
Freie Universität Berlin
Bachelor’s thesis at the Software Engineering Research Group of the Institute of

Computer Science at Freie Universitat Berlin

Development of a BPMN Model Validation
and Automatic Correction Tool for SAP

Solution Manager

Rainier Raymond Robles
Student ID: 5002400
ren@inf.fu-berlin.de

First Examiner: Prof. Dr. Lutz Prechelt
Second Examiner: Prof. Dr. Claudia Müller-Birn

Berlin, September 4, 2019

Abstract

The goal of this thesis is the creation of a tool that assesses Business Process
Model and Notation (BPMN) models created with SAP Solution Manager (Sol-
Man) according to readability and usability guidelines. Necessary corrections
are performed based on this assessment, resulting in a new BPMN file that can
be imported back into SolMan. SAP Solution Manager is an Application Life-
cycle Management (ALM) product used in the organization and maintenance of
a company’s business and IT operations. BPMN is a standard for the graphical
representation of business processes in a process model. While SolMan provides
a tool for creating process models with BPMN, it does not provide a function to
validate these models, unlike similar tools in the market. After research and selec-
tion of guidelines, creation of a proof-of-principle prototype, and construction of
the product using an iterative and incremental development model, a functional
web application that is able to review and make corrections according to seven
guidelines was successfully developed.

mailto:ren@inf.fu-berlin.de

Eidesstattliche Erklärung

Ich versichere hiermit an Eides Statt, dass diese Arbeit von niemand anderem als
meiner Person verfasst worden ist. Alle verwendeten Hilfsmittel wie Berichte, Bücher,
Internetseiten oder ähnliches sind im Literaturverzeichnis angegeben, Zitate aus frem-
den Arbeiten sind als solche kenntlich gemacht. Die Arbeit wurde bisher in gleicher
oder ähnlicher Form keiner anderen Prüfungskommission vorgelegt und auch nicht
veröffentlicht.

Affirmation of independent work

I hereby declare that I wrote this thesis myself without sources other than those in-
dicated herein. All parts taken from published and unpublished scripts are indicated
as such.

Berlin, September 4, 2019

Rainier Raymond Robles

3

Contents

Acknowledgement 7

1 Introduction 9
1.1 Motivation . 9
1.2 Goal . 9
1.3 SAP Solution Manager . 10
1.4 Business Process Model and Notation . 10
1.5 Vostura GmbH . 12
1.6 Outline . 13

2 Related Work 15

3 Solution Approach 17
3.1 Selection of Guidelines to be Implemented 17

3.1.1 Selection Criteria . 17
3.1.2 Guidelines Selected . 19

3.2 Architecture . 24
3.2.1 Implementation Environment . 24
3.2.2 Integration of Existing Libraries or Ground-Up Development . . 25

3.3 Implementation Strategy . 26
3.4 Proof-of-Principle Prototype . 26

3.4.1 Goals . 26
3.4.2 Challenges . 27
3.4.3 Results . 27

4 Implementation and Evaluation 29
4.1 Iteration 1: Initial Implementation . 29

4.1.1 Goals . 29
4.1.2 Challenges . 29
4.1.3 Results . 29
4.1.4 Evaluation . 30

4.2 Iteration 2: Modularization . 30
4.2.1 Goals . 30
4.2.2 Challenges . 31
4.2.3 Results . 32
4.2.4 Evaluation . 33

4.3 Iteration 3: Design Polishing and First Usability Tests 33
4.3.1 Goals . 33
4.3.2 Challenges . 34
4.3.3 Results . 35
4.3.4 Usability Tests and Evaluation . 35

5

4.4 Iteration 4: Model Visualization and Second Usability Tests 37
4.4.1 Goals . 37
4.4.2 Challenges . 37
4.4.3 Results . 38
4.4.4 Usability Tests and Evaluation . 38

5 Conclusions 43
5.1 Summary of Results . 43
5.2 Suggested Future Work . 44
5.3 Personal Lessons . 46

Bibliography 47

A Appendix 49
A.1 Questions of the Usability Tests . 49
A.2 Models Used for the Usability Tests . 50

6

Acknowledgement

First of all, I would like to thank my thesis supervisor, Prof. Dr. Lutz Prechelt, for the
assistance and advice provided during the period of this thesis, from its conception
until its completion, for both the big picture as well as the little details.

I would also like to show gratitude to Vostura GmbH for entrusting me with this
topic and providing on-site support for this project. In particular, I would like to
thank Eric Siegeris and Philipp Claus for the feedback and guidance throughout this
process.

I could not finish this work without a little help from my friends around the world.
Special thanks go to Sergelen Gongor and Christian Zygmunt Jeschke in Berlin and
Ginoo Karlo Galvez Tan in the Philippines for reading early drafts of my thesis and
giving helpful notes on how to improve it; my Freie Universität Berlin classmates
and friends Sergelen, Christian, Ingrid Tchilibou, and Hong Zhu for not just being
willing participants in my tests, but also providing moral support; Luis Merino García
and Hendrik Niemann in Berlin for being good sounding boards and providing vital
input; Fingal Olsson and the rest of the Olsson family in Sweden for their kindness,
allowing me to relax, recharge, and stay motivated halfway through the process; and
Albert Černý, Jeroným Šubrt, and Antonín Hrabal in Czechia for keeping me going
thanks to good music and making me feel like I’m not just a friend of a friend.

Lastly, none of this would be possible without the love and support from my
family in the Philippines, particularly my mother.

7

1. Introduction

1 Introduction

1.1 Motivation

Companies that use SAP Solution Manager (SolMan) to organize and document their
businesses have the option to use a tool to model their business processes graphically
using Business Process Model and Notation (BPMN). This has the dual purpose of
providing a visual representation of their processes as well as a means of documenting
their individual steps and, when applicable, linking them to the technical systems and
procedures (such as SAP transactions) utilized for that particular activity.

As those tasked with business process modeling within an organization may not
necessarily be experts in BPMN, it would be advantageous to provide a means to
check the syntactic correctness as well as the readability and usability of the models
created. The modeling tool in SolMan does not include model validation, a feature
found in most commercial BPMN modeling software. Offering an integrated model
validation tool would help reduce the amount of time spent in the maintenance and
correction of user-created models.

The topic of this thesis was proposed to me by Vostura GmbH, an SAP consulting
company whose clients includes companies that use SolMan to create BPMN models.
I saw this as a good opportunity to be able to provide a worthwhile service for novice
BPMN modelers. As someone who was once a novice BPMN modeler, I knew from
first-hand experience that it was difficult at times to concentrate on the finer details
of the model when working on larger processes.

1.2 Goal

The primary goal of this thesis is to create a working prototype for an integrated
BPMN model validation tool for SolMan. In this case, "integrated" means that the
user does not need to download additional software or use a non-SAP website to
check a BPMN model created using SolMan. Instead, the tool will be a web-based
program that can be opened directly in SAP.

In addition, the capability to automatically correct violations of the validation cri-
teria will be built into the tool, providing clients with clear, understandable models.
This will save them time otherwise spent manually updating their models. It is also
hoped that usage of the tool will increase users’ BPMN understanding and profi-
ciency, reducing future errors.

This application will be implemented with diagrams designed in and exported
from SolMan in mind. These diagrams have particular characteristics which need to
be handled accordingly, such as how gateway and sequence flow labels are exported
compared to other diagram modeling programs.

The intended users of this tool are employees of companies that use Solution Man-
ager to model their business processes with BPMN. Based on personal experience,
they are likely to be BPMN novices prone to making errors when modeling.

9

1. Introduction

1.3 SAP Solution Manager

SAP Solution Manager (SolMan)1 is an Application Lifecycle Management (ALM)2

product used in the organization, maintenance, and optimization of a company’s
business and IT operations. One feature included in SolMan is Process Management,
which allows companies to describe and document processes in a way that is use-
ful for both IT specialists as well as business practitioners within the organization.
One way processes are documented in SolMan is through creating process models in
BPMN.

1.4 Business Process Model and Notation

Business Process Model and Notation (BPMN) [1] is a standard for the graphical rep-
resentation of business processes in a business process model. BPMN is maintained
by the Object Management Group (OMG), which also maintains other standards such
as Unified Modeling Language (UML)3 and Object Contraint Language (OCL)4.

Figure 1: Example of a BPMN diagram

The BPMN standard organizes processes into pools which represent participants,
such as a company or a specific department in the company. A pool is then sepa-
rated into lanes which represent specific roles among the participants. For example,
if a pool is assigned to the Human Resources Department, then the lanes may in-
clude Human Resources Manager, Human Resources Assistant, and Recruiter. Other
graphic elements in BPMN include events, gateways, flows, and activities. Table 1
shows a selection of some commonly-used elements and what they represent in a
diagram. Diagrams can be modeled horizontally or vertically.

1https://support.sap.com/en/alm/solution-manager.html [Accessed: 2019-04-22]
2ALM is the process of managing the lifecycle of computer programs from inception to implementa-

tion and maintenance.
3UML is a general-purpose modeling language for the creation of diagrams to help visualize a sys-

tem’s design.
4OCL is a language which describes rules that apply to UML models.

10

https://support.sap.com/en/alm/solution-manager.html

1.4 Business Process Model and Notation

Table 1: Common BPMN graphic elements, with images from [1]

Element Name Description Graphic Representation

Pool A pool represents a participant.

Lane

A lane is a partition in a pool
that organizes and categorizes
activities. They can be used to
represent specific roles, systems,
and departments in the partici-
pant.

Start Event
A start event indicates where a
process begins.

Intermediate Event

An intermediate event repre-
sents something that "happens"
within a process that affects its
flow.

End Event
An end event indicates where a
process finishes.

Exclusive Gateway

A gateway controls how paths
within a process branch or
merge. An exclusive gateway
marks alternative paths, where
only one path can be taken.
Also known as an XOR Gate-
way.

Parallel Gateway
A parallel gateway creates and
combines parallel paths. Also
known as an AND Gateway.

Sequence Flow
A sequence flow represents the
order in which activities are per-
formed in a process.

Activity
An activity represents work that
is performed in a process.

In addition to its graphic representation, a BPMN model also has a corresponding
XML5 file. It is organized with a tree structure, with parent and child elements.
Figure 2 shows more details of the XML tree associated with BPMN files exported
from SolMan.

5XML (Extensible Markup Language) is a markup language which defines rules for documents that
have to be both human- and machine-readable.

11

1. Introduction

Figure 2: Partial XML tree for BPMN files from SolMan

The bpmn2:definitions element is the root element of the BPMN file. This element
has at least three child nodes:

• One bpmn2:collaboration node, which has a bpmn2:participant child node for
each pool in the model. This section organizes the different participants that are
part of the process portrayed.

• bpmn2:process nodes for each pool in the diagram. Each has a bpmn2:laneSet
child element, which in turn has a bpmn2:lane child for each lane in that partic-
ular pool. References to the BPMN elements contained in that lane are declared
as bpmn2:flowNodeRef children. The actual BPMN elements are declared in-
dividually as children of the bpmn2:process node they are contained in, with
each BPMN element having its own tag. For example, activities are bpmn2:task
elements, while sequence flows are bpmn2:sequenceFlow elements.

• One bpmndi:BPMNDiagram node, which includes details for the visual ren-
dering of the BPMN diagram. It has a bpmndi:BPMNPlane child node, which
in turn has a bpmndi:BPMNEdge child node for every sequence flow and a
bpmndi:BPMNShape child node for every other BPMN graphic element.

Every element of a BPMN diagram corresponds to multiple nodes in its asso-
ciated BPMN file. For example, an activity corresponds to a bpmn2:flowNodeRef
child of the bpmn2:lane node it is contained in, a bpmn2:task node as a child of the
bpmn2:process node it is contained in, and a bpmndi:BPMNShape node for render-
ing purposes.

1.5 Vostura GmbH

Vostura GmbH6 is a small IT consulting company based in Berlin and Mannheim
specializing in SAP consulting, particularly with ALM and SAP Solution Manager.
Vostura supports clients who elect to model their business processes within SolMan
using SAP’s integrated modeling tool. The company offers a training course in order

6http://vostura.com/ [Accessed: 2019-04-22]

12

http://vostura.com/

1.6 Outline

to introduce the basics and conventions of BPMN modeling to clients. Additional
support is also offered in the form of modeling processes with SolMan that can serve
as examples, or reviewing BPMN models created by their clients.

During the period of this thesis, I was employed by Vostura as a working student.

1.6 Outline

In Section 2, I review available related literature that proposes readability and usabil-
ity guidelines for BPMN models, and how existing tools support these guidelines.
In Section 3, I discuss how I plan to implement the tool. I talk about major deci-
sions such as the guidelines to be implemented and the architecture of the software.
In Section 4, I go in-depth into each implementation iteration, discussing the goals,
challenges, and results, as well as evaluating the product at the end of each iteration.
Finally, in Section 5, I summarize the progress done on creating the application and
discuss suggestions on how to expand on the work completed through this thesis. I
also reflect upon the process and share my personal learnings from this experience.

13

2. Related Work

2 Related Work

There are different methods and criteria to assess the quality of a model. A framework
proposed by Lindland, et al. [2] identifies three types of model quality. Syntactic
quality refers to how well the model corresponds to the specification or language it
is created in. The goal is to completely adhere to the specification. Semantic quality
refers to how closely the model corresponds to reality. The model is supposed to
accurately and completely represent the problem or process it is supposed to portray.
Lastly, pragmatic quality refers to how well users can interpret the model. The goal
here is to make the model easier to understand by the model’s audience. As assessing
the semantic quality of a BPMN model requires prior knowledge of the business
process that it is supposed to represent, I decided to focus on guidelines that tackle
either the syntactic or the pragmatic quality of a model.

Guidelines regarding syntactic quality based on the BPMN 2.0 specification cur-
rently exist. Studies have determined over 600 constraints based on the specification
[3][4], which another study formalized as 755 OCL expressions [5]. Examples of
constraints found in these studies are: A start event should not have any incoming
sequence flows; and, if an implicit start event is used, meaning the start event symbol
is not used, then an implicit end event should be used, meaning the end event sym-
bol is not used, and vice versa. Apart from the sheer number of guidelines involved,
one problem with using this as a basis for my thesis is that many constraints refer
to attributes which BPMN files of models exported from SolMan do not have. For
example, elements can be described by the number of outgoing or incoming sequence
flows that it has. If an element has more than one sequence flow that points away
from it, meaning it has multiple outgoing sequence flows, then it is said to be split-
ting, while if it has more than one sequence flow pointing towards it, meaning it has
multiple incoming sequence flows, then it is joining. One gateway attribute defined
in the specification is gatewayDirection, which identifies whether a gateway is splitting
(when the attribute value is "diverging"), joining ("converging"), or both ("mixed" or
"unspecified") [1]. This attribute is not present in SolMan BPMN files. As a result,
there may be a high number of violations to these syntactic constraints due to the
way SolMan exports BPMN files. Guidelines that do not apply to SolMan BPMN
files would therefore need to be filtered out. Moreover, studies have pointed out in-
consistencies and lack of clarity within the specification [6]; for example, an attribute
may be marked as optional in a UML class diagram but considered mandatory in the
corresponding table [3]. Such inconsistencies would also need to be considered.

A paper by De Boeck and Claes [6] pinpoints a smaller subset of 26 syntax issues
that cover the most frequently used BPMN elements as identified by Zur Muehlen
and Recker [7]. These guidelines include the absence of explicit start or end events,
and missing sequence flows between activities. This provides a good starting point
for including guidelines regarding syntactic quality to the tool.

Improving the usability and understandability of BPMN models is one of the goals
of this thesis. Thus, it is important not only to focus on guidelines regarding syntactic

15

2. Related Work

quality, but also those regarding pragmatic quality. The list of 26 syntax issues men-
tioned earlier includes what it calls confusions, where something may be syntactically
correct based on the specification but is considered "bad practice" as it degrades the
pragmatic quality of the model. Examples of confusions include multiple sequence
flows coming from or going towards non-gateway elements, and the use of multiple
start or end events [6].

A technical report by Moreno-Montes de Oca and Snoeck [8] based on a systematic
literature review [9] resulted in a total of 56 individual guidelines meant to improve
the pragmatic quality of BPMN models. These guidelines were classified under the
following three categories:

1. Guidelines that count elements. This category includes guidelines such as: A
process model should not have more than 31 elements; and, there should not be
more than 3 sequence flows coming from a gateway.

2. Morphology. This focuses on the form of the model in terms of loops, par-
allelism, etc. This category includes guidelines such as: Avoid loops in the
process model; and, avoid a high degree of parallelism.

3. Presentation. This focuses on stylistic aspects of the model that do not affect
its semantics. Guidelines regarding labels are included, as well as guidelines
regarding overlapping lines and the alignment of various elements.

Snoeck, et al. [10] then studied how many of the guidelines they put forward
are tested and supported by various BPMN tools in the market. They found that
the highest level of support in any product was for 32 of the 56 guidelines, while
the lowest level of support was for 11 guidelines. The study takes into consideration
various levels of support, from Forced Support, wherein the user is forced to follow
the guideline and fix the problem before proceeding, to Documentation, wherein the
guidelines are found in the tool’s documentation but not in the tool itself. When
guidelines that are supported only through documentation are not considered, the
highest level of support dips to 27 out of 56, while the lowest level of support goes
down to 9 guidelines.

Corradini, et al. [11][12], meanwhile, formulated a list of 50 guidelines to ensure
understandable BPMN models. While many overlap with the aforementioned 56
guidelines, some go into more detail. For example, while Moreno-Montes de Oca
and Snoeck simply state that gateways should be labeled, Corradini and associates
specify which gateway types should and should not be labeled. Some guidelines are
also unique to Corradini, et al. One example is that the default path after a splitting
exclusive gateway should be expressed.

While these works focus mainly on improving pragmatic quality, some guidelines
are rooted in the BPMN specification, thus establishing that some level of syntactic
quality is also ensured. These guidelines therefore form the basis for my thesis.

16

3. Solution Approach

3 Solution Approach

3.1 Selection of Guidelines to be Implemented

The 56 guidelines presented by Moreno-Montes de Oca and Snoeck [8] as well as an
additional five by Corradini and associates [11][12] were evaluated in order to deter-
mine which of these would be implemented in the tool. First, I attempted to create
models in SolMan that violated each guideline. If a particular violation could not be
modeled, then it was thrown out, as there was no reason to check for rules that could
not be broken in the first place. For example, rules which refer to the use or absence
of color highlights were discarded in this step because the color scheme of diagrams
created in SolMan could not be changed. Another discarded rule was regarding pools
not having labels, as this was also impossible to model. Seven guidelines were dis-
carded through this method.

Guidelines which were more subjective and could not be quantified were also
taken out of consideration. In some cases, these can be covered indirectly by other
existing rules. For example, the guideline against models that are too large can be
covered by the guideline about the suggested maximum number of elements. Rules
which would have required text analysis, such as one which discouraged the usage
of abbreviations, were also disregarded, as validation checks for these rules would
require machine learning, which is outside the scope of this thesis. Furthermore,
guidelines which checked the same or similar properties were combined. From the
initial 61 guidelines, only 40 remained after this process.

Then I manually analyzed 25 diagrams which were modeled by myself and a
coworker at Vostura. These were created towards the beginning of a client project we
were involved in, when we were both relatively new to BPMN. This would provide in-
sight into which rules were most commonly broken by novice modelers. Furthermore,
the guidelines were mapped to Vostura’s internal BPMN model quality assurance cri-
teria.

3.1.1 Selection Criteria

In order to select which guidelines would be implemented in the tool, the following
criteria were considered:

• Part of Internal Guidelines: This criterion corresponds to whether or not a par-
ticular guideline is part of the Vostura guidelines for quality assurance of BPMN
models. There are two possible values for this criterion: Yes if it’s included in
the Vostura guidelines, and No otherwise.

• Automated Adjustment Possible: This criterion corresponds to the possibility
of providing a fix in case the guideline is violated. There are three possible
values for this criterion: Yes means a fix can be easily provided regardless of
the details of the model; Yes with Reservation means a fix can be provided
but either the fix is incomplete (for example, in case of a missing label, only

17

3. Solution Approach

a placeholder label can be provided) or details of the model need to be taken
into consideration (for example, changing the position of one element can have
cascading effects on other elements); and, No means an automatic fix cannot be
provided.

• Ease of Implementation: This criterion corresponds to the perceived ease of
implementing the suggested adjustment. There are four possible values for this
criterion: Trivial means the implementation is perceived as relatively simple
without potential side effects; Challenging means that additional steps or qual-
ities need to be taken into consideration in the implementation (for example,
several elements may need to be moved in order to fit a new element); Com-
plex means that a more complex algorithm may need to be implemented (for
example, determining whether two elements overlap, then determining how to
correct this); and, Impossible means an automatic fix cannot be implemented.
Guidelines marked No under Automated Adjustment Possible are automatically
given the label Impossible here.

• QA Misses: This criterion corresponds to how many of the 25 Vostura-created
BPMN models in the client project referred to earlier violated the guidelines.
There are three possible values for this criterion: Many means at least ten mod-
els violated the guideline; Few means at least one and at most nine models
violated the guideline; and, None means no models violated the guideline.

While two of the criteria (Part of Internal Guidelines and QA Misses) are objective,
quantitative measurements, the other two are generally more subjective. On one hand,
differentiating between Yes/Yes with Reservation and No under the criterion Automated
Adjustment Possible was objective; for example, the guidelines regarding the number
of elements in the model was marked as No, because fixing a violation of this guideline
requires combining or deleting a selection of objects, which is not possible without
understanding the actual process being represented. On the other hand, there is a
fine difference between marking a guideline with Yes or Yes with Reservation which is
more subjective. For example, I assigned the value Yes to guidelines which referred
to missing explicit start and end events, because adding an event before the first
element or after the last element seemed relatively straightforward. On the other
hand, I assigned the value Yes with Reservation to a guideline regarding gateways
which showed both splitting and joining behavior. While the idea for the suggested
adjustment, which was to create a second gateway and insert it before the existing
gateway, also seemed straightforward, the fact that this would be done in the middle
of a diagram and other elements had to be moved around meant that this would not
be as simple as in the previous case.

Meanwhile, the criterion Ease of Implementation is based on a subjective "feel"
for the complexity of the algorithm to be implemented and my own capabilities as a
programmer. For example, issues with guidelines regarding missing labels could be
resolved by making a single adjustment to a single element, which is why I assigned
those guidelines with the value Trivial. Meanwhile, fixing gateways with both splitting
and joining behavior required adjustments to more elements because of the need
to move them. While this presented a challenge, this was an algorithm that was

18

3.1 Selection of Guidelines to be Implemented

comprehensible to me, hence that guideline was assigned with the value Challenging.
Lastly, as mentioned above, I assigned a guideline about overlapping elements with
the value Complex because there were too many cases to take into account. I had to
find a way to determine which of two overlapping elements had to be moved, how to
move it, and the effects that moving it had on other elements in the diagram.

All guidelines were assigned values for each of the four selection criteria. I then
chose guidelines to implement based on these values. First, I selected guidelines
which were labeled Yes for Part of Internal Guidelines, Yes for Automated Adjustment
Possible, and Trivial for Ease of Implementation. These would be the first to be imple-
mented. Then I picked those which were labeled Yes for Part of Internal Guidelines,
either Yes or Yes with Reservation for Automated Adjustment Possible, and either Trivial
or Challenging for Ease of Implementation.

Finally, guidelines that were labeled Yes or Yes with Reservation for Automated Ad-
justment Possible and Complex for Ease of Implementation, and either Yes for Part of
Internal Guidelines or Many or Few for QA Misses were chosen. Due to the perceived
complexity of the algorithms related to guidelines in this group, it was expected that
implementing these would be time intensive. Thus, I discussed these with Vostura
in order to determine which would be more valuable for the tool. These were then
ranked according to perceived added value as determined by this discussion.

3.1.2 Guidelines Selected

The following seven guidelines were selected using the above method and imple-
mented in the tool. A Description of the guideline and, in some cases, why it is impor-
tant will first be given, followed by a description of the Validation steps involved, and
finally an explanation of the Correction procedure.

1. Absence of Start Events

Description: Although the usage of a start event is not a requirement according
to the BPMN specification [1], the lack of an explicit start event is a pragmatic
error that negatively affects the understandability of a model [8][13]. The use of
implicit start events could lead to misinterpretation and confusion about where
and when the process starts [11]. While Moreno-Montes de Oca and Snoeck
suggest an upper limit of two start events [8], Corradini et al. state in their
guideline "Use start events consistently" [12] that only one explicit start event
should be included.

Validation: If a start event node exists in the BPMN file, then the diagram con-
tains an explicit start event.

Correction: The goal is to find an appropriate position for the start event to
be inserted. Presumably, the model contains (at least) one implicit start event,
which is an activity, gateway, or event that has no incoming sequence flows.
In the event that only one element has no incoming sequence flows, then this
will be identified as the implicit start event. In case there are no such elements,
which suggests that the process has been modeled with a loop, then the element
positioned on the leftmost side of the diagram will be named the implicit start
event. In the event that there are multiple potential implicit starts, the one

19

3. Solution Approach

positioned on the leftmost side of the diagram will be chosen as the implicit
start event. Once the implicit start event has been found, the pool and lanes
of the process will be increased in size to accommodate the new elements, an
explicit start event will be placed to the left of the identified implicit start event,
and a sequence flow from the start event to this first element will be inserted.

Figure 3: Absence of start events in a
model

Figure 4: Same model with an explicit
start event

2. Absence of End Events

Description: Analogous to start events, the explicit use of an end event is not a
requirement according to the BPMN specification [1]. However, the lack of an
explicit end event is a pragmatic error that has a negative effect on the under-
standability of a model [8][13]. It may be unclear when a process ends. Models
with only one end event are found to be less error prone [8], however the use
of different end events for distinct end states such as success and failure are
also allowable [12]. However, it is beyond the scope of this thesis to determine
whether or not numerous potential end points correspond to distinct end states,
hence the tool will only insert one end event.

Validation: If an end event node exists in the BPMN file, then the diagram con-
tains an explicit end event.

Correction: The correction is analogous to that of the previous guideline. It is
assumed that the model contains (at least) one implicit end event, which is an
activity, gateway, or event that has no outgoing sequence flows. In the event that
one only element has no outgoing sequence flows, then this will be identified
as the implicit end event. In case there are no such elements present, then
the element positioned at the rightmost side of the diagram will be named the
implicit end event. In case there are multiple potential implicit end events found,
then the one positioned at the rightmost side of the diagram will be selected.
Once the implicit end event has been found, the pool and lanes of the process
will be increased in size, an explicit end event will be placed to the right of the
identified implicit end event, and a sequence flow from that last element to the
end event will be inserted.

Figure 5: Absence of end events in a
model

Figure 6: Same model with an explicit
end event

20

3.1 Selection of Guidelines to be Implemented

3. Unlabeled Sequence Flows

Description: Outgoing sequence flows from splitting exclusive gateways should
have labels [6][10][11][12]. As exclusive gateways are considered as questions
to be asked in the process, each answer to the question is represented as an
expression associated with one of the gateway’s outgoing sequence flows [1].
The expression is then used as that sequence flow’s label.

Validation: All outgoing sequence flows from splitting XOR gateways will be
checked. If the associated sequence flow node does not have a name attribute,
or the value of its name attribute is an empty string, then that sequence flow
violates this guideline.

Correction: For each sequence flow node from a splitting exclusive gateway that
violates this guideline, a generic string will be assigned as the value of the node’s
name attribute. If the name attribute does not exist, it will be created before its
value is assigned.

Figure 7: Unlabeled sequence flows in a model

Figure 8: Same model with labeled sequence flows

4. Mixed-use Gateways

Description: As the behavior of a gateway with both multiple incoming and
multiple outgoing sequence flows may be unclear [14], it is recommended that
a gateway should not exhibit joining and splitting behaviors at the same time
[6][8][12].

Validation: In a BPMN file, outgoing and incoming sequence flows from and
to an element are represented by bpmn2:outgoing and bpmn2:incoming child
nodes. If a gateway node’s children includes more than one outgoing child node

21

3. Solution Approach

and more than one incoming child node at the same time, then that gateway
violates this guideline.

Correction: The idea is to split mixed-use gateways into two distinct gateways,
one that joins and one that splits. First, the pool and lanes of the diagram will be
increased in size to fit the new elements. A gateway node that violates the guide-
line will be copied, including references to its incoming and outgoing sequence
flows. All elements of the diagram that are to the left of the copied gateway
node will be moved further left to fit a new gateway and sequence flow. The
copy of the gateway will then be inserted to the left of its original. All references
to outgoing sequence flows will be removed from the copy, while all references
to incoming sequence flows will be removed from the original gateway. Then, a
new sequence flow from the copy to the original will be created.

Figure 9: Mixed-use exclusive gateway present in a model

Figure 10: Same model with the mixed-use gateway now split

5. Unlabeled Gateways

Description: Moreno-Montes de Oca and Snoeck [8] mention that gateways should
be labeled. Corradini, et al. [11][12] specify further which gateway types should
and should not be labeled. First, splitting exclusive gateways should be labeled
with a question or interrogative phrase. Next, joining gateways, particularly
joining exclusive gateways, should not be labeled. Finally, both splitting and
joining parallel gateways should not be labeled.

Validation: Labels of gateways in BPMN files modeled in and exported from Sol-
Man are stored as values of the name attribute of the gateway’s corresponding
node. First, splitting XOR gateways, which are exclusive gateway nodes with
multiple outgoing child nodes, will be checked. If the name attribute does not
exist, or the value of the name attribute is an empty string, then this gateway
violates the guideline. Second, joining XOR gateways, which are exclusive gate-
way nodes with multiple incoming child nodes, will be checked. If a joining

22

3.1 Selection of Guidelines to be Implemented

exclusive gateway has a label, then this gateway violates the guideline. Finally,
parallel gateway nodes will be checked. If a parallel gateway has a label, then
this gateway violates the guideline.

Correction: For each splitting exclusive gateway that violates the guideline, a
generic string will be assigned as the value of the node’s name attribute. If the
name attribute does not exist, it will be created before its value is assigned. For
each parallel gateway and joining exclusive gateway that violates the guideline,
the value of the name attribute will be replaced by an empty string.

Figure 11: Model with unlabeled splitting XOR gateway, labeled joining XOR
gateway, and labeled AND gateways

Figure 12: Same model with labeled splitting XOR gateway, unlabeled joining XOR
gateway, and unlabeled AND gateways

6. Unlabeled Events

Description: Events should be labeled [10]. Corradini, et al. [11][12] specify
that non-specific start and end events should not be labeled if there is only
one of each in the diagram. However, Vostura’s own internal quality assurance
guidelines assert that any and all start and end events should be labeled, so this
is what this thesis shall consider.

Validation: If an event node does not have a name attribute, or the value of the
name attribute is an empty string, then the event violates the guideline.

Correction: For each event node that violates the guideline, a generic string will
be assigned as the value of the node’s name attribute. If the name attribute does
not exist, it will be created before its value is assigned.

23

3. Solution Approach

Figure 13: Unlabeled events (start,
intermediate, end) in a model

Figure 14: Same model with labeled
events

7. Absence of Explicit Gateways

Description: A model that contains multiple paths is expected to include gate-
ways [6]. To be more specific, activities or events should not be used to split or
join sequence flows, and only gateways should be used to do this [11][12].

Validation: Nodes that are not of a gateway type will be inspected. If a non-
gateway node contains multiple outgoing child nodes or multiple incoming
child nodes, then that node violates the guideline.

Correction: The idea is to insert a splitting gateway after a non-gateway element
that exhibits splitting behavior, or a joining gateway before a non-gateway el-
ement that exhibits joining behavior. First, the pool and lanes of the diagram
will be increased in size to fit the new elements. If a splitting gateway is in-
serted, then all graphic elements to the left of the position it will be inserted
at will be moved further to the left to accommodate the new gateway and se-
quence flow. Outgoing sequence flows from the original non-gateway element
will now be coming from the new gateway, and a sequence flow from the orig-
inal non-gateway element to the new splitting gateway will be created. If a
joining gateway is inserted, then all graphic elements to the right of the position
it will be inserted at will be moved further to the right. Incoming sequence flows
to the original non-gateway element will now be pointing to the new gateway,
and a sequence flow from the new joining gateway to the original non-gateway
element will be created.

Figure 15: Absence of explicit gateways
in a model

Figure 16: Same model with explicit
gateways

3.2 Architecture

3.2.1 Implementation Environment

The goal is to build a program that will ultimately be integrated within the SAP
ecosystem. SAP offers a means to create web-based applications that can be inte-

24

3.2 Architecture

grated with SAP through SAP Fiori7 and SAPUI58. While SAP Fiori dictates the
design guidelines, SAPUI5 is a framework built upon HTML5, CSS3, JavaScript, and
jQuery that is used to build web applications for SAP Fiori [15]. Thus, instead of
implementing the application in SAP’s proprietary programming language ABAP, I
used JavaScript for the implementation of the guideline validation and violation cor-
rection, and HTML for the user interface, with the SAPUI5 framework serving as its
base.

3.2.2 Integration of Existing Libraries or Ground-Up Development

Apart from commercial software available in the market, there are open source li-
braries that implement BPMN model validation. I examined some of these to deter-
mine if any of them were suitable for integration with the tool to be implemented. If
so, this would save time in implementation and I could focus more on the corrections
rather than on the checks.

Geiger, Neugebauer, and Vorndran [4] developed BPMNspector9 in order to au-
tomatically evaluate BPMN models for the over 600 constraints that they determined
from the specification. However, as mentioned in Related Work, many of the guide-
lines may not be applicable due to how SolMan exports BPMN files, and culling the
guidelines may end up being as time-consuming as implementing them from scratch.

Another option was the guideline validation extension for bpmn-js10. This tool in-
spects fewer guidelines, but these correspond to many of the guidelines I had selected
for my own validation tool. However, on one hand, the extension required the use of
bpmn-js [16], a BPMN rendering toolkit and modeling tool that I was not planning
to use at the time, and on the other hand, perusing the source code showed that it
would be unlikely to correctly validate BPMN files from SolMan. For example, differ-
ent node names were used, such as bpmn:StartEvent and bpmn:EndEvent instead of
bpmn2:startEvent and bpmn2:endEvent, respectively.

The final open source library I considered was BEBoP, which was developed by
Corradini, et al. [12] to check their own guidelines. I created some BPMN models
using SolMan which violated the guidelines to be implemented in the validation tool
and tested them in BEBoP11 to see if they would be correctly checked.

In the end, although BEBoP checks for most of the guidelines that would be im-
plemented, these were also the guidelines that had been estimated to require less
complex coding. In addition, some of the trickier guidelines were checked to a de-
gree, but there were enough limitations to make building from scratch a more viable
option. For example, BEBoP was unable to detect labels on gateways and sequence
flows in diagrams modeled with SolMan, because SolMan exports labels differently
from what BEBoP expects. As a result, validation for unlabeled gateways or unlabeled
sequence flows always returned a failure despite being correctly modeled.

7https://experience.sap.com/fiori/ [Accessed: 2019-08-22]
8https://sapui5.hana.ondemand.com/ [Accessed: 2019-08-22]
9http://bpmnspector.org/ [Accessed: 2019-08-26]

10https://github.com/bpmn-io/bpmn-js-guideline-validation [Accessed: 2019-08-26]
11http://pros.unicam.it:8080/BEBoP-WebUserInterfaces/contentform.jsf [Accessed: 2019-08-

16]

25

https://experience.sap.com/fiori/
https://sapui5.hana.ondemand.com/
http://bpmnspector.org/
https://github.com/bpmn-io/bpmn-js-guideline-validation
http://pros.unicam.it:8080/BEBoP-WebUserInterfaces/contentform.jsf

3. Solution Approach

Due to the limitations in the libraries I reviewed, I decided to implement the
validation from scratch. This has the added advantage of allowing more flexibility for
the continued development of the tool, as well as in the case that changes are made
to the SolMan BPMN modeling program.

3.3 Implementation Strategy

Implementing the tool was split into two phases. In the first phase, a proof-of-
principle prototype was created. Details regarding this phase follow in Section 3.4.

In the second phase, the selected guidelines were implemented using an itera-
tive and incremental development approach. This meant that development was done
through repeated cycles (iterations) in small portions of time (increments) [17]. This
would allow for evaluation and improvement of what had already been programmed,
as well as a way to ensure that there would be a functional prototype at the end of each
iteration. Within each iteration, the goal was to use the Plan-Do-Study-Act (PDSA)
Cycle in order to maximize progress within the iteration as well as to minimize defects
[18]. The stages of the PDSA cycle [19] are:

1. Plan - The planning stage is where decisions are made about what to do within
the cycle. In this thesis, this is where goals were set for the current iteration.

2. Do - Plans made in the previous stage are carried out in this stage. This corre-
sponds to the actual implementation and coding of the application.

3. Study - In this stage, the results of the previous stage are assessed and compared
with the plans made in the first stage. This is also sometimes known as the
Check stage. In this thesis, during this stage, the functionality of the tool was
tested by using the application to evaluate different models I created which
violated the newly-implemented or updated guidelines in different ways. This
is also where meetings with Vostura as well as usability tests were conducted.

4. Act - The process is evaluated, changes are enacted, and the next cycle begins.

Development took place over four iterations of two weeks each. At the end of
each iteration, the results were presented to my bosses at Vostura, who took on the
role of product owner and assessed the product and guided in which direction the
next iteration of development should go. Specific details about each iteration are in
Section 4.

3.4 Proof-of-Principle Prototype

3.4.1 Goals

The main goal of creating a proof-of-principle prototype was to prove that implemen-
tation of the product with the chosen architecture was feasible. If major problems
arose during this stage, then the architecture would be re-evaluated and adjusted.

For the proof-of-principle prototype, the fundamental functions of the tool were
implemented. First of all, one must be able to upload a BPMN model in the form of
a BPMN file. Second, the tool must be able to open and read the uploaded model.

26

3.4 Proof-of-Principle Prototype

Third, the tool must be able to manipulate the BPMN file by adding, removing, or
modifying nodes and attributes. Fourth, the tool must be able to produce some output
based on the model. Finally, the user must be able to download the modified BPMN
file.

I also used this process as an opportunity to delve deeper into the BPMN files
generated by SAP Solution Manager. In order to be able to make corrections to the
model, I had to understand the structure of the file, including which elements were
present and what attributes each element had.

3.4.2 Challenges

The first step was determining which existing libraries, frameworks, and functions I
could use in the implementation. SAPUI5 includes a FileUploader framework12 which
allows users to easily import files into SAPUI5 applications. DOMParser13 is also
supported, which meant reading and writing to a BPMN file, as well as navigating
through one, would not be a problem.

The next challenge was understanding the structure of a BPMN file. Most of
the work was done by exporting and downloading a model from SolMan, reading
through the source code, making minor changes, then importing the modified model
back into SolMan. The most important question was whether or not elements must be
declared in sequential order (from first to last element in the process flow) or spatial
order (from left to right in the diagram). It was determined that the order was not
relevant in correctly displaying a model in SolMan. This meant, for example, that a
start event node could be added after an end event node without problems, as long
as it was inserted as a child of the corresponding process node.

A major challenge was determining how to move pieces of code into functions so
they could be reused, as well as for ease of maintenance. Unfortunately, none of the
attempts made during the development of the prototype worked, as the tool would
not run at all when external functions were used. Thus this idea was abandoned until
later in the development process in Iteration 2: Modularization.

I also attempted to integrate a BPMN diagram rendering and visualization library
[16]. My attempts were also unfortunately unsuccessful at the time, with diagrams
not being rendered in the app, and this idea was abandoned until later in Iteration 4:
Model Visualization and Second Usability Tests.

3.4.3 Results

A simple prototype with the essential functions listed under Goals was successfully
implemented. With the help of built-in functionality within SAPUI5, users could
upload BPMN files, which would then be opened, read, and manipulated using sup-
ported Web APIs such as FileReader und DOMParser. A means to download the
modified BPMN file was also implemented.

The prototype worked by opening and manipulating the file as soon as it was
uploaded. A means to visualize the model was needed in order to show that the file

12https://sapui5.hana.ondemand.com/#/api/sap.ui.unified.FileUploader [Accessed: 2019-08-
01]

13https://developer.mozilla.org/en-US/docs/Web/API/DOMParser [Accessed: 2019-08-01]

27

https://sapui5.hana.ondemand.com/##/api/sap.ui.unified.FileUploader
https://developer.mozilla.org/en-US/docs/Web/API/DOMParser

3. Solution Approach

was successfully processed by the tool. This would be especially vital when testing
the app throughout its development. Since initial attempts to render the diagram
within the app using a third-party library were unsuccessful, a section of the app was
allotted to display the source code of the BPMN file. If there was a problem reading
or manipulating the model, then this section would be empty.

Another section of the app was allocated to display plain text based on the con-
tents of the file. This would eventually be where the validation and correction report
would be displayed, but in the proof-of-principle prototype, this section only showed
a simple header as well as the name of the first lane in the uploaded process diagram.
This proved that the output displayed in this section was dependent on the uploaded
BPMN model.

The successful implementation of the fundamental functions of the planned tool
marked the end of the planning phase and the start of the development phase.

28

4. Implementation and Evaluation

4 Implementation and Evaluation

4.1 Iteration 1: Initial Implementation

4.1.1 Goals

For the first development iteration, the main goal was to implement as many of the
chosen guidelines as possible. During this iteration, only horizontal models with one
pool and one lane would be taken into consideration, because the focus was on the
breadth rather than the depth of cases covered.

Another goal was to format the report. As one of the desired effects of using the
tool was improved BPMN proficiency, it would not be enough to name which guide-
lines were checked and whether or not they were violated. The report should also
describe how these violations were fixed within the model. Additional information
should be provided as needed; for example, if the correction of a guideline involved
adding labels to the model, then not only should the user be informed about the
added labels, they should also be informed that these are generic labels that should
be manually updated in SolMan.

4.1.2 Challenges

One major challenge for this iteration was the complexity of the implementation of the
algorithm to fix violations of the Absence of Start Events guideline. This was the first
guideline to be implemented, and although the algorithm was inherently trivial, my
low familiarity of the nature of BPMN files at the time made it more challenging. The
BPMN file had to be modified at multiple locations, and I would occasionally miss
some, either causing the app to crash, or the updated file to be rendered incorrectly
when imported into SolMan.

Another challenge involved the report. In the proof-of-principle prototype, the
report took the form of a simple string. While this was adequate for displaying plain
text, it did not provide any options for formatting the report. SAPUI5 provides a
construct for displaying text along with HTML code14, which means that selected
HTML tags could be included in the string and the app would be able to interpret
them correctly. This allowed me to create headers for each guideline, as well as style
and format the contents of the report. The second part of this challenge involved
the text to be displayed, particularly finding the balance between providing enough
information and not overwhelming the user with too much text. I decided that, for
each guideline, a single sentence regarding whether or not it had been violated and a
single sentence regarding any corrections made were sufficient.

4.1.3 Results

At the end of the first iteration, five guidelines were implemented: Absence of Start
Events, Absence of End Events, Unlabeled Sequence Flows, Unlabeled Events, and

14https://sapui5.hana.ondemand.com/#/api/sap.m.FormattedText [Accessed: 2019-08-24]

29

https://sapui5.hana.ondemand.com/##/api/sap.m.FormattedText

4. Implementation and Evaluation

Mixed-use Gateways. The validation and correction of these guidelines only func-
tioned on horizontal models with one pool and one lane, with the aim of adding
support for multiple lanes at a later iteration.

In addition, a report with basic HTML formatting was also created. The report
contained the name of the guideline, information on whether or not the guideline
was violated, and, in case modification of the model was performed, details regarding
the correction. For the guidelines Unlabeled Sequence Flows, Unlabeled Events, and
Mixed-use Gateways, the number of violations per guideline was also included.

4.1.4 Evaluation

The results of the first iteration were presented to Vostura, including the caveat that
the scope was limited. Feedback was generally positive, particularly regarding the
number of guidelines already implemented. The primary criticism dealt with the
layout of the app. The tool still displayed the BPMN file source code, as it did in the
proof-of-principle prototype. While it served its purpose of showing the user that the
BPMN file had been successfully uploaded, validated, and corrected, it was deemed
unnecessary to the project, even for testing purposes, because if there were problems
with uploading or processing the BPMN file, then either the app would crash, or the
report would not be displayed at all. This made fixing the layout a goal for the next
iteration.

Also discussed during the meeting with the company was the inability to use
functions in order to reduce the amount of code, something which was discovered
during the implementation of the proof-of-principle prototype. There were lines of
code that were copied and pasted multiple times throughout the program across mul-
tiple guidelines, and being able to move these lines of code into separate functions
within the program would improve both the readability of the code as well as its
reusability, particularly in view of implementing further guidelines which required
the same functions. It was agreed that this was important and should be taken into
consideration in the next iteration.

4.2 Iteration 2: Modularization

4.2.1 Goals

Two goals of the second iteration were based on feedback on the results of the first
iteration. These were refactoring in order to be able to move code that was used
repeatedly into separate functions, and finalizing the layout of the tool without dis-
playing the BPMN file source code.

Another goal was continued implementation of further guidelines, namely Unla-
beled Gateways and Absence of Existing Gateways.

Finally, all implemented guidelines would be extended such that models with a
single pool but multiple lanes could also be validated, thus increasing the depth of
the cases covered.

30

4.2 Iteration 2: Modularization

4.2.2 Challenges

The primary challenge in this iteration was in relation to the creation of separate func-
tions in order to reduce the amount of repeated code. These functions could then be
used in the implementation of further guidelines. Attempts to create and use separate
functions had thus far failed repeatedly. It seemed that because the validation and cor-
rection of the model were being done as soon as it was uploaded, it was not possible
to properly call these external functions. However, when upload and validation were
performed independently of each other, then calling external functions worked. Thus
it was decided to separate uploading a model from validation and correction. Once
this had been done, it became possible to create reusable functions.

I also encountered challenges while implementing the guideline Unlabeled Gate-
ways. It was possible to provide labels to parallel gateways in SolMan. In fact, this
is the default behavior of the SolMan modeling tool when a new gateway is added.
When exporting said model into a PDF or SVG15 file, the labels would be displayed.
However, when testing the exported BPMN file in my application, it always reported
that the parallel gateways were unlabeled. Inspecting the BPMN file showed that la-
bels on parallel gateways were not being exported by SolMan. In fact, when importing
the file without any changes into SolMan, these labels disappear. Thus, it was unnec-
essary to check for labels on parallel gateways, so I removed the implementation of
this particular sub-guideline. I initially considered including a message regarding this
rule in the report, but I decided against it as it may end up being too confusing for
users.

In addition, labels past a certain length are truncated in SolMan. In this case,
instead of creating a label directly on the gateway, a text annotation can be used to
label it. This method was used for some BPMN diagrams from the Vostura client
project I was involved in. Thus, when checking a splitting XOR gateway for a label,
the presence of a text annotation attached to the gateway also had to be checked. As
events could also be labeled in this manner, this check was added to the Unlabeled
Events guideline. I then discussed with my bosses at Vostura whether text annotations
on joining exclusive gateways as well as on parallel gateways should be considered as
labels and therefore deleted. We decided that they should be left alone because there
may be other reasons for adding those particular text annotations apart from labeling.

Figure 17: BPMN model with a text annotation used as a gateway label

15Scalable Vector Graphics (SVG) is a vector image format for 2D graphics that is based in XML.

31

4. Implementation and Evaluation

The next challenges surfaced while implementing the Absence of Explicit Gate-
ways guideline. The first was determining what kind of gateway should be added.
The choice was between adding an exclusive gateway and adding a parallel gateway.
On one hand, the exclusive gateway was the default choice when adding a gateway in
SolMan, and the ability to add labels to both the gateway and, in the case of splitting
gateways, the sequence flows made it a good option. On the other hand, experience
showed that parallel gateways were less common than exclusive gateways, so per-
haps they would be more prominent when added to a model. In addition, parallel
gateways and their associated sequence flows did not require labels, which would
simplify the implementation and reduce clutter in the corrected diagram. I decided
to use parallel gateways because of these advantages.

The other challenge associated with implementing the guideline involved manip-
ulating the graphic elements of the diagram in order to fit the inserted gateways. This
was already a challenge I had encountered in the previous iteration. However, those
corrections only dealt with adding a single element and a single sequence flow. Also,
when fixing violations of the Mixed-use Gateways guideline, the pre-existing gateway
was copied, meaning that sizes and relative positions remained the same. For this par-
ticular case, because the element that displayed splitting or joining behavior could be
one of many possible types, such as an activity or an event, the newly-created gate-
way would be inserted into the position of elements of varying sizes. The main issue
was moving the ends of the sequence flows pointing to or from the new gateway such
that they would be within the new element. When testing my implementations, there
would be cases when the arrowheads of the sequence flow did not end up within the
area that the new gateway covered. This led to the sequence flow not being connected
to the newly-added gateway when importing the corrected model into SolMan. I
decided that the best way to fix this was to make sure that the endpoint of such se-
quence flows was the middle point of the gateway. While this was successful in most
cases, there were still a handful of instances where this was not done correctly. In the
end, I could not determine the cause of these errors, nor could I determine a common
pattern for these cases.

4.2.3 Results

The tool no longer automatically performed the validation and correction actions
upon uploading a BPMN model. Instead, a button must be pressed after upload-
ing. This was done in order to take advantage of the principles of modularization and
reusability by moving repeated lines of code into separate functions. Examples of
such repeated tasks include increasing the size of pools and lanes, as well as creating
new BPMN elements with a given set of attributes. The section that displayed the
source code of the fixed BPMN file was also removed.

In addition, a further two guidelines were implemented as planned, namely Un-
labeled Gateways and Absence of Existing Gateways, bringing the total number of
implemented guidelines up to seven. All seven guidelines were then extended in or-
der to support horizontal models with one pool and multiple lanes, as opposed to
only single-lane models in the previous iteration.

32

4.3 Iteration 3: Design Polishing and First Usability Tests

4.2.4 Evaluation

The results of the second iteration were presented to Vostura, and the new version
of the tool was generally well-received. The first point of discussion was the type
of gateways to be added when fixing violations of the guideline Absence of Explicit
Gateways. The company did not share my opinion that parallel gateways should be
added. Exclusive gateways were preferred, not only because they were already the
default gateways in Solution Manager, but also because of the possibility of adding
labels to further guide the user to correctly update and adjust the automated correc-
tions. Vostura also considered the prevalence of exclusive gateways relative to parallel
gateways as a pro rather than a con.

Another point of discussion was about the labels automatically added during cor-
rection. The labels were sometimes easy to overlook upon import into Solution Man-
ager. In addition, the added labels were sometimes positioned unfavorably, overlap-
ping with other elements such as sequence flows. As SolMan had some capability to
position labels, it was suggested to investigate if it was possible to adjust the layout
of the inserted labels.

The final point of discussion was regarding next steps for the next iteration of the
tool. One option was the implementation of additional guidelines. Another option
was suggested by the company, namely adding configurability to the tool. All guide-
lines were being examined, and the methods to correct violations of the guidelines
were set based on the decisions I had made during implementation. Adding config-
uration options to the tool would allow users to select which guidelines to check, or
how the tool would correct the model. For example, users could choose the type of
gateway to be created if one needed to be inserted into the model. As we did not
come to an agreement on which option should be taken, I decided to consult with
my thesis advisor. After listening to the two options, he convinced me that neither
option was ideal. On one hand, the implementation of further guidelines would not
add anything new to our understanding of the tool; on the other hand, adding con-
figurability may be a case of adding a feature that is either currently or completely
unnecessary. Instead, he proposed a third option, which was to conduct usability tests
to determine how potential users of the tool would interact with the application, and
what unseen issues could arise. The instructions provided, the layout, and the form
of the report could also be evaluated. In addition, a usability test may help determine
whether or not configurability is necessary. Following this conversation, I decided to
conduct usability tests.

4.3 Iteration 3: Design Polishing and First Usability Tests

4.3.1 Goals

One goal of the third iteration was polishing the tool in preparation for the usability
tests. Since not only the functionality but also the form of the app were going to
be evaluated, it was important to make sure that both the visual design and the text
included in the app were as clean as possible.

Another goal was to change the corrections performed under the guideline Ab-
sence of Explicit Gateways in accordance to the feedback given by Vostura during the

33

4. Implementation and Evaluation

evaluation of the second iteration. This included not only switching from parallel
gateways to exclusive gateways, but also inserting labels where necessary.

In addition, I was also going to investigate how gateway and sequence flow labels
are positioned in BPMN. Once I figured this out, I could then determine how to set
the layout of labels inserted during the correction of a BPMN model.

Finally, with the company’s suggestion to include configurability into the tool, I
was going to prepare the code for the possible introduction of this feature by creat-
ing separate functions for each guideline. This would also be good practice for any
additional guidelines that would be implemented in the future.

4.3.2 Challenges

One challenge was determining what form labels inserted into the diagrams should
take. Labels had to be obvious even when one was simply glancing at the fixed
diagram. SolMan did not support changing colors within diagrams, so this was not
an option. I decided that the created labels should be in all capital letters. This would
more likely set it apart from other labels that the user would have created on their
own, as well as from the default labels created in SolMan. In the end, I decided to
use "GENERIC LABEL ADDED, PLEASE EDIT" for new sequence flow labels and
"DEFAULT GATEWAY LABEL" for new gateway labels.

Related to this was the need to clarify whether the position of the labels could be
adjusted. This was done by modeling and exporting models in both SAP Solution
Manager and a third-party BPMN modeling tool, bpmn.io16. Then I examined the
resulting source codes. I found that the positions of sequence flow labels in bpmn.io
were set by adding a dc:Bounds node with the desired dimensions of the label. How-
ever, this node is ignored by SolMan, resulting in the labels being rendered in posi-
tions other than those set in bpmn.io. Indeed, when a BPMN file from bpmn.io is
imported then exported in SolMan, the resulting file no longer includes the label’s
dc:Bounds node.

Figure 18: BPMN diagram with user-defined positions of sequence flow labels in
bpmn.io

There are also options to set the placement of a label in SolMan. For example,
one could set the position of a sequence flow’s label near the source element, near
the target element, or at the middle, as well as on which side of the sequence flow it

16https://bpmn.io/ [Accessed: 2019-08-15]

34

https://bpmn.io/

4.3 Iteration 3: Design Polishing and First Usability Tests

Figure 19: Same BPMN diagram as Figure 18 as imported into SAP Solution
Manager

would be on. This means that one has a choice of six possible positions for a sequence
flow’s label. However, even when using this functionality, SolMan still does not export
the position as a dc:Bounds node in the BPMN file. As a result, when exporting then
importing a BPMN diagram in SolMan without changes, any adjustments that were
made to the position of the sequence flow labels before exporting the model are lost.
Thus, as there was currently no way to set the position of a label in a BPMN file
such that SolMan interprets it correctly, the idea of positioning labels added by the
validation and correction tool was dropped.

4.3.3 Results

The look and feel of the app was polished. Text in the app was also fixed. This
included revising the instructions to use the tool as well as the report. For the report,
short descriptions of each guideline checked as well as the rationales for including
said guidelines were added. In addition, the text of the validation results was color-
coded. If a diagram passed a test, the text regarding that guideline was displayed in
green, while if any violations were found, then the text would be displayed in red.

When correcting violations of the guideline Absence of Explicit Gateways, exclu-
sive gateways are now added instead of parallel gateways. As a result, labels for
splitting exclusive gateways and their sequence flows also had to be added.

Finally, in order to facilitate the possible future implementation of configurability
in the tool, guidelines were split off from the main validation and correction function
into individual functions. Furthermore, each guideline had two functions, one for
validation, and another for correction of violations of the guideline. This opened up
the possibility of implementing alternate means of correcting a guideline violation.

4.3.4 Usability Tests and Evaluation

Initially, it was planned that employees of Vostura’s clients who were tasked with
modeling their business processes with BPMN in SAP Solution Manager would be
asked to participate in the usability tests. Unfortunately, this was not feasible. First,
at the time, there were only a handful of clients working with BPMN. Second, it
was unrealistic to expect a company to set aside manpower on relative short notice
for the tests. Third, the process of recruiting testers would have had to go through

35

4. Implementation and Evaluation

multiple levels of approval and communication, both internally as well as between
the companies involved.

Instead, this first round of usability tests was performed with other Vostura em-
ployees. One was doing an internship at the company, another was a working student,
and the third was a consultant who had done quality assurance on BPMN diagrams
created by one of the company’s clients. None of the three participants had seen or
used the tool previously, so this was the first time they were using it. Although this
was not the intended target audience of the product, this was a good compromise for
the usability tests, as the participants could put themselves into the position of a QA
analyst and of an employee of a client.

First, the participants were given a description of the tool then asked to rate their
knowledge of BPMN, with 0 being no knowledge and 3 being advanced knowledge.
After assessing a BPMN diagram to identify potential errors in it, they were asked to
use the tool and import the resulting BPMN file into SolMan. Questions about general
impressions of the app as well as how they felt about specific aspects of the tool were
asked. A second diagram was assessed by the participants and the process repeated.
Finally, participants were asked to give their final comments and suggestions on the
tool. The guide questions as well as the diagrams used can be found in the Appendix.

All three participants rated their knowledge of BPMN with the highest rating, 3,
and were able to identify all the errors in the test models before using the tool.

There were three major points raised during the usability tests. The first issue,
which was raised by all three participants, was that the instructions on the first page
of the application were too long. They were in the form of a block of text describing
how to use the tool and what behavior to expect from it. Two testers skimmed through
the instructions and went straight into using the tool, while the third read through
them carefully, later saying that they required too much concentration. Two of the
participants then suggested using bullet points to present the instructions.

The second issue was that there was no way to look at the diagrams within the app.
During the tests, the participants had a printed copy of the original BPMN diagram,
and in order to look at the corrected diagram, they had to import the file into SolMan.
This made it difficult to pinpoint what and where the corrections were made. All
three participants expressed wanting a graphic representation of the diagrams inside
the tool.

The third issue was regarding the labels created and inserted into the diagram. All
three thought that they were sometimes either not recognizable or difficult to read.
They suggested changing the positions of the labels. After the tests, I informed them
that this was unfortunately not possible.

Apart from those points, the participants gave mainly positive comments regard-
ing the tool. All three found it simple and intuitive to use, and all used it as expected,
performing no unexpected actions. They were also mostly positive towards the gen-
erated report. The color-coding of the message about whether or not a guideline was
violated was appreciated. The participants, however, did not necessarily agree on the
level of detail provided in the report. One thought that the detail provided was good,
while another thought it was too much.

The results of the third iteration as well as the usability tests were presented to
Vostura. No additional comments, requests, or requirements were raised.

36

4.4 Iteration 4: Model Visualization and Second Usability Tests

4.4 Iteration 4: Model Visualization and Second Usability Tests

4.4.1 Goals

The goals of the fourth iteration were based on the results of the usability test. The
first was finding a way to display BPMN diagrams in the tool. Another was editing
the instructions and the generated report. Finally, I wanted to finalize the app in terms
of both form and functionality, perform defect tests, then run a final set of usability
tests.

4.4.2 Challenges

The primary challenge during this iteration was integrating the rendering toolkit from
bpmn-js [16] into the application. As SAPUI5 does not allow importing and run-
ning remotely-hosted third-party modules, a workaround needed to be used. I found
instructions on how to include third-party scripts in SAPUI517 and successfully im-
ported a test script.

When attempting to integrate the bpmn-js toolkit into the tool during development
of the proof-of-principle prototype, the main difficulty I had was trying to integrate
the complete library consisting of multiple files and folders. There were no tutorials
regarding this, so the idea was abandoned. A more careful perusal of the toolkit’s
page showed that there was a possibility to use and import a single file18, which could
be integrated using the same method explained in the tutorial. This was successful,
and BPMN diagrams could be rendered and displayed in the app.

Once that was completed, other issues related to displaying BPMN diagrams
arose. The biggest challenge was trying to fit imported diagrams into the space pro-
vided for them in the app. Despite following online instructions and code that was
supposed to produce this behavior, diagrams were still being displayed in a particular
size and orientation. For example, parts of the diagram would be cut off because it
was zoomed in too close, or only the lower half of the diagram was displayed. In-
structions regarding how to zoom in and out of the diagram as well as how to drag it
into position were added as a means to mitigate potential user issues related to this.

Another issue was that "X" marks within exclusive gateways were not being ren-
dered and displayed despite being visible in SolMan. This was due to an attribute
not being exported by SolMan into the BPMN file19. I added a quick fix so that the
marker would be displayed.

Lastly, defect tests were performed in order to investigate if the guidelines were
being checked and corrected according to expectations. Various diagrams were mod-
eled, either adhering to or violating each guideline, for both single-pool and multi-
pool horizontal models. While most of the test results were as expected, some defects
were found. For example, when an end event had multiple incoming sequence flows,
this did not show up as a violation of the Absence of Explicit Gateways guideline.

17https://blogs.sap.com/2017/04/30/how-to-include-third-party-libraries-modules-in-sapui5/
[Accessed: 2019-08-15]

18https://github.com/bpmn-io/bpmn-js-examples/tree/master/pre-packaged [Accessed: 2019-
08-15]

19https://forum.bpmn.io/t/x-symbol-for-xor-gateway-in-viewer/2342/3 [Accessed: 2019-08-
16]

37

https://blogs.sap.com/2017/04/30/how-to-include-third-party-libraries-modules-in-sapui5/
https://github.com/bpmn-io/bpmn-js-examples/tree/master/pre-packaged
https://forum.bpmn.io/t/x-symbol-for-xor-gateway-in-viewer/2342/3

4. Implementation and Evaluation

This was due to a programming error where end event nodes were not checked at
all. Another defect found was that not all new splitting gateways as fixes to the same
guideline were being created. This was due to a programming error where a vari-
able name was used twice, thus inadvertently skipping past some of the loop indices.
These and other errors were fixed, and the related test cases were retested, until all
defects found were resolved.

4.4.3 Results

The bpmn-js toolkit was successfully integrated into the app. This allowed both the
original and the modified diagrams to be displayed.

The instructions provided in the app were rewritten as a set of bullet points. The
report was edited to reduce the amount of text displayed when describing the correc-
tions applied to the model.

The layout of the tool was fixed. Potential layouts were presented to Vostura and
one was chosen. Once validation and correction were completed, the page would
display action buttons at the top, followed by the original BPMN diagram, then the
diagram with corrections, and finally the report.

Some additional suggestions from the usability tests were implemented, such as
adding more space between guideline sections in the report. In addition, defect tests
were performed, and errors causing defects found during the tests were fixed.

4.4.4 Usability Tests and Evaluation

A second round of usability tests was performed with the updated tool, this time
with a different group of testers. Three of the four new testers were fellow Bache-
lor Computer Science students, while the fourth was a Master of Education student
whose subjects were Computer Science and Physics. None of them had seen or used
a previous version of the tool. While the participants were chosen primarily because
of the ease of recruitment, this would also be a good approximation of how people
with little to no background in BPMN modeling would use the tool, in comparison to
those with an advanced knowledge of BPMN in the previous round of tests.

The tests were run similarly to the previous usability tests. A side goal of the
second round of usability test was to see if there was an associated learning effect to
using the application, so this time participants had to assess four diagrams instead of
two.

All four participants indicated that they had zero prior knowledge of BPMN. Thus,
before they used and tested the tool, they were given a brief introduction to BPMN
and the graphic elements used. They were also shown a syntactically correct BPMN
diagram, Figure 1, as an example.

Most of the participants thought the instructions were clear and concise, and one
commended the use of bullet points as opposed to a block of text. However, one
participant mentioned that they still did not understand what the tool did and what
steps needed to be taken. In addition, some suggestions were made to improve the
instructions, such as adding the icons used in the app’s buttons to the text.

The participants liked that the original diagram was displayed upon uploading a
BPMN file, although one participant thought that this was the corrected version and

38

4.4 Iteration 4: Model Visualization and Second Usability Tests

did not realize that they had to click on the "Validate and Correct" button in order to
review and fix it.

Issues arose when the diagram was validated and both the corrected diagram and
the report were displayed along with the original diagram. The primary issue was
navigation. Trying to scroll from the original diagram to the fixed diagram then the
report and back proved to be challenging, because depending on where the cursor
was on the app, it was possible that only one of the diagrams would scroll and not
the entire page. As a result, one participant ended up scrolling away one of the
diagrams and had to start over in order to see it again. It was thus suggested to add
borders to the sections where the diagrams were displayed. In addition, two scrollbars
were being displayed on the page, and only one was actually useful, adding to the
confusion of one participant.

For some of the participants, there was a bit of a learning curve regarding zooming
in and out of the diagrams, however all of them eventually managed to do it. One
suggested adding buttons that can be used to zoom in and out. There was also
conflicting feedback regarding the instructions on how to use the zoom function.
Whereas one criticized the instructions as being unclear, another commended the
same instructions as being clear.

bpmn-js requires the display of their green logo when using their rendering toolkit.
This became another source of confusion for a majority of the testers. One thought
that this provided additional functionality to the tool. Two of the participants eventu-
ally clicked on the icon, which displayed information that bpmn-js was being used to
render the diagrams.

Some expected to be able to make edits directly within the displayed diagram.
One had tried to double-click on a generated label to edit it, and later explained that
seeing "PLEASE EDIT" on it made them think that it was editable. In addition, all
four testers suggested adding a clear way to display where corrections were made
on the new diagram; indeed, one tester initially thought that the two diagrams were
exactly the same. The use of color to highlight corrections was suggested.

While one participant specifically praised the order in which the elements were
displayed, with the original diagram displayed at the top, followed by the fixed dia-
gram, and then the report at the bottom, two other participants did not seem to notice
that a report had been generated, and I had to prompt them to scroll down in order
to view it.

All four participants thought that the report and the explanations provided were
good, with additional compliments for the color-coded messages on whether or not
a guideline had been violated. Most of the testers read through the reports carefully,
although for some, I noticed that the amount of time spent reading decreased with
each successive model that they assessed. One suggested only displaying guidelines
that were violated in order to motivate users to read the report.

While two of the testers appeared to immediately understand that pressing the
button labeled "Reset" would discard the current model and bring them back to the
application’s start page, one expressed uncertainty about what would happen when
the button would be pressed, while another thought that it meant that changes made
to the current model would be rolled back and the original model would remain.

In the end, all testers said that the tool was comfortable to use, and one said that

39

4. Implementation and Evaluation

they could imagine the usefulness of such a tool when dealing with a high number of
large and complex models.

In terms of the tool having a potential learning effect, there was little to no real
improvement in the performance of the testers as far as assessing the models is con-
cerned. Still, the assessment performance of two participants remarkably improved
between the first model and the second model. This could be because they read the
first report and learned what was being checked by the model. On the whole, how-
ever, if a tester missed violations of a particular guideline in the first two diagrams,
they would continue to miss them in the next two diagrams. In addition, none of the
four participants were able to pinpoint labeled joining exclusive gateways. This may
be because this was being checked and reported as part of the guideline Unlabeled
Gateways, thus leading this particular rule to be overlooked.

As a result of suggestions made, feedback obtained, and behaviors observed dur-
ing the usability tests, I made some adjustments to the tool. First, the text in the
application was edited to make it more precise. For instance, a brief explanation of
the "Reset" button was added, and the instructions for zooming in and out of a dia-
gram were made more specific. Second, the design was slightly modified in order to
make navigation and scrolling easier. For one, the outer scrollbar that had confused
one of the participants was removed. The widths of the diagrams were also slightly
reduced in order to increase the space on the app where one can scroll from the di-
agrams to the report and back again. The areas where the diagrams are displayed
were also given a different background color as well as a border as suggested in or-
der to distinguish them from the rest of the app. Third, the tool now automatically
scrolls to the revised diagram once the validation and correction is completed, with
the idea that perhaps more of the report is revealed on the screen, prompting users
to scroll down further in order to view the report. Fourth, the text "PLEASE EDIT" in
the inserted labels was replaced with "EDIT IN SOLMAN" to reduce the possibility
that users would think they can edit the diagrams directly within the tool. Lastly, the
guideline Unlabeled Gateways was split into its component rules in the report with
two new headers, Unlabeled Splitting XOR Gateways and Labeled Joining XOR Gate-
ways. This was to highlight the latter which participants did not seem to be aware of
during their assessment of the models.

Some suggestions were not taken because they were not possible to implement.
For example, although the green bpmn.io logo was mentioned by many participants
as confusing, I am not allowed to remove it20. Also, there does not seem to be a means
within SAPUI5 of inserting icons inline with the text, so I could not implement that
suggestion, either. Other suggestions were possible to implement but required greater
effort than the changes already made. For example, it is possible to do overlays in
bpmn-js which would allow me to mark changes in the corrected model. This and a
few other examples will be discussed further in Section 5.2, Suggested Future Work.

The results of the fourth iteration as well as the usability tests were presented to
Vostura. There were comments about making the layout of the start screen of the tool
more SAP-like, but it was agreed to leave it as it is until a future version of the tool.

20https://bpmn.io/license/ [Accessed: 2019-08-16]

40

https://bpmn.io/license/

4.4 Iteration 4: Model Visualization and Second Usability Tests

Figure 20: Tool after "Validate and Correct" button is selected, before the second
round of usability tests

Figure 21: Tool after "Validate and Correct" button is selected, after the second round
usability tests; note that the app now scrolls down to the corrected diagram

41

5. Conclusions

5 Conclusions

5.1 Summary of Results

The goal of this thesis was to implement a tool to improve the readability and usability
of BPMN diagrams created in SAP Solution Manager (SolMan) by reviewing models
based on a selection of guidelines and correcting any violations to them. The idea
for the product came from Vostura GmbH, an SAP consulting company that focuses
on Application Lifecycle Management (ALM) and SAP Solution Manager (SolMan).
I started by going through related literature to determine what guidelines currently
exist for the improvement of the syntactic and pragmatic quality of BPMN models.
Then I formulated selection criteria in order to determine which of the pre-existing
guidelines would be implemented in the tool. After using the criteria to select a set
of guidelines, I determined that the tool would take the form of a web application
built upon the SAPUI5 framework. I also decided that implementing the validation
guidelines from scratch was more advantageous than integrating an existing valida-
tion library. This would provide flexibility in terms of dealing with peculiarities of
working with BPMN files exported from SolMan, as well as with any future changes
that would be made to it. I started development of the application with a proof-of-
principle prototype which allowed me to see if my implementation plans were feasi-
ble. Upon successfully implementing the basic functionality of the app, I proceeded
with an iterative and incremental development of the tool. Working in iterations al-
lowed me to assess the product frequently, review my progress and plan the next
steps with the product owners from Vostura, and adapt to various challenges and
changes. Two usability tests were run during the product’s development, one with
employees of Vostura who have an advanced knowledge of BPMN, and another with
students of Freie Universität Berlin who had zero knowledge of BPMN. Defect tests
were also conducted to find and fix errors in programming that lead to defects.

In the end, I successfully developed the proposed tool for the validation and cor-
rection of BPMN models. While it is by no means a complete product, it is a fully
functional prototype that contains the core functionality expected from a full applica-
tion. The tool can validate and correct horizontal models with one pool and one or
multiple lanes based on seven guidelines: Absence of Start Events (no start events in
the model), Absence of End Events (no end events in the model), Unlabeled Sequence
Flows (sequence flows from splitting XOR gateways have no labels), Mixed-use Gate-
ways (gateways display both splitting and joining behavior), Unlabeled Gateways
(splitting XOR gateways have no labels, while joining XOR gateways have labels),
Unlabeled Events (events have no labels), and Absence of Explicit Gateways (non-
gateway elements display splitting or joining behavior). The application displays the
original diagram when a BPMN file is uploaded, and upon clicking the "Validate and
Correct" button, the diagram with all the corrections is displayed, and a report detail-
ing whether or not the guidelines were violated and what corrections were performed
is generated and displayed. One can then download the modified BPMN file so it can
be imported into SolMan, and start the process over with a new file.

43

5. Conclusions

5.2 Suggested Future Work

As I mentioned earlier, the BPMN validation and correction tool is not necessarily
a complete product. In this section, I discuss some additional features that can be
implemented as well as next steps that can be performed in order to turn this working
prototype into a market-ready product.

• More guidelines and wider scope. I initially considered a total of 61 different
guidelines, as mentioned in Section 3.1. Seven were implemented for this thesis.
This is lower than the current lowest level of support provided by a commercial
BPMN modeling tool, as discussed in Related Work, so adding more guidelines
would be a good idea, even if not every guideline’s violations can be easily or
automatically fixed. In addition, algorithms to analyze text can be integrated in
order to implement guidelines that deal with content, such as labels on splitting
exclusive gateways being in the form of a question or interrogative phrase. The
tool also currently only works with horizontal models with one pool. Business
processes can also be modeled vertically, and while most of the current valida-
tion checks and some of the corrections, such as those regarding missing labels,
work with vertical models, some of the correction algorithms, in particular those
where new elements must be added into the model, need to be adjusted for such
models. Moreover, it is possible to create models with multiple pools in SolMan.
The current validation and correction functions would also have to be adjusted
for such cases.

• Configurability. As discussed in Section 4.2.4, the product owner Vostura sug-
gested adding the ability to allow users to configure the tool. One thing to con-
figure would be how a particular violation of a guideline would be corrected.
For example, if a start event is missing, then the user could choose how to deter-
mine which is the first element of the process model; or, the user could decide
what kind of gateways would be added when the guideline Absence of Explicit
Gateways is violated. Another option suggested by the company would be the
ability to ignore certain guidelines when reviewing or fixing a model. Also, one
participant in the second round of usability tests suggesting hiding guidelines
with no violations in the report, which could be included as another option that
users can configure themselves. The goal of configurability would be to allow
users more control over their experience and over the corrections performed, as
at the moment, they are limited by what I suggest as the best means to correct
the problems.

• More obvious indication of changes to diagrams. As mentioned in Section
4.4.4, the participants of the second usability test suggested making it clearer
what and where the corrections performed are on the corrected diagram. One
possibility is adding annotations to the displayed diagram with corrections.
bpmn-js supports the use of HTML overlays to display notes and colored an-
notations to a BPMN diagram21. This could be used to draw the user’s attention
to changes in the corrected diagram.

21https://github.com/bpmn-io/bpmn-js-examples/tree/master/overlays [Accessed: 2019-08-23]

44

https://github.com/bpmn-io/bpmn-js-examples/tree/master/overlays

5.2 Suggested Future Work

• Add zoom and reposition buttons to diagram displays. Another suggested
feature from the second round of usability tests is the addition of buttons to be
able to zoom in and out as well as reposition a displayed diagram. This came
from comments and observations that there were difficulties zooming in and
out of the BPMN diagrams displayed in the tool. This feature already exists in
the SolMan modeling tool, and it would be helpful to add this to the BPMN
validation and correction tool. There is an open source example of how to
implement this22, but time needs to be taken in order to properly implement
and test this feature.

• Allow direct edits to the corrected diagram. One participant in the second
usability test tried editing the diagram directly from within the application.
While this was due to a misunderstanding of the generated labels, this is a valid
feature to add to the tool. While implementing a full-featured modeling tool
is not the goal of this product, allowing the user to immediately make some
changes, such as specifying the labels to be added, could be a good idea.

• Proper integration with SAP Solution Manager. In Section 1.2, I mentioned
that "integration" in this thesis meant not having to download special software
or use a non-SAP web application for the purposes of model validation, and that
this tool can be opened directly from within SAP. As of this time, the process
of being able to open the app directly from SAP is being undertaken by Vos-
tura. However, more interesting and challenging would be a better, more direct
integration with SAP Solution Manager. Currently, users would have to export
a model as a BPMN file from SolMan, upload this file into the app, download
the corrected file, then import the file with corrections back into SolMan. The
goal is to be able to review BPMN models without the need to export them but
to open them directly from within the app, and to be able to save these changes
without having to download and import the file. There is an API which allows
one to access models in SolMan, but this returns a JSON23 file rather than an
XML file24. A parser to transform the JSON into the same XML that the SolMan
exporter would create and then back again would be needed. In addition, the
actual means of calling the API does not seem to be documented online.

• More usability tests. The usability tests performed as part of this thesis were
good compromises given the time and availability constraints. However, this
does not paint a complete picture of how the average user would use the tool.
One example is how the test participants interacted with the validation and
correction report. On one hand, the Vostura employees from the first round
of testing may have been so knowledgeable in BPMN that they did not need
to thoroughly read the report. On the other hand, the Freie Universität Berlin
students from the second round of testing may have had so little knowledge in
BPMN that they had to spend more time reading the report. Those expected

22https://github.com/prayerslayer/bpmnio-zoom-control-example [Accessed: 2019-08-23]
23JavaScript Object Notation, a human-readable file format for transmitting data objects as attribute-

value pairs.
24https://wiki.scn.sap.com/wiki/display/SM/Files [Accessed: 2019-08-23]

45

https://github.com/prayerslayer/bpmnio-zoom-control-example
https://wiki.scn.sap.com/wiki/display/SM/Files

5. Conclusions

to use the product likely have a BPMN familiarity level somewhere in between.
Also, as one participant in the second round of tests mentioned, it is possible
that some users may not be interested in the report, only in the promise that the
resulting diagram has been corrected of its various issues. The diagrams used
in the usability tests would also have to be improved. I discovered that using
generic diagrams, where the labels used had no real semantic meaning, was
confusing to both groups. Diagrams should be used that more closely resemble
those that would be made by users of the application. Finally, it would be
interesting to examine potential learning effects more closely, if it is possible to
improve one’s modeling practices through the use of this app.

5.3 Personal Lessons

Using an iterative and incremental development process allowed me to assess myself
more frequently. Because I gave myself time at the end of each iteration to step back
and go over things, it gave me the opportunity to identify behaviors that I could
improve for future iterations, and ultimately, for future projects. For example, when
the first iteration started, I directly started programming almost blindly. I then had
to keep reworking my code as I would miss important things while coding. I learned
that taking time to think things through and describe the algorithm to be implemented
on paper through pseudocode resulted in better code and surprisingly less time for
implementation, as I was using my time more efficiently.

In terms of non-technical, non-programming skills, working on the thesis gave me
a better insight on documentation. It was not just about adding comments to code,
although that is also part of documentation. I kept a personal journal of decisions
made and progress on the development of the tool, including small changes and fixes
as well as problems I had faced. While this was helpful in writing my thesis paper,
this was even more helpful when taking stock of what the application can and can not
do, and helped in terms of providing information for the handover of the project to
the company. Personally, it was also a good way of seeing that I was making progress,
even if it felt that I was not doing enough at times, or things were not improving.

In addition, perhaps the biggest personal lesson working on this thesis and the
application is regarding personal productivity and work ethic, particularly in difficult
situations. While it was easy to keep programming and working when I was "in the
flow", when I experienced roadblocks, such as a bug I could not seem to fix, trying
to force my way past it did not work most of the time. Instead, what worked was
taking a break, either focusing on some other aspect of the program or even stopping
completely for the day, then returning to it at another time. For me personally, it is
more unproductive to keep going when one is faced with mounting frustration. I then
found ways apart from coding to be productive during these times, such as improving
my documentation or performing additional tests.

46

Bibliography

Bibliography

[1] OMG, “BPMN Specification - Business Process Model and Notation.” http://
www.bpmn.org/. Accessed: 2019-04-22.

[2] O. I. Lindland, G. Sindre, and A. Solvberg, “Understanding quality in conceptual
modeling,” IEEE software, vol. 11, no. 2, pp. 42–49, 1994.

[3] M. Geiger and G. Wirtz, “Bpmn 2.0 serialization-standard compliance issues and
evaluation of modeling tools,” Enterprise Modelling and Information Systems Archi-
tectures (EMISA 2013), 2013.

[4] M. Geiger, P. Neugebauer, and A. Vorndran, “Automatic standard compliance
assessment of bpmn 2.0 process models.,” in ZEUS, pp. 4–10, 2017.

[5] A. Correia and F. B. e Abreu, “Adding preciseness to bpmn models,” Procedia
Technology, vol. 5, pp. 407–417, 2012.

[6] J. De Bock and J. Claes, “The origin and evolution of syntax errors in simple se-
quence flow models in bpmn,” in International Conference on Advanced Information
Systems Engineering, pp. 155–166, Springer, 2018.

[7] M. Zur Muehlen and J. Recker, “How much language is enough? theoretical and
practical use of the business process modeling notation,” in Seminal Contributions
to Information Systems Engineering, pp. 429–443, Springer, 2013.

[8] I. Moreno-Mones de Oca and M. Snoeck, “Pragmatic guidelines for business
process modeling,” tech. rep., KU Leuven, Faculty of Economics and Business,
Department of Decision Sciences and Information Management, 2014. Available
at SSRN 2592983: https://ssrn.com/abstract=2592983.

[9] I. M.-M. de Oca, M. Snoeck, H. A. Reijers, and A. Rodríguez-Morffi, “A system-
atic literature review of studies on business process modeling quality,” Informa-
tion and Software Technology, vol. 58, pp. 187–205, 2015.

[10] M. Snoeck, I. M.-M. de Oca, T. Haegemans, B. Scheldeman, and T. Hoste, “Testing
a selection of bpmn tools for their support of modelling guidelines,” in IFIP
Working Conference on The Practice of Enterprise Modeling, pp. 111–125, Springer,
2015.

[11] F. Corradini, F. Fornari, S. Gnesi, A. Polini, B. Re, and G. O. Spagnolo, “Qual-
ity assessment strategy: Applying business process modelling understandability
guidelines,” 2017.

[12] F. Corradini, A. Ferrari, F. Fornari, S. Gnesi, A. Polini, B. Re, and G. O. Spagnolo,
“A guidelines framework for understandable bpmn models,” Data & Knowledge
Engineering, vol. 113, pp. 129–154, 2018.

47

http://www.bpmn.org/
http://www.bpmn.org/
https://ssrn.com/abstract=2592983

Bibliography

[13] T. Rozman, G. Polancic, and R. V. Horvat, “Analysis of most common process
modeling mistakes in bpmn process models,” in 2008 BPM and Workflow Hand-
book, University of Maribor Slovenia, 2008.

[14] B. Silver, BPMN Method and Style, with BPMN Implementer’s Guide. Cody-Cassidy
Press, 2011.

[15] I. Femia, “#HTML5, #openui5, #sapui5 and #sapfiori... How are they work-
ing together?,” Oct 2015. Available at https://blogs.sap.com/2015/10/
14/html5-openui5-sapui5-and-sap-fiori-how-are-they-work-together/.
Accessed: 2019-08-21.

[16] bpmn io, “bpmn-io/bpmn-js: A BPMN 2.0 rendering toolkit and web modeler.”
https://github.com/bpmn-io/bpmn-js. Accessed: 2019-08-01.

[17] V. Farcic, “Software development models: Itera-
tive and incremental development,” Jan 2014. Avail-
able at https://technologyconversations.com/2014/01/21/
software-development-models-iterative-and-incremental-development/.
Accessed: 2019-08-22.

[18] C. Larman, Agile and iterative development: a manager’s guide. Addison-Wesley
Professional, 2004.

[19] W. E. Deming, The new economics for industry, government, education. MIT press,
2018.

48

https://blogs.sap.com/2015/10/14/html5-openui5-sapui5-and-sap-fiori-how-are-they-work-together/
https://blogs.sap.com/2015/10/14/html5-openui5-sapui5-and-sap-fiori-how-are-they-work-together/
https://github.com/bpmn-io/bpmn-js
https://technologyconversations.com/2014/01/21/software-development-models-iterative-and-incremental-development/
https://technologyconversations.com/2014/01/21/software-development-models-iterative-and-incremental-development/

A. Appendix

A Appendix

A.1 Questions of the Usability Tests

What follows are the guide questions I used when performing the usability tests.
While I allowed for spontaneous questions based on comments and behavior during
the tests, these questions were mainly for my use to remind myself to ask them as
well as to make sure my questions were more open-ended and not simply answerable
by "yes" or "no".

As the usability tests were performed in German, both the English and German
translations of the questions are provided here.

Question 5 was not asked during the second usability tests as the participants
were unfamiliar with SAP Solution Manager.

1. How would you rate your proficiency with BPMN? / Wie bewerten Sie Ihre
BPMN-Kenntnisse?

0 - no proficiency / keine BPMN-Kenntnis

1 - low proficiency / niedrige BPMN-Kenntnis

2 - medium proficiency / mittlere BPMN-Kenntnis

3 - high proficiency / fortgeschrittene BPMN-Kenntnis

2. How are the instructions? (Are they clear/easy to understand/confusing?) /
Wie finden Sie die Anleitung? (Ist sie klar/einfach zu verstehen/verwirrend?)

3. Check the following BPMN diagram. What would you say was wrong with
the model? / Überprüfen Sie das folgende BPMN Diagramm. Was ist falsch an dem
Modell?

4. Run the tool to validate and correct the model. How do you find the descriptions
of the inspected guidelines? (Are they clear/easy to understand/confusing?)
Are the displayed errors in the model what you expected? How do you find the
actions taken to fix the model? (Are they reasonable?) / Führen Sie das Tool aus,
um das Modell zu überprüfen und korrigieren. Wie finden Sie die Beschreibungen der
geprüften Richtlinien? (Sind sie klar/einfach zu verstehen/verwirrend?) Entsprechen
die angezeigten Fehler im Modell Ihren Erwartungen? Wie finden Sie die Maßnahmen
zur Korrektur des Modells? (Sind sie nachvollziehbar?)

5. Import the corrected model to SAP Solution Manager. How do you find the cor-
rected diagram? / Importieren Sie das korrigierte Modell in SAP Solution Manager.
Wie finden Sie das korrigierte Diagramm?

6. How do you find the tool? What do you like about it? What does the tool do
well? What can be improved? Are there any features you would like to see in
the tool? / Wie finden Sie das Werkzeug? Was mögen Sie daran? Was macht das
Tool gut? Was kann noch verbessert werden? Gibt es Funktionen, die Sie im Tool sehen
möchten?

49

A. Appendix

A.2 Models Used for the Usability Tests

Figure 22: Usability test diagram 1

Figure 23: Usability test diagram 2

Figure 24: Usability test diagram 3

Figure 25: Usability test diagram 4

50

	Acknowledgement
	Introduction
	Motivation
	Goal
	SAP Solution Manager
	Business Process Model and Notation
	Vostura GmbH
	Outline

	Related Work
	Solution Approach
	Selection of Guidelines to be Implemented
	Selection Criteria
	Guidelines Selected

	Architecture
	Implementation Environment
	Integration of Existing Libraries or Ground-Up Development

	Implementation Strategy
	Proof-of-Principle Prototype
	Goals
	Challenges
	Results

	Implementation and Evaluation
	Iteration 1: Initial Implementation
	Goals
	Challenges
	Results
	Evaluation

	Iteration 2: Modularization
	Goals
	Challenges
	Results
	Evaluation

	Iteration 3: Design Polishing and First Usability Tests
	Goals
	Challenges
	Results
	Usability Tests and Evaluation

	Iteration 4: Model Visualization and Second Usability Tests
	Goals
	Challenges
	Results
	Usability Tests and Evaluation

	Conclusions
	Summary of Results
	Suggested Future Work
	Personal Lessons

	Bibliography
	Appendix
	Questions of the Usability Tests
	Models Used for the Usability Tests

