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Abstract

An alternative way of scheduling jobs inside a High Performance Computing (HPC) node
is by making use of a plan-based scheduler. A plan based scheduler, as opposed to traditional
schedulers, which are tailored for responsiveness rather than performance, assigns resources for
a job according to a prediction model. Such a model is at it’s core a graph-like structure that
describes the precedence and distribution across threads of resource requirements. As HPC
programs are of extensive nature, their models may scale up in size accordingly. The scope
of this thesis is to formalize some aspects of the model and to provide insights into possible
methods for reducing its size. A subset of these methods is discussed and implemented as a
C library. The effectiveness is evaluated firstly on an abstract level, where the interim results
of each method are discussed, and secondly on a practical level, where the qualities of the
compressed model are compared to those of the original. The test results show that even
simple implementations of the discussed methods can find a considerable amount of patterns
in the model and that the compression rates can compete with and even outperform those of
traditional file compression.





Statutory Declaration

I hereby declare that I have developed and written the enclosed Bachelor’s thesis and accompanying
code completely by myself, and have not used sources or means without declaration in the text.
Any thoughts from others or literal quotations are clearly marked.

The Bachelor’s thesis was not used in the same or in a similar version to achieve an academic
grading or is being published elsewhere.

Berlin (Germany), January 13, 2020

Mihai Renea



Contents

1 Introduction 1
1.1 The Program Prediction Model (PPM) . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 PPM as DAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 PPM as tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 PPM comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Job comparison (segment comparison) . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Model preservation 4
2.1 Content preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Structural preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Model compression 6
3.1 Structural compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 Aimed discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Compressed Prediction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Segment compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Implementation 9
4.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Model representation and compression . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 File format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.5 Functional tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Evaluation 11
5.1 Model evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.1.1 Segment evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.1.2 Structure evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.2 Final result evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6 Conclusion and future work 14

A Appendix 16



1 Introduction

Most of the present day HPC systems use traditional schedulers to schedule program workload
within a node. While convenient, it is hard to predict a program’s resource requirements over its
lifetime, leading to inefficient allocation of the resources. An alternative approach is the use of
a plan-based scheduler, where the execution of the program follows a predefined plan (prediction
model). Such a model describes the behavior of a HPC program in terms of precedence and
distribution across threads of so called tasks. The model has the form of a Directed Acyclic Graph
(DAG), where tasks are weighted nodes, representing resource requirements (CPU instructions for
calculation or bytes for communication).

1.1 The Program Prediction Model (PPM)

The prediction model’s purpose is to provide both spatial and temporal information about a
program’s behavior and its resource requirements. For a better intuition, we will first take a look
at an example model. Afterwards, we will see how it can be simplified and formalized.

1.1.1 PPM as DAG

In abstract terms, at any moment in time, a thread in a HPC program can only do one of three
things: execute a so called task, fork a child thread or join another thread (either as parent or child).
A task can be a communication task or calculation task. Each task has a resource requirement:
CPU instructions for calculation or bytes for communication. A calculation task is a portion of
a thread that is bounded by a system call. The system call is done for I/O (thus marking the
beginning of a communication task) or for a fork/join. A communication task ends after the system
call that evoked it returns. For a more in-depth explanation of these mechanics from the scheduler’s
perspective, see [Gla19]. In fig 1, we can observe how the task precedence and distribution across
threads can be modeled as a DAG.

1.1.2 PPM as tree

The PPM can also be modeled as a tree. The greatest advantage is lower algorithmic complexity
when mining for patterns: firstly, trees are easier to handle than DAGs; and secondly, generic DAG
mining is NP-complete, while tree mining can be accomplished in polynomial time[WDW+08].
However, in order for this reduction to work, the fork-join model must be restricted. We must
think of the forks and joins in the form of Dijkstra’s PARBEGIN and PAREND statements [Dij68]
rather than the traditional UNIX system calls. They ensure the following:

� multiple forks and joins are either sequential or nested (like pushes and pops on a stack), but
not crossed, as illustrated in fig 2. Such a situation can be easily resolved without breaking
the task precedence by deferring the problematic fork.

� a child thread can only join its parent.

We now observe two properties of the model that lead to a simpler definition using ternary
trees and sets:

� for a fork-join sequence, the join vertex J can be removed, as it is implied by the vertex
following J (let’s call it H). The fork vertex F can be now linked directly to H. This reduces
the graph’s structure to a ternary tree.

� a sequence of task vertices is a simply linked list, which can be modeled as a totally ordered
set.
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Figure 1: Example of a PPM: as a DAG (left)
and as a tree (right). The colored arrows rep-
resent the threads.

Figure 2: Example of crossed forks (left),
and their serialization by fork deferring
(right).

Definition 1. A PPM is a ternary tree with three types of vertices:

� Void vertex V .

� Segment vertex S, with next(S) another vertex and job(S) = {T1, T2, ..., Tn} a totally ordered
set, called job. For each task Ti, type(Ti) ∈ {com, calc} determines the type and weight(Ti) ∈
R+ the resource requirements. The ordering relation for the job is determined by the task
execution order.

� Inosculation1 vertex I, with next(I) another vertex and parent(I) and child(I) other non-
void vertices.

The next() function denotes the precedence relation between vertices, starting from the root of the
tree. Inside a segment vertex S, the execution of the job precedes the descend into the next(S)
vertex. Inside an inosculation vertex I, the descends into the parent(I) and child(I) vertices
precede the descend into the next(I) vertex. Note that there is no ordering relation between the
parent(I) and child(I) vertices (parallel branches). The void vertex has no functions defined for
it, as its only purpose is termination.

Remark. The reason the tasks are encapsulated into a segment and not represented as vertices
in the PPM tree is to break down the compression of the graph in two categories: the structural
compression, which deals with the fork-join models in the graph; and the contents layer, which
handles the segment compression. Also, since a segment is just a sequential arrangement of tasks,
it can be handled as a string, which opens up a wide range of possibilities for compression.

1Inosculation is a natural phenomenon, in which branches of a tree merge together.

2



1.2 PPM comparison

For pattern mining inside the model tree, some ways of comparing parts of the model have to be
defined.

Definition 2. For two PPM trees rooted at the vertices G and H, the PPM similarity relation
G ≈ H is true (i.e. the PPMs are similar), iff all the following conditions are met:

� G and H share the same vertex type and next(G) ≈ next(H)

� if G and H are inosculations, parent(G) ≈ parent(H) and child(G) ≈ child(H)

Definition 3. For two PPM trees rooted at the vertices G and H, the PPM equivalence relation
G ≡ H is true (i.e. the PPMs are equivalent), iff all the following conditions are met:

� G and H share the same vertex type and next(G) ≡ next(H)

� if G and H are inosculation vertices, parent(G) ≡ parent(H) and child(G) ≡ child(H)

� if G and H are segment vertices, their jobs are equivalent (see 1.3)

Intuitively, two PPM’s are similar, iff they structurally overlap, but no requirements have to
be met about the segments. Equivalence also requires the segment jobs to be equivalent.

1.3 Job comparison (segment comparison)

Remark. As stated in 1.1.2, segments will be dealt with separately from the rest of the graph. For
that reason, segment vertices serve solely as containers for their jobs. To keep the term count low,
wherever the scope is clear, the word segment will be used for both the vertex in the tree and the
corresponding job.

Definition 4. For a segment S, a requirement list is a set

Qq = {w | weight(T ), with T ∈ {T | T ∈ job(S) ∧ type(T ) = q}},

with q ∈ {calc, com}.

A requirement list is also a set of all the weights of either communication or calculation tasks
of a segment.

Definition 5. Two segments Sa, Sb are similar, iff |job(Sa)| = |job(Sb)| and Ssummary(Sa, Sb) is
true and for each Tai ∈ job(Sa), Tbi ∈ job(Sb), type(Tai) = type(Tbi). Ssummary is the segment
summary comparison function, currently defined as following:

Ssummary(Sa, Sb) =

{
1, if

max(µ(Qqa ),µ(Qqb
))

min(µ(Qqa ),µ(Qqb
)) < µmax and

max(σ(Qqa ),σ(Qqb
))

min(σ(Qqa ),σ(Qqb
)) < σmax

0 otherwise

with q ∈ {calc, com} and Qqa , Qqb requirement lists for Sa, Sb respectively, µ is the arithmetical
mean, σ is the standard deviation and µmax, σmax > 1.

Definition 6. Two segments Sa and Sb are equivalent, iff |job(Sa)| = |job(Sb)| and ∀Tai ∈
job(Sa), Tbi ∈ job(Sb), type(Tai) = type(Tbi) ∧ weight(Tai) = weight(Tbi).
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2 Model preservation

The model’s preservation is a subject to the trade-off between compression effectiveness and reliable
scheduling. In this section, metrics for both structural and content preservation are discussed and
defined. However, finding thresholds for what may or may not be considered reliable is outside the
scope of this thesis.

2.1 Content preservation

The content compression focuses on segment compression. When looking for patterns inside of
or between segments, it becomes clear that task comparison cannot follow directly because of
variations in their weights, so a simplification is needed:

1. Set all the task weights to a fixed value, possibly a mean value across a part of or the whole
model. This would reduce the problem complexity by only having to deal with two types
of objects. However, from the scheduler perspective, there is not much relevant information
left after reconstruction: while the total resource costs are known, no information about the
execution/communication requirements at a specific moment is available, which defeats the
purpose of plan based scheduling.

2. For a requirement list Qq and an alphabet Σ with |Σ| ≤ |Qq|, define a bucketing function
B : Qq 7→ Σ. The comparison function would then run on a string of alphabet Σ. The
classifying function then has to be tuned to a compromise between reduced alphabet size
and maximal information loss that would still lead to reliable scheduling.

Choosing the task classifying function There are multiples ways of defining the classifying
function that need further inspection:

1. Naive: fixed values for alphabet size and weight bounds for each letter. B would then simply
map to the letter in whose bounds a task’s weight falls.

2. Fixed: fixed alphabet size, but B is at least aware of minimum, maximum and expected task
weights.

3. Dynamic: Dynamically compute alphabet size and bounds. Might be slow and more intricate,
but reliable. To improve speed, it could be run on a sample set of tasks weights.

Defining the task classifying function For the scope of this thesis, a simple dynamic buck-
eting was implemented. The number of buckets is the size of the alphabet Σ.

Definition 7. A bucket is a set B ⊆ Qq, where

∀w ∈ Qq\B, w < min(B) ∨ w > max(B)

A bucketing Σ = {B1, B2, ..., Bn} is a totally ordered set of buckets, where⋃
Bi∈Σ

Bi = Qq and ∀Bi, Bi+1 ∈ Σ, max(Bi) < min(Bi+1)

For a bucketing Σ, its dictionary is a data structure with following operations:

key(W ) = k, with min(B1) ≤W ≤ max(Bn) and ∃Bk ∈ Σ so that min(Bk) ≤W ≤ max(Bk)

value(k) = W , with 1 ≤ k ≤ |Σ| and W = µ(Bk)

where µ is the arithmetical mean of the weights in a bucket.

The dictionary is used to assign values to or retrieve values from a bucketed segment.
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Definition 8. For a set of weights W , its badness function bad : W 7→ R, with bad(W ) = [0...1]
is defined as:

bad(W ) =
σ(W )

µ(W )
,

with σ is the standard deviation and µ the arithmetical mean.

The badness function is expressed relatively to the mean of the set because the larger the values
in the set are, the more they should naturally drift from each other. Setting an absolute reference
value would lead to an unfair distribution of buckets towards the larger values.

Definition 9. For a badness threshold k ∈ R, k = (0, 1] and a set of weights W , the bucketing
function B : W 7→ Σ is then defined as:

B(W ) =

{
{W}, if bad(W ) ≤ k
{B(W1) ∪ B(W2)} otherwise

with W1 = {w | w ∈W ∧ w < µ(W )},
W2 = {w | w ∈W ∧ w ≥ µ(W )}

Alternatively, σ can be replaced with another statistical function that evaluates how spread
out the values are. Researching the fitness of such functions is, however, outside the scope if this
thesis.

Tweaking the bucketing function

Definition 10. The badness of a bucketing Σ is defined as the average of the badness of its
buckets. Formally:

bad(Σ) =
1

|Σ|
∑
Bi∈Σ

bad(Bi)

Tuning the classifying function is a matter of adjusting its badness threshold k. The tuning
criteria are the size of the bucketing and its badness. A large bucketing will deliver more accurate
prediction values for the scheduler, but could hinder the pattern recognition required for compres-
sion. A small one on the other hand will be easier to compress (less symbols) but could be of
little use for the scheduler. The tuning could be static - fixed before program run (possibly based
on some meta-information about the model) - or dynamic, changing its value based on feedback.
Settling for a completely different bucketing function is also possible. For the scope of this thesis,
the threshold will remain fixed. Nevertheless, the tweaking could be an interesting topic for future
research.

2.2 Structural preservation

A part of the compression relies on the ability to compress the model tree (the structure). The
tree represents the precedence of the tasks and their distribution across threads. A scheduler
may be able to tolerate slight changes in resource requirements for individual tasks because of the
compensating effect, as discussed in 5.1.1. However, misplacement of entire segments would be
hard to handle, at least for the design of the scheduler (see [Gla19]) the models are thought for.
Therefore it is crucial that the structural integrity of the model remains untouched.
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3 Model compression

The prediction model compression is approached on two levels: graph compression, or structural
compression, where subgraphs are compared for similarity; and segment compression, or content
compression, where inter-segment and intra-segment patterns are searched for. It is performed in
multiple steps, in the following order:

1. Aimed discovery: similar sub-tree discovery in the scope of segment compression.

2. Inter-segment compression.

3. Intra-segment compression.

4. Bulk discovery: similar sub-tree discovery in the scope of graph compression.

3.1 Structural compression

The discovery of similar subgraphs is important for two reasons:

1. Aimed discovery: Similar sub-trees provide good candidates for equivalent segments, thus
aiding in segment compression, as it will be discussed in 3.3. This process focuses on the
quality of the graphs rather than on quantity, that is, they provide good candidates for
segment compression.

2. Bulk discovery: This process focuses entirely on finding as much similarities as possible. For
similar graphs, their structure can be stored only once, with their contents (segments) stored
separately. For the scope of this thesis, this process was not implemented, as the test results
have shown that the aimed discovery already delivers decent tree compression.

Remark. The reason for having two type of sub-tree discovery is that, unless they are at specific
places in the graph, any two similar graphs do not necessarily provide good segment compression
candidates, thus bloating the pool of candidates.

3.1.1 Aimed discovery

PPM graphs have a relatively simple structure, with spots of high probability for recurring patterns.
Determining where these spots are is a matter of exploiting known behavior of HPC programs.
For example, after a fork, there is expected that (at least a part of) the concurrent threads behave
similarly (worker threads). Alternatively, the compression algorithm could be fed with a meta-
model, providing hints about such hot spots, but researching this topic is out of the scope of this
thesis.

The search is done in multiple iterations, with each iteration searching for different classes of
patterns. The choice of patterns is what seems to cover generic cases of HPC programs and is only
meant to serve as a proof of concept. In the future, the pattern choice can be further improved
and tailored for different classes of HPC programs.

1. Symmetric inosculations: in a symmetric inosculation, the parent and child branches are
similar PPMs. This is typical behavior for worker threads doing similar work.

2. Recursively-symmetric inosculations: one limitation of the symmetric inosculations is that
in the case of nested inosculations, they can only find similarities within inosculations that
contain a number of threads that is a power of two. This approach tries to recursively find
the branch with a lower depth in the other branch. A number of worker threads that is not
a power of two reflects this behavior.

3. Repetition: After an inosculation joins, a following one that has the same structure could
also be a hint for repetitive work.
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3.2 Compressed Prediction Model

Figure 3: An example of a PPM,
before and after the insertion of a
wrapper.

For the compression of the prediction model, a new type of
vertex is added to the model, namely the wrapper vertex. A
wrapper is just a container for a PPM. Because the PPM
similarity is defined recursively until the leaves of the tree,
it is not possible to compare parts of the graph that do not
terminate.

Definition 11. A wrapper vertex W is an addition to the
three vertex types defined in 1.1.2, with wrapped(W ) and
next(W ) other non-void vertices. The descend into the
wrapped(W ) vertex precedes the descend into the next(W )
vertex.

Intuitively, a wrapper vertex is like a segment vertex, with
the only difference that it encapsulates a PPM tree instead of
a job. The usefulness of the wrapper vertex is illustrated in fig.
3. The trees rooted at the hatched vertices are by definition
2 not similar, since one includes the other. By inserting the

wrapper, the two trees are now similar.

Remark. Because wrappers do not change the structure of the graph semantically, the similarity
and equivalence functions were not redefined to include them. Instead, it is implicitly assumed
that, when a wrapper W is encountered, it will temporary be removed and wrapped(W ) will be
concatenated with next(W ). This is, in fact, how the implementation manages the wrappers.

After the similarities have been established, the compression is done in three steps:

1. Job array creation: So far, each segment vertex holds its job. The first step in the prepara-
tion for compression is to store all jobs in an array, by traversing the tree in a predetermined
manner. The tree traversal technique of choice is DFS-Pre-Order, as described in the follow-
ing pseudo-code snippet:

traverse(vertex, jobArr, index):

switch (type(vertex)):

case VOID:

return index

case SEGMENT:

vertexAction(vertex, jobArr, index)

index := index + 1

break

case INOSCULATION:

index := traverse(parent(vertex), jobArr, index)

index := traverse(child(vertex), jobArr, index)

break

case WRAPPER:

index := traverse(wrapped(vertex), jobArr, index)

index := traverse(next(vertex), jobArr, index)

return index

2. Segment job removal: The jobs from each segment vertex can now be safely removed. Re-
moving the jobs from the segment vertices renders similar subtrees, by definition, equivalent.

3. Subtree merging: In the last step, the subtrees that form an equivalence class are reduced
to only one representative.

The decompression is achieved in a series of steps analogue to those above, in reversed order.
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Figure 4: The tree model after each step in the compression. Note that the process is reversible.

3.3 Segment compression

Inter-segment compression This process searches for equivalent segments. As explained in
2.1, the tasks in the segments have to be bucketized before comparing them for equivalence.

There are two possibilities for bucketing:

� A bucketing is created for each segment separately. The advantage of doing so is that the
bucketing dictionaries will be better tailored, thus improving the accuracy. The drawback
is, however, that there is a high chance of inducing false-negatives: even slight differences
in weights have the chance of creating different dictionaries, which will implicitly render the
segments not equivalent. Also, for models with short segments, this could lead to bloating,
since each segment has it’s own dictionary.

� A bucketing is created for a pool of candidates for equivalent segments. Instead of bucketing
each segment separately, the requirement lists of the candidates are concatenated and a
bucketing is created for it. While being less accurate, it also decreases the chance of false
negatives, because all the segments in the group use the same dictionary. Since the scope of
this process is to find equivalent segments, this is method of choice. It also has the added
benefit that a dictionary is stored for each pool instead for each segment separately.

First step in the segment compression is therefore to perform the aimed discovery, as described
in 3.1.1. This delivers segment groups with good odds of being similar. Each group is then split in
clusters of similar segments. These clusters are the aforementioned pools of candidates for equiv-
alent segments. A bucketing is then created for each pool.
The bucketized segments in each cluster can now be compared for equivalence. Only a representa-
tive of each equivalence class is then needed to be stored.

Remark. As indicated in 3.1.1, the candidates for equivalent segments are usually parallel or se-
quential worker threads. The ability to extract equivalent segments from them is thus highly
dependent on the type of workload. The more the workload differs between workers, the less effec-
tive the inter-segment compression will be. However, if there are at least many similar segments,
having to store the dictionaries only once is still an improvement.

Intra-segment compression This procedure searches for recurring patterns inside one segment.
As the segment at this point is basically a string, regular string compression algorithms are good
candidates. However, the segment also has to be long enough in order to avoid bloating. For
the scope of this thesis, this step is not performed, since string compression is already a highly
researched topic.
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4 Implementation

The methods presented so far were implemented as a C library. As the requirements for the
implementation are not clear yet, the library is a collection of loosely coupled methods.

4.1 Features

The library offers so far:

� A way to extract the model from the original model file.

� An implementation for the aimed discovery techniques presented in 3.1.1.

� An implementation for the inter-segment compression.

� The possibility to export both the compressed and uncompressed model as binary files.

� Methods for managing the model tree. These are used for the structural compression algo-
rithms, and serve as an important tool for developing further tree mining algorithms.

4.2 Model representation and compression

While tackling different approaches regarding the compression, it was noticed that the data struc-
ture containing the compressed graph should provide at least the following:

� as noted in 1.1.2, it should handle contents(segments) and structure(vertices) in separate
ways.

� in the scope of segment compression: can present identified similar segments in a way that
is transparent regarding how they were discovered, but also preserves their position in the
original model.

� in the scope of graph compression: a way to group identified similar sub-trees.

The PPM implementation follows the theoretical model, with a few additions in order to satisfy
these requirements:

� each vertex in the model tree is part of a vertex group. Two vertices G and H may be part
of the same group only if the model trees rooted at G and H are similar. References to the
groups are maintained in a separate list to facilitate access outside of the model context.

� Each vertex holds a set of values called vertex summary. They are meant to provide some
information about the tree rooted at that vertex (e.g. hash value, depth, size). Additionally,
each vertex provides a container for external algorithms to store intermediate data.

After the aimed discovery (see 3.1.1), extracting the candidates for equivalent segments is done
by traversing the vertex group list (the candidates are part of the same segment vertex group). The
graph structural compression is achieved by linking all the vertex groups, as if they were normal
vertices.

4.3 File format

The compressed model is exported at the end in a binary file format. The data structures are
grouped by type, serialized in arrays, and then the pointers replaced with indices. The arrays are
afterwards flushed into a file. The file format will not be analyzed any further, as it is only meant
to provide a basis for file size comparison.
The original models were provided in a human-readable format. Size comparison between human-
readable and binary files is unfair, as the former is obviously less space-efficient. Moreover, the
original file format also contains redundant and additional information, which for the scope of this
thesis was ignored. For this reason, a binary file for the uncompressed model was also exported.
All file size comparisons mentioned in this thesis were done between binary files.
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Figure 5: Different stages of the implemented model (the circles represent vertex groups), from left
to right: 1. the original model; 2. after similar subgraphs discovery; 3. the linked vertex groups
form the compressed model.

4.4 Limitations

The library firstly serves as a an evaluation environment for the presented methods, and secondly
as a starting point for future implementations. Therefore, the algorithms and the data structures
they build upon were implemented with simplicity in mind, instead of performance. Many routines
require polynomial time, although faster but more complicated alternatives exist. Optimizing the
library could also be a topic for future work.

4.5 Functional tests

The data structures and basic algorithms were tested with edge cases and a few examples. The
more complicated algorithms (e.g. the mining algorithms) were run on smaller models and their
results were visualized with gnuplot. To increase the chance of error detection, some data structures
contain redundant information and all the algorithms feature multiple redundant assertions.
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5 Evaluation

In this section, the effectiveness and limitations of the presented solution are discussed. This is
done from two perspectives: firstly, model evaluation, where the different methods used throughout
the process and their interim results will be analyzed and evaluated individually; and secondly,
the final result evaluation, where the usefulness and compression rate of the end result will be
evaluated. The example models that served as a testing basis were given and assumed to represent
real world HPC programs.

5.1 Model evaluation

As mentioned in section 3, the model compression is split in two major parts, namely the segment
compression (contents) and graph compression (structure). The model evaluation follows therefore
the same breakdown.

5.1.1 Segment evaluation

For the segment evaluation, the compression results of two different models are analyzed. Two
especially noticeable differences between these models are the average segment length and the total
number of segments. As we will see, this leads to different behavior of the tuning parameters. The
tuned parameters are the bucketing badness threshold k (see subsection 2.1) and the µmax, σmax
parameters of the segment summary similarity function Ssummary(Sa, Sb) (see subsection 1.3).

Segment accuracy The accuracy of a bucketed segment is a needed quality for predictable
results when scheduling. For Qqr , Qqb corresponding requirement lists of a raw respectively a
bucketed segment, the segment accuracy has two variables: segment badness BΣ(Qqr , Qqb) and
task badness B∆(Qqr , Qqb), defined as follows:

BΣ(Qqr , Qqb) =

∑|Qr|
i=1 (bi − ri)∑|Qr|

i=1 ri
,

B∆(Qqr , Qqb) =
µ({r | r = |bi − ri|})

µ({r | ri})
,

with ri ∈ Qqr , bi ∈ Qqb and µ is the arithmetical mean.
BΣ represents by how much the bucketed segment overestimates/underestimates the actual

requirements across the whole segment. B∆ on the other hand reflects by how much, on average,
each task diverges from its original.

Because of the compensating effect, the segment badness proved to be negligible under all tests,
having an absolute average value across the whole model between 0,0 and 0,000047 under all tested
conditions.

Remark. As stated in section 2, it is not discussed whether a specific metric value is acceptable or
not for reliable scheduling, as there is no available data that defines such limits. We will assume
the limits BΣ(Qqr , Qqb) < 0, 001 and B∆(Qqr , Qqb) < 0, 05 represent reasonable values for reliable
scheduling.

Inter-segment compression rate This is the ratio between the number of total segments in
the model, before and after the inter-segment compression. As discussed in 3.3, this is strongly
dependent on the type of HPC program.

The test results (see fig. A.1, A.2) reflect a somehow expected behavior of the parameter
changes. µmax and σmax tend to have only limited effect on the task badness and inter-segment
compression rate as they only control the strictness when electing candidates to form a segment
compression group. On the other hand, they have a bigger impact on the number of segment
compression dictionaries. This could allow for bigger dictionaries to be created, thus improving
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the bucketing accuracy. The bucketing badness threshold k proved to have the most influence
on task badness and inter-segment compression rate, as it directly controls the coarseness of the
segment bucketing.
However, when comparing between the test results of the two models, we can see that the impact
of the parameter tuning is not consistent, especially for the µmax and σmax. This robustness issue
is a hint that the parameter tuning and/or algorithmic choice should be based on meta-information
about the individual model’s structure.

5.1.2 Structure evaluation

For the structural compression evaluation, four models were used. They share the same meta-
model (alike in structure), but have different sizes. The parameters µmax, σmax and k were fixed,
as they play no role in structural compression.

The structural compression rate is expressed as the ratio between the number of vertices before
and after the compression. As shown in fig. 6, the vertex compression rate grows with the number of
segments (which is proportional to the number of vertices). It should be noted that this is achieved
solely by the aimed discovery, which is tailored for finding inter-segment compression candidates,
and not for structural compression. Thus, by performing an additional bulk discovery, higher
compression ratios could be achieved. This process should, like the inter-segment compression, be
weighted against the type of model: models with higher number of vertices and shorter segments
could benefit more from additional bulk discovery algorithms.

gzip(raw) is the ratio between uncompressed
file size and with tar/gzip compressed file
size. gzip(comp) is the ratio between un-
compressed file size and the compressed file
size with both the presented solution and
tar/gzip.

Mean task badness for calculation and com-
munication tasks.

Figure 6: Compression rates and task badness for structurally alike models, with respect to number
of segments.

5.2 Final result evaluation

For the final result evaluation, the compression rate of the exported files, the time requirements
and, again, the task badness are analyzed.

File compression The file compression rate is expressed as the ratio between the uncompressed
and compressed file size. In fig. A.3, we can observe the effect of the parameters µmax, σmax
and k on the two different models from 5.1.1 is more uniform. However, the model with longer
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segments exhibits significantly higher compression rate (around a third), although it has a much
lower segment count (about 50 times). This again reinforces the statement that algorithmic choice
should be tailored for different types of models.
The file compression rate also depends on the model size, as seen in fig. 6. It’s slope seems to be
between that of the vertex and inter-segment compression, suggesting that, at least for this kind
of model, they both have an important role.
The compression rate was also compared to that of tar/gzip. The uncompressed file, as well as
the compressed file using the presented solution were compressed using tar/gzip with the maxi-
mum compression level (env GZIP=-9 tar cvzf <source file>.tar.gz <source file>). The
results show that tar/gzip has an advantage over the presented solution up to a specific model size
threshold. Moreover, by additionally running the compression results produced by the presented
solution trough tar/gzip, the compression rate is tripled.

Task badness The task badness also tends to increase with the model size. The reason might be
the induced noise trough the higher inter-segment compression rate, as more segments are bucketed
using the same dictionary.

Execution time The execution time of the program is polynomial. This will not be discussed
in depth, as for the purpose of this thesis, the implementation of the algorithms and especially the
data structures they rely on are rather on the naive side. Nevertheless, any generic subtree mining
algorithm is expected to have polynomial complexity, as stated in 1.1.2.

Figure 7: Time requirements for compressing models of similar structure but different sizes on an
Intel®Core�i5-4210U CPU (single core).
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6 Conclusion and future work

This thesis provides insights into the compression of prediction models for HPC programs that
operates at a higher level than plain file compression, and presents a few methods for achieving it.
Furthermore, it is shown that even with simple, proof-of-concept algorithms and metrics, decent
compression rates with relatively low information loss can be achieved. The test results suggest
that having access to information about the model could allow for the development of meta-model
aware algorithms, thus achieving more robust results across different types of models. In future
work, this information could be provided together with the model or extracted directly from the
model itself. What was not achieved is the development of tree mining algorithms in the scope of
structural compression (bulk discovery), and the compression of the task segments (intra-segment
compression). The implemented library can nevertheless serve as a practical framework for such
features to be added.
Another important topic that was not approached is the probabilistic nature of the models: multiple
runs of the same program could produce models varying in both structure (e.g. forks may be added
or removed) and weight (tasks may require inconsistent amounts of resources).
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A Appendix

average segment length = 2,31, segment count = 39522

average segment length = 36,07, segment count = 837

Figure A.1: Test results: badness for two different models. Left half: fixed σmax. Right half:
fixed k. µmax and σmax have generally lower impact than k, but behavior is not consistent across
different models.
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Figure A.2: Test results: number of dictionaries and inter-segment compression rate for different
models. k has the greatest impact on inter-segment compression rate. µmax and σmax display
inconsistent behavior.

Figure A.3: Test results: file compression rates for two different models. The impact of parameter
changes are more consistent, but differ in magnitude across different models.
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