
Master’s thesis at the Human Machine Interaction and Software

Technology Research Group

User-Centered Development of a JavaScript and

HTML-based GUI for Saros

Bastian Sieker
Student ID: 6505060

bsieker@mail.uni-paderborn.de

First Reviewer: Prof. Dr. Lutz Prechelt (Freie Universität Berlin)

Takustraße 9, 14195 Berlin

Second Reviewer: Prof. Dr. Gerd Szwillus

Supervisor: Franz Zieris (Freie Universität Berlin)

Paderborn, Septemeber 1, 2015

mailto:bsieker@mail.uni-paderborn.de

Bastian Sieker

Abstract

The GUI of Saros, a plugin for Eclipse and IntelliJ for distributed
collaborative programming, is ported to HTML and JavaScript to en-
able IDE-independent development of Saros. In this thesis, a Saros
GUI based on the named technologies is developed following UCD prin-
ciples. During the UCD process 19 usability problems were identified
and 7 of them fixed.

Several JavaScript frameworks were evaluated based on Saros’s spe-
cific requirements, AmpersandJS was identified as the most promising
solution, in the end. I defined an architecture for embedding the HTML
frontend into Saros based on the requirements of the Saros application
and development team. Due to the high fluctuation in the Saros team,
the development process is supported by tools to ease the development,
especially for developers without experience in the area of web devel-
opment. The result of the implementation is a solid groundwork for
future developers to work on the Saros GUI and to implement missing
features to be able to replace the old Saros GUI in the future.

b

Bastian Sieker

Affirmation of independent work

I hereby declare that I wrote this thesis myself without sources other than
those indicated herein. All parts taken from published and unpublished
scripts are indicated as such.

Paderborn, Septemeber 1, 2015

Bastian Sieker

c

Contents

1 Introduction 1
1.1 Saros . 1
1.2 Motivation . 1
1.3 Goals . 1
1.4 Terminology . 2
1.5 Structure . 2

2 Related Work on Saros 3
2.1 Regarding Usability . 3
2.2 Regarding Technology and Architecture 3

3 User-Centered Design Process 5
3.1 Introduction . 5

3.1.1 Usability . 5
3.1.2 User-Centered Design 5

3.2 Objective . 6
3.3 Methods . 6

3.3.1 Thinking Aloud User Tests 6
3.3.2 Questionnaires and Interviews 8
3.3.3 Heuristic Evaluation 8

3.4 Intended Process . 9
3.4.1 When to Start Testing 9
3.4.2 Process . 10
3.4.3 Test Tasks . 11

3.5 Documentation of Results . 11

4 Technology 13
4.1 HTML, CSS and JavaScript 13
4.2 Saros-specific requirements 14
4.3 Communication interface between Java and JavaScript 15
4.4 JavaScript MV*-Framework Evaluation 18

4.4.1 AngularJS . 19
4.4.2 EmberJS . 19
4.4.3 BackboneJS . 20
4.4.4 AmpersandJS . 20
4.4.5 Decision making . 21

4.5 JavaScript Tooling . 22

5 Implementation 24
5.1 UI modules . 24
5.2 Saros GUI JavaScript application 24

5.2.1 CommonJS Modules 25

5.2.2 Project Structure . 26
5.2.3 The SarosApi Module 26
5.2.4 HTML Templating with JADE 29
5.2.5 Additional dependencies 29

5.3 Challenges . 30
5.4 Tooling . 34

5.4.1 Building . 34
5.4.2 Testing . 35
5.4.3 Linting . 35
5.4.4 Code Auto-Formatting 35

5.5 Build Integration . 35
5.5.1 Building the OSGi Module inside IntelliJ and Eclipse 36
5.5.2 Configuring the Jenkins build 36
5.5.3 Discussion about the Integration of the JavaScript

Build Process . 36
5.6 Accompanying Refactorings 37
5.7 Results . 38

5.7.1 Saros main view . 39
5.7.2 Sesseion-Invitation Wizard 39
5.7.3 Join-Session Wizard 40
5.7.4 Documentation . 40

6 Applying the User-Centered Design Process 41
6.1 Preliminary Iteration with the old Saros GUI 41
6.2 Initial Iteration with the new Saros GUI 42
6.3 Heuristic Evaluation . 43
6.4 Final Iteration . 44
6.5 Summary . 44

7 Conclusion 46
7.1 Results . 46
7.2 Future Work . 46

A Appendix 48
A.1 Usability Test Task Sheet 1 48
A.2 Usability Test Task Sheet 2 49
A.3 Catalogue of Usability Problems 50

1 Introduction Bastian Sieker

1 Introduction

1.1 Saros

Saros is an open source software to enable distributed collaborative software
development and is available as a plugin for the integrated development en-
vironments (IDE) Eclipse1 and IntelliJ2. Saros started as a research project
in the software engineering research group at Freie Universität Berlin, went
open source and is further developed by the community and various thesis
workers at the university.

1.2 Motivation

Currently, Saros is developed for Eclipse and IntelliJ. Each of these uses
a different graphical toolkit to build the Graphical User Interface (GUI).
To ease the development process of the GUI and reduce redundancies,
an IDE-independent implementation was targeted. Furthermore, an
IDE-independent implementation supports the development of Saros for
further IDEs3.
Cikryt[Cik15] evaluated an HTML and JavaScript-based approach with
promising results and lay the groundwork for implementing a GUI based
on the named technologies. However, the prototype was built to evaluate
the possibility of building the GUI with HTML and JavaScript, only. Thus,
a fully-functional implementation is still missing.

1.3 Goals

The main goal of this thesis is to build a new Saros GUI based on JavaScript
and HTML. During development, special emphasis is on the usability of the
GUI. Therefore, via iterative usability tests, early feedback will be gathered
from users. To maximise the usability of the GUI in the course of this thesis,
an iterative and user-centered design process must be evaluated and applied.

A second goal is to keep the entry barrier for future developers as low as
possible. This is due to the high fluctuation in the development team around
Saros. I will evaluate the current JavaScript framework landscape to find a
suiting framework supporting this goal. Furthermore, tooling for automa-
tion of common tasks is investigated. The application and the resulting
development workflow should be documented in detail, to enable even de-

1http://www.eclipse.org/
2https://www.jetbrains.com/idea/ The plugin for IntelliJ is not released, yet.
3http://www.inf.fu-berlin.de/w/SE/ThesesDPP#PortierungIDEs (retrieved August

25th, 2015)

1

http://www.eclipse.org/
https://www.jetbrains.com/idea/
http://www.inf.fu-berlin.de/w/SE/ThesesDPP#PortierungIDEs

1.4 Terminology Bastian Sieker

velopers without experience in the field of web development to develop the
application in the future.

1.4 Terminology

I abbreviate user interface (UI), graphical user interface (GUI), and inte-
grated development environment (IDE). I will use Saros GUI to address the
GUI developed in the course of this thesis. Whenever I have to refer to the
existing SWT4 implementation, I will explicitly call it the old Saros GUI.

1.5 Structure

This thesis is about implementing a new Saros GUI, based on HTML and
JavaScript, following user-centered design principles. At first, the relevant
literature on Saros is summarised (Section 2) and fundamental concepts of
the fields of usability engineering and user-centered design are introduced
(Section 3.1). Based on that, objectives and methodologies of the user-
centered design process are elaborated (Section 3.2 to 3.5).
Next, essential technologies and requirements are introduced (Section 4.1 to
Section 4.3), promising JavaScript frameworks, as a basis for the Saros GUI,
are evaluated (Section 4.4), then additional tooling is presented (Section
4.5). A detailed look at the implementation, its challenges (Section 5.1 to
5.3) and the tooling (Section 5.4) is taken, the build integration is discussed
shortly (Section 5.5) and accompanying refactorings (Section 5.6) as well as
the results of the implementation are presented (Section 5.7).
Finally, the concrete process of applying the user-centered design process is
explained and its results are summarised (Section 6) before a conclusion of
this thesis is given (Section 7).

4Standard Widget Toolkit, a graphical widget toolkit for Java.

2

2 Related Work on Saros Bastian Sieker

2 Related Work on Saros

2.1 Regarding Usability

There are various works regarding the evaluation and improvement of the
usability of Saros. For example, M. Spiering utilised an iterative UCD pro-
cess5 to identify and solve multiple usability problems [Spi12]. Her work
elaborates a mental model of end-users of Saros. Further, she compares
this model to the implementation of Saros and, based on the deviation be-
tween both, identifies existing usability problems. Furthermore, Spiering
collected the results of multiple preceding theses regarding the usability in
Saros (for example B. Kahlert [Kah11], A. Solovjev [Sol11] and A. Wald-
mann [Wal12]) and provides a catalogue of usability problems. Most of the
collected problems have their origin in fundamental concepts of Saros. For
example, unexperienced users often have problems understanding the host-
concept of Saros and therefore are confused by the special role of the host
in a session. Furthermore, it is often not clear to the user when the follow
mode is paused or stopped, users want to have a voice connection to ease
communication or they want to have the same colour assigned in succes-
sive sessions. All of these problems are deeply linked with the fundamental
concepts of Saros. To resolve them, existing functionality would have to be
adapted or additional functionality implemented. Those problems can not
simply be resolved via adaptions to the user interface.

2.2 Regarding Technology and Architecture

The first utilisation of HTML for GUI development in the context of Saros
was done by D. Durmaz [Dur14]. Durmaz implemented a prototypical view
based on the integration of a browser-widget6 (a project initiated by B.
Kahlert, then a researcher in the Software Engineering working group of
the FU Berlin) and compared the performance to a SWT implementation
and got promising results.

In the scope of his master thesis, C. Cikryt further elaborated the feasibility
of an HTML-based GUI for Saros, motivated by the fact that Saros is
developed for Eclipse as well as IntelliJ, which use different graphical
widget toolkits [Cik15]. This led to designated implementations for each of
both IDEs. Based on previously defined goals like reduction of duplicate
code, maintainability and IDE-independency, Cikryt evaluated various
technologies (regarding the embedding of a browser in the IDE) and
implemented a working prototype. The main aspect of Cikryt’s work was

5Spiering only iterated once but the process was designed and is probably suitable for
multiple iterations.

6https://github.com/bkahlert/com.bkahlert.nebula/tree/master/src/com/

bkahlert/nebula/widgets/browser

3

https://github.com/bkahlert/com.bkahlert.nebula/tree/master/src/com/bkahlert/nebula/widgets/browser
https://github.com/bkahlert/com.bkahlert.nebula/tree/master/src/com/bkahlert/nebula/widgets/browser

2.2 Regarding Technology and Architecture Bastian Sieker

the browser embedding and the interface between Java and JavaScript,
however, in addition, a GUI prototype was implemented with the web
technologies JQuery7, Bootstrap8 and AngularJS9. As a part of this thesis,
based on the evaluation of different JavaScript frameworks, the prototypical
implementation was replaced with a new GUI built from scratch. More on
that in chapter 4.

Based on Cikryt’s work, M. Bohnstedt investigated the IDE-independet de-
velopment of Saros and identified properties and potential for optimisation
in the software architecture as well as the development process [Boh15].
Furthermore, he improved and extended the interface for the Saros GUI on
Java-side. There is a close relation between my thesis and Bohnstedt’s thesis
since we both worked on the interface between the Java and the JavaScript
application, in parallel. My thesis focuses the GUI implementation and the
encapsulation of the interface on JavaScript-side. Due to this close relation
and resulting dependencies, collaborative work was indispensable between
us.

7https://jquery.org/
8http://getbootstrap.com
9https://angularjs.org/

4

https://jquery.org/
http://getbootstrap.com
https://angularjs.org/

3 User-Centered Design Process Bastian Sieker

3 User-Centered Design Process

Section 3.1 gives an introduction for the terms Usability and User-Centered
Design. Next, Section 3.2 defines objectives of the usability evaluation in
the course of this thesis. Section 3.3 introduces and evaluates relevant us-
ability engineering methods. Finally, in Section 3.4 the intended process of
evaluating the Saros GUI is presented.

3.1 Introduction

3.1.1 Usability

According to the International Standards Organization the term Usability
describes:

“...the extent to which a product can be used by specified users
to achieve specified goals with effectiveness, efficiency and satis-
faction in a specified context of use.” [Int98]

Usability problems are defined by Karat et al. as anything that interfere
with a user’s ability to efficiently and effectively complete tasks [KCF92].
In the course of solving usability problems the field of Usability Engineering
originated. Usability engineering provides processes and methods to achieve
specific attributes which are defining the usability of a product. The work
of Nielsen [Nie93] is a major contribution in this field.

3.1.2 User-Centered Design

“User-Centered Design (UCD) is a multidisciplinary design ap-
proach based on the active involvement of users to improve the
understanding of user and task requirement, and the iteration of
design and evaluation.” [MVSC05, p.105]

ISO 13407 [Int99] provides a definition for the Human-Centered Design Pro-
cess for Interactive Systems which is the basis for most UCD processes. It
defines four activities which are part of the iterative design process:

Context of Use Identify users (and their characteristics), the purpose and
the context of use of the product.

Requirements Identify the requirements of the user for the product.

Design Produce design solutions (various stages possible, for example pa-
per prototyping or the actual software implementation).

5

3.2 Objective Bastian Sieker

Evaluation Evaluate designs against requirements to record the progress
and to decide whether a new iteration is necessary (for example via
user tests, interviews etc.).

ISO 13407 defines the workflow of the design process without specifying any
practical methods.

3.2 Objective

In the following we will define the objectives of the UCD process. Nielsen
introduces the terms formative and summative evaluation [Nie93, p.170].
Formative evaluation is about identifying good and bad parts of an inter-
face and how they influence the usability. Summative evaluation is about
measuring the quality of an interface, for example to compare it to other
products. Furthermore, Nielsen says about formative evaluation:

“Formative evaluation is done in order to help improve the inter-
face as part of an iterative design process.” [Nie93, p.170]

In this thesis, formative evaluation is focused. Since the UI is build from
scratch and there are dependencies to other theses, it is not clear whether
in each test iteration the same range of features is implemented. Thus, it
will be difficult to compare test results between iterations. Since the goal is
to simply minimise usability problems instead of measuring usability, this
should not be a problem.

3.3 Methods

In the following, different usability engineering methods are introduced and
evaluated with their cost-value ratio in mind. The costs of the applied
methods should be reasonable with the limited time available for this thesis
in mind. Another important factor is the number of test users necessary to
get reliable results for a given test method, since it is difficult to gather a
big test user base.

3.3.1 Thinking Aloud User Tests

User tests with real users is the most fundamental usability method and is
in some sense irreplaceable, since it provides direct information about how
people use computers and what their exact problems are with the concrete
interface being tested [Nie93, p. 165]. Even with only a small group of
test users you can achieve very good results, however the effort is quite high.

The Thinking Aloud methodology is a user test where the user is continu-
ously thinking out loud while using the system [Nie93, p. 195]. This gives
insights about why a user performs a specific action and what the user

6

3.3 Methods Bastian Sieker

expects of it, thus it helps understanding the user. However, it is important
to have a critical view on the user’s feedback. Often they develop their
own biased theories about why they acted like they did. Therefore, it is
very helpful to record the test session to have a look at the situations in
question, later on. Another challenge is to make the user thinking out loud
without forcing him to much, since this is unnatural behaviour to most
people.

Independently of whether performing a user test with thinking aloud or not,
there are a number of parameters to weigh up during the planning period.
In the following I will discuss some of those parameters10 with respect to
the application to test, the Saros GUI.

Who are the test users? Are they experienced with the software?
The test users should have a background in the field of software development
since that is the target group of Saros. It is not mandatory for a test user
to have experience with Saros (novice users), however users with experience
(expert users) are interesting because they know the old GUI of Saros and
may identify consistency issues, for example. This is important because
despite building the new GUI from scratch, one goal is to keep reasonable
conventions and workflows to ease the transition from the old to the
new implementation for expert users (however, not at the expense of the
general usability). Hence, a mix of novice and expert users would be optimal.

Furthermore, there is a distinction between within-subject-testing, where
one test user is participating in multiple iterations, hence is testing
different versions of the GUI, and between-subject-testing, where one test
user participates in one iteration, only. However, as Nielsen states, this
distinction is mainly important in summative evaluations. However,
Within-subject-testing may lead to interesting results when the user tests a
feature for the second time and a previously reported usability problem is
fixed. That gives additional feedback to the developer whether the problem
is fixed, sufficiently.

What tasks will the users be asked to perform?
The tasks will depend on the number of features implemented at the time
of the test11. I will cover all implemented, essential features in each test
session since the range of those features is manageable.

How many test users are needed?

10Only a subset of parameters defined by Nielsen is discussed, for the full list of param-
eters see [Nie93, p. 170].

11As mentioned before, there are dependencies to other theses and it is difficult to plan
when a certain feature is implemented and ready to test.

7

3.3 Methods Bastian Sieker

According to Nielsen, the optimal number of test users, with respect to the
ratio of benefits to cost, is five [Nie00]. Since multiple iterations will be
done and it is difficult to find volunteers, the number of test users should
be between three and five per iteration.

What data is going to be collected, and how will it be analysed?
Screen and audio recordings (cameraless videotaping) can be very helpful to
analyse the test session in more detail, retrospectively. During the test, the
experimenter can take notes whenever the test user experiences problems,
however there is not enough time to completely analyse the situation. This
can be done afterwards with the recordings.

Who is the experimenter?
For convenience and limited resources (I don’t have to look for an additional
experimenter) I will take the role of the experimenter. It is no problem to do
so generally, however, there are some risks like a possible lack of objectivity
and the tendency to explain problems away [Nie93, p.180]. Thus, I try to
strictly follow the ”shut-up” rule: Intervention is only allowed in situations
where the user got stuck, completely.

3.3.2 Questionnaires and Interviews

Questionnaires and interviews are a beneficial way of gathering additional
information regarding the subjective perception of the tested system by the
user. Such information is hard to measure objectively, for example whether
a user is stressed or which features of the system are especially good or bad.
However, as already mentioned about the thinking aloud methodology:
“Data about people’s actual behaviour should have precedence over peoples
claims of what they think they do.” [Nie93, p.209].

Questionnaires and interviews are very similar methods. Since interviews are
more flexible and the users are in place after the user test anyway, interviews
may be more efficient. One can respond more flexible to the statements of
the user and go into detail of specific issues. In addition, you can explain a
question in more detail if the user does not understand it correctly.

3.3.3 Heuristic Evaluation

Heuristic evaluation is a method based on a set of rules to identify certain
patterns and characteristics of a user interface and to asses them. Nielsen
defines 10 heuristics for the design of user interfaces which are more or
less universally applicable [Nie93, p.209]. Heuristic Evaluation is a good
method to find usability problems early to be prepared for test with actual
users.

8

3.4 Intended Process Bastian Sieker

Nielsen suggests to use more than one evaluator (however, one is better
than none) where each is working in isolation to ensure unbiased evaluations
[Nie93, p.157]. The evaluators can freely explore the UI and should try
to cover all offered functionalities. It is reasonable to go through the
UI multiple times. In the first run they can get a feeling for the flow of
interaction and the scope of the system, in the second run they can have a
more detailed look on smaller elements and whether they fit in the global
system.

3.4 Intended Process

Based on the previously evaluated methods, in the following I will describe
the concrete plan for the realisation of the UCD process in this thesis.
All in all, the thinking aloud loud methodology is very good for collecting
qualitative data with a relatively small amount of users, hence, it will be
the most important methodology for testing the Saros GUI.

3.4.1 When to Start Testing

The core idea of UCD is to get early feedback from real users to be able
to respond to their requirements while developing the product. However,
the product, in this case the Saros GUI, should be in a stage where it is
reasonable to test. For example, it is not reasonable to test a feature which
is not implemented completely and has obvious flaws. In this case, a user
test is waste of time because the bigger part of problems which will arise
are already known. In addition, the results of those tests may be useless
in the end, since the behaviour and handling of the feature may change
significantly during further implementation.

Even tests of fully implemented features can be needless. For example, it
may be useless to test a feature of the GUI in isolation because this feature
makes no sense to the user without knowing how it will be integrated in the
overall system. Therefore, when testing, the system should be in a state
where the implemented features are reasonably embedded in the the system
and the desired workflow.

9

3.4 Intended Process Bastian Sieker

3.4.2 Process

The following process of evaluating the usability of the Saros GUI is pursued,
roughly:

1. Heuristic Evaluation

2. Iterative UCD Process

(a) Iteration 1

(b) Iteration 2

(c) Iteration 3

Before actually performing user tests, a heuristic evaluation should be per-
formed to identify and eliminate the most evident usability problems and
major flaws of the system. Afterwards, it is planned to have three iterations
of user tests, each iteration with three to five users. The GUI should be
tested to the extend it is implemented, at the time. In each iteration and
with each test user a test session will have the following stages12:

1. Preparation Setup the test room and the software environment. Ev-
erything should be ready to start when the user arrives.

2. Introduction Welcome the user, give an introduction to the test session
with information like what will be done, what will be tested, what will
be recorded, that the user can abort the test at any time, etc. Explain
the thinking aloud methodology and eventually answer questions of
the user.

3. Thinking aloud user test Run the test according to previously de-
fined tasks/scenarios. Make notes of interesting situations, also to
have some material for discussion in the interview.

4. Interview The interview will be held immediately after the test session.
Except some standard questions like What did you especially like or
dislike? it will be a free interview where interesting situations from the
test session are discussed in more detail, for example with questions
like What did you expect will happen after performing this particular
action?.

5. Debriefing Give the user insights about why the test session is helpful,
what it contributes to this thesis and answer questions.

12Based on ”Stages of a Test” [Nie93, p. 187]

10

3.5 Documentation of Results Bastian Sieker

Table 1: Notation for problem documentation

#No Title Fatality

Problem description

Source

Approach

Discussion

3.4.3 Test Tasks

The test tasks should be designed in a way that the fundamental functions
are covered in realistic scenarios. In the case of Saros, at least the
functionalities of starting and joining a session should be covered. They
are essential for the functionality of Saros. In addition, they are the most
complex parts of the GUI. Furthermore, the tasks should be restricted to
IDE-independent functionalities since that is the area of influence of this
thesis.

After each iteration, the identified usability problems should be gathered
and evaluated (see Section 3.5 for details). Before the next iteration, the
GUI should be reworked according to the identified problems with respect
to the severity and the effort necessary to solve them.

3.5 Documentation of Results

The problems identified during the UCD process are documented on the
basis of the notation introduced by Spiering [Spi12, p.59]. Table 1 shows
the template for the documentation of a usability problem. The cell Fatality
specifies the severity of the problem based on Table 2. Furthermore the
source of the problem is explained (Source), a detailed description is given
(Description) as well as suggestions how solve the problem (Approach). If I
fixed the problem in the course of this thesis, the corresponding commit is
referenced. Finally, the approach is discussed and, if a fix was made, it is
evaluated (Discussion). See Table 3 for an example.
In this section the methodology of the UCD process was introduced. The
procedure of applying this process is documented in Section 6. Further-
more, a notation for the documentation of identified usability problems was
presented. You can find the collection of identified usability problems in
Appendix A.3.

11

3.5 Documentation of Results Bastian Sieker

Table 2: Fatalities based on Nielsen and Mack [NLM94]

Fatality Description

0 - No Usability Problem “I don’t agree that this is a usability problem at all”

1 - Cosmetic “Cosmetic problem only: need not be fixed unless ex-
tra time is available on project”

2 - Minor “Minor usability problem: fixing this should be given
low priority”

3 - Major “Major usability problem: important to fix, so should
be given high priority”

4 - Catastrophic “Usability catastrophe: imperative to fix this before
product can be released”

Table 3: Example for notation of a documented usability problem.

#1 Unclear state of contacts 2

Only online contacts are marked explicitly with an online tag. When no
contact is online, there is no indication about their state.

Source: Usability Tests

Approaches:

• Provide a tag for every possible state and show it permanently

Discussion: This problem was found in the old Saros GUI and was not fixed in
the initial design of the new Saros GUI, thoroughly. Afterwards, the problem
was fixed with the following commit:
http://saros-build.imp.fu-berlin.de/gerrit/#/c/2791/

12

http://saros-build.imp.fu-berlin.de/gerrit/#/c/2791/

4 Technology Bastian Sieker

4 Technology

This chapter introduces and evaluates the technologies of relevance for the
Saros GUI. In Section 4.1, a brief introduction to utilised technologies is
given. Afterwards, in Section 4.2, the Saros GUI application is compared
with a common web application and special requirements are derived. Next,
in Section 4.3, the communication interface between Java and JavaScript,
mostly implemented by Cikryt, is introduced. In Section 4.4, there is a
comparison and evaluation of possibly suitable JavaScript frameworks to
utilise in the Saros GUI. Finally, in Section 4.5, the environment and setup
for additional tooling is presented.

4.1 HTML, CSS and JavaScript

HTML and CSS

HyperText Markup Language (HTML) is a markup language (rather than
a programming language) for building static documents, via describing
the structure of the document. Today, it is the standard for creating web
pages and therefore mostly interpreted in a browser. To define the visual
appearance (style) of HTML elements, usually CSS is, and should be,
utilised [W3C].

Since there is no way to add dynamic behaviour to a HTML document with-
out further ado13, HTML allows to embed JavaScript code in the document
to access, modify, create and delete elements in the document.

JavaScript

JavaScript is a dynamic programming language often interpreted by a
browser. In today’s browsers there is a rich JavaScript API to manipulate
the underlying HTML document and add dynamic behaviour. With the rise
of JavaScript runtime environments like NodeJS14, however, an increasing
amount of stand-alone JavaScript applications is developed.

JavaScript is utilised more and more in web development since web pages
evolved from static documents to complex Single Page Applications (SPAs).
SPAs are an attempt to increase the usability experience of the user and to
decrease the amount of data transferred between the server and the client.

13CSS is able to add some dynamic behaviour like hiding/showing elements, basic ani-
mations etc., but it is not able to manage application state or handling user actions beyond
simple interactions like mouse hovers, conveniently.

14http://nodejs.org/

13

http://nodejs.org/

4.2 Saros-specific requirements Bastian Sieker

To do so, SPAs use AJAX15 requests to receive data from the server with-
out reloading the whole page in the browser. Therefore the HTTP-request
appears to be non-blocking to the user, the application state is maintained
on the client and the HTML document can be updated partially (or fully or
not at all), according to the data received by the request.

4.2 Saros-specific requirements

In this section we will identify special properties of the Saros GUI in
comparison to the SPA scenario described in the previous section. Further-
more, based on that properties, I will derive requirements for the Saros GUI.

When we see the Saros GUI as the client in the SPA scenario, and the Java
application as the server, we can make essential differences:

Loading resources Resources like CSS and JavaScript files are fetched lo-
cally from the filesystem instead of a remote server via HTTP-requests.

Data interface There is a bidirectional communication interface between
the Saros GUI and the Java application, whereas in the SPA scenario,
usually only the client is able to make requests16. Furthermore, for
this communication no HTTP-requests are used. For more details on
the interface between Java and JavaScript, have a look at the next
section, 4.3.

Hidden browser features The Saros GUI is running in a browser, how-
ever a lot of browser features are not accessible, for example bookmark-
ing and navigation on URL-level (buttons to go back and forward in
URL history).

In addition to technological aspects, there are special characteristics in the
development team:

Team There is a high fluctuation in the Saros team since most team mem-
bers are students writing their thesis. Moreover, we cannot assume
developers to be experienced in web development nor with its tech-
nologies.

The above-named properties have an impact on architecture and design
decisions of the application, which are derived in the following:

Size of artefacts Since CSS and JavaScript resources are available locally,
performance in terms of loading times, which is usually very important
in web applications, can be neglected. Tasks like minimising the size
of the source code (minifying) are not neccessary.

15Asynchronous JavaScript and XML
16There are exceptions for that: with protocols like WebSocket it is possible for the

server to communicate with the client, without the need of polling on client-side.

14

4.3 Communication interface between Java and JavaScript Bastian Sieker

Framework choice Choose frameworks which are easy to use and learn
even for developers with no or less experience with web technologies.
The frameworks should allow high customisation to be prepared for
special requirements. Furthermore, the file size of the utilised frame-
work is not a major point for the evaluation of its feasibility for this
project.

Tool support Utilise tools like automated code-style checker and unit-test
frameworks to enable developers to find defects early.

Documentation Provide a good documentation of the code as well as of
the development process and the utilised tools to ease the entrance for
new developers.

All these points must be considered while designing and structuring the
application. That process is explained in more detail in section 5. Next, the
communication interface between Java and JavaScript is explained in more
detail.

4.3 Communication interface between Java and JavaScript

After At first, we will have a look at the groundwork and the dependencies
for the communication interface. Cikryt introduces the IDE-independent
module ui, which is, as the core module of Saros, a bundle in Eclipse’s
OSGI17 context [Cik15]. The ui module contains all IDE-independent Java
classes and the HTML, CSS and JavaScript resources. Tasks of the Java
part are:

1. Providing a bidirectional data interface between the core module and
the ui module.

2. Delegation of method calls from ui module to the core module.

3. Holding application state information and their conversion to JSON18

presentations (via GSON19).

In the following, the data transfer between the ui module and the JavaScript
application running the GUI is introduced. When I speak about Java or the
Java-side the ui module is referenced. When I speak about the JavaScript-
side or the JavaScript application, I mean the JavaScript application running
the Saros GUI.

17A modular service platform for Java, see http://www.osgi.org/Specifications/HomePage
(retrieved 12th August 2015) for more information.

18JavaScript Object Notation
19A library for converting Java objects to JSON and vice versa, https://github.com/

google/gson/.

15

https://github.com/google/gson/
https://github.com/google/gson/

4.3 Communication interface between Java and JavaScript Bastian Sieker

Java-to-JavaScript Data Interface

From Java you can execute JavaScript code in a browser instance of the Saros
GUI via calling browser.run(String code). For example, if we want to
call a JavaScript function named showError with one argument we can do
it like shown in Listing 1.

Listing 1: Calling a JavaScript function from Java

String errorMsg = "Error";

browser.run("showError(’" + errorMsg + "’)");

There are two main use cases for calling JavaScript from Java. First, it is
used to propagate application state to the JavaScript application. If for
example a user successfully connected, the JavaScript application needs to
get information to be able to reflect the change of state in the UI. This
is done by creating JSON representations of the Java objects managing
the state of the application and calling dedicated functions with the JSON
representations as argument. This JavaScript function has to be defined
and it has to know in which form the data is provided and what to do with
it. The second use case is providing feedback to the JavaScript application
in case of errors on the Java-side.

In theory, you can execute arbitrary JavaScript code, however we should
seek a narrower and more explicit interface to be able to document it,
appropriately. This abstraction was introduced by Matthias Bohnstedt
[Boh15]. He introduces the class JavaScriptAPI which is responsible
for encapsulating all possible JavaScript calls from Java. The direct us-
age of browser.run(String code) should be avoided, instead the well-
documented methods from JavaScriptAPI should be used. Listing 2 shows
the usage of JavaScriptAPI.

Listing 2: Calling a JavaScript function from Java with JavaScriptAPI

String errorMsg = "Error";

JavaScriptAPI.showError(browser , errorMsg);

The available methods can be documented as usual in Java and the whole
interface is encapsulated in one class to provide a clean summary of the
interface. In comparison, with the direct method in Listing 1, there is
no way to conveniently document the behaviour of the JavaScript call on
Java-side and no central place to encapsulate the interface.

After being able to call JavaScript from Java, next, we will have a look at
how to call Java from JavaScript.

16

4.3 Communication interface between Java and JavaScript Bastian Sieker

JavaScript-to-Java Data Interface

There are Java functions, in the following called browser functions, which
can be invoked from JavaScript. The use case for calling Java from
JavaScript is to forward actions the user triggered in the GUI to the
Java-side and actually perform that action.

Browser functions are implemented in Java and inject a JavaScript function
in the global namespace of the HTML document, thus, they are callable
from JavaScript. Calling such JavaScript functions triggers the execution of
the corresponding Java code. Those functions define the Saros API which
is accessible from the JavaScript application. By default, browser functions
are executed synchronously in the same thread as the UI and are therefore
blocking. The return value of the function can be handled on Javascript-side,
when necessary.

Listing 3: Synchronously executed browser function

new JavascriptFunction("__java_addContact") {

@Override

public Object function(f i n a l Object [] arguments) {

try {

stateFacade.addContact(new JID((String)

arguments [0]),

(String) arguments [1]);

} catch (XMPPException e) {

// [. . .] h a n d l e e x c e p t i o n
}

return nul l ;
}

}

The execution of the browser function in Listing 3 can be triggered from
JavaScript like illustrated in Listing 4.

Listing 4: Calling a browser function from JavaScript

__java_addContact(jid , name);

It is also possible to swap the execution of browser functions in a different
thread to make them asynchronous. If you want to work with the return
value of asynchronous functions on JavaScript-side, this is not possible, di-
rectly. As a workaround you can pass information via the Java-to-JavaScript
interface, see Listing 5, for example.

17

4.4 JavaScript MV*-Framework Evaluation Bastian Sieker

Listing 5: Asynchronously executed browser function

new JavascriptFunction("__java_connect") {

@Override

public Object function(Object [] arguments) {

i f (arguments.length > 0

&& arguments [0] != nul l) {

Gson gson = new Gson();

f i n a l Account account = gson.fromJson(

(String) arguments [0], Account. c la s s);
ThreadUtils.runSafeAsync(LOG ,

new Runnable () {

@Override

public void run() {

stateFacade.connect(account);

}

}

);

} e l se {

JavaScriptAPI.showError(browser ,

errString);

}

return nul l ;
}

}

As mentioned, the browser functions are injected in the global namespace of
the HTML document with the naming convention __java_<functionName>.
However, it is a good idea to abstract the interface to make it clean and more
convenient. This is done by introducing a SarosApi object on JavaScript-
side, described in Chapter 5.

4.4 JavaScript MV*-Framework Evaluation

Since the implementation of the Saros GUI leads to a sophisticated
JavaScript application, many architectural decisions must be made. Cur-
rently, there is a wide and sometimes confusing landscape of JavaScript
MV*20-frameworks to ease structuring, development, maintanance, and
testing browser-based applications. Most of these frameworks tackle
the same problems, however, the underlying concepts diverge, heavily.
Furthermore, in the context of Saros, we have to consider some additional
requirements as described in section 4.2.

20Popular architectural pattern where the model and view part can be defined analog
to the corresponding parts of the Model-View-Controller pattern. However, the controller
is not further specified. For example, the view part may be responsible for doing the
controller work of an traditional Model-View-Controller implementation.

18

4.4 JavaScript MV*-Framework Evaluation Bastian Sieker

To overview the various solutions and its features the TodoMVC project
was started by Addy Osmani21. The project provides ”the same applica-
tion implemented using MV* concepts in most of the popular JavaScript
MV*-frameworks of today”. To get a more detailed impression of how dif-
ferent frameworks work, I recommend to have a look at the corresponding
implementation of TodoMVC. In the following, the most promising MV*-
frameworks are evaluated with the previously defined special requirements
of the use case Saros frontend in mind.

4.4.1 AngularJS

AngularJS22 is a very popular23 JavaScript framework which extends HTML
with declarative markup to allow developers to build sophisticated UIs and
wire up components without deep knowledge of JavaScript. AngularJS is
feature-rich, with built-in solutions for tasks like two-way data-binding (the
model updates the view on changes, automatically, and vice versa), form
validation and much more. In addition, a module system and a mechanism
for dependency injection is integrated. There is no additional template
engine utilised, rather HTML itself is extended to perform templating.

Due to favouring declarative code over imperative code, the framework has
a very high level of abstraction. Many common problems can therefore be
tackled fast and efficient, however, when facing special requirements and
extraordinary problems which require customising default behaviour, things
can get complicated. For that purpose, the official AngularJS website states:

“Angular simplifies application development by presenting a
higher level of abstraction to the developer. Like any abstrac-
tion, it comes at a cost of flexibility. In other words, not every
app is a good fit for Angular.” [Ang]

A plus for AngularJS is the very big development community and its rich
plugin and extension ecosystem.

4.4.2 EmberJS

EmberJS24 is claiming itself being a “framework for creating ambitious web
applications”. It abstracts a lot of the common tasks in the area of web

21http://todomvc.com/
22http://angularjs.org/
23Over 40.000 Stars on GitHub (https://github.com/angular/angular.js), roughly

twice as much as BackboneJS (https://github.com/jashkenas/backbone/). EmberJS
(https://github.com/emberjs/ember.js) has only around 14.000. Numbers as of August
2015.

24http://emberjs.com/

19

http://todomvc.com/
http://angularjs.org/
https://github.com/angular/angular.js
https://github.com/jashkenas/backbone/
https://github.com/emberjs/ember.js
http://emberjs.com/

4.4 JavaScript MV*-Framework Evaluation Bastian Sieker

development like data management, routing, data-binding and templating.
This is especially interesting for large applications which are long-running
and have to handle a lot of data which may be strongly interconnected. It
offers sophisticated functionality like creating application-specific HTML
tags using Handlebars25 to encapsulate custom markup and behaviour. To
wire up the objects of an application, EmberJS strongly utilises naming
conventions.

Due to the high level of abstraction, naming conventions and idiosyncratic
patterns, the framework is hard to learn and internal processes are difficult
to comprehend. To understand the underlying concepts it is not sufficient
to be familiar to JavaScript, the codebase is huge and complex.

4.4.3 BackboneJS

BackboneJS26 mainly provides skeletons for models, collections and views,
a router and an event system to help structuring web applications. The
code is well documented and relatively easy to understand due to its low
level of abstraction. It does not try to provide built-in solutions for every
common task (for example templating and data-binding), however it is
designed to conveniently integrate such functionality, if required. There is
a rich landscape of extensions for the tasks BackboneJS is not handling
itself. Developers often can chose between different solutions for a problem,
following different design philosophies.

On the one hand, due to the low level of abstraction, at the beginning
of a project developers often have to write more boilerplate code than with
frameworks like AngularJS and EmberJS. On the other hand, due to its flex-
ibility, BackboneJS is especially interesting for custom or partially unknown
requirements. There are a number of frameworks based on BackboneJS,
each adding functionality to provide solutions for additional tasks.

4.4.4 AmpersandJS

AmpersandJS27 is a highly modularised framework based on many ideas
of BackboneJS. It consists of independent modules hosted on GitHub28

which are accessible via NPM29, the NodeJS package manager. It extends
BackboneJS by features like declarative data-binding, derived properties,
nested views and more. AmpersandJS shares a lot of conventions with
BackboneJS, which offers the possibility to use BackboneJS components,

25Template Engine, http://handlebarsjs.com/.
26http://backbonejs.org/
27http://ampersandjs.com/
28https://github.com/AmpersandJS
29https://www.npmjs.com/

20

http://handlebarsjs.com/
http://backbonejs.org/
http://ampersandjs.com/
https://github.com/AmpersandJS
https://www.npmjs.com/

4.4 JavaScript MV*-Framework Evaluation Bastian Sieker

Table 4: Properties of evaluated frameworks

Abstraction Built-in
features

Adaptibility
/ Flexibility

Learnability Community

Angular high ++ - - ++

Ember high ++ - - - +

Backbone low - ++ ++ ++

Ampersand medium + + + -

like views, in your AmpersandJS application. A lot of ideas and concepts of
AmpersandJS are derived from Human JavaScript30, written by the main
contributor, Henrik Joreteg.

A drawback of AmpersandJS is a relatively (at least in comparison to the
three big players mentioned before) small community, however, the code is
actively maintained and developed. The impact of this problem is decreased
by the interoperability with BackboneJS components. Like BackboneJS, the
codebase is small, well documented and readable, the level of abstraction is
relatively low.

4.4.5 Decision making

As elaborated in Section 4.2, we have to keep the special requirements of
the Saros project in mind, when making a decision about a framework for
the Saros GUI JavaScript application. Making sure that the maintenance
and further development is convenient even for developers without a web
development background is crucial. Table 4 summarises the most important
properties of the introduced frameworks.

AngularJS and EmberJS are fully equipped frameworks, offering a rich
palette of features and powerful functionality to the developer. EmberJS
does that at the cost of being intuitively usable. Developers have to deal
with a lot of conventions and uncommon patterns which lead to a decrease
of learnability. AngularJS even originated by the idea to enable people
without a programming background to write powerful user interfaces and
web applications. However, there are limitations when facing non-standard
problems which can not be solved with the built-in features. The effort
to handle such special cases is difficult to estimate. Furthermore, a deep
knowledge of the framework is necessary.

In comparison to the previous two, BackboneJS and AmpersandJS are
more flexible and easier to understand and to learn due to the lower level

30http://humanjavascript.com/

21

http://humanjavascript.com/

4.5 JavaScript Tooling Bastian Sieker

of abstraction. The built-in components are exchangeable and conveniently
adaptable and extendable. The downside is more boilerplate code at the
beginning of a project. However, I think a software engineer without a web
development background will have a less cumbersome start into a JavaScript
project based on a framework that provides predictable behaviour and
understandable source code, rather than hiding complex functionality
behind layers of high abstraction.

The nice thing about AmpersandJS is that it provides some enhancements
and some more functionality than BackboneJS, without loosing its strengths.
The small community may be a downside, but due to the interoperability
with BackboneJS components it is future-safe, in my opinion. Therefore,
AmpersandJS offers the best compromise and is the framework of choice for
the Saros GUI JavaScript application.

4.5 JavaScript Tooling

Since JavaScript applications are getting more and more complex, there is
an increasing need for supporting the development process with tools like it
is nowadays common in other software environments like Java. There is a
wide range of tasks that can be automated potentially, which is especially
important to lower the entry hurdle for new developers. Such tasks are
for example running unit tests, building an application bundle and code
auto-formatting31.

After briefly introducing NodeJS, which is the runtime environment for most
of the tools regarding JavaScript development, I will give an example of how
to use this environment in a JavaScript project like the Saros GUI.

NodeJS and NPM

NodeJS32 is a JavaScript runtime environment to enable the development
of JavaScript applications running outside of a browser. NodeJS is shipped
with its package manager NPM33 (Node Package Manager), which is also
managing a lot of packages independent of NodeJS, like for example the
modules of AmpersandJS.

Utilising NPM

The nice thing about NPM is that you can manage the JavaScript depen-
dencies of your application and the dependencies regarding utilised tools,

31For a more extensive list, see http://rmurphey.com/blog/2012/04/12/

a-baseline-for-front-end-developers/
32https://nodejs.org/
33https://www.npmjs.com/

22

http://rmurphey.com/blog/2012/04/12/a-baseline-for-front-end-developers/
http://rmurphey.com/blog/2012/04/12/a-baseline-for-front-end-developers/
https://nodejs.org/
https://www.npmjs.com/

4.5 JavaScript Tooling Bastian Sieker

for example for building the application, in one central place and with one
package manager. As a consequence, a new developer can get all necessary
source code and command line tools for building and testing the application
with one invocation of npm install, for example.

The entry point of every project based on NPM packages is its pack-

age.json, where dependencies are defined. There is a distinction between
dependencies regarding the application itself (dependencies), and de-
pendencies for tools supporting the development of the application
(devDependencies). Furthermore, there is the possibility to define scripts

which can be run via npm run <scriptName> to ease the use of the utilised
tools34.

See Section 5.4 for detailed information about which NPM packages are
utilised in the Saros GUI project, and how.

34Have a look at https://docs.npmjs.com/files/package.json for a comprehensive
documentation.

23

https://docs.npmjs.com/files/package.json

5 Implementation Bastian Sieker

5 Implementation

This chapter describes implementation details of the new Saros GUI based
on HTML, CSS and JavaScript. In Section 5.1, adaptions of the groundwork
by Cikryt are described. Afterwards, in Section 5.2, structure and imple-
mentation details of the new Saros GUI are explained, special challenges
are presented (Section 5.3), followed by the environment for tool support
(Section 5.4).
Next, the build integration is discussed shortly (Section 5.5) and accompa-
nying refactorings are enumerated (Section 5.6). Finally, in Section 5.7 the
results of the implementation are summarised.

5.1 UI modules

As described in Chapter 4, Cikryt introduced an IDE-independent, ded-
icated module ui in Eclipse’s OSGi context which provided functionality
for the communication interface between Java and JavaScript as well as
JavaScript, CSS and HTML resources. For the implementation in the
course of this thesis, I introduced a new module ui-frontend, in which
the JavaScript, CSS and HTML resources are outsourced. The new module
ui-frontend is a fragment of the module ui, which means that its content,
the frontend resources, is made available in the ui module. See Figure 1 for
a visualisation of the dependencies between individual Saros modules. Ac
There are two reasons for this decision. First, the ui module is now a pure
Java module, the ui-frontend module contains frontend technologies only
and may utilise its own, independent build process (see Section 5.5 for more
details about the build process). The explicit separation emphasises that
fact to make developers aware of it. Second, the application is basically
completely independent of all other Saros modules, which means that it is
possible to debug, test (manual testing as well as automated unit testing)
and run the application stand-alone in a browser. The only requirement
is, that the Java-to-JavaScript interface must be mocked, for example with
hardcoded JSON data. Thus, it is possible to develop the application with-
out requiring other Saros modules.

5.2 Saros GUI JavaScript application

In the following, structure and individual components of the Saros GUI
JavaScript application are introduced.

24

5.2 Saros GUI JavaScript application Bastian Sieker

core ui

Saros/I

Saros/E

ui.frontend

<<requirement>>requirement

Including IntelliJ-
specific HTML-UI
parts

<<requirement>>requirement

Including Saros-
specific HTML-UI
parts

depends on

depends on

depends on

accesses resources

<<requirement>>requirement

Provides HTML,
JavaScript and CSS
resources

Figure 1: Dependencies between individual Saros modules, based on [Cik15,
p.39]

5.2.1 CommonJS Modules

NodeJS, introduced in Section 4.5, provides a module system35 based on
the CommonJS specification36. It enables developers to write, share and
consume modules which can be loaded via require(). Since the JavaScript
language specifications prior to ECMAScript 201537 lack a module system,
there are tools like Browserify (see Section 5.4 for more details), which
understands require()38 and can bundle browser-based applications
utilising CommonJS modules.

As AmpersandJS is provided by CommonJS modules, the Saros GUI
JavaScript application is structured in that way, as well. For an example,
have a look at Section 5.2.3, introducing the SarosApi module.

Since AmpersandJS uses CommonJS modules, it was a nearby decision to
use them for the Saros GUI, as well. It encourages the developer to modu-

35https://nodejs.org/docs/latest/api/modules.html
36http://www.commonjs.org/specs/modules/1.0/
37http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.

pdf
38JavaScript function which is called with a String describing the relative path to the

required module.

25

https://nodejs.org/docs/latest/api/modules.html
http://www.commonjs.org/specs/modules/1.0/
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

5.2 Saros GUI JavaScript application Bastian Sieker

larise the code, avoids the pollution of the global namespace and simplifies
tasks like dependency management and unit testing.

5.2.2 Project Structure

To make it easy for developers to find the source code responsible for a
specific task, the JavaScript application in html/js is structured in multiple
directories, each holding modules of a specific type. The convention is that
every JavaScript file in the project holds exactly one CommonJS module.
Exceptions to that are the files in html/js/vendor and the entrance point of
the application, html/js/app.js. The directory html/js/vendor contains
all third-party code which is not available via NPM. Thus, we are not able
to make assumptions of whether such code is CommonJS-compatible. For
example, the Bootstrap extension for providing a context menu is placed
in that directory (see Section 5.2.5 for more information about Bootstrap
and other external dependencies). Since html/js/app.js is responsible
for kicking off the application (it serves as an entry file for Browserify, see
Section 5.4), it is not necessary to provide it as a module.

Models and collections (data representations) are placed in html/js/-

models. Views, responsible for managing a specific part of the GUI, for
example the contact list, are placed in html/js/views. Usually, they
hold one or multiple models/collections and have to synchronise the data
between models and their representation in the DOM. In addition, they
hold a template which describes the concrete DOM representation. Those
templates are written in JADE (see Section 5.2.4) and are present in
html/templates. Furthermore, in html/js/pages views are placed which
represent a closed entity in the Saros GUI not contained by any other
page or view. For every HTML file in html there is exactly one page. In
Figure 2, the relations between the named components of the application
are visualised.

In html/css one can find the internal CSS definitions
(html/css/saros.css) as well as external. Unit tests are specified in
html/test. The application bundle generated by the build process (see
Section 5.4) is placed in html/bundle. All files a developers wants to
include into the build of the ui-frontend OSGi module, which are the
files finally made available to the ui OSGi module, must be copied to
html/dist.

5.2.3 The SarosApi Module

The interface between Java and JavaScript on JavaScript-side is completely
encapsulated in the SarosApi JavaScript object, afterwards called SarosApi,

26

5.2 Saros GUI JavaScript application Bastian Sieker

Model Collection

JADE
Template

PageView

1

0..1

1

11

1

*

*

*

* *

**

0..1 0..1 0..1 0..1

*

*

Figure 2: Relations between individual components.

which lives in html/js/saros-api.js. It is a usual JavaScript object
literal with additional functionality to serve as an event bus and is provided
to the application as a CommonJS module.

For the JavaScript to Java interface, the SarosAPI takes a role as a fa-
cade via hiding the __java_<functionName> functions provided by Java
behind convenient functions. That way for example, instead of calling
__java_connect(account) one can require the SarosApi and call the cor-
responding function like in Listing 6.

Listing 6: Requiring and using the SarosApi object

var SarosApi = require(’saros -api’);

SarosApi.connect(account);

In the other direction, the Java to JavaScript interface, the SarosApi serves
as an event bus. Every JavaScript call made from Java should be done
via triggering an event and passing data via trigger(). Therefore, the
SarosApi object must be made available in the document, globally39. This
happens in html/js/app.js, see Listing 7.

39Thus, in theory it would not be necessary to require SarosApi in the other modules of
the application. However, requiring it nevertheless does no harm and enforces consistency.

27

5.2 Saros GUI JavaScript application Bastian Sieker

Listing 7: Make the SarosApi object available globally

var SarosApi =

window.SarosApi = require(’./saros -api’);

The JavaScript application can listen and respond to such events via on(),
see Listing 8, for example. This messaging pattern is called Publish/Sub-
scribe40 and enables the decoupling of modules in the application.

Listing 8: Listen to events on the SarosApi object

var SarosApi = require(’saros -api’);

SarosApi.on(’eventName ’, function(data) {

console.log(eventName , data);

});

Figure 3 visualises the interface between the ui module and the Saros GUI
JavaScript application, schematically. The SarosApi serves as a middleware
for the communication between the Java and JavaScript part.

SarosApi

 :BrowserFunctions
JavaScriptApi

ui module (Java)

ui-frontend module (JavaScript)

HTML / JavaScript GUI

calls methods listens to events

calls methods triggers events

Figure 3: Architecture of the Saros GUI

The use of a module encapsulating the communication between Java and
JavaScript has several advantages. First, it abstracts the cumbersome
__java_<functionName> function calls on JavaScript-side. Second, from

40https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

28

https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

5.2 Saros GUI JavaScript application Bastian Sieker

Java-side you can conveniently trigger events with data instead of calling
functions (which would have to be available, globally) or even running code
directly via browser.run(String code). Third, there is one central place
on JavaScript-side to lookup the functions and events provided in the appli-
cation.

5.2.4 HTML Templating with JADE

JADE41 is a template engine for NodeJS producing HTML. It can be
precompiled to JavaScript functions and this way used for applications
running in the browser. In a complex application you want to avoid hard-
coded strings in the UI to ease adopting and maintaining the application.
Furthermore, in an application with the need to dynamically manipulate
the DOM, it is very hard to manage the state of the DOM, manually.

Advantages of JADE are the slim representation of HTML code and the fact
that invalid HTML is identified during compilation and errors are thrown,
accordingly. Usually, invalid HTML is difficult to spot and resulting errors
difficult to debug.

5.2.5 Additional dependencies

In the following, external libraries regarding CSS and JavaScript (in addition
to AmpersandJS and jQuery) are introduced.

Bootstrap Bootstrap is a CSS and JavaScript framework which provides
a lot of common UI components like buttons, tooltips, dialogs and more42

in a appealingly and uniformly look and feel. The components are easy to
integrate (mostly via using CSS classes and HTML data-attributes43) and
theme-able44. Bootstrap components are utilised in nearly every component
of the Saros GUI. Furthermore, an Bootstrap extension is utilised to show
context menus45.

jsTree jsTree46 is a jQuery plugin that provides the interactive visuali-
sation of tree structures, which are needed in the wizards for the session
negotiation, for example.

41http://jade-lang.com/
42http://getbootstrap.com/components/
43http://www.w3schools.com/tags/att_global_data.asp
44http://themes.getbootstrap.com/
45https://github.com/sydcanem/bootstrap-contextmenu
46https://www.jstree.com/

29

http://jade-lang.com/
http://getbootstrap.com/components/
http://www.w3schools.com/tags/att_global_data.asp
http://themes.getbootstrap.com/
https://github.com/sydcanem/bootstrap-contextmenu
https://www.jstree.com/

5.3 Challenges Bastian Sieker

Backbone.Events To be able to use the SarosApi as an event bus (see
Section 5.2.3), a standalone version of Backbone.Events47 is used48.

5.3 Challenges

Due to the special environment the Saros GUI is running in (see Section
4.2), there evolved different problems and challenges in the course of this
thesis, which will be presented in the following.

Debugging and Testing
As explained in an mailing list entry49 by Björn Kahlert, there are sev-
eral mechanisms provided by his browser-widget to support debugging the
JavaScript application in the IDE. For example, it is possible to catch excep-
tions thrown by JavaScript using a registered JavaScriptExceptionListener.
Calls to JavaScript’s console.log() and console.error() are forwarded
to the IDE console, so there is no need for using alert(), for example. In ad-
dition, he provided a method to open the document of the currently focused
browser view (in its current state) in the system’s default browser. There you
can use tools provided by the browser to debug the application, conveniently.
However, this functionality was removed in the improved browser-widget by
C. Cikryt 50 since it is build on IDE-dependent functionality. Even with
such a mechanism the debugging would be cumbersome considering alone
the time until the plugin instance is running. In comparison, to build the
JavaScript application and open the corresponding HTML file in a browser,
stand-alone, is less costly. Therefore, the application was built with the goal
in mind to be able to run it stand-alone. To do so, we must be able to pro-
vide some data to the application to test certain functionalities. If we want
to test the behaviour or the visualisation of the account list, for example, we
need to provide JSON data representing accounts. Luckily, it is quite easy
to do so via triggering events with the corresponding data on the SarosApi

object, see Listing 9 for an example. Such code can be placed in the init()

function in html/js/app.js or run in the browser console after loading the
HTML file.
Whenever we want to test parts of the application which will trigger a call of
an injected function via the SarosApi object, we have to make sure that ei-
ther the function exists (we would have to mock it in the global namespace)
or we check whether it exists before calling it (both to avoid a ReferenceEr-

ror). See Listing 10 for such an adaption in html/js/saros-api.js.

47backbonejs.org/#Events
48https://github.com/n1k0/backbone-events-standalone
49http://article.gmane.org/gmane.comp.ide.eclipse.saros.devel/1225
50https://github.com/ag-se/swt-browser-improved

30

backbonejs.org/#Events
https://github.com/n1k0/backbone-events-standalone
http://article.gmane.org/gmane.comp.ide.eclipse.saros.devel/1225
https://github.com/ag-se/swt-browser-improved

5.3 Challenges Bastian Sieker

Listing 9: Mocking accounts via the SarosApi object

SarosApi.trigger(’updateAccounts ’, [

{

"username": "Alice",

"domain": "saros -con.imp.fu-berlin.de",

"jid": {

"jid": "alice@saros -con.imp.fu-berlin.de"

}

},

{

"username": "Bob",

"domain": "saros -con.imp.fu-berlin.de",

"jid": {

"jid": "bob@saros -con.imp.fu-berlin.de"

}

}

]);

Listing 10: SarosApi object adaption

...

connect: function(account) {

i f (typeof __java_connect !== ’undefined ’) {

__java_connect(JSON.stringify(account));

}

},

...

Another problem with debugging JavaScript applications based on multiple
modules which are bundled in one file (like described in Section 5.4) is the
mapping of a line number in the bundle to the corresponding line number
in a module file to make debugging possible, conveniently. This problem
is solved by source maps, which provide exactly that mapping (also, see
Section 5.4).

Handling Multiple jQuery Instances
As Cikryt describes, there is an extension mechansim in the utilised browser-
widget [Cik15, p.60]. For example, there is a JQueryExtension that injects
the JavaScript code of the jQuery51 library in the DOM, automatically.
Currently, the utilised browser is indeed extended by jQuery, however, the
version is outdated. Thus, a more up-to-date jQuery version must be loaded,
additionally (other dependencies of the Saros GUI, for example Bootstrap,
require a newer version). This up-to-date jQuery version is required in htm-

l/js/app.js as shown in Listing 11. The require() statements afterwards

51http://jquery.com/

31

http://jquery.com/

5.3 Challenges Bastian Sieker

load additional JavaScript code which depend on jQuery52. The problem is
that the old, injected version is loaded after the code in Listing 11 is executed
(and overrides the namespaces $ and jQuery), therefore the up-to-date ver-
sion is moved to a new namespace ($$), additionally. Thus, when referring
jQuery in the application, $$ should be used, currently. In the future, it may
be reasonable to utilise a browser-widget without an extension for jQuery or
updating the injected jQuery version, but this should be evaluated in more
depth53.

Listing 11: Injecting jQuery into an additional namespace

window.$$ = window.$ = window.jQuery =

require(’jquery ’);

require(’bootstrap ’);

require(’./ vendor/bootstrap -contextmenu ’);

require(’jstree ’);

Disabling Default Behaviour
In browser-based applications you want to have features like text selection
and a default context menu because they are functional. However, in an
application running in a browser embedded in an IDE, such behaviour is
confusing and not expected by the user, as shown by the results of the
usability tests (see Appendix A.3). Furthermore, it leads to inconsistencies
in the UI since usually, inside other views in an IDE, those actions are
not allowed. Therefore, text selection and the default context menu are
disabled in the Saros GUI. Disabling the text selection is done by CSS, as
shown in Listing 12. Disabling the default context menu is done without
stopping the propagation of the event since it is needed in other places of
the application. The contextmenu event is handled in html/js/app.js,
see Listing 13.

Listing 12: Disabling text selection via CSS

body {

[...]

/∗ a v o i d t e x t s e l e c t i o n ∗/
-webkit -touch -callout: none;

-webkit -user -select: none;

-khtml -user -select: none;

-moz -user -select: none;

-ms-user -select: none;

user -select: none;

}

52They will look for jQuery and $ in the global namespace and extend them.
53For example, currently, the STF tests written by Cikryt depend on a browser-widget

with JQueryExtension [Cik15, p.62].

32

5.3 Challenges Bastian Sieker

Listing 13: Prevent default context menu on right click

// G l o b a l l y , d i s a b l e d e f a u l t c o n t e x t menu .
$$(document).on(’contextmenu ’, function(e) {

e.preventDefault ();

});

Using the Application Artefact for Multiple Pages
The Saros GUI is divided into multiple pages, each of them is basically a self-
containing application, completely independent from the others. Currently,
there is the main page and one page for each wizard. They are independent
because each is running in its own browser instance and there is no direct
way to communicate between pages. But the pages share functionality and
models like the contact list are not only necessary for one page. It is nice to
have one build artefact, at all, instead of one per page since a lot of modules
are shared anyway. When using one bundle for all the pages there must be
some possibility to tell the application which page is needed, initially. This
is done by setting the page property in the HTML file, for an example on
the basis of the main page see Listing 14. Each valid value of page must
be handled in html/js/app.js via referring to the corresponding page, see
Listing 15.

Listing 14: Set page property in the head of the HTML file

<script >

// Dec i d e wh ich page to r e n d e r .
window.app.extend ({

page: ’main -page’

});

</script >

Listing 15: Show page with respect to the page property in html/js/app.js

switch (th is .page) {

case ’main -page’:

new MainPage ({

el: appContainer ,

model: th is .state
});

break;
...

}

Handling of DOM-Events
There seems to be an issue with the propagation of DOM events when
running the application inside the browser-widget which occurred when
opening the context menu (provided by an external Bootstrap plugin, see
html/js/vendor/bootstrap-contextmenu.js). When the application is
running in a browser, stand-alone, everything works as expected. When

33

5.4 Tooling Bastian Sieker

running it inside an IDE, the context menu is shown on the mousedown

event, as expected, but on the following mouseup event it is removed
again, instantly. Debugging revealed, that the property which54 of the
jQuery event object is not working correctly55, which may be in relation
to this issue. The problem is fixed via introducing an offset when showing
the context menu such that the cursor is focusing the context menu element.

5.4 Tooling

In this section, the necessary tools for building and testing are introduced.
As already mentioned, this step is important to ease the development process
for new and unexperienced developers. Tools can support the developer to
find errors early (precompilation of templates, see 5.4.1, unit testing, see
5.4.2, linting, see 5.4.3), ease the review process (code auto-formatting, see
5.4.4) and accept responsibility for dependency management (5.4.1). As
already mentioned in Section 4.5, the environment for those tasks is NodeJS.
All tasks are defined in html/package.json in the scripts object and can
be run via npm run <scriptName>.

5.4.1 Building

The essential task for building the application is build which just calls
two other tasks one after the other, build:jade and build:js, which are
described in the following:

build:jade In this task, each JADE template is precompiled into a
JavaScript function via templatizer56, a NPM package which gets a
directory as input argument, looks for *.jade files in this directory
and generates a CommonJS module which provides an object with a
property for each JavaScript function, named after the *.jade file. In
the Saros GUI, this module is present in html/js/templates.js.

build:js In this task, the CommonJS modules are bundled into one
JavaScript file via Browserify57. Browserify is a tool for bundling appli-
cations based on CommonJS modules. As input argument the entry
file of the application is given, in the case of the Saros GUI that is
html/js/app.js. Browserify is than following the dependency graph
defined via the required modules and bundles them into one JavaScript
file which then contains the whole application. Furthermore, it is able

54http://api.jquery.com/event.which/
55https://sourceforge.net/p/dpp/bugs/858/
56https://github.com/HenrikJoreteg/templatizer
57http://browserify.org/

34

http://api.jquery.com/event.which/
https://sourceforge.net/p/dpp/bugs/858/
https://github.com/HenrikJoreteg/templatizer
http://browserify.org/

5.5 Build Integration Bastian Sieker

to create a source map with which the code in the bundle can be re-
lated to the module it is coming from to ease debugging, as described
in Section 5.3. By default, the content of the original module file
and some meta-data like path and filename are included in the bundle
which leads to an increased file size of the bundle by at least factor 2.
Thus, the tool exorcist58 is utilised to outsource the source map in a
dedicated file to keep the bundle small.

5.4.2 Testing

For unit tests, Mocha59 is utilised. To run the unit tests, run npm run test.
The directory html/test will be searched and available unit tests will be
executed. This enables the developer to separate the unit tests in multiple
files, for example according to the tested module. It is possible to specify
different output formats to make the unit tests processable by a continuous
integration system.

5.4.3 Linting

Linting is the process of looking for the usage of suspicious constructs in
code which are likely to introduce bugs [Wik]. For example, in JavaScript,
the declaration of variables without the var keyword is possible, however,
they are moved into the global variable scope which can lead to difficult
to predict side-effects. A more detailed look at such suspicious language
constructs specifically in JavaScript is given by Douglas Crockford in his
well-known Book JavaScript: The Good Parts [Cro08]. For the Saros GUI
JSHint60 is utilised, which is runnable via npm run lint. Such a tool can
be especially helpful for developers without much experience in JavaScript
to point out bad practices.

5.4.4 Code Auto-Formatting

To ease the utilisation of a common code formatting style in a project, tools
to auto-format code should be utilised. To meet the code rules of the general
Saros project61, JSCS62 is utilised to be able to do auto-formatting in the
JavaScript application.

5.5 Build Integration

Analogue to the integration of the ui module introduced by [Cik15, p.68], the
ui-frontend OSGi module had to be integrated in the Saros build process

58exorcist
59http://mochajs.org/
60http://jshint.com/
61http://www.saros-project.org/coderules#before_committing
62http://jscs.info/

35

exorcist
http://mochajs.org/
http://jshint.com/
http://www.saros-project.org/coderules#before_committing
http://jscs.info/

5.5 Build Integration Bastian Sieker

in three places: in both IDEs and in the Jenkins build. Furthermore, since
the ui-frontend module contains a JavaScript application, there is one
additional build process.

5.5.1 Building the OSGi Module inside IntelliJ and Eclipse

Because the JavaScript application is built stand-alone, currently, the build
of the ui-frontend module is straight-forward. Appropriate .project,
build.properties and MANIFEST.MF configuration files for Eclipse as well
as de.fu_berlin.inf.dpp.ui.frontend.iml and modules.xml configu-
ration files for IntelliJ are provided. The build.properties respectively
the de.fu_berlin.inf.dpp.ui.frontend.iml specifies which files will be
included in the binary build.

In addition, the configuration of the ui module had to be adapted to specify
that it has access to the resources provided by ui-frontend. To facilitate
that, MANIFEST.MF respectively de.fu_berlin.inf.dpp.ui.iml had to be
configured, accordingly.

5.5.2 Configuring the Jenkins build

For the ui-frontend module a new Jenkins job was created for executing
quality assurance tasks. The previously presented tasks for building the
application and for running the unit tests are executed. However, there are
two different Jenkins jobs, one is triggered by changes pushed to Gerrit63

and one is triggered by changes on the master branch. Currently, only in
the first scenario the job for quality assurance for the JavaScript application
is triggered.

5.5.3 Discussion about the Integration of the JavaScript Build
Process

As said, the JavaScript build process in not integrated in the general build
process of Saros, yet. I initiated a discussion on the mailing list about the
JavaScript build process, in general, and whether to integrate it in the Saros
build process64. In the following I briefly summarise the arguments for and
against a separation.

Pros:

1. Only developers who care about the HTML/JavaScript part (develop-
ers who actually work on that part) must provide the environment for
the JavaScript build.

63http://saros-build.imp.fu-berlin.de/gerrit/
64http://article.gmane.org/gmane.comp.ide.eclipse.saros.devel/1401

36

http://saros-build.imp.fu-berlin.de/gerrit/
http://article.gmane.org/gmane.comp.ide.eclipse.saros.devel/1401

5.6 Accompanying Refactorings Bastian Sieker

2. Developers are forced to deal with the build process and related tasks
like unit testing, which should be done anyway.

Cons:

1. More complicated for new developers since process has to be under-
stood.

2. A lot of overhead when you only want to make a small change.

However, the first argument for the separation is not valid in the current
scenario. I suggested to commit the build artefact of the JavaScript appli-
cation, thus, developers would not have to build the JavaScript application
themselves, which has several major disadvantages, for example very huge
commits in terms of diffs (differing lines between commits). Interestingly
enough, in the discussion nobody expressed concerns based on that factor,
however, with the first commit of the build artefact the discussion started.
Therefore, no build artefacts are committed and every developer which wants
to see the effects of commits containing changes in the JavaScript applica-
tion, must build the application. An integration of the JavaScript build
process should be investigated in the future.

5.6 Accompanying Refactorings

Due to the dependency to the Java-to-JavaScript interface, in the course of
this thesis I had to make adaptions in the ui module, the Java-part so to
speak, from time to time. One example for my work on the Java-part is
a refactoring regarding the handling and propagation of information from
Java to the Saros GUI65. Before this refactoring, the interface from Java to
JavaScript was an accumulation of JavaScript functions which were respon-
sible for the propagation of very small units of information in a dedicated
way. Those JavaScript functions were called from Java with respect to the
current state of the application. For example, see the function responsible
for updating the connection state in the Saros GUI before the refactoring
in Listing 16. Furthermore, the classes responsible for the propagation of
such information (Renderer classes, for more information see [Cik15, p.45]
and [Boh15, p.35]) were not separated, cleanly. For example, the code in
Listing 16 was present in the ContactListRenderer, one can argue whether
that is reasonable, at least. Thus, I decided to narrow the interface and to
encapsulate information with respect to their domain. A StateModel was
introduced which encapsulates information about the connection state, the
active account and the corresponding list of contacts in one object. The
StateRenderer is responsible for propagating the information held by the
StateModel to the Saros GUI, which is done by one function call. Thus,

65http://saros-build.imp.fu-berlin.de/gerrit/#/c/2302/

37

http://saros-build.imp.fu-berlin.de/gerrit/#/c/2302/

5.7 Results Bastian Sieker

the interface is cleaner and less arbitrary, the downside is that every time
the StateModel changes, the whole information must be propagated to the
Saros GUI. However, that is not a problem because calling the interface in
the Saros GUI is just a JavaScript function call instead of HTTP-requests
(as in a common web application), for example.

Listing 16: Old Java-to-JavaScript interface to propagate the connection
state

private synchronized void renderConnectionState(

IJQueryBrowser browser) {

switch (connectionState) {

case CONNECTED:

browser.run("SarosApi.trigger(’setIsConnected

’, " + true + ");");

break;
case NOT_CONNECTED:

browser.run("SarosApi.trigger(’setIsConnected

’, " + f a l s e + ");");

break;
case CONNECTING:

browser.run("SarosApi.trigger(’setIsConnecting

’);");

break;
case DISCONNECTING:

browser.run("SarosApi.trigger(’

setIsDisconnecting ’);");

break;
default :

break;
}

}

5.7 Results

In this section an overview is given about implemented and open function-
alities of the three most important and fundamental parts of the Saros GUI:
the main view, the wizard for session invitations and the wizard for joining
a session. These individual components and their features of the old Saros
GUI and there functionalities will be presented on the basis of the Eclipse
GUI analysis by Bohnstedt [Boh15, p.17]. For each component implemented
functionalities and open tasks will be enumerated. Mainly, the reason to not
implement a specific feature were limitations in time or a missing data in-
terface.

38

5.7 Results Bastian Sieker

5.7.1 Saros main view

Implemented

Connecting/Disconnecting Selecting an account, connecting, discon-
necting works. The connection state is visualised to the user, accord-
ingly. Functionalities are enabled/disabled according to the connection
state.

Managing Contacts Adding, renaming and deleting contacts works.
Available contacts are shown in a list, their online status is visualised.

Starting a session A button to start the session wizard is available.

Open tasks

Managing Accounts Creating, deleting and editing accounts is not imple-
mented. It is currently implemented in the IDE-specific part of Saros
(Saros properties in Eclipse) and it may be reasonable to keep it there
since there is no need to move it to the main view.

Invocation of Saros properties window The Saros properties window
is IDE-specific and there is no functionality to call it from the ui

module, yet. In future, this feature should be implemented.

Session management Since there is currently no interface for providing
data about a running session to the Saros GUI (and it is unclear how
exactly such data will look like) this part is not implemented, yet.
Further functionality of this part is activating/deactivating the follow
mode and visualising awareness information like opened files by other
contacts, etc.

Chat The chat functionality is not available from the ui module at all,
currently. Therefore, no work was done in that direction.

Shortcut for sharing files with a specific contact Currently, there is
no feature for sharing projects with a contact when right-clicking the
contact. That is a reasonable feature which is implemented in the old
Saros GUI.

5.7.2 Sesseion-Invitation Wizard

Implemented

Starting a session The wizard is fully functional. It is possible to selec-
t/deselect projects/files to work on and contacts to share with.

39

5.7 Results Bastian Sieker

Open tasks

Validation Currently, it is possible to start a session without specifying
any files, this should not be possible

Additional wizards While waiting for other contacts to join the session
and to synchronise files, a wizard with a progress bar is shown in the
old Saros GUI. This wizard is not implemented yet.

5.7.3 Join-Session Wizard

Implemented

UI template To be able to test the feature in the course of the usability
tests I hard-coded the interface of the wizard with some basic func-
tionality.

Open tasks

Solid implementation The wizard must be implemented from scratch,
when the data interface is specified. However, parts of the template
can be reused.

Additional wizards During the process of the invitation there are wizards
to show the progress of the invitation process in the old Saros GUI.
Those additional wizards are not implemented, yet.

The current state of the implementation is a good foundation to finish the
open tasks. A lot of effort was put in the groundwork of the application to
ease the further development. The biggest open tasks are the representation
of a running session (and the visualisation of corresponding informations)
and the wizard for joining a session.

5.7.4 Documentation

As mentioned before, decreasing the entry hurdle for future developers is an
important goal. A comprehensible application structure and architecture as
well as tooling support are steps in that direction. Another very important
point is a good documentation of source code. Thus, I will update and extend
the existing documentation for extending the HTML GUI66. Furthermore, I
will provide a commented tour through the JavaScript code of the Saros GUI
based on the idea of JTourBus67 to be able to comprehend the processes in
and between the individual components.

66http://www.saros-project.org/html-gui
67www.saros-project.org/jtourbus

40

http://www.saros-project.org/html-gui
www.saros-project.org/jtourbus

6 Applying the User-Centered Design Process Bastian Sieker

6 Applying the User-Centered Design Process

Since it is sometimes difficult to find test users, especially short-term, I
tried to plan the iterations early to have a solid test user base. However,
estimating the effort for the implementation of the essential features is
difficult. The interdependency between Bohnstedt’s and my thesis made it
even more insecure. It was intended to start the usability tests when the
new Saros GUI is in a state where it is possible to start and join a session
in a minimal setup. This would have required the corresponding wizards
and the underlying interface between Java and JavaScript. However, as
Bohnstedt states, the implementation of the interface was a lot more
cumbersome as estimated [Boh15, p.28].

Since the defined requirements (see Section 3.4.1) for a usability test were
not satisfied at the time of the first iteration, I decided to split it into two
iterations. The first iteration (see Section 6.1) was done with the old Saros
GUI. That gave me the possibility to do a trial run of the UCD process
and, eventually, identify usability problems in the old GUI to avoid the
transfer of old usability problems into the new one. Shortly after that, the
initial iteration with the new Saros GUI was done. Between both iterations
I was able to mock essential parts of the GUI to have a reasonable amount
of features to test (see Section 6.2 for details).

The heuristic evaluation (see Section 6.3) was done delayed for the same rea-
son as the initial iteration of the new Saros GUI. After the initial iteration
and the heuristic evaluation I fixed a subset of identified usability problems
before starting the final iteration (see Section 6.4). In each iteration, each
test session followed the process described in 3.4.2. During the overall pro-
cess 19 usability problems were identified, for 7 of them I committed fixes.
The next sections explain the process of each of the mentioned steps and
present the results in more detail.

6.1 Preliminary Iteration with the old Saros GUI

Originally, the initial iteration was planned with four users. Due to the
reasons mentioned above, I split the iteration into two iterations with two
users each.

Test Users Two users, both without experience with Saros (however,
the concept and use-case of Saros was known) and with high respectively
medium experience with Eclipse.

Setup I as well as the test user had a laptop with Eclipse and Saros with
the old GUI installed and running. Furthermore, there was screen and audio

41

6.2 Initial Iteration with the new Saros GUI Bastian Sieker

recording on the user’s laptop. The given tasks as well as the schedule of
the test session are available in Appendix A.1.

Results My expectations were low before testing the old GUI as I saw the
test sessions as trial runs for the following iterations. Both test users were
able to complete all tasks. The programming task (Task 2c, A.1) was for
loosen up the atmosphere and getting to know Saros and did not contribute
anything to the results.
However, in addition, some minor usability problems were identified. For
example, both users had problems with finding buttons for specific function-
alities like connecting or leaving a session (due to icon-only buttons). Table
5 lists all usability problems found in this iteration.

Table 5: Usability problems found in preliminary iteration with the old Saros
GUI. See A.3 for details.

No Title Fatality

#1 Unclear state of contacts 2

#2 Functionality hidden behind icon-only buttons 2

#3 Unclear when follow mode stops 2

#4 Moving contacts in Session container is confusing 3

6.2 Initial Iteration with the new Saros GUI

Between the preliminary iteration and the initial iteration with the new
Saros GUI, I mocked the wizards for starting and joining a session68. There-
fore, in comparison to the previous iteration, I was not able to setup a real
Saros session, but it was sufficient to have one laptop with a running Eclipse
instance with Saros. Testing the wizards was possible, reasonably: After fin-
ishing the wizards for starting and joining a session nothing happens, which
was not of importance for the test. I started the wizard for joining a session
via a hidden button and explained the authentic process to the test users,
afterwards the wizard could be tested, as usual.

Test Users Two users, both without experience with Saros (they heard
of the software for the first time) and medium experience in Eclipse.

Setup I sat next to the test user but tried to stay in the background, how-
ever, at the given time I had to trigger the wizard to join a session, manually.
Furthermore I gave some additional information to the user to explain him
the scenario, in which the wizard would be triggered, practically. Upfront,

68Mostly, the UI was hardcoded in HTML with some basic validation checks in
JavaScript.

42

6.3 Heuristic Evaluation Bastian Sieker

I needed to give some more information about Saros and its concepts, for
example what exactly a session is and what belongs to it, etc. The Saros
GUI functionality was as described in Section 5.7. The given tasks as well
as the schedule of the test session are available in Appendix A.2.

Results Despite the lack of experience with Saros and its concepts, the
entrance in the application and its functionalities went well. However, in the
course of this iteration, a lot of minor issues were identified since it was the
first test for the new Saros GUI. Table 6 lists all usability problems found
in this iteration.

Table 6: Usability problems found in initial iteration with the new Saros
GUI (only previously unknown problems are listed). See A.3 for details.

No Title Fatality

#5 Missing default account selection 2

#6 Missing auto-connect feature when selecting an ac-
count

2

#7 Missing default value in input fields 2

#8 Contacts looking like links, action expected 2

#9 Default context menu of the browser shown on right-
click

2

#10 Contact container is not collapsible 1

#11 No default actions on enter in dialogs 2

#12 No Work together on... shortcut available 2

#13 Meaning of tabs in wizard for joining a session unclear 4

6.3 Heuristic Evaluation

The heuristic evaluation was done after the first iteration with the new Saros
GUI because the essential functionality was not available, before. Because
of the narrow time schedule, there were no fixes to usability problems in the
meantime.

Evaluator The evaluator was a researcher of the Software Engineering
working group who is familiar with Saros and its concepts.

Setup I sat next to the evaluator, who was freely exploring the UI and
the functionalities. In interesting situation we discussed the feature or the
problem in more depth.

43

6.4 Final Iteration Bastian Sieker

Results most of the identified problems from the initial iteration were
confirmed, however, one new problem was found, as well. Table 7 lists all
usability problems found during the heuristic evaluation.

Table 7: Usability problems found in the heuristic evaluation (only previ-
ously unknown problems are listed). See A.3 for details.

No Title Fatality

#14 Inconsistencies in button ordering (wizards) 1

6.4 Final Iteration

Before starting the final iteration, improvements were made in the Saros
GUI according to the results of the previous iterations and the heuristic
evaluation (see A.3 for details).

Test Users Four users, three of them were former or current participants
of the Saros project. Therefore, they know the functionalities and the old
Saros GUI, but they had no experience with the new UI. The other user
participated the second time in this UCD process (he already take part in
the preliminary iteration, see Section 6.1).

Setup As in the initial iteration, see 6.2.

Results This iteration was particularly interesting since all participants
had experience with the old Saros GUI. For example, it was interesting to
see how well the new GUI fits the conventions and workflows of the old one.
Furthermore, since they were familiar with the functionalities, I had the
impression that the tests were more intense. In addition, this iteration asses
the fixes made until then. As expected, it turned out that some solutions
did not really fix a problem, other did. Table 8 lists all usability problems
found in this iteration.

6.5 Summary

The most important and beneficial methodology was testing with real users,
most usability problems were found that way. The heuristic evaluation con-
firmed a lot of findings and even one additional problem was identified. The
interviews after the test session were not so important to identify usabil-
ity problems, however, in the discussion ideas for solving problems evolved.
Video and audio recording were interesting for retracing particular problems
and corresponding discussions. Furthermore, as the experimenter, one had
not enough time to take notes covering all problems and statements of the
user, thus the recordings helped to document the findings, thoroughly.

44

6.5 Summary Bastian Sieker

Table 8: Usability problems found in final iteration with the new Saros GUI
(only previously unknown problems are listed). See A.3 for details.

No Title Fatality

#15 Specific input fields in dialogs should be focused, ini-
tially

1

#16 Unclear semantics of connect/disconnect 2

#17 Complicated to create an new account 2

#18 Unsorted contacts / no way to sort contacts 1

#19 CMD+A/CTRL+A not working in input fields in di-
alogs

1

45

7 Conclusion Bastian Sieker

7 Conclusion

7.1 Results

In the course of this thesis I implemented a new Saros GUI based on
HTML and JavaScript utilising a UCD process to maximise the usability
of the GUI. I gave an introduction to related work on Saros (Section 2)
and to fundamental terms and concepts of the field of usability engineering
and UCD (Section 3.1). Based on that, I elaborated an UCD process to
iteratively gather feedback from real users to be able to incorporate insights
about the usability of the GUI into the process of implementation (Section
3.2 to 3.5). After three iterations of usability tests (the first iteration was
still done with the old Saros GUI) and an heuristic evaluation, 19 usability
problems were identified and 7 of them fixed. Details about the results of
the UCD process are given in Section 6.

As groundwork for the implementation I introduced essential technologies
and relevant previous works on Saros (Section 4.1 to Section 4.3). I
identified special requirements of the application and, based on that,
evaluated possibly suitable JavaScript frameworks to build on (Section
4.4). AmpersandJS was chosen because it offers the best compromise
between provided features and a low entry hurdle for new developers. Next,
I presented the chosen environment for tool support for the JavaScript
development process (Section 4.5).

Based on this technologies I implemented a new Saros GUI, on which I had
a detailed look in Section 5. After presenting the extended module structure
in Eclipse’s OSGi context (Section 5.1), I introduced individual components
and their interdependencies (Section 5.2), afterwards I presented special
challenges (Section 5.3), details of the build process (Section 5.5) as well as
further tooling (Section 5.4) and accompanying refactorings (Section 5.6).
During the implementation I tried to support a convenient entrance for
future developers, even without experience in web development, however,
not of costs of good architecture and best practices.

In Section 5.7, I summed up the results of the implementation. In my
opinion, a solid groundwork was laid for future developers to work on the
Saros GUI and to implement missing features to be able to replace the old
Saros GUI in the future.

7.2 Future Work

Although the foundation for a Saros GUI based on HTML and JavaScript is
built with the implementation in the course of this thesis, there are a lot of
open tasks to take care of before the GUI is ready to replace the old Saros

46

7.2 Future Work Bastian Sieker

GUI. Regarding functionality, these open tasks are summed up in Section
5.7. Since the utilisation of a UCD process was quite a success, I find it
reasonable to suggest that further implementation should be accompanied
with a similar process, if possible, too. Furthermore, there is some work
to do regarding the build of the JavaScript application. The build process
should be integrated in the general Saros build process as well as in the
Jenkins jobs, see Section 5.5 for more details.

As Bohnstedt [Boh15, p.62] already pointed out, there is also some work
to do in the direction of test coverage, on the Java-side as well as on the
JavaScript-side. In addition, the extension of the STF framework for testing
the HTML GUI by Cikryt [Cik15, p.61] is neglected so far.

47

A Appendix Bastian Sieker

A Appendix

A.1 Usability Test Task Sheet 1

Saros Usability Evaluation

1 Process
• Welcome

• Setup and Introduction of the Environment

• Usability Evaluation

• Interview

• Debriefing

The entire evaluation process will take approx. 60 minutes.

2 Usability Evaluation - Tasks
1. Basics

a) Connect with your XMPP account
b) Add mustermann@saros-con.imp.fu-berlin.de to your contacts
c) Add bzums@saros-con.imp.fu-berlin.de to your contacts
d) Give the user bzums@saros-con.imp.fu-berlin.de a nickname
e) Delete mustermann@saros-con.imp.fu-berlin.de from your contacts

2. Incoming Session Negotiation
a) Accept the incomming session request: create a new project for FizzBuzz
b) Open the file the contact bzums@saros-con.imp.fu-berlin.de has opened in the

session
c) Solve FizzBuzz
d) Leave session

3. Outgoing Session Negotiation
a) Partially Share the project de.fu_berlin.inf.dpp.ui.frontend with contact bzums@saros-

con.imp.fu-berlin.de: share only the directory html/js
b) Enter the follow mode: start following bzums@saros-con.imp.fu-berlin.de

4. Incoming Session Negotiation with Multiple Projects
a) Accept incomming session request: create a new project for de.fu_berlin.inf.dpp.ui

and use the existing one for de.fu_berlin.inf.dpp.ui.frontend

1

48

A.2 Usability Test Task Sheet 2 Bastian Sieker

A.2 Usability Test Task Sheet 2

Saros Usability Evaluation

1 Process
• Welcome

• Setup and Introduction of the Environment

• Usability Evaluation

• Interview

• Debriefing

The entire evaluation process will take approx. 45 minutes.

2 Usability Evaluation - Tasks
1. Basics

a) Connect with the account test-account-upb@saros-con.imp.fu-berlin.de (password:
test-account)

b) Add mustermann@saros-con.imp.fu-berlin.de to your contacts
c) Add bzums@saros-con.imp.fu-berlin.de to your contacts
d) Give the user bzums@saros-con.imp.fu-berlin.de a nickname
e) Delete mustermann@saros-con.imp.fu-berlin.de from your contacts
f) Disconnect

2. Incoming Session Negotiation
a) Connect with the account anotherone@saros-con.imp.fu-berlin.de (password: ano-

ther)
b) Accept the incomming session request: create a new project for de.fu_berlin.inf.dpp.saros

and use the existing one for de.fu_berlin.inf.dpp.ui.frontend and de.fu_berlin.inf.dpp.ui
c) Disconnect

3. Outgoing Session Negotiation
a) Connect with the account test-account-upb@saros-con.imp.fu-berlin.de (password:

test-account)
b) Start a session and partially share (share only the directory html/js) the project

de.fu_berlin.inf.dpp.ui.frontend with the following contacts:
• bzums@saros-con.imp.fu-berlin.de
• basti-test-account@saros-con.imp.fu-berlin.de
• peter-post@saros-con.imp.fu-berlin.de

1

49

A.3 Catalogue of Usability Problems Bastian Sieker

A.3 Catalogue of Usability Problems

#1 Unclear state of contacts 2

Only online contacts are marked explicitly with an online tag. When no
contact is online, there is no indication about their state.

Source: Usability Tests

Approaches:

• Provide a tag for every possible state and show it permanently

Discussion: This problem was found in the old Saros GUI and was not fixed in
the initial design of the new Saros GUI, thoroughly. Afterwards, the problem
was fixed with the following commit:
http://saros-build.imp.fu-berlin.de/gerrit/#/c/2791/

#2 Functionality hidden behind icon-only buttons 2

Users struggled to find buttons for basic functionalities like connecting, dis-
connecting or leaving a session.

Source: Usability Tests

Approaches:

• Add labels to certain buttons instead of using icons, only

Discussion: This problem was found in the old Saros GUI. The new Saros
GUI was designed, accordingly.

#3 Unclear when follow mode stops 2

Users expect to stop following another contact when start typing. That is not
the case. Furthermore, users did not realise that the follow mode stopped on
other occasions.

Source: Usability Tests

Approaches:

• Give the user explicit feedback when the follow mode is stopped

• Explicitly explain to the user when the follow mode stops

Discussion: This is a problem found in the old Saros GUI and can not be
fixed by UI adaptions, only.

50

http://saros-build.imp.fu-berlin.de/gerrit/#/c/2791/

A.3 Catalogue of Usability Problems Bastian Sieker

#4 Moving contacts in Session container is confusing 3

In the old Saros GUI contacts participating in a session are moved from the
list of contacts to the list of contacts in a session. This is confusing, because
they are still usual contacts and should be present in the list of contacts.

Source: Usability Tests

Approaches:

• Instead of moving contacts from one list to another, copy them

Discussion: This is a problem found in the old Saros GUI and should be fixed
in the new one. However, currently the Session view is not implemented.

#5 Missing default account selection 2

When starting Saros, there is no default account selected, instead, the message
No account selected is shown to the user. Furthermore, the current solution is
inconsistent with the old GUI, where an default account is selected.

Source: Usability Tests

Approaches:

• Select a default account, for example the last recently used

Discussion: Since this fix would also include an extension of the data interface
(the last recently used account must be provided, for example), I did not
approach this problem in the course of this thesis.

#6 Missing auto-connect feature when selecting an account 2

When selecting an account, users expect to connect, instantly. Furthermore,
that would be consistent with the old Saros GUI.

Source: Usability Tests, Heuristic Evaluation

Approaches:

• When selecting an account, auto-connect with that account

Discussion: The problem was fixed with the following commit:
http://saros-build.imp.fu-berlin.de/gerrit/#/c/2818/

51

http://saros-build.imp.fu-berlin.de/gerrit/#/c/2818/

A.3 Catalogue of Usability Problems Bastian Sieker

#7 Missing default value in input fields 2

Currently, the user has to type manually, for example when using an existing
project in the wizard for joining a session. However, with high probability,
the name is the same as the shared project and could therefore be provided
as default value.

Source: Usability Tests, Heuristic Evaluation

Approaches:

• Provide default values in input fields wherever possible

Discussion: The problem is easy to fix when the wizard for joining a session
is implemented in a stable way (currently it is just mocked).

#8 Contacts looking like links, action expected 2

In the Saros main view, when hovering over contacts, they are highlighted and
the cursor changes to pointer. Therefore users expect an action on left-click.

Source: Usability Tests, Heuristic Evaluation

Approaches:

• Avoid pointer cursor

• Add action on left-lick, for example inline editing of the nickname

Discussion: The idea of explicitly hovering a contact was to make clear that
there is some action available, in this case on right-click. Thus, I would not
disable the hovering effect, but maybe keep the usual arrow cursor. Providing
an action of left-click would be another possibility. However, it is unclear what
the user expects and it may lead to significant development effort depending
on the action.

#9 Default context menu of the browser shown on right-click 2

On right-click, the default browser context-menu is shown with options like
reload, which makes no sense and confuses the users.

Source: Usability Tests, Heuristic Evaluation

Approaches:

• Prevent showing the default context menu

Discussion: The problem was fixed with the following commit:
http://saros-build.imp.fu-berlin.de/gerrit/#/c/2857/

52

http://saros-build.imp.fu-berlin.de/gerrit/#/c/2857/

A.3 Catalogue of Usability Problems Bastian Sieker

#10 Contact container is not collapsible 1

The list of contacts leads to vertical scrollbars, quickly. Furthermore, users
expected to be able to collapse the container.

Source: Usability Tests, Heuristic Evaluation

Approaches:

• Trigger collapse of Contacts container on left-click

Discussion: The problem was fixed with the following commit:
http://saros-build.imp.fu-berlin.de/gerrit/#/c/2819/

#11 No default actions on enter in dialogs 2

Clicking enter in dialogs triggers closing the dialog, however, without actually
performing an action. That is especially confusing because it is not clear to
the user whether or not the action was performed. Users expect that the
corresponding action is triggered, for example adding/renaming a contact.

Source: Usability Tests, Heuristic Evaluation

Approaches:

• Trigger default action on enter

Discussion: The problem was fixed with the following commit:
http://saros-build.imp.fu-berlin.de/gerrit/#/c/2820/

However, in dialogs for confirming deletion, currently nothing happens on enter
to avoid accidental deletions.

#12 No Work together on... shortcut available 2

Like in the old Saros GUI, users expect to be able to share projects/files with
a specific contact via right-clicking on the contact and choosing Work together
on....

Source: Usability Tests, Heuristic evaluation

Approaches:

• Provide Work together on... in the context menu on right-click on the
contact

Discussion: Clicking on Work together on... should open the wizard for
starting a session with the specific contact selected, by default. This feature
should be implemented, especially because expert users expect it.

53

http://saros-build.imp.fu-berlin.de/gerrit/#/c/2819/
http://saros-build.imp.fu-berlin.de/gerrit/#/c/2820/

A.3 Catalogue of Usability Problems Bastian Sieker

#13 Meaning of tabs in wizard for joining a session unclear 4

Currently, in the join session wizard, multiple incoming projects are visualised
in tabs. First, some users had problems with identifying the tabs, at all.
Second, it was not clear that each tab is representing one project. Since the
current default selection input elements is valid, the user is not encouraged to
navigate to each tabs and explore them but tends to just click Finish.

Source: Usability Tests

Approaches:

• Visualise the tabs as tabs, mor explicitly

• Provide additional information about the semantic of the tabs to the
user (info text, tooltips)

Discussion: Maybe it helps the tabs vertically to mark them as tabs, more
explicitly. When the wizard is implemented fully, this issue should be investi-
gated further, best with utilising further usability tests.

#14 Inconsistencies in button ordering (wizards) 1

Buttons are ordered such that the confirming button is not the right most.
However, in in the old GUI and in Eclipse, that is a convention.

Source: Usability Tests, Heuristic Evaluation

Approaches:

• Rearange the buttons

Discussion: The problem was fixed with the following commit:
http://saros-build.imp.fu-berlin.de/gerrit/#/c/2858

54

http://saros-build.imp.fu-berlin.de/gerrit/#/c/2858

A.3 Catalogue of Usability Problems Bastian Sieker

#15 Specific input fields in dialogs should be focused, initially 1

When a user opens the dialog for renaming a contact, for example, it would
be more convenient to auto-focus the corresponding input field since the user
opens that specific wizard with the intention to edit the nickname of a user.
Now, the user has to click on the input field, first. In addition, maybe it is
reasonable to preselect the value in the input field.

Source: Usability Tests

Approaches:

• Auto-focus input field in certain dialogs

• Preselect value of certain input fields in dialogs

Discussion: I think this is an reasonable enhancement. There is no fix, yet,
due to time issues.

#16 Unclear semantics of connect/disconnect 2

The labels Connecting and Disconnecting are confusing to some users. Maybe
Login and Logout are more clear since they are known from many online
platforms.

Source: Usability Tests

Approaches:

• Rename labels

Discussion: This issue should be investigated further.

#17 Complicated to create an new account 2

Independent of the new Saros GUI: it is currently not very clear how to create
an new account because it is not possible to do so in the IDE-specific Saros
properties menu.

Source: Usability Tests

Approaches:

• It should be possible to create an account in the IDE-specific Saros prop-
erties menu

Discussion: This is a general and GUI-unspecific problem.

55

A.3 Catalogue of Usability Problems Bastian Sieker

#18 Unsorted contacts / no way to sort contacts 1

Currently, the order of contacts is not guaranteed. Users want to be able to
sort contacts or expect them to be sorted according to a least-recently-used
strategy.

Source: Usability Tests

Approaches:

• Sort users by default based on least-recently-used

• Enable sorting based on different properties (nickname, least-recently-
used)

Discussion: The interface must be extended for this feature. I think it would
be reasonable to implement a default sorting according to least-recently-used.

#19 CMD+A/CTRL+A not working in input fields in dialogs 1

Users want to select the whole value of an input field via the named shortcuts
which is currently not working.

Source: Usability Tests

Approaches:

• Implement the described behaviour

Discussion: Not implemented, yet, due to time issues.

56

References Bastian Sieker

References

[Ang] AngularJS. AngularJS Developer Guide. https://docs.

angularjs.org/guide/introduction#! Retrieved August
27th, 2015.

[Boh15] Matthias Bohnstedt. Entwicklung einer IDE-unabhängigen Be-
nutzeroberfläche für Saros. Master’s thesis, Freie Universität
Berlin, 2015.

[Cik15] Christian Cikryt. Evaluating the Use of a Web Browser to Unify
GUI Development for IDE Plug-ins. Master’s thesis, Freie Uni-
versität Berlin, 2015.

[Cro08] Douglas Crockford. JavaScript: The Good Parts. O’Reilly Me-
dia, Inc., 2008.

[Dur14] Damla Durmaz. Verbesserung der Action Awareness im Open
Source Plug-in Saros. Master’s thesis, Freie Universität Berlin,
2014.

[Int98] International Organization for Standardization. ISO 9241-11:
Ergonomic requirements for office work with visual display ter-
minals (VDTs) - Part 11 : Guidance on usability. Technical
report, International Organization for Standardization, Geneva,
Swiss, 1998.

[Int99] International Organization for Standardization. ISO 13407. Hu-
man Centred Design Process for Interactive Systems. Geneva,
Swiss, 1999.

[Kah11] Björn Kahlert. Verbesserung der Out-Of-Box-Experience in
Saros mittels Heuristischer Evaluation und Usability-Tests. Mas-
ter’s thesis, Freie Universität Berlin, 2011.

[KCF92] Clare-Marie Karat, Robert Campbell, and Tarra Fiegel. Com-
parison of empirical testing and walkthrough methods in user
interface evaluation. In Conference on Human Factors in Com-
puting Systems ’92, pages 397–404, 1992.

[MVSC05] Ji-Ye Mao, Karel Vredenburg, Paul W. Smith, and Tom Carey.
The state of user-centered design practice. Commun. ACM,
48(3):105–109, March 2005.

[Nie93] Jakob Nielsen. Usability Engineering. Academic Press, London,
1993.

57

https://docs.angularjs.org/guide/introduction#!
https://docs.angularjs.org/guide/introduction#!

References Bastian Sieker

[Nie00] Jakob Nielsen. Why You Only Need to Test
with 5 Users. http://www.nngroup.com/articles/

why-you-only-need-to-test-with-5-users/, March 2000.
Retrieved August 25th, 2015.

[NLM94] Jakob Nielsen and Robert L. Mack. Usability Inspection Methods.
John Wiley & Sons, 1994.

[Sol11] Arsenij Solovjev. Evaluation der Mechanismen zum Darstellen
der Workspace Awareness in Saros. Bachelor’s Thesis, Freie Uni-
versität Berlin, 2011.

[Spi12] Maria Spiering. Verbesserung der Usability von Saros unter Ver-
wendung eines User-Centered Design Ansatzes. Master’s thesis,
Freie Universität Berlin, 2012.

[W3C] W3C. W3C - Conformance: requirements and recommenda-
tions. http://www.w3.org/TR/REC-html40-971218/conform.

html#deprecated. Retrieved August 25th, 2015.

[Wal12] Alexander Waldmann. Prüfung und Verbesserung der Usability
von Saros im produktiven Einsatz. Diploma thesis, Freie Univer-
sität Berlin, 2012.

[Wik] Wikipedia. Lint (software). https://en.wikipedia.org/wiki/
Lint_%28software%29. Retrieved August 29th, 2015.

58

http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
http://www.w3.org/TR/REC-html40-971218/conform.html#deprecated
http://www.w3.org/TR/REC-html40-971218/conform.html#deprecated
https://en.wikipedia.org/wiki/Lint_%28software%29
https://en.wikipedia.org/wiki/Lint_%28software%29

	Introduction
	Saros
	Motivation
	Goals
	Terminology
	Structure

	Related Work on Saros
	Regarding Usability
	Regarding Technology and Architecture

	User-Centered Design Process
	Introduction
	Usability
	User-Centered Design

	Objective
	Methods
	Thinking Aloud User Tests
	Questionnaires and Interviews
	Heuristic Evaluation

	Intended Process
	When to Start Testing
	Process
	Test Tasks

	Documentation of Results

	Technology
	HTML, CSS and JavaScript
	Saros-specific requirements
	Communication interface between Java and JavaScript
	JavaScript MV*-Framework Evaluation
	AngularJS
	EmberJS
	BackboneJS
	AmpersandJS
	Decision making

	JavaScript Tooling

	Implementation
	UI modules
	Saros GUI JavaScript application
	CommonJS Modules
	Project Structure
	The SarosApi Module
	HTML Templating with JADE
	Additional dependencies

	Challenges
	Tooling
	Building
	Testing
	Linting
	Code Auto-Formatting

	Build Integration
	Building the OSGi Module inside IntelliJ and Eclipse
	Configuring the Jenkins build
	Discussion about the Integration of the JavaScript Build Process

	Accompanying Refactorings
	Results
	Saros main view
	Sesseion-Invitation Wizard
	Join-Session Wizard
	Documentation

	Applying the User-Centered Design Process
	Preliminary Iteration with the old Saros GUI
	Initial Iteration with the new Saros GUI
	Heuristic Evaluation
	Final Iteration
	Summary

	Conclusion
	Results
	Future Work

	Appendix
	Usability Test Task Sheet 1
	Usability Test Task Sheet 2
	Catalogue of Usability Problems

