
Increasing the efficiency of free software projects
through information management

Robert Schuster
Advisor: Christopher Oezbek, Prof. Dr. Lutz Prechelt,

Working group Software Engineering
Freie Universität Berlin

2005-09-06

Abstract

Free and Open Source Software is a permanent undertaking. However this does
not mean that this development model has no flaws. This paper will present a
problem of the F/OSS development process that results from insufficient care for
information management. It will outline the factors that lead to this problem and
proposes a light-weight process enhancement to cope with it. This enhancement
will introduce a role named “mediator” - a person whose task it is to make it easier
for new developers to enter the project and support the knowledge transfer between
developers. The role is then implemented in the project GNU Classpath and evalu-
ated by it’s developers with the help of a survey. The key aspects of mediation are
summarized and abstracted in form of a short manual which is targetted to be used
by any F/OSS project.

1

Contents
1 Introduction 4

1.1 Free Software or Open Source . 5
1.2 Categories and conditions of F/OSS projects 5

1.2.1 Categories . 5
1.2.2 Environment and conditions . 7
1.2.3 Definition of success . 9

2 Introducing mediation 11
2.1 Which difficulties exist? . 11
2.2 The idea of mediation . 12
2.3 Goals and tasks of the mediator . 12

2.3.1 Guidelines for the daily work . 13
2.4 Project properties supporting the success of the mediation role 14
2.5 Related works . 15

3 Implementing mediation 16
3.1 GNU Classpath . 16

3.1.1 Introduction . 16
3.1.2 Why GNU Classpath has been chosen for exemplifying mediation 17
3.1.3 Announcement of mediation and reaction 17
3.1.4 Conclusion . 19

3.2 Planning the implementation . 19
3.2.1 Task and procedure of the GNU Classpath mediator 19
3.2.2 Further ideas . 20
3.2.3 Dealing with problematic situations 20

3.3 Setting up the infrastructure . 21
3.3.1 Chosing the tools . 21
3.3.2 Setting up the Wiki . 23

3.4 Experiences gained . 27

4 The mediation manual 27
4.1 Procedure . 28
4.2 Reactions . 28
4.3 Conclusion . 30

5 Analysis of the practical implementation 30
5.1 Results . 31

6 Closing remarks 32
6.1 Lessons learned . 32
6.2 Conclusion . 32

2

6.3 Perspective . 33

A Invitation mail for GNU Classpath 33

B Announcement mail of the mediation Wiki 35

C Mediation Manual 35

D Announcement template for mediation manual 40

E Adressed projects 41

F Survey 43

References 51

3

1 Introduction
The freedom to use a program for every purpose and the open access to its source code
are the cornerstones of the Free and Open Source Software (F/OSS) software projects.
The collaborative development model which attracts volunteer individuals[GHI01] as
well as businesses[Yuw05] can look back on a history of more than 20 years. Meanwhile
the F/OSS community has proven to be successful1 and permanent. This paper tries to
help F/OSS projects to invest in their future development when a newer generation of
programmers will inherit the work of their predecessors.

• As F/OSS projects get older it is more difficult for newcomers to join them and
they are less manageable for a single person. Part of this problem is that the devel-
opment process is seldom documented consistently (e.g. archival of architectural
decisions). This thesis will demonstrate “mediation” as one solution to get this
defficiency under control.

• Bigger F/OSS projects consist of a distributed team of developers which often
cross timezones and cultural borders. While this may be good for creativity and
balance between interests this makes project management more difficult. The
problems manifest themself when making an appointment or when a debate gets
hot because of different cultural tempers.

• Usually F/OSS developers are motivated intrinsically2 which means they do pro-
gramming for the fun of it. Again this is quite good for the actual result but it
means that less amusing work like writing documentation is neglected. Further-
more being on his own means that a developer can completely chose his develop-
ment environment and tools.

• Communication and knowledge transfer is dominated by mailing list and Internet
Relay Chat (IRC) usage. These systems are not designed for information manage-
ment and make it hard to use them as the project’s information archive.

The goal of this thesis is to define a light-weight process enhancement which minds the
factors stated above and increases the efficiency of the project. The enhancement named
“mediation” will introduce the role of a project member who explicitly cares about the
project’s information, writes important issues (e.g. outcome of a discussion) down and
makes them available for future reference by new and long-established developers.

“Mediation” will be installed in the project GNU Classpath3 where the enhancement
will be tested and qualitative advantages (as well as disadvantages) recorded.

1Apache HTTP Server market share: http://www.netcraft.com/archives/web_server_
survey.html

F/OSS adoption for public services: http://www.ssrc.org/wiki/POSA
2The survey in [RRBG02] supports the idea that sharing knowledge and learning new skills are the

most important reasons to join and stay in the F/OSS community.
3http://classpath.org

4

Eventually the key ideas of the process enhancement will be abstracted and com-
piled as a set of guidelines for other projects as well.

1.1 Free Software or Open Source4

For this thesis the term Free and Open Source software (F/OSS) is used. “Open source”,
which was coined in 1998 by the Open Source Initiative deserves the credit for being

“a marketing program for free software”5.
However the motivational and ethical base, which dates back to the 1970s, was writ-

ten down in 1984 in form of the free software definition6. The project which is presented
as part of this thesis describes itself as a free software project and was begun among
technical reasons specifically to foster software freedom.7

1.2 Categories and conditions of F/OSS projects
As a base work for the presentation of the process enhancement F/OSS projects are
categorized and their development and sometimes social conditions described. In later
sections back references to the issues explained here will be made .

1.2.1 Categories

This section will give you an overview of categories of F/OSS projects in a way that is
important for the context of this thesis8. Using the following terms allows us to describe
quickly the characteristics of a project at a later time.

Single Person Projects

Any F/OSS project that has one member who is responsible for the development of
the software is a “single person project”. Undertakings of this kind tend to be short-
lived because when the initial motivation of the founder goes away no developer is
left to take over the maintainership. While one may be tempted to think that this is
a great loss for the F/OSS community which makes it less productive, maintaining a
non-critical software for a while is a valuable experience for newcomers: The project
founder learns the basics of administration like setting up a source code respository,
maintaining mailing-lists and a project homepage. This knowledge can then be useful
when participating in an established and bigger project.

4As [Mat05] presents it, F/OSS insiders do not regard this simply as a matter of wording.
5How is "open source" related to "free software"? http://opensource.org/advocacy/faq.php
6http://www.gnu.org/philosophy/free-sw.html
7Sascha Brawer, Mark Wielaard (project maintainer) about GNU Classpath http://www.brawer.

ch/articles/classpathFeb2004
8A more comprehensive categorization is presented in [Mar03].

5

A single person project may evolve into some of the other project forms when more
developers get interested and join it. Lastly there are a few projects which become suc-
cessful but stay maintained by a single person for a long time. Examples of this kind
are the QEmu9 multiple CPU emulator and the cdrecord tools by Jörg Schilling10.

Community-based project

A large number of applications serve the need of the free and opensource community
and have been created as some members of the community wanted to

“scratch an itch”11.

Sometimes a group of developers gathers around a piece of source code that was once
proprietary and got released by its copyright holder.

Projects that belong to this category make up the backbone of the F/OSS commu-
nity because of their sheer abundance12 and the wealth of knowledge that is contained
in them. A main characteristic of these projects is that there is not much commercial in-
terest. That leads to very informal project management styles where every aspect relies
purely on social interactions of its members. One can safely say that these are the most
free and independent projects.

Foundation-based project

Since the early13 days of the F/OSS development people have organised themselves in
larger foundations where an individual project is part of the strategic goal. These com-
munities usually provide a common code guide14, documentation rules and guidelines
for project management.

The oldest communities have been formed around the BSD and the GNU project. In
the recent times we can see the development of the Apache, Debian, KDE and Mozilla
communities. While some of them have formed legal entities like the Free Software

9http://www.qemu.org
10http://cdrecord.berlios.de
11see Eric S. Raymond’s writing “The Cathedral and the Bazaar” http://www.catb.org/~esr/

writings/cathedral-bazaar
12In June 2005 F/OSS development portal www.sourceforge.net which is not related to any of the “soft-

ware foundations” lists more than 100.000 software projects.
13GNU is considered being the first here although the traces of collaborative development date back to

the 1970s and the origins of the UNIX operating system.
14The Mozilla Coding Style Guide http://www.mozilla.org/hacking/

mozilla-style-guide.html
The Apache Software Foundation C Language Style Guide http://www.apache.org/dev/

styleguide.html

6

Foundation15, the Apache Software Foundation16 or the Mozilla Foundation17 others
remain an informal group but are nevertheless known in the whole F/OSS community.

An important fact about these groups is that they are mutually dependent (e.g.
Apache web server running on OpenBSD, being compiled by the GCC) and often de-
velopers dedicated to one group work partly on other (e.g. porting GNU software to
the BSD platform). Software projects belonging to such a group usually inherit their
guidelines18 and are thus more reglemented than their completely independent coun-
terparts. As an example the GNU projects publish and maintain their “GNU Coding
Standards”19. These guidelines not only manifest itself as documents but find their way
into GNU applications, too: The Automake program is used to simplify the construc-
tion of software20. In the default operating mode it expects a certain set of files which is
defined in the GNU coding standards21 and can only be overridden by a command line
switch named “–foreign”.

Company governed projects

In the last years several proprietary closed-source applications have been opened up
by their companies in the hope of having synergy effects by approaching the F/OSS
community. Taking Mozilla as a prominent example we have seen that it takes some
time and commitment by the copyright holder for a released project to get adopted and
developed by the community. As long as the software stays under the government of
their company there is a high risk that the traditional development process dominates.
One of these problems is that by having face to face meetings of employees instead of
organising an appointment on IRC the volunteer contributors are kept out.

1.2.2 Environment and conditions

F/OSS projects are very diverse in nature and there are no clean borders to get them
categorized. However by looking at the environment and the conditions in a number
of F/OSS projects one will meet recurring properties. By digging deeper into this topic
you will see that projects belonging to any of the bigger groups like GNU or Apache
share some characteristics:

15http://www.fsf.org
16http://www.apache.org/foundation
17http://www.mozilla.org/foundation
18This is often an acceptance criteria.
19http://www.gnu.org/prep/standards
20Compilation, library building, installation, ...
21see Automake Manual http://sources.redhat.com/automake/automake.html

7

Communication

The main medium for communication is still the mailinglist22. It is easy to setup, hardly
needs administration and there is no project hosting software that does not support
them. However the differences between projects begin with how a project sets up the
mailinglists. Smaller projects usually have a common list for users and developers.
Most bigger projects start with a developer list, a user list and another one that broad-
casts the messages of the version control system (e.g. CVS).

Comparing mailinglists to company meetings one of the bigger differences is that the
participants of a mailinglist are not forced to read it. It is not unusual that a developer
has not read a particular discussion or question and is therefore not up-to-date with the
latest advancements or decisions. This happens more often when there is high traffic on
a list, of course. The good news is that mailinglists of F/OSS projects can be publicly
archived and most often are.

Internet Relay Chat (IRC) is another important medium for communication which
allows developers and users to get in touch quickly and discuss imminent problems.

What is useful for development is used for socialising, too. It is not a good idea to
underrate the importance of community members chatting about topics such as news,
the role of software in the human society or just about their families. The maintainer of
the later to be introduced project GNU Classpath deliberately sets up the project’s IRC
channel to foster socialising besides benefitting from the advantages for development.
On “Planet Classpath”23 developers write not only about software but do film reviews
as well.

Getting in contact with the developers via IRC is helpful for newcomers, too. Al-
though technically possible IRC meetings are not usually archived. The reason for this
is that the discussions are much more informal and sometimes less development-centric
as on the mailinglist and the developers prefer privacy.

Decision making

The process of getting to a result or outcome on a debatable topic is largely undefined.
In [Ste00] we get to know that the coordination of discussions is done through social
conventions which have to be learned by experience.

For the following discussion it is assumed that the decision making progress can
be described using these steps: A request to the mailing list is sent and every member
having an opinion tells what he or she thinks about it. The outcome may be clear when
enough striking arguments have been told. Sometimes the maintainer has to intervene
to stop “flame wars” or, on another day, a discussion simply dies because of lack of
interest. One kind of critical direction in a discussion is taken when it evolves into a

22A discusssion about the uses and advantages of mailinglists can be found in [UJNS01].
23A web page where the GNU Classpath developer web blogs are syndicated. http://planet.

classpath.org

8

“bikeshed discussion”24.
The important difference to software projects made in a closed-source company en-

vironment is that a decisions’ outcome has not to be written down explicitly in the
F/OSS world. Everyone who took part in the discussion may be informed about the
outcome but not the others. This is especially problematic for newcomers because they
neither know the outcome nor have they a clue that such a discussion has ever taken
place. The mailing list archive helps finding the discussion afterwards but it may be
difficult to understand the context the discussion was situated in.

Tool usage

To effectively practive software development supportive tools are needed. Besides the
obvious things like editors, a version control system is the most important application a
team of distributed developers of a F/OSS project needs. Traditionally the tools used by
F/OSS developers are created by the community itself. The highly successful Concur-
rent Versions System (CVS25) started as a set of shell scripts which were later rewritten
as a real application. New functionality and features were added as the need for them
arose. Even Subversion26 which is today treated as CVS successor has its roots in the
community because it was designed to overcome the problems people had with CVS.

Another well-known application is Emacs which has a long-history and still today is
used by many developers even if there are viable alternatives like KDevelop, Anjuta or
Eclipse. And last but not least there is still a living community around one of the oldest
editors - namely vi[m].

As the development tools are freely chosen by their perceived usefulness, their users
are unlikely to adopt newer or better-marketed tools. It is considered bad behavior
forcing someone to use a specific program to do a certain task. That said developers like
automatisation on a low and easily controllable way. The way considered the easiest is
often writing scripts in a language like Perl or Bash27 script. One has to keep in mind
this attitude when introducing a different work-style.

1.2.3 Definition of success

In order to enhance a F/OSS project it is necessary to know how it defines success.
As large parts the F/OSS community works are not bound to the commercial software
market’s requirements it is not trivial to define or work out what these measures of
success are.

24Analogy from C.Northcote Parkinson’s book “Parkinson’s Law”. The term “bikeshed discussion”
evolved after a long discussion on the FreeBSD mailinglist. A summary and explanation of these events
is available at http://www.bikeshed.com.

25http://www.cvshome.org
26http://www.subversion.org
27http://www.gnu.org/software/bash

9

In [CAH03] the authors work out draft ideas about success in traditional commercial
software and F/OSS projects. Furthermore they do an interesting experiment by ask-
ing the question about F/OSS success measures on Slashdot28, a well-known news site
among F/OSS developers, and analysing the answers. The cited paper does not claim
to have found the ultimate answer to F/OSS project’s success measures. However it
gives a direction and some values which underline the assumptions.

Furthermore the Slashdot experiment demonstrated that one has to keep in mind
that parts of the success definition are inherently subjective: It makes no sense to define
external project success requirement as “GNU/Linux has to reach a market share of 50%
on desktop systems by the end of 2005.” when an individual developer values it as a
success, that he can work with the hardware device he has just written a driver for.

Crowston et all present the following measures:

• Number of developers

• Level of activity

• Cycle Time

• Project Effects on Projects

• Employment Opportunities

• Individual Reputation

• Knowledge Creation

From the list of measures given by Crowston et al three have been picked which are
explicitly fostered by the process enhancement approach presented here. The remaining
measures are considered not generally applicable enough: E.g. a project’s effects on
another is mainly dependent whether it is a function library or development tool that
targets another development community instead of serving the needs of a non-software
developing user.

Developer count

F/OSS projects are considered open-ended. Software as we understand it today evolves
and with this steady evolution goes the need for developers who actively contribute to
the project. Therefore a project can be seen as successful if it attracts new developers
and maintains many of them.

28A news site often dealing with technical and F/OSS-centric topics. http://slashdot.org

10

Level of activity

The level of activity is measured by source code contributions, mailinglist posts as well
as the filing of bug reports. Obviously this is the most important success measure be-
cause the mentioned actions are what constitutes a F/OSS project’s work.

Developer satisfaction

Although this measure showed up very strongly in the analysis in [CAH03] it is in
itself not definite what actually provides the satisfaction. However it is conceivable
that positive feedback from users, a sense of achievement and an amicable developer
community can be considered helpful in this regard.

As a lack of developer satisfaction can influence the individual project commitment
in a negative way this should be avoided.

2 Introducing mediation
After explaining the difficulties of F/OSS projects this section will introduce mediation,
its goals and ideas.

2.1 Which difficulties exist?
We have seen that discussions on the mailing list are held informal and are fundamen-
tally different to a meeting in the commercial environment where it is crucial for the
project‘s advancement to get to a concrete decision. In F/OSS project we have the fol-
lowing properties:

• There is no force to get to a conclusion at a certain point of time.

• If none of the participants has a clever idea the discussion remains without an
outcome.

• If opposing opinions clash upon each other and no consens can be reached there
will be no consistent result. Furthermore there is no administration that forces to
reach that conclusion.

The usage of simple communication means like mailing-lists and IRC has technical ob-
stacles: Responds to emails may have a delay from some minutes to several days. In
contrast to traditional (face-to-face) discussions where the memory of the participants
is generally fresh, email-based discussion bear the risk of simply forgetting former ut-
terances. This is even more likely when a participant follows a minor branch of the
discussion. However it is a good aspect that email discussions are publicly archived.

Regarding IRC we will notice that statements are presented in list form. Overlapping
answers make it easy to lose the plot.

11

Finally a major drawback is that at the end of a discussion only the participants know
about the outcome. Even if someone writes another mail summarizing the outcome this
message is buried in the archive after a few weeks. This is especially bad for persons
who join the project after the decision is made.

2.2 The idea of mediation
The goal of the process enhancement is to limit the problems mentioned above. There-
fore the role of the mediator is defined, whose task is it to be attentive about critical
situations and makes sure that valuable information is not lost.

The mediator’s main task is to scan the project’s communication channels (e.g. IRC,
mailing lists) in order to find information which is suitable to be processed or which
make him act upon. An explanation of possible tasks and actions will follow in the next
subsection.

A central aspect of the mediator’s work is the repository to store mediation related
data which can be read by the project members. The exact nature of this repository can
be chosen by the mediator or project and depends on the ease of use and the project’s
technical possibilities.

Although being defined for the F/OSS development process the person doing me-
diation may do this on a voluntary level just like regular members do. In this regard
mediation is just another way of contributing to a F/OSS project.

2.3 Goals and tasks of the mediator
The following four goals with their respective tasks describe how the mediator works
and what he is aiming for.

Lower the entry barrier for beginners

Lowering the entry barrier for beginners is a straightforward way to help a F/OSS
project to gain new members which support its development. Looking out for new-
comer related information and putting it into the repository is therefore the simple task
for this goal.

Information which might be useful for beginners can be tool guides or development
policies and requirements. Explaining when the actual software implementation differs
from what a design document says is of great usefulness too and should be mentioned
in the repository.

Improve overview about the project

Due to the voluntary collaboration nobody can demand to have an overview about the
state of affairs of parts of the project. Even the maintainer, who may traditionally be
regarded as being responsible for this, is in no way obliged to be familiar with every

12

section of the project. It will be up to the mediation effort to scan the relevant commu-
nication channels for specialist knowledge and developer decisions and keep this as a
summary to the repository: Developers usually announce the work they are doing next
on the mailing list. Since this is commonly not a reason for a bigger discussion such
news easily perishs and falls into oblivion. It is then the task of the mediator to take
note of such announcements in the repository and update them accordingly.

A look at the data collected by this task will allow to gain an overview about the
project’s state of affairs making it easier to find out who does what and decide where to
help.

Enhance communication in decision situations

Concerns have been raised about the way discussions take place in F/OSS projects:
They do not always lead to a precise result or do not cover all possible cases of a prob-
lem.

The mediator should detect such situations and help clarifying the issue by asking
specific questions or posing whole requests to discuss an issue.

Whether a discussion was instigated or not and collecting its outcome to make it
available for all developers is another task of the mediator.

Help the project to mediate itself

The difficulty of the mediation effort is largely dependent on the support of the remain-
ing project members. In an ideal world a mediator would not be needed because every
participant collects relevant information on his own and publishes it. Adopting this
style of working in todays F/OSS projects would be a radical change for them which
would conflict with the contributors habits and the goal of this thesis to find a non-
intrusive mean to foster F/OSS development.

Still clues in emails that someone wants a certain issue being collected in the repos-
itory would make the mediator’s job easier. It is therefore a minor task to convey the
sense of mediation and to get the participants to interact with the mediator.

2.3.1 Guidelines for the daily work

The mediator role is meant as a process enhancement which should be integrated in
an existing software development process. To increase acceptance in the project the ad-
ditional work should not hinder the regular participants. Furthermore the principle of
voluntary work should not be undermined. Therefore the following rules are suggested.

13

No force on collaboration

A key aspect of F/OSS projects is that most members do their work and contribution
voluntarily. Developers react in a negative way29 when they are ordered to work on a
certain problem.

The mediator should therefore animate the other developer to do active contribu-
tions to mediation but should not enforce this. This part was considered important
enough to be written down in the self-conception of the mediator.

No force to use additional software

Developers in F/OSS projects have their very own belief which software they use for
a certain task. A solution where someone is obliged to use a specific (or new) tool will
certainly be rejected.

2.4 Project properties supporting the success of the mediation role
The mediation effort is not applicable to every project. Some have found different pos-
sibilities to cope with the problems mentioned in section 2.1 or their personnel structure
makes it hard to apply mediation. The following paragraphs present project properties
whose occurance make mediation more reasonable.

Project size/complexity

The mediation effort makes sense if a software project contains multiple modules that
may evolve independently from each other. In this situation the mediator cares for a
better overview.

No constraints on the choice of work

Due to the voluntary nature of the contributors the freedom to chose what to work on
is an important feature that most F/OSS projects provide (see [Ste00]). What it makes
interesting for mediation is that this freedom allows a developer to leave his tracks in
very distinct parts of the source code. It is likely that he does not really understand
the underlying design of the piece of code. Mediation can help here by providing the
decisions that led to the design of a particular module.

Little formalism

Many F/OSS projects do not use formal design papers or requirements specifications.
Instead the

29[Ste00] provides more information about the F/OSS development practice.

14

“requirements are spread across different kinds of electronic documents
including Web pages, sites, hypertext links, source code directories, threaded
email transcripts, and more”

as [Wal02] found out. This kind of organisation allows the mediator to distill valuable
information from the project’s archived communication and other documents.

2.5 Related works
Mediation is not the only scientific treatment to enhance the development process of
F/OSS projects. This section presents other works which focus on information manage-
ment but follow a different approach.

Hipikat30

Hipikat is an Eclipse plugin to automatically process project data from various reposi-
tories. It is targetted to newcomers of Java projects and was tested in the Eclipse com-
munity. The tool is able to read search requests and retrieves its information from the
source code repository (CVS), the issue management software (Bugzilla), the project’s
mailing-list and newsgroup31.

Being a good tool for it’s projected goal it is not able to build a repository of informa-
tion that can be read like documentation. As time goes by the amount of search results
gets bigger and every user has to find out the history of the project itself.

Kerneltraffic32

Kerneltraffic is a project which monitors the development mailing-lists of F/OSS projects.
The authors scan the posts for interesting events and discussions in order to summa-
rize the content. These summaries are usually published on a weekly schedule and are
available in multiple data formats. Currently kerneltraffic actively monitors the famous
Linux kernel mailing list and the developer mailing list of the Wine project. The purpose
of kerneltraffic differs largely from what the mediation effort wants to achieve. While
the focus of the former is on publishing news, mediation is centered on development
issues about the project solely.

Kernelnewbies33

Kernelnewbies is a whole project dedicated on teaching programmers about operating
systems kernels in a way that the participant can fix problems in it themselves. The

30http://www.cs.ubc.ca/labs/spl/projects/hipikat
31A comparison of various knowledge sharing tools which includes Hipikat is presented in [DRAG03].
32http://www.kerneltraffic.org
33http://www.kernelnewbies.org

15

project mainly focusses on the Linux kernel but accepts others, too. It features a home-
page with FAQ page, a mailing list, a Wiki and an IRC channel. Kernelnewbies is pretty
close to the mediation effort but there are some major distinctions:

• it is separated from the development project

• it focusses on operating system kernel development only

• it addresses new developers

Linux Kernel Janitors34

The Linux Kernel Janitors are a voluntary support team for the Linux kernel developers.
While many developers implement new features and drivers, the janitors clean up the
source code of older modules. The project is meant for new developers which want
to get in touch with kernel development. As janitors these people can do small and
straightforward tasks and thereby learn how code for the Linux kernel has to be written.
Like Kernelnewbies this project focusses on new developers only and it is not meant to
build a database of development information over time. However an interesting aspect
is that this kind of mediation contains practical development work.

3 Implementing mediation

3.1 GNU Classpath
3.1.1 Introduction

GNU Classpath is an effort to write a cleanroom35 implementation of the class libraries
of the Java programming language and distribute it under a Free Software license. The
software does not work as a stand-alone product and has to be combined with a run-
time environment36. Classpath is used in projects from classical Java virtual machines,
over bindings to other languages (JavaScript, C++, .NET, Oberon, Scheme) to fully Java-
based operation systems. The ultimate goal is that several runtimes can use Classpath
as a system library without modifying it.

GNU Classpath was founded in 1998 and has about 60 developers from which are
30 actively working on it. The number of developers working voluntarily for the project
is predominant while others are employed (ie. by Red Hat).

34http://www.kerneljanitors.org
35For GNU projects “cleanroom” means that the developers have not been exposed to the sourcecode

of a proprietary implementation. This procedure is necessary to avoid being accused of copyright in-
fringement.

36A so called Java virtual machine.

16

A special aspect of Classpath is that it’s developers are often involved in associated
projects. That means that their work on Classpath can be regarded as a cooperation
between these projects.

3.1.2 Why GNU Classpath has been chosen for exemplifying mediation

With its foundation being 7 years ago the project promises to have burried major design
decisions in the more than one million lines of sourcecode37.

The project lists more than 60 team members from which around 20 have resigned
from active development. With developers fluctating over time they took the knowl-
edge about the design of their particular module with them. This means that under-
standing someone else’s code and intentions in sourcecode is getting important for new
developers.

Besides the age there was a big focus change from the time where GNU Classpath
supported only a single virtual machine to today’s state where it is used by around 15
different projects.

Since Java packages are usually quite independent from each other, their develop-
ment can be done without much arrangement between the contributors and thereby a
developer may get the impression that explaining his intentions when implementing a
public API is not important.

3.1.3 Announcement of mediation and reaction

It was decided to write an invitation mail which describes the process enhancement
of mediation and how it should be applied to Classpath. In this vein it was hoped to
receive feedback on the plans which could be helpful. The invitation mail was first send
to Classpath’s maintainer Mark Wielaard to make sure that the portrayed approach was
understandable to anyone who was not involved in the planning phase.

The invitation mail was composed with hindsight to the circumstances described
in section 1.2.2 on page 7. Since it could not be assumed that the addressee knows
about the usual terms of software engineering their use was avoided. It was expected
that some opposition or at least lack of understanding will be received and therefore
intentions have been clarified using examples. The problems were described from the
perspective of a developer facing them at the beginning of his participation at GNU
Classpath.

Reaction Mark Wielaard I

Mark Wielaard is maintainer of GNU Classpath since 2003 and his answer was very
clear in favor of the mediation effort as well as the scientific study of this. It was a

37This historic amount of sourcecode was reached in July 2005 http://gnu.wildebeest.org/
diary/index.php?p=103.

17

surprising reaction because more reservations and problems of understanding with the
presented approach have been expected.

Besides his approval he told that the assumptions about voluntary work being made
in the invitation mail hold for GNU Classpath. He said he did the first steps to bring the
developers together on a social level by creating two IRC channels some months ago.
These channels are used for developers, users and other interested persons of GNU
Classpath and GCJ38 which act as a rally point for questions and problems with the
software.

Reaction Andrew John Hughes (AJH)

AJH has expressed positively about the plans but notes that he considers GNU Class-
path not being a regular F/OSS project with scientific or commercial background. In
his opinion the work of the mediator is more suited to someone who does not actively
program as this would allow the person to work “full-time” as the mediator. Since
GNU Classpath cannot accept source code from developers having seen Sun’s imple-
mentation39, persons which are tainted in this regard have the possibility to do the non-
programming tasks. He thinks of this as some kind of selection “by policy” although
this has not been used much so far. AJH thinks that one of Classpath’s main difference
to other F/OSS projects is that it’s development team does not fluctuate.

Reaction Mark Wielaard II

Mark answered to AJH expression and defended the position that GNU Classpath is
a rather regular F/OSS project because code acception policies are in use at the Linux
kernel and Apache Software Foundation, too40.

Reaction Michael Koch (MK)

MK is a Classpath developer since 2002 who is known for his high quantity of con-
tributions and work on a wide variety of modules. MK said that he is in favor of the
mediation idea and expressed his concerns about the problems of beginners. In his opin-
ion the needed information exists but cannot be found easily. Furthermore he thinks it
is hard for beginners to figure out what they can work on. When applying mediation
MK wants to have assurance that this will not hinder the experienced developers doing
their job.

38A part of the GNU Compiler Collection and sister project of GNU Classpath. http://gcc.gnu.
org/java

39In other words a cleanroom implementation.
40Example projects where a copyright assignment is needed are the MySQL database, the Reiser filesys-

tem as well as the OpenOffice suite.

18

Other

The remaining mails dealt with the distinctive feature of having an imperative proof of
the origin of the sourcecode. This proof was always mandatory for GNU projects but is
evolving for other projects, too.

3.1.4 Conclusion

Despite expectations the idea of mediation was generally accepted. The points ad-
dressed by the answers gave some hints on how to fine tune the mediation effort.
Michael Koch’s concerns not to hinder the experienced programmers reminds not to
send too much mails to the mailing list.

3.2 Planning the implementation
3.2.1 Task and procedure of the GNU Classpath mediator

The mediator wants to collate the knowledge which is spread on single developers and
thereby makes it accessible to all project members. The mediator feels responsible for
this job in particular but should not impose a restriction to modify the data collected by
him. This way another project member can change something that was misinterpreted
or needs an update on its own. A software which allows this kind of working-style is
the Wiki, which was considered then.

The following paragraphs will explain the mediator’s work and what the benefits of
this are. Later on these guidelines will be studied in practice.

Support finding a solution to unanswered and periodical recurring questions

This task should be practiced when a certain problem is addressed multiple times by
one or more persons over a longer period of time without getting to a conclusion. The
mediator’s job is to identify such a recurring topic and pose a request to discuss it. This
request should support the addressed persons by summarizing what the problem is
and what the current conclusion is. Links to former discussions should be added as
well. The mailing list archive can be helpful for this.

Summarize and publish the outcome of decisions

Dicussions on the smaller and bigger implementation problems are common on the
developer mailing list. The mediator’s task is to follow a discussion and remember
items which were granted agreement. When the discussion reached the point where
an outcome is clear this should be summarized and added to the database. With a
notification in form of a mail about this new entry the other developers can then check
the validity of the summary.

19

Besides that developers sometimes announce intermediate steps of bigger changes to
the sourcecode. The mediator should detect such mails and put the relevant information
into the database.

Maintenance of the repository

The base idea is that the collected data decays and may get outdated as the development
of the project goes on. To be of use for the developers it is neccessary to keep the data
up to date.

One way to do this is to pay attention to mails or IRC chats about an already recorded
topic and update the entries accordingly.

In order to inform the other developers about issues dealing with their work, the
mediator sends an announcement about the newly added data to the mailing list. As
a side effect the affected persons can check whether the information was summarized
correctly and may change it if not.

However it would be much better if a developer knows that there is something writ-
ten about a topic he is working on. That way the developer can update the issue on
its own when something has changed. Delegating the work to another member does
not only decrease the time spend on mediation but it lowers the amount of technical
knowledge the mediator needs.

3.2.2 Further ideas

Besides the tasks presented above there are more topics which might be included in the
mediation effort. As time for the experiment was limited it was decided to resign from
their realization although they might be interesting for GNU Classpath, too.

Collection of long-term goals

Real meetings at yearly F/OSS developer conventions are sometimes used to discuss
and make long-term plans. By writing them down as mediation data this information
can help developers to find out where the project is heading.

Evolve project’s development policies

Community projects with no further ties to a larger organisation have to find their own
policies regarding topics like the release interval, the definition of a release critical bug,
patch commit rules or coding style. It should be obvious that for such projects it is quite
handy to write these policies down to make them available for newcomers.

3.2.3 Dealing with problematic situations

The mediator is a job that deals with people and their reactions and depends largely on
their commitment. It is likely that conflicts or problems will arise some time and the

20

following paragraphs present guidelines how to deal with such a situation.

Lack of interest on a conclusion

It is not seldom that a discussion on the mailing list ends before it has really begun.
Sometimes people simply do not know enough about a topic or miss a question because
it got buried between other posts.

The mediator should balance whether an unfinished discussion warrants another
request and formulate one when neccessary. He can use the reactions on his request
as an indicator whether the topic is of general interest which should be put into the
repository or not. If no conclusion can be reached the topic can be considered not being
important.

Contrary opinions until the end

The situation where the discussion of a problem could reach no consensus does not hap-
pen often. However in such a case the mediator can at least write down the problem’s
nature and what the different opinions about it are.

Subjectivity

When summarizing information from mailing list posts there is always the risk of dis-
placing someone’s opinion or presenting the circumstance improperly. This is a problem
because the summaries of discussion should be considered as it’s consensus and not the
mediator’s personal opinion.

For errors in the source code F/OSS project heavily rely on peer-review and there is
no reason why this would not work for the mediation effort as well. By making sure
that everyone else besides the mediator has write-access to the repository the risk of
recording something wrong or improper can be reduced.

3.3 Setting up the infrastructure
The repository is the central database for mediation related information. Multiple ap-
proaches to it’s nature were possible. This sections discusses them and explains how
one was implemented.

3.3.1 Chosing the tools

After the mediation idea was clearly formulated and the contact with GNU Classpath
was established the missing component was a mean to be used as a database for the
collected information.

21

Wiki

The Wiki is a web-based software system which allows its users to view, edit and extend
the displayed information. Usually no special access privileges are needed to be able to
do these actions41.

There are strong reasons to use a Wiki for the collation of mediation data: Only a
working internet connection and a standard web browser is needed to bring the user in
the reader as well as the editor position. User accounts are optional and are a a mean of
convenience to make it easier to track changes. The administrative overhead therefore
consists only of setting up the software.

Finally the special Wiki formatting syntax can be learned very quickly or can at least
be imitated from the data that was already written. For simple changes the special
syntax is not even needed which makes the Wiki usage as simple as a standard text
editor. Many developers know Wikis because of the work done by Ward Cunningham
and Wikipedia.

Nevertheless the Wiki system has some flaws which should be noted: One problem
is that by allowing to edit the pages by everyone they can be defaced easily by someone
with malicious intent. However countermeasures against Wiki spam are in develop-
ment.

The Wiki is a very flexible tool and can be tailored to a wide area of uses and turns
out to be handy for the basic needs of the mediation effort. However it gets problematic
when the number of articles rises. Current Wiki systems have no mean to easily group
or order entered information alphabetically.

Subdirectory inside the CVS

One of the first ideas for the mediation repository was to use a special subfolder inside
the source directory and manage a set of HTML or TexInfo files inside it. The intention
was that every developer should have a copy of the mediation data when checking out
the sources from CVS allowing him to use it locally.

However for the mediation effort the database had to suppport frequent and small
changes. This kind of editing would quickly get tedious with CVS because it’s setup
is optimized for code changes: Every committed change results in an acknowledgment
mail on a special mailing list and the description of the change has to be written into a
special separate file (the “ChangeLog”).

Another problem is that publishing the mediation data would require additional
work: The data from the repository had to be converted to HTML and then uploaded
to the project server after each change.

41A general introduction and criticism to the Wiki system can be found in [DRAG03]

22

Project management system

GNU Classpath is hosted using the Savane project management software which evolved
from the Sourceforge software42. This system provides useful features like a bug-, patch-
and task-tracker, a mailing list and a system to publish news.s

While the platform is invaluable for the most technical parts of F/OSS development
it does not provide a mean to support mediation properly. Listing, organising and (re-
)editing of small articles is not a feature of that system. The core problem is that the
tracker facilities have too much options and configuration possibilities that distract the
reader from the written content. Furthermore each change to an entry would mean that
another post gets attached. It is not possible to edit an existing entry.

However with some effort it would be possible to add a subset of the Wiki features
into the project management software.

3.3.2 Setting up the Wiki

Since the Wiki comes closest to the idea of giving every developer the possibility to add
or change mediation data it was chosen to serve it.

The F/OSS world has numerous Wiki systems and as the focus is not on finding
the best available tool (or create it) the decision was made to use MoinMoin43 for prac-
tical reasons: It features versioning and was already installed on the target host for a
licensing44 discussion.

Structure

The initial structure of the Wiki is designed to use a small number of single pages in
order to minimize the spread of information. The main page links to pages describing
mediation and the mediation Wiki. Another three pages are used to list articles which
are called issues, to the following topics:

• information for beginners

• developer decisions

• current development topics

Overview

A special macro of the MoinMoin Wiki is used to create a table of contents on each page.
The entries consist of the issue titles and link to their respective issue.

42The site as well as the software running on the servers is called Sourceforge.
43http://moinmoin.wikiwikiweb.de/
44http://developer.classpath.org/licensing

23

24

Cross-linking

In each issue’s body text links have been embedded which point to the sources of rel-
evant information. Furthermore a special field for references is part of every issue for
additional links. Usually these point to Classpath’ mailing list archive or various places
on the web where technical information (e.g. specifications) are kept.

25

26

3.4 Experiences gained
The official announcement (see Appendix B) of the Wiki was done on January 16th 2005.
At this time the base structure of the Wiki was ready: It contained some issues, a page
that described editing in the mediation Wiki and another one that dealt with the goals
and uses of the mediation effort. In this state working with the Wiki was possible.

The easy-accessible and barrier-free editing capabilities of the Wiki system turned
out to be of great help for changing the mediation data quickly and immediately after
something interesting was said on IRC.

A concern that arose was that the data in the Wiki sometimes duplicates other in-
formation sources like the “README” file, the project’s homepage or administration
system (Savannah). It turned out to be of great help to listen to suggestions of the other
team members in order to help with this problem: In one case an URL with a custom
syntax which directly linked to a file in the CVS repository could be used to prevent
duplication of the information in the file.

The look and the used fields of the issues have not been defined strictly. In the begin-
ning the issues had more fields for administrative data but soon they were considered
dispensable because they impaired the ease of use.

The issues have a fixed format and it would have been nice to use some kind of form
based input system for it. While this feature is not present in MoinMoin other Wiki
systems like TWiki45 implement it.

With MoinMoin it is not possible to implement a search capability that searches the
content of the issues. However it features a general search function that simply scans
the pages.

The following incident made limits of mediation visible: At one point it was neces-
sary to compile and install a snapshot version of the GCC and test its Java features. This
task revealed that building such a large software project contains pitfalls. However af-
terwards when everything worked as wanted this was a good exercise which helped to
understand the issue better and get in contact with the authors. It was therefore decided
not to write this down as newcomer information.

4 The mediation manual
So far the mediation effort was only Classpath-specific and had no chance of being
transfered to other projects. To reach this goal the mediation manual was writen as
a set of project-independent guidelines. It provides the basic ideas of mediation in a
question and answer style.

Since the manual was supposed to be presented to other project members the num-
ber of pages have been kept low.

The manual is directed towards project members as well as people who do not have
such an afilliation. This way they would discover mediation as a suitable way to start

45http://www.twiki.org

27

contributing to a project.

4.1 Procedure
A small mail (see Appendix B on page 35) was written that contains a presentation of the
topic, a link to the mediation manual (see Appendix C on page 35) and several ways to
contact the authors. 76 projects from Sourceforge have been selected by looking which
of them met the following criterias:

• Project is in alpha or beta state.
Sourceforge allows projects to classify their development state (planning, alpha,
beta, mature, ..). The alpha and beta states have been chosen because these are
projects where sourcecode is present as opposed to projects in the planning state.

• At least 3 or more members.
Having 3 or more members makes sure that a certain amount of communication
between the developers is needed.

• Founding date before January 200446.
By requiring a minimum age it was made more likely that the chosen project cre-
ated a certain amount of historical data. Having experienced 12 months of devel-
opment is a reasonable amount of time for a project to evolve.

• At least one release between 2003 and 2005.
As the interest is on projects which are alive, the existence of an release makes it
more likely that someone is still actively working on it.

4.2 Reactions
The first reactions afters sending the announcement came from 20 mailing list servers
which forbade posts of senders not registered to the list. However such systems allow
that the list moderator manually permits the mail to be post and it was decided to rely
on that mechanism. In the end 12 list moderators allowed the mail to pass while 8 mails
where lost and another 56 reached their target without any problems at all.

The answers turned out good. There where three developers who expressed their
interest and sent a number of syntactical and grammatical corrections.

The other responds dealt with the applicability of mediation for the respective F/OSS
project:

The maintainer of wxGlade explained that he thinks that mediation is a good idea
but regrets that his project has no stable members and he cannot take another role for
his project.

46This required the projects to have an age of at least one year.

28

A developer of the Syllable operating system effort reported that two people in the
project are doing something that is comparable to mediation. Hereupon he was con-
tacted to get to know more about this work. His answers will be present below. A little
discussion went on in the PearPC project whose outcome is presented later as well.

The NHibernate project rated the mediation approach as not being very helpful.
However they considered using a Wiki for general collaboration purposes because it
seemed to be a good idea for them.

There where two less friendly reactions: One of them complained about the layout
of the manual and another one described the well-meant mediation manual announce-
ment worse than spam.

Total number of projects Projects reached Projects not reached
76 68 8

Total number of answers Positive reaction Negative reaction
9 6 3

Communication with Brent P. Newhall from Syllable

Brent Newhall is a developer of the Syllable project which aims to write an easy to use
desktop operating system. Newhall explained that he and Michael Saunders are doing
something comparable to mediation. As this sounded interesting a number of questions
it was decided to interview him about his work.

Newhall is doing the medation role voluntarily and without any special decision
of the core developer team which he does additionally to his programming work. His
work consists mainly in the writing of a system documentation for the operating system.
This documentation is predominantly directed at the user and not meant for project
internal discussion.

Newhall writes the documentation in a Wiki at whereas he accepts comments and
changes from other people, too. The results of this work are available online47.

While Newhall is not exactly a mediator he does a parts of this task: His documen-
tation describes system programming with Syllable which obviously lowers the entry
barrier for new developers.

Newhall mainly receives feedback for his work from the project’s mailinglist. Be-
sides helpful suggestions he sometimes receives documentation contributions and a
few mails from beginners who told him that his work made it easier for them to get
into the project’s details.

Newhall was asked about the time the work consumes and he estimated, that he
spends several hours per week with fixing the documentation.

Being a documentation writer by trade he deemed a question about the arduousness
of his work as nonsensical. He stated that the level of difficulty depends on a person’s
previous knowledge. His professional background makes it easy for him to contribute

47http://www.other-space.com/sub

29

to Syllable. However he thinks that there are a lot of programmers which will find
writing the documentation a difficult task.

Furthermore Newhall was asked about the work done by Saunders and it was found
out that he is writing developer mailing list summaries similar to the one made by Ker-
neltraffic. Saunders selects interesting discussions of the past month and comments
their content. If the mail contains a request to participate he stresses on this and for-
wards it to his readers. The results of his work are put on his homepage48.

Reactions of the PearcPC developers

From the PearPC project deemed mediation to be very helpful to them because they see
a big discrepancy between the knowledge of their developers and their users. There
have been some small attempts to document the current state of development using a
forum thread and a Wiki. However the developers engaged with this work suffered
from lack of time whereby the effort slowed down. In the end the PearPC team likes the
idea of having the development process documented but their former volunteers lack
of time and no one took over their job yet.

4.3 Conclusion
Measured by the number of mails which have been send more reactions have been ex-
pected. However the answers received were mostly positive and the idea of mediation
was presented to a bigger public. The ones who have read the manual know now about
the idea of a mediator for F/OSS projects and this was counted as a success.

5 Analysis of the practical implementation
Nearing the end of the study feedback from the developers of GNU Classpath towards
mediation was desired in order to analyse the work being done in the past months.
Therefore a questionnaire was create49 which GNU Classpath’ developers were later
invited to fill out online.

The survey aims at finding out the developers’ thoughts about mediation as a theo-
retical concept as well as its actual implementation which they experienced. An impor-
tant aspect of the questionnaire is to have comparable result. Therefore most questions
offer 5 fixed answers constituting varying degrees of agreement. However in order to
get more detailed insight about the developer’s attitude a number of questions have to
be answered with free text.

The survey’s questions have been divided into the following categories:

• Knowledge of the developer about the mediation effort.
48http://msa.section.me.uk/sdn
49The survey was created using the phpESP software http://phpesp.sourceforge.net

30

• Valuation of the mediator practical work.

• Self-assessment of the developer’s participation.

• Valuation of the mediation Wiki and the topics chosen.

5.1 Results
The questions about the understanding and knowledge about the mediation effort re-
vealed that while a majority is quite well informed about the general idea, only a narrow
majority knows how to support the mediator. Consequently only a few developers ex-
pressed that they know how to do mediation themselves.

The free text section showed that their is a big disparity between well-informed de-
velopers and others who do not know anything about mediation. The extreme cases
formulate as such:

“I believe Classpath developers have been kept fairly well informed.”

The exact opposite manifests itself simply with this words:

“I don’t know what it is”.

A possible answer to why this happened gives the following response:

“I think I missed the introduction of this effort (because of absence)".

Most developers agreed that mediation helps solving problems and that it is necessary
when a software project reaches a certain level of complexity. In conformance with
these answers most developers found that the time spend on mediation was not lost
to programming. However when it comes to active contributions byte the developers
itself there is only a slight majority which thinks that this would be a good idea.

As the current form of medation aimed at helping and involving developers only the
respondents expressed their wish to have less technical weekly news and information
resources targetted at end users.

The results of the participation questions were a bit disillusioning: More than half
of the respondents had never written a new issue, edited an existing one, answered
mediation related questionn or posed a proposal for a new topic.

The usage of the Wiki was generally appreciated positively. Though a slight dis-
comfort was identifyable because of its the less optimal search mechanism. A proposal
mentioned using a WebDAV repository for mediation because it it has better search
capabilities. Clear encouragement got the decision to have no discussions in the Wiki.

The final category of questions, an evaluation of the mediation topics, brought some
interesting ideas: While no one complained about the chosen topics the free text answers
demonstrated that there is a need to extend the mediation work. Respondendt who
want to extend the target audience asnwered like this:

31

“I think we could do a better job at engaging the non-technical audience
that’s willing to help, [...].”

Others expressed the wish to integrate other forms of data:

“It would have been fine if the mediator had more agressively added the
task list, faq, vm integration guide and GNU Classpath Hacker Guide into
the mediation effort”

or

“Overall architecture, who’s working on what, who needs what sort of help,
licensing FAQ, schedule and priorities.”

6 Closing remarks

6.1 Lessons learned
The expectation that developers would feel uncomfortable with mediation entering the
development process and oppose it was not fulfilled. Instead the answers of the survey
reinforce that mediation is considered beneficial for the project, helps new and long-
established developers and does not harm to the development process. Furthermore
Classpath’s members wish to broaden the scope of the mediation effort to cover a wider
audience and more topics.

The Wiki proved to be a practical all-purpose tool that worked well for the mediation
effort. To overcome the limited search function an integration with the project hosting
software might be an interesting option.

The initial design of the issue layout was more complicated: It contained more fields
of mandatory information which became hard to maintain for the daily work and were
therefore dropped.

Contrary to the expectations it was less often needed to start discussions on contro-
versial topics. A good source for new issues were explicit requests on the mailing list or
discussions on IRC.

While participating in GNU Classpath’ development the usage of tools (e.g. GNU
M4, Autotools) was learned. These teachings were necessary to work more effectively as
a team. Mediation can only help here by showing newcomers what applications should
be mastered and maybe were to find the information. The remaining hard stages of
commitment cannot be taken away by mediation.

6.2 Conclusion
The usage of mediation makes sure that important information is not lost but filed and
written down which yields the following advantages: New developers can learn about

32

aspects of the projects that are of interest for them like special development policies.
Besides that the project members can inform themselves easier about the state of affairs
and outcome of former decisions.

However they are two shortcommings of the implementation in the experiment:
Some developers have not been informed well about mediation and it is therefore

planned to reannounce the effort along with some of changes requested in the survey.
The aim is to make sure that every developer knows about mediation and how to sup-
port it.

The current effort only the developers of the project have been targetted for media-
tion. The survey revealed the need to extend the mediation idea to provide helpful in-
formation for users. Problematic may be how much time this will consume and whether
this will stay manageable for the mediator.

6.3 Perspective
Currently mediation was only applied to one project. With the mediation manual an
independent set of guidelines have been written. While I received mostly positive feed-
back about it, it remains to be examined whether the mediation effort can be adapted to
other projects as well.

The three month timeframe did not generate so much collected data that it got un-
manageable for a single person. However it will be interesting to see how mediation
will work over a longer period of time and whether the effort has to be adjusted for this.

A Invitation mail for GNU Classpath
Hi fellow GNU Classpath developers,

for some time now I am participating in this project fixing bugs and adding func-
tionality mainly to the java.beans package. Despite my good knowledge of the Java
language, participation in development communities and especially the GNU commu-
nity, is virgin soil to me. As a result I sensed a steep learning curve when I started
helping Classpath. In the last weeks I found myself asking a lot of questions on topics
which I think are common knowledge for a fair amount of you.

The problematic cases range from specific tool usage over project plans to general
policies. I know there is a lot of tool documentation on the net and a hacking guide for
Classpath which is enough for the fundamental stuff like CVS usage or coding guide-
lines but what I think is still left untouched are questions like:

• What is the outcome of discussions?

• Whom can I ask directly for specific questions?

• What is the general direction of the project? (or: What is considered old stuff
which should be avoided in favour to newer decisions?)

33

Ideas on making this situation better with the intent to make the project participation
more enjoyful circled in my head and found their way on a sheet of paper. It was clear to
me that the realization of this would need a dedicated effort which cannot be burdened
onto someone’s shoulders without intrinsic motivation.

After all I am a computer science student who got recently interested in software
engineering and was seeking a topic for his semester thesis. I approached the SE group
at my department in order to do an academic work around my initial ideas and got
positive reponse.

Now I‘d like to ask you if you welcome my effort to enhance our project and use the
experiences gained from that for academic work.

The following paragraphs describe the planned enhancements (Criticism and com-
ments are welcome):

My basic assumption is that the development process of an unstructured Free soft-
ware project should be enhanced by non-invasive methods: Any means that make the
developer’s participation work less comfortable should be avoided. Academic projects
with similar goals as mine have largely relied on producing tools which did not get
adopted. In contrast to that my approach is based around a role that I call ’mediator’.

In short the mediator’s goal in a F/OSS project is to take care that no idea is lost. To
be more specific these are some of the things the mediator should do:

• Collect information about project member’s interests (e.g. package responsibility).

• Remind of certain events: release, urgent documentation updates, long-term goals.

• Keep an eye on the project documentation and guides.

• Be an active guide for newcomers.

• Dig up or re-introduce ideas which otherwise would get lost in mailing-list con-
versations.

• Write down the results of decisions and ToDo items.

It should be noted that I consider that some of these tasks require a lot of sensitiveness.
A bad formulated ToDo list entry or project decision can lead to unfriendly and heated
debate. Furthermore the mediator does not have any higher privileges: Changes to
every recorded statement can be made by each project member and the mediator does
not make decision, but rather collects them.

The usual work of the mediator will consist of an in-depth study of the mailing-list
(archive) but also other communication channels like Classpath’s blog area and IRC.
Apart from that he stays in touch with the other members and updates the respective
documents. The initial effort will be on collecting the existing and upcoming data and
finding a suitable way to organize it.

The duration of my thesis is limited to 3 months. At the end of this time we can look
at the results of my work and poll whether to continue it or not.

34

I hope this introduction gave you enough information to get a picture of what I want
to do. As stated above criticism and comments are welcome.

Privacy: I respect everyone’s privacy but its likely that I will take quotes for my
thesis from the mailing-lists (which is already publicly archived) and perhaps from IRC
conversations. In the latter case I will address the involved persons and anonymize
their statements if they want me to do that.

B Announcement mail of the mediation Wiki
Hi,

the last days I have been entering data for a Wiki on developer.classpath.org/mediation .
This place is going to supplement the Hacker’s guide, the mailing list and the homepage
(FAQ) by providing useful information about developer decisions. Another whole page
deals with issues that might be interesting to new hackers on GNU Classpath.

The Wiki is the most visible part of a work I call mediation. It has a page that
explains this work and it’s aims in detail: http://developer.classpath.org/
mediation/MediationMissionPage

There are no obligations on you attached to this work. Involvement is encouraged
and appreciated but not enforced. The mission page has more details about this.

If you have questions to anything of the above feel free to ask.
cu Robert

C Mediation Manual
This short manual presents a small set of guidelines for Free and Open Source (FOSS)
projects that should lead to a better perceived liveliness and progress. It targets pro-
grammers, maintainers and persons currently not involved in a project but willing to
participate. The ideas presented here are no rocket-science and you decide on your own
how much of it you want to adopt. The general idea is to have a special person - called
mediator - who manages and takes care of the project’s informations.

Motivation
In Autumn 2004 I joined the GNU Classpath50 project which is a free implementation of
the Java class library. I have a good knowledge in Java and already sent patches to a few
free software projects but was never involved in such an undertaking like Classpath.

The project exists since 1998 and has a large amount of source code and numerous
developers helped the effort so it was a bit hard for me to get into the game. A ma-
jor stopper was that I did not know about the project’s future plans, where work was

50http://gnu.org/software/classpath

35

needed and what design decisions have been made in the past. Additionally I found it
unsatisfying asking questions which the next developer joining after me will ask again.

Soon I started thinking about a way to tackle this problem and how other projects as
well could profit from my considerations. The result of that work is presented here.

How do I know that a mediator is a good idea for my project?
If your project has one of the following problems then a mediator might be the right
person to add to your project:

• Only a small number of new developers are able to become members of the project
because of the complexity of the codebase and their lack of understanding of the
project’s state.

• Active development is hindered because programmers do not really know what
their peers are working on and how the puzzle parts fit together.

• Certain topics are discussed once in a while but no progress seems to take place in
their regard.

• Lots of stuff was done, lots of stuff has still to be done but no one knows how far
each and every piece has gotten and where it would be good to get started.

Why would I want to solve these problems?
The declared goal is to minimize these problems because such a situation can kill the
members’ motivation to invest time for their voluntary work. A developer may feel the
work as cumbersome and then loses interest. The mediator is going to help the project
to cope with these problems.

Why do you call the role "mediator"?
The term mediator is normally used in the context of conflict resolution and means the
person who manages a conflict between affected parties. In the context of FOSS projects
the conflict to manage is that certain persons have special knowledge or insight while
others do not. My position is that it would be better for both parties if the knowledge
gets more widespread.

Alright, so what is the mediator all about?
The mediator in a Free and Open Source Software project watches the communication
inside a project and compiles the most essential bits and pieces into a concise form. This
means that the mediator pays attention to mails and discussions on IRC even if he is not
involved or directly affected by these.

36

An important aspect of his daily work is to look out for unfinished discussions or
unanswered questions. Besides that the mediator should apply the ’newbie developer
view’ to find out what could be important for him. Finally finding out disparities like
the big plan that comes up every there and then but was never done is a good trait.

Can you be more specific about what the mediator could actually do?
Watch discussions

Discussions that are held on mailing-lists are the ideal source for information that should
be recorded. A mediator should watch all of them and decide which are relevant to be
recorded. When the final word was spoken and a result is clear he should summarize
the outcome and make it publicly available (for instance on a Wiki).
It is a good idea to allow comments and modifications on the summaries because it is
likely that somebody does not like the way it was written down. If a new discussion
about the same topic arises it should be clear that the summary has to be updated.

Find out when the same question is asked frequently

Recurring questions from users as well as fellow developers (especially newcomers)
are no anomaly these days. What you could learn from them is that they indicate an
informational gap that should be closed. If the question has not been answered satisfac-
tory the mediator should look up relevant information from earlier discussions, write
a question to the mailing list that displays the problem and its current state. If a result
can be achieved that should be summarized and made public by the mediator.

Identify information that is relevant for newbies

In order to make it easier for new developers the mediator should look out for informa-
tion on coding guidelines or style and commit policies. Ideally these should be avail-
able in form of a file in the project folder as many projects do already. This way anyone
working on the code has the style guidelines at hand.

Besides this the mediator should look out for implementation pitfalls like documen-
tation that speaks contrarily to what is done in reality. The mediator should explain
which variant is the right one and how one is supposed to cope with the problem.

In long-living projects it’s likely that it carries a legacy because of an earlier design
decision. Maybe there are two internal APIs having the same functionality and it’s
not clear for newcomers how to handle this. The best thing would be to deprecate
and remove one of them but this is sometimes not (yet) possible and in the meantime
new developers should be at least aware of the problem. Again that is something the
mediator should look out for and describe the problem in a public summary.

37

Find out fellow developers wishes

By reading emails of developers thoroughly you can often spot indications of wishes.
These are sometimes expressed when someone fixed a problem but is not 100% com-
fortable with the current solution. The mediator should pay special attention to these
utterances and get in contact with the developer to find out whether this aspect is im-
portant enough to get recorded. After the mediator made the idea publicly available
others can review and/or tackle the problem.

Ok, but what about difficulties when doing the mediating?
It’s clear that when interacting with people things do not always go round as easily as
it should. There could be the problem that the mediator does not receive a real answer.
If there is a lack of answers the topic might no be that relevant and the mediator should
drop it. Then it’s possible that the developers reach no compromise. In this case the
mediator might summarize the opinions instead of a concise outcome.

Another problem is that a technical question might be to demanding for the me-
diator. In this case he should simply publish a draft summary and present it to the
developers who know the topic better. If it’s wrong there will be complaints and if it is
too shallow others will ask for more information which the mediator can then add to
reinforce the draft summary.

Can you give some practical examples for something a mediator has
done?
Here are examples from the mediator’s work at the GNU Classpath project.

Recurring question that was made available for newcomers afterwards

A developer who had seen the source code of Sun’s Java class library is considered
tainted and cannot work on the code in GNU Classpath because of the risk of copyright
infringement claims. The FAQ contains a short entry that tells this but there was no
other source of information. Newcomers asked whether they are tainted and if so what
they could do instead of coding.

In one case a developer was already waiting for a definitive answer for about three
months before he reminded the team of the issue. The mediator then send a mail, stating
the problem (”What is a tainted developer allowed to work on”) and containing answers
from earlier mails found in the archive, to the list. The topic was then discussed again
and a comprehensive outcome was available later. The mediator then put a summary
of the discussion in the Wiki.

38

Coding style disparity that was found and added to the newcomer’s information

While working on the code the mediator noticed documentation tags which where not
documented in the FAQ or the developer guidelines. At first the mediator used the tags
as they seemed to be used without questioning their meaning. However after a while
he found out that the tags are used differently depending on who edited a certain file.
The situation was unclear and so he posed a question to the mailing-list. Although two
developers answered the outcome was still not definite because they uttered contradic-
tory. Nevertheless the mediator added a summary about the outcome of the discussion
and put it in the Wiki. A few days later one of the developers had read that summary
and complained about its content. After having had a small discussion on IRC with
both developers the remaining bits could be solved and the summary was updated.

How much time does it require to be a mediator?
The person adopting this role decides on his own how much time is invested. It should
be no fulltime job although the beginning might be an exception. The mediator should
be supported by his fellow developers who provide him with information, answer ques-
tions and tell him occasionaly what is important information that should be recorded.

Why do you think the mediator should use a Wiki?
A Wiki is a really simple and powerful tool: It is to learn how to edit and everyone has
equal rights when doing it. It can be used from nearly all Internet-connected comput-
ers and you get a version management for free. Finally if the current mediator leaves,
somebody else can take up the work, without any need for new passwords etc.

How can I take action?
It depends on your status: If you are a maintainer or core developer you probably have
enough work to do so that you do not want to take the mediator role yourself. That
means you should find someone who want this job by filling a request form, adding a
note to your project page or simply asking on your mailing list.

You should think about the technical requirements like installing a Wiki. Maybe you
do not like a Wiki and instead use something else (e.g. letting mediator work on HTML
pages in the repository).

Additionally the mediator should get to know where the important information will
appear. Most projects use mailing lists but some have a Wiki instead, others rely heavily
on IRC talk.

However if you are not yet involved with a project but would like to be then tell
the projects maintainer or core group that you are willing to contribute as a mediator.
Pointing them to this manual or using it as a base for your invitation mail is a good idea.

39

Are there any project characteristics that make it likely that a mediator
will work?
A team of voluntary developers and a big amount of sourcecode.

The project should be typically community driven in contrast to enterprise driven. The
latter might be more resistant against using what the mediator provides them. Besides
that the mediator’s effort is hindered if the project members have real-life meetings to
make a design decision where he cannot attend. Projects led by one developer are prob-
lematic because there is no communication between team members which the mediator
could improve.

Settled design phase.

The history of the project should be long enough that design decisions are burrowed in
the code. Furthermore due to developer fluctuation certain parts of the project may de-
cay or bitrot because no one knows how these are done or understands them any more
after certain developers left. Such a situation provides the informational gap which can
be closed by the mediator.

References for the Mediation Manual
• Visit GNU Classpath’s mediation Wiki51.

• The Linux kernel spawned several interesting projects which share the mediation
idea:
Kernel Janitors52, Kerneltraffic53, Kernelnewbies54

• A janitor effort55 for Inkscape

This work (the mediation manual) is licensed under a Attribution-ShareAlike-Creative
Commons License56.

D Announcement template for mediation manual
Dear %projectname% developers,

51http://developer.classpath.org/mediation
52http://www.kerneljanitors.org
53http://kerneltraffic.org/kernel-traffic/latest.html
54http://kernelnewbies.org
55http://www.inkscape.org/cgi-bin/wiki.pl?InkscapeJanitors
56http://creativecommons.org/licenses/by-sa/2.0

40

I wrote some guidelines that should help FOSS projects getting more lively and low-
ering the barrier for new developers to join. You can find them in form of a small manual
here57.

These ideas are the result of work for my bachelor thesis and have been used suc-
cessfully at the GNU Classpath project. If the topic is of interest to you, I would be
happy to receive criticism and comments concerning the manual or the general idea.

For further discussion I have set up a mailing-list58. Please send your feedback to
this list but if you have reasons to contact me directly then just reply to this mail. In case
you answer to your project’s mailing list please CC me.

Best regards
Robert Schuster

E Adressed projects
Boa Constructor boa-constructor-users@lists.sourceforge.net

AWStats awstats-users@lists.sourceforge.net
Coccinella coccinella-devel@lists.sourceforge.net
PHP Surveyor phpsurveyor-developers@lists.sourceforge.net
Xbox Media Center xbmc-developers@lists.sourceforge.net
ReactOS ros-dev@reactos.com
Worldforge general@mail.worldforge.org
Ext2Fsd ext2fsd-develop@lists.sourceforge.net
Gimp-Print gimp-print-devel@lists.sourceforge.net
Windows Installer XML wix-devs@lists.sourceforge.net
Quantum qgis-developer@lists.sourceforge.net
ANT Contrib ant-contrib-developers@lists.sourceforge.net
evidence evidence-users@lists.sourceforge.net
Aqsis aqsis-development@lists.sourceforge.net
Sodipodi sodipodi-list@lists.sourceforge.net
F4L f4l-general@lists.sourceforge.net
Anjuta anjuta-devel@lists.sourceforge.net
Bochs bochs-developers@lists.sourceforge.net
Syllable syllable-developer@lists.sourceforge.net
FreeCAD free-cad-general@lists.sourceforge.net
more.groupware moregroupware-devel@lists.sourceforge.net
Xbox Linux xbox-linux-devel@lists.sourceforge.net
OPL opl-dev-development@lists.sourceforge.net
WinFellow fellow-users@lists.sourceforge.net
Celestia celestia-developers@lists.sourceforge.net

57http://projects.mi.fu-berlin.de/w/bin/view/SE/ThesisFOSSIMMediationManual
58mediation_manual@lists.spline.inf.fu-berlin.de

41

Enlightenment enlightenment-devel@lists.sourceforge.net
JACK jackit-devel@lists.sourceforge.net
SCREEM screem-devel@lists.sourceforge.net
Widelands widelands-public@lists.sourceforge.net
Linux NTFS linux-ntfs-dev@lists.sourceforge.net
FreeMind freemind-developer@lists.sourceforge.net
VirtualDubMod virtualdubmod-devel@lists.sourceforge.net
XOOPS CMS xoops-development@lists.sourceforge.net
AbiWord abiword-dev@abisource.com
Freenet tech@freenetproject.org
Blackbox blackboxwm-devel@lists.sourceforge.net
Kaffeine kaffeine-devel@lists.sourceforge.net
Cal3D cal3d-devel@lists.sourceforge.net
Truevision truevision-devel@lists.sourceforge.net
Fluxbox fluxbox-devel@lists.sourceforge.net
ffdshow ffdshow-devel@lists.sourceforge.net
JFtp j-ftp-devel@lists.sourceforge.net
K3b k3b-user@lists.sourceforge.net
phpWebSite phpwebsite-developers@lists.sourceforge.net
PearPC pearpc-devel@lists.sourceforge.net
Ethereal ethereal-dev@ethereal.com
Wine wine-devel@winehq.org
JAVA-PDF itext-questions@lists.sourceforge.net
Super Tux super-tux-devel@lists.sourceforge.net
Eclipse profiler eclipsecolorer-profiler@lists.sourceforge.net
OpenWFE openwfe-devel@lists.sourceforge.net
MPlayer OS X mplayerosx-devel@lists.sourceforge.net
SWIG swig-dev@cs.uchicago.edu
MIDAS midas-nms-devel@lists.sourceforge.net
wxGlade wxglade-general@lists.sourceforge.net
MegaMek megamek-general@lists.sourceforge.net
FindBugs findbugs-discuss@mimsy.cs.umd.edu
MusE lmuse-developer@lists.sourceforge.net
Clamav clamav-devel@lists.clamav.net
Double Choco Latte dcl-development@lists.sourceforge.net
SCons dev@scons.tigris.org
openMSX openmsx-devel@lists.sourceforge.net
Libquicktime libquicktime-devel@lists.sourceforge.net
JFreeChart jfreechart-developers@lists.sourceforge.net
LIRC lirc-list@lists.sourceforge.net
Ghostscript gs-devel@ghostscript.com
VCF vcf-development@lists.sourceforge.net
Jalopy jalopy-development@lists.sourceforge.net

42

PiTiVi pitivi-pitivi@lists.sourceforge.net
SwingSet swingset-developers@lists.sourceforge.net
NHibernate nhibernate-development@lists.sourceforge.net
gaim-vv gaim-vv-devel@lists.sourceforge.net
TOra tora-develop@lists.sourceforge.net
Gnocatan gnocatan-develop@lists.sourceforge.net
Fink fink-devel@lists.sourceforge.net

F Survey
1. How long have you been working on GNU Classpath?

Less than a year 18.2% 2
Less than two years 9.1% 1
More than two years 72.7% 8

2. I know what the mediation effort is about.
I strongly disagree 18.2% 2
I weakly disagree 0% 0

I weakly agree 45.5% 5
I strongly agree 36.4% 4

3. I know how to support the mediator.

I strongly disagree 18.2% 2
I weakly disagree 18.2% 2

I weakly agree 36.4% 4
I strongly agree 27.3% 3

4. I know how to do the mediation work myself.

I strongly disagree 36.4% 4
I weakly disagree 27.3% 3

I weakly agree 36.4% 4
I strongly agree 0% 0

5. In which way could I have been informed better about the mediator and the me-
diation effort?

• “don’t know, I think I missed the introduction of this effort (because of ab-
sence). Maybe this is the only thing that I could have needed.”

• “I believe that as Classpath developers have been kept fairly well informed
of the mediation effort. Notifications of the progress with this task have ap-
peared on the Classpath mailing list, and the meditation wiki, developed as

43

part of this, has been regularly updated. The latter has proved invaluable for
keeping track of current development tasks and opinions, especially when it
is not always possible to regularly check through other less organized medi-
ums such as IRC or the mailing list. It is also extremely benefical to have a
permanent record of such, and to be able to direct people to this system for
further help. It also ensures that information is not lost, which seems to have
been the case before, with conversations frequently being effectively re-run
on the mailing list.”

• “I don’t know what this is.”

• “I haven’t had time to contribute to Classpath lately; I saw the email thread
about mediation and I would refer to that in the online archives if I were
planning on contributing something again that might need mediation”

• “I’m not actively contributing to classpath at this time, so it would help if I
read everything on the mailing list.”

• “It works seamlessly and well, so that I think it fulfills its role veryu nicely.”

• “Perhaps same status reports from time to time sent to the mailinglist. E.g.
with access statistics for the mediation wiki.”

• “weekly or bi-weekly updates to the mailinglist on what was summarized/added.
(Regular, but not too often!)”

6. Mediation helps to solve problems which emerge because work on free software
projects is unconstrained (eg. no force to code every day, no force to read all mails
on the list, ...).

I strongly disagree 9.1% 1
I weakly disagree 0% 0

I weakly agree 27.3% 3
I strongly agree 45.5% 5

I don’t know 18.2% 2

7. Mediation is necessary when a project reaches a certain level of complexity (eg.
number of developers, age or amount of source code).

I strongly disagree 9.1% 1
I weakly disagree 9.1% 1

I weakly agree 27.3% 3
I strongly agree 36.4% 4

I don’t know 18.2% 2

8. The time consumed on mediation should be better spend on programming.

44

I strongly disagree 36.4% 4
I weakly disagree 36.4% 4

I weakly agree 0% 0
I strongly agree 18.2% 2

I don’t know 9.1% 1

9. Every developer of the project should actively contribute to the mediation effort
(eg. add information on his/her current work and its state of affairs).

I strongly disagree 18.2% 2
I weakly disagree 9.1% 1

I weakly agree 36.4% 4
I strongly agree 18.2% 2

I don’t know 18.2% 2

10. Mediation results in a data base that will be very helpful for the project in the
future.

I strongly disagree 0% 0
I weakly disagree 0% 0

I weakly agree 36.4% 4
I strongly agree 27.3% 3

I don’t know 36.4% 4

11. Thanks to the data collected by the mediation effort I have a better overview about
the work in progress.

I strongly disagree 9.1% 1
I weakly disagree 18.2% 2

I weakly agree 27.3% 3
I strongly agree 18.2% 2

I don’t know 27.3% 3

12. The additional questions asked by the mediator add noise to the mailinglist.

I strongly disagree 54.5% 6
I weakly disagree 27.3% 3

I weakly agree 0% 0
I strongly agree 0% 0

I don’t know 18.2% 2

13. Mediation helps new developers.

I strongly disagree 0% 0
I weakly disagree 0% 0

I weakly agree 9.1% 1
I strongly agree 72.7% 8

I don’t know 18.2% 2

45

14. Mediation helps long-established developers.

I strongly disagree 0% 0
I weakly disagree 0% 0

I weakly agree 63.6% 7
I strongly agree 27.3% 3

I don’t know 9.1% 1

15. Other projects should have a mediator following the example of GNU Classpath.

I strongly disagree 0% 0
I weakly disagree 0% 0

I weakly agree 9.1% 1
I strongly agree 36.4% 4

I don’t know 54.5% 5

16. Who could also benefit from mediation who has not been targetted yet?

• “Engaging users to participate into building the knowledge pool, which would
matter more for non-developer-oriented projects. GNU Classpath (and the
associated runtimes) are a little special as they target as rather specific group
of users and developers with a high degree of technical expertise, but I think
that the expereince with the mediation effort shows that even in such an en-
vorinment the social interaction aspects of the collaborative work can be im-
proved by .having someone look after loose ends, and trying to help drive
conversations to conclusions. For engaging end-users, something like ’GNU
Classpath Weekly News’ would be an interesting project to get the nice work
done within the GNU Classpath family of runtimes exposed and presented
towards a larger, less technical-oriented audience.”

• “I don’t know.”

• “I think I don’t understand the question right? Does ’Who’ mean, ’Which
other projects’? Then I think I don’t have much overview of the internals of
other projects...”

• “I think the current process already covers most roles.”

• “The newcomer is able to find resources to get them sorted, which (most
importantly) are easy to update, allowing this to be done on a regular basis.
The traditional static webpages for Classpath tend to not see this.”

• “Infrequent developers can quickly become acquainted with current devel-
opments.”

• “Regular developers can get a quick insight into what others are doing, and
co-ordinate efficiently.”

46

• “The active users of GNU classpath, the VM implementors are not really tar-
geted. They are involved but just because they are involved in GNU classpath
itself.”

17. In order to be an attractive idea for other projects, which things should the medi-
ator do in a different way?

• “don’t know”
• “For GNU Classpath we already had an irc channel and blog aggregator/planet.

I think setting up these kind of "social" infrastructures will help for other
projects.”

• “I can’t really say. I’ve been doing similar work on Kaffe when I started out,
and having a good mediator is very useful for getting a good grass-roots
community going. It is less of a classical management role, than helping the
herd of cats help manage themselves :)”

• “I don’t know.”
• “I think the current process is appropriate for GNU Classpath. It may not be

directly adaptable to another project, due to certain nuances within the ex-
isting development process. That said, the overall concept and most of what
has been achieved here can be easily transplanted. It would be interesting
to see how mediation deals with a larger developer base, a different rate of
development, etc.”

• “More powerful search mechanisms.”
• “The mediator should have more intensive contact with the people and be

more active. Currently the mediation work in GNU classpath is pretty pas-
sive. He watches mailinglists and IRC and updates the mediation Wiki. When
more in contact with the people I think it will help even more because the
problems can be better digged up.”

18. How many new issues have you written for the wiki?

None 72.7% 8
One 27.3% 3
Two 0% 0

Three 0% 0
More than three 0% 0

19. 20. How often have you edited an existing issue in the wiki?

None 54.5% 6
One 18.2% 2
Two 9.1% 1

Three 9.1% 1
More than three 9.1% 1

47

20. How often have you answered questions posed by the mediator when he was
gathering information for an issue?

None 63.6% 7
One 9.1% 1
Two 9.1% 1

Three 9.1% 1
More than three 9.1% 1

21. How often did you came up with the suggestion to add something to the wiki?

None 72.7% 8
One 0% 0
Two 27.3% 3

Three 0% 0
More than three 0% 0

22. What keeps you from dealing with the mediator and his work?

• “don’t know, nothing special probably”

• “He mostly just picks up the things that are interesting already. He is doing
it as a volunteer and doesn’t need guiding.”

• “I’m not sure what the mediator is or why I’d need it.”

• “It’s not a very high priority for me as yet.“

• “Kaffe.org keeps me busy all the time :(“

• “My coding emphasis shifted away from having time on Classpath before the
mediation efforts started”

• “Nothing. The mediator is a very good and needed service.”

• “Simply time, and that my own contributions to the project have been infre-
quent since the beginning of this year (due to an academic project I’m work-
ing on). As I work more on Classpath, no doubt my contributions will in-
crease. There is no problem with the actual process of doing so other than
this.”

• “Too little time and lazyness.”

23. Chosing a wiki for the collation of data was an appropriate decision.

I strongly disagree 0% 0
I weakly disagree 0% 0

I weakly agree 45.5% 5
I strongly agree 45.5% 5

I don’t know 9.1% 1

48

24. Locating certain information from the mediation wiki is easy.

I strongly disagree 0% 0
I weakly disagree 18.2% 2

I weakly agree 27.3% 3
I strongly agree 27.3% 3

I don’t know 27.3% 3

25. The decision to keep the wiki free of discussions is appropiate.

I strongly disagree 0% 0
I weakly disagree 0% 0

I weakly agree 27.3% 3
I strongly agree 45.5% 5

I don’t know 27.3% 3

26. Which technology would you prefer instead of a wiki and why?

• “A WebDAV repository, preferably with autoversioning. It would make it
easier to search and store different types of content.”

• “Having started to use a wiki for one of my own academic projects in about
the same time period, I can definately see the advantages of using a wiki
and find it a very appropriate medium for this process. With traditional web
pages, there is an inherent deterrent to adding material, in that the person
who wants to make the changes has to work out how to access and upload a
new version, as well as needing to know how to edit the existing HTML. The
wiki removes these restrictions and means that, if someone has an idea, they
can simply go and add it to the wiki with little fuss. I also second the idea
of not putting discussion on the wiki; there are already appropriate conduits
in place for this (IRC, the mailing list) and the wiki is then clearer for new
developers and interested parties.”

• “I don’t know. 1 I think a wiki does a pretty good job of providing a flexible
structure to work with.”

• “I think a Wiki is very good for mediation work. With a wiki several people
can contribute easily and make the life of the mediator more easy.”

• “The Wiki was nice since it allowed others to participate. But the Wiki didn’t
really have a "wiki-nature" the pages were a bit long at times. More issues
could have been split up into their own separate pages. That would have
made it easier to point someone at just one issue. Currently some subissues
have horribly long URLs. On the other hand that might have scattered the
data too much and wouldn’t have given a broad overview. Some more ex-
perimentation with the form would be nice. But the current wiki is nice be-
cause it can be adapted easily to other forms or representing or breaking up
the issues.“

49

• “Wiki is perfect. I have also used this in other projects and think that Wikis
are perfectly suited for bringing together distributed teams.”

27. The topics currently managed (developer decisions, first steps, current issues)
have been chosen reasonably.

I strongly disagree 0% 0
I weakly disagree 0% 0

I weakly agree 18.2% 2
I strongly agree 45.5% 5

I don’t know 36.4% 4

28. Which additional mediation related topics should be managed?

• “I don’t know ATM. Such things should be decided on demand. At the mo-
ment it is ok as it is.”

• “I don’t know.”

• “I think this is an appropriate set, giving that less dynamic topics are already
covered by the static web page (news items and events, etc.) These three
adequately deal with previous discussions, newcomers and keeping abreast
of developments, respectively.”

• “I’d love to contribute a ’from bug to bug report and patch submission’ step
by step guide for Kaffe to the wiki when I have time to finish one, and a
list of ’other things you can do to help’. I think we could do a better job at
engaging the non-technical audience that’s willing to help, but doesn’t know
how yet, for example by providing a consistent narrative for the existance of
free runtimes and their advantages over non-free ones. I get asked that one a
lot :)”

• “It would have been fine if the mediator had more agressively added the
task list, faq, vm integration guide and GNU Classpath Hacker Guide into
the mediation effort. But I only missed a good integration with the task list.
Current issues only showed what was being worked on. But not really what
should be worked on if someone had time and volunteered to do it.”

• “Most people starting GNU classpath have problems with installing and how
to choose a VM suitable for their GNU classpath version (release or –cvs).
There should be some more detailed instructions in how to install GNU class-
path with the VMs that support using a standalong version of GNU class-
path. And it should be descibed which VMs don‘t support this, have their
own copy of GNU classpath and why.”

• “Overall architecture, who’s working on what, who needs what sort of help,
licensing FAQ, schedule and priorities”

50

29. This space is for suggestions, notes on the survey and/or your answers.

• “I’m sorry that this survey was kind of a bust for me but I don’t really know
what the mediation pages are or what they’re for.”

• “Mainly an excellent job is being done. I did note that the odd item on the
wiki had not been updated since its initial introduction (locales and generics
spring to mind, as areas I’ve worked on), although the mediator is not neces-
sarily to blame for this. I guess there is still some way to go until developers
are used to documenting what is said and done more fully.”

• “None so far.”

• “Thanks for doing this. It really was got to get some things "on paper" which
I believe have helped some people quickly get an overview and start with the
GNU Classpath project (and community). You showed a good style by sub-
jectively writing about the different subjects that we discussed in the project.
And I never had the feeling that you took ’sides’ on some issue. Maybe that
comes naturally to you, but it was really appreciated.”

References
[CAH03] Crowston, Annabi, and Howison. Defining Open Source Soft-

ware Project Success. Proceedings of ICIS 2003, December 2003.
http://floss.syr.edu/publications/icis2003success.pdf.

[DRAG03] Davor Cubranic, Reid Holmes, Annie T.T. Ying, and Gail C. Murphy. Tools
for light-weight knowledge sharing in open-source software development.
2003. http://opensource.ucc.ie/icse2003/3rd-WS-on-OSS-Engineering.pdf.

[GHI01] Gregorio Robles, Hendrik Scheider, and Ingo Tretkowski. Who is doing it?
- A research on Libre Software developers. August 2001. http://ig.cs.tu-
berlin.de/lehre/s2001/ir2/ergebnisse/OSE-study.pdf.

[Mar03] Martin Matuska. Categorization of Open Source Projects: Opera-
tional and Organizational Structure (in German). September 2003.
http://freesoftware.mit.edu/papers/matuska.pdf.

[Mat05] Mathias Klang. Free software and open source: The free-
dom debate and its consequences. First Monday, March 2005.
http://www.firstmonday.org/issues/issue10_3/klang/index.html.

[RRBG02] R. Ghosh, R. Glott, B. Krieger, and G. Robles. "Survey of Developers",
Free/Libre and Open Source Software: Survey and Study, FLOSS, Final Re-
port. 2002. http://floss.infonomics.nl/report/FLOSS_Final4.pdf.

51

[Ste00] Steffen Evers. An Introduction To OpenSource Software Development.
2000. http://user.cs.tu-berlin.de/ tron/opensource/opensource.pdf.

[UJNS01] Uli Abend, Joos-Hendrik Böse, NIls Ohlmeier, and Sebastian
Feuerstack. Technische Hilfsmittel von Open Source Projek-
ten. 4 February 2001. http://flp.cs.tu-berlin.de/lehre/wise00-
01/oss/seminar/tech_tools/ausarbeitung-tech_tools/.

[Wal02] Walt Scacchi. Understanding Requirements for developing Open Source
Software Systems. IEE Procedings - Software, 2002.

[Yuw05] Yuwei Lin. Hybrid Innovation: How does the collaboration between the
FLOSS community and corporations happen. Knowledge, Technology and Pol-
icy, April 2005. http://freesoftware.mit.edu/papers/lin4_hybrid.pdf.

52

