention
where input and output sanitation should actually happen. This surely leads
to Inconsistent Use Of Sanitation. Inconsistent

Use Of
Sanitation
→p. 95

65

http://article.gmane.org/gmane.comp.web.wordpress.devel/{25326}
http://article.gmane.org/gmane.comp.web.wordpress.devel/{25255}
http://article.gmane.org/gmane.comp.web.wordpress.devel/{25362}
http://article.gmane.org/gmane.comp.web.wordpress.devel/{25366}
http://article.gmane.org/gmane.comp.web.wordpress.devel/{25385}
http://article.gmane.org/gmane.comp.web.wordpress.devel/{25384}

4.2. INNOVATION INTRODUCTION Florian Thiel

The reasons behind observation 5 ("more complicated") might be the Miss-
ing Data Modeling and not enough exposure to abstraction methods by theMissing

Data
Modeling
→p. 97

developers. Some developers on the mailing list made a case for the simplicity
of SQL abstractions but they seem to be in the minority. Abstraction is more
difficult when there is no unified data model and so this seems to be the main
reason for developers to consider abstraction more difficult.

Observation 6 ("frameworks can provide benefits") can be attributed to the
Structural Conservatism concept. Some developers see the benefits of frame-
works but the majority wants to keep the old structure.

Aftermath

Since I felt that my annotation suggestions did not have a clear enough vision
for where it would lead WordPress, I followed up a couple of times, also giving
examples of what the code would look like [wp:25374], which were met with
some appreciation [wp:25379], but to no avail.

My last message concerning the annotations to the WordPress mailing list,
providing a version of the annotation patch with only the method_exists an-
notations and requests for feedback ([wp:25394]), remained unanswered.

It is not exactly clear to me why the innovation introduction failed. I clearly
did not understand the WordPress development community well enough in the
beginning. I did not expect the attempt to move SQL to a specific layer being
questioned. It was also not clear (at least in the beginning) that WordPress
was stuck with PHP 4 and this prevented the use of many useful libraries like
HTML Purifier, real prepared statements and PDO.

From the concepts observed in WordPress, the following were most obstruc-
tive to the annotation introduction: Missing Data Modeling, Legacy Constraint
and Missing Interface. Because of the missing modularization and thus missing
abstractions in the then-current code, the community was wary about abstrac-
tions. Legacy constraints prevented the introduction of libraries that could
have helped. The missing interface tied WordPress to an even stronger im-
plicit interface (the whole core available to outside callers) and made changes
very difficult. For conclusions and an assessment of the observed concepts, see
section 4.5 at the end of this chapter.

In the final days of the discussion on the WordPress mailing list I received
a personal message telling me that I might not get far with my approach and
inviting me to work on Mambo, another GPL web application that was looking
for help (see mail in section A.2 on page 119). I chose Mambo as the second
project for an annotation introduction.

66

http://article.gmane.org/gmane.comp.web.wordpress.devel/{25374}
http://article.gmane.org/gmane.comp.web.wordpress.devel/{25379}
http://article.gmane.org/gmane.comp.web.wordpress.devel/{25394}

Florian Thiel 4.2. INNOVATION INTRODUCTION

4.2.2 Mambo CMS

Mambo is the second project I approached with
the annotation innovation developed in chapter 3. I
did not originally include the project in the list of
projects to look at, but was contacted by a project
contributor who followed the discussion on the anno-
tation introduction for WordPress and asked me if I
wanted to help the Mambo project33. I accepted the
invitation, especially because it sounded welcoming

and showed a genuine interest.
Mambo is a popular CMS, written in PHP and released under the GPL. It

features a history of being started as a commercial product, then made open
source, being the target of legal threats, getting rescued by the original own-
ers and later losing some of its core development team to the Joomla! project
(which is discussed in section 4.3.1). Mambo was founded in 2000, being devel-
oped as open source software since 2004 [Wik09l].

Code Analysis

As of the time of writing, Mambo is at version 4.6.5. Mambo includes several
third-party components in its sources, mostly small libraries concerned with
input filtering (PHP Input Filter34), Really Simple Syndication (RSS) support
(Magpie35) or caching (Cache Lite36).

Mambo supports plug-ins which are developed independently and add vari-
ous functionality to the system. In Mambo, these plug-ins are called mambots.

The source code tree37 differentiates between components (the main content
containers in Mambo), modules (small structural elements that don’t take user
input, e.g. menus) and the mambots (plug-ins) that change the behavior of
Mambo. The administrator subdirectory contains the backend of Mambo where
an administrator can manage the Mambo site and its contents. The content
pages visible to normal visitors to a Mambo site are called the frontend.

The Mambo source code is compatible with PHP from version 4.3 upwards
and makes heavy use of classes to encapsulate the different content elements
supported by Mambo.

Input Handling

The method mosGetParam()3839 does input handling in Mambo. The in-file
documentation says it should be used to retrieve all parameters from GET/-
POST and contents of cookies. The method supports specifying a default value

33[mambo:mos-lynne.txt]
34http://freshmeat.net/projects/inputfilter/
35http://magpierss.sourceforge.net/
36http://pear.php.net/package/Cache_Lite
37see the source code referencing section in the appendix, A.1.2 on page 114
38the “mos” part comes from Mambo Open Source, a name the project once carried
39Mambo index.php:78 (rev. 1739)

67

file:correspondence/Mambo/mos-lynne.txt
http://freshmeat.net/projects/inputfilter/
http://magpierss.sourceforge.net/
http://pear.php.net/package/Cache_Lite

4.2. INNOVATION INTRODUCTION Florian Thiel

that is used if the value requested is not present and a bit-mask parameter
that determines which sanitations should be used on the parameter. Trimming
of whitespace, the removal of HTML (via strip_tags ()) and the conversion of
strings containing numeric values to proper integers are supported. By default,
all three modifications are enabled.

While removing HTML from user input is a decent measure for values that
should not (according to some business logic) contain HTML and trimming
strings is useful for later comparisons, the purpose of the numeric conversion
is dubious. Values are only converted if they actually contain a number, as
determined by PHP built-in is_numeric()40. The conversion is only applied if
the value was a numeric string beforehand anyway. It does not protect against
injections because injection strings would not be modified (since they would
not only contain a number).

Input parameters used widely (such as task or section) are extracted us-
ing mosGetParam() directly in index.php at the beginning of a Mambo run41.
This is not a case of Early Escaping because the method is only applied to
parameters that contain control values that determine what page is rendered.
These parameters can only take a few well-defined values and may never contain
HTML.

Since mosGetParam() uses PHP’s built-in strip_tags () which removes en-
tire HTML tags including the contents but does not gracefully handle broken
HTML, the parameters expected to contain strings are additionally handled
with htmlspecialchars (), another PHP built-in which does entity-encoding for
characters with special meaning in HTML. Numeric values are cast to a proper
integer format, removing injection opportunities.

Besides the generic input handling in index.php, every part of Mambo that
uses input parameters is responsible for their appropriate sanitation. The dis-
tribution of sanitation responsibility between index.php and the actual “users”
of the data does not seem to be clear: In the contents administration module,
the cid parameter is retrieved through mosGetParam() which already had been
retrieved in index.php42.

This is just an example (there are probably more instances) and does not
have any adverse effects, but it shows the difficulty of maintaining consistent
input handling without a framework taking care of this or clearly codified rules.Inconsistent

Use Of
Sanitation
→p. 95 Data Access Abstraction

Mambo only supports the MySQL database as a backend. The database is
modeled as a class43, as are tables44 and rows45.

40http://de2.php.net/is_numeric
41Mambo index.php:216 (rev. 1739)
42Mambo administrator/components/com_content/admin.content.php:22 (rev. 1488)
43Mambo includes/database.php:17 (rev. 1709)
44Mambo includes/database.php:806 (rev. 1709)
45Mambo includes/database.php:687 (rev. 1709)

68

http://de2.php.net/is_numeric

Florian Thiel 4.2. INNOVATION INTRODUCTION

Object Mapping Data objects correspond to a database row and are loaded
and stored through their respective class, making the design similar to the
Active Record pattern as described by Fowler [Fow02]. The code for object
retrieval, creation and deletion is thus very generic and does not need any
custom SQL. This part of Mambo corresponds roughly to the model layer
in the MVC pattern46. Listing 4.10 shows an example of object retrieval in
Mambo. Empty objects are constructed and later filled using their unique id.
The database tables to consult are specified in the object’s classes.

349 $menu = new mosMenu($database) ;
350 $menu−>load ($Itemid) ;
351 $p a g e t i t l e = $menu−>name ;

Listing 4.10: Mambo: components/com_content/content.php, (revision
1730)

Sanitation for the database happens in the save() functions of the respec-
tive objects, which also writes the objects back to the database. The content
component47 provides an example: The file content.class.php contains the
class mosContent, representing a content entry (like a page) in Mambo. This
class specifies a check() function that is used to validate and filter the data
before writing to the database48.

The check()method is not called by the generic save() function inmosDBTable,
the base class of all data objects49, but has to be called explicitly. Internally,
the check() method for the content component (and for many others) uses PHP
Input Filter, a filter against XSS50. Unfortunately, the filter uses a blacklist to
filter out unsafe HTML, a known weak practice. Additionally, the parsing code Use Of

Inferior
Method
→p. 22

is complex and may have non-trivial defects51. As the filter is used on output
to the database, this also constitutes Early Escaping as it prevents XSS code

Early
Escaping
→p. 18

from entering the database, which is unnecessary. For output towards HTML
handling code has to be aware of whether the data has been processed with an
anti-XSS filter before.

Other Database Access Only loading and saving of objects are abstracted
generically into data objects. Business logic functionality (e.g. voting in a poll
components) is encapsulated into a corresponding file with helper functions
for all of Mambo’s components52. For the content component, the file is called
content.php and is located in the same directory as the class file. Functionality
in these files makes heavy use of raw SQL, passing verbatim queries to the

46http://c2.com/cgi/wiki?ModelViewController, in the MVC interpretations where the
model is only a data container

47in the Mambo components/com_content (rev. 1753) directory
48the default behavior is inherited from mosDBTable and mosDBAbstractRow contained in

Mambo includes/database.php (rev. 1709)
49Mambo includes/database.php:974 (rev. 1709)
50Mambo components/com_content/content.class.php:221 (rev. 1699)
51Mambo includes/phpInputFilter/class.inputfilter.php (rev. 1)
52depending on your school of thought, this is either part of the model or the control layer

in MVC

69

http://c2.com/cgi/wiki?ModelViewController

4.2. INNOVATION INTRODUCTION Florian Thiel

database layer. Often, the queries are quite complex53. Escaping of values for
SQL never happens directly where the query string is concatenated, but usually
a few lines earlier. As always with missing codification of who is responsible for
sanitation, one cannot be sure if sanitation has really taken place. Arguments to
functions are included into SQL strings without having been sanitized, relying
on callers having made sure that data has been appropriately sanitized for
SQL. This is an instance of Inconsistent Use Of Sanitation because there isInconsistent

Use Of
Sanitation
→p. 95

no convincing documentation that clarifies where sanitation has to happen and
would therefore render this implicit inter-function trust sensible. Note further
that Mambo does not use any form of prepared statement.

All occurrences of sanitation for SQL use getEscaped(), which is a method in
the database class. It uses eithermysql_escape_string() ormysql_real_escape_string()54,
depending on the version of MySQL available.

At last, a quirk of unknown origin: Mambo uses quotes for all variable
insertions into SQL statements although strictly speaking this is incorrect for
numeric types. This does not seem to cause any adverse effects and is accepted
by MySQL.

HTML Output Encoding

User input is rendered by Mambo components. Components can contain all
types of content Mambo supports. A component usually takes the main part
of the screen estate, modules are arranged around the component contents ac-
cording to a template file. Template files reside in the templates subdirectory,
including images and CSS styles belonging to the respective theme. The actual
template files contain an HTML page layout and calls to Mambo functionality.
The template includes modules and the main body (filled by the components)
by calling Mambo functions which in turn include the appropriate parts.

Components each have a file that ends in .html.php which renders the re-
spective component contents as HTML. These files consist of functions which
mainly produce HTML with some PHP code interleaved. The PHP parts in-
clude variables and return values of functions. None of these values are encoded
here. These files can be seen as the view layer in a MVC architecture.

The params variable is used for communication between the controller meth-
ods and the view methods. They are filled by the controller methods and used
in the views to display the actual content (like titles or the main body text
of a page). The data for the params values usually comes directly from the
database. No intermediate filtering is done. As seen above, input filtering takes
place for data put into the database, so data inside the database is seen as
trusted55. This is a case of Reliance On Input Filtering. The Mambo developerReliance On

Input
Filtering
→p. 95

manual contains a section on Writing For Security, which mandates to apply

53see Mambo components/com_content/content.php (rev. 1730) for examples
54the version that handles character encodings correctly, see the discussion of PHP built-ins

in chapter 2, section 2.2.5 on page 22
55One of the developers also stated that Mambo does all sanitation on input in

[mamboIRC:2009-02-05]

70

file:correspondence/Mamabo/mos-cms_{2009-02-05}.txt

Florian Thiel 4.2. INNOVATION INTRODUCTION

htmlspecialchars ()56 to strings before output, but that does not seem to apply
for data coming from the database.

Innovation Introduction

Targeting Mambo for the second innovation introduction was a result of me
being contacted by Lynne Pope, a member of the Mambo development team,
as explained at the end of the WordPress episode in section 4.2.1 on page 66.
After looking at the source code, I concluded that annotations to help with
consistent sanitation of SQL and to HTML output could be useful for the
project.

Mambo has a developer mailing list, but very little communication happens
there. The Internet Relay Chat (IRC) channel #mambo-cms on the Freenode
network57 is mainly used for discussion amongst developers. Therefore, the
interaction data I collected mostly consists of chat transcripts. The chat tran-
scripts are split up by date and thus the references have date granularity. See
section A.1.4 in the appendix for instructions on how to access the transcripts.

Episode On Annotations for SQL abstraction Like in the WordPress
episode I started with annotations to reach a higher level of SQL abstractions.
Mambo already had a higher level of abstraction than WordPress because they
used an object-oriented approach and all the hand-written SQL was specific to
a business object and not interweaved in web page output. Nevertheless, there
was no use of prepared statements and third party extensions were allowed to
send arbitrary SQL queries to the database, a case of Missing Interface. Missing

Interface
→p. 95

On my first visit to Mambo’s IRC channel I asked the developers if they
considered the use of raw SQL a problem. Although they did not say that
clearly, they obviously had not considered this and used SQL in many places
58. In the second conversation I learned that the team considered the code
of Mambo as quite old and was thinking about moving to CakePHP, a PHP Technology

Improve-
ment
Planned
→p. 98

framework59. This would implicate requiring PHP 5 for running the new version
of Mambo, as opposed to Mambo 4.6, which also works with PHP 4. I also
learned that the team working on Mambo was really small and had a chance to
explain my annotation approach. As the chat channel was usually quite empty
I only had the chance to talk to one developer, but he wanted me to go forward
with the annotations for SQL and first concentrate on the backend code (the
administration and content editing part of Mambo) because it had less exposure
to reviews. I stated my plans to annotate structurally simple uses of SQL first,
so that they could be moved to an abstraction layer and sanitation could be
made consistent there.

Since the developers told me Mambo’s backend would be the most worthy
part to look at, I limited the annotations to that60.

56a PHP built-in for encoding of HTML
57http://freenode.net/
58[mamboIRC:2009-02-04]
59[mamboIRC:2009-02-05]
60which is contained in the administrator subdirectory

71

http://freenode.net/
file:correspondence/Mamabo/mos-cms_{2009-02-04}.txt
file:correspondence/Mamabo/mos-cms_{2009-02-05}.txt

4.2. INNOVATION INTRODUCTION Florian Thiel

The issue I was annotating was similar to the WordPress episode and so I
chose the same issueName: RawSQLUse. I wanted to introduce an even simpler
version of the annotation than the one I had used for WordPress, so I decided
to use only one effortIndicator. The Mambo source-code did not contain cases
where an abstraction was already available but not consistently used (as it had
been the case in WordPress, see section 4.2.1). As I had announced in the chat
session, I annotated code spots where a simple abstraction would suffice to get
rid of many raw SQL uses and have them replaced by function calls to the
abstraction layer. The effortIndicator I used was trivial_implementation,
as in the WordPress episode. Since it was easy to find all cases of raw SQL
use by simple string search, I marked all occurrences at once, even the ones
that would not be trivial to change. These latter ones got an effortIndicator of
unclassified, so it was easy to come back to them later. There was a total of
219 annotations classified as trivial_implementation and 107 unclassified
ones61. Listing 4.11 shows an example of a RawSQLUse annotation with a
trivial_implementation effortIndicator. Listing 4.12 shows an example of
an annotation with an unclassified effortIndicator. The latter example is
unclassified because it contains a LEFT JOIN, column wildcards, ORDER BY
and LIMIT statements.

125 // @RawSQLUse, t r i v ia l_ imp lementa t ion , SELECT
126 $query = "SELECT name FROM #__sections WHERE id=’ $ s e c t i on ’ " ;
127 $database−>setQuery ($query) ;

Listing 4.11: Mambo: administrator/components/com_categories/
admin.categories.php, (revision 1754)

84 // @RawSQLUse, u n c l a s s i f i e d
85 $database−>setQuery ("SELECT c . t i t l e , a .∗ FROM #__comment as a

"
86 . " \n LEFT JOIN #__content AS c ON a . a r t i c l e i d = c . id "
87 . (count ($where) ? " \n WHERE " . implode (’ AND ’ , $where

) : " ")
88 . " \n ORDER BY a . id DESC"
89 . " \n LIMIT $pageNav−>l im i t s t a r t , $pageNav−>l im i t "
90) ;
91 $rows = $database−>loadObjec tL i s t () ;

Listing 4.12: Mambo: administrator/components/com_categories/
admin.comment.php, (revision 1754 (locally modified))

I used the requiresFeatures markers again, because they appeared helpful in
the WordPress episode. Additionally, I added the string CONCEPT to some anno-
tations. As explained in the issue document62 I gave to the Mambo developers,
I expected these cases to profit more from an "intentional" abstraction than a

61see the instructions section A.1.1 in the appendix for access to the actual annotations
62http://mambo-manual.org/display/~mambocms@noroute.de/Annotations+for+raw+

SQL and [mambo:Annotations+for+raw+SQL.html]

72

http://mambo-manual.org/display/~mambocms@noroute.de/Annotations+for+raw+SQL
http://mambo-manual.org/display/~mambocms@noroute.de/Annotations+for+raw+SQL
file:correspondence/Mambo/Annotations+for+raw+SQL.html

Florian Thiel 4.2. INNOVATION INTRODUCTION

literal one. A literal translation is one that just wraps the SQL query one-to-
one, making the statement type the method name and columns and values the
parameters of that method (e.g select(column,value)). In contrast, "inten-
tional" abstraction hides the internal representation used in the database and
interacts with the database in business logic terms (e.g. getUser(id)). I had
made the proposition of "intentional" abstractions in the WordPress episode
([wp:25374]) and it attracted some interest. It also provides a much cleaner
separation of concerns than just transforming the query into a method call.

After finishing the annotations, I created a patch that did not include the
unclassified ones. I wanted to keep it really simple and the unclassified
annotations might have been distracting to the developers. Since the Mambo
team did not use the mailing list much, I put the issue document into the
development wiki63 and only sent an announcement to the list64.

The reply65 to that announcement by a project member agreed on the idea of
creating a more robust design by the use of annotations and explained that the
use of objects already encapsulates many cases of SQL use in the common base
class mosDbTable and the derived classes of the respective objects. He argued
that this already reduced the number of raw SQL uses and the annotations
could be used to drive that number further down and make the use of SQL
even more consistent66. In fact, Mambo already had something like a simple
data model and architectural traits that made SQL injection handling easier
(see the code analysis in section 4.2.2).

In the next chat session67 I met some more members of the Mambo devel-
opment team and asked them about the annotation idea. They also thought
favorably of it. In the same session, developers were already talking about
specifics of CakePHP, the framework that the next version of Mambo should
be built upon. I had been told that it would still take months for the de-
velopment to really start with CakePHP68, but the developers were already
seriously preparing the move. Another developer told me that after 8 years of
development, the team felt that a general overhaul was necessary69.

NOTE:
The chat transcript of 2009-02-11 was partly
censored upon request of the Mambo project
members. I respect their decision not to make
certain statements public as they were intended
for internal use only. The parts that were cen-
sored are clearly marked in the transcript.

After the very con-
servative notion of Word-
Press, the willingness
of Mambo developers
to modernize archi-
tecturally appeared to
be a fundamental dif-
ference between the
two projects and I pro-

63http://mambo-manual.org/display/~mambocms@noroute.de/Annotations+for+raw+
SQL and [mambo:Annotations+for+raw+SQL.html]

64[mambo:mos-initial-sql.txt]
65[mambo:mos-initial-reply-andphe.txt]
66Ibid.
67[mamboIRC:2009-02-11]
68[mamboIRC:2009-02-09]
69[mamboIRC:2009-02-11]

73

http://article.gmane.org/gmane.comp.web.wordpress.devel/{25374}
http://mambo-manual.org/display/~mambocms@noroute.de/Annotations+for+raw+SQL
http://mambo-manual.org/display/~mambocms@noroute.de/Annotations+for+raw+SQL
file:correspondence/Mambo/Annotations+for+raw+SQL.html
file:correspondence/Mambo/mos-initial-sql.txt
file:correspondence/Mambo/mos-initial-reply-andphe.txt
file:correspondence/Mamabo/mos-cms_{2009-02-11}.txt
file:correspondence/Mamabo/mos-cms_{2009-02-09}.txt
file:correspondence/Mamabo/mos-cms_{2009-02-11}.txt

4.2. INNOVATION INTRODUCTION Florian Thiel

moted it to a concept. The concept is called Structural Conservatism and de-structural
conser-
vatism
→p. 97

scribes different levels of willingness to make fundamental changes to a project.
The developer also told me about the habari (see section 4.3.2 for com-

plete discussion) web-logging application, which was started by some former
WordPress developers because the WordPress project would not make some
(as they felt) long-needed changes. In February I got an email saying that my
annotations had been committed to the development branch for Mambo 4.6.

In the weeks after that, nothing happened with Mambo development. The
development for Mambo 4.6 had been slow for some time. By the end of April
2009, there had only been 3 commits to the source code repository dating to
2009, including my annotations (!!!). I am not sure if someone will pick up
the annotations and work on them. Following up and asking the developers
why they think the annotation approach did not catch on would be a topic for
further research.

Annotations for HTML encoding I had committed to follow up with an-
notations for HTML encoding in an early chat session70. After the annotations
for SQL went into the source code repository, I made a basic proposal for what
the annotations for HTML encoding would look like and the developer who
also committed the earlier annotations agreed that the annotations would be
useful71.

I drafted an issue document72 for the annotations, which stated that all
variables which were part of an echo() call had to be sanitized directly in the
echo() call. This proposal would interfere with a strict MVC architecture as it
would introduce sanitation code in the view. Mambo uses themes for layout-
ing, which do not directly contain variables, but arrange and call components
(also see the code analysis in section 4.2.2). Annotations would only appear
in the components’ code which contains few layout instructions and is thus
mostly static when redesigning a page. This approach is a bit of a compromise
caused by the dependence on context for XSS prevention (cp. fundamentals in
section 2.3.3 on page 32).

Mambo contains a huge amount of cases where variables are used in an
echo() method, so I limited the annotations to a few files in the Mambo back-
end. I annotated only five components in the backend (there are 33 of them
in a basic install of Mambo 4.6), which already produced 304 annotations. I
chose the mnemonic issueName of EncodeForHTML. Since none of the sanita-
tion methods that would be needed were present at that time and the effort
for all types of sanitation would be similar, there was no need for an effortIndi-
cator. Mambo used variables in different contexts (contexts relevant to how
JavaScript is interpreted, again see fundamentals section 2.3.3 on page 32) so
different types of sanitation would be needed. These were realized with the

70[mamboIRC:2009-02-05]
71[mamboIRC:2009-02-25]
72http://mambo-manual.org/display/~mambocms@noroute.de/Consistent+encoding+

for+HTML+against+XSS+attacks and [mambo:Consistent+encoding+for+HTML+against+
XSS+attacks.html]

74

file:correspondence/Mamabo/mos-cms_{2009-02-05}.txt
file:correspondence/Mamabo/mos-cms_{2009-02-25}.txt
http://mambo-manual.org/display/~mambocms@noroute.de/Consistent+encoding+for+HTML+against+XSS+attacks
http://mambo-manual.org/display/~mambocms@noroute.de/Consistent+encoding+for+HTML+against+XSS+attacks
file:correspondence/Mambo/Consistent\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}encoding+for\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}HTML+against\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}XSS+attacks.html
file:correspondence/Mambo/Consistent\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}encoding+for\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}HTML+against\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}XSS+attacks.html

Florian Thiel 4.2. INNOVATION INTRODUCTION

requiresFeatures construct. The types I used are analogous to the different
sanitations advised by the OWASP encoding guide [Wik09e]:

plain — plain was used for text appearing inside of HTML elements. There
were 200 annotations.

html — html was used for function calls that did not return a simple value
but a complex set of HTML by themselves. Sanitation is undefined for
this case as a rule-set of allowed tags for each context would be necessary.
There were only 5 of these cases.

JavaScript — JavaScript signifies a JavaScript value context. 64 annotations
were made.

attribute — attribute indicates that the variable is part of a HTML at-
tribute value and should be sanitized accordingly. There were 18 of these
cases.

URL — URL shows that the value inserted is supposed to be part of a URL and
accordingly needs special treatment (again, see section 2.3.3 on page 32
or the OWASP guide [Wik09e]). There were 14 cases.

CSS — CSS is used when the variable is part of a CSS expression. There were
3 cases.

Having this strict definition of what to annotate, it was easy to use a string
search for echo() to find candidates for annotations. The classification was
trivial, too, because I was dealing with the actual HTML template, where the
context in which the data will appear is clearly visible. Listing 4.13 shows an
example of a plain annotation.

289 // @EncodeForHTML, p l a i n
290 echo $admin_comments_length ; ?>" />

Listing 4.13: Mambo: administrator/components/com_comment/
admin.comment.php, (revision 1711 (locally modified))

I put the accompanying issue document for the HTML encoding annotations
into the Mambo development Wiki73 again and sent an announcement email
to the list74. To this day (April 14, 2009) I have not heard of the Mambo
developers and it stays unclear what happens to the annotations.

73http://mambo-manual.org/display/~mambocms@noroute.de/Consistent+encoding+
for+HTML+against+XSS+attacks and [mambo:Consistent+encoding+for+HTML+against+
XSS+attacks.html]

74[mambo:mos-announce-html.txt]

75

http://mambo-manual.org/display/~mambocms@noroute.de/Consistent+encoding+for+HTML+against+XSS+attacks
http://mambo-manual.org/display/~mambocms@noroute.de/Consistent+encoding+for+HTML+against+XSS+attacks
file:correspondence/Mambo/Consistent\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}encoding+for\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}HTML+against\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}XSS+attacks.html
file:correspondence/Mambo/Consistent\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}encoding+for\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}HTML+against\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}XSS+attacks.html
file:correspondence/Mambo/mos-announce-html.txt

4.2. INNOVATION INTRODUCTION Florian Thiel

Aftermath

The episodes for Mambo were more successful than the one with WordPress.
The developers were more open to contributions and actually integrated the an-
notations into the code. Unfortunately, Mambo is a very small project, limiting
the relevance of this partial success.

Furthermore, it remains unclear if someone will take on the annotations
and put them to good use, but the annotation introduction for SQL consistency
reached the third phase as defined in section 3.2.5 on page 51. See the discussion
in section 4.5 on page 93 for the relevance of the concepts observed and chapter
5 for conclusions on what this means for the annotation approach.

76

Florian Thiel 4.3. PROJECT ANALYSIS

4.3 Project Analysis
Following the innovation introduction attempts, this section provides discussion
of additional open source web application projects. The discussion only consid-
ers the source code and public material from the web pages of the respective
projects as well as a project questionnaire sent to the project communities, as
lined out in the procedure descriptions in section 3.3 on page 51. This sec-
tion provides additional grounding for the concepts discovered in the previous
section and also adds new concepts.

No innovation introductions were attempted for these projects because all
these projects had more good practices in use than WordPress or were at least
planning to move to better practices. I did not see a big desire in these projects
to use the annotation practice. In part, this is a consequence from the resistance
I encountered in WordPress. In retrospect, I should probably have approached
these projects more aggressively, motivating them to make substantial archi-
tectural improvements. Most of the changes planned by these projects were
relatively minor and only enablers of future architectural change. Approach-
ing web application projects more confidently to make projects consider more
long-term improvements should be a focus for future research.

4.3.1 Joomla

Joomla!75 forked
from the Mambo code
base after policy-related
disputes in 2005. This
makes Joomla! inter-

esting for a comparison with Mambo. It also is a web CMS and licensed under
the GPL.

The fundamental feature set of Joomla! is similar to that of Mambo, only
the mambots have been renamed to plug-ins (cp. section 4.2.2 on page 67).
The Joomla! community seems larger (by the amount of community web pages
available) and more active (looking into the Subversion repository76, there are
often multiple commits each day) than Mambo’s.

The Joomla! community got me interested by having a few items in their
issue tracker that were titled “Refactor XYZ”77. I expected a good fit for the
annotation process and wrote an email to the development team to find out
more78. I did not get any useful replies to my original question, but I was given
an option to present my annotation idea79. Nobody expressed interest in the
annotations either, but I was able to learn some details about the projects not
documented on the web page. References are provided where appropriate.

75http://www.joomla.org/
76see section A.1.2 in the appendix for the repository used to retrieve the files discussed

here
77e.g. http://joomlacode.org/gf/project/joomla/tracker/?action=

TrackerItemEdit&tracker_item_id=10747
78[joomla:j-ref-1_refactor-initial.txt]
79[joomla:j-ref-3_presentation-annot.txt]

77

http://www.joomla.org/
http://joomlacode.org/gf/project/joomla/tracker/?action=TrackerItemEdit&tracker_item_id=10747
http://joomlacode.org/gf/project/joomla/tracker/?action=TrackerItemEdit&tracker_item_id=10747
http://groups.google.com/group/joomla-dev-framework/msg/fef137ce1f7b99c1
http://groups.google.com/group/joomla-dev-framework/msg/c20b8706cabe7cb3

4.3. PROJECT ANALYSIS Florian Thiel

Code structure

The base directory layout looks very similar to the one used in Mambo, but
the Joomla! project abstracted the framework part of the project into a library
called Joomla! framework. The framework provides database access, data
sanitation, session management, caching, authentication, etc. The Joomla! fra-
mework, along with all other external libraries resides in the libraries folder.

The components80 use a much more visible MVC structure than Mambo.
Model and view have their own subdirectory, called model and view respectively,
with page templates for every view (which is done in multiple methods per file,
which produce HTML in Mambo, see section 4.2.2 on page 70)81. While this
results in the same functionality, Joomla!’s structure seems much cleaner and
easier to read.

Input Handling

Joomla! has a defined method to access parameters, environment variables, or
cookies in a safe way82,JRequest::getVar(). Similar to Mambo’s mosGetParm()
(see section 4.2.2) it does filtering and ensures the correct type of the input. The
difference to Mambo is its consistent usage. All functions that use parameters
call JRequest::getVar() for every parameter in the first lines of the function,
storing the result in local variables83. Sticking to this behavior enables quick
assessment what kind of input filtering was applied for developers reading the
code.

Database Access

Joomla! only supports MySQL as a database backend, but with both the mysql
and mysqli drivers. mysqli seems to be included only because it is needed for
newer versions of MySQL. Features for Prepared Statements in mysqli are not
used in Joomla!.

SQL access is similar to Mambo: The model classes use raw SQL for their
functionality84. Building the queries for loading and storing of business ob-
jects is done in the model files instead of the database layer, but this seems
to be the consequence from completely separating framework and application
(the framework is business object agnostic). The interesting difference between
Joomla! and Mambo lies in the way SQL queries are constructed. In Joomla!,
type conversion and escaping always happens directly where the string is con-
structed. An example is shown in excerpt 4.14. This behavior, which seems to
be consistent in the Joomla! core makes code much easier to review since it is
always clear where sanitation measures have to happen.

80which hold the contents of the different CMS elements
81see Joomla! components/com_contact/views/contact/tmpl (rev. 11772) for an example
82Joomla! libraries/joomla/environment/request.php (rev. 10919)
83see Joomla! components/com_content/controller.php:282 (rev. 11386) for an example
84see Joomla! components/com_content/models/article.php:438 (rev. 11646) as an ex-

ample

78

Florian Thiel 4.3. PROJECT ANALYSIS

126 $query = ’INSERT INTO #__bannertrack (track_type , banner_id ,
track_date) ’ .

127 ’ VALUES (1 , ’ . (i n t) $item−>bid . ’ , ’ . $db−>Quote (
$trackDate) . ’) ’

128 ;

Listing 4.14: Joomla!: components/com_banners/models/banner.php,
(revision 11393)

HTML Output Encoding

HTML output encoding seems largely unchanged from the original Mambo
source, apart from the clean split of the view into multiple template files. This
means that the template files themselves do not provide any escaping or sanita-
tion functionality, and all of this is done in view code, preparing the data85. As
argued before, this makes it impossible to know which context the data will be
used in at the time of sanitation but provides a clean split between layout and
business code. Unfortunately, there is not clear codification on what data may
contain HTML and which is safe for attributes (e.g.). Joomla! has sanitation
functionality for both normal HTML element context and for attribute context,
but as I was told by the developers, developers tend to disagree on what may
contain HTML86. This qualifies as Inconsistent Use Of Sanitation. Inconsistent

Use Of
Sanitation
→p. 95

In addition, the actual sanitation for HTML is quite complex and (as in
Mambo) uses blacklisting87.

Use Of
Inferior
Method
→p. 22

Further Observations

In answer to my original request about the refactorings I was told that Joomla!
does not have codified best practices on where and when to do sanitation88.
This potentially leads to more Inconsistent Use Of Sanitation. A relatively Inconsistent

Use Of
Sanitation
→p. 95

consistent approach to sanitation seems to be in place, but it looks like these
best practices are not codified explicitly and are passed on by the developers
orally89.

In the discussion about the refactorings a developer asked me if I wanted to
use my ideas about security for a Google Summer Of Code90 project91, where
Google sponsors students to work on open source projects. The proposal was
not concrete at all, but it sounded like at least part of the Joomla! community
would be in favor of stronger codification of sanitation.

85see Joomla! components/com_contact/views/contact/view.html.php (rev. 11393) as an
example

86[joomla:j-ref-5_sanitation-reply.txt]
87Joomla! libraries/joomla/filter/filterinput.php (rev. 11324) and Joomla!

libraries/joomla/filter/filteroutput.php (rev. 10707)
88[joomla:j-ref-5_sanitation-reply.txt]
89as exemplified in [joomla:j-ref-5_sanitation-reply.txt]
90http://code.google.com/soc/
91[joomla:j-ref-7_gsoc-offer.txt]

79

http://groups.google.com/group/joomla-dev-framework/msg/9b235d4b2777e58a
http://groups.google.com/group/joomla-dev-framework/msg/9b235d4b2777e58a
http://groups.google.com/group/joomla-dev-framework/msg/9b235d4b2777e58a
http://code.google.com/soc/
file:correspondence/Joomla/j-ref-7_gsoc-offer.txt

4.3. PROJECT ANALYSIS Florian Thiel

Additionally, the Joomla! community announced in 2008 that starting with
version 1.6, Joomla! will require PHP 592. They state that the switch does not
mean they will refactor Joomla! immediately to make use of the new features
(prepared statements would then be possible in all supported configurations),
but it is a move that opens up the possibilities to use state of the art method-Technology

Improve-
ment
Planned
→p. 98

ology.

Summary

Although the Joomla! project does neither use data modeling to enable the
framework to deal with type-specific validation and filtering nor explicit codifi-
cation of sanitation rules, they reach high level of consistency in data handling.
XSS is still a big problem, though, because there is no sanitation process all
data passes through.

The Joomla! case also shows that data modeling and modularization play
an important role to enable powerful mitigations for SQLIA and XSS. The
separation of the Joomla! framework and the application does only expose a
well-defined API to both the Joomla! core application and the third party
additions, since both act as equal consumers. The simple data model and use
of the MVC pattern support clear separation of concerns. Combined with the
predictable code structure achieved by explicit (for SQL) and implicit (for input
filtering) rules, it is apparently possibly to reach a tolerable level of robustness
against SQLIA and XSS even without a comprehensive data model.

The introduction of prepared statements and the introduction of a well-
defined filtering layer could make the application even more robust.

92see http://developer.joomla.org/coordinator-blog/75-joomla-goes-php-5.html

80

http://developer.joomla.org/coordinator-blog/75-joomla-goes-php-5.html

Florian Thiel 4.3. PROJECT ANALYSIS

4.3.2 habari

habari93 is a web-logging software
released under the Apache License 2.0 [Wik09f]
license, which is approved as an open
source license by the OSI (cp. sec-

tion 1.2 on page 2 in the introduction). Its initial release dates to April 2007.
The project explicitly states that it is targeting “modern web hosting environ-
ment”94 and was designed “with a firm understanding of the current state of
blogging”95. The Frequently Asked Questions (FAQ) section of the web-site also
explicitly mentions an object-oriented data model and Prepared Statements96 Prepared

Statement
→p. 19

as some core technologies that are in use in the project.
I was pointed to the habari project by a Mambo developer in a chat session

(see the Mambo aftermath in section 4.2.1 on page 66). The design of the
application, which is in clear contrast to platforms like WordPress, sounded
appealing for a closer analysis. The habari project also points out in their FAQ
that forking an existing open source web logging application had not been an
option since none of them had been mature enough. This looks like a deliberate
side blow in the general direction of WordPress, even more so when considering
the cue of a Mambo developer that habari would not exist of it had not been
for WordPress (cp. section 4.2.2 on page 76).

habari requires PHP 5.2 and supports MySQL, PostgreSQL97 and the server-
less SQLite98 as databases. It enforces UTF-8 encoding throughout the appli-
cation and uses PHP’s multi-byte extensions, so it should not be vulnerable to
attacks that exploit encoding mismatch (see section 2.2.4 on page 17 for details
on multi-byte issues).

Code Structure

The parts of habari’s source code (see section A.1.2 in the appendix on how to
access the code used in here) which are interesting here reside in the htdocs/system
subdirectory, which includes all the PHP files used in the application, exclud-
ing third-party code. The business object classes of the application reside in
the classes subdirectory therein99. There is no (folder based) separation of
the actual business classes and classes concerned with databases, actions or
authentication.

Plug-ins habari supports plug-ins through a hook-based approach. The habari
code contains calls to named hooks for all operations. Plug-ins may register fil-
ters or actions that are then executed through the hook. Actions can perform

93http://www.habariproject.org
94http://wiki.habariproject.org/w/index.php?title=FAQ&oldid=3076
95Ibid.
96Ibid.
97http://www.postgresql.org/
98http://www.sqlite.org/
99habari htdocs/system/classes (rev. 3483)

81

http://www.habariproject.org
http://wiki.habariproject.org/w/index.php?title=FAQ&oldid=3076
http://www.postgresql.org/
http://www.sqlite.org/

4.3. PROJECT ANALYSIS Florian Thiel

a certain function, when triggered (like a notification, when a blog post is pub-
lished), filters are also allowed to modify the data involved with the operation
(like re-formatting the text of a blog post). Hooks are the only way for plug-ins
to interact with habari and provide a clean interface. Note that this approach
does not allow plug-ins that place widgets100 on the application’s pages, as is
supported by other web-log applications101.

habari uses a thin controller that dispatches each request to an Action-
Handler102. ActionHandlers implement all business logic (they constitute the
actual controller layer in the MVC pattern). The particular ActionHandler is
chosen by parsing the URL of an incoming HTTP request103.

For each business entity (posts, comments and the like), there are classes
named after the singular and the plural of the respective entity (Posts, Post,
etc.). The singular versions model single instances of a business entity including
the actual data and functionality for saving and deletion104. These correspond
to a data access object [Wik09i]. The plural versions support querying for
instances of a certain class using different criteria105.

Fetching or persisting of objects is done using custom raw SQL queries for
each object106. There is no global data model that includes relations betweenMissing

Data
Modeling
→p. 97

the different objects, which would enable an abstraction for these operations.

Input Handling

habari uses so-called SuperGlobals107 which filter the HTTP request parame-
ters in place. Developers accessing these parameters automatically profit from
the input filtering done by SuperGlobals. As stated by an habari developer (in
response to my project questionnaire), this is also helpful for plug-ins, which
are able to use the “standard” PHP way of accessing parameters108. HTTP
parameters are all filtered, regardless of content. There is no notion of types
for input filtering. Developers have to explicitly request an unfiltered version of
the parameters if they need them. This favors consistency which can prevent
many cases of SQLIA and XSS attacks. Unfortunately, habari tries to filter
for “any use”109, leading to potential problems with Early Escaping. How-Early

Escaping
→p. 18

ever, input filtering in habari uses extensive white-lists and even uses a custom
HTML tokenizer to thoroughly filter HTML contents. The project could use
HTMLPurifier (see section 2.3.3 on page 32), gaining well- maintained filter-
ing capabilities, but apparent license incompatibility (HTMLPurifier is licensed
under the Lesser General Public License (LGPL) which would technically al-
low the use inside a non-GPL application, but habari developers seems to be

100http://codex.wordpress.org/Plugins/WordPress_Widgets
101e.g. WordPress
102example: habari htdocs/system/classes/userhandler.php (rev. 3421)
103habari htdocs/system/classes/rewriterules.php:19 (rev. 3421)
104example: habari htdocs/system/classes/post.php (rev. 3421)
105example: habari htdocs/system/classes/posts.php (rev. 3421)
106example: habari htdocs/system/classes/posts.php:54 (rev. 3421)
107habari htdocs/system/classes/superglobal.php:29 (rev. 3421)
108[habari:habari-que-2-ans1.txt]
109Ibid.

82

http://codex.wordpress.org/Plugins/WordPress_Widgets
http://groups.google.com/group/habari-dev/msg/903272173ef51890

Florian Thiel 4.3. PROJECT ANALYSIS

wary of GPL code110) keeps habari from using the library. Licensing issues can
keep open source project from using best practice methods, so I promoted this
finding to a concept: Licensing Issue. Licensing

Issue
→p. 98

Validation is not provided by the input layer because it is completely type
agnostic. I have not seen any extra validation of input parameters. In habari,
SQL statements which cannot be inserted using prepared statement place-
holders and have to be validated explicitly111 are never derived directly from
user input. In this case, no further validation is necessary for SQL.

Database access

Database access always happens with the help of PDO, the PHP Data Objects.
PDOs provide support for Prepared Statements, which is used throughout the Prepared

Statement
→p. 19

application. There are many cases of concatenated raw SQL throughout the
code, but all occurrences use the place-holder notation (“?”). Excerpt 4.15
shows an example of SQL use in habari.

247 // l e t ’ s make sure we only i n s e r t an i n t e g e r
248 $ i n t e r n a l = intval ($ i n t e r n a l) ;
249 DB: : query (’INSERT INTO { pos t s t a tu s } (name , i n t e r n a l) VALUES

(? , ?) ’ , array ($status , $ i n t e r n a l)) ;

Listing 4.15: habari: htdocs/system/classes/post.php, (revision 3421)

Although type casting seems to be done close to the string concatenation
for SQL queries (see the example) in most cases, this is not a codified practice
and not followed in all cases, leading to hard to review code and qualifies for
Inconsistent Use Of Sanitation. Inconsistent

Use Of
Sanitation
→p. 95

HTML Output Encoding

The input layer already filters for XSS with a white-list (see section 4.3.2 above).
This way, habari prevents all use of scripting through user input (HTML tags
for formatting still pass the white-list). Data is output in so-called theme files,
which determine the layout of the actual pages in habari. In these files, dynamic
data is acquired from object attributes which were filed by the respective han-
dler before112. There is no output filtering in the templates. While the input
filter may prevent reflected XSS attacks (see XSS classification in section 2.3.4
on page 35), this is a case of Reliance On Input Filtering as it ignores type 2 Reliance On

Input
Filtering
→p. 95

XSS exploit code already contained in the database.

Summary

habari shows many good approaches to SQLIA and XSS prevention. The use
of an MVC-based architecture, PDO for prepared statements, the use of a
mandatory input filter and white-listing support the mitigation of SQLIA and

110[habari:habari-users-license.txt]
111such as table names or LIMIT, see 2.2.4 on page 17
112example: habari htdocs/system/themes/mzingi/entry.single.php (rev. 3421)

83

http://groups.google.com/group/habari-dev/msg/bae297c7d5d58fd7

4.3. PROJECT ANALYSIS Florian Thiel

XSS effectively. The ability to use a white-list is a direct consequence of up-
front planning for data types and usage patterns. Media types other than text
are supported through the use of so-called silos, which enable the inclusion of
videos or pictures and are isolated from the habari core. This way, the core
does not have to include (complex) white-listing for all conceivable media types
(which would make the use of white-lists to cumbersome at some point).

Only the missing support for a validation layer, the reliance on input fil-
tering, the inability to use HTMLPurifier, and mostly non-existent documen-
tation113 give reason to think about improvements.

Note that habari and WordPress are not directly comparable, although they
share use cases. habari was designed to be more minimal and does not support
the use of widgets or large modifications of the behavior, like WordPress does.
Whether this is a disadvantage for habari depends on the requirements for the
specific use case.

Addendum After I finished my analysis of habari, a few additional messages
showed up in the thread initiated by my project questionnaire (see section 3.3.1
on page 52). Developers suggested habari should use the CakePHP framework
in future releases114. Although probably partly in jest, I would consider this a
welcome addition to add more consistency to sanitation in the habari project.

113also mentioned in a questionnaire response: [habari:habari-que-2_ans1.txt]
114[habari:habari-que-5_ans4.txt], [habari:habari-que-7_ans6.txt],[habari:habari-que-

9_ans8.txt]

84

http://groups.google.com/group/habari-dev/msg/903272173ef51890
http://groups.google.com/group/habari-dev/msg/674e0b29321f43b1
http://groups.google.com/group/habari-dev/msg/76b55a92f1f442ba
http://groups.google.com/group/habari-dev/msg/2e59324f30737a94
http://groups.google.com/group/habari-dev/msg/2e59324f30737a94

Florian Thiel 4.3. PROJECT ANALYSIS

4.3.3 phpBB

phpBB115 is a popular web forum
application in PHP, licensed under the
GPL. The original release appeared
in 2000, the current version is phpBB
3, which underwent significant refac-
toring since version 2 and was pub-
lished at the end of 2007. Prior ver-

sions were infamous for security problems. The code for version 3 received a
security audit by PHP security expert Stefan Esser of SektionEins116. phpBB
supports multiple database backends, including MySQL and PostgreSQL. The
current version of phpBB requires PHP 4.3.3.

phpBB supports so-called MODs [sic!] which modify the original code to
add new functionality or change the behavior of the original application. It does
not support plug-ins. phpBB uses a custom HTML-based template language
for forum posts and can thus avoid allowing any HTML in user input.

The phpBB community seemed friendly but not very open. The channel
for communication with developers is the project’s IRC channel. The forums
on the web page are mostly concerned with helping users. There is no public
mailing list. My requests in IRC about where to post the project questionnaire
prompted a core developer to offer responding to the questionnaire by himself.
Unfortunately, I did not get any replies. This is why I don’t have any project
questionnaire feedback for phpBB.

Code Structure

The actual phpBB code is located in the root directory of the source tree. Utility
code used by multiple files is located in the includes directory, the templates
are located below the styles directory, in the directory for the respective theme.

For every function phpBB supports (viewing a forum117, viewing a topic118,
etc.), there is a specific “handler” file. Common code to all requests is situated
in common.php119. Since business entities are implicitly defined through the
actions which are supported by phpBB, there is no data modeling. Missing

Data
Modeling
→p. 97

Input Handling

There is no centralized input sanitation. Methods accessing request parameters
need to use the request_var()120 function to retrieve variables. request_var()
takes a default value that acts as the return value if the named parameter is
not found and also determines the return type if the parameter is found (by
type-casting to the type of the default value). HTML escaping is done by the

115http://www.phpbb.com
116http://www.sektioneins.de
117phpBB viewforum.php (rev. 9003)
118phpBB viewtopic.php (rev. 9138)
119phpBB common.php (rev. 8760)
120phpBB includes/function.php:63 (rev. 9153)

85

http://www.phpbb.com
http://www.sektioneins.de

4.3. PROJECT ANALYSIS Florian Thiel

function if the parameter is a string. This is sensible for phpBB as it does not
support HTML user input. It uses its own mark-up language, called bbcode
that provides very limited formatting and uses square brackets instead of angle
brackets ([i]foo[/i]).

As the input sanitation in phpBB does not imply any specific use of the data
afterwards (removing HTML by default is well-grounded if the application itself
relies on all user input not containing HTML), there is no case of early escaping
here.

Database Access

The database abstraction layer defines a common access class121 from which
the respective database drivers inherit122. SQL queries are concatenated from
strings throughout the code. There is no support for prepared statements.
Non-string variables used in the SQL queries are not validated or filtered when
constructing the query string123. The developers rely on the type conversion and
filtering done by request_var(). This is reasonable as the calls to request_var()
can always be found either at the top of the respective function or (if not inside
a function) at the head of the file. For strings, the sql_escape124 method is
used, which does database-type specific escaping.

Although there is no documentation as to where the use of request_var()
should happen, the coding guidelines advise developers to sanitize all potential
user input, return values from functions and parameters given to a function125.
It looks like common sense is enough to provide a consistent coding style, mak-
ing it easy to look up which sanitations were applied to a variable.

HTML Output Encoding

Pages and page snippets are generated using templates, regular HTML files126

with keywords that provide control statements or variable insertions. The tem-
plate files do not contain any PHP code or filtering directives. Escaping for
HTML is done in the (in MVC terms) “controller” classes127 that fill objects
with attributes which are later used in the templates. Short examples are pro-
vided by excerpts 4.16 (defining values) and 4.17 (use).

560 // Send vars to temp la te
561 $template−>ass ign_vars (array (
562 ’FORUM_ID’ => $forum_id ,
563 ’FORUM_NAME’ => $topic_data [’ forum_name ’] ,

Listing 4.16: phpBB: viewtopic.php, (revision 9138)

121phpBB includes/db/dbal.php (rev. 9178)
122MySQL for example: phpBB includes/db/mysql.php (rev. 8815)
123see example at phpBB viewtopic.php:60 (rev. 9138)
124phpBB includes/db/mysql.php:310 (rev. 8815)
125http://area51.phpbb.com/docs/coding-guidelines.html#general
126e.g. phpBB styles/prosilver/template/index_body.html (rev. 8479)
127phpBB does not actually follow the MVC pattern

86

http://area51.phpbb.com/docs/coding-guidelines.html#general

Florian Thiel 4.3. PROJECT ANALYSIS

42 <f i e l d s e t >
43 <input c l a s s=" inputbox search t iny " type=" text " name="

keywords " id=" search_keywords " s i z e=" 20 " va lue=" {
L_SEARCH_TOPIC} " on c l i c k=" i f (t h i s . va lue==’{
LA_SEARCH_TOPIC} ’) t h i s . va lue = ’ ’ ; " onblur=" i f (t h i s . va lue
==’ ’) t h i s . va lue=’{LA_SEARCH_TOPIC} ’ ; " />

44 <input c l a s s=" button2 " type=" submit " va lue=" {L_SEARCH} " />
45 <input type=" hidden " value=" {TOPIC_ID} " name=" t " />

Listing 4.17: phpBB: styles/prosilver/template/viewtopic_body.html,
(revision 9136)

The keywords used for variables (e.g. L_SEARCH) contain the type of data
they represent in their name. L is for language, signifying a localized string.
There are markers for URLs, strings and (static) JavaScript code. This helps
the template developers to see where it is safe to use a certain variable128.

The functions filling the keywords used in the templates do not always
encode the values for HTML. This makes the application vulnerable to existing
XSS in the database and is an instance of the Reliance On Input Filtering and Reliance On

Input
Filtering
→p. 95

Inconsistent Use Of Sanitation concepts.

Inconsistent
Use Of
Sanitation
→p. 95

Summary

phpBB’s simple structure of task-based files makes the sources easily navigable.
The template engine is an elegant solution to decouple design and functional
development. However, there are readily available template languages for PHP
which could have been used. The input filtering mechanism and HTML sani-
tation are also custom developments for phpBB. The missing data model puts
validation and filtering in the hand of developers, requiring lots of error-prone
boilerplate code.

The project would definitely benefit from a framework and a data model.

128e.g. not using a keyword that does not start with a U (for URL) inside a href attribute

87

4.3. PROJECT ANALYSIS Florian Thiel

4.3.4 Zikula

Zikula129 calls itself an applica-
tion framework. It re-launched the
popular PostNuke CMS in 2008130. It
is developed in PHP, is licensed un-
der the GPL and supports multiple

database backends through the ADOdb database abstraction library. PHP ver-
sion from 4.1.0 up are supported.

The Zikula community develops the Zikula framework and a number of
modules, which provide the actual functionality. This is called the Zikula core.
The core is augmented by third-party modules which provide additional content
types for Zikula.

Code Structure

The Zikula code cannot deny its PostNuke legacy. The directory structure looks
similar to PostNuke’s and the prefix pn for variables or functions still appears
throughout the code.

The actual framework resides in the system131 subdirectory, the content
modules are placed in modules and the themes for the page layout reside in
themes. The includes directory (as it seems standard for PHP web applica-
tions) contains libraries included in the distribution and utility functionality.

Input Handling

Input parameters are accessed through the getPassedValue() method of the
FormUtil class132. getPassedValue() removes escaping if PHP’smagic_quotes_gpc()
is turned on (cp. section 2.2.5 on PHP’s false friends) and filters for unwanted
input using black listing. Zikula considers HTML script, object, applet andUse Of

Inferior
Method
→p. 22

framing tags undesirable. This filter primarily targets XSS, but only filters
literal JavaScript in HTML elements. JavaScript for attributes or in link tar-
gets is not filtered here. This clearly is a case of Early Escaping because it is

Early
Escaping
→p. 18

unknown if user input would be used inside attributes or URLs.

Database Access

Zikula uses the ADOdb library for database abstraction. Therefore, in principle
all databases supported by ADOdb could be used with Zikula. At the moment,
the project only supports MySQL, PostgreSQL and Oracle133.

Access to the database always happens through the DBUtil134 class, which
provides utility functions to retrieve table rows marshalled to objects, escaping

129http://zikula.org/
130http://www.postnuke.com/module-Content-view-pid-6.html
131Zikula system (rev. 25745)
132Zikula includes/FormUtil.class.php:35 (rev. 24908)
133http://www.oracle.com/database/index.html
134Zikula includes/DBUtils.class.php (rev. 25453)

88

http://zikula.org/
http://www.postnuke.com/module-Content-view-pid-6.html
http://www.oracle.com/database/index.html

Florian Thiel 4.3. PROJECT ANALYSIS

data for use in queries and helpers for the construction of SQL query strings.
For some object types, the database access is further abstracted through utility
classes which provide direct retrieval of an object instance by different crite-
ria135.

Zikula does not use data modeling for relations between the different busi- Missing
Data
Modeling
→p. 97

ness objects and lacks prepared statements. There is no uniform way to con-
struct SQL queries and to include unsafe data into it. The Zikula DataUtils pro-
vide an escaping method for strings that are used in queries (formatForStore()136)
which unfortunately only uses addslashes () instead of a database-specific method Use Of

Inferior
Method
→p. 22

(see explanation of addslashes () in section 2.2.5 on page 22). For numeric values,
type-casting is used, but developers don’t seem to agree on when type-casting
has to happen. In most cases, type-casting happens when a value is first fetched
via getPassedValue() and no further escaping or validation is done137. Some-
times, type-casting is done on string concatenation for SQL queries138. This is
consistent with the answers to the project questionnaire139 which stated that
there was no documented behavior for sanitation140. This is an instance of
Inconsistent Use Of Sanitation. Inconsistent

Use Of
Sanitation
→p. 95

HTML Output Encoding

Data for inclusion in the Zikula templates comes from object attributes set by
the “controllers” for the specific action (which reside in the pnuser.php files of
the respective module). An example is shown in excerpt 4.18.

55 // Assign the con f i g vars
56 $pnRender−>as s i gn (’ e n ab l e c a t e g o r i z a t i o n ’ ,

$ enab l e c a t e g o r i z a t i on) ;
57 $pnRender−>as s i gn (’ s h o r t u r l s ’ , pnConfigGetVar (’ s h o r t u r l s ’)) ;
58 $pnRender−>as s i gn (’ s h o r tu r l s t yp e ’ , pnConfigGetVar (’

s h o r tu r l s t yp e ’)) ;
59 $pnRender−>as s i gn (’ lang ’ , pnUserGetLang ()) ;
60
61 // Return the output t ha t has been genera ted by t h i s f unc t i on
62 return $pnRender−>fe t ch (’ pages_user_main . htm ’) ;

Listing 4.18: Zikula: modules/Pages/pnuser.php, (revision 25012)

The template files used in Zikula are based on the Smarty141 template lan-
guage for PHP. Smarty provides access to variables made available to the tem-
plate in a PHP-like syntax and supports filtering of output data with the "|"
notation. In excerpt 4.19, the $content variable is filtered for HTML contents.

135e.g. Zikula includes/CategoryUtil.class.php:25009 (rev.)
136Zikula includes/DataUtil.class.php:271 (rev. 25016)
137e.g. Zikula modules/Pages/pnuser.php:77 (rev. 25012)
138e.g. Zikula modules/Topics/admin.php:179 (rev. 24342)
139for instructions retrieving this data, see A.1.3 on page 115 in the appendix
140[zikula:zikula-queger-6-englishque-ans.txt]
141http://www.smarty.net/

89

file:correspondence/zikula/zikula-queger-6-englishque-ans.txt
http://www.smarty.net/

4.3. PROJECT ANALYSIS Florian Thiel

34 <div c l a s s=" pages_page_body ">
35 <!−−[$content | pnvarprephtmldisp lay | pnmodcallhooks : " Pages "

]−−>
36 </div>

Listing 4.19: Zikula:
modules/Pages/pntemplates/pages_user_display.htm, (revision 24588)

While filtering in templates is often used, I could not find a simple pattern
of what values had to be filtered in the template. In some cases, values were
already returned from utility functions in sanitized form142. This is another
case of Inconsistent Use Of Sanitation which makes it hard to read the codeInconsistent

Use Of
Sanitation
→p. 95

and get secure sanitations applied in all cases.

Further Observations

Zikula features a lot of Code Reuse from open source projects143: ADOdb,Code Reuse
→p. 40 Smarty, SafeHTML and various AJAX libraries are used for the core function-

ality, additional libraries are used for specific features like RSS.
Furthermore, the road-map for Zikula 2.0 contains the use of a PHP ORM

library, doctrine144 and the replacement of SafeHTML by HTMLPurifier. This
is a case of Technology Renewal Planned and shows willingness by the ZikulaTechnology

Improve-
ment
Planned
→p. 98

team to use best practices.

Summary

The Zikula project shows good approaches, especially by the extensive reuse of
code and centralization of sanitation code in utility classes. However, Zikula is
missing a comprehensive data model which makes consistent and abstract data
handling difficult and results in unnecessary hand-written code. Moving to an
ORM layer requires such a comprehensive data model and probably enables
Zikula to become a really well-structured web application with state of the art
technology support.

142e.g. Zikula modules/News/pnuserapi.php:389 (rev. 25471)
143http://code.zikula.org/core/wiki/development/externalcomponents
144http://www.doctrine-project.org/

90

http://code.zikula.org/core/wiki/development/externalcomponents
http://www.doctrine-project.org/

Florian Thiel 4.4. PROJECTS IN BRIEF

4.4 Projects In Brief

Projects In Brief contains short discussion of three more projects. I included
these projects because they represent very popular projects (Drupal and TYPO3)
or are significantly different to the other projects presented here (riotfamily).
All these projects also exhibit at least one concept I considered important for
the summarizing discussion.

The discussion here only includes data that could be gathered by analysis
of project documentation available from the web pages and a very short source
code inspection.

4.4.1 Typo3

TYPO3145 is an immensely popular, GPL-licensed CMS written in PHP. Its
distinguishing feature is TypoScript, a configuration language that can represent
arbitrary data structures for use in web page templates. TYPO3 can be used
to create very diverse web sites but the flexibility comes with large complexity.

The current version, TYPO3 4, does not support prepared statements and Use Of
Inferior
Method
→p. 22

a comprehensive data model. The latter is partially caused by the high config-

Missing
Data
Modeling
→p. 97

urability of the system, where the actual applications really only arise during
customization.

Now, the TYPO3 community started a framework project, called Flow3146,
which will be the foundation of the next version of TYPO3, TYPO3 5. The fra-
mework boasts features like a persistence framework backed by Domain-Driven
Design principles [Eva03, cp.], a full-fledged MVC framework for structuring
web applications and an explicit validation layer, supported by rich domain
objects. This constitutes a big technological and structural leap and is a case
of large Technology Renewal Planned. Technology

Improve-
ment
Planned
→p. 98

4.4.2 Drupal

Drupal147 is another popular CMS written in PHP. Like TYPO3, the current
version of Drupal, Drupal 6, does neither have a comprehensive data model Missing

Data
Modeling
→p. 97

nor does it use prepared statements. A discussion on IRC revealed that the

Use Of
Inferior
Method
→p. 22

current database abstraction is completely unsuitable for the use of prepared
statements148. The project will introduce prepared statements in Drupal 7,
using the much-improved data abstraction layer currently under development,
a large technological improvement for the project.

Technology
Improve-
ment
Planned
→p. 98

4.4.3 Riotfamily

riotfamily, being written in Java, is the only non-PHP project in this thesis (for
implications of that fact, see the discussion of validity and relevance in section

145http://typo3.org/
146http://flow3.typo3.org/
147http://drupal.org/
148[drupalIRC:2009-03-11]

91

http://typo3.org/
http://flow3.typo3.org/
http://drupal.org/
file:correspondence/drupal/drupal_{2009-03-11}.txt

4.4. PROJECTS IN BRIEF Florian Thiel

5.2). riotfamily is licensed under the Mozilla Public License (MPL) and consists
of a framework and different modules.

The most interesting features of riotfamily are the WYSIWYG editing fea-
ture of web pages and the possibility to use a rich, structured data in the
business objects, which are fully customizable.Data

Modeling
→p. 21

riotfamily is developed using the Spring framework, the Hibernate persis-

ORM
→p. 21

tence layer, the FreeMarker templating language and Direct Web Remoting
(DWR) for AJAX interactions, a case of major Code Reuse.

Code Reuse
→p. 40

Using these libraries enables the use of Prepared Statements, and consistent

Prepared
Statement
→p. 19

HTML escaping for a certain type throughout the application149.
Although I did not do an elaborate code review of riotfamily, it looks like

the project makes use of best practices and shows that it is in fact possible to
avoid most of the adverse concepts by choosing a good modeling approach and
mature technology.

149http://static.springframework.org/spring/docs/2.5.x/reference/spring.tld.
html

92

http://static.springframework.org/spring/docs/2.5.x/reference/spring.tld.html
http://static.springframework.org/spring/docs/2.5.x/reference/spring.tld.html

Florian Thiel 4.5. CONCEPTS OBSERVED

4.5 Concepts Observed
This section discusses the concepts discovered during the case studies. While
the concepts covered in chapter 2 are all technical in nature and correspond to
known best practices or anti-patterns, the concepts introduced here were dis-
tilled from the analysis of the source code and the interaction with the projects.
None of these concepts are specific to the projects discussed in this thesis and
may occur in many other (especially web) applications not discussed in this
thesis.

Table 4.1 on the following page serves as a guide to look at a particular
concept observed in a project. The table lists the page numbers where an
instance of a concept is described inside the project discussion. Only concepts
actually observed in at least one of the projects are included. Note that the
concepts in this table are sorted alphabetically and only serve as a reference
and must not be interpreted quantitatively. Concepts do not have equal impact
on projects and not all of them are negative. See the discussion of particular
concepts in section 4.5 on page 95 for details.

93

4.5. CONCEPTS OBSERVED Florian Thiel

C
oncept

W
ordPress

M
am

bo
Joom

la!
habari

phpB
B

Zikula
T
Y
PO

3
D
rupal

riotfam
ily

C
ode

R
euse

90
92

D
ata

M
odeling

92
Early

Escaping
56

69
82

88
Fear

O
fLoss

O
fPow

er
65

Inconsistent
U
se

O
fSanitation

60,65
68,70

79,79
83

87
89,90

Inferior
M
ethod

56,58
69

79
88,89

91
91

Legacy
C
onstraint

58
Licensing

Issue
83

M
issing

D
ata

M
odeling

66
82

85
89

91
91

M
issing

Interface
60,65

71
N
on-U

niform
D
B

A
ccess

57
O
R
M

92
Prepared

Statem
ents

81,83
92

R
eliance

O
n
Input

Filtering
60

70
83

87
StructuralC

onservatism
58

74
Technology

R
enew

al
71

80
90

91
91

Table
4.1:

C
oncept

O
verview

T
his

table
lists

the
page

num
bers

w
here

particular
concepts

appear
in

the
respective

projects.
N
ote

that
no

inform
ation

on
the

relative
robustness

against
security

vulnerabilities
can

be
inferred

from
the

inform
ation

in
this

table
alone.

94

Florian Thiel 4.5. CONCEPTS OBSERVED

Concepts In Detail

Non-Uniform Database Access This concept describes a situation were there
are multiple methods to access a database without a clear deprecation for
all but one method. In such a situation, data being transmitted to the
database can have undergone a variety of treatments. If sanitation against
SQLIA or validation is done in the database access methods, it may be
possible to bypass sanitation. With concurrent access methods, mainte-
nance effort rises and developers may unintentionally use a method which
is inappropriate for their use case.

A library that provides programmatic construction of SQL statements
from simple method calls but also supports direct access through raw SQL
access would be an example of this concept. In this case, there should
be a clear project policy for which cases (if at all) direct use of raw SQL
is allowed. Missing Data Modeling may cause the use of Non-Uniform
Database Access, since in this case an application framework cannot be
used to abstract database access (cp. figure 4.2 on page 98).

Inconsistent Use Of Sanitation The Inconsistent Use Of Sanitation con-
cept describes the absence of a defined process to handle data sanitation
on input or output. If sanitation can happen in multiple places or in dif-
ferent ways which are not completely specified, data in the system is in
an undefined state (since it is unknown which sanitations were applied).
This can lead to security vulnerabilities if necessary sanitations are (in-
advertently) not applied or if the interplay of sanitations itself creates
vulnerabilities.

Having explicit layers (often provided by application frameworks) can be
used to provide consistent sanitation without relying on codified policy.
Missing Data Model can lead to Inconsistent Use Of Sanitation because
in that case sanitation has to be done by hand and can not be delegated
to the framework (cp figure 4.2 on page 98).

Reliance On Input Sanitation Reliance On Input Sanitation describes the
use of input sanitation without output sanitation. Relying on input san-
itation is inappropriate if the input sanitation cannot (or should not be-
cause of the business logic of the application) sanitize for all cases of
output or if there is a possibility of unsanitized data in the persistent
storage of the application.

Having a comprehensive data model can enable automation of type-specific
input and output sanitation and therefore make it more affordable for soft-
ware projects to do both. Missing Data Model makes it more likely that
either input or output sanitation is left out, because it has to be done by
error-prone custom code (cp. figure 4.2 on page 98).

Missing Interface Missing Interface is the concept behind a situation where
parts of an application that are used by a third party expose their in-
ternals. In this case, changing the application always involves changing

95

4.5. CONCEPTS OBSERVED Florian Thiel

Figure
4.1:

Separation
ofobserved

concepts
into

problem
and

solution
space

96

Florian Thiel 4.5. CONCEPTS OBSERVED

the third party application, too. If there is not just a customer/supplier
relationship (cp. [Eva03, pp. 356]) between the application and the third
party (e.g. a plug-in), the development of the application can be severely
impeded.

Fear Of Loss Of Power Fear Of Loss of Power labels instances of a social
phenomenon where developers dismiss changes to their application which
would disable functionality or specific ways to program the application.
An example would be the introduction of an API which hides implemen-
tation details and thus also limits access to internals.

This becomes a problem when developers insist they should always be
able to do everything. Limiting access leads to better separation of con-
cerns and is especially important for parts of the application relevant for
security. Fear Of Loss Of Power may hinder progress in projects, but
the exact impact of the concept would have to be determined by further
research.

Missing Data Model The concept Missing Data Model is found in applica-
tions where no explicit and comprehensive data model is visible. The
data model has to define all business-relevant data types for the applica-
tion and their relations centrally. Cases of Missing Data Model have to
manually establish the type and handling of data wherever data is touched
in the system. This makes consistent handling for every case burdensome
and error-prone. Missing Data Model makes Inconsistent Use Of San-
itation, Reliance On Input Filtering and Non-Uniform Database Access
more probable, since the abstraction of sanitation is not possible and has
to be done manually (cp. figure 4.2 on the next page).

Structural Conservatism I found that the willingness to make necessary,
fundamental changes radically differs between projects. This seems to be
a very important factor for the acceptance of innovations, as exemplified
by the annotations idea. Structural conservatism may influence a lot of
the other concepts, since it may hinder or support refactoring towards
a new architecture (perhaps establishing more modularization or making
consistent sanitation possible) or control the readiness to live with legacy
constraints. This concept may be influenced by Fear Of Loss Of Power.

Legacy Constraint A Legacy Constraint concerns situations when a project
is kept from using a desired and known good technology because the
technology is incompatible with the present version of another component
used in the project and the project team is unable or unwilling to update
this component.

A prime example in this thesis is the mandatory compatibility with PHP
4 in web applications, which bars the application from using features like
a persistence layer such as PDO. This way, Legacy Constraint can be a
major cause for e.g. Use Of Inferior Method, cp. figure 4.3 on the following
page.

97

4.5. CONCEPTS OBSERVED Florian Thiel

missing data model

non-uniform DB access

inconsistent use of sanitationfacilitates

reliance on input filtering

Figure 4.2: Possible consequences of Missing Data Model

licensing issue

use of inferior method

legacy constraint
may cause

structural conservatism

missing data model

fear of loss of power

Figure 4.3: Possible reasons for Use Of Inferior Method

Licensing Issue Not all licenses of open source are compatible with each
other. Especially “viral” licenses such as the GPL, which demands that
software that incorporates code which was released using the GPL also
has to be licensed under the same license, can bar other projects from
using that code.
This is critical especially for libraries which then can only be used by GPL
code, excluding projects that could make good use of the code otherwise.
Therefore, most libraries are licensed under the LGPL, which does not
have the “viral” characteristics of the GPL. Nevertheless, there seem to
be provisos against the LGPL in projects that chose a “more free” library
for political reasons (as exemplified by the habari project in section 4.3.3
on page 85). Licensing Issue can be the reason for Use Of Inferior Method.

Technological Improvement Planned Technology Improvement Planned la-
bels the intent of a project community to make significant technological
improvements which also have consequences for prevention of the vulner-
abilities described in this thesis in the near future. The concept applies
to upgrading a major component of the software, adding a new compo-
nent, or restructuring the software towards better maintainability or a
data model.

98

Florian Thiel 4.6. ASSESSMENT OF THE CONCEPTS

4.6 Assessment Of The Concepts

This section contains the concluding assessment of the concepts observed in the
projects and assesses their influence on the prospects for the process innovation
presented in chapter 3. The assessment will relate to research question Q3
about the applicability of the annotation innovation, presented in section 1.4.1
on page 4.

First of all, a project using comprehensive data modeling usually leverages
the model to delegate sanitation tasks to a framework. It does therefore not
exhibit the structural weaknesses abetted by Missing Data Model (cp. figure
4.2 and section 4.5). In this case, the annotations — targeting structural defi-
ciencies — are of little use. Of the projects discussed in this thesis, only one,
riotfamily, falls into that category (see section 4.4.3 on page 91).

Second, concepts that concern the inability of a project to make progress
can be a major obstacle for the annotations. Licensing Issue, Legacy Con-
straint, Fear Of Loss Of Power, and Structural Conservatism fall into this cat-
egory. While Licensing Issue only came up as an aside in the habari project
(see section 4.3.2 on page 82), the other three, first and foremost Structural
Conservatism seemed to be big inhibitors in the WordPress episode. Technical
incompatibility (Legacy Constraint), combined with unwillingness of the project
team to innovate (Structural Conservatism and Fear Of Loss Of Power) led to
a stasis, which the annotation — requiring technological and process changes
— could not break. Note that Legacy Constraint (the forced compatibility with
PHP 4 that disabled the use of some useful libraries) was not the determining
factor that the annotations could not be applied. Although not optimal, the
changes lined out in the issue document would have been possible without the
use of a newer version of PHP. The actual impact psychological concepts such
as Fear Of Loss Of Power or Structural Conservatism could not be determined
here. They require more in-depth research.

The episode with Mambo (cp. 4.2.2 on page 71) shows that the process inno-
vation presented in this thesis can be adopted by a project with legacy software
versions if the project’s community is interested in having good architectural
foundations.

Therefore, I think it is fair to say that the main reason for the refusal of the
annotation proposal in WordPress (cp. section 4.2.1 on page 64) was not techni-
cal but accountable to the mind-set of parts of the WordPress community who
value a somewhat working status quo above a re-design that would improve
maintainability for years to come. The involvement of Matt Mullenweg and
his company automattic, which is directly dependent on the number of users
of WordPress, also seems to have influenced the decision not to do anything
which could (temporarily) make the life of users harder. Missing compartmen-
talization in the WordPress code makes large changes especially difficult for the
project.

It is not the technical limitations of projects that inhibit innovations, it is the
project’s community structure and its processes. It looks like more involvement
into the project community could have helped the annotation approach. I did
not implement any of the suggested changes and only provided the annotations

99

4.6. ASSESSMENT OF THE CONCEPTS Florian Thiel

and instructions in form of an issue document. Apparently, these alone were
not appealing enough for developers to work on my innovation. My personal
interest for architecture and security infrastructure in applications is obviously
not shared by developers in general. Therefore, future innovation approaches
should include more commitment for actual implementation by the person doing
the innovation introduction.

100

Chapter 5

Conclusion

Science is always wrong. It never solves a problem
without creating ten more.

George Bernard Shaw

Following the argumentation in chapter 2, one can only conclude that while
it is not trivial to prevent SQLIA and especially XSS attacks, highly effective
mitigations exist, which only lack consistent application.

Innovations targeting the consistent application of preventive measures through
architecture seem to work in principle. The failed innovation introduction for
WordPress (section 4.2.1 on page 55) and the only partially successful one for
Mambo (section 4.2.2 on page 67) show that the approach is regarded as useful
by some developers. Now Mambo is a very small project, so the inclusion of the
annotations into the project sources does not provide very valuable evidence.
Also, no data on the actual improvement of security of web applications could
be collected.

Nevertheless, I think the annotation approach is a sensible idea. Examples
like the one in the WordPress episode (cp. section 4.2.1 on page 61) where issues
in the issue tracker were not fixed because they appeared in big chunks, are an
ideal match for the annotation technique. For the projects that planned tech-
nology renewal, the renewal either involved only a small technological change
which would bring the project up to par with technology that has been consid-
ered as standard for new projects for some time; or it resulted in radical changes
such as the foundation of a new project (habari, cp. 4.3.2 on page 81) or major
rewrites (TYPO3, cp. 4.4.1 on page 91). In these cases, annotations could be
useful to get projects to use evolutionary improvement instead of throwing away
large parts of the source code. Literal implementation of the annotation intro-
duction may not work, but, as lined out in the concept assessment in section 4.6
on page 99, more involvement of the innovator in the actual development could
be used to increase the acceptance rate and lead to annotations that are ac-
tually used in projects. As the annotation idea appears to me as a powerful
approach for architectural corrections, there should be more research to identify
more concrete determining factors that can make this process successful.

As for the criteria of projects that can successfully be targeted by process
innovations, the analysis in section 4.6 on page 99 hints that the willingness to

101

5.1. OPEN SOURCE WEB APPLICATION SECURITY Florian Thiel

innovate in the community is much more important for a successful innovation
introduction than the technical properties of the project. Unfortunately, this
willingness is much harder to assess from outside the project. In the WordPress
episode, I consulted the mailing list archives to get a feeling for how the com-
munity reacts to suggestions from outside. This kept me from unsubstantially
suggesting the same things that pop up on the mailing list from time to time.

Nevertheless, the reservations in the WordPress community against prac-
tices they considered to complicated or destabilizing prevailed, and the anno-
tations were refused. I consider it grounded to say that a strong presence of
Structural Conservatism in projects will make the annotation introduction pre-
sented here unsuccessful. The criticism I received in the WordPress also points
to the conclusion that low exposure to ideas of data modeling and architecture
by the community can cause refusal of ideas that lead into this general direction.
The other way around, the annotation approach should have a high probability
of success in projects whose contributors are familiar with architecture and data
modeling concepts. The partial innovation introduction would not have been
possible if the Mambo project had not been interested in structural improve-
ment of their application. For an innovation introduction to succeed, it always
has to match the goals of the community at large. For Mambo, it did, and thus
the annotations got included.

It is possible that the size of the projects played a determining role in this
outcome. While the Mambo project was very small at the time I interacted
with it (less than five active members, cp. section 4.2.2 on page 71), WordPress
had numerous volunteers. The Mambo team seemed to be happy with all the
help they could get. Also, the coordination process is much easier with a small
project. Gaining support from one project member was enough to get the
annotations into the project repository. With WordPress, three core developers
supported my idea which was eventually shot down in the discussion on the
mailing list.

Another important result of this thesis is the identification of concepts which
seem to influence the architecture and technologies used in projects, and also
their interaction. As lined out in the discussion of observed concepts, there are
numerous concepts that inhibit innovation (Fear Of Loss Of Power , Structural
Conservatism and Legacy Constraints). These concepts should be used in future
research to better understand behavior of project participants. The definitions
of the concepts in this thesis are quite limited because of the shallow insight
possible with the projects at hand. These could be extended and refined by
looking at other projects, specifically with these concepts in mind.

5.1 Encore: The State Of Open Source Web Appli-
cation Security

The concept analysis of the nine open source web applications did not only
deliver insights for innovation introduction approaches but also — with the
best practices for SQLIA and XSS mitigation in mind — understanding of the
state of open source web application security in general. While the MITRE

102

Florian Thiel 5.1. OPEN SOURCE WEB APPLICATION SECURITY

analysis mentioned in the introduction (cp. 1 on page 1) blamed the rise of XSS
vulnerabilities on amateur developers writing toy software, the applications
discussed in this thesis are written by large groups of reasonably experienced
developers. Even though, they have their share of vulnerabilities.

In all nine projects, the recurring concepts have to do with inconsistencies
(Inconsistent Use Of Sanitation, Non-Uniform DB Access, Reliance On Input
Filtering, and Early Escaping). As already stated in the concept descriptions
(see section 4.5, earlier in this chapter), Data Modeling is an appropriate way
to minimize inconsistencies by delegating sanitation to a framework. Of the
nine applications, only the Java-based riotfamily uses a third-party framework
for a significant part of the application. Joomla! and Zikula have their own in-
ternal custom frameworks, but none of these applications use a general purpose
framework (like CakePHP).

Apparently this is going to change, as indicated by the oft-mentioned plans
to move to a proper framework (Technology Renewal Planned concept). Mambo
wants to use CakePHP, habari considers the same (maybe partly in jest, cp. 4.3.2
on page 84) and TYPO3 will implement their own framework with support for
current technologies. Joomla!, Drupal and Zikula will at least introduce new
technology that makes the database layer consistent. For Zikula, this also means
having an ORM implementation which requires a comprehensive data model.
The only projects which are not planning any substantial improvement con-
cerning their application architecture are WordPress and phpBB. This may be
a reason for optimism for the future of open source web applications. However,
all of these improvements are relatively minor and in the best case bring the
projects to a level that would be expected from a newly implemented applica-
tion. Maybe the annotation approach could be used to push projects forward
more aggressively.

In summary, the following findings have substantial backing from the data
gathered in this thesis:

1. The annotation method should be able to produce evolutionary architec-
tural change in open source web applications, but its implementation has
to be revised with more involvement by the innovator and a clearer vision.

2. Concepts like Structural Conservatism make the application of the anno-
tation method very difficult.

3. Behavior of a project community can be better understood by applying
concepts like the ones developed in this thesis to it.

4. The identified concepts help identifying projects unsuitable for the anno-
tation approach.

5. Very few of the popular PHP web applications are thoroughly architected
and use a comprehensive data model.

6. Most of the open source PHP web applications improve the technology
used in the applications but only after they have been mature for a while
and are considered compulsory.

103

5.2. VALIDITY AND RELEVANCE Florian Thiel

7. Small projects can profit more from the annotation method than large
projects unless the community of the large project really endorses the
method.

8. The annotation method may help projects to integrate technological in-
novations quicker.

5.2 Validity And Relevance

The findings about the annotation method are mostly backed by the episodes
with WordPress and Mambo, both PHP projects and very unequal. While
WordPress is immensely popular and has lots of contributors, Mambo lives in
the large shadows of Joomla! and has very few developers. Nevertheless, the
ability to judge the usefulness of the annotation approach is not impeded by
the small number of community members, and the Mambo project accepted the
idea.

However, it cannot be denied that the actual introduction of the annota-
tion approach may have to be totally different to reach projects bigger than
Mambo. That’s why this thesis cannot provide advice for a general approach
to be used for the annotation introduction. The general finding that the an-
notation method is useful is therefore more an argument backed by rationality
then by empiricism.

The concepts observed are valid and relevant given the definitions used in
this thesis. The phenomena mentioned in the concept descriptions definitely
exist in the projects discussed because they are based on the exact observations.
There is nothing specific in the concepts that should limit them to the cases
actually discussed in this thesis (e.g. to PHP projects). The prevalence of
the concepts may be different for projects developed in other programming
languages, but this does not affect the validity of the concepts. No evidence
can be provided for the relevance of these concepts for projects using other
programming languages than PHP, however, there is no reason to expect the
concepts to be irrelevant for other environments. Further research should try
to determine the exact relevance by applying the concepts to web applications
in different languages.

General relevance is given because the concepts were developed within PHP
projects, which are immensely popular for open source web applications.

5.3 Future Research

The research in done in this thesis could not definitely assess if the annotations
will get used. The Mambo project is probably to small to exert big evidential
leverage, and no other project included annotations into their source code.
There is reason to believe that the annotations are beneficial for vulnerability
prevention (see the conclusion), but the questions whether and how projects
used the annotations is still open. This could be approached with another
annotation introduction attempt with more commitment by the innovator.

104

Florian Thiel 5.3. FUTURE RESEARCH

More research is needed for really grounded answers as to whether the an-
notations improve security. This requires successful annotation introductions
into projects and long-term monitoring of a web application project.

Another obvious direction for future research is to establish if the anno-
tations can be used for prevention of other (web) application vulnerabilities.
At some point, SQLIA and XSS will be largely under control, but new types
of vulnerabilities appear permanently. Looking at OWASP’s top ten [Wik09d],
vulnerabilities like Cross-Site Request Forgery (CSRF) or Insecure Direct Object
Reference look like they could be approached using structural or architectural
means, probably a good fit for the annotation method.

The tree categorization provided by the CWE project (see section A.6 on
page 128 with explanations on CWE in the appendix) also provides valuable
pointers as to which vulnerabilities could be compatible with the annotation
approach. In CWE’s tree, both SQLIA and XSS are children of Failure to
Sanitize Data into a Different Plane (aka ’Injection’) [DVT09a]. Other chil-
dren include LDAP injection, XML injection and general code injection. Since
these share the same root problem (missing sanitation when changing execu-
tion planes), it is reasonable to expect the annotation approach to be useful for
these vulnerabilities, too.

Going one step further up the CWE tree, Improper Input Validation is
listed as the parent for the sanitation failure[TDV08]. The annotation approach
presented in this thesis can probably also be used to enforce consistent input
validation (either through the use of a framework or by codification), opening
up a host of other vulnerabilities to target1.

During the research I discovered concepts present in the projects which were
not immediately obvious. These could use some more in-depth analysis of their
impact, prevalence and consequences. Especially psycho-social concepts like
Structural Conservatism or Fear Of Loss Of Power could have dire consequences
on projects’ ability to innovate.

There are more opportunities to build on the insight achieved during the
making of this thesis, which were not to be foreseen. It became apparent while
dealing with the different projects that the age of the applications seems to have
a large influence on the maturity of the components used. While most projects
discussed here have been around for some years, only the relatively young ri-
otfamily, Zikula and habari score high in the domains of Code Reuse and the
use of modern technology like ORM and strong object orientation. It would
be interesting to see if projects of the same age and platform (programming
language plus framework) adopt substantial technological innovations (like the
availability of sophisticated modeling tools or an ORM library) at roughly the
same time or if there are other significant factors involved, besides project age.

Then again, there seem to be differences between the development plat-
forms. The riotfamily project exhibits significantly more best practices than
all the other projects under discussion. riotfamily is a very recent project as is
habari, but the platform used seems to be beneficial to the amount of technology
available for use in the project, too. Java had prepared statements much earlier

1the CWE lists another 40 children to Improper Input Validation

105

5.3. FUTURE RESEARCH Florian Thiel

than PHP, so even a year-old Java project could possibly outperform a quite
recent PHP project in this domain. Is the use of data modeling and consistent
sanitation techniques higher in (e.g.) Java applications in general? If this would
indeed be the case, even further research should try to answer the question if
this effect is caused by the technology itself or merely the sophistication of the
development community attracted by the technology.

The last open question I present here is whether writing annotations using
the technique described here serves as a good means to develop code reviewing
skills for the two vulnerabilities discussed in this thesis (as in perspective-based
reading [BGL+96]). I noticed that having to think through the data flow,
one develops a good intuition for what spots in the code might be vulnerable.
Developing these intuitive patterns enables oneself to skim large amounts of
code quickly.

106

Bibliography

[ABC+08] Anurag Agarwwal, Daniele Bellucci, Arian Coronel, Stefano Di
Paola, Giorgio Fedon, Alan Goodman, Christian Heinrich, Kevin
Horvath, Gianrico Ingrosso, Roberto Suggi Liverani, Alex Kuza,
Pavol Luptak, Ferruh Mavituna, Marco Mella, Matteo Meucci, Marco
Morana, Antonio Parata, Cecil Su, Harish Skanda Sureddy, Mark
Roxberry, and Andrew Van der Stock. OWASP Testing Guide V3.
OWASP Foundation, 3 edition, December 2008.

[BBM96] Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo. How reuse
influences productivity in object-oriented systems. Communications
of the ACM, 39(10):104–116, October 1996.

[BGL+96] Victor R. Basili, Scott Green, Oliver Laitenberger, Filippo Lanubile,
Forrest Shull, Sivert Sorumgard, and Marvin V. Zelkovitz. The em-
pirical investigation of Perspective-Based reading. Empirical Software
Engineering, pages 133–164, 1996.

[Bou09] Jad S. Boutros. Reducing XSS by way of automatic Context-Aware
escaping in template systems, March 2009.

[Cha05] Victor Chapela. Advanced SQL injection, April 2005.

[Cha06] Kathy Charmaz. Constructing Grounded Theory: A Practical Guide
through Qualitative Analysis. Sage Publications Ltd, 1 edition, 2006.

[chr04] chromatic. Perl code kata: Testing taint. http://www.perl.com/
pub/a/2004/10/21/taint_testing_kata.html, October 2004.

[CM07a] Steve Christey and Robert A. Martin. Vulnerability Type Distribu-
tions in CVE. http://cwe.mitre.org/documents/vuln-trends/
index.html, May 2007.

[CM07b] Steve Christey and Robert A. Martin. Vulnerability Type Dis-
tributions in CVE - Summary. http://cve.mitre.org/docs/
vuln-trends/index.html#summary, May 2007.

[Coa06] Ken Coar. The open source definition. http://www.opensource.
org/docs/osd, July 2006.

[Cod70] E. F. Codd. A relational model of data for large shared data banks.
Commun. ACM, 13(6):377–387, 1970.

107

http://www.perl.com/pub/a/2004/10/21/taint_testing_kata.html
http://www.perl.com/pub/a/2004/10/21/taint_testing_kata.html
http://cwe.mitre.org/documents/vuln-trends/index.html
http://cwe.mitre.org/documents/vuln-trends/index.html
http://cve.mitre.org/docs/vuln-trends/index.html#summary
http://cve.mitre.org/docs/vuln-trends/index.html#summary
http://www.opensource.org/docs/osd
http://www.opensource.org/docs/osd

BIBLIOGRAPHY Florian Thiel

[Cor07] MITRE Corporation. About CWE. http://cwe.mitre.org/about/
index.html, September 2007.

[Cow03] C. Cowan. Software security for open-source systems. Security &
Privacy, IEEE, 1(1):38–45, 2003.

[CR05] William R. Cook and Siddhartha Rai. Safe query objects: Statically
typed objects as remotely executable queries. In Proceedings of the,
St. Louis, May 2005. ACM.

[Dam] Bernardo Damele. sqlmap: automatic sql injection tool.

[Dam09] Bernardo Damele. SQL injection: Not only AND 1=1, March 2009.

[DAVT08] Eric Dalci, KDM Analytics, Veracode, and CWE Content Team.
CWE-89: failure to preserve SQL query structure (aka ’SQL injec-
tion’) (1.3). http://cwe.mitre.org/data/definitions/89.html,
July 2008.

[DGD+08] Robert Douglass, Larry Garfield, Marc Delisle, Ken Rickard, Dries
Buytaert, and Simon Hobbs. GoPHP5.org - helping speed the tran-
sition to PHP 5.2. http://gophp5.org/, February 2008.

[DVT09a] Eric Dalci, Veracode, and CWE Content Team. CWE-74: failure
to sanitize data into a different plane (aka ’Injection’) (1.3). http:
//cwe.mitre.org/data/definitions/74.html, March 2009.

[DVT09b] Eric Dalci, Veracode, and CWE Content Team. CWE-79: failure to
preserve web page structure (aka ’Cross-site scripting’) (1.3). http:
//cwe.mitre.org/data/definitions/79.html, March 2009.

[DYI+05] Martin J. Dürst, François Yergeau, Richard Ishida, Misha Wolf, and
Tex Texin. Character model for the world wide web 1.0: Funda-
mentals. http://www.w3.org/TR/charmod/#sec-Escaping, Febru-
ary 2005.

[Eva03] Eric Evans. Domain-Driven Design: Tackling Complexity in the
Heart of Software. Addison-Wesley Professional, August 2003.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and
Don Roberts. Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, July 1999.

[Fel04] David Fells. What’s new in PHP 5. http://www.devshed.com/c/a/
PHP/Whats-New-in-PHP-5/, November 2004.

[FH06] Richard Ford and Michael A. Howard. A process for performing
security code reviews. IEEE Security & Privacy, 4(4):74–79, August
2006.

[Fis09] Harrison Fisk. MySQL :: Prepared statements. http://dev.mysql.
com/tech-resources/articles/4.1/prepared-statements.html,
March 2009.

108

http://cwe.mitre.org/about/index.html
http://cwe.mitre.org/about/index.html
http://cwe.mitre.org/data/definitions/89.html
http://gophp5.org/
http://cwe.mitre.org/data/definitions/74.html
http://cwe.mitre.org/data/definitions/74.html
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/79.html
http://www.w3.org/TR/charmod/#sec-Escaping
http://www.devshed.com/c/a/PHP/Whats-New-in-PHP-5/
http://www.devshed.com/c/a/PHP/Whats-New-in-PHP-5/
http://dev.mysql.com/tech-resources/articles/4.1/prepared-statements.html
http://dev.mysql.com/tech-resources/articles/4.1/prepared-statements.html

Florian Thiel BIBLIOGRAPHY

[FLS08] Mark Fallon, Bryn Liewellyn, and Howard Smith. How to write
injection-proof PL/SQL, September 2008.

[Fou09] Django Software Foundation. Django | the web framework for perfec-
tionists with deadlines. http://www.djangoproject.com/, February
2009.

[Fow02] Martin Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley Professional, November 2002.

[GE08] Jürgen Giesel and Stefan Esser. Bau sicherer LAMP Anwendungen,
August 2008.

[Gro08] The PHP Group. PHP: downloads. http://www.php.net/
downloads.php#v4, August 2008.

[Gro09a] Jeremiah Grossmann. Quick wins and web application security,
March 2009.

[Gro09b] PostgreSQL Development Group. PostgreSQL 8.3: Data
types. http://www.postgresql.org/docs/8.3/static/datatype.
html, March 2009.

[Gro09c] The PHP Group. addslashes - Manual. http://de2.php.net/
addslashes, March 2009.

[Gro09d] The PHP Group. PHP: Backward Incompatible Changes - Man-
ual. http://www.php.net/manual/en/migration5.incompatible.
php, April 2009.

[Gro09e] The PHP Group. PHP Data Objects - Introduction. http://de.
php.net/manual/en/intro.pdo.php, March 2009.

[Han07] Robert Hansen. Charset vulnerabilities. http://ha.ckers.org/
charsets.html, March 2007.

[Han08] Robert Hansen. Clickjacking details. http://ha.ckers.org/blog/
20081007/clickjacking-details/, October 2008.

[Hei01] Josh Heidebrecht. What’s new in JDBC 3.0. http://www.ibm.com/
developerworks/java/library/j-jdbcnew/, July 2001.

[HL02] Michael Howard and David LeBlanc. Writing Secure Code. Microsoft
Press Books, 2. a. edition, December 2002.

[HVO06] William G.J. Halfond, Jeremy Viegas, and Alessandro Orso. A classi-
fication of SQL injection attacks and countermeasures. In IEEE Int’l
Symposium on Secure Software Engineering, 2006.

[LAAA06] V. T. Lam, S. Antonatos, P. Akritidis, and K. G. Anagnostakis.
Puppetnets: misusing web browsers as a distributed attack infras-
tructure. In Proceedings of the 13th ACM conference on Computer

109

http://www.djangoproject.com/
http://www.php.net/downloads.php#v4
http://www.php.net/downloads.php#v4
http://www.postgresql.org/docs/8.3/static/datatype.html
http://www.postgresql.org/docs/8.3/static/datatype.html
http://de2.php.net/addslashes
http://de2.php.net/addslashes
http://www.php.net/manual/en/migration5.incompatible.php
http://www.php.net/manual/en/migration5.incompatible.php
http://de.php.net/manual/en/intro.pdo.php
http://de.php.net/manual/en/intro.pdo.php
http://ha.ckers.org/charsets.html
http://ha.ckers.org/charsets.html
http://ha.ckers.org/blog/20081007/clickjacking-details/
http://ha.ckers.org/blog/20081007/clickjacking-details/
http://www.ibm.com/developerworks/java/library/j-jdbcnew/
http://www.ibm.com/developerworks/java/library/j-jdbcnew/

BIBLIOGRAPHY Florian Thiel

and communications security, pages 221–234, Alexandria, Virginia,
USA, 2006. ACM.

[Lai98] Oliver Laitenberger. Studying the effects of code inspection and struc-
tural testing on software quality. In Proceedings of The Ninth Inter-
national Symposium on Software Reliability Engineering, page 237.
IEEE Computer Society, 1998.

[Mar08] Evan Martin. myspace worm. http://community.livejournal.
com/evan_tech/150019.html, October 2008.

[McC04] Steve McConnell. Code Complete: A Practical Handbook of Software
Construction. Microsoft Press Corp., 2 edition, July 2004.

[Moo05] Nate Mook. Cross-Site scripting worm hits
MySpace. http://www.betanews.com/article/
CrossSite-Scripting-Worm-Hits-MySpace/%1129232391, Oc-
tober 2005.

[MS08] Ofer Maor and Amichal Shulman. Blind SQL injection, 2008.

[Mul07] Matt Mullenweg. On PHP, July 2007.

[Oba02] Dare Obasanjo. The myth of open source security revisited v2.0.
http://www.developer.com/open/article.php/990711, 2002.

[Oez] Christopher Oezbek. Introducing innovations into Open Source
projects. PhD thesis, Freie Universität Berlin, Berlin, Germany.

[OWA09] OWASP. OWASP Enterprise Security API. http://www.owasp.
org/index.php?title=Category:OWASP_Enterprise_Secur%ity_
API\&oldid=57252, March 2009.

[Rei09] Jeremia Reith. WordPress "Host" header RSS feed script insertion
vulnerability. http://secunia.com/advisories/32882/, March
2009.

[RvW03] Mark R. von Wyk, Kenneth G. Graff. Secure Coding, Principles &
Practices. O’Reilly & Associates, June 2003.

[Sch06] Bruce Schneier. Beyond Fear: Thinking Sensibly About Security in an
Uncertain World. Springer, Berlin, illustrated edition edition, June
2006.

[Shi06] Chris Shiflett. addslashes() versus mysql_real_escape_string(),
2006.

[Sul09] Chris Sullo. Scrubbr - new stored XSS finder, February 2009.

[TDV08] CWE Content Team, Eric Dalci, and Veracode. CWE-20: improper
input validation (1.3). http://cwe.mitre.org/data/definitions/
20.html, July 2008.

110

http://community.livejournal.com/evan_tech/150019.html
http://community.livejournal.com/evan_tech/150019.html
http://www.betanews.com/article/CrossSite-Scripting-Worm-Hits-MySpace/% 1129232391
http://www.betanews.com/article/CrossSite-Scripting-Worm-Hits-MySpace/% 1129232391
http://www.developer.com/open/article.php/990711
http://www.owasp.org/index.php?title=Category:OWASP_Enterprise_Secur% ity_API\&oldid=57252
http://www.owasp.org/index.php?title=Category:OWASP_Enterprise_Secur% ity_API\&oldid=57252
http://www.owasp.org/index.php?title=Category:OWASP_Enterprise_Secur% ity_API\&oldid=57252
http://secunia.com/advisories/32882/
http://cwe.mitre.org/data/definitions/20.html
http://cwe.mitre.org/data/definitions/20.html

Florian Thiel BIBLIOGRAPHY

[Tea08] CWE Content Team. CWE-652: failure to sanitize data within
XQuery expressions (aka ’XQuery injection’). http://cwe.mitre.
org/data/definitions/652.html, October 2008.

[TFH04] Dave Thomas, Chad Fowler, and Andy Hunt. Programming Ruby:
The Pragmatic Programmers’ Guide, Second Edition. Pragmatic
Bookshelf, 2nd edition, October 2004.

[Wik08] OWASP Wiki. OWASP SQLiX project - OWASP. http:
//www.owasp.org/index.php?title=Category:OWASP_SQLiX_
Project\&o%ldid=40827, September 2008.

[Wik09a] OWASP Wiki. About the open web application security project.
http://www.owasp.org/index.php/About_OWASP, February 2009.

[Wik09b] OWASP Wiki. OWASP AntiSamy project. http://www.owasp.org/
index.php?title=Category:OWASP_AntiSamy_Project%\&oldid=
51770, 2009.

[Wik09c] OWASP Wiki. Top 10 2007. http://www.owasp.org/index.php?
title=Top_10_2007\&oldid=56154, March 2009.

[Wik09d] OWASP Wiki. Top 10 2007-Insecure direct object refer-
ence. http://www.owasp.org/index.php?title=Top_10_
2007-Insecure_Direct_O%bject_Reference\&oldid=52137,
2009.

[Wik09e] OWASP Wiki. XSS (Cross site scripting) prevention cheat sheet.
http://www.owasp.org/index.php?title=XSS_%28Cross_Site_
Scripting%%29_Prevention_Cheat_Sheet\&oldid=56462, March
2009.

[Wik09f] Wikipedia. Apache license - Wikipedia, the free encyclo-
pedia. http://en.wikipedia.org/w/index.php?title=Apache_
License\&oldid=28449%5805, April 2009.

[Wik09g] Wikipedia. ASCII — Wikipedia, the free encyclopedia. http://en.
wikipedia.org/w/index.php?title=ASCII\&oldid=276091873,
March 2009.

[Wik09h] Wikipedia. Cross-site scripting - Wikipedia, the free encyclope-
dia. http://en.wikipedia.org/w/index.php?title=Cross-site_
scripting\&oldid%=279137374, March 2009.

[Wik09i] Wikipedia. Data Access Object - Wikipedia, the free ency-
clopedia. http://en.wikipedia.org/w/index.php?title=Data_
Access_Object\&oldid=%279710644, March 2009.

[Wik09j] Wikipedia. ECMAScript - Wikipedia, the free encyclope-
dia. http://en.wikipedia.org/w/index.php?title=ECMAScript\
&oldid=277644739, March 2009.

111

http://cwe.mitre.org/data/definitions/652.html
http://cwe.mitre.org/data/definitions/652.html
http://www.owasp.org/index.php?title=Category:OWASP_SQLiX_Project\&o% ldid=40827
http://www.owasp.org/index.php?title=Category:OWASP_SQLiX_Project\&o% ldid=40827
http://www.owasp.org/index.php?title=Category:OWASP_SQLiX_Project\&o% ldid=40827
http://www.owasp.org/index.php/About_OWASP
http://www.owasp.org/index.php?title=Category:OWASP_AntiSamy_Project% \&oldid=51770
http://www.owasp.org/index.php?title=Category:OWASP_AntiSamy_Project% \&oldid=51770
http://www.owasp.org/index.php?title=Category:OWASP_AntiSamy_Project% \&oldid=51770
http://www.owasp.org/index.php?title=Top_10_2007\&oldid=56154
http://www.owasp.org/index.php?title=Top_10_2007\&oldid=56154
http://www.owasp.org/index.php?title=Top_10_2007-Insecure_Direct_O% bject_Reference\&oldid=52137
http://www.owasp.org/index.php?title=Top_10_2007-Insecure_Direct_O% bject_Reference\&oldid=52137
http://www.owasp.org/index.php?title=XSS_%28Cross_Site_Scripting%% 29_Prevention_Cheat_Sheet\&oldid=56462
http://www.owasp.org/index.php?title=XSS_%28Cross_Site_Scripting%% 29_Prevention_Cheat_Sheet\&oldid=56462
http://en.wikipedia.org/w/index.php?title=Apache_License\&oldid=28449% 5805
http://en.wikipedia.org/w/index.php?title=Apache_License\&oldid=28449% 5805
http://en.wikipedia.org/w/index.php?title=ASCII\&oldid=276091873
http://en.wikipedia.org/w/index.php?title=ASCII\&oldid=276091873
http://en.wikipedia.org/w/index.php?title=Cross-site_scripting\&oldid% =279137374
http://en.wikipedia.org/w/index.php?title=Cross-site_scripting\&oldid% =279137374
http://en.wikipedia.org/w/index.php?title=Data_Access_Object\&oldid=% 279710644
http://en.wikipedia.org/w/index.php?title=Data_Access_Object\&oldid=% 279710644
http://en.wikipedia.org/w/index.php?title=ECMAScript\&oldid=277644739
http://en.wikipedia.org/w/index.php?title=ECMAScript\&oldid=277644739

BIBLIOGRAPHY Florian Thiel

[Wik09k] Wikipedia. Information security — Wikipedia, the free
encyclopedia. http://en.wikipedia.org/w/index.php?title=
Information_security\&oldid%=274618521, March 2009.

[Wik09l] Wikipedia. Mambo (software) - Wikipedia, the free ency-
clopedia. http://en.wikipedia.org/w/index.php?title=Mambo_
(software)\&oldid=277%164952, March 2009.

[Wik09m] Wikipedia. Relational algebra — Wikipedia, the free encyclope-
dia. http://en.wikipedia.org/w/index.php?title=Relational_
algebra\&oldid=2%72656872, February 2009.

[Wik09n] Wikipedia. SOAP - Wikipedia, the free encyclopedia. http://
en.wikipedia.org/w/index.php?title=SOAP\&oldid=279877292,
March 2009.

[Wik09o] Wikipedia. Unicode —Wikipedia, the free encyclopedia. http://en.
wikipedia.org/w/index.php?title=Unicode\&oldid=273508720,
March 2009.

[Wik09p] Wikipedia. Wikipedia:Academic use — Wikipedia, the free
encyclopedia. http://en.wikipedia.org/w/index.php?title=
Wikipedia:Academic_use\&old%id=262252509, March 2009.

[Wil09] Jeff Williams. Don’t Write Your Own Security Code: The OWASP
Enterprise Security API, March 2009.

[Wor09a] Wordpress.org. Data Validation. http://codex.wordpress.org/
Data_Validation, April 2009.

[Wor09b] Wordpress.org. WordPress › About » Requirements. http://
wordpress.org/about/requirements/, April 2009.

[Yin08] Dr. Robert K. Yin. Case Study Research: Design and Methods. Sage
Publications, Inc, 4th edition, October 2008.

[Zal09a] Michal Zalewski. Browser security handbook, part 2 - same-
origin policy. http://code.google.com/p/browsersec/wiki/
Part2#Same-origin_policy, March 2009.

[Zal09b] Michal Zalewski. Browser security handbook, part 2 - same-
origin policy for XMLHttpRequest. http://code.google.
com/p/browsersec/wiki/Part2#Same-origin_policy_f%or_
XMLHttpRequest, March 2009.

112

http://en.wikipedia.org/w/index.php?title=Information_security\&oldid% =274618521
http://en.wikipedia.org/w/index.php?title=Information_security\&oldid% =274618521
http://en.wikipedia.org/w/index.php?title=Mambo_(software)\&oldid=277% 164952
http://en.wikipedia.org/w/index.php?title=Mambo_(software)\&oldid=277% 164952
http://en.wikipedia.org/w/index.php?title=Relational_algebra\&oldid=2% 72656872
http://en.wikipedia.org/w/index.php?title=Relational_algebra\&oldid=2% 72656872
http://en.wikipedia.org/w/index.php?title=SOAP\&oldid=279877292
http://en.wikipedia.org/w/index.php?title=SOAP\&oldid=279877292
http://en.wikipedia.org/w/index.php?title=Unicode\&oldid=273508720
http://en.wikipedia.org/w/index.php?title=Unicode\&oldid=273508720
http://en.wikipedia.org/w/index.php?title=Wikipedia:Academic_use\&old% id=262252509
http://en.wikipedia.org/w/index.php?title=Wikipedia:Academic_use\&old% id=262252509
http://codex.wordpress.org/Data_Validation
http://codex.wordpress.org/Data_Validation
http://wordpress.org/about/requirements/
http://wordpress.org/about/requirements/
http://code.google.com/p/browsersec/wiki/Part2#Same-origin_policy
http://code.google.com/p/browsersec/wiki/Part2#Same-origin_policy
http://code.google.com/p/browsersec/wiki/Part2#Same-origin_policy_f% or_XMLHttpRequest
http://code.google.com/p/browsersec/wiki/Part2#Same-origin_policy_f% or_XMLHttpRequest
http://code.google.com/p/browsersec/wiki/Part2#Same-origin_policy_f% or_XMLHttpRequest

Appendix A

Appendix

A.1 Guides To External Data

A.1.1 Annotation Diff Instructions

The source code for all innovation introductions was generated in unified diff
format as produced by the Subversion1 svn diff command. Differences were
taken against the respective version of the application, as noted below. All diff
files can be found on the enclosed CD-ROM in sub-folders of the directory
annotations. The particular repositories which provide the source code the
diffs were made from can be found in section A.1.2 on the following page.

WordPress

All the annotation diffs can be found in the WordPress subdirectory.

wordpress-2.7_sqlannotations.diff contains the first annotation attempt
for WordPress, targeting SQL. The diff applies to tags/2.7 in the Word-
Press repository.

wordpress-trunk_20090124_sqlannotations.diff contains a revised version
of the diff above that applies to the trunk of the WordPress repository
in the version as of January 24th, 2009. This version was requested on
the mailing list ([wp:25294]).

wordpress_sqlannotations_simple.diff contains a version of the diff against
the trunk as above but with only the method_exists and trivial_implementation
annotations. This was an attempt to provide an easier-to-swallow anno-
tation approach to WordPress ([wp:25394]).

wordpress_delete_wpdb.diff contains a proof-of-concept abstraction for SQL’s
DELETE statement and was used for illustration purposes ([wp:25394]).

1http://subversion.tigris.org/

113

http://article.gmane.org/gmane.comp.web.wordpress.devel/{25294}
http://article.gmane.org/gmane.comp.web.wordpress.devel/{25394}
http://article.gmane.org/gmane.comp.web.wordpress.devel/{25394}
http://subversion.tigris.org/

A.1. GUIDES TO EXTERNAL DATA Florian Thiel

Mambo

All the annotations diffs can be found in the Mambo subdirectory. All diffs
apply to the tags/465_release tag in the Mambo repository (see repository
directory in A.1.2).

mambo465_administrator_annotations.diff contains the annotations for ab-
straction of raw SQL for the administrator subdirectory of Mambo. It
contains both the trivial_implementation and unclassified annota-
tions used in the diff below.

mambo465_administrator_annotations_trivialonly.diff contains a version
of the annotation above with only annotations marked as trivial_implementation.
It was presented to the Mambo developers in [mambo:Annotations+for+
raw+SQL.html]

mambo465-insert-impl.diff contains a proof-of-concept of how an abstrac-
tion of SQL’s INSERT statement could look like. It was also part of the
original announcement of the annotations in [mambo:Annotations+for+
raw+SQL.html].

mambo465_htmlencoding_com_*.diff contain the annotations for the respec-
tive subdirectories treated by the HTML escaping annotations for Mambo.
They were introduced in [mambo:Consistent+encoding+for+HTML+against+
XSS+attacks.html].

A.1.2 Source Code Repositories

Code excerpts and references to the code throughout this thesis contain the
project name, the path to the file references, the relevant line number and revi-
sion number. This list contains the base URLs to the source code repositories
that were used to retrieve the code.

Source code files which are referenced in this thesis can be resolved by
appending the paths given in a reference to the respective project base URL.
Note that the paths don’t specify the exact version of the files. In revision
control systems like Subversion the exact version to retrieve has to be given in
addition to the path to a file. Note that all project repositories beside Drupal
use Subversion. The Drupal project uses CVS.

WordPress http://svn.automattic.com/wordpress/trunk

Mambo https://mambo-developer.org/svn/mambo/tags/465_release

Joomla! http://joomlacode.org/svn/joomla/development/tags/1.5.x/1.
5.10

habari http://svn.habariproject.org/habari/tags/0.6

phpBB http://code.phpbb.com/svn/phpbb/tags/release_3_0_4

Zikula https://code.zikula.org/svn/core/branches/zikula-1.1

114

file:correspondence/Mambo/Annotations\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}for\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}raw\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}SQL.html
file:correspondence/Mambo/Annotations\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}for\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}raw\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}SQL.html
file:correspondence/Mambo/Annotations\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}for\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}raw\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}SQL.html
file:correspondence/Mambo/Annotations\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}for\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}raw\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}SQL.html
file:correspondence/Mambo/Consistent\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}encoding\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}for\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}HTML\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}against\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}XSS\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}attacks.html
file:correspondence/Mambo/Consistent\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}encoding\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}for\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}HTML\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}against\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}XSS\protect \unhbox \voidb@x \penalty \@M \hskip \z@skip {}+\discretionary {}{}{}\penalty \@M \hskip \z@skip {}attacks.html
http://svn.automattic.com/wordpress/trunk
https://mambo-developer.org/svn/mambo/tags/465_release
http://joomlacode.org/svn/joomla/development/tags/1.5.x/1.5.10
http://joomlacode.org/svn/joomla/development/tags/1.5.x/1.5.10
http://svn.habariproject.org/habari/tags/0.6
http://code.phpbb.com/svn/phpbb/tags/release_3_0_4
https://code.zikula.org/svn/core/branches/zikula-1.1

Florian Thiel A.1. GUIDES TO EXTERNAL DATA

Drupal CVS: cvs.drupal.org:/cvs/drupal module:drupal tag:DRUPAL-6-10

riotfamily http://svn.riotfamily.org/svn/riotfamily/tags/release-8-0

TYPO3 https://svn.typo3.org/TYPO3v4/Core/branches/TYPO3_4-2-6

A.1.3 Mail Correspondence Instructions

This section explains how to access mail correspondence referenced throughout
this thesis. Since the projects use different means for communication, access-
ing the sources is project-specific. All references to mail in this thesis have a
common format and look like this: [projectname:identifier-or-filename].

Some mails from personal communication2 are not available online and can
only be found on the enclosed CD. Some mails are available online as well
as locally. See the instructions for the respective project. Note that for mails
supplied on the CD in normal text format, the mail addresses have been removed
because of privacy and anti-spam considerations.

WordPress Mailing list data for the WordPress project is available online and
locally as an mbox-format file. References for WordPress mailing list mes-
sages contain a unique id by GMane for each message. It can be used to
retrieve the message from the online mail archive GMane3. The base URL
for the WordPress development mailing list is http://article.gmane.
org/gmane.comp.web.wordpress.devel. Individual messages can be re-
trieved by appending the unique id to the URL or (if viewing the Portable
Document Format (PDF) version of the thesis, by clicking the link.
The GMane archive is also supplied as an archive in mbox format, contain-
ing all the archive contents as of April 19, 2009. The file can be found on
the CD at correspondence/wordpress/gmane.comp.web.wordpress.devel.mbox
Mails from personal communication are identified by a filename. These
messages are not available online and can be found in correspondence/
wordpress on the CD.

Mambo Mambo does not use the development mailing list extensively, all ref-
erences point to local files only. All references to messages are marked with
amambo: and include filenames. The files can be found in correspondence/
Mambo on the CD. Note that for the Mambo project, chat transcripts were
used extensively. The references are marked with mamboIRC: and are
explained in the respective appendix section, A.1.4 on the next page.

Joomla! Messages concerned with the Joomla! project are available locally
and online via Google Groups. The references contain the local filename
which references files found in correspondence/joomla. The hyperlink
associated to the reference points to the respective message in the Google
Groups group. The base URL for the group is http://groups.google.
com/group/joomla-dev-framework.

2all people whose mail appears in the context of this thesis gave their explicit permission
for use

3http://www.gmane.org

115

http://svn.riotfamily.org/svn/riotfamily/tags/release-8-0
https://svn.typo3.org/TYPO3v4/Core/branches/TYPO3_4-2-6
http://article.gmane.org/gmane.comp.web.wordpress.devel
http://article.gmane.org/gmane.comp.web.wordpress.devel
http://groups.google.com/group/joomla-dev-framework
http://groups.google.com/group/joomla-dev-framework
http://www.gmane.org

A.1. GUIDES TO EXTERNAL DATA Florian Thiel

habari The complete habari correspondence is available locally and via Google
Groups, as for Joomla!. The files mentioned in the references can be found
in correspondence/habari. References are click-able and point to the
Google Group located at http://groups.google.com/group/habari-dev.

phpBB As I did not get responses from the phpBB team, there is no message
data.

Zikula Messages exchanged with Zikula community members are available on
the enclosed CD, in the directory correspondence/zikula. References
contain the filename for the respective message.

TYPO3 As I did not get replies to my project analysis questionnaire, there is
no data for TYPO3.

Drupal Replies to my project analysis questionnaire were not referenced, but
can be found in correspondence/drupal.

riotfamily As I did not get replies to my project analysis questionnaire, there
is no data for riotfamily.

A.1.4 Chat Transcript Instructions

Chat transcripts were used for the interaction with the Mambo project. They
can be found on the enclosed CD in the Mambo sub-folder of correspondence
directory.

The transcripts are available in two formats: First, in an XML format used
by Colloquy, the tool I used to record the transcripts (ending in .colloquyTranscript)
and second, a simple text format produced by the XML Stylesheet Language
Transformations (XSLT) style-sheet found in tools/colloquy.xml on the en-
closed CD (ending in .txt).

The filenames of the transcript files consist of the channel name followed by
the date the transcript was recorded on. References to transcripts use date gran-
ularity. An example filename would look like this: mos-cms_2009-02-11.txt.
A reference in the thesis text to this file would look like this: mamboIRC:2009-02-11.

116

http://groups.google.com/group/habari-dev

Florian Thiel A.2. DATA EXCERPTS

A.2 Data Excerpts

A.2.1 Selected Correspondence

From : F lo r i an Thie l
Date : January 16 , 2009 8 : 2 0 : 4 9 PM GMT+01:00
To : Matt Mullenweg
Subject : P roac t i v e l y enhancing WordPress s e c u r i t y the l i gh twe i gh t way

He l lo Matt ,

My name i s F lo r i an and I ’m doing r e s ea r ch on open source p r o j e c t s and
s e c u r i t y f o r my diploma t h e s i s . I would l i k e to propose (and attach a
patch f o r) a very l i gh twe ight , evo lu t i ona ry approach to SQL In j e c t i o n
Attacks , some o f which plagued WordPress in the past .

Previous attempts to " j u s t make WordPress use data a c c e s s ab s t r a c t i on "
(as sometimes proposed on the mai l ing l i s t) were understandably met
with a l o t o f oppos i t i on as l a r g e s t r u c t u r a l changes don ’ t come easy
in an open source p r o j e c t (or any p r o j e c t) . S ince the re i s ba s i c data
a c c e s s ab s t r a c t i on in the code (e . g . $wpdb−>i n s e r t and $wpdb−>update
in wp−db . php) I th ink you would agree that having gene ra l data a c c e s s
ab s t r a c t i on would be a good th ing from a s e c u r i t y / robus tnes s po int o f
view . I ’ d l i k e to make the path to gene ra l data a c c e s s ab s t r a c t i on e a s i e r :

I produced a patch aga in s t WordPress 2 . 7 which annotates and
c l a s s i f i e s a l l uses o f i n l i n e SQL. The c l a s s i f i c a t i o n t e l l s you how
much work i t would be to get r i d o f the i n l i n e use o f SQL. The patch
can be found at
http ://www. noroute . de/downloads/wordpress −2.7 _sq lannotat ions . d i f f

From the 443 p l a c e s where I found i n l i n e SQL, the re are 85 p l a c e s
where an ab s t r a c t i on a l ready e x i s t s and j u s t had to
be used . Furthermore , the re are 172 p l a c e s where a t r i v i a l implementation
(t r i v i a l meaning that a very s im i l a r method a l r eady e x i s t s) would help
get r i d o f the use o f i n l i n e SQL. So by adding around 5 s imple methods
to wp−db . php you would get r i d o f more than 250 prob lemat ic uses o f
i n l i n e SQL. And the best part : We can s t a r t with the low−hanging f r u i t
and gradua l l y move to the harder ones whi l e keeping the code working
a l l the time !

I ’m sending t h i s mail to the WordPress core deve l ope r s to gather your
views on the top i c be f o r e d i s c u s s i n g with a gene ra l audience . Do you
have any concerns about the proposed change ? Do you think i t would
c e r t a i n th ing s worse ? Not match the WordPress coding approach ? We can
c e r t a i n l y d i s c u s s a l l the po in t s you con s id e r prob lemat ic . I f the
community approves the idea and s t a r t s working on i t , I w i l l f o l l ow up
with a s im i l a r approach f o r XSS , the other b ig s e c u r i t y concern f a c i n g
WordPress .

Hope to hear from you and a l l the best ,
F lo r i an

117

A.2. DATA EXCERPTS Florian Thiel

Listing A.1: initial mail to Matt Mullenweg of WordPress

118

Florian Thiel A.2. DATA EXCERPTS

From : Lynne Pope
To : F lo r i an Thie l
Date : Thu , 29 Jan 2009 17 : 49 : 01 +0200
Subject : Re : [wp−hackers] Making WP more s ecure the evo lu t i ona ry way

Hi Flor ian ,
I ’ ve been qu i e t on the WP Hackers d i s c u s s i o n because I ’ ve seen the i s s u e o f
ab s t r a c t i on being argued be f o r e . I am not sure you w i l l get very f a r with
t h i s !

However , I wanted to l e t you know that i f you r e a l l y want to be ab le to
con t r i bu t e to a vo luntee r FOSS pro j ec t , and don ’ t mind i f i t s not WordPress ,
then Mambo i s d e spe ra t e l y needing deve l ope r s with your s k i l l s .
The Mambo CMS i s near ly 9 years o ld − 8 years as an open source p r o j e c t
under the GPL.

I f you are i n t e r e s t e d in he lp ing out with Mambo (where database ab s t r a c t i on
i s wanted) the in fo rmat ion about how to get invo lved and where to f i nd the
mai l ing l i s t and IRC channel i s here :
http ://mambo−manual . org / d i sp l ay / cont r i b /Home

The lead deve loper i s u sua l l y found on the IRC channel . However , d e sp i t e
j u s t under 1 .5 m i l l i o n downloads l a s t year , the development team i s very
smal l and 3rd party hackers don ’ t hang out on the mai l ing l i s t or channels ,
so th e r e s not a l o t o f outward s i gn s o f a c t i v i t y .

Just a thought ;)

Best Regards ,
Lynne

Listing A.2: invitation to join Mambo

119

A.2. DATA EXCERPTS Florian Thiel

Hel lo Mambo deve lopers ,

as promised I took a look at how to make encoding f o r HTML to prevent
cros s−s i t e s c r i p t i n g more c on s i s t e n t . I agreed with Andphe some time
ago that doing the s an i t a t i o n as l a t e es p o s s i b l e (meaning : in the
" echo " s) i s the way to go . And here we are . I c r ea ted annotat ions
(s im i l a r to the ones f o r the u n i f i c a t i o n on SQL handling , s e e XXXX)
f o r the p l a c e s that need changing . I l im i t ed myse l f to 5 f o l d e r s in
admin i s t ra to r /components (com_admin , com_banner , com_categories ,
com_checkin , com_comment) f o r the f i r s t run because the re are a l o t
o f annotat ions .

Patches f o r the r e s p e c t i v e f o l d e r s (aga in s t Mambo 4 . 65) are attached .

The annotat ions can e a s i l y i d e n t i f i e d by sea r ch ing f o r
@EncodeForHTML . The annotat ion comes in d i f f e r e n t f l a v o r s s i n c e XSS
prevent ion l ooks a b i t d i f f e r e n t , depending on the context o f the
dynamic code . E. g , you don ’ t need <>s i f you can i n j e c t i n to an
a t t r i b u t e . Ur l s and CSS a l s o need d i f f e r e n t encoding , (IE can execute
s c r i p t code from CSS) .

The d i f f e r e n t f l a v o r s are as f o l l ow s :
∗ p l a in : body text , the re should be no markup
∗ html : may conta in html (o f t en f o r re turn va lues that a l r eady bu i ld

HTML)
∗ JavaScr ipt data : data (not c on t r o l) i n s i d e a JavaScr ipt exp r e s s i on
∗ a t t r i b u t e : i n s i d e a HTML a t t r i bu t e
∗ URL: part o f a URL
∗ CSS : becomes used as CSS

The vast major i ty o f ca s e s i s " p l a i n " , which i s good . I don ’ t want to
in t roduce much fu r th e r compl i ca t ion . I would sugges t that we int roduce
s an i t a t i o n func t i on s f o r a l l the se ca s e s . Some can (f o r now) do the
same th ing so that one can l a t e r switch the implementation i f we have
a good way f o r s an i t a t i o n . S ince they w i l l be used often , the
f unc t i on s should have shor t names :

I sugges t :
p l a i n −> p ()
html −> h ()
JavaScr ipt −> j s ()
a t t r i b u t e −> a ()
URL −> u ()
CSS −> cs s ()

Mambo a l ready has s an i t a t i o n f un c t i o n a l i t y , but I th ink i t would be
good to use a l i b r a r y that ’ s maintained and updated e x t e r n a l l y so
the re w i l l be no extra work . The Open Web Appl i ca t ion Secur i ty Pro j e c t
(OWASP) maintains a l i b r a r y c a l l e d "Reform " that has nat ive support
f o r our " p l a i n " and " a t t r i b u t e " ca s e s . Their approach i s to only a l low
ASCII alphanumerics and b a s i c a l l y HTML encode a l l the r e s t , which i s
r e a l l y s a f e (wh i t e l i s t i n g) .

120

Florian Thiel A.2. DATA EXCERPTS

As a f i r s t step , the implementation o f h () would take us a step
forward . I don ’ t know where (in the codebase) that should r e s i d e and
i f we should use namespacing (aga in s t c o l l i s i o n s , the names are qu i t e
shor t) .

h () could j u s t use the implementation o f HtmlEncode from Reform
(http ://www. owasp . org / index . php/Category : OWASP_Encoding_Project) and
i s t h e r e f o r e easy to implement .

What do you a l l th ink ? I s t h i s the way to go? Please comment on the
mai l ing l i s t . . .

F lo r i an

Listing A.3: announcement of the HTML escaping annotations for Mambo

121

A.2. DATA EXCERPTS Florian Thiel

From : F lo r i an Thie l
To : joomla−dev−framework at goog legroups . com
Date : Tue , 31 Mar 2009 14 : 20 : 41 +0200
Subject : Process and technology que s t i onna i r e

He l lo once again , Joomla deve lopers ,

I ’m in the proce s s o f wr i t i ng my diploma t h e s i s on the prevent ion o f
(open source) web app l i c a t i o n s e c u r i t y v u l n e r a b i l i t i e s and I ’ d l i k e to
know a b i t
about your f i n e pro j e c t , the way you see i t . (I know some o f the se
que s t i on s can be answered , at l e a s t roughly , from your web pages) .

I t would be grea t i f you could take a couple
o f minutes and think about the que s t i on s below . The que s t i on s are
mostly open−ended . Elaborate and sk ip que s t i on s at w i l l . I ’ d l i k e to
get answers by the community , not j u s t the p r o j e c t l ead . I f answers
d ive rge va s t l y on a top ic , I ’ d l i k e to f o l l ow up on these .

Thank you very much in advance . I w i l l prov ide you with a l i n k to the
r e s u l t s o f my t h e s i s when i t ’ s done . Maybe you can b en e f i t from some
o f the f i n d i n g s .

F lo r i an

The que s t i on s :

About t e c hn i c a l a spec t s :
− Are you us ing a web app l i c a t i o n framework? Which one?
− Do you use e x p l i c i t data modeling f o r a l l bu s in e s s ob j e c t s in the

app l i c a t i o n ?
− Do you have a s p e c i f i c l a y e r s f o r input /output va l i d a t i o n / f i l t e r i n g ?

(I f app l i c ab l e) What does the input /output l ay e r do (r e s p e c t i v e l y)?
How? Are you us ing ex t e rna l l i b r a r i e s ? Why? Why not ? (f o r HTML
san i t a t i o n . object−r e l a t i o n a l mappers , database ab s t r a c t i o n s with
prepared statements)?

− (I f a pp l i c ab l e) What r e s p o n s i b i l i t i e s do the input /output l a y e r s
have , r e s p e c t i v e l y ?

− How do you ensure that a l l input passed through va l i d a t i o n /
f i l t e r i n g ? Do you have an API that must be used ?

− Do you prov ide s e r v i c e s to independent ly developed modules/
components ? I s the re a de f ined API?

− Which other ex t e rna l l i b r a r i e s do you use ?

About the development proce s s :
− I s the re pub l i c documentation about the r e s p o n s i b i l i t i e s o f the

input /output l a y e r s ?
− I s the re pub l i c documentation about ∗when∗ input /output va l i d a t i o n /

f i l t e r i n g should happen? (Like : " output f i l t e r i n g must always happen
in the method that render s the data ")

− Do you have automatic t e s t s f o r the whole system?

122

Florian Thiel A.2. DATA EXCERPTS

Bonus ques t i on :
− Do you do manual code review ?

Listing A.4: Project questionnaire sent to the Joomla! project

A.2.2 Additional Annotation Excerpts

640 ∗ @RawSQLUse, a l go r i thmi c
641 ∗/
642 func t i on prepare_query () {
643 g l oba l $wpdb ;
644 $th i s−>f i r s t_u s e r = ($th i s−>page − 1) ∗ $th i s−>

users_per_page ;
645 $th i s−>query_l imit = $wpdb−>prepare (" LIMIT %d , %d" , $ th i s

−>f i r s t_us e r , $ th i s−>users_per_page) ;
646 $th i s−>query_sort = ’ ORDER BY user_log in ’ ;
647 $search_sql = ’ ’ ;
648 i f ($ th i s−>search_term) {
649 $sea r che s = array () ;
650 $search_sql = ’AND (’ ;
651 foreach (array (’ user_log in ’ , ’ user_nicename ’ , ’

user_email ’ , ’ user_ur l ’ , ’ display_name ’) as $co l)
652 $sea r che s [] = $co l . " LIKE ’%$th i s−>search_term%’

" ;
653 $search_sql .= implode (’ OR ’ , $ s ea r che s) ;
654 $search_sql .= ’) ’ ;
655 }
656 $th i s−>query_from_where = "FROM $wpdb−>use r s " ;
657 i f ($ th i s−>ro l e)
658 $th i s−>query_from_where .= $wpdb−>prepare (" INNER JOIN

$wpdb−>usermeta ON $wpdb−>use r s . ID = $wpdb−>
usermeta . user_id WHERE $wpdb−>usermeta . meta_key =
’{$wpdb−>pr e f i x } c a p a b i l i t i e s ’ AND $wpdb−>usermeta .
meta_value LIKE %s " , ’%’ . $ th i s−>ro l e . ’%’) ;

659 else
660 $th i s−>query_from_where .= " WHERE 1=1" ;
661 $th i s−>query_from_where .= " $search_sql " ;
662 }

Listing A.5: WordPress: wp-admin/includes/user.php, (revision 10323
(locally modified))

123

A.3. SYNTAX GUIDES Florian Thiel

A.3 Syntax Guides

A.3.1 Python Syntax Used

Example listings in this thesis which explain SQL queries but do not exclusively
consist of SQL, are written in Python4. Python is used because of its intuitive
readability, even for people not familiar with the language details.

The main language constructs used in the examples are variable assignment
and string templates. Variables in Python do not need any special markers and
the language is dynamically typed, so assignments look like listing A.6.

va r i ab l e = 3
va r i ab l e 2 = ‘ ‘ foo ’ ’

Listing A.6: Python variable assignment example

String templates are used to demonstrate SQL injections and look like the
example in listing A.7.

" This i s a s t r i n g with a %s place−ho lder " % (" fancy ")

Listing A.7: Python string template example

Similar to C format strings, %s is used to mark a place-holder for a string.
The values following the % after the string are inserted (in order) into the place-
holders, so the string above would read “This is a string with a fancy place-
holder”. Note that Python supports other place-holders than %s for types other
than strings. If one would actually use Python to construct SQL statements,
one would surely use these other place-holders to provide type safety.

4http://www.python.org

124

http://www.python.org

Florian Thiel A.4. LEGITIMACY OF ONLINE SOURCES

A.4 Legitimacy Of Online Sources

This thesis makes extensive use of online sources, including web-logs and Wikis.
Using these is inevitable in order to provide an up-to-date discussion of the
topics presented in this thesis. Scientific literature can not keep up with the
pace exploit techniques — especially forXSS — are changing. Furthermore,
web-logs allow me to cite the opinion of professionals who work with real-life
vulnerabilities and mitigation solutions. The nature of this thesis’ discussion
requires real-life solutions which can be applied by open source web application
projects, not theoretically perfect mitigations which only work with laboratory
set-ups.

The people whose web-logs I cited have a background in security research
and practice and state their professional opinions. While web-logs are not as
thoroughly reviewed as scientific journals, the comment facilities allow correc-
tions of errors or omissions by readers, which are often professionals as well.
Furthermore, the professional reputation authors of web-logs gain by writing
high-quality articles is at stake if they publish unfounded and possibly wrong
information.

I think these arguments suffice to allow inclusion of certain kinds of non-
reviewed source into this thesis. Note that neither Wikis nor web-log entries
were cited for cases that need highly reliable data or are very controversial.

A.4.1 Citing Wikis

Wikipedia and OWASP are public Wikis, and as such, not regarded as a stable
and trusted source for research by some (Wikipedia has its own take on the
subject in an article about academic use of Wikipedia [Wik09p]5).

Wikipedia and the OWASP Wiki are not strictly, scientifically reviewed.
OWASP articles are mostly written by members of the OWASP, who are secu-
rity professionals. Wikipedia is not written by a closed community and there-
fore the expertise of contributors varies wildly. Overall, I believe the quality
of articles in Wikipedia, especially about computer science topics, is very high.
Nevertheless, I only use Wikipedia articles in this thesis for background infor-
mation for the reader. I do not cite Wikipedia for argumentation or data.

A.4.2 Linking to MediaWiki

Both OWASP and Wikipedia are Wikis using the popular MediaWiki6 software.
To accommodate for the need to cite an exact version of an article, the

MediaWiki software provides a little-known feature, called the permanent link.
Each version of each article has a unique identifier which can be used to re-
trieve a specific version of an article. The identifier is independent from the
article name and can as such be used to retrieve the exact version cited, un-
encumbered by renaming or restructuring. All citations from Wikipedia and

5This, again, is a citation of Wikipedia, which you may decide not to trust if you’re a
researcher.

6http://www.mediawiki.org/wiki/MediaWiki

125

http://www.mediawiki.org/wiki/MediaWiki

A.4. LEGITIMACY OF ONLINE SOURCES Florian Thiel

OWASP include the URL with the identifier, somehow inappropriately called
oldid. An example for the article about using Wikipedia in academia would
look like this: http://en.wikipedia.org/w/index.php?title=Wikipedia:
Academic_use\&oldid=262252509

126

http://en.wikipedia.org/w/index.php?title=Wikipedia:Academic_use\&oldid=262252509
http://en.wikipedia.org/w/index.php?title=Wikipedia:Academic_use\&oldid=262252509

Florian Thiel A.5. Open Web Application Security Project (OWASP)

A.5 OpenWeb Application Security Project (OWASP)
The OWASP7 is a worldwide community focused on improving application secu-
rity. As of their mission statement they are “dedicated to enabling organizations
to develop, purchase and maintain applications that can be trusted” [Wik09a].
For this purpose they provide educational materials about application security,
hold conferences and develop software tools.

In order to make application security issues visible, they publish top ten
lists of common vulnerabilities. The 2007 version of this list [Wik09c] was one
of the main inspirations for this thesis.

All documents, tools and other information provided by OWASP is available
free of charge and open for reuse by anyone. Their large collection of How-Tos,
presentations and guides proved to be an invaluable resource for research on
the topic of web application security.

The documents provided by OWASP turn up in discussions among security
professionals cited in this thesis (e.g. Jeremiah Grossman, Robert Hansen, etc.),
providing credibility to material produced by OWASP.

7https://www.owasp.org

127

https://www.owasp.org

A.6. THE COMMON WEAKNESS ENUMERATION PROJECTFlorian Thiel

A.6 The Common Weakness Enumeration Project
Although this thesis is based on common weaknesses from the OWASP (see
section A.5 on the preceding page) top ten list of 2007 [Wik09c], that list only
provided the initial inspiration for the vulnerabilities to look at.

The CWE project supplies a much more interesting (from a research stand-
point) summary discussion of the weaknesses discussed in this thesis, and
security-related weaknesses in general.

The CWE project is a community-based effort to provide a structured cata-
log of software weaknesses. MITRE, a not-for-profit corporation which provides
technical and operational expertise to government bodies, started categorizing
software weaknesses in 1999 and published the Common Vulnerabilities and
Exposure (CVE) list8. The list merely provides an identifier and a list of refer-
ences for vulnerabilities which can be used to uniquely address a vulnerability.
The list was maintained by a single body and its use was limited to redistribu-
tion. No changes to the list were allowed.

To be able to categorize and assess tools provided by the security assess-
ment industry, a more structured approach was adopted in 2005. MITRE
revised the CVE list for a government-funded endeavor, the Software Assur-
ance Metrics and Tool Evaluation (SAMATE) project. The resulting document
was called the Preliminary List Of Vulnerability Examples For Researchers
(PLOVER) [Cor07]. It included the CVE names but featured conceptual group-
ing of vulnerability types. The final step was to add commonly acceptable
definitions and descriptions to the weaknesses, resulting in the CWE list. In
contrast to the CVE, the CWE list is maintained by a community process which
includes researchers and practicioners. According to MITRE, the CWE pro-
vides “a common language for describing software security weaknesses [and] a
standard measuring stick for software security tools”[Cor07].

The list provides a tree-structured collection of vulnerabilities. The leaves
represent very concrete vulnerabilities, the entries on the path to the tree root
are increasingly abstract, representing categories into which the vulnerabilities
can be subsumed.

The tree-shaped structure of vulnerability definitions provided by CWE is
useful for future research on adequate additional vulnerabilities which could be
targeted by the annotation approach. See section 5.3 on page 104 on future
research for ideas.

8http://cve.mitre.org/

128

http://cve.mitre.org/

Florian Thiel A.7. ACRONYMS USED

A.7 Acronyms Used
CWE Common Weakness Enumeration

XSS Cross-Site Scripting

SQL Structured Query Language

OWASP Open Web Application Security Project

CVE Common Vulnerabilities and Exposure

SAMATE Software Assurance Metrics and Tool Evaluation

PLOVER Preliminary List Of Vulnerability Examples For Researchers

CMS Content Management System

SQLIA SQL Injection Attack

MAC Mandatory Access Control

DoS Denial of Service

ORM Object-Relational Mapping

DML Data Manipulation Language

FROC Front-Range OWASP Conference

HTML Hypertext Markup Language

XHTML Extensible Hypertext Markup Language

HTTP HyperText Transfer Protocol

DOM Document Object Model

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

URI Uniform Resource Identifier

CSS Cascading Style Sheet

URL Uniform Resource Locator

XML eXtensible Markup Language

OSI Open Source Initiative

IEC International Electrotechnical Commission

ESAPI Enterprise Security API

MVC Model-View-Controller

129

A.7. ACRONYMS USED Florian Thiel

ASCII American Standard Code for Information Interchange

IDE Integrated Development Environment

NVD National Vulnerability Database

CRM Customer Relationship Management

ERP Enterprise Resource Planning

GPL General Public License

RSS Really Simple Syndication

MVC Model-View-Controller

IRC Internet Relay Chat

XSLT XML Stylesheet Language Transformations

RPC Remote Procedure Call

WAF Web Application Firewall

FAQ Frequently Asked Questions

MPL Mozilla Public License

DWR Direct Web Remoting

LGPL Lesser General Public License

CSRF Cross-Site Request Forgery

PDF Portable Document Format

130

Listings

2.1 structure of Redaxo4’s rex_user table 11
2.2 an example of a table’s rows (MySQL) 11
2.3 Simple SQL query to fetch user names from a Users table 12
2.4 A simple SQL join on two tables 12
2.5 A simple DELETE statement with predicate 12
2.6 Simple example for an UPDATE statement 13
2.7 Simple example for an INSERT INTO statement 13
2.8 SQL Example with external data 13
2.9 SQL injection example . 14
2.10 SQL injection vulnerability, login circumvention 15
2.11 SQL injection vulnerability, login circumvention example 15
2.12 SQL injection vulnerability, access control circumvention 15
2.13 SQL injection vulnerability, access control circumvention example 15
2.14 Simple SELECT query with numeric and string parameter in

selector . 16
2.15 Example of defeating escaping using multi-byte characters 17
2.16 Early escaping leads to vulnerability 18
2.17 Truncated variable breaks SQL escaping 18
2.18 Java JDBC style prepared statement 19
2.19 PHP PDO prepared statement, named parameters 19
2.20 Mambo: administrator/components/com_categories/admin.categories.php,

(revision 125) . 23
2.21 Multiple SQL queries . 23
2.22 Stored procedure definition in MS SQL 26
2.23 Simple XHTML page . 30
2.24 Trivial example of JavaScript in a web page 32
2.25 Escaping needed for HTML element 32
2.26 tag attribute injection example 33
2.27 tag attribute injection exploit . 33
2.28 JavaScript data, CSS property in attributes and URL in attributes 34
2.29 Rich data model example . 43
2.30 Django data model example . 43
3.1 An annotation example for the case of raw SQL use 48
4.1 WordPress: wp-settings.php, (revision 10443) 56
4.2 WordPress: wp-admin/edit-comments.php, (revision 10438) . . 57
4.3 WordPress: wp-admin/import/wordpress.php, (revision 10339) 57

131

LISTINGS Florian Thiel

4.4 WordPress: wp-content/themes/default/page.php, (revision
8999) . 59

4.5 WordPress: wp-includes/default-filters.php, (revision 10442) 59
4.6 WordPress: wp-includes/wp-db.php, (revision 9935) 61
4.7 WordPress: wp-admin/import/wordpress.php, (revision 10339

(locally modified)) . 62
4.8 WordPress: wp-admin/import/blogger.php, (revision 10339 (lo-

cally modified)) . 63
4.9 WordPress: wp-includes/taxonomy.php, (revision 10428 (lo-

cally modified)) . 63
4.10 Mambo: components/com_content/content.php, (revision 1730) 69
4.11 Mambo: administrator/components/com_categories/admin.categories.php,

(revision 1754) . 72
4.12 Mambo: administrator/components/com_categories/admin.comment.php,

(revision 1754 (locally modified)) 72
4.13 Mambo: administrator/components/com_comment/admin.comment.php,

(revision 1711 (locally modified)) 75
4.14 Joomla!: components/com_banners/models/banner.php, (re-

vision 11393) . 78
4.15 habari: htdocs/system/classes/post.php, (revision 3421) . . . 83
4.16 phpBB: viewtopic.php, (revision 9138) 86
4.17 phpBB: styles/prosilver/template/viewtopic_body.html, (re-

vision 9136) . 87
4.18 Zikula: modules/Pages/pnuser.php, (revision 25012) 89
4.19 Zikula: modules/Pages/pntemplates/pages_user_display.htm,

(revision 24588) . 89
A.5 WordPress: wp-admin/includes/user.php, (revision 10323 (lo-

cally modified)) . 123
A.6 Python variable assignment example 124
A.7 Python string template example 124

132

List of Figures

1.1 Multiple ways to attack a system 4
1.2 Topic classification . 6

2.1 Simple SQL Injection . 13
2.2 Example login screen . 14
2.3 Simple browser pop-up . 31

4.1 Separation of observed concepts into problem and solution space 96
4.2 Possible consequences of Missing Data Model 98
4.3 Possible reasons for Use Of Inferior Method 98

133

List of Tables

2.1 Character encoding for XSS prevention in HTML element contents 33

4.1 Concept Overview . 94

134

	Introduction
	New Old Threats
	Open Source Software
	Security And Open Source Development

	On Security
	Goals Of This Thesis
	Research Questions
	Core Tasks

	Classification Of This Thesis
	A Note On Sources
	Definition Of Fundamental Terminology
	Concepts
	Security Term Definitions

	Secure Web Applications

	The Weaknesses
	User Input
	Sources

	SQL Injection
	Relational Databases
	A Simple Example
	Threats
	SQL Injection Vulnerability Preventions
	Bad Practice SQL Injection Mitigations
	Real-World SQL Injection Walk-Through
	Advanced SQL Injection
	More SQL Injection Prevention Techniques
	SQL Injection Vulnerability Detection Techniques
	Summary

	Cross-Site Scripting
	Threats
	Other XSS Threats
	Introducing
	Types Of XSS
	Browser Security Concepts
	Additional XSS Mitigations
	Summary

	Input Or Output Filtering
	General Security Practices
	Code Reuse
	Defensive Design
	Defense In Depth
	White-listing
	Blacklisting

	Building The Ultimate Framework
	Data Modeling

	The Process Improvement Idea
	Why Annotations?
	The Annotations
	Reviews
	Benefits Over Issue Tracking Software
	Structure Of The Annotations
	Innovation Introduction
	Data Collection

	Project Analysis Approach
	Data Collection

	The Cases
	Candidate Selection
	Scope
	Notation

	Innovation Introduction
	WordPress
	Mambo CMS

	Project Analysis
	Joomla
	habari
	phpBB
	Zikula

	Projects In Brief
	Typo3
	Drupal
	Riotfamily

	Concepts Observed
	Assessment Of The Concepts

	Conclusion
	Open Source Web Application Security
	Validity And Relevance
	Future Research

	Bibliography
	Appendix
	Guides To External Data
	Annotation Diff Instructions
	Source Code Repositories
	Mail Correspondence Instructions
	Chat Transcript Instructions

	Data Excerpts
	Selected Correspondence
	Additional Annotation Excerpts

	Syntax Guides
	Python Syntax Used

	Legitimacy Of Online Sources
	Citing Wikis
	Linking to MediaWiki

	Open Web Application Security Project (OWASP)
	The Common Weakness Enumeration Project
	Acronyms Used
	Listings
	List of Figures
	List of Tables

