
Master’s thesis at the Institut für Informatik der Freien Universität Berlin,

Software Engineering Research Group

Operationalizing the Architecture of an Agile

Software Project

Arsenij E. Solovjev
Student number: 4223897

xeper000@gmail.com

Supervisor: Franz Zieris

Submitted to: Lutz Prechelt and Elfriede Fehr

Berlin, 08.12.2014

Abstract

Architectural erosion is a common problem among long lived soft-
ware projects. One of the causes is a lack of understanding of the
architecture of the given project. Also the agile idea of an “emergent
architecture” is often misunderstood as an excuse not to take architec-
ture into consideration when solving everyday problems. This prob-
lem can be addressed by operationalizing software architecture,i.e. the
software architecture becomes itself an artifact of development and is
integrated seamlessly into already existing agile practices. This the-
sis describes a practical approach to operationalize the architecture of
the agile software development project Saros. A domain specific lan-
guage for describing architecture called Archnemesis is introduced. A
document written in Archnemesis is then used to perform architec-
ture compliance checks whenever a developer submits code for review.
At the time of writing this is the only open-source implementation of
such a system to the knowledge of the author and can thus be used in
different contexts as well.

mailto:xeper000@gmail.com

Affidavit

I hereby swear an oath, that this thesis was done by none other than my-
self. All auxilliary material such as reports, books, websites and others are
cited in the bibliography, quotes from other theses are marked as such. This
thesis hasn’t been presented to any other examining body and hasn’t been
published.

08.01.2014

Arsenij E. Solovjev

Acknowledgements

I would like to express deep gratitude to my thesis supervisor Franz Zieris,
who has been a source of support, sound judgement and a guide through
many difficult moments in this thesis.

This also goes for the head of our research group Prof. Dr. Lutz Prechelt,
whose work as a professor, particularly his energetic lectures and common-
sense approach sparkled my interest for software engineering.

Special thanks goes to the Saros team: Damla Durmaz, Stefan Rossbach,
Arndt Lasarzik, Martin Wichner, Bernd Bieber, Maria Formisany and Hol-
ger Schmeisky. Without the feeling that we are all part of a bigger project,
my dedication to this thesis would have been otherwise. Their support, ac-
tive feedback and encouragement were vital for this thesis.

Last but not least, I would like to thank my parents without whose constant
encouragement and financial support this would have been a much, much
more difficult endeavor.

Contents

1 Introduction 1
1.1 Brief history of Software Architecture 1
1.2 Problem statement . 4
1.3 Related Work . 5
1.4 Goal statement . 6
1.5 Roadmap . 8

2 Architecture Description Languages 9
2.1 Criteria . 10
2.2 Overview of different ADLs 10
2.3 Applicability to Saros and Further Reading 11

3 Integration into the development process 13
3.1 Saros’ infrastructure . 13

3.1.1 Continuous Integration with Jenkins 13
3.1.2 Peer reviews with Gerrit 15
3.1.3 Development process and interaction within the in-

frastructure . 15
3.2 Upgrading Saros’ infrastructure 17

3.2.1 Sonarqube . 18
3.2.2 Why not Sonarqube’s architecture rule engine? 20
3.2.3 Integrating Architecture Compliance Checks into the

Development Process 20
3.2.4 Issue reports . 21
3.2.5 Failed first approach at integrating Sonarqube with

Gerrit and Jenkins . 22
3.2.6 Successful second approach at integration 23
3.2.7 Implementation of the second approach 24
3.2.8 Jenkins Configuration 24
3.2.9 Custom submit rules 25

4 Implementing Architecture Compliance Checking 27
4.1 Evaluation of static analysis tools 27

4.1.1 NDepend and others 28
4.1.2 JArchitect . 28
4.1.3 PMD . 28
4.1.4 Technical elaboration on PMD’s viability 30

4.2 Approaches to Implementation 30
4.2.1 Create rules from DSL dynamically 30
4.2.2 Use one static rule . 33

4.3 Iteration Zero . 33
4.4 First Iteration . 36

4.4.1 Requirement Elicitation 36
4.4.2 Development . 38
4.4.3 Evaluation . 40

4.5 Second Iteration . 41
4.5.1 Syntax of Constraints 41
4.5.2 Semantics of Constraints 41
4.5.3 Evaluation . 42

5 Conclusion and Outlook 46

6 Appendix 48

1 Introduction Arsenij E. Solovjev

1 Introduction

But in practice master plans fail - because they
create totalitarian order, not organic order. They
are too rigid; they cannot easily adapt to the natural
and unpredictable changes that inevitably arise in
the life of a community.

Christopher Alexander, The Oregon
Experiment

This introduction will begin by recounting the historical development of the
concept of architecture in software and in agile software development in par-
ticular. After establishing what architecture is, I will address the problem
of architectural erosion and the challenges of agile architecting which is the
focus of this thesis. Following this will be a summary of previous work in
this field, and after it differentiation of this thesis to the previous body of
work along with the goal statement of this thesis. As is usual, a road map
for the rest of this thesis follows, describing the different chapters ahead.

1.1 Brief history of Software Architecture

According to Wikipedia1, architecture comes from the Greek arkhitekton,
which literally means “chief builder”. Ancient architecture as exemplified by
Vitruvius based on three principles2:

• firmitas (stability, firmness)

• utilitas (utility, funcitonality)

• venustas (delight)

These can fairly easily be mapped to what is considered quality in software
engineering. Firmitas pertains to reliability, security and maintainability,
utilitas to the realm of requirements engineering and building the right sys-
tem, whilst venustas is related to the realm of user experience. This is the
parallel that James O. Coplien and Trygve Reenskaug present us in the in-
troductory part of their article [JOC14], where they give interesting insights
into the history of software architecture. So they write:

[The architecture metaphor] originated with Fred Brooks in the
1960’s. Brooks himself was a bit skeptical of hiw own brainchild
[...]

1http://en.wikipedia.org/w/index.php?title=Architect&oldid=636293185
2http://en.wikipedia.org/wiki/Vitruvius#Vitruvius.27_De_Architectura_

libri_decem_.28De_Architectura.29

1

http://en.wikipedia.org/wiki/Vitruvius##Vitruvius.27_De_Architectura_libri_decem_.28De_Architectura.29
http://en.wikipedia.org/wiki/Vitruvius##Vitruvius.27_De_Architectura_libri_decem_.28De_Architectura.29

1.1 Brief history of Software Architecture Arsenij E. Solovjev

Software has strongly embraced this metaphor, both for its ca-
sual parallels to programming-in-the-large on one hand and for
some of its specific techniques on the other.

The term was introduced to the world of software engineering by Fred Brooks
as a mere metaphor (a few years apart from the engineering metaphor itself)
the large-scale view of the organization of a software system. However,
since then the concept of software architecture has taken a life of it’s own,
becoming a research field of it’s own and “software architect” becoming a job
description. Today many definitions for software architecture exist, however
I will use the one most widely used in literature, provided by Garlan and
Shaw [?, Garlan1993]

[Software architecture is a level of design that] goes beyond the
algorithms and data structures of the computation: designing
and specifying the overall system structure emerges as a new
kind of problem. Structural issues include gross organization and
global control structure; protocols for communication, synchro-
nization, and data access; assignment of functionality to design
elements; physical distribution; composition of design elements;
scaling and performance; and selection among design alterna-
tives.

As you see software architecture in this context is a rather heavy-weight and
all-encompassing concept. Modelling software architecture has been used to
predict possible problems in an architecture, document important architec-
tural decisions, developing architecture-based development methodologies
and formalizing architectural styles using architecture description languages
[?, Garlan1993] The point being that all of these approaches to architecture
are primarily done top-down, they produce heavy documents, the method-
ologies take considerable time and expertise.

However, also another way to approach architecture in software is noted by
James O. Coplien and Trygve Reenskaug. They write:

The patterns discipline is an example of the latter [“and for
some of it’s specific techniques on the other” from the quote
above], whose philosophies of local adaptation and piecemeal
growth became an alternative to big-up-front-design in the 1990’s
and flourished in the guise of the agile movement in the ensuing
decade.

The patterns discipline borrows it’s philosophy from the work of the influ-
ential architect Christopher Alexander3, most notably his book “A Pattern
Language”. In it Alexander introduces the notion of patterns:

3you will encounter the file extension “chralx” later on in this thesis, this is a tribute
to Christopher Alexander

2

1.1 Brief history of Software Architecture Arsenij E. Solovjev

Each pattern describes a problem that occurs over and over again
in our environment, and then describes the core solution to that
problem, in such a way that you can use the solution a million
times over, without ever doing it the same way twice.

So each pattern (or design pattern) is an abstract solution to a class of prob-
lems, i.e. a configuration of form and function which resolves misfits in a
whole class of problems. A pattern can be translated into a concrete solution
for a concrete problem of that class of problems. A pattern language is thus
a web of relationships between such patterns. By combining such patterns
one can form complex solutions and communicate them more easily given
the receiver is well-versed in design patterns. This was roughly the vision
embraced by the patterns discipline in software engineering, spearheaded by
the Gang of Four[GHJV94].

A paradigm shift occcured in software engineering with the advent of agile
processes, as pioneered by the Agile Manifesto [BBvB+] (chronologically
around the same time as the patterns community came into the limelight).
The Agile Manifesto is fairly short, so it’s appropriate to include the whole
text here (original emphasis has been preserved):

We are uncovering better ways of developing software by doing
it and helping others do it. Through this work we have come to
value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value
the items on the left more.

So, in the agile paradigm plans with big-up-front-designs are seen as con-
fining and likely wrong in the long term, since agile practitioners expect
that requirements will change, which is likely to render such an upfront
design useless (or maybe even more importantly, make development more
expensive). Instead of the meticulous planning up-front, typical of the ar-
chitectural practices before the agile movement, agile practitioners focus in
responding to change and collaborating with customers closely. Typically
agile projects release often, these releases are then presented to the cus-
tomer, feedback and consensus is achieved with the customer on what the
next developments should be. As you see agile development is a flexible step-
by-step process, kept on the right track by close customer collaboration. It

3

1.2 Problem statement Arsenij E. Solovjev

is this required flexibility and small iterative steps that make agile process-
eses uninhabitable for the heavy-handed architectural practices which in-
volve big upfront designs and large-scale semi-formal assessment techniques.
This does not mean that agile development foregoes architecture completely,
rather it deals with it in it’s own way.

One of the original authors of the Agile Manifesto, Martin Fowler, describes
a (non-)approach to architecture[Fow] he has often observed. In it design
is emergent and architecture evolutionary. Design and architecture of a
software system evolve with changing requirements and refactorings, as the
need arises. Although this can be seen as a complete lack of design, Fowler
argues that this depends on how much designing is actually done during
development. Fowler does stress that design has to happen upfront in some
portion, and that it has to anticipate future change and that coders have to
be apt designers. How much of Fowler’s advice is followed in the everday
agile practice is an open question.

1.2 Problem statement

So, what happens if architecure is neglected? One scenario that Fowler
describes is the “code and fix” process pattern, where development becomes
a very tedious affair, due to constant bugs being introduced into the code, as
the code does not have a clear structure. From an architectural standpoint
the term for this is “architecture erosion”, Terra et al.[?, Terra2012]escribe
architecture erosion thusly:

Software architecture erosion designates the progressive gap nor-
mally observed between the planned and the actual architecture
of a software system as implemented by its source code. Al-
though the causes for this architectural gap are diverse, ranging
from conflicting requirements to deadline pressures, the conse-
quences always include degradation in the internal quality of the
system, with a negative impact on properties like maintainabil-
ity, evolvability, extensibility, and reusability. When the process
is accumulated over years, architectural erosion can transform
software architectures into unmanageable monoliths.

Architectural erosion is a general problem with long-lived software projects.
As the architecture decays the system becomes hard to understand and hard
to maintain. The reason might be twofold, either the intended architecture
is not adequate, or the developers, for whatever reason, have not followed
the implementation of the architecture thoroughly. On either account ar-
chitecture erosion poses a problem, especially in agile projects as the agile
agenda gives no specific directions here (apart from Martin Fowlers wise

4

1.3 Related Work Arsenij E. Solovjev

advice).

1.3 Related Work

So, how has this problem been addressed before? How have agile methods
and monolithic architectural practices been reconciled?

A series of recent research papers on the topic highlight the need of uniting
the traditional approach to architecture [MABM13]. Here I present the ones
I found most interesting for this thesis:

Stal[Sta14] further develops the ideas of Fowler on how to handle emergent
architectures to a more immediate form and proposes a method for architec-
tural refactoring as a means to prevent architectural erosion. He proposes
that architectural refacotrings be done by a software architect, who can iden-
tify architectural problems, solves and evaluates these as the process goes
on. He proposes that architectural refactorings be done simultaneously with
other refactoring activity for the best value-add.

Cleland-Huang, Czauderna and Mirakhorli[CHCM14] suggest a light-weight
elicitiation technique for architecturally significant requirements. Their ap-
proach is based on creating architecturally savvy personas4. They describe
how these personas can be used for the elicitation of requirements as well as
for the evaluation of architectural solutions.

Van der Ven and Bosch[vdVB14] make an empirical study on five projects
in which they measure how the projects perform on a scale which measures
who does the architecting (is there an architect or is this done by the de-
velopment team), how long the feedback loop is between the making of an
architectural decision and it’s implementation and how architectural knowl-
edge is shared (whether they are verbally communicated, held in meeting
notes or use more formal template based documentation tools). They have
found out that if architectural decisions are managed by the (coached) de-
velopment team, are communicated directly and have a short feedback loop,
this increases the chances of the project’s success.

A thesis which has directly influenced this one is that of Anne Augustin
[Aug13]. In it she develops an architecture description DSL and a checking
mechanism which is integrated into the development process. It is upon
seeing her presentation of her thesis that idea for this thesis was born.

4A fictional character created to represent a stakeholder in architectural decisions

5

1.4 Goal statement Arsenij E. Solovjev

Another thesis which is important concerns itself with architectural prob-
lems of Saros, the project which is the object of this thesis, and which I
will introduce in more detail further in this chapter. In it Patrick Schlott[?]
provides thorough analysis of Saros’ architecture based on Kruchten’s “4+1”
view model on architecture [Kru95].

Another thesis whose object is Saros’ architecture was written by Belousow[Bel11].
He does not implement any one solution, but develops a thorough road map
no how to make Saros more modular by applying OSGi technology5.

1.4 Goal statement

This thesis is much less general than the papers above, as it concerns itself
with the architecture of one single project, Saros.

Saros is an Eclipse6-plugin for distributed pair programming. It is an open-
source project developed in a research context at my alma mater FU Berlin.
This means that most of the code is written by students who write their the-
ses about Saros, as well as some diehard open-source developers. An inside
joke says that Saros employs a new software methodology called thesis-driven
development. As a consequence it has a very high fluctuation rate, i.e. a
student develops his feature, defends his thesis and does not contribute to
the project any longer (of course there are honorable exceptions to this rule).
The project uses many agile processes, such as continuous integration and
unit testing. It is also used by the university for curricular software projects,
where students learn how to use a wider array of agile methodologies and
practices, such as Scrum7 and Kanban8.

As a recent master’s thesis[Sch13] has shown, Saros is subject to architec-
ture erosion. The specific causes of this haven’t been investigated, however I
would argue this is an issue of the development process. New developments
on Saros are being rigorously reviewed, and sometimes these address techni-
cal debt. However, technical debt, of which architectural erosion is a part, is
not always obvious when it is commited to code, there is no comprehensive
overview of technical debt and it is not being addressed systematically.

5OSGi is a modular platform, in which components of an application are very
loosely coupled. Source: http://en.wikipedia.org/w/index.php?title=OSGi&oldid=

635766392
6A well-established IDE
7 An incremental agile software development framework http://en.wikipedia.org/

w/index.php?title=Scrum_%28software_development%29&oldid=636319630
8 A method for managing knowledge work with an emphasis on just-in-time deliv-

ery http://en.wikipedia.org/w/index.php?title=Kanban_%28development%29&oldid=

636357072

6

http://en.wikipedia.org/w/index.php?title=OSGi&oldid=635766392
http://en.wikipedia.org/w/index.php?title=OSGi&oldid=635766392
http://en.wikipedia.org/w/index.php?title=Scrum_%28software_development%29&oldid=636319630
http://en.wikipedia.org/w/index.php?title=Scrum_%28software_development%29&oldid=636319630
http://en.wikipedia.org/w/index.php?title=Kanban_%28development%29&oldid=636357072
http://en.wikipedia.org/w/index.php?title=Kanban_%28development%29&oldid=636357072

1.4 Goal statement Arsenij E. Solovjev

In this I would like to improve the way architectural erosion is handled in the
development process by applying the a well-established open-source static
analysis tool (Sonarqube9 on Saros. This would contribute to preventing ar-
chitectural erosion, as well as support architectural changes in Saros. Using
SonarQube it is possible to alert the developers of new architectural viola-
tions, to find and to inspect pre-existing violations.

Saros’s build-infrastructure would be extended to convey differential architecture-
checks upon a commit. This means the source code will be checked for con-
formance to certain architecture rules. This would be done by integrating
SonarQube’s architecture rule constraints into the development/build pro-
cess. For the developer this would result in an additional criteria required
to pass a gerrit review. This way a developer would need his patchset to be

1. compilable,

2. not failing any unit tests, and

3. comply to the architecture.

It would also be of interest to see how we could use some of the other fea-
tures of Sonar, some of them overlap with existing build steps in the current
build configuration. Currently Jenkins is responsible for a number of tasks
such as computing code coverage, PMD source code analysis and FindBugs.
All of these tasks belong to quality assurance, a field in which SonarQube
excels, so it will be considered to delegate these tasks to SonarQube. This
would leave Jenkins the responsibility to build, communicate with Gerrit,
and to delegate to Sonarqube.

As of now the Saros architecture is documented on its homepage10, in some
theses as well as in the heads of it’s developers. An aspiring Saros-developer
mightnot be aware of these resources or could simply forget them. After
my extension though, he would be forced to see whether his patchset makes
sense from an architectural point of view and be forced to act upon that by
either changing his patchsetor the architecture itself. The exact behaviour
of the developer is unknown, and I would like to evaluate how this change
would effect the current development process. Also it is to be evaluated
if the effort needed to support this addition to the development process is
worthwhile.
There are some obstacles to modifying the infrastructure in the desired man-
ner, which I seek to overcome.

• Saros’s architecture is not formulated in a series of formal rules/specifi-
cation, but rather verbally and graphically. To overcome this, I would

9http://www.sonarqube.org/
10http://www.saros-project.org/architectureDocumentation

7

http://www.sonarqube.org/
http://www.saros-project.org/architectureDocumentation

1.5 Roadmap Arsenij E. Solovjev

consult the existing documentation, some developers, as well as re-
search Saros’s commit message history on architectural ideas in Saros.
With that knowledge I would proceed to create a basic set of rules,
which should be extended and modified by future developers as is seen
fit.

• SonarQube’s capabilites in terms of defining architecture rules are lim-
ited to Sonar’s interface. This poses an inconvenience, since if a de-
veloper would like to make changes to the architecture rules, he would
be forced to use yet another tool in an already difficult process. A
more preferable approach would be to have a DSL describing the ar-
chitecture in the source code itself. This was already done in Anne
Augustine’s thesis[?, ?, Augustin2013] however her approach is tai-
lored to a specific build infrastructure and cannot be applied to Saros.
Hence I would like to investigate the possibilities of extending Sonar
to provide this feature (i.e. to be able to make architecture checks on
the basis of a specific document within the source code).

• Sonar’s capabilities in respect to architecture checking are limited to
formulating dependency rules (i.e. allowing/denying access to specific
packages and classes). Software architecture has more facets though,
as for example in Kruchten’s 4+1 View Model [Kru95] or architecture
description languages. I would like to investigate the feasibility of
implementing additional levels of checking.

1.5 Roadmap

Chapter 2 discusses architectural description languages, what they are and
how they could be used for the modeling of Saros. Chapter 3 discusses
Saros’ infrastructure and the adjustments made for it to be able to support
archiecture compliance checks. Chapter 4 tells the story of the implemen-
tation of the architecture compliance checks. Chapter 5 summarizes the
work done by this thesis, discusses its strengths, weakness and possibilites
for development proceeding from this thesis.

8

2 Architecture Description Languages Arsenij E. Solovjev

2 Architecture Description Languages

In the previous chapter a brief history of software architecture was intro-
duced, along with the problem of architecture erosion and the goal statement
of this thesis. In the goal statement I mention that I wish to explore in what
other ways architecture can be described other than through simple layer
checks. Luckily, such a technology exists and is called architecture descrip-
tion language(ADL). An ADL is a formal modeling notation that provides
architectural specification, loosely defined“an ADL for software applications
focuses on the high-level structure of the overall application rather than the
implementation details of any specific source module”[MT00][Ves93]. They
pose an interest for this thesis as they are expert achievements in modeling
architecture. The hope behind studying ADLs for this thesis was to see
whether one of them could be applied to describe Saros’ architecture, and if
not just to get a general idea of how software architecture is modeled.

In this chapter I will provide a brief overview of my study of ADLs. Apart
from overviews such as [MT00] and [All97], which make comparisons of the
most known ADLs, as well as describe their key features. In the following I
will describe what is an ADL, how they differ, as well as provide (hopefully)
some more in-depth insight into the three ADLs I mentioned.

In the concluding part of this chapter I would share my thoughts on how
much of the ideas used in ADLs are feasibly applicable to the architecture
of Saros.

It is of note, that in her master’s thesis [Aug13] abandoned ADLs altogether,
since the specification of interfaces was in conflict of the agile methods used
by the company she developed her modelling language for. This goes in line
with what Georg Buchgehe and Rainer Weinreich say about ADLs in their
article “Continuous Software Architecture Analysis”[BW14].

The creation of ADL-based architecture models is sometimes dif-
ficult and requires technical stakeholders with specific expertise.
This may be one reason why ADLs have not yet found their way
into mainstream software development. Additional reasons are
listed by Woods and Hilliard and include the restrictive nature
of ADLs, the lack of multiple views, lack of good tool support,
their generic nature, and the lack of domain concepts

In fact in a paragraph below they suggest DSLs as the more common prac-
tice:

In addition to ADLs, DSLs can be used to describe software
architectures. Architecture-centric DSLs are typically developed
for a particular domain or even a particular system [...]

9

2.1 Criteria Arsenij E. Solovjev

I would not dismiss ADLs for now, as a system’s architecture does not change
significantly once a certain level of maturity has been achieved, therefore it
is of no substantial hindrance to have a “heavyweight” description of an
architecture, assuming this description can be modified incrementally, as
need arises.

2.1 Criteria

Which brings me to the open question of what I consider to be useful in an
ADL useful. Ideally, a formalized architectural description would be

• precise enough to capture essential architectural constraints and struc-
ture,

• general enough, so that it doesn’t have to be modified too often,

• understandable enough to be maintainable and modifiable, and

• simple enough for a compliance check to be implementable without
greater effort.

2.2 Overview of different ADLs

A comprehensive overview of the features of ADLs can be found in the article
of Nenad Medvidovic and Richard N. Taylor[MT00]. In it they classify and
compare different ADLs, and in the introductory part of the article they
provide a comprehensive overview of the typical elements that ADLs have:

Component is a unit of computation or data, it can be as small as a single
procedure or an entire application. A component can have:

Interface is the set of interaction points between a component and
the external world. It can be used to specify the services a com-
ponent needs and provides.

Types are an attribute of components. Most ADLs allow to define
an abstract type, which then can be instantiated multiple times
in the ADL

Semantics enable analysis, constraint enforcement and mappings of
architectures

Constraints force certain assertions or properties on components.
Though most ADLs have this implicitly through the use of in-
terfaces, some goe beyond that and have a separate constraint
language.

Connectors are architectural building blocks that model interactions among
components. They also possess the same features as components:

10

2.3 Applicability to Saros and Further Reading Arsenij E. Solovjev

Interfaces define a set of interaction points between the connector
and the components it connects.

Types are also used for the reusability of connectors. As connec-
tors are often complex protocols it makes sense to have them in
extensible type systems.

Semantics for protocols and transactions are also typically modeled,
in otder to enable constraints on them.

Constraints are used in order to ensure adherence to protocols, set
usage boundaries and establish intra-connector dependencies.

Typcally an ADL subsumes a formal semantic theory, such as Petri nets,
Statecharts, partially-ordered event sets, CSP etc.

Let’s take a closer look at Petri Nets. According to Wikipedia11 a Petri
net is “one of several mathematical modeling languages for the description
of distributed systems. A Petri net is a directed bipartite graph, in which
the nodes represent transitions (i.e. events that may occur, signified by
bars) and places (i.e. conditions, signified by circles). The directed arcs
describe which places are pre- and/or postconditions for which transitions
(signified by arrows).” In the context of architecture nodes can be viewed as
components maintaining state, transitions as operations of components and
vertices as simple connectors. Of course this has limitations as Petri Nets
cannot specify interfaces, and every state component has to be a processing
component. However, other formalisms such as partially-ordered sevent sets,
CSP, Obj and Anna have been successfully used in ADLs[MT00].

2.3 Applicability to Saros and Further Reading

In conclusion however, the pursuit to find a suitable ADL for Saros was not
succesful. ADLs are heavyweight, the tools used are not freely available and
it seems to require a great level of expertise to extract an architectural de-
scription for Saros, as Saros is already implemented. The other way around,
first writing an architectural description and then implementing Saros might
have been easier. However rewriting Saros for the sake of having an archi-
tectural description of it does not seem like a cost-effective idea.

For this thesis I decided to go along the lines of what Buchgeher and Wein-
reich were saying, and instead use a DSL to describe Saros’ architecture.
However some insights on how ADLs work and what elements they use have
proved to be useful concepts to have in one’s head when trying to create a
DSL. This is what I learned from studying ADLs:

11http://en.wikipedia.org/wiki/Petri_net

11

http://en.wikipedia.org/wiki/Petri_net

2.3 Applicability to Saros and Further Reading Arsenij E. Solovjev

• Almost all ADLs use these three basic elements: component, connector
and constraint.

• While describing components and connectors is really close to a simple
layer definition, constraints are the concept that goes beyond them and
as such is interesting to me.

• Unfortunately, the description of constraints in ADLs usually involves
some degree of formalism, which seems convoluted beyond some point,
as understanding it seems as hard as understanding Saros’ architecture
without an architectural description.

• However a simplified version of such constraints is something to look
out for.

12

3 Integration into the development process Arsenij E. Solovjev

3 Integration into the development process

If I have seen further than others, it is by standing
upon the shoulders of giants.

Isaac Newton

In the previous chapter the general problem of architecture erosion and
in architecture compliance checking as a solution was proposed. In order
to implement architecture compliance checking it was necessary to lay the
groundwork in the infrastructure and the development process of the project.
The infrastructure of Saros is based on three systems which work in concert

• Git for version control

• Jenkins for continuous integration and

• Gerrit for peer reviews

In order to understand where architectural compliance checking fits within
the development process, one has to understand these systems and their in-
terplay.

This chapter will introduce the Continuous Integration system Jenkins as
well as the review system Gerrit. Further it will be discussed how the systems
are integrated and how they are used in development. A fourth system
called Sonarqube is introduced into this infrastructure. The chapter finishes
off with a more in-depth description on how integration between Jenkins,
Gerrit and Sonarqube was achieved. This integration is one of the more
work-intense parts of this thesis.

3.1 Saros’ infrastructure

3.1.1 Continuous Integration with Jenkins

Continuous Integration (CI) is an agile practice first proposed by Grady
Booch and brought to it’s more wide-spread form within the methodology
of eXtreme Programming 12. In the agile context, continuous integration
allows developers a more finegrained quality control over the developed soft-
ware, especially when more than one developer works on the project. This
last aspect highlights the problem that CI addresses, when more than devel-
oper works on the code, each developer usually works on a possibly different
version of the code and also produces a unique version of the code. Before
CI the practice was to merge all development efforts into one code base,
and release it. This kind of practice has since then been called a “Big Bang

12http://en.wikipedia.org/w/index.php?title=Continuousintegration&oldid =
636359088

13

3.1 Saros’ infrastructure Arsenij E. Solovjev

Merge”, as it can lead to many integration conflicts, 13 which is more often
than not problematic.

As a remedy to reduce risk in such situation CI prescribes than changes to
the code are commited often and that these are automatically integrated
into a single source code repository. That way any integration problems are
spotted as soon as they are commited to the code base.

Jenkins is an open-source system for CI. It runs as a server-side application,
typically on a dedicated machine accessible to everyone in the development
team. The most important concept used in Jenkins, is the concept of a
job. A job is a task with a uniform configuration that Jenkins executes, a
single execution of a job is colloquially called a build14. A simple example
for a job would be when Jenkins polls for updates on the master branch
(i.e. the branch that contains the code that will be released), if an update
is present Jenkins runs the build scripts for the updated master branch.
If the build was successful the build is marked as successful, if not it is
marked as a failure. The team then knows that the latest patch has “broken
the build”, and is in position to amend the patch in due time. Typically,
job configurations are much more versatile than the one described above.
Plugins can run test suites or static analysis tools, these in turn can influence
the status of a build, thus providing feedback on the quality of the last
commit.

Figure 1: Jenkins’ web interface. Below the project name you can see a
list of jobs, with the spheres indicating the status of the last build (blue for
success, yellow for unstable, red for failure, grey for disabled)

13Simply put, an integration conflict occurs when two branches are merged together and
have changed the (previously) same behaviour and/or structure of the system. Thus there
is a fair chance that the new version of the system will not behave as intended.

14Technically, a build is the generation of executables from source code. Not all Jenkins
jobs generate executables.

14

3.1 Saros’ infrastructure Arsenij E. Solovjev

The second important concept in Jenkins to know for our purposes, is the
concept of a workspace. Each build has a workspace which contains the
complete code for the project it is. This is where all build, test and other
scripts are run.

3.1.2 Peer reviews with Gerrit

Peer reviews are a good practice for both quality assurance and knowledge
distribution in teams. Basically, a patch is put up for review from other
team members. Only after it has been approved is it accepted into a master
branch. Usually the code undergoes a series of revisions until it is finally ac-
cepted. A review can have a varying degree of formalism involved. Through
reviews bugs and design flaws can be detected early, also by looking through
the code the other team members gain knowledge about the code.

Gerrit is a Git-based15 peer review board. Developers work on their patches
locally and then publish them to Gerrit where they are available for review.
Another developer reviews and scores the patch. The diffs of the patch are
visible through the web interface and peers can comment on single lines of
code. After a patch is approved by peers it can be merged into the master
branch. Approval is managed by giving patches a positive or negative score
in a given score category. You can see how this looks in Gerrit’s web interface
in figure 3.

3.1.3 Development process and interaction within the infrastruc-
ture

In the context of Saros’ infrastructure, Jenkins and Gerrit are integrated in
the following manner: Gerrit is able to notify Jenkins that a new patch has
been pushed for review. In turn Jenkins starts a build of the patch, after the
build scripts have run, unit tests are executed. Depending on the success
of the build, Jenkins posts a review to Gerrit giving a score of +1 or -1 for
the “Verified” label. Here is a quick outline of the complete process from a
developers point of view (shown as a diagram in figure 4):

1. Developer pushes patch to Gerrit for review,

2. Patch is now open for review by other developers,

3. Gerrit triggers a build on Jenkins,

4. Jenkins builds the patch and runs test suite,

5. Jenkins gives the Verified label a score of +1 or -1

15Git is a widespread distributed version control system

15

3.1 Saros’ infrastructure Arsenij E. Solovjev

Figure 2: Gerrit’s web interface for a single change. At the top you see a list
of reviewers, below that a series of patch sets. The last patch set is unfolded
where a high level structural overview of the patch is given (files changed,
how many lines are changed etc.).

6. Reviewers score the patch

• if two +1 scores are given by two developers, and no negative
scores are given, the patch can be merged into the master branch

• if the patch receives negative scores, the developer is asked to
produce a revised patch and the process starts anew.

16

3.2 Upgrading Saros’ infrastructure Arsenij E. Solovjev

Figure 3: Gerrit diff view. Here all reviewers can see what changes and
where have been made. Also there is a possibility to leave comments for
each line.

3.2 Upgrading Saros’ infrastructure

Having understood the existing infrastructure in the chapter above, the task
was now to find the right way of how to integrate architecture compliance
checking into the process. In order to keep with the agile value of not
relying heavily on tooling, the most important goal was that the developer
doesn’t have to install additional tooling. Furthermore, it was important
the developer doesn’t have to do a lot or any additional work to see the
results of the check. If the developers had to navigate to some website, or
have do extra work to see the results, it is possible they would not bother
to do so after a while. Thirdly, it was important that the feedback from
the check is received in a not long interval after the actual submit of a
patch. In general the one quality desired from the integration could perhaps
be called “seamlessness”, meaning that the developer does not notice any
structural change in the infrastructure to which he has to adapt (apart from
the additional feedback of course).

17

3.2 Upgrading Saros’ infrastructure Arsenij E. Solovjev

Figure 4: The build/review process in Saros. Icons for Jenkins and Gerrit
in this Figure as well as Figure 5 courtesy of http://jenkins-ci.org/ and
http://commons.wikimedia.org/wiki/File:Gerrit_icon.svg

Requirement

No installations on behalf of the developer
Ease of access
Quick feedback

Table 1: Requirements for the integration of the architecture compliance
check

3.2.1 Sonarqube

Sonarqube is a well-established open-source used by well-known projects
such as Apache and Eclipse. It provides the basic set of features I require,
such as a an architecture compliance checking mechanism. A Jenkins plugin
exists for Sonarqube which eases integration into the development process.
Apart from having a lot of the desired features, Sonarqube is open-source,
which would allow me to extend it as wished. At this point I had little to
no idea how the final solution would look like, that’s why it was important
that I used a well-established system which had an active community.

As its website states Sonarqube is an “open platform to manage code qual-
ity”. This means that Sonarqube provides not only static analysis but also a
multitude of integration options and views upon the analyzed source code.
Providing a complete overview would go beyond the scope of this thesis, so

18

http://jenkins-ci.org/
http://commons.wikimedia.org/wiki/File:Gerrit_icon.svg

3.2 Upgrading Saros’ infrastructure Arsenij E. Solovjev

Figure 5: The build/review process in Saros

I will only touch upon the features relevant to this thesis.

The most important concept used in Sonarqube, is a rule. The metaphor for
this concept is that it is a rule the project has to comply to. A simple exam-
ple for a rule would be that every public method has to be documented with
Javadoc. Following a rule is enforced with violations (or issues, depending
on your perspective). A rule (and thus the issue it raises) has a severity
level, which helps the developer evaluate the quality of the code base. An
issue has a location, this can be a line of code or a file (there are metrics
which are measured by Sonarqube, but this is done with a mechanism which
is not discussed in this thesis). If the code base has many critical issues,
then the quality is low, if only has minor issues the quality is relatively high.
Sonarqube uses profiles to remember a set of customizable rules for each
programming language. Such a profile can then be assigned to a project.
So, how does Sonarqube know if a project complies to a rule (and by extent
to a profile) or not? This is done by running an analysis on the project.
Sonarqube provides a general mechanism for analyzing the code base, which
plugins are free to use at their own will. Plugins for many well known static
analysis tools such as Checkstyle, PMD and FindBugs are provided out-of-
the-box.

The rule I intended to use is Architectural Constraint, which is run by the
Architectural Rules Engine. In a Sonarqube profile you can define a set of
architectural constraints, which specify dependencies between java packages
and/or classes.

Taking this Architectural Rules Engine I would upgrade Sonarqube to use

19

3.2 Upgrading Saros’ infrastructure Arsenij E. Solovjev

a DSL used to describe an architecture. I would use the one developed by
Anne Augustin [Aug13], as well as take a look at the ones used in ConQAT
and Sonargraph for inspiration. From this point, I would consider what
other aspects might be modelled using such a DSL.

3.2.2 Why not Sonarqube’s architecture rule engine?

Sonarqube’s capabilites in terms of defining architecture rules are limited
to Sonar’s web interface. This poses an inconvenience, since if a developer
would like to make changes to the architecture rules, he would be forced
to use yet another tool in an already difficult process. A more preferable
approach would be to have a DSL describing the architecture in the source
code itself. This way the architecure of the system becomes a programming
artifact just like the source code and the JavaDoc documentation (this ful-
fills the requirement that the developer should have to adapt the as little
as possible). As soon it is such, it can be included explicitly into the devel-
opment process, without the need of opening new communication channels.
Rather, the existing infrastructure would be leveraged: one could review and
commit changes to the architecture using Gerrit, Git and Jenkins just as one
would do with source code and documentation. Moreover, a new feature can
include it’s own architectural constraints in one patch. If passing an archi-
tecture compliance check becomes compulsory to merging a patch-set with
master, the developer is forced to take the architecture into consideration.
However what exact form this would take requires a better analysis of the
development process as well as further adaptation efforts by the develop-
ment team.

Such a DSL has already been developed (and with good results) in Anne
Augustine’s thesis [Aug13], however her approach is tailored to a specific
build infrastructure and cannot be applied to Saros. Also her implementa-
tion was impossible to find, as her university email account got discontinued
after she finished her thesis and her advisor did not know where the code is.

3.2.3 Integrating Architecture Compliance Checks into the De-
velopment Process

There are two artifacts that Sonarqube produces, where the results of an
architecture compliance check can be seen

1. The full overview of the technical debt of the project, or

2. an issue report, which shows only the technical debt which was ac-
quired since the last Sonarqube analysis.

20

3.2 Upgrading Saros’ infrastructure Arsenij E. Solovjev

3.2.4 Issue reports

Sonarqube provides an Issues Report Plugin. This plugin provides a report
(currently as plaintext or html). The Issues Reports Plugin requires Sonar-
qube to analyze in incremental mode. What this is means, is that Sonarqube
looks for the files which have been modified since the last analysis, and ana-
lyzes only those files. A comparison to the default full analysis can be seen
in the table below.

Incremental Full

Files analyzed Only those which have
been changed since the
last full analysis

All

Duration of a Saros
analysis

2 minutes 15 minutes

Table 2: Comparison of incremental and full analysis in Sonarqube

As you can see from the table, the incremental mode is preferrable because,
firstly, it can give faster feedback, secondly, it has a higher ratio of relevant
issues. One problem is that incremental mode was meant to be run locally
(according to discussions on the Sonarqube forums), for a developer to get
quick feedback on his work in progress and as such the issues report plugin
was made version history agnostic. That means that the diff for which files
to check simply takes the last Sonarqube analysis as reference. So if one
has a central server, which runs Sonarqube, then the increment for the is-
sues report is not necessarily between a commit and it’s parent commit, but
between a commit and that commit which was previously analyzed. When
using a distributed SCM such as Git, that previous commit is generally not
the parent commit.

This poses a problem, as the incremental analysis analyzes too many files,
the issues report is bloated with issues from files which presumably don’t
interest the developer. Assuming that such a bloat would lessen the interest
in reading the issues report it was necessary to limit the range of such an
issues report.

To resolve this problem I decided to write a script that would run with each
Jenkins build for a new patch. There were two ideas on how the script
should integrate issue reports into the development process. The first one
failed and the second didn’t, both are elaborated upon in the sections below

21

3.2 Upgrading Saros’ infrastructure Arsenij E. Solovjev

3.2.5 Failed first approach at integrating Sonarqube with Gerrit
and Jenkins

To amend this I decided to run a Sonarqube analysis on the parent commit
explicitly before running it on the current commit. Another option would
have been to fork Sonarqube and to implement a new mode which is version-
history aware. However this appered to be to cumbersome to implement and
I sought other options.

To save time needed to obtain and build the previous commit (Sonarqube
requires both source and executable), I decided to archive potential parent
commits. Before a usual build in Jenkins there is a new step: a script is run
which finds the archived build of the parent commit, and runs Sonarqube
on that commit. This way the next analysis Sonarqube performs will only
analyse the files that have changed between the parent commit and the cur-
rent commit, which is exactly what we wanted.

This leads us to a problem however, if we archive every commit, we will
eventually simply run out of disk space. So to prevent this two approaches
were considered on how to reduce the number of archived commits.

1. In the first approach I simply set an expiration date for every commit,
and configure a job on Jenkins which deletes expired archives and is
run periodically (eg. once a week). The upside of this is that it is
easy to implement, the downside however is that some archives might
be missing when they are required. This is only slightly inconvenient,
since we can always reset to the parent commit, build it, and then run
an analysis. This however would make a build on Jenkins last twice
as long, which is undesirable.

2. Determine a more complicated criteria on how to determine which
commits can be a parent to some commit in the current develop-
ment. One approach would be to query Gerrit, which has a list of
open patches. Each patch could be queried for it’s parent commit and
add it to a set of possible parent commits. Then one could see which
of the archived patches are in this set, keep those, and delete the rest.

I chose to write this is script in Lua, because it was already in use for script-
ing tasks in Saros’ infrastructure. Also I used the opportunity to learn a
new programming language and a new paradigm. Lua’s philosophy grounds
in minimalism, the language itself doesn’t have many constructs and prides
itself in having a really small compiler. This allows for good usage with
embedded devices.

I wrote a script which archives a parent commit, and executes a Sonarqube
run on an archived commit, however, the problem remained how to deter-

22

3.2 Upgrading Saros’ infrastructure Arsenij E. Solovjev

mine the parent of a commit. However this problem became inconsequen-
tial, since midway through the development I found out that this approach
cannot possibly work. The reason was that when Sonarqube performs an
incremental run, it is in increment of the last full Sonarqube analysis, not
the last incremental analysis.

3.2.6 Successful second approach at integration

After the failed approach presented in the section above, the problem arose
of how to still be able to perform incremental analyses, when a prior full
analysis is required.

Now let us reconsider the whole problem from a bird’s eye view. A simple
solution is to run a full analysis on the parent commit, for each new patch.
The problem is that it takes a lot of time for Saros (around twenty minutes),
which was not agreeable to my supervisor. An even simpler (and worse) so-
lution would be to not have a full analysis run before. Although this would
run faster, the problem is that the increment would be done from a very
old analysis of Sonarqube and would contain many files which the developer
hasn’t even edited. The issue report produced thusly would again have a
very small ratio of relevant information to the developer.

So, what to do? As is the usual practice in software development, if finding
an exact solution to a problem is not viable, a heuristic is used. Upon a hint
from my supervisor, a heuristic with the following steps was developed:

• A full Sonarqube analysis is run on Saros’ master branch every night
(as not to consume computation power, which is used during the day
for other tasks).

• An incremental analysis is run and produces an issue report, incre-
mental to yesterdays master branch.

• A script gathers commit information from Git, and filters out irrelevant
issues.

• These issues are then posted to Gerrit via Gerrit’s REST API as inline
comments to the diffs they affect.

This solution fully satisfies the requirements in table 1.

• the time needed for a report is reduced by having Sonarqube analyse
only the diff between yesterdays master branch and todays commit,

• And the particularly nice part of this solution is that the developer
doesn’t have to change his workflow at all. The only change is that
there is an additional reviewer to his patches

23

3.2 Upgrading Saros’ infrastructure Arsenij E. Solovjev

3.2.7 Implementation of the second approach

I wrote the soution as two Scala scripts. Beside personal taste I chose Scala
because it provides a very compact syntax for parsing XML document. This
was insofar nice, as issue reports come in an html format.

The first script gitClient can query Git for the repository it is in. I used it
to retrieve information about what files are in a commit, what subprojects
the commit affects16 and whether the commit was a merge-commit.

The second script sonarReview receives an id for a build using which it can
find a previously generated issue report. The issue report is then parsed
into a message format that Gerrit can understand17 and posts the message
to Gerrit. During parsing issues which are not in a file that was part of the
commit (this is found out by a call to gitClient) are discarded, so that
only relevant issues are posted to Gerrit.

The message is then interpreted as a patch review by Gerrit. The forth-
coming thing about Gerrit here is that it allows to post comments to single
lines in the diffs. As you remember, issues in Sonarqube usually pertain to
a single source code line. This aspect was readily used, and each issue found
in the issue report was made into an inline comment in the Gerrit review.
This way Sonarqube becomes just another reviewer on Gerrit, which is very
nice, since from the developers point of view not much changes.

3.2.8 Jenkins Configuration

Having the working scripts, a series of configurations on Jenkins had to be
done. This included the full Sonarqube analysis mentioned above called
Saros-Full-Sonar-Nightly. Also the job Saros-Gerritthat is triggered
by Gerrit every time a patch is pushed for review had to undergo big changes.

Saros-Gerrit built and ran tests on the complete Saros project. This posed
a problem, as a Sonarqube analysis could be run only on a subproject. This
meant that a Sonarqube analysis should have been run for each subproject
on build. This took a long time to execute (over thirty minutes) and was
not accepted by the team. An optimization was due.

The simplest way to optimize the build was of course to only run a Sonarqube
analysis only on those subprojects which are affected by the last commit.
This was not easy to implement, as it required finegrained configuration of

16as you will see further, this is important for the job configuration on Jenkins
17JSON

24

3.2 Upgrading Saros’ infrastructure Arsenij E. Solovjev

several jobs. The cognitive effort required was akin to that of programming
a task of medium difficulty. However when one is programming, one can
code for a while, then compile (or have an instant compile check by the
IDE) to receive feedback if the code is at least syntactically correct. When
confguring Jenkins one does not have that luxury, to see if the configuration
works, one has to retrigger a build and see the results (which did take a little
over a quarter of an hour). This in stark contrast to programming, where
the feedback cycle from the check is mere seconds.

The final configuration includes a new job that superceded Saros-Gerrit

called Saros-Gerrit-Conditional, as well as Sonarqube (or QA) jobs for
each of the four Saros subprojects. The interaction is like this:

1. Gerrit triggers a build

2. Saros-Gerrit-Conditional builds the complete Saros project

3. Using gitClient the job queries what subprojects have been affected
by the and calls the QA jobs for those subprojects.

4. The workspace including the generated executables is copied to those
jobs using rsync18 and the jobs are started

5. each such job runs unit tests and a Sonarqube incremental analysis
which produces an issue report

6. sonarReview is called to post the issue report as a review to Gerrit.

3.2.9 Custom submit rules

There was some discussion with my supervisor about whether Sonarqube
should be able to score the patches. Indeed the original intent was to let
Sonarqube affect what can or cannot be submitted to the master branch.
The Gerrit way to customize this is to define the score criteria necessary to
submit a patch to the master branch19 by writing a custom submit rule20.

However it turned out, that it wasn’t possible to implement a rule that
fulfilled our criteria. We wanted to make the users Sonarqube and Jenkins
both use the label Verified. A patch would be submittable if both Jenkins
and Sonarqube had scored the patch a +1. The problem was this: if a patch

18This is an optimisation, otherwise the QA jobs would have to build the executables
again

19As you remember the default criteria was an aggregated score of +2 for Code-Reviews
and +1 for Verified.

20Details on this mechanism are documented here: https://gerrit-review.

googlesource.com/Documentation/prolog-cookbook.html#HowToWriteSubmitRules

25

https://gerrit-review.googlesource.com/Documentation/prolog-cookbook.html##HowToWriteSubmitRules
https://gerrit-review.googlesource.com/Documentation/prolog-cookbook.html##HowToWriteSubmitRules

3.2 Upgrading Saros’ infrastructure Arsenij E. Solovjev

has a score of Verified +1 how do we know that it has been scored by
both systems? My attempt at solving this problem was trying to define a
rule which would check whether both Sonarqube and Jenkins have scored
the patch and whether the Verified label had a score of +1. The former
proved to be impossible given the tools Gerrit provides to accomplish the
task, as one cannot query the reviewers of a patch and what score they have
given, if any.

26

4 Implementing Architecture Compliance Checking Arsenij E. Solovjev

4 Implementing Architecture Compliance Check-
ing

The plan was to first implement an architecture compliance checker which
would do a simple check whether the source code corresponds to a layer
definition, and then proceed from that.

The first step was of course to find a suitable framework, the particulars of
which will be given below. Following this will be a more detailed elaboration
on the selected technology as well as an iteration-for-iteration breakdown of
the development of the DSL it’s tooling.

4.1 Evaluation of static analysis tools

From the beginning of this thesis it was apparent what basic requirements
the technology underlying the architecture compliance check would have to
meet.

1. It had to provide some sort of means to analyze source code on a high
level class and package organization basis, as well as enable me to get
into the particulars of class, from method calls to variable declarations.

2. The underlying technology had to be open-source, not only because of
monetary interest, but also in order to keep in line with the spirit of
Saros, which is released under a GNU licence. Also a faint hope, that
this thesis would have relevance beyond the Saros project, was at play
for this decision.

3. Whatever the implementation of the rule was it had to be able to run
as Sonar plugin. This is mostly a historical decision, since so much
had already been dedicated to integrating Sonarqube with Jenkins
and Gerrit. What helps is the fact that Sonarqube is a well estab-
lished open-source product and could provide a distribution platform.

4. It was not yet determined what aspects the DSL would describe. It
was possible that the DSL would only describe layers, but the intent
was to encompass more architectural aspects. As such there was need
to be able to generate different types of Sonarqube issues depending
on context.

27

4.1 Evaluation of static analysis tools Arsenij E. Solovjev

Requirement Severity

Detailed source code analysis capabilities Indismissible
Open-source Preferred
Ease of integration with Sonarqube Indismissible (at this point)
Multiple issues Preferred

Table 3: Requirements for the underlying technology for the architecture
compliance check

4.1.1 NDepend and others

The first approach that came to mind was to follow the approach that Anne
Augustin implemented. In her thesis, [Aug13], she was parsing an archi-
tecture definition, written in a custom DSL called Archibald, into a series
of code queries21, which are then used to verify if the source code complies
to the constraints defined in the DSL. The code query engine she used is
NDepend, which is native to the .NET framework.

Since Saros is an open-source project based on open-source technologies,
using .NET was out of the question22. The same applies to other tools such
as ConQAT, Sonargraph and jQassistant.

4.1.2 JArchitect

The alternative to NDepend Augustin suggested was called JArchitect23.
JArchitect provides free licences for open-source projects. The people be-
hind JArchitect promptly replied to my request for a licence. However upon
inspecting the tool closer upfront, I found out that it provides no API for
executing code queries, one can only execute code queries through the GUI
of the program. As such JArchitect contained the necessary capabilities,
but didn’t provide means to use it in a way that was necessary.

4.1.3 PMD

Upon revisiting the problem of finding a suitable technology for architecture
compliance checking I stumbled upon PMD, which was already shipped with
previous versions of Sonarqube. PMD analyzes the Java abstract syntax tree

21In the sense of Code Query Language, where code is treated as data in a database,
and can be queried over in a language with similar goals in mind as SQL

22Admittedly, since the time of this evaluation the .NET Plat-
form has been announced to become completely open source. See
http://www.heise.de/developer/meldung/Microsoft-NET-wird-komplett-Open-Source-
2452033.html, link verified on 24.11.2014

23http://www.jarchitect.com/

28

4.1 Evaluation of static analysis tools Arsenij E. Solovjev

(AST)24 of a program and can execute queries upon it. So now I could at-
tempt and define an architectural constraint for the architectural violation
found in ?? by analyzing the AST. PMD allows to define rules using XPath
on the AST and also provides a convenient GUI-Tool, which is shown in
Figure 6, to test and develop these. The rule was promptly defined and
Sonarqube correctly identified the offending class and raised the appropri-
ate architecture violation issue.

Figure 6: The PMD Rule Designer allows the definition of XPath queries
(upper-right window), that can be executed on a piece of Java code (upper-
left window). For better comprehension one can additionally see the AST
of the source code in lower left window.

Having reassured myself that PMD is the adequate tool for the task, I set
out to find a way how to load rule definitons in PMD dynamically. I wanted
to be able to load rules dynamically as it would allow for greater extensibil-
ity. Each constraint the DSL imposes would be translated into it’s own rule.
This has the advantage that each rule couldhave it’s own severity and error
message. To my disappointment however it appeared that there is no way
to load XPath rules (my preferred approach) dynamically. At this point it
would be helpful to explain the inner workings of PMD and how to write
rules for PMD in the alternative way, namely in Java.

24 according to Wikipedia, an AST is a tree representation of the abstract syntactic
structure of source code written in a programming language

29

4.2 Approaches to Implementation Arsenij E. Solovjev

4.1.4 Technical elaboration on PMD’s viability

A new rule in PMD written in Java extends AbstractJavaRule and im-
plements the polymorphic method visit(ASTNode), where ASTNode is any
kind of ASTElement. Such an extension can conveniently add a violation to
the PMD report which later translates to a Sonarqube issue. A Sonarqube
issue is what the developer will ultimately see as a Gerrit comment.

A rule is visible to PMD if it is declared in a ruleset file. The ruleset file
declares a rule name and an implementing class (among other things such
as description, severity etc.).

Moreover the Sonarqube-PMD plugin uses several files to configure a given
rule:

• pmd.properties this is a file used for localization. It defines a property
called rule.pmd.<rulename>.name. It is here that Sonarqube looks
up the name of the rule.

• rules.xml. This file specifies where the file is defined in PMD, more
specifically it maps a rule to the configuration file which defines it
originally in PMD.

• a <rulename>.html file which contains the description for the given
rule, which will be displayed in the documentation for the rule.

To execute the rule, Sonarqube simply needs to have the compiled plugin
added to its plugins folder and be restarted. The rule can then be added
to a quality profile and the next analysis will evaluate the rule.

During an analysis the pmd.xml is copied to the .sonar folder inside the
projects root folder and is used during a Sonarqube analysis, which is also
run in the same folder.

All of these files are modifiable during runtime. Theoretically this would
enable creating a rule for every aspect the DSL covers at runtime, which
was my first approach.

4.2 Approaches to Implementation

4.2.1 Create rules from DSL dynamically

At first I followed the idea of creating a rule for each type of architecture
violation dynamically (in hindsight, this was not so smart, since these were

30

4.2 Approaches to Implementation Arsenij E. Solovjev

still unknown). This required a more detailed understanding of how exactly
sonar-pmd calls PMD-rules. To this end I created a series of sequence dia-
grams (Figures 7, 8 and 9), which follow the method calls starting from the
invocation of the sonar-pmd plugin to the points where the rule definition
is loaded, as well as the point where the rule is executed.

Figure 7: General overview. A sequence diagram showing the calls between
an invocation of the plugin (which calls execute() on PmdExecutor). The
rules are loaded during the call to createRulesets(). PMD is invoked during
the processSourceCode(). PMD receives the stream holding the source code
file, the set of rules and an object it shares with sonar-pmd called the Rule-
Context. When a PMD-rule discovers a violation, this violation is added to
the RuleContext. Later sonar-pmd uses the RuleContext as a basis to raise
issues in Sonarqube. PMD goes through the set of rules, (which contains
only metadata, such as name and class, but no logic), loads the correspond-
ing rule implementation in RuleReference. Subsequently visit() is called on
each rule defined in the set of rules. This where the actual logic of a rule is
executed.

Having researched the mechanism of rule loading and execution in sonar-

pmd, I was able to pinpoint the location where I would be able to add dynamic
rule creation and execution. This would have required to:

1. analysing the DSL and creating the rules dynamically before createRulesets()

31

4.2 Approaches to Implementation Arsenij E. Solovjev

Figure 8: A closer look at createRulesets(). During this call sonar-pmd
fetches the active rules defined in the Sonarqube profile from RulesProfile.
From these a RuleSet is created by the RuleSetFactory. This RuleSet is then
dumped as an .xml in the root of the project where the analysis is being
executed.

is called.

2. adding the newly created rules to the RuleSet.

3. making sure the RuleSetFactory was able to load the dynamic rules at
runtime.

Since point 3. seemed the riskiest of the three, this was what I attempted
to do first. I had written a class that can generate a class which extends
AbstractJavaRule and has a visit() which analysed whether a class in
the network package accessed members of other Saros packages 25. This
worked nicely when run as a standalone unit test. However I was not able
to generate the class at runtime during the Sonarqube analysis. At that

25This was an exemplary architecture problem I knew of in Saros. Some classes in the
network layer used business logic which they shouldn’t have.

32

4.3 Iteration Zero Arsenij E. Solovjev

point following this approach became too risky. Luckily, another approach
dawned.

4.2.2 Use one static rule

One of my most productive days was throwing away
1,000 lines of code.

Ken Thompson

After a few unsuccesful attempts at generating rules dynamically, and upon
wise advice from my supervisor, I decided to implement a rule which rather
than representing a single architectural rule, considers the complete DSL in
one go. That means each source file would be checked on whether it adheres
to the DSL. For this the following elements were required:

• The DSL itself

• Saros’ architecture described in the DSL

• A PMD rule which would be able to detect compliance breaks between
the DSL and the source code

4.3 Iteration Zero

I followed an iterative approach, and this were the outlined steps for the de-
velopment portion of an iteration. The complete iteration would encompass
the following steps:

• Requirement elicitation:

– what aspects of the architecture to model next

– technical issues

• Development: the implementation itself

• Evaluation: Deploying the DSL and PMD Plugin to the productive CI-
Environment in order to receive feedback from the Saros team which
would be incorporated in the next iteration.

When the technical side of development would be set, I would have a frame-
work in which I could further refine the architecture compliance checking.
The next step would be to determine what aspect of the architecture one
can reasonably model.

In the iteration zero my goal was to write a basic DSL, which defines com-
ponents and which components can access which component. The further

33

4.3 Iteration Zero Arsenij E. Solovjev

challenge of this iteration was to establish a turnaround cycle from concep-
tion of the DSL through to its use in the Saros QA cycle.

First the grammar for the DSL (for the time being called Archnemesis) was
written.
As you can see in Figure 10, a number of elements are defined, allow to
elaborate on their semantics here briefly:

Component has a unique name, and a Java package which corresponds to
it.

RootComponent is a component of which all components in the system
are subcomponents. More specifically, it’s packageName feature is used
to discern whether some dependency belongs to the system we de-
scribe, or to a third party library.

Connector A connector consists of two component names connected by a
right- or double-arrow.

UniDirectional connectors specify that the component from can ac-
cess members from the component to, but not vice versa.

BiDirectional connectors specify that two components can access
each others members.

If two components are defined but not in a connector relationship, then
they cannot access each others members. All packages not represented
in the DSL are not under any constraint.

In Figure 12 you see a literal transcription of the component diagram ??
made by Patrick Schlott [?, Schlott2013]

There are a few differences between the diagram and the DSL. “Activity
Providers” has been omitted as it seemed to require more precise modelling
which was to be done at a later point and was technically already included
in the package “Session Management”. “Shared Session Data” has also been
merged into “Session Management”. Also in the diagram there are arrows
going from “Network Layer”, these however are simply a depiction of static
dependencies between components in the current state and not the desired
state(network should not use any business logic). The same applies to the
dependencies between “User Interface” and “Invitation”, and “Session Man-
agement” and “User Interface”. Also “Concurrency Management” has been
renamed to operational_transformation since it is a more unambiguous
term (“concurrency” and “management” both mean very general things).

Having completed the first version of Archnemesis I could now let the Xtext
framework generate a number of artifacts from the grammar, in particular

34

4.3 Iteration Zero Arsenij E. Solovjev

a parser. This parser could then be used by the PMD rule I wrote to parse
the architecture.chralx and see whether the source code complies to the
description.

This was more time-consuming than it sounds. First I had to convert the
Xtext project generated by Eclipse (this is the default use-case for Xtext) to
a Maven project. Now it is necessary to highlight some aspects of Maven.
Maven is a release management tool, used for building, testing, publishing,
generating documentation and various other tasks. The aspect where Maven
is different from previous build tools (such as make or ant) is that it does
automatic dependency management. For this there is a configuration file
declaring the dependencies of the given project, and Maven does the job of
downloading those dependencies at build time from a default or preconfig-
ured repository. Maven can also publish to a repository (the default being
the local repository), and make the given project available to other Maven
projects. I needed Maven to publish my Archnemesis grammar project to
my local repository, so that I could use it as a dependency in the PMD
project. Upon some trial and error this was achieved.

The next challenge was to write the logic on parsing the DSL. I successfully
followed an approach proposed on a certain blog post26. However the object
tree(an object represntation of the DSL) I was receiving upon parsing did
not have its references resolved. If you take a look at the grammar, specifi-
cally these lines,

UniDirectional: from=[Component] ’=>’ to=[Component

];

BiDirectional: comp1 =[Component] ’<=>’ comp2=[

Component];

you will notice the square bracket syntax. This syntax denotes cross-references,
and for some reason these could not be resolved. After a couple of attempts
of resolving the problem myself I tried contacting the forums and did receive
a prompt response27. Having tried the proposed solution I was successful
(frankly, I’m still not sure what the problem exactly was).

At this point all the technical obstacles had been removed, the modified
PMD plugin had been deployed to saros-build, the team was notified
of the introduction of Archnemesis into the project and was prompted for
feedback and suggestions, and I was able to continue refining the DSL and

26http://davehofmann.de/blog/?cat=22
27you can see the full thread here: https://www.eclipse.org/forums/index.php/t/

841708/

35

https://www.eclipse.org/forums/index.php/t/841708/
https://www.eclipse.org/forums/index.php/t/841708/

4.4 First Iteration Arsenij E. Solovjev

the description.

4.4 First Iteration

4.4.1 Requirement Elicitation

After the the project had been presented to the Saros team, some feedback
came back. There were a couple of ideas voiced (each is provided with a
label):

Constraint One of the developers notified me of a problem she had often
encountered while working on her feature. She would use the ui com-
ponent, however she would forget to call this component from within
the SWT thread.

Grouping She also suggested a that a grouping of components could be
helpful, so that one could define the architecture in a similar manner
that MVC is defined.

Literate My supervisor suggested adding literate programming28 to the
DSL for greater comprehensibility.

Multipackage A developer noted that classes responsible that are part
of the “Invitation” component were making calls to “User Interface”,
which was making his work very difficult. As a background, his project
was porting Saros to Intellij IDEA 29. This encompassed decoupling
the Saros core from the user interface which was Eclipse specific.

“Constraint” posed an interesting challenge as it required a new type of el-
ement in the DSL, namely a constraint. This constraint would express the
notion that “all access to the ui component should be done from within the
SWT thread”.

Since this could potentionally point to a lot of false positives, I deemed it
necessary to be able to adjust the error message which would be seen in the
comments, in order not to let all the false positives trivialize the impact of
the issue.

PMD in concert with Sonarqube does not support multiple issue messages
for one rule (although a method is provided by PMD which allows to provide
a customized error message, this was not respected by Sonarqube during a
test run).

28http://en.wikipedia.org/wiki/Literateprogramming
29Intellij IDEA is a well-known IDE

36

4.4 First Iteration Arsenij E. Solovjev

Luckily, Sonarqube provided its own API for writing AST-based rules, which
allows for custom issue messages. So it was worth a consideration. There
was also another point why migrating to the Sonarqube AST was good: it
would make publishing the project on GitHub30 easier.

The issue was that up until point I had very naively worked on a fork of
PMD. The fork contained all of PMD’s source code, including all rules for
all languages. Although PMD allows to separate a single rule into a single
project (for it to be executed it simply must be on the classpath of PMD
when it is run), the effort for this seemed on par with a migration to Sonar-
qube’s AST.

Thus, the first goal of the iteration was to migrate from PMD to Sonarqube’s
AST.

The second goal comes from the problem voiced by one of the develop-
ers concerning an undesirable access from the “Invitation” component to
the “User Interface” component. As you can see in the first version of
the chralx file (Figure 12), the invitation component does not have ac-
cess to ui. So what was the problem? The offending class in this case
was not inside the package de.fu_berlin.inf.dpp.negotiation, but in
de.fu_berlin.inf.dpp.invitation. This was the case because the pack-
age name had different namesClearly, the invitation component should
have entailed both. This was also the case with the packages .session and
.project which were still in a phase of refactoring (the .project package
became deprecated). So it was clear that a component should be able to
entail multiple packages.

The third goal was to simply add literate programming to the DSL, as
the idea seemed really sound. To sum up these were the goals set for the
iteration:

1. Migrate from PMD to Sonarqube’s AST

2. Allow components to represet multiple packages

3. Literate programming

The other ideas, constraint and grouping were left for the next iteration as
they seemed to complicated to implement at first.

30A web-based hosting service on which many open-source projects are hosted. Users
can create, fork and contribute to open-source projects freely using this platform.

37

4.4 First Iteration Arsenij E. Solovjev

4.4.2 Development

After the requirements elicitation, presented in the previous subsubsection,
the development efforts started. At first it was important to evaluate Sonar-
qube’s AST technology.

Sonarqube provides a project on GitHub called java-custom-rule. This
project implements a couple of dummy rules, and serves to illustrate how
implement custom java rules for Sonarqube. To evaluate the rule the pack-
aged .jar has to be simply deployed to the plugins folder of Sonarqube,
and enabled in the quality profile in Sonarqube’s web interface.

Difficulties arose however as I tried to reimplement the logic of the rule,
which was already written using PMD’s API, using the Sonarqube API. In-
deed, to my surprise and after a good period of trial and error, I had come
to the conclusion that surprisingly the API has no direct means to access
the name of a token31. Once again contacting the community proved to be
helpful, as a response came quickly on the Sonarqube developer mailing list
when I wrote my inquiry.

A developer sent a link to his own projects on GitHub where he had solved
the same problem. As it turned out, to obtain the name of a package or an
import, one has to concatenate the identifiers of several AST elements
which are linked to each other.

After this problem was solved the migration went pretty straightforward. I
created a new project called archnemesis-sonar-rule, which can now be
found on Saros’ GitHub home page.

Implementing multipackages was pretty simple, I had to simply change the
rule for a component from

Component: ’component ’ name=ID ’:’namespace=

PackageName ;

to

Component: ’component ’ name=ID (’+=’ namespaces +=

PackageName)+ ;

After this change the symbol was changed to +=, the compound assignment
operator in Java, to reflect that a component is a sum of packages in a sense.
The + at the end is a cardinality symbol, which means that a component

31For example “name of a token” in the case of a package declaration would refer to
the fully qualified package name, or in the case of a variable declaration to the name of
variable

38

4.4 First Iteration Arsenij E. Solovjev

can have one or more namespaces.

To implement literate programming, I first consulted Wikipedia to get a
general idea. The important thing I found out, is that a literate program
consists of two parts: the essay and the tangled code. The essay is usually
written in simple plaintext (or in LATEX, as is the case with Literate Haskell),
without any special syntax to signify that this is the essay portion of the
program. The tangled code however is usually written in a block construct,
which tells the compiler to handle everything within the block as program
code.

My first naive attempt was to have a prefix for tangled code, and have a
grammar rule which covers everything which isn’t using the prefix. This
idea seemed so simple to implement, however it took a good amount of trial
and error (which might have been avoided had I had a better understanding
of the subject) to see that this was not so simple to do. There were many
ways to define a grammar rule which matches everything but a certain type
of something. However most of them didn’t compile when I ran Xtext to
generate the parser and other tooling. And those that did compile produced
some unexpected results. The main problem was, however that the gram-
mar rule overshadowed other native rules (such as ID, which is any kind of
identifier). The easy way out would have been to implement the essay rule
as a multiline comment, however this was a unelegant solution as it went
against the notion of literate programming, that the essay part should be a
first class citizen.

Ultimately, I settled to having every component and connector declaration
prefixed with a “-- ” and have the essay part be everything that starts with
a capital letter and ends in with a punctuation mark. That last aspect might
even be preferrable than having the essay portion of the program code be in
a free format, as it forces the developer to adhere to a form.

Thus the entry rules for the grammar were changed from

Architecture: rootComponent=RootComponent (

components += Component)+

(connectors += Connectors)+ ;

Element: Component|Connector|Constraint ;

...

to

39

4.4 First Iteration Arsenij E. Solovjev

Architecture: TANGLE_PREFIX rootComponent=

RootComponent

(elements += Element)* ;

Element: {Element }(tangle=Tangle)|essay=Essay;

Tangle: TANGLE_PREFIX(component=Component |

connector=Connector |

constraint=Constraint) ; Essay:

PROPER_ENGLISH_SENTENCE ;

terminal PROPER_ENGLISH_SENTENCE: (’A’..’Z’|’1’..’9’

|’*’)-> (’. ’|’!

’|’? ’|’\n\n’|’\r\r’) ;

terminal TANGLE_PREFIX: ’-- ’;

...

As you can see now, a the DSL now consists of a root element (with a tangle
prefix) followed by an arbitrary number of elements. An element can be
either tangled code, or an essay. Tangled code is always prefixed with “-- ”
and is either a component, connector or a constraint. An essay consists of
proper English sentences. A proper_english_sentence starts either with
a capital letter, a number or a * (the latter allows for lists), and ends with a
punctuation mark which ends a sentence in English or an end of a paragraph
(two line breaks).

After this the architecture.chralx was rewritten to adhere to the syntax.
Also the description was made in the style of literate programming, mean-
ing that before each component declaration its explanation was written in
the essay part. Most of the description is overtaken and translated from [?,
Schlott2013] You can see this version of the file in the Appendix.

Another change was that now the architecture.chralx did not contain
an explanation of the syntax itself any longer. Instead the explanation was
moved to a separate file called primer.chralx which explains and exempli-
fies the language. It can also be found in the Appendix.

4.4.3 Evaluation

Since both chralx files were part of the projects source code, these were
simply submitted in a patch to Gerrit. Some comments came from the
team, however these were just seeking some clarifications.

40

4.5 Second Iteration Arsenij E. Solovjev

4.5 Second Iteration

This was the last iteration I was going to do, so I decided to keep it short.
I focused only on implementing a rule for “Constraint”, a refactoring of the
archnemesis-sonar-rule as configuring Jenkins to deploy it to Jenkins au-
tomatically.

So the idea was to add a constraint that enforces that a component is used
together with some class or package. Or in other words, the constraint would
say “if you use component X, you should also use Y”.

4.5.1 Syntax of Constraints

Here I attempted to keep with the spirit of literate programming and make
code read as natural text as much as possible. The rule for a constraint was
defined thusly:

Constraint:

’clients of ’ component = [Component] ’must use ’

requiredClass = FullyQualifiedClassName;

As you can see, the syntax is made to read like a sentence and reflects the in-
tent behind the constraint directly. A new grammar rule called FullyQualifiedClassName

is used here. The rule is defined thusly:

terminal ClassName:

’.’(’A’..’Z’)(’a’..’z’|’A’..’Z’|’1’..’9’)*

;

FullyQualifiedClassName:

PackageName ClassName

;

A fully qualified class name thus consists of a package name followed by a
class name. A class name corresponds to a typical Java class name, start-
ing with a capital letter. The ’.’ before the actual name is there to not
overshadow the ESSAY rule.

4.5.2 Semantics of Constraints

When the rule is processed, the archnemesis-sonar-rule first goes through
the list of constraints. If there are constraint, it looks whether the component
is imported into a class, and if so it looks whether the requiredClass is
also present in the imports.

41

4.5 Second Iteration Arsenij E. Solovjev

4.5.3 Evaluation

The feedback for this feature came only from one developer:

Components in the Core cannot even use that line.

Components in Eclipse can use the UISynchronizer. If there are
really special cases they should just C&P this method into the
component.

Even the jface stuff is dangerous and this is the part where you
will hit a big wall. While you may need some stuff of those
packages you open access to all ”wonderful”things like dialogs etc
... Which should not be used (even in Eclipse only Components)
at all.

However, I had no time to draw conclusions from this comment as time for
implementation ran out.

42

4.5 Second Iteration Arsenij E. Solovjev

Figure 9: How the RuleSetFactory creates a RuleSet. Firstly each RuleRef-
erenceId is went over. Each RuleReference contains a corresponding qualified
class name of the implementing class of the rule (this qualified name is de-
fined in the rulesets.xml). The class is then loaded through the classloader
and added to the RuleSet.

43

4.5 Second Iteration Arsenij E. Solovjev

Figure 10: Archnemesis Grammar

Figure 11: Architecture.chralx file describing the components of Saros

44

4.5 Second Iteration Arsenij E. Solovjev

Figure 12: Architecture.chralx file describing the components of Saros

45

5 Conclusion and Outlook Arsenij E. Solovjev

5 Conclusion and Outlook

Industriousness and conscientiousness are often
antagonists, owing to the fact that industriousness
wants to pluck the fruit sour from the tree while
conscientiousness wants to let it hang too long, until
it falls and is bruised.

Friedrich Nietzsche, All Too Human

Ultimately the following results were achieved in this thesis:

• The build infrastructure of Saros was enhanced to include Sonarqube
analyses.

• The results of these analyses were made to be presented to the de-
velopers in an unobtrusive fashion, as reviews in Gerrit. This way
Sonarqube became integrated into the development process.

• A DSL for the description of architectures in a literate programming
style called Archnemesis was introduced.

• A description of Saros in Archnemesis was made.

• A Sonarqube plugin archnemesis-sonar-rule was developed which
can run architecture compliance checks based on a an architecture
description in Archnemesis.

• This way the foundation for the operationalization of Saros’ architec-
ture was laid.

The Archnemesis Xtext project as well the Sonarqube plugin archnemesis-

sonar-rule can be found on Saros’ GitHub homepage https://github.

com/saros-project/.

There is a series of technical problems I have not been able to solve during
the duration of this thesis, due to a combination of time pressure and a lack
of expertise:

• Sonarqube provides a readily comprehensible view of the code coverage
in a code base. Some steps were made to achieve this, but I didn’t
follow through.

• Too often Sonarqube hits a read timeout during an analysis. The
developer mailing list of Sonarqube has been contacted regarding this
issue. The reply was to increase the timeout threshold, however this
only reduced the symptoms.

46

https://github.com/saros-project/
https://github.com/saros-project/

5 Conclusion and Outlook Arsenij E. Solovjev

• The script that transforms an issues report into a REST request to
Gerrit should be integrated the Issue Report Plugin. This script would
fit nicely as an output format in the plugin, and would prevent possible
incompatibilities if the format of the issue reports were to change.

At the end of Chapter 6 one can see that the “Constraint” feature was not
matured enough. This is indicative of what I think is the greatest short-
coming of this thesis, namely understanding Saros’ architecture well enough
to develop a better thought-out out DSL, which fits the needs of Saros better.
However, I feel that a sound basis for further development has been laid.
Moreover, this basis is completely open-source and I feel that some of the
artifacts can be integrated into larger projects. For instance

• The integration scripts, which enable the posting of issue reports can
be used to integrate Sonarqube and Gerrit, where Sonarqube issues
are directly translated into a Gerrit review.

• The Sonarqube plugin together with Archnemesis could be presented
to the Sonarqube community.

A better look can be taken at ADLs, and more specifically the way they de-
fine constraints in order to find more mechanisms for constraints. A better
look can be taken at Saros, to find further key architectural aspects. One
could also consider how Archnemesis could define a Server/Client architec-
ture, as this is in ongoing effort in the research group32.

32This is a proposed topic for theses by the research group. See: http:

//www.inf.fu-berlin.de/w/SE/ThesesDPP#Saros_45Server:_Realisierung_Nutzer_

45unabh_228ngiger_Sitzungen_40B_44_M_44_D_41

47

http://www.inf.fu-berlin.de/w/SE/ThesesDPP##Saros_45Server:_Realisierung_Nutzer_45unabh_228ngiger_Sitzungen_40B_44_M_44_D_41
http://www.inf.fu-berlin.de/w/SE/ThesesDPP##Saros_45Server:_Realisierung_Nutzer_45unabh_228ngiger_Sitzungen_40B_44_M_44_D_41
http://www.inf.fu-berlin.de/w/SE/ThesesDPP##Saros_45Server:_Realisierung_Nutzer_45unabh_228ngiger_Sitzungen_40B_44_M_44_D_41

6 Appendix Arsenij E. Solovjev

6 Appendix

48

6 Appendix Arsenij E. Solovjev

Figure 13: The second version of the architecture.chralx file, with literate
programming and multi-package components

49

6 Appendix Arsenij E. Solovjev

Figure 14: The first version of the Archnemesis primer, which explains and
demonstrates the syntax and semantics of the DSL

50

6 Appendix Arsenij E. Solovjev

Figure 15: The final version of the Archnemesis grammar, features include
component and connector definitions. Literate programming is supported
with the ESSAY element. A simple constraint mechanism is also available.

51

References Arsenij E. Solovjev

References

[All97] Robert J. Allen. A Formal Approach to Software Architecture.
PhD thesis, Carnegie Mellon University, 1997.

[Aug13] Anne Augustin. Integration von architekturmodellen in einen
agilen softwareentwicklungsprozess. Master’s thesis, FU Berlin,
2013.

[BBvB+] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cock-
burn, Ward Cunningham, Martin Fowler, James Grenning,
Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian
Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff
Sutherland, and Dave Thomas. The agile manifesto. http:

//agilemanifesto.org/.

[Bel11] Wjatscheslaw Belousow. Verbesserung der architektur der dpp-
software saros durch einfÃ1

4hrung einer dokumentierten modul-
sicht. Master’s thesis, FU Berlin, 2011.

[BW14] Georg Buchgeher and Rainer Weinreich. Continuous software
architecture analysis. In Agile Software Architecture: Aligning
Agile Processes and Software Architecture. Morgan Kaufmann,
2014.

[CHCM14] Jean Cleland-Huang, Adam Czauderna, and Mehdi Mirakhorli.
Driving architectural design and preservation from a persona
perspective in agile projects. In Agile Software Architecture:
Aligning Agile Processes and Software Architecture. Morgan
Kaufmann, 2014.

[Fow] Martin Fowler. Is design dead? http://martinfowler.com/

articles/designDead.html.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1994.

[JOC14] Trygve Reenskaug James O. Coplien. The dci paradigm: Taking
object orientation into the architecture world. In Ivan Mistrik
Muhammad Ali Babar, Alan W.Brown, editor, Agile Software
Architecture: Aligning Agile Processes and Software Architec-
ture, chapter 2, pages 25–59. Morgan Kaufmann, 2014.

[Kru95] Philippe Kruchten. Architectural blueprints: The ”4+1” view
model of software architecture. In IEEE Software 12(6), pages
42-50, 1995.

52

http://agilemanifesto.org/
http://agilemanifesto.org/
http://martinfowler.com/articles/designDead.html
http://martinfowler.com/articles/designDead.html

References Arsenij E. Solovjev

[MABM13] Alan W.Brown Muhammad Ali Babar and Ivan Mistrik, edi-
tors. Agile Software Architecture: Aligning Agile Process and
Software Architecture. Morgan Kaufmann as an imprint of El-
sevier, 2013.

[MT00] N. Medvidovic and R.N. Taylor. A framework for classifying
and comparing architecture descriptions languages. Software
Engineering, IEEE Transactions on, 26:70–93, 2000.

[Sch13] Patrick Schlott. Analyse und verbesserung der architektur eines
nebenl Ìaufigen und verteilten softwaresystems. Master’s thesis,
FU Berlin, 2013.

[Sta14] Michael Stal. Refactoring software architectures. In Agile Soft-
ware Architecture: Aligning Agile Processes and Software Ar-
chitecture. Morgan Kaufmann, 2014.

[vdVB14] van der Ven and Bosch. Architecture decisions: Who, how and
when? In Agile Software Architecture: Aligning Agile Processes
and Software Architecture. Morgan Kaufmann, 2014.

[Ves93] S. Vestal. A cursory overview and comparison of four architec-
ture description languages. Technical report, Honeywell Tech-
nology Center, 1993.

53

	Introduction
	Brief history of Software Architecture
	Problem statement
	Related Work
	Goal statement
	Roadmap

	Architecture Description Languages
	Criteria
	Overview of different ADLs
	Applicability to Saros and Further Reading

	Integration into the development process
	Saros' infrastructure
	Continuous Integration with Jenkins
	Peer reviews with Gerrit
	Development process and interaction within the infrastructure

	Upgrading Saros' infrastructure
	Sonarqube
	Why not Sonarqube's architecture rule engine?
	Integrating Architecture Compliance Checks into the Development Process
	Issue reports
	Failed first approach at integrating Sonarqube with Gerrit and Jenkins
	Successful second approach at integration
	Implementation of the second approach
	Jenkins Configuration
	Custom submit rules

	Implementing Architecture Compliance Checking
	Evaluation of static analysis tools
	NDepend and others
	JArchitect
	PMD
	Technical elaboration on PMD's viability

	Approaches to Implementation
	Create rules from DSL dynamically
	Use one static rule

	Iteration Zero
	First Iteration
	Requirement Elicitation
	Development
	Evaluation

	Second Iteration
	Syntax of Constraints
	Semantics of Constraints
	Evaluation

	Conclusion and Outlook
	Appendix

