
Freie Universität Berlin
Bachelorarbeit am Institut für Informatik der Freien Universität Berlin

Arbeitsgruppe Software Engineering

Content Analysis of Conclusions of
Empirical Studies in Software Engineering

Lars Simon Spitzlay
Matrikelnummer: 4882344

lspitzlay@zedat.fu-berlin.de

Betreuer/in: Linus Ververs
Eingereicht bei: Prof. Dr. Lutz Prechelt

Berlin, January 3, 2023

mailto:lspitzlay@zedat.fu-berlin.de




Abstract

Software engineering is still relatively new to empirical research. As such, it is
reasonable to assume that its quality is still somewhat lackluster. This thesis aims
to evaluate the quality of recent empirical studies in software engineering by per-
forming a content analysis on 58 papers taken from the ICSE 2021, focusing on
their conclusions. Due to a lack of quality of the data gathered, the goals of this
thesis were ultimately changed to analyzing the shortcomings of the project as
well as providing hints to improve future similar research. This included an anal-
ysis of the data gathered during the content analysis to investigate what makes
some sentences harder to code than others. Results show that the students that
performed the coding part of the content analysis were often not abiding by the
rules given and had a problem drawing a distinction between some specific codes.
Reaching a sufficiently high inter-reviewer agreement to make based claims and
statements about the data is not an easy task, especially when working with stu-
dents as compared to a group of researchers who may already have some expe-
rience working together. Still, to maximize the potential, this thesis provides the
following suggestions. Try to convey the rules of the coding part to the reviewers
better by stating and perhaps restating them more clearly and discussing them.
Give reviewers enough time to do their work, by either reducing the workload,
giving more time, or focusing on certain sections from the beginning. Build the
code system as concise and clear as possible and try to add a useful memo to
each code to reduce ambiguity.

Empirische Forschung ist noch relativ neu in der Informatik, daher ist die
Annahme, dass dessen Qualität noch etwas zu wünschen übriglässt, durchaus
angemessen. Diese Arbeit versucht die Qualität kürzlich erschienener empirischer
Studien in der Informatik mittels einer Inhaltsanalyse von 58 Publikationen, ent-
nommen aus ICSE 2021, zu erörtern. Dabei soll das Hauptaugenmerk auf dem
Fazit der Publikationen liegen. Durch mangelnde Datenqualität jedoch, wurden
die Ziele dieser Arbeit letztendlich abgeändert. Die neuen Ziele beinhalten das
Analysieren der Probleme und Fehler des Projektes, sowie das Bereitstellen von
nützlichen Hinweisen für künftige ähnliche Arbeiten. Dafür wurden die bere-
its gesammelten Daten analysiert um zu verstehen was einige Sätze schwerer
zu codieren macht als andere. Die Ergebnisse zeigen, dass die im Projekt in-
volvierten Studenten oft nicht die gegebenen Regeln richtig befolgt haben und
einige bestimmte Codes nicht gut auseinanderhalten konnten. Eine hohe Zus-
timmung über die Codes zwischen den Studenten zu erreichen ist nicht leicht,
besonders da diese sich sicherlich noch stark von einer eingearbeiteten Gruppe
von Wissenschaftlern unterscheiden. Dennoch präsentiert diese Arbeit folgende
Hinweise, die dabei helfen können, die Datenqualität zu maximieren. Versuchen
Sie die Regeln des Codier-Teils den Rezensenten näher zu bringen, indem diese
klar formuliert und eventuell regelmäßig wiederholt und diskutiert werden. Zu-
dem sollte man den Rezensenten genügend Zeit für ihre Arbeit geben, indem
man die Arbeitsmenge reduziert, mehr Zeit bereitstellt, oder von Beginn sich
nur auf bestimmte Kapitel der Publikationen beschränkt. Das Codesystem sollte
außerdem so genau und klar wie möglich konzipiert und definiert sein, inklusive
Code Memos, die die Codes besser voneinander abgrenzen.

3



4



Contents

1 Introduction 7

2 Related Work 8

3 Methods 10

4 Results 13

5 Discussion 17

6 Threats to Validity 19

7 Conclusions 20

A Appendix 23

5



6



1. Introduction

1 Introduction

In comparison to other sciences, software engineering is relatively new to empirical
studies since software engineering itself is one of the most recent sciences to exist,
getting its name in 1968 [16]. The exact beginning of empirical research in software
engineering is hard to pinpoint, but it is reasonable to assume that some early stud-
ies conducted in software engineering at least had some empirical aspects. The IEEE
Transactions on Software Engineering and the International Conference on Software Engi-
neering, both of which having started in 1975 and being two of the biggest publishers
of software engineering papers, have since contained many empirical studies. Perhaps
one of the biggest milestones of empirical software engineering though was achieved
when the first volume of the international journal Empirical Software Engineering was
released in 1996. This journal focuses heavily on empirical research in software engi-
neering, often consisting solely of empirical studies and is still growing in the number
of articles to this day.

Due to being relatively new, it may be a fair assumption to make that empirical
studies in software engineering might still be lacking in quality compared to other sci-
ences. A fair amount of meta-research has already been done about empirical studies
in software engineering. This research most often focuses on the methods used, the
effectiveness of the studies or on improvements to the approach. This thesis on the
other hand aims to focus on an even higher level of abstraction, analyzing the con-
clusions of empirical studies in software engineering to determine their quality and
relevance. An understanding of the shortcomings of empirical studies in software
engineering can be beneficial to the community, as it may help future research avoid
some common mistakes. This thesis also aims to give advice to future studies using
open coding or code systems in general, providing some useful hints that have sur-
faced during the project.

The main data analysis methods used in this thesis are open coding and qual-
itative as well as quantitative content analysis. Open coding describes the method
of generating and applying codes to parts of a text while reading it. These codes
may consist of single words or small groups of words. The length of a part of text
is variable as well, ranging from single words to sentences or even paragraphs. The
content of the codes can vary based on the goal of the analysis, including for example
concepts, keywords, or topics. During open coding the resulting code system can
be constantly modified based on the findings of the author. Codes may be merged,
expanded, or otherwise altered to better fit the data or goals. Once done, open coding
should yield a code system that can be used for further analysis.
Content analysis is a qualitative-quantitative method used in empirical research. It
aims to break down the input data into smaller pieces in order to either quantita-
tively or qualitatively analyze them. While the input data, mainly some sort of text,
is always qualitative, the output data can be quantitative as well. The precondition
for doing content analysis is to have a code system, which can either be taken from
literature or previous studies or created, by using open coding for example. Once
the code system is established, one searches for all occurrences of each code. Just as

7



2. Related Work

in open coding, these marked passages can vary in length (for example words, sen-
tences, paragraphs). When performing quantitative content analysis, one now counts
the occurrences of each code. This whole process should be performed by at least
two independent reviewers, in order to reduce the weight of biases and errors. After-
wards, the inter-reviewer agreement should be calculated and only coded passages
with a high agreement score should be further considered, depending on the number
of reviewers. This inter-reviewer agreement can be calculated in different ways. One
of the easier ways, and the one i chose here, is to sum up the amount of codes per
student that at least one other student agreed upon and divide it by the total number
of codes used. For quantitative content analysis, one can now make statements based
on the relative or absolute occurrences of certain codes, while for qualitative content
analysis, one needs to further investigate the coded passages to reach a conclusion.

Unfortunately, I did not manage to provide any useful insights into the quality of
empirical studies in software engineering due to a lack of data quality. Alas, I focused
more on analyzing the shortcomings of our project as well as providing useful infor-
mation for researchers or tutors choosing similar approaches and methods.

The rest of this thesis is structured as follows. Firstly, I will give an insight into re-
lated work. The following sections will be vaguely divided into two parts: the project
this thesis is based on, and the work done after said project. The first one of these sec-
tions consist of a description of the methods used and the research process, including
the main difficulties faced. Afterwards, the results are presented and discussed. Then,
the threats to validity are discussed and finally the conclusions drawn are presented.

2 Related Work

A fair amount of studies have been conducted analyzing the quality of empirical stud-
ies in software engineering, pointing out strengths and weaknesses of work done thus
far, as well as providing hints and roadmaps on how to properly conduct empirical
research and write papers. The following works mainly relate to my original goal of
analyzing conclusions to provide an insight into the quality of recent empirical stud-
ies in software engineering.

Perry et al. [12] for example, argue that “[t]oo many empirical studies study the
obvious” [12, p. 5] and that there “are too many papers whose only selling point is
that they have lots of data” [12, p. 5]. They also point out that “[s]ince many re-
searchers are reluctant to draw conclusions from their data, it’s easy to imagine that
they aren’t too happy to generalize them either” [12, p. 5] and follow up with giving
some advice on how to create and conduct better empirical studies.

Zannier et al. [18] report, that „the quantity of empirical evaluations performed has
increased over 29 years of ICSE proceedings” [18, p. 10]. But they conclude “that the
soundness of empirical evaluations has not improved over 29 years of ICSE proceed-
ings” [18, p. 10]. They argue that there is a “lack of improvement in self-confirmatory

8



2. Related Work

studies” [18, p. 10] and “extremely little hypothesis specification” [18, p. 10].

Other literature review papers concentrate their research on specific parts of soft-
ware engineering. Tonella et al. [14] for example focus on the state of empirical
research in reverse engineering and provide “a roadmap for the future research in the
field” [14, p. 1]. They “propose a tentative set of taxonomic criteria to support the
positioning of each study in the wider context, and [. . . ] describe a tentative frame-
work, borrowed from the broader area of software engineering, which should guide
researchers conducting new studies” and “try to sketch the future trends in reverse
engineering by providing a research agenda, which [they] consider an essential step
to move forward” [14, p. 17].

Bosu and MacDonell [1] on the other hand focus more on the quality of the data
of empirical software engineering by “perform[ing] a targeted literature review of
empirical software engineering studies” [1, p. 1]. They conclude that “data collection
procedures and the identification of data quality issues [. . . ] need to be given greater
attention” [1, p. 6]. They also criticize that “a third of the studies reviewed employed
private data sets” [1, p. 6] and end with saying that “[i]ncreasing the public availabil-
ity of data sets that have also been enhanced through improved collection, cleaning
and transformation procedures will lead to more reliable predictive models and thus
improve software engineering practice” [1, p. 6].

Feldt and Magazinius [3] “perform a review of 43 papers published in the ESEM
conference in 2009 and analyse the validity analysis they include” [3, p. 1] in order to
“discuss what is working well and less well in validity analysis of empirical software
engineering research and present recommendations on how to better support validity
analysis in the future” [3, p. 1]. They reveal that “[m]ore than 20% of these papers
contains no discussion of validity threats and the ones that do discuss on average only
5.44 threats” [3, p. 6] and further criticize that “[f]or only half of the discussed threats
are any strategy to overcome or mitigate the threat discussed [. . . ] [a]nd more than
25% of these mitigation strategies mentioned have not been used in the studies but are
just discussed as future work” [3, p. 6]. Thus, they “propose that a common model for
the process of conducting empirical research in software engineering is created and
that a simpler terminology for validity threats and analysis is adapted to this model”
[3, p. 6].

On a different note, Carver et al. [2] “provide some advice on how to carry out
empirical studies with students” [2, p. 1], pointing out some aspects that, in my opin-
ion, have already been done well in the course this thesis is based on. The main point
that may have been done better in the course is “[g]ive realistic time estimates.” [2,
p. 10], as certain parts of the project were more time-consuming than anticipated.

9



3. Methods

3 Methods

During the summer semester of 2022, 10 students in the Freie Universitaet Berlin
masters course Empirical Methods in Software Engineering were part of a project that
created the input data used in this thesis. I was a part of this group of students as well.

The tutorials of said course consisted of several steps to investigate the original re-
search topic of this thesis, trying to evaluate the quality of recent empirircal research
in software engineering, using quantitative content analysis. Firstly, using open cod-
ing on a small subset of empirical studies taken from the International Conference on
Software Engineering (ICSE) 2021, a code system was created by each student inde-
pendently. This, as well as some of the next steps were done using MAXQDA 2022,
a software used for data analysis. Afterwards, a unified code system was agreed
upon, which was to be used on the rest of the empirical papers published in the same
conference. This code system was built hierarchical, consisting of seven subtrees:

• Further work – consists of codes to be assigned to sentences where the authors
talk about further work they propose or advice. Includes codes about the in-
tended authors of the further work, as well as its importance and kind, relative
to the paper at hand. Was mainly intended as an indicator for the amount of fur-
ther work the authors proposed and whether they highlighted its importance,
or if they were intending to do it themselves.

• Generalization – consists of codes that reflect a sentence where the authors
generalize their results. Includes codes about the degree to which the authors
generalize, its kind, the audience the results are relevant to as indicated by the
authors, and an evaluation of the adequacy of the generalization, as judged
by the reviewers. This subtree was especially important, since generalization
should be an important part of the conclusion of a paper. The purpose of these
codes was to evaluate the amount of generalization used in the conclusion, as
well as how adequately it was used.

• Meta - consists of a code used to mark sentences that could not be assigned any
other code, which was only relevant for the conclusion, since every sentences
was to be assigned a code there. Also includes section titles used to mark whole
sections in order to make further processing of the data easier, like identifying
the sentences in the conclusion section.

• Research motivation - consists of codes about the motivation provided by the
authors for the work they did. Due to the focus on conclusions, this subtree
ended up having little relevance.

• Research process - consists of two codes, indicating sentences where the authors
claim to be the first to do something or sentences where the authors simply
repeat their research process in the conclusion. Mainly intended to identify the
amount of sentences where the authors repeat something from previous sections
that does not belong into the conclusion.

10



3. Methods

• Risk - consists of codes to be applied to sentences that state risks of the paper.
Includes codes that identify a stated risk as addressed or untreated, the risks’
magnitude as described by the authors and whether the sentence simply states
a risk or talks about its impact. The relevance of this subtree is questionable due
to the focus on conclusions and the fact that one would usually not talk about
risks in the conclusion.

• Validity - consists of codes about the threats to validity mentioned by the au-
thors. Includes codes that indicate the kind of validity the authors talk about
(internal, external, conclusion or construct validity), whether the authors merely
state threats, talk about an improvement to one, or claim one to have no effect on
the validity of their work. Also includes codes that reflect the evaluation of the
threats impact, as seen by the reviewer. Intended as a measure of the reflection
of the authors as to the validity of their paper and the actions taken to improve
the validity. Usually handled in a separate section of the paper, thus seldom
included in the conclusion and ultimately of little use when focusing solely on
the conclusion.

Note: The full code system can be found in table IV in the appendix section.

Once the code system was established, students were tasked with identifying em-
pirical papers of the ICSE 2021, separating them from others that were, for example,
proposing new software or methods. This produced a list of 58 papers, which was
then divided between all students, so that each paper would be reviewed by at least
three students, resulting in each student reviewing 18 papers. The students were in-
structed to only code full sentences and to focus their attention on the conclusion,
while also identifying relevant passages in other sections of the papers, especially
the abstract, introduction, results, and discussion sections. For the conclusion, it was
mandatory to assign each sentence with at least one code. Also, due to the hierarchi-
cal structure of the code system, the students were instructed to always use a code
of each subtree of a code cluster. So, if for example one would identify a sentence as
talking about further work, one needed to either use the code “advice further work”
or “propose further work”, and additionally one of the codes of the subtrees “further
work assignment”, “further work importance” and “further work kind” respectively,
resulting in at least four codes for that particular sentence.

The students were given a total of three weeks to review the 18 papers they were
assigned. Afterwards, they were divided into three groups, each focusing on a part of
the quantitative content analysis we aimed to perform. The first group was to work on
data validation and cleansing, which consisted of extracting the data from MAXQDA
2022 and improving its quality through different means, like correcting some smaller
mistakes made by students. This group also looked at the inter-reviewer agreement,
trying to identify potential outliers in the students and codes and reporting on the
data. The second group was tasked with document and conclusion clustering, trying
to find clusters of papers or conclusions sharing some common trait or structure based
on the codes used. Lastly, the third group was to look at code correlation, identifying
codes that often appear together or codes that almost only appear in certain sections,

11



3. Methods

etc. In the very end, students were also tasked with writing a final report, focusing
on the data analysis as well as the project as a whole, possibly pointing out flaws in
the approach, as well as lessons learned etc.

After the end of the semester, I continued to work on the quantitative content
analysis. This involved first and foremost improving the data quality. I tried several
different approaches to improve data quality:

• Reviewing and improving the script provided by the data validation group to
match the passages coded by different reviewers more accurately. This involved
using a sequence matcher, a tool that measures the likeness of, for example, two
sentences, to better correct or accept some common mistakes made by students,
like coding a few characters too little or too much.

• Only considering the conclusion since we had stricter rules while coding conclu-
sions. In other sections, some reviewers might simply have not coded anything,
which would decrease the inter-reviewer agreement. Also, the conclusions were
our focus in the first place.

• Merging some codes together into more general and less ambiguous or complex
codes. This involved, for example, merging “for all generalization” and “lim-
ited generalization” into “mention generalization”. A lot of coders seemed to
disagree on some of these codes and used different ones on the same passage.

After exhausting all options to improve data quality, I realized that we would not be
able to accomplish an inter-reviewer agreement high enough to make based claims
about the quality of the studies investigated or any other topic we originally wanted
to report on. Thus, my work after this realization focused more on secondary goals:

• Drawing lessons from analyzing the data and providing suggestions to future
studies on similar topics. My intense work with the data, as well as the work
I put in during the semester already gave me a good understanding of some
problematic topics and approaches that could have been done better to ensure
an improved quality of the data. Further investigation proved valuable as well.

• Get an understanding of what makes some sentences harder to code than others.
This was done by first importing all sentences with zero and 100 percent inter-
reviewer agreement respectively back into MAXQDA 2022.

After importing the sentences, I started to try and find any patterns within the sen-
tences to explain why they were apparently easier or less ambiguously to code. Look-
ing at codes with an inter-reviewer agreement of 100 percent, I noticed a few patterns
emerge in some specific codes, so I started to build up a new, small code system,
using a sort of open coding, to try and pinpoint these patterns. Afterwards, I did the
same with the sentences with no agreement, also trying to find the lack of patterns I
identified before, in sentences with the same code but an inter-reviewer agreement of
100 percent.

12



4. Results

4 Results

Due to a lack in quality of the data obtained from the students during the semester,
the results of said data is mostly useless. Alas, I can only report on results of drawn
about the data quality itself, focusing on the inter-reviewer agreement. The inter-
reviewer agreement started at about 38 percent. My initial improvements to the script
provided by the data validation group only improved the agreement by about three
percent, though further improvements to the script were made later as well. Focusing
on the conclusion and discarding all other code improved the agreement by some
more percent points, up to about 46 percent. Several more improvements to the script
slightly increased the agreement again, to 48 percent and merging the codes, along
with some final improvements brought the score up to its final value of just over 51
percent.
All further statements here refer to the data after all data quality improvement steps
mentioned in the execution section.

TABLE I. Inter-reviewer agreement by codes - Top 10

Code Total times used Agreement in %
state first of a kind 49 86
own further work 94 83
anyone further work 104 69
subsequent further work 112 64
repeat research process 365 61
no classification of importance further work 90 61
mention generalization 296 54
promising further work 74 53
universal statement generalization 200 52
unclassified risk 9 44

While some codes achieved a rather high inter-reviewer agreement, others could
not be agreed upon at all. As can be seen in Table I, the code “state first of a kind”
reached the highest inter-reviewer agreement score of 86 percent, followed by three
codes concerning further work, “own further work”, “anyone further work” and “sub-
sequent further work”. On the other hand, of those codes used at least once in the
conclusions, there were ten codes that the students did not agree on a single time,
although most of them were rarely used anyway.

As can be seen in Fig. 1, the inter-reviewer agreement varied across papers, al-
though exactly half showed an agreement of 25 percent to 40 percent with one paper
having an inter-reviewer agreement of zero and one topping off at 72.7 percent.
Fig. 2 shows that the total number of codes used varied between the students, as well
as the number of agreements. The relative agreement scores per reviewer however,
measured as number of agreements divided by total number of codes used, vary far
less. The top coder achieved a score of 63.5 percent and all others ranged from 46.3 to
53.5 percent, averaging at about 51.1 percent.

13



4. Results

Figure 1. Inter-reviewer agreement in percent per paper. Papers are identified by IDs
on the x-axis while the y-axis represents the inter-reviewer agreement in percent.

Figure 2. Total number of codes and agreed-upon codes per reviewer. The x-axis
represents the different students (anonymized) and the y-axis the number of codes.
The dark grey column represents the total number of codes given by a student and
the light grey column the ones that at least one other student agreed upon.

14



4. Results

Table II shows that the codes most used were “no code applicable”, “repeat research
process” and “mention generalization”, having been used a total of 373, 365 and 296
times respectively. Most of the codes talking about further work and risks were not
used as often however with some not having been used at all.
Table III shows that the code “mention generalization” was used across the most pa-
pers by students at 94.92 percent, meaning only 3 papers had no reviewer identifying
any sentence as talking about generalization. The code “repeat research process“ was
used in 53 out of 58 papers as well. Meanwhile, the codes “major risk” and “unim-
portant further work” were only used in 1.69 percent of papers, which translates to
exactly one paper. Also, all codes regarding or containing the word “risk” have been
used at most in 6 papers, with “minor risk” not having been used at all.
The average amount of words and characters used in sentences with codes the stu-
dents could not agree on did not differ significantly from those with a 100 percent
inter-reviewer agreement.

TABLE II. Total number of occurences per code - Top 10

Code Total number of occurences
no code applicable 373
repeat research process 365
mention generalization 296
universal statement generalization 200
adequate generalization 167
relevant result without specification 134
no generalization 132
mention further work 127
relevant result for practitioner 117
subsequent further work 112

TABLE III. Number of papers per code in percent - Top 10

Code Included in percent of papers
mention generalization 94.92
repeat research process 91.53
no code applicable 84.75
adequate generalization 83.05
universal statement generalization 83.05
relevant result without specification 74.58
no generalization 69.49
relevant result for practitioner 67.80
mention further work 57.63
speculative generalization 54.24

Comparing the sentences with an inter-reviewer agreement of zero and 100 per-
cent respectively, no significant difference in the lengths of the sentences could be

15



4. Results

seen. Sentences with no agreement averaged about 160 characters and 24 words,
while sentences where all reviewers agreed on the code averaged 154 characters and
23 words.
Coding the 179 sentences with an inter-reviewer agreement of 100 percent lead to
three main codes which I assigned to some of the sentences.

1. In total, there were 37 sentences which included a keyword of the code they
were assigned. For example, some sentences contained the words “practitioner”
or “researcher” and were thus coded as “relevant results for practitioner” and
“relevant results for research” respectively. Also, all sentences coded with “state
first of a kind” with an inter-reviewer agreement of 100 percent had the word
“first” in them.

• "Our work benefit both researchers and practitioners." [6, p. 10]

• "To our best knowledge, this study is the first research work on software
developer onboarding tasks and strategies." [6, p. 10]

2. Additionally, 20 out of 23 sentences coded with “own further work” and an
inter-reviewer agreement of 100 percent contained some phrase akin to “we
intend”, “we plan” or “we will”, talking about the researchers themselves.

• "First we intend to study the effect of having our prototype in use by engi-
neers at Frequentis." [8, p. 11]

3. Furthermore, in seven of the ten sentences coded with “universal statement
generalization” and an inter-reviewer agreement of 100 percent, some kind of
hard wording is used, like “there is”, “[they] are” or “results show”.

• "Test developers are forced to apply workarounds to over-come the current
limitations of testing frameworks." [7, p. 11]

On the other hand, there were 1,333 sentences that had an inter-reviewer agreement
of 0 percent, for which I managed to identify three main codes as well.

1. In a total of 68 sentences, I managed to pinpoint the problem to students not
abiding by our set rules properly, meaning they used a code of a subgroup
without also using a code of the other subtrees in the cluster. For example, the
code “promising further work” was used, without using one of the “mention
further work” codes, or “universal statement generalization” was used, without
using one of the “mention generalization” codes. I do not claim to have found
all occurrences, so I believe there to be many more.

2. There also were 21 cases where students disagreed on whether a sentence was
a generalization or just repeating research process.

• "By investigating the latest versions of 360 open-source applications using
Google and AWS ML Cloud APIs, we have found 8 types of common API
misuses that cause functionality, performance, and service cost problems."
[15, p. 11]

16



5. Discussion

3. Lastly, there were 14 cases where students disagreed on whether the sentence
was talking about generalization or further work.

• "Understanding team productivity is a new avenue for research and an im-
portant topic as developers are now more distributed during the pandemic
and likely will continue to be so after it." [10, p. 11]

I was not able to find any more general codes that could be applied to a significant
amount of the sentences.

5 Discussion

As previously mentioned, the data I obtained from the students was lacking in terms
of data quality. More precisely, the final inter-reviewer agreement across all papers
was 51 percent, including all data quality improvements I made. This means that the
reviewers were unable to agree on almost half of the codes they assigned to sentences
in the conclusion. Since there were only two codes with an inter-reviewer agreement
of over 80 percent, which would be sufficiently high to make real statements about,
a focus on such codes would not yield much either. Also, no single paper managed
to achieve an inter-reviewer agreement of 80 percent or more, so there were none to
focus on here at all. Further investigation showed no significant differences in the
quality of the coding by different reviewers either, so excluding some outlier here was
not possible.

That said, a few timid statements can be made about the data gathered. The fact
that the most used code was “no code applicable” may be an indicator for a lackluster
code system, as it would be preferrable to use this code as little as often and cover
as many kinds of sentences as possible. Although this could have also been due to
students failing to properly identify the right code to use. Generalization was iden-
tified in all but three conclusions in the papers, which is to be expected, considering
a significant part of the conclusion should be generalizing one’s results to a bigger
scope. On the other hand, “repeat research process” being used in the conclusions
of all but five papers could be seen as an indicator for poor quality of the papers,
as repeating the research process should not necessarily be a part of the conclusion,
although our lack of data quality does not allow a definitive statement on that topic.

Analyzing the differences between sentences with an inter-reviewer agreement of
0 percent and 100 percent respectively yielded some promising leads. Firstly, I man-
aged to identify some patterns that might shed some light on what makes some sen-
tences or codes easier to code than others. As one would expect, finding a keyword of
a code inside of a sentence makes that sentence more likely to be coded unanimously
by the different reviewers. Sentences which contain certain words that very clearly
and directly relate to specific code increase the inter-reviewer agreement as well. For
example, using “we intend” etc. implies “own further work” directly, as well as using
hard words like “there is” might imply a “universal statement generalization”.
More vague language on the other hand, coupled with the fact that the students are

17



5. Discussion

German and perhaps do not understand English as well as their mother’s tongue,
perhaps lead to the students agreeing on codes less often. Furthermore, students did
not always follow the rules that were given properly. This is shown by the fact that a
lot of students failed to use the other subtrees when using a code in a cluster. Also,
some students used code-nodes in the tree that had leaves beneath them, something
that should not have been done.

Other reasons I uncovered for the low inter-reviewer agreement were more spe-
cific to the codes themselves. Students seem to disagree rather often on whether a
sentence included a generalization or was simply repeating the research process, as
well as on whether a sentence was generalizing or talking about further work. This
may stem from a differing understanding of what generalization really is and perhaps
to a certain degree on the language barrier again. A bit of ambiguity may well lead
to students interpreting a sentence differently as well.

On a more general note, achieving a high inter-reviewer agreement with a group
of students who do not know each other for the most part and have most likely never
worked with each other is very difficult to begin with. None of the students having
done open coding or content analysis before is definitely another factor contributing
to a low inter-reviewer agreement.
That being said, some improvements could be made to ensure similar projects may
yield better results in the future.

• Making sure the students understood the rules to coding clearly. This can per-
haps be done by restating the rules every week for example and writing them
down clearly and by discussing them with the students directly.

• Making sure that students have enough time for the work they are given. Re-
ducing the workload by either decreasing the number of papers per student or
focusing only on the conclusion from the get-go can help them make fewer mis-
takes along the way. Perhaps, introducing some data validation steps during the
coding can also help the students better understand the traps and difficulties of
coding properly.

• Refine the code system to be more concise and clearer. Less ambiguity in the
code system should lead to the students agreeing on codes more often. Al-
though some codes had memos, the students seemed to disagree on how some
of them should be used, thus additional and clearer memos might help students
better understand the codes. Also, consider merging some codes together whose
distinction may be a little arbitrary or simply not important to the goal of the
project.

Difficulties faced

During the semester, many obstacles were encountered by all students, including
learning to code properly as well as a lack of time while coding 18 papers within three
weeks.

18



6. Threats to Validity

My most prominent difficulty was the poor quality of data obtained from the
coding during the semester. Although several improvements were tried, none were
sufficient, so I ended up readjusting my goals to match this problem I encountered.
Another difficulty I encountered afterwards was the highly exploratory nature of my
analysis after this change in objectives. It was hard to find any good leads on how
to progress with the data generated, so I mainly had to rely on my intuition and
hard work. Finding patterns in the sentences with an inter-reviewer agreement of
zero and 100 percent respectively was especially difficult. The way I finally managed
to get promising results was to focus more on specific codes rather than try to find
universal patterns that make a sentence complex. Afterwards, I managed to identify
a few patterns in specific codes.

6 Threats to Validity

The validity of the work done in this thesis is prone to many threats. The internal
validity of the first part of this project was already accepted to be poor in respect to
the original goals of the thesis, as the students’ agreement on codes was too low to
draw any meaningful conclusions from. Yet, since the data gathered was then used
for further analysis, validity concerns should still be further addressed.

Internal validity

The initial data was gathered from students in a non-controlled environment over
several weeks, alas its quality is questionable. Students are known to often work in
changing environments and under variable and suboptimal circumstances, such as
stress or too little sleep, two factors I can personally vouch for. This is reinforced by
the fact that the students in the project agreed on the workload being too big. This
could have led to the students varying in their choices of codes given. Some students
may have also worked together from time to time, which would defeat the purpose
of having separate reviewers. This is very unlikely though, as the agreement between
students is poor across the board.
The internal validity of the work following the course is to be investigated as well.
Since I primarily worked alone after the course and failed to find proper hints in
literature as to how to progress, my methods were not properly grounded. Thus,
the quality of the data gathered, the results obtained, and the conclusions drawn, is
questionable. I argue however, that since the conclusions drawn are rather timid and
mostly consist of suggestions to future research, this threat to the internal validity is
neglectable.

External validity

Since the preliminary data was gathered by students who likely have never done
content analysis before, generalizing conclusions drawn to a broader audience may
be unreasonable. Alas, my suggestions are catered mainly to similar projects working
with students. Still, I think it is reasonable to assume that other researchers may face

19



References

similar challenges during their studies and may stand to benefit from my work as
well. Another threat to the external validity of this thesis is the fact that articles were
only drawn from one conference. But as the focus of this thesis is recent and future
empirical studies in software engineering, I argue that this threat is minimal.

Conclusion validity

The conclusions drawn in this thesis are mainly suggestions for further research,
that, as I would argue, are reasonably easy and intuitive to agree with. No great
counterintuitive discoveries were made, or conclusions drawn, thus, threats to the
conclusion validity are minimal.

7 Conclusions

Due to software engineering being relatively new to empirical research, it is reason-
able to assume there are still some mistakes being made by most researchers. Thus,
the original goal of this thesis was to evaluate the quality of recent empirical research
in software engineering, potentially highlighting shortcomings the community can
improve on. This goal was not accomplished; therefore, I suggest other researchers to
repeat my work while learning from the mistakes made. This thesis provides some
suggestions and hints for conducting better content analysis, especially when working
with students or researchers new to this method. These suggestions focus on making
the rules of the coding as well as the code system itself more concise and clearer, as
well as minimizing mistakes made by the reviewers. Further work into the quality
of empirical research in software engineering is crucial to improve future empirical
studies conducted by the community, increasing their impact and value.

References

[1] M. F. Bosu and S. G. MacDonell, “Data quality in empirical software engi-
neering: A targeted review,” in Proceedings of the 17th International Conference
on Evaluation and Assessment in Software Engineering (EASE ’13), New York, NY,
USA: Association for Computing Machinery, 2013, pp. 171–176. doi: 10.1145/
2460999.2461024.

[2] J. Carver, L. Jaccheri, S. Morasca, and F. Shull, “Issues in using students in
empirical studies in software engineering education,” in Proceedings. 5th Inter-
national Workshop on Enterprise Networking and Computing in Healthcare Industry
(IEEE Cat. No.03EX717), IEEE Comput. Soc, 2003, pp. 239–249. doi: 10.1109/
metric.2003.1232471.

[3] R. Feldt and A. Magazinius, “Validity threats in empirical software engineering
research-an initial survey.,” in Seke, 2010, pp. 374–379.

20

https://doi.org/10.1145/2460999.2461024
https://doi.org/10.1145/2460999.2461024
https://doi.org/10.1109/metric.2003.1232471
https://doi.org/10.1109/metric.2003.1232471


References

[4] J. Gläser and G. Laudel, “Life with and without coding: Two methods for early-
stage data analysis in qualitative research aiming at causal explanations,” in Life
With and Without Coding: Two Methods for Early-Stage Data Analysis in Qualitative
Research Aiming at Causal Explanations. Forum Qualitative Sozialforschung / Forum:
Qualitative Social Research, 2. Forum: Qualitative Social Research, 2013, vol. 14.
doi: 10.17169/fqs-14.2.1886.

[5] A. Höfer and W. Tichy, “Status of empirical research in software engineering,”
in Empirical Software Engineering Issues. Critical Assessment and Future Directions.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 10–19. doi: 10.1007/
978-3-540-71301-2_3.

[6] A. Ju, H. Sajnani, S. Kelly, and K. Herzig, “A case study of onboarding in soft-
ware teams: Tasks and strategies,” in 2021 IEEE/ACM 43rd International Confer-
ence on Software Engineering (ICSE), IEEE, 2021, pp. 613–623.

[7] D. J. Kim, N. Tsantalis, T.-H. Chen, and J. Yang, “Studying test annotation main-
tenance in the wild,” in 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), IEEE, 2021, pp. 62–73.

[8] C. Mayr-Dorn, M. Vierhauser, S. Bichler, et al., “Supporting quality assurance
with automated process-centric quality constraints checking,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE), IEEE, 2021, pp. 1298–
1310.

[9] P. Mayring, “Qualitative content analysis,” in International Encyclopedia of Educa-
tion(Fourth Edition), 2. Elsevier, 2000, vol. 1, pp. 314–322. doi: 10.1016/b978-0-
12-818630-5.11031-0.

[10] C. Miller, P. Rodeghero, M.-A. Storey, D. Ford, and T. Zimmermann, “" how
was your weekend?" software development teams working from home during
covid-19,” in 2021 IEEE/ACM 43rd International Conference on Software Engineer-
ing (ICSE), IEEE, 2021, pp. 624–636.

[11] J. Molléri, E. Mendes, K. Petersen, and M. Felderer, “Determining a core view
of research quality in empirical software engineering,” Computer Standards and
Interfaces, vol. 84, p. 103 688, 2019. doi: 10.1016/j.csi.2022.103688.

[12] D. Perry, A. Porter, and L. Votta, “Empirical studies of software engineering:
A roadmap,” in Proceedings of the conference on The future of Software engineering
- ICSE ’00, New York, NY, USA: ACM Press, 2000, pp. 345–355. doi: 10.1145/
336512.336586.

[13] C. Seaman, “Qualitative methods in empirical studies of software engineering,”
IEEE Transactions on Software Engineering, vol. 25, no. 4, pp. 557–572, Aug. 1999.
doi: 10.1109/32.799955.

[14] P. Tonella, M. Torchiano, B. Du Bois, and T. Systä, “Empirical studies in reverse
engineering: State of the art and future trends,” Empirical Software Engineering,
vol. 12, no. 5, pp. 551–571, Mar. 14, 2007. doi: 10.1007/s10664-007-9037-5.

[15] C. Wan, S. Liu, H. Hoffmann, M. Maire, and S. Lu, “Are machine learning cloud
apis used correctly?” In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), IEEE, 2021, pp. 125–137.

21

https://doi.org/10.17169/fqs-14.2.1886
https://doi.org/10.1007/978-3-540-71301-2_3
https://doi.org/10.1007/978-3-540-71301-2_3
https://doi.org/10.1016/b978-0-12-818630-5.11031-0
https://doi.org/10.1016/b978-0-12-818630-5.11031-0
https://doi.org/10.1016/j.csi.2022.103688
https://doi.org/10.1145/336512.336586
https://doi.org/10.1145/336512.336586
https://doi.org/10.1109/32.799955
https://doi.org/10.1007/s10664-007-9037-5


References

[16] N. Wirth, “A brief history of software engineering,” IEEE Annals of the History
of Computing, vol. 30, no. 3, pp. 32–39, 2008.

[17] C. Wohlin, “Writing for synthesis of evidence in empirical software engineer-
ing,” in Proceedings of the 8th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement - ESEM ’14, vol. 46, New York, NY, USA,
Article: ACM Press, 2014, pp. 1–4. doi: 10.1145/2652524.2652559.

[18] C. Zannier, G. Melnik, and F. Maurer, “On the success of empirical studies
in the international conference on software engineering,” in Proceedings of the
28th international conference on Software engineering, New York, NY, USA: ACM,
May 28, 2006, pp. 341–350. doi: 10.1145/1134285.1134333.

22

https://doi.org/10.1145/2652524.2652559
https://doi.org/10.1145/1134285.1134333


A. Appendix

A Appendix

TABLE IV. Full code system

Parent code Code
further work

further work advice further work
further work propose further work
further work further work assignment
further work assignment someone further work
further work assignment anyone further work
further work assignment own further work
further work further work importance
further work importance unimportant further work
further work importance promising further work
further work importance no classification of importance further work
further work importance necessary further work
further work further work kind
further work kind distant further work
further work kind other kind further work
further work kind subsequent further work
further work kind neighboring further work
further work kind repeat further work

generalization
generalization generalization kind
generalization kind universal statement generalization
generalization kind recommendation generalization
generalization kind speculative generalization
generalization generalization degree
generalization degree no generalization
generalization degree for all generalization
generalization degree limited generalization
generalization generalization relevance evaluation by authors
generalization relevance evaluation by authors not relevant result
generalization relevance evaluation by authors relevant result for other group
generalization relevance evaluation by authors unclear relevance
generalization relevance evaluation by authors relevant result for practitioner
generalization relevance evaluation by authors relevant result without specification
generalization relevance evaluation by authors relevant result for research
generalization generalization classification by reviewer
generalization classification by reviewer too little generalization
generalization classification by reviewer too strong generalization
generalization classification by reviewer adequate generalization

meta
meta no code applicable

23



A. Appendix

meta section titles
section titles discussion and implications
section titles experiment results
section titles conclusions and outlook
section titles background and motivation
section titles thread to validity
section titles implications and future work
section titles limitations
section titles results discussion
section titles further work
section titles threats to validity
section titles conclusions
section titles conclusion
section titles introduction
section titles abstract
section titles discussion
section titles results
section titles conclusion and future work

research motivation
research motivation building on past work motivation
research motivation lack of research motivation
research motivation other motivation
research motivation practical need motivation

research process
research process repeat research process
research process state first of a kind

risk
risk risk actions
risk actions addressed risk
risk actions untreated risk
risk risk classification by authors
risk classification by authors minor risk
risk classification by authors unclassified risk
risk classification by authors major risk
risk risk discussion
risk discussion state risk
risk discussion state risk impact

validity
validity validity kind
validity kind construct validity
validity kind external validity
validity kind internal validity
validity kind conclusion validity
validity validity discussion
validity discussion state validity improvement

24



A. Appendix

validity discussion state validity limitations
validity discussion state validity no effect
validity validity classification by reviewer
validity classification by reviewer minor impact classification
validity classification by reviewer major impact classification
validity classification by reviewer no impact classification

25


	Introduction
	Related Work
	Methods
	Results
	Discussion
	Threats to Validity
	Conclusions
	Appendix

