
Freie Universität Berlin
Bachelor’s thesis at the Software Engineering Research Group of the Institute of

Computer Science

Application Mode Setting Emulation In
XWayland

Robert Mader
Student ID: 4676235

robert.mader@fu-berlin.de

First Examiner: Prof. Dr. Lutz Prechelt
Second Examiner: Prof. Dr. Volker Roth

Berlin, July 19, 2018

Abstract

The graphic stack of the Linux/BSD world is currently undergoing major
changes. The X11 protocol, the central piece ever since its introduction in the
1980s, is being replaced by the modern Wayland protocol. In order to smooth the
transition phase, there exists a emulation layer called XWayland. In this thesis
I propose and try to implement support for applications requiring mode setting
(read: changing display resolutions) in XWayland, using an optional and also to
be implemented Wayland protocol extension.

mailto:robert.mader@fu-berlin.de

Declaration of Authorship

I hereby declare that the thesis submitted is my own unaided work. All direct or
indirect sources used are acknowledged as references.

I am aware that the thesis in digital form can be examined for the use of unau-
thorized aid and in order to determine whether the thesis as a whole or parts in-
corporated in it may be deemed as plagiarism. For the comparison of my work with
existing sources I agree that it shall be entered in a database where it shall also remain
after examination, to enable comparison with future theses submitted. Further rights
of reproduction and usage, however, are not granted here.

This paper was not previously presented to another examination board and has
not been published.

July 19, 2018

Robert Mader

i

ii

Contents

1 Introduction 1

2 Definitions and Fundamentals 2

3 Technical approach 3
3.1 Mode setting emulation . 3
3.2 Viewporter implementation in Mutter . 5

4 Realization 6
4.1 Implementation of the viewporter protocol in Mutter 6

4.1.1 Porting old patches . 6
4.1.2 Rendering . 7
4.1.3 Surface damage . 7
4.1.4 Bugs and incomplete implementations 8

4.2 Mode setting emulation . 9
4.2.1 Mode exposing . 10
4.2.2 Setting a mode - sorry it’s all so awful 10
4.2.3 Scaling . 11

5 Status and outlook 12
5.1 Viewporter implementation . 12
5.2 Mode setting emulation . 13

6 Evaluation 13
6.1 Approach . 13
6.2 Result . 13
6.3 Personal experience . 13

A Appendix 15
A.1 Viewporter . 15
A.2 Xwayland RandR 1.2 . 34

iii

iv

1. Introduction

1 Introduction

Display mode setting is the act of setting a resolution and refresh rate of a display
device. Many legacy fullscreen applications, especially games, rely on this ability as a
convenient way to change their environment to their needs, thereby allowing optimal
performance and reduced complexity of the application.

On modern operating systems, this practice is increasingly discouraged, mainly
because of its complex technical implications. The common notion is to require ap-
plications to adopt to a given environment instead, arguing that technical complexity
and performance implications have been dramatically reduced by modern rendering
techniques.

In the Linux/BSD world, a new display protocol called Wayland recently emerged
to overcome limitations of the aging X11 protocol and provide a future proof basis for
graphical applications to communicate with compositors, the programs responsible
to deliver the graphical output of applications on the actual display device. As part of
its future-oriented design and in contrast to X11, Wayland doesn’t allow mode setting
by individual applications.

To smooth on the transition-period between the two protocols, the major X11 im-
plementation Xorg was extended with a new back-end called XWayland. It allows
X11-based applications to function just normally in Wayland based desktop envi-
ronments. While great efforts have been made to ensure near perfect compatibility,
applications requiring the ability to change display modes are not supported yet.

At the end of 2015 a bug entry concerning this issue was opened1 and the possi-
bility of reimplementing support for application mode setting was discussed. While
this was quickly dismissed2, the next likely solution was laid out: somehow emulate
mode setting in a way so the desired outcome - make an fullscreen application fill the
whole screen - is mirrored as closely as possible, independently of the actual mode of
the display.

Moving from the X11 to the Wayland protocol is a highly desirable step for the
Linux/BSD ecosystem345, with strong implications concerning security, feature en-
ablement, performance and maintainability of code. However, as a lesson from similar
processes in the past like the introduction of pulseaudio6, a strong resistance within
the community and fragmentation within the ecosystem is to be expected if good
backward compatibility is not archived. This thesis is an attempt to create a general
solution for applications requiring mode setting.

1find a solution for XWayland games trying to set display resolution https://bugzilla.redhat.
com/show_bug.cgi?id=1289714

2https://fedoraproject.org/wiki/Wayland_features#XRandR_control_of_Wayland_outputs
3https://wiki.gnome.org/Initiatives/Wayland
4https://wayland.freedesktop.org/faq.html
5https://www.phoronix.com/scan.php?page=article&item=x_wayland_situation&num=1
6http://0pointer.de/blog/projects/jeffrey-stedfast.html

1

https://bugzilla.redhat.com/show_bug.cgi?id=1289714
https://bugzilla.redhat.com/show_bug.cgi?id=1289714
https://fedoraproject.org/wiki/Wayland_features#XRandR_control_of_Wayland_outputs
https://wiki.gnome.org/Initiatives/Wayland
https://wayland.freedesktop.org/faq.html
https://www.phoronix.com/scan.php?page=article&item=x_wayland_situation&num=1
http://0pointer.de/blog/projects/jeffrey-stedfast.html

2. Definitions and Fundamentals

2 Definitions and Fundamentals

Protocol Set of specified commands, allowing applications to communicate with
each other. Sometimes referred to as API - Application Programming Interface.

Windowing System Part of an Operating System. Collection of applications that
realize a concept how to manage graphical output of several applications on shared
output device like a screen.

Display Server Application responsible for managing graphical output of a Win-
dowing System. In order to display graphical output, applications need to connect to
such a server as client, using a Display Server Protocol.

Client Application connected to a Display Server.

Window / Surface Slightly different concepts to represent graphical output of Clients
within a Windowing System. In this context used mostly interchangeable.

Buffer Memory representation of the content of a Surface in the form of a texture or
image. Raw form of the graphical output of a application.

Windowing Manager Application responsible for arranging Windows within a Win-
dowing System.

X11 / Xorg A Display Server Protocol and its most widely used implementation.
Originating in the 1980s and commonly used on Linux/UNIX/BSD Operating Sys-
tems. Evolved heavily from how it was intended to be used originally to how it is
used on modern systems.

X11 Window Manager - XWM A Windowing Manager for X11 Clients.

Extended Window Manager Hints - EWMH Protocol for communication between
X11 client and XWM.

Randr and vidmode Protocols for mode setting.

Wayland A new Display Server and Window Managing Protocol.
While having a very minimal base protocol, it is designed to be extendable vie

optional Protocol Extension. Being protocols themselves, I will occasionally simply
refer to them as such.

Wayland Compositor Wayland Display Server and Windowing Manager at the same
time. Many XWMs got extended to become Wayland Compositors.

2

3. Technical approach

Figure 1: Classic X11 design

Weston Reference implementation of Wayland and its Protocol Extensions. Very
minimalist and not intended to be used by end users.

Mutter An XWM and Wayland Compositor.

Desktop Environment Combination of Display Server, Window Manager (or Way-
land Compositor) and several to make them usable.

Session Instance of a Destop Environment

The Viewporter Protocol Extension wp_viewporter, a Protocol Extension that I will
also refer to as viewporter protocol from here on. One of three modifiers that
decouple the relationship between a buffer and its surface. Allows to apply scaling
and cropping before the content of a buffer is composited.

3 Technical approach

3.1 Mode setting emulation

When discussing possible solutions with members of the Xorg/Wayland community,
there was a strong consensus to try to stick to the current XWayland design as closely
as possible. Among others that means:

• XWayland should archive its goals by making use of Wayland protocols, as a
Wayland Compositor should be its only dependency.

3

3. Technical approach

Figure 2: Modern X11 design

• Window management is the responsibility of the XWM. Therefore XWayland
does not make use of Wayland Window Management Protocol Extensions such
as XDG-Shell. Further, there is no common concept of a fullscreen mode in X11
- it is part of the Window Management

• XWayland implements the RandR and vidmode protocols. Those implementa-
tions will have to get extended to emulate mode setting.

• There needs to be a way to scale up graphical output. The viewporter protocol
exposes this functionality to Wayland clients, so it should be used.

Based on these constrains, the plan is to iteratively develop a solution centered
around XWayland. Whenever feasible, implementation of functionality should hap-
pen there, in a as generic as possible manner. If no sufficient solutions can be found,
the next step is to evaluate if the XWM or the WM compositor can help - in this order,
as I want to avoid increasing complexity of Wayland implementations.

I anticipate the following steps to be necessary:

• Expose mode setting to XWayland-clients

– only the corresponding application should be affected. Most importantly it
should not be possible for one application to negatively affect another

– Applications might have lots of implicit assumptions about mode setting.
Try to emulate the expected behavior in as many scenarios as possible

• Scale the output of corresponding applications to screen size using the view-
porter protocol

– Do not change the proportions - add black bars where necessary

4

3.2 Viewporter implementation in Mutter

Figure 3: Wayland design with XWayland

• Make sure input events, such as mouse clicks, work accordingly

• Make sure this works across disruptive events like real mode changes, mini-
mization and re-maximization and - probably most difficult - in multi-monitor
environments

3.2 Viewporter implementation in Mutter

Weston, the Wayland reference implementation, is currently the only Wayland com-
positor implementing the viewporter protocol. Unfortunately it only implements very
minimal set of XWM capabilities and many X11 applications do not even start when
run in a Weston session with XWayland - especially those that use non-standard ways
to archive fullscreen behavior, which happen to be the same that need mode setting
in many cases. Further more the goal is to create a solution that can be used in real
world scenarios as soon as possible.

I therefore conclude it to be a necessary prerequisite to implement the viewporter
protocol in a compositor that:

• is commonly used by end users, implying it has relatively mature Wayland
capabilities

• includes a XWM that is compatible to as many ways to archive fullscreen be-
havior as possible

This limited the options to the following three: Mutter of the Gnome project, KWin
of the KDE project and Enlightenment. the decision is use Mutter, as its the one with
the biggest user base and the most mature Wayland capabilities.

5

4. Realization

Figure 4: The test application weston-scaler for the viewporter protocol

(a) without cropping or scaling (b) scaling applied

(c) cropping applied

(d) cropping or scaling applied

The goal for the implementation is to be thorough and solid so the upstream
project accepts it. It can also be assumed this will minimize distractions by unneces-
sary bugs in the mode setting emulation effort.

This intermediate step also orthogonally helps with the underlying motivation of
accelerating Wayland adoption - the protocol provides a solid alternative for mode
setting for projects that want to target Wayland directly.

4 Realization

In this part the most significant aspects of the work are to be highlighted and some
insights are given into tricky problems.

4.1 Implementation of the viewporter protocol in Mutter

4.1.1 Porting old patches

The first step on the way for a proper implementation naturally was to look for pre-
vious attempts. It turned out there existed a patch-set 7 from 2014, which partly
implemented a draft version of the viewporter protocol. It was based the Weston
version from that time.

7https://gitlab.gnome.org/GNOME/mutter/tree/wip/viewport

6

https://gitlab.gnome.org/GNOME/mutter/tree/wip/viewport

4.1 Implementation of the viewporter protocol in Mutter

I started porting it to the current Mutter code base and the stable release of the
protocol. The basic underlying structure had partly changed quite fundamentally -
for example protocol extensions now have to be implemented in a more formal way
(compare 8 and 9).

When finally building, the patches turned out to be fundamentally broken in many
key aspects. Still, they provided a solid base in terms of general structure and there are
several parts that remain nearly unchanged until now. I therefore started improving
upon them.

4.1.2 Rendering

The most obvious aspect of the protocol is to modify the way how the content of a
buffer is rendered on the screen. Without modifiers, the content of a buffer represent
a 2D texture which only needs to be positioned on the screen and is then rendered
pixel by pixel.

As of now there exist three buffer modifiers in the form of Wayland protocol
extensions: viewports, buffer scales and transformations. Transformations are not yet
implemented in Mutter, but they would allow to rotate surfaces in 90 degree steps.
Buffer scales allow the dimensions of a buffer to be multiples of the output size and
are used for high-dpi scenarios. They are already implemented.

These modifiers have to be applied in the right order to produce the desired out-
come.

Additionally, the compositor10 has the ability to reuse the last composed image
and only repaint certain areas. This is referred to as partial drawing.

The preexisting patch set included an approach from before buffer scales where
implemented, but even excluding that it was completely wrong and I ended up re-
placing it completely. This took me many iterations to come up with a clean solution
and was subject for optimizations several times11

4.1.3 Surface damage

Similar to partial drawing within the compositor, there exists a similar optimization
technique on protocol level. Instead of repainting the whole surface area, a client
can signal which part of it changed. It can do so in surface coordinates or in buffer
coordinates - with buffer scaling being the only implemented modifier, the difference
was rather trivial before.

8https://gitlab.gnome.org/GNOME/mutter/commit/0829749049025c480d86bc122d02c97b5767a6b3#
f0827862a44c095256a9234a20fb3e02a388a318

9https://gitlab.gnome.org/treba123/mutter/commit/e882e0be8ce6368ba803eb5186b30eecf7e2840d#
706eb71e1fbf7f03bb236478492f46f25b3f8ccb

10in this context this refers to the component in Mutter which "composes" the final image how it
is displayed on the screen by taking all outputs of all applications, arranging and then painting them
accordingly

11compare: preexisting solution https://gitlab.gnome.org/GNOME/mutter/commit/
725d0ad6804e1f49b404889509d3470aa93f6937#f0d3982b8d7215c98669a84b8570ff195c1e1bbb_
216_235, new solution https://gitlab.gnome.org/treba123/mutter/commit/
6d6cac4b4615fecb1d2209781718ad76b2167d74#f0d3982b8d7215c98669a84b8570ff195c1e1bbb_325_
332

7

https://gitlab.gnome.org/GNOME/mutter/commit/0829749049025c480d86bc122d02c97b5767a6b3#f0827862a44c095256a9234a20fb3e02a388a318
https://gitlab.gnome.org/GNOME/mutter/commit/0829749049025c480d86bc122d02c97b5767a6b3#f0827862a44c095256a9234a20fb3e02a388a318
https://gitlab.gnome.org/treba123/mutter/commit/e882e0be8ce6368ba803eb5186b30eecf7e2840d#706eb71e1fbf7f03bb236478492f46f25b3f8ccb
https://gitlab.gnome.org/treba123/mutter/commit/e882e0be8ce6368ba803eb5186b30eecf7e2840d#706eb71e1fbf7f03bb236478492f46f25b3f8ccb
https://gitlab.gnome.org/GNOME/mutter/commit/725d0ad6804e1f49b404889509d3470aa93f6937#f0d3982b8d7215c98669a84b8570ff195c1e1bbb_216_235
https://gitlab.gnome.org/GNOME/mutter/commit/725d0ad6804e1f49b404889509d3470aa93f6937#f0d3982b8d7215c98669a84b8570ff195c1e1bbb_216_235
https://gitlab.gnome.org/GNOME/mutter/commit/725d0ad6804e1f49b404889509d3470aa93f6937#f0d3982b8d7215c98669a84b8570ff195c1e1bbb_216_235
https://gitlab.gnome.org/treba123/mutter/commit/6d6cac4b4615fecb1d2209781718ad76b2167d74#f0d3982b8d7215c98669a84b8570ff195c1e1bbb_325_332
https://gitlab.gnome.org/treba123/mutter/commit/6d6cac4b4615fecb1d2209781718ad76b2167d74#f0d3982b8d7215c98669a84b8570ff195c1e1bbb_325_332
https://gitlab.gnome.org/treba123/mutter/commit/6d6cac4b4615fecb1d2209781718ad76b2167d74#f0d3982b8d7215c98669a84b8570ff195c1e1bbb_325_332

4. Realization

I therefore needed to implement a translation mechanism for the cases a client
would choose surface coordinates. This part did not exist at all in the preexisting patch
set and finding out about and understanding it was way harder than implementing
the solution eventually.1213.

4.1.4 Bugs and incomplete implementations

A substantial amount of work turned out to be fixing existing bugs or completing
previously sufficient but not complete implementation in the project. This includes:

Build system In order to start the implementation, I needed the build system to
auto-generate a c-header file from the protocol specification, written in XML.

As it turned out, at that time wp_viewporter would have been the first stable
protocol as all other protocols were marked unstable, implying a slightly different
auto-generation process.

The existing code did not work for stable protocols and was incomplete for all
protocols with multi-word names, requiring workarounds for the later. I therefore
provided a solution sufficient to fix both issues 14, but it got replaced by an even
cleaner approach from the Weston-project, which then got merged very early in the
process.

Window geometry While the Wayland-base-protocol is highly generic and does not
specify anything window related, there exists a sub-protocol called xdg-shell that is
meant to provide functionality roughly similar to EWMH in X11-world. For example,
there exists windows and they have a geometry:

The window geometry of a window is its "visible bounds" from the user’s
perspective. Client-side decorations often have invisible portions like drop-
shadows which should be ignored for the purposes of aligning, placing
and constraining windows.15

As it turned out eventually, a critical part of the specification in one function -
set_window_geometry - was ignored:

When applied, the effective window geometry will be the set window
geometry clamped to the bounding rectangle of the combined geometry
of the surface of the xdg_surface and the associated subsurfaces.16

12https://gitlab.gnome.org/treba123/mutter/commit/9813d5179b032bb7ecfef98bfe1a82b30a9a1862#
f0827862a44c095256a9234a20fb3e02a388a318_282_391

13https://gitlab.gnome.org/treba123/mutter/commit/9813d5179b032bb7ecfef98bfe1a82b30a9a1862#
f0827862a44c095256a9234a20fb3e02a388a318_255_304

14https://bugzilla.gnome.org/show_bug.cgi?id=792203
15https://github.com/wayland-project/wayland-protocols/blob/3f282987d6e5cfd8d643886c5165d8a35141912a/

stable/xdg-shell/xdg-shell.xml#L447
16https://github.com/wayland-project/wayland-protocols/blob/3f282987d6e5cfd8d643886c5165d8a35141912a/

stable/xdg-shell/xdg-shell.xml#L472

8

https://gitlab.gnome.org/treba123/mutter/commit/9813d5179b032bb7ecfef98bfe1a82b30a9a1862#f0827862a44c095256a9234a20fb3e02a388a318_282_391
https://gitlab.gnome.org/treba123/mutter/commit/9813d5179b032bb7ecfef98bfe1a82b30a9a1862#f0827862a44c095256a9234a20fb3e02a388a318_282_391
https://gitlab.gnome.org/treba123/mutter/commit/9813d5179b032bb7ecfef98bfe1a82b30a9a1862#f0827862a44c095256a9234a20fb3e02a388a318_255_304
https://gitlab.gnome.org/treba123/mutter/commit/9813d5179b032bb7ecfef98bfe1a82b30a9a1862#f0827862a44c095256a9234a20fb3e02a388a318_255_304
https://bugzilla.gnome.org/show_bug.cgi?id=792203
https://github.com/wayland-project/wayland-protocols/blob/3f282987d6e5cfd8d643886c5165d8a35141912a/stable/xdg-shell/xdg-shell.xml#L447
https://github.com/wayland-project/wayland-protocols/blob/3f282987d6e5cfd8d643886c5165d8a35141912a/stable/xdg-shell/xdg-shell.xml#L447
https://github.com/wayland-project/wayland-protocols/blob/3f282987d6e5cfd8d643886c5165d8a35141912a/stable/xdg-shell/xdg-shell.xml#L472
https://github.com/wayland-project/wayland-protocols/blob/3f282987d6e5cfd8d643886c5165d8a35141912a/stable/xdg-shell/xdg-shell.xml#L472

4.2 Mode setting emulation

This implies a simple check of the requested size against a (recursively combined)
surface size. But it was left out, resulting in unwanted behavior as windows with
very small surfaces could get treated as if they were much bigger by the WM. Ones
figured, the fix was very straight forward17. This bug was especially hard for me
to track down. There were several other patches in place that solved the problem
partly before I finally uncovered the root problem. Therefore this solution made the
implementation much smaller.

I further see this fix as especially valuable, as I suspect it to be necessary for
the transformations protocol, too (apart from correctly handling exotic client applica-
tions).

Opaque regions A similarly tricky bug was a not existing check in the implementa-
tion of opaque regions. Opaque regions are another optional performance optimiza-
tion technique that lets clients help compositors reducing work. Clients can define
regions - sets of rectangles - on their surfaces that they do not plan to make transpar-
ent.

While this does not need to hold true in the future, current compositors often
work in the way that surfaces get drawn bottom to top. That is very wasteful if the
topmost surface hides big parts or even all of the underlying parts. But if a surface
is transparent, the underlying part needs to be drawn first. On current generation
hardware it is still cheaper to draw multiple times compared to first check every
single surface on top for transparency, therefore it is useful for the compositor if
clients simply let them know in advance where they can skip it.

The following part of the specification was left out:

The compositor ignores the parts of the opaque region that fall outside of
the surface.18

This resulted in broken rendering in one of the test applications19. As it is not
possible to test it without viewporter support, it was not obvious the problem was
not part of the implementation. After long research I finally found and fixed the
issue20.

4.2 Mode setting emulation

Dynamic mode-setting, that is changing the mode without restarting the X11-server
and all attached programs, was not originally considered in the protocol. It got added
via extensions later, first via the infamous vidmode, second in the early 2000s by
RandR (Resize and Rotate). XWayland supports both of them and to make the mode
setting emulation complete, vidmode will have to get considered at some point. For
now I choose to only consider the much more common RandR.

17https://gitlab.gnome.org/GNOME/mutter/merge_requests/141
18wl_surface_interface Struct Reference https://people.freedesktop.org/

~whot/wayland-doxygen/wayland/Server/structwl__surface__interface.html#
a423a1dc45922dbf23d9acb7b42d118d5

19https://gitlab.gnome.org/GNOME/mutter/issues/132#note_169130
20https://gitlab.gnome.org/GNOME/mutter/merge_requests/148

9

https://gitlab.gnome.org/GNOME/mutter/merge_requests/141
https://people.freedesktop.org/~whot/wayland-doxygen/wayland/Server/structwl__surface__interface.html#a423a1dc45922dbf23d9acb7b42d118d5
https://people.freedesktop.org/~whot/wayland-doxygen/wayland/Server/structwl__surface__interface.html#a423a1dc45922dbf23d9acb7b42d118d5
https://people.freedesktop.org/~whot/wayland-doxygen/wayland/Server/structwl__surface__interface.html#a423a1dc45922dbf23d9acb7b42d118d5
https://gitlab.gnome.org/GNOME/mutter/issues/132#note_169130
https://gitlab.gnome.org/GNOME/mutter/merge_requests/148

4. Realization

or xf86vidmode, because we’ve all made inescapable mistakes in life
(Daniel Stone, Xorg and Wayland developer - on IRC)

4.2.1 Mode exposing

The first step was to make XWayland actually expose multiple modes over RandR.
XWayland is designed not to use any hardware information by itself but only rely
on the information it is given by the Wayland-compositor. Current practice is to
have the compositor send exactly one mode - the currently used one. Furthermore
XWayland currently ignores any further send modes. One X11 developer, Olivier
Fourdan, kindly jumped in and - in a fairly hands-on manner - provided a patch to
make XWayland expose all modes it receives 21

With that done, it was easy to patch Mutter to expose some common modes that
are required by several applications.22

4.2.2 Setting a mode - sorry it’s all so awful

The next step was to expose the ability to actually set modes.
The RandR-protocol lets each application with the corresponding user-privileges

change the mode, either by using the library libXRandR or the command-line tool
xrandr. Crucially to understand forthcoming difficulties is the fact it is stateless. There
is no daemon-like application keeping track which application sets a mode. Current
implementations don not have any way relate a mode change to a window - and it
gets worse.

At the time of writing, XWayland implements the RandR-protocol in version 1.0,
using the function rrSetConfig to set a mode.

Initial attempts to modify it resulted in expected but undesirable behavior - if a
mode was set, it would apply for all XWayland-clients, making them unusable or
corrupt their output to a certain degree.

Discussing the issue with one of the main developers, he told me:

(17:24:13) ajax: robert_mader: i spent a bit of time looking at
cleaning out the randr code the other day. basically ->

rrSetConfig is a trap , don’t use it.
(17:26:57) robert_mader: ah ok
(17:27:15) robert_mader: what would you propose? Implement

randr 1.5 for XWayland?
(17:27:41) ajax: the 1.2 hooks should be all you really need

for what you’re doing i think
(17:28:44) robert_mader: Ok
(17:37:15) robert_mader: ajax: thanks btw. :)
(17:37:57) ajax: np, sorry it’s all so awful

The proposed solution was pretty straight forward23 and had a very pleasant re-
sult: due to the different API, applications are now able to call mode changes "suc-
cessfully" without changing any state within XWayland. This is a very crucial step as

21https://patchwork.freedesktop.org/patch/191035/
22https://gitlab.gnome.org/treba123/mutter/commit/021e80717634bb225722678ff4c6d3e85e5ebf0e
23https://bugs.freedesktop.org/show_bug.cgi?id=104644

10

https://patchwork.freedesktop.org/patch/191035/
https://gitlab.gnome.org/treba123/mutter/commit/021e80717634bb225722678ff4c6d3e85e5ebf0e
https://bugs.freedesktop.org/show_bug.cgi?id=104644

4.2 Mode setting emulation

it already solves the most fundamental problem: applications requiring mode setting
to start at all now do so. Their graphical output doesn not yet get scaled, therefore
being small on high resolution displays. But they do not fail completely. As I see that
as a major step already, I am hosting packages for the fedora distribution24 containing
the required patches.

A second important effect was that there seems to be no way in rrSetConfig to
get a list of client windows without make very work intensive modifications all over
XWayland. One reason for the quote above. The XRandR 1.2 hook in turn makes it
easy - an important detail further down the road.

4.2.3 Scaling

Having a quite solid base - viewporter support in Mutter and non-disruptive mode
setting in XWayland - I had all prerequisites to finally start with the actual experimen-
tation: scaling the output of applications.

The main areas I started working on so far are:

Window attribution This is what I consider the most difficult step in the whole
effort to succeed. There has to be made a connection between a mode change and the
window of the application that requested it.

As the current APIs do not allow direct attributions, I am investigating possi-
bilities for indirect ways. Test based on interpretation of X11 window events - e.g.
window size change events - have proven to be promising, but the balance between
false positives and false negatives remains hard.

Setting viewports Given a successful window attribution, the basic concept of set-
ting a viewport works well. While occasionally facing rendering issues at the begin-
ning, it helped me ironing out bugs in the viewporter implementation.

Keeping the ration As resolutions can have different width-to-height ratios than
the real resolution, distortion of the image should avoided by adding black bars -
like in movies. This happens to be quite easy using subsurfaces25. - especially if the
scaled up resolution is not a power of two multiplied While this was successfully
tested in Weston, in Mutter bars positioned on top or left of the application surface
are displayed above it instead, hiding parts of of the content. This has not been fixed
yet.

Hardware cursor correction From the perspective of this context, there are basically
two groups of applications concerning cursor input: those that don not use hardware
cursors and those that do.

The difference between them is basically that in the first scenario, the applica-
tion is responsible for drawing the cursor, while in the second, the cursor is drawn

24https://copr.fedorainfracloud.org/coprs/treba/xwayland-list-modes/
25https://people.freedesktop.org/~whot/wayland-doxygen/wayland/Server/group__iface_

_wl__subsurface.html

11

https://copr.fedorainfracloud.org/coprs/treba/xwayland-list-modes/
https://people.freedesktop.org/~whot/wayland-doxygen/wayland/Server/group__iface__wl__subsurface.html
https://people.freedesktop.org/~whot/wayland-doxygen/wayland/Server/group__iface__wl__subsurface.html

5. Status and outlook

independently, making it possible to freely move the cursor around even when the
application is stuttering or frozen.

While the first scenario is not very desirable from the user perspective, it is not
problematic in this context. The cursor is part of the surface that is scaled up, the
application draws the cursor where it thinks it should be, everything is fine.

The second group is problematic: as the cursor is not part of the surface that is
scaled up, it remains unscaled. That can be a problem on very high DPI displays,
as the cursor could become to small. Secondly and much more important: as the
application surface is scaled, the position of the cursor as calculated by the application
and how its drawn on the screen diverge.

This becomes visible when click-events happen, as the application interprets the
coordinates the way as if it was not scaled.

The naive solution for the second problem is to correct cursor event coordinates
accordingly in XWayland. While this should be sufficient in theory, it turned out to
be more complex than initially thought and remains bug prone at the moment.

XWM compatibility The XWM part of Mutter has a couple of sophisticated meth-
ods to determine when it should consider an application to be in fullscreen mode.
The XWM does not actually "know" that itself is the WC. While being the same im-
plementation, it is a client of XWayland, which in turn is a client of Mutter. Mutter
ru

5 Status and outlook

5.1 Viewporter implementation

A number of prerequisite changes are in the process 26 or pending2728 review, as well
as the implementation itself29. While an in-depth review by the maintainers did not
happen, yet, and will most probably unveil certain shortcomings, I am confident they
will be of simple nature.

All test applications I am currently aware of - the reference tests from Weston30

and a demo-frontend for the gstreamer-multimedia-framework 31 - were tested suc-
cessfully to render correctly.

26https://gitlab.gnome.org/GNOME/mutter/merge_requests/141
27https://gitlab.gnome.org/GNOME/mutter/merge_requests/148
28https://gitlab.gnome.org/GNOME/mutter/merge_requests/149
29https://gitlab.gnome.org/GNOME/mutter/merge_requests/121
30weston-scaler and weston-simple-damage, both part of the Weston project, https://github.com/

wayland-project/weston/tree/master/clients
31https://cgit.freedesktop.org/gstreamer/gst-plugins-bad/tree/tests/examples/

waylandsink

12

https://gitlab.gnome.org/GNOME/mutter/merge_requests/141
https://gitlab.gnome.org/GNOME/mutter/merge_requests/148
https://gitlab.gnome.org/GNOME/mutter/merge_requests/149
https://gitlab.gnome.org/GNOME/mutter/merge_requests/121
https://github.com/wayland-project/weston/tree/master/clients
https://github.com/wayland-project/weston/tree/master/clients
https://cgit.freedesktop.org/gstreamer/gst-plugins-bad/tree/tests/examples/waylandsink
https://cgit.freedesktop.org/gstreamer/gst-plugins-bad/tree/tests/examples/waylandsink

5.2 Mode setting emulation

5.2 Mode setting emulation

The ability to expose and set modes is pending review3233. This will probably not
happen before the Xorg-project finishes its current migration from cgit and bugzilla
to gitlab34

Most of the remaining goals were archived on a proof-of-concept level, partly
from early on35, but far from being feature-complete enough to get merged upstream.
While relatively functional in simple environments, work on complex scenarios like
multi-monitor environments was not even started yet and I will continue to work on
it.

6 Evaluation

6.1 Approach

While it is not yet possible to evaluate if the approach will lead to a sufficient solution,
I am very satisfied with the immediate steps. There have been no major road-blockers
and the approach did not have be shifted in a fundamental way. I attribute this mostly
to the careful design of the Wayland-protocol, Mutter and XWayland.

6.2 Result

I value the implementation of the viewporter protocol in Mutter as the main accom-
plishment. Ironically, that is the exact counter part to the original goal: instead of
improving compatibility with legacy applications that will not get ported to use Way-
land, the result helps making it easier to create or port Wayland applications in the
first place - an odd but pleasant side effect.

Apart from that the results remains far below the initial goals - a clear sign I have
underestimated the needed effort and/or overestimated my capabilities.

My conclusion is I should have limited the scope of the thesis to a more specific
part, probably the implementation of the viewporter protocol

6.3 Personal experience

The process of understanding the internals of the projects was mostly auto-didactic -
trial and error were significant parts of the process. While the community - mostly
consisting of highly paid specialist, chatting on IRC while working363738 - was very
helpful and welcoming, proper mentoring, let alone an in depth introduction into or
real documentation of the existing code would probably have helped archiving the
technical goals.

32https://bugs.freedesktop.org/show_bug.cgi?id=104644
33My copr-repository with patched Mutter and XWayland packages for the current Fedora-

Versionhttps://copr.fedorainfracloud.org/coprs/treba/xwayland-list-modes/
34https://lists.freedesktop.org/archives/wayland-devel/2018-May/038100.html
35https://bugs.freedesktop.org/show_bug.cgi?id=104643#c2
36irc://irc.gnome.org/gnome-shell
37irc://freenode.net/wayland
38irc://freenode.net/xorg-devel

13

https://bugs.freedesktop.org/show_bug.cgi?id=104644
https://copr.fedorainfracloud.org/coprs/treba/xwayland-list-modes/
https://lists.freedesktop.org/archives/wayland-devel/2018-May/038100.html
https://bugs.freedesktop.org/show_bug.cgi?id=104643#c2
irc://irc.gnome.org/gnome-shell
irc://freenode.net/wayland
irc://freenode.net/xorg-devel

6. Evaluation

I knew this from the beginning and to jump into this kind of project nevertheless
was a conscious decision. For me, most aspects of this project were new - the size
and development processes of the projects, the technical concepts and protocols, the
community, the language ("self-explaining" - read: undocumented - low-level C-code).
Therefore it has has been a dense learning experience and, as the process required me
to dive deep into way more areas than materialized in this thesis, I now feel way more
competent in the general area of low-level graphics development.

14

A. Appendix

A Appendix

A.1 Viewporter

From 39 aff4bb0cc537f34bf84dbe2c5e9f64d2e36aa5 Mon Sep 17
00:00:00 2001

From: Robert Mader <robert.mader@posteo.de>
Date: Mon , 2 Jul 2018 11:40:17 +0200
Subject: [PATCH 1/4] implement wp_viewporter: add meta -wayland -

viewporter.c/h

src/Makefile.am | 4 +
src/wayland/meta -wayland -viewporter.c | 213

++++++++++++++++++++++++++
src/wayland/meta -wayland -viewporter.h | 28 ++++
3 files changed , 245 insertions (+)
create mode 100644 src/wayland/meta -wayland -viewporter.c
create mode 100644 src/wayland/meta -wayland -viewporter.h

diff --git a/src/Makefile.am b/src/Makefile.am
index 82240 ef.. c82e8a5 100644
--- a/src/Makefile.am
+++ b/src/Makefile.am
@@ -90,6 +90,8 @@ mutter_built_sources += \

xwayland -keyboard -grab -unstable -v1-server -protocol.h \
gtk -text -input -protocol.c \
gtk -text -input -server -protocol.h \

+ viewporter -protocol.c \
+ viewporter -server -protocol.h \

$(NULL)

i f HAVE_WAYLAND_EGLSTREAM
@@ -481,6 +483 ,8 @@

libmutter_@LIBMUTTER_API_VERSION@_la_SOURCES += \
wayland/meta -wayland -inhibit -shortcuts -dialog.h \
wayland/meta -xwayland -grab -keyboard.c \
wayland/meta -xwayland -grab -keyboard.h \

+ wayland/meta -wayland -viewporter.c \
+ wayland/meta -wayland -viewporter.h \

$(NULL)
endif

diff --git a/src/wayland/meta -wayland -viewporter.c b/src/
wayland/meta -wayland -viewporter.c

new file mode 100644
index 0000000..9 c1f2d1
--- /dev/null
+++ b/src/wayland/meta -wayland -viewporter.c
@@ -0,0 +1,213 @@
+/∗
+ ∗ Wayland Suppo r t

15

A. Appendix

+ ∗
+ ∗ Th i s program i s f r e e s o f t w a r e ; you can r e d i s t r i b u t e i t and /

o r
+ ∗ mod i f y i t unde r t h e t e rms o f t h e GNU Gen e r a l P u b l i c L i c e n s e

a s
+ ∗ p u b l i s h e d by t h e F r e e S o f tw a r e Founda t i o n ; e i t h e r v e r s i o n 2

o f t h e
+ ∗ L i c e n s e , o r (a t y ou r o p t i o n) any l a t e r v e r s i o n .
+ ∗
+ ∗ Th i s program i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be

u s e f u l , bu t
+ ∗ WITHOUT ANY WARRANTY; w i t h o u t even t h e i m p l i e d wa r r a n t y o f
+ ∗ MERCHANTABILITY o r FITNESS FOR A PARTICULAR PURPOSE . See

t h e GNU
+ ∗ Gen e r a l P u b l i c L i c e n s e f o r more d e t a i l s .
+ ∗
+ ∗ You s h o u l d have r e c e i v e d a copy o f t h e GNU Gen e r a l P u b l i c

L i c e n s e
+ ∗ a l o n g w i t h t h i s program ; i f not , w r i t e t o t h e F r e e S o f tw a r e
+ ∗ Founda t i on , I n c . , 59 Temple P l a c e − S u i t e 330 , Boston , MA
+ ∗ 02111−1307 , USA .
+ ∗
+ ∗/
+
+# include <glib.h>
+# include "meta -wayland -viewporter.h"
+# include "meta -wayland -versions.h"
+# include "meta -wayland -surface.h"
+# include "meta -wayland -subsurface.h"
+# include "meta -wayland -private.h"
+# include "viewporter -server -protocol.h"
+
+ s t a t i c void
+destroy_wl_viewport (s t r u c t wl_resource *resource)
+{
+ MetaWaylandSurface *surface = wl_resource_get_user_data (

resource);
+
+ i f (! surface)
+ r e t u r n ;
+
+ surface ->viewport_resource = NULL;
+
+ i f (!surface ->pending)
+ r e t u r n ;
+ surface ->pending ->buffer_viewport.buffer.transform =

WL_OUTPUT_TRANSFORM_NORMAL;
+ surface ->pending ->buffer_viewport.buffer.scale = 1;
+ surface ->pending ->buffer_viewport.buffer.src_rect.x = 0;
+ surface ->pending ->buffer_viewport.buffer.src_rect.y = 0;
+ surface ->pending ->buffer_viewport.buffer.src_rect.width = 0;

16

A.1 Viewporter

+ surface ->pending ->buffer_viewport.buffer.src_rect.height =
0;

+ surface ->pending ->buffer_viewport.surface.width = 0;
+ surface ->pending ->buffer_viewport.surface.height = 0;
+ surface ->pending ->buffer_viewport.changed = TRUE;
+}
+
+ s t a t i c void
+viewport_destroy (s t r u c t wl_client *client ,
+ s t r u c t wl_resource *resource)
+{
+ wl_resource_destroy (resource);
+}
+
+ s t a t i c void
+viewport_set_source (s t r u c t wl_client *client ,
+ s t r u c t wl_resource *resource ,
+ wl_fixed_t src_x ,
+ wl_fixed_t src_y ,
+ wl_fixed_t src_width ,
+ wl_fixed_t src_height)
+{
+ MetaWaylandSurface *surface = wl_resource_get_user_data (

resource);
+ i f (! surface)
+ {
+ wl_resource_post_error (resource ,
+ WP_VIEWPORT_ERROR_NO_SURFACE ,
+ "wl_surface for this viewport is

no longer exists");
+ r e t u r n ;
+ }
+
+ i n t x = floor(wl_fixed_to_double (src_x));
+ i n t y = floor(wl_fixed_to_double (src_y));
+ i n t width = ceil(wl_fixed_to_double (src_width));
+ i n t height = ceil(wl_fixed_to_double (src_height));
+
+ i f (x >= 0 && y >= 0 && width > 0 && height > 0)
+ {
+ surface ->pending ->buffer_viewport.buffer.src_rect.x = x;
+ surface ->pending ->buffer_viewport.buffer.src_rect.y = y;
+ surface ->pending ->buffer_viewport.buffer.src_rect.width

= width;
+ surface ->pending ->buffer_viewport.buffer.src_rect.height

= height;
+ surface ->pending ->buffer_viewport.changed = TRUE;
+ }
+ e l s e i f (x == -1 && y == -1 && width == -1 && height == -1)
+ {
+ surface ->pending ->buffer_viewport.buffer.src_rect.x = 0;
+ surface ->pending ->buffer_viewport.buffer.src_rect.y = 0;

17

A. Appendix

+ surface ->pending ->buffer_viewport.buffer.src_rect.width
= 0;

+ surface ->pending ->buffer_viewport.buffer.src_rect.height
= 0;

+ surface ->pending ->buffer_viewport.changed = TRUE;
+ }
+ e l s e
+ {
+ wl_resource_post_error (resource ,
+ WP_VIEWPORT_ERROR_BAD_VALUE ,
+ "all values must be either

positive or -1");
+ }
+}
+
+ s t a t i c void
+viewport_set_destination (s t r u c t wl_client *client ,
+ s t r u c t wl_resource *resource ,
+ i n t dst_width ,
+ i n t dst_height)
+{
+ MetaWaylandSurface *surface = wl_resource_get_user_data (

resource);
+ i f (! surface)
+ {
+ wl_resource_post_error (resource ,
+ WP_VIEWPORT_ERROR_NO_SURFACE ,
+ "wl_surface for this viewport is

no longer exists");
+ r e t u r n ;
+ }
+
+ i f (dst_width > 0 && dst_height > 0)
+ {
+ surface ->pending ->buffer_viewport.surface.width =

dst_width;
+ surface ->pending ->buffer_viewport.surface.height =

dst_height;
+ surface ->pending ->buffer_viewport.changed = TRUE;
+ }
+ e l s e i f (dst_width == -1 && dst_height == -1)
+ {
+ surface ->pending ->buffer_viewport.surface.width = 0;
+ surface ->pending ->buffer_viewport.surface.height = 0;
+ surface ->pending ->buffer_viewport.changed = TRUE;
+ }
+ e l s e
+ {
+ wl_resource_post_error (resource ,
+ WP_VIEWPORT_ERROR_BAD_VALUE ,
+ "all values must be either

positive or -1");

18

A.1 Viewporter

+ }
+}
+
+ s t a t i c c o n s t s t r u c t wp_viewport_interface

meta_wayland_viewport_interface = {
+ viewport_destroy ,
+ viewport_set_source ,
+ viewport_set_destination ,
+};
+
+ s t a t i c void
+viewporter_destroy (s t r u c t wl_client *client ,
+ s t r u c t wl_resource *resource)
+{
+ wl_resource_destroy (resource);
+}
+
+ s t a t i c void
+viewporter_get_viewport (s t r u c t wl_client *client ,
+ s t r u c t wl_resource *master_resource ,
+ uint32_t viewport_id ,
+ s t r u c t wl_resource *surface_resource)
+{
+ s t r u c t wl_resource *resource;
+ MetaWaylandSurface *surface = wl_resource_get_user_data (

surface_resource);
+
+ i f (surface ->viewport_resource)
+ {
+ wl_resource_post_error (master_resource ,
+

WP_VIEWPORTER_ERROR_VIEWPORT_EXISTS ,
+ "viewport already exists on

surface");
+ r e t u r n ;
+ }
+
+ resource = wl_resource_create (client ,
+ &wp_viewport_interface ,
+ wl_resource_get_version (

master_resource),
+ viewport_id);
+ wl_resource_set_implementation (resource ,
+ &

meta_wayland_viewport_interface ,
+ surface ,
+ destroy_wl_viewport);
+
+ surface ->viewport_resource = resource;
+}
+

19

A. Appendix

+ s t a t i c c o n s t s t r u c t wp_viewporter_interface
meta_wayland_viewporter_interface = {

+ viewporter_destroy ,
+ viewporter_get_viewport ,
+};
+
+ s t a t i c void
+bind_viewporter (s t r u c t wl_client *client ,
+ void *data ,
+ guint32 version ,
+ guint32 id)
+{
+ s t r u c t wl_resource *resource;
+
+ resource = wl_resource_create (client ,
+ &wp_viewporter_interface ,
+ version ,
+ id);
+ wl_resource_set_implementation (resource ,
+ &

meta_wayland_viewporter_interface ,
+ data ,
+ NULL);
+}
+
+void
+meta_wayland_viewporter_init (MetaWaylandCompositor *

compositor)
+{
+ i f (wl_global_create (compositor ->wayland_display ,
+ &wp_viewporter_interface ,
+ META_WP_VIEWPORTER_VERSION ,
+ compositor , bind_viewporter) == NULL)
+ g_error ("Failed to register a global wl-subcompositor

object");
+}
diff --git a/src/wayland/meta -wayland -viewporter.h b/src/

wayland/meta -wayland -viewporter.h
new file mode 100644
index 0000000..6927 f09
--- /dev/null
+++ b/src/wayland/meta -wayland -viewporter.h
@@ -0,0 +1,28 @@
+/∗
+ ∗ Wayland Suppo r t
+ ∗
+ ∗ Th i s program i s f r e e s o f t w a r e ; you can r e d i s t r i b u t e i t and /

o r
+ ∗ mod i f y i t unde r t h e t e rms o f t h e GNU Gen e r a l P u b l i c L i c e n s e

a s
+ ∗ p u b l i s h e d by t h e F r e e S o f tw a r e Founda t i o n ; e i t h e r v e r s i o n 2

o f t h e

20

A.1 Viewporter

+ ∗ L i c e n s e , o r (a t y ou r o p t i o n) any l a t e r v e r s i o n .
+ ∗
+ ∗ Th i s program i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be

u s e f u l , bu t
+ ∗ WITHOUT ANY WARRANTY; w i t h o u t even t h e i m p l i e d wa r r a n t y o f
+ ∗ MERCHANTABILITY o r FITNESS FOR A PARTICULAR PURPOSE . See

t h e GNU
+ ∗ Gen e r a l P u b l i c L i c e n s e f o r more d e t a i l s .
+ ∗
+ ∗ You s h o u l d have r e c e i v e d a copy o f t h e GNU Gen e r a l P u b l i c

L i c e n s e
+ ∗ a l o n g w i t h t h i s program ; i f not , w r i t e t o t h e F r e e S o f tw a r e
+ ∗ Founda t i on , I n c . , 59 Temple P l a c e − S u i t e 330 , Boston , MA
+ ∗ 02111−1307 , USA .
+ ∗
+ ∗/
+
+# ifndef META_WAYLAND_VIEWPORTER_H
+# define META_WAYLAND_VIEWPORTER_H
+
+# include "wayland/meta -wayland -types.h"
+
+void meta_wayland_viewporter_init (MetaWaylandCompositor *

compositor);
+
+#endif /∗ META_WAYLAND_VIEWPORTER_H ∗/
--
2.17.1

From 0942 b2f427dbad67e9cd180c820bbd71b8c0cf01 Mon Sep 17
00:00:00 2001

From: Robert Mader <robert.mader@posteo.de>
Date: Mon , 2 Jul 2018 12:06:56 +0200
Subject: [PATCH 2/4] implement wp_viewporter: compositor

changes

src/compositor/meta -shaped -texture -private.h | 5 +
src/compositor/meta -shaped -texture.c | 134

+++++++++++++++ - - - -
src/compositor/meta -surface -actor.c | 11 ++
src/compositor/meta -surface -actor.h | 5 +
4 files changed , 132 insertions (+), 23 deletions (-)

diff --git a/src/compositor/meta -shaped -texture -private.h b/src
/compositor/meta -shaped -texture -private.h

index 5b3f283 ..7 ceac55 100644
--- a/src/compositor/meta -shaped -texture -private.h
+++ b/src/compositor/meta -shaped -texture -private.h
@@ -41,5 +41,10 @@ void meta_shaped_texture_set_fallback_size (

MetaShapedTexture *stex ,
guint

21

A. Appendix

fallback_height
);

gboolean meta_shaped_texture_is_obscured (MetaShapedTexture *
self);

cairo_region_t * meta_shaped_texture_get_opaque_region (
MetaShapedTexture *stex);

+void meta_shaped_texture_set_viewport (MetaShapedTexture
*stex ,

+ cairo_rectangle_int_t
*src_rect ,

+ i n t
dest_width ,

+ i n t
dest_height ,

+ i n t
scale);

#endif
diff --git a/src/compositor/meta -shaped -texture.c b/src/

compositor/meta -shaped -texture.c
index 0240 c06 ..6 f20707 100644
--- a/src/compositor/meta -shaped -texture.c
+++ b/src/compositor/meta -shaped -texture.c
@@ -106,8 +106 ,14 @@ s t r u c t _MetaShapedTexturePrivate

cairo_region_t *clip_region;
cairo_region_t *unobscured_region;

+ /∗ V i ewpo r t s t u f f ∗/
+ cairo_rectangle_int_t viewport_src_rect;
+ guint viewport_dest_width , viewport_dest_height;
+ guint viewport_scale;
+

guint tex_width , tex_height;
guint fallback_width , fallback_height;

+ guint dest_width , dest_height;

gint64 prev_invalidation , last_invalidation;
guint fast_updates;

@@ -153,6 +159 ,7 @@ meta_shaped_texture_init (MetaShapedTexture
*self)

priv ->mask_texture = NULL;
priv ->create_mipmaps = TRUE;
priv ->is_y_inverted = TRUE;

+ priv ->viewport_scale = 1;
}

s t a t i c void
@@ -168,8 +175 ,8 @@ set_unobscured_region (MetaShapedTexture *

self ,

i f (priv ->texture)

22

A.1 Viewporter

{
- width = priv ->tex_width;
- height = priv ->tex_height;
+ width = priv ->dest_width;
+ height = priv ->dest_height;

}
e l s e

{
@@ -325,20 +332 ,43 @@ s t a t i c void
paint_clipped_rectangle (CoglFramebuffer *fb ,

CoglPipeline *pipeline ,
cairo_rectangle_int_t *rect ,

- ClutterActorBox *alloc)
+ ClutterActorBox *alloc ,
+ MetaShapedTexture *stex)
{

+ MetaShapedTexturePrivate *priv = stex ->priv;
f l o a t coords [8];
f l o a t x1 , y1 , x2, y2;

+ f l o a t src_x , src_y , src_width , src_height;

x1 = rect ->x;
y1 = rect ->y;
x2 = rect ->x + rect ->width;
y2 = rect ->y + rect ->height;

- coords [0] = rect ->x / (alloc ->x2 - alloc ->x1);
- coords [1] = rect ->y / (alloc ->y2 - alloc ->y1);
- coords [2] = (rect ->x + rect ->width) / (alloc ->x2 - alloc ->x1

);
- coords [3] = (rect ->y + rect ->height) / (alloc ->y2 - alloc ->

y1);
+ i f (priv ->viewport_src_rect.width > 0)
+ {
+ src_x = priv ->viewport_src_rect.x * priv ->

viewport_scale;
+ src_y = priv ->viewport_src_rect.y * priv ->

viewport_scale;
+ src_width = priv ->viewport_src_rect.width * priv ->

viewport_scale;
+ src_height = priv ->viewport_src_rect.height * priv ->

viewport_scale;
+ }
+ e l s e
+ {
+ src_x = 0;
+ src_y = 0;
+ src_width = priv ->tex_width;
+ src_height = priv ->tex_height;
+ }
+
+ coords [0] = rect ->x * src_width / (alloc ->x2 - alloc ->

23

A. Appendix

x1) + src_x;
+ coords [1] = rect ->y * src_height / (alloc ->y2 - alloc ->

y1) + src_y;
+ coords [2] = rect ->width * src_width / (alloc ->x2 - alloc ->

x1) + coords [0];
+ coords [3] = rect ->height * src_height / (alloc ->y2 - alloc ->

y1) + coords [1];
+
+ coords [0] /= priv ->tex_width;
+ coords [1] /= priv ->tex_height;
+ coords [2] /= priv ->tex_width;
+ coords [3] /= priv ->tex_height;

coords [4] = coords [0];
coords [5] = coords [1];

@@ -350,6 +380 ,38 @@ paint_clipped_rectangle (CoglFramebuffer
*fb ,

&coords [0],
8);

}

+ s t a t i c void
+update_size (MetaShapedTexture *stex)
+{
+ MetaShapedTexturePrivate *priv = stex ->priv;
+ guint dest_width , dest_height;
+
+ i f (priv ->viewport_dest_width > 0)
+ {
+ dest_width = priv ->viewport_dest_width * priv ->

viewport_scale;
+ dest_height = priv ->viewport_dest_height * priv ->

viewport_scale;
+ }
+ e l s e i f (priv ->viewport_src_rect.width > 0)
+ {
+ dest_width = priv ->viewport_src_rect.width * priv ->

viewport_scale;
+ dest_height = priv ->viewport_src_rect.height * priv ->

viewport_scale;
+ }
+ e l s e
+ {
+ dest_width = priv ->tex_width;
+ dest_height = priv ->tex_height;
+ }
+
+ i f (priv ->dest_width != dest_width ||
+ priv ->dest_height != dest_height)
+ {
+ priv ->dest_width = dest_width;
+ priv ->dest_height = dest_height;

24

A.1 Viewporter

+ clutter_actor_queue_relayout (CLUTTER_ACTOR (stex));
+ g_signal_emit (stex , signals[SIZE_CHANGED], 0);
+ }
+}
+

s t a t i c void
set_cogl_texture (MetaShapedTexture *stex ,

CoglTexture *cogl_tex)
@@ -384,8 +446 ,7 @@ set_cogl_texture (MetaShapedTexture *stex ,

priv ->tex_width = width;
priv ->tex_height = height;
meta_shaped_texture_set_mask_texture (stex , NULL);

- clutter_actor_queue_relayout (CLUTTER_ACTOR (stex));
- g_signal_emit (stex , signals[SIZE_CHANGED], 0);
+ update_size (stex);

}

/∗ NB: We don ’ t queue a r ed r aw o f t h e a c t o r h e r e b e c au s e we
don ’ t

@@ −417 ,7 +478 ,7 @@ meta_shaped_tex tu r e_pa in t (C l u t t e r A c t o r ∗
a c t o r)

{
MetaShapedTextu re ∗ s t e x = (MetaShapedTextu re ∗) a c t o r ;
Me t aSh ap edTe x t u r eP r i v a t e ∗ p r i v = s t e x −>p r i v ;

− g u i n t tex_width , t e x_h e i g h t ;
+ g u i n t des t_width , d e s t_h e i g h t ;

gu cha r o p a c i t y ;
Cog lCon t e x t ∗ c t x ;
C o g l F r ameb u f f e r ∗ f b ;

@@ −476 ,13 +537 ,13 @@ meta_shaped_tex tu r e_pa in t (C l u t t e r A c t o r ∗
a c t o r)

}
}

− t e x_wid th = p r i v −>tex_wid th ;
− t e x_h e i g h t = p r i v −>t e x_h e i g h t ;
+ de s t_w id th = p r i v −>des t_w id th ;
+ d e s t_h e i g h t = p r i v −>de s t_h e i g h t ;

− i f (t e x_wid th == 0 | | t e x_h e i g h t == 0) /∗ no c o n t e n t s y e t ∗/
+ i f (dest_width == 0 || dest_height == 0) /∗ no c o n t e n t s y e t

∗/
r e t u r n ;

- cairo_rectangle_int_t tex_rect = { 0, 0, tex_width ,
tex_height };

+ cairo_rectangle_int_t tex_rect = { 0, 0, dest_width ,
dest_height };

/∗ Use n e a r e s t −p i x e l i n t e r p o l a t i o n i f t h e t e x t u r e i s
u n s c a l e d . Th i s

∗ imp r o v e s p e r f o rmance , e s p e c i a l l y w i t h s o f t w a r e r e n d e r i n g .

25

A. Appendix

@@ −490 ,7 +551 ,7 @@ meta_shaped_tex tu r e_pa in t (C l u t t e r A c t o r ∗
a c t o r)

f i l t e r = COGL_PIPELINE_FILTER_LINEAR ;

− i f (me t a_ac t o r_pa i n t i n g_un t r an s f o rmed (tex_width , t e x_he i gh t
, NULL , NULL))

+ i f (me t a_ac t o r_pa i n t i n g_un t r an s f o rmed (des t_width ,
d e s t_he i g h t , NULL , NULL))

f i l t e r = COGL_PIPELINE_FILTER_NEAREST ;

c t x = c l u t t e r_ba c k end_ge t_cog l_con t e x t (
c l u t t e r_g e t_d e f a u l t_b a c k e n d ()) ;

@@ −565 ,7 +626 ,11 @@ meta_shaped_tex tu r e_pa in t (C l u t t e r A c t o r ∗
a c t o r)

{
c a i r o_ r e c t a n g l e_ i n t_ t r e c t ;
c a i r o_ r e g i o n_g e t_ r e c t a n g l e (r e g i o n , i , &r e c t) ;

− p a i n t _ c l i p p e d _ r e c t a n g l e (fb , o p a qu e_p i p e l i n e , &
r e c t , &a l l o c) ;

+ p a i n t _ c l i p p e d _ r e c t a n g l e (fb ,
+ opaqu e_p i p e l i n e ,
+ &r e c t ,
+ &a l l o c ,
+ s t e x) ;

}
}

@@ −618 ,16 +683 ,21 @@ meta_shaped_tex tu r e_pa in t (C l u t t e r A c t o r ∗
a c t o r)

i f (! g d k _ r e c t a n g l e _ i n t e r s e c t (& t e x_r e c t , &r e c t ,
&r e c t))

c o n t i n u e ;

− p a i n t _ c l i p p e d _ r e c t a n g l e (fb , b l e n d e d_p i p e l i n e , &
r e c t , &a l l o c) ;

+ p a i n t _ c l i p p e d _ r e c t a n g l e (fb ,
+ b l e n d e d_p i p e l i n e ,
+ &r e c t ,
+ &a l l o c ,
+ s t e x) ;

}
}

e l s e
{

/∗ 3) b l e n d e d_ r e g i o n i s NULL . Do a f u l l p a i n t . ∗/
- cogl_framebuffer_draw_rectangle (fb,

blended_pipeline ,
- 0, 0,
- alloc.x2 - alloc.x1

,
- alloc.y2 - alloc.y1

26

A.1 Viewporter

);
+ paint_clipped_rectangle (fb,
+ blended_pipeline ,
+ &tex_rect ,
+ &alloc ,
+ stex);

}
}

@@ -645,7 +715 ,7 @@ meta_shaped_texture_get_preferred_width (
ClutterActor *self ,
guint width;

i f (priv ->texture)
- width = priv ->tex_width;
+ width = priv ->dest_width;

e l s e
width = priv ->fallback_width;

@@ -665,7 +735 ,7 @@ meta_shaped_texture_get_preferred_height (
ClutterActor *self ,
guint height;

i f (priv ->texture)
- height = priv ->tex_height;
+ height = priv ->dest_height;

e l s e
height = priv ->fallback_height;

@@ -964,6 +1034 ,24 @@ meta_shaped_texture_get_opaque_region (
MetaShapedTexture *stex)
r e t u r n priv ->opaque_region;

}

+void
+meta_shaped_texture_set_viewport (MetaShapedTexture

*stex ,
+ cairo_rectangle_int_t

*src_rect ,
+ i n t

dest_width ,
+ i n t

dest_height ,
+ i n t

scale)
+{
+ MetaShapedTexturePrivate *priv = stex ->priv;
+
+ priv ->viewport_src_rect = *src_rect;
+ priv ->viewport_scale = scale;
+
+ priv ->viewport_dest_width = dest_width;

27

A. Appendix

+ priv ->viewport_dest_height = dest_height;
+ update_size (stex);
+ clutter_actor_queue_redraw (CLUTTER_ACTOR (stex));
+}
+
/∗ ∗
∗ meta_shaped_texture_get_image :
∗ @s t e x : A #MetaShapedTextu re

d i f f −−g i t a / s r c / c ompo s i t o r /meta−s u r f a c e −a c t o r . c b/ s r c /
c ompo s i t o r /meta−s u r f a c e −a c t o r . c

i n d e x b f 8 c 7 6 f . . e 7b c c e0 100644
−−− a/ s r c / c ompo s i t o r /meta−s u r f a c e −a c t o r . c
+++ b/ s r c / c ompo s i t o r /meta−s u r f a c e −a c t o r . c
@@ −242 ,6 +242 ,17 @@ meta_su r f a ce_ac to r_ge t_opaque_reg i on (

Me t aSu r f a c eAc t o r ∗ a c t o r)
r e t u r n meta_shaped_textu re_get_opaque_reg ion (p r i v −>t e x t u r e)

;
}

+v o i d
+me t a_su r f a c e_ac t o r_s e t_v i ewpo r t (Me t aSu r f a c eAc t o r ∗

s e l f ,
+ c a i r o_ r e c t a n g l e_ i n t_ t ∗

s r c_ r e c t ,
+ i n t

des t_width ,
+ i n t

d e s t_he i g h t ,
+ i n t

s c a l e)
+{
+ Me t a S u r f a c eA c t o r P r i v a t e ∗ p r i v = s e l f −>p r i v ;
+ meta_shaped_tex tu r e_se t_v i ewpo r t (p r i v −>t e x t u r e , s r c_ r e c t ,

de s t_width , d e s t_he i g h t , s c a l e) ;
+}
+

s t a t i c g b o o l e a n
i s _ f r o z e n (Me t aSu r f a c eAc t o r ∗ s e l f)
{

d i f f −−g i t a / s r c / c ompo s i t o r /meta−s u r f a c e −a c t o r . h b/ s r c /
c ompo s i t o r /meta−s u r f a c e −a c t o r . h

i n d e x 8 c6dda2 . . 2 acbdc2 100644
−−− a/ s r c / c ompo s i t o r /meta−s u r f a c e −a c t o r . h
+++ b/ s r c / c ompo s i t o r /meta−s u r f a c e −a c t o r . h
@@ −62 ,6 +62 ,11 @@ v o i d meta_su r f a c e_ac to r_se t_opaque_reg i on (

Me t aSu r f a c eAc t o r ∗ s e l f ,
c a i r o_ r e g i o n_ t ∗

r e g i o n) ;
c a i r o_ r e g i o n_ t ∗ meta_su r f a ce_ac to r_ge t_opaque_reg i on (

Me t aSu r f a c eAc t o r ∗ s e l f) ;

+v o i d me t a_su r f a c e_ac t o r_s e t_v i ewpo r t (Me t aSu r f a c eAc t o r

28

A.1 Viewporter

∗ s e l f ,
+ c a i r o_ r e c t a n g l e_ i n t_ t

∗ s r c_ r e c t ,
+ i n t

des t_width ,
+ i n t

d e s t_he i g h t ,
+ i n t

s c a l e) ;
v o i d meta_su r f ace_acto r_proce s s_damage (Me t aSu r f a c eAc t o r ∗

a c t o r ,
i n t x , i n t y , i n t

w idth , i n t h e i g h t) ;
v o i d me ta_su r f a c e_ac to r_p r e_pa i n t (Me t aSu r f a c eAc t o r ∗ a c t o r) ;

−−
2 . 1 7 . 1

From bb0aab8139eebb514744b9b3030a797195f3eded Mon Sep 17
00:00:00 2001

From: Robert Mader <robert.mader@posteo.de>
Date: Mon , 2 Jul 2018 15:01:36 +0200
Subject: [PATCH 3/4] implement wp_viewporter: meta -wayland -

surface

src/wayland/meta -wayland -surface.c | 144

++++++++++++++++++++++++++++ -
src/wayland/meta -wayland -surface.h | 1 +
2 files changed , 142 insertions (+), 3 deletions (-)

diff --git a/src/wayland/meta -wayland -surface.c b/src/wayland/
meta -wayland -surface.c

index 2c7b597 .. e85df33 100644
--- a/src/wayland/meta -wayland -surface.c
+++ b/src/wayland/meta -wayland -surface.c
@@ -46,6 +46,7 @@
#include "meta -wayland -legacy -xdg -shell.h"
#include "meta -wayland -wl -shell.h"
#include "meta -wayland -gtk -shell.h"

+# include "meta -wayland -viewporter.h"

#include "meta -cursor -tracker -private.h"
#include "display -private.h"

@@ -251,6 +252 ,114 @@ meta_wayland_surface_assign_role (
MetaWaylandSurface *surface ,

}
}

+ s t a t i c void
+meta_wayland_surface_surface_to_buffer_coordinate (

MetaWaylandSurface *surface ,
+ f l o a t sx ,

29

A. Appendix

f l o a t sy,
+ f l o a t *bx ,

f l o a t *by)
+{
+ MetaWaylandBuffer *buffer = surface ->buffer_ref.buffer;
+ MetaWaylandBufferViewport *vp = &surface ->buffer_viewport;
+ double src_width , src_height;
+ double src_x , src_y;
+ double surface_width , surface_height;
+
+ i f (vp ->buffer.src_rect.width == 0)
+ {
+ i f (vp ->surface.width == 0)
+ {
+ *bx = sx;
+ *by = sy;
+ r e t u r n ;
+ }
+
+ src_x = 0.0;
+ src_y = 0.0;
+ src_width = (double)cogl_texture_get_width (buffer ->

texture);
+ src_height = (double)cogl_texture_get_height (buffer ->

texture);
+ surface_width = src_width / vp->buffer.scale;
+ surface_height = src_height / vp->buffer.scale;
+ }
+ e l s e {
+ i f (vp ->surface.width == 0)
+ {
+ surface_width = (double)cogl_texture_get_width (

buffer ->texture) / vp->buffer.scale;
+ surface_height = (double)cogl_texture_get_height (

buffer ->texture) / vp ->buffer.scale;
+ }
+ e l s e
+ {
+ surface_width = (double)vp ->surface.width;
+ surface_height = (double)vp ->surface.height;
+ }
+ src_x = (double)vp ->buffer.src_rect.x;
+ src_y = (double)vp ->buffer.src_rect.y;
+ src_width = (double)vp ->buffer.src_rect.width;
+ src_height = (double)vp ->buffer.src_rect.height;
+ }
+
+ *bx = sx * src_width / surface_width + src_x;
+ *by = sy * src_height / surface_height + src_y;
+}
+
+ s t a t i c cairo_region_t *

30

A.1 Viewporter

+meta_wayland_surface_surface_to_buffer_region (
MetaWaylandSurface *surface ,

+ cairo_region_t
*region)

+{
+ MetaWaylandBuffer *buffer = surface ->buffer_ref.buffer;
+ MetaWaylandBufferViewport *vp = &surface ->buffer_viewport;
+ i n t n_rects , i;
+ cairo_rectangle_int_t *rects;
+ cairo_rectangle_int_t surface_rect;
+ cairo_region_t *scaled_region;
+ f l o a t xf , yf;
+
+ i f (vp ->buffer.scale == 1 &&
+ vp->buffer.src_rect.width == 0 &&
+ vp->surface.width == 0)
+ r e t u r n cairo_region_copy (region);
+
+ n_rects = cairo_region_num_rectangles (region);
+
+ rects = g_malloc (s i z e o f (cairo_rectangle_int_t) * n_rects);
+
+ f o r (i = 0; i < n_rects; i++)
+ {
+ cairo_region_get_rectangle (region , i, &rects[i]);
+
+ // u s e c o o r d i n a t e s i n s t e a d o f w i d t h / h e i g h t
+ rects[i]. width += rects[i].x;
+ rects[i]. height += rects[i].y;
+
+ meta_wayland_surface_surface_to_buffer_coordinate (

surface , rects[i].x,
+ rects

[i].y, &xf, &yf);
+ rects[i].x = floorf(xf * vp->buffer.scale);
+ rects[i].y = floorf(yf * vp->buffer.scale);
+
+ meta_wayland_surface_surface_to_buffer_coordinate (

surface , rects[i].width ,
+ rects

[i].height , &xf, &yf);
+ rects[i]. width = ceilf(xf * vp->buffer.scale);
+ rects[i]. height = ceilf(yf * vp->buffer.scale);
+
+ // u s e w i d t h / h e i g h t a g a i n i n s t e a d o f c o o r d i n a t e s
+ rects[i]. width -= rects[i].x;
+ rects[i]. height -= rects[i].y;
+ }
+
+ scaled_region = cairo_region_create_rectangles (rects ,

n_rects);
+

31

A. Appendix

+ /∗ I n t e r s e c t t h e s c a l e d r e g i o n to make s u r e no r o u n d i n g
e r r o r s made

+ ∗ i t t o b i g ∗/
+ surface_rect = (cairo_rectangle_int_t) {
+ .width = cogl_texture_get_width (buffer ->texture),
+ .height = cogl_texture_get_height (buffer ->texture),
+ };
+ cairo_region_intersect_rectangle (scaled_region , &

surface_rect);
+
+ g_free (rects);
+
+
+ r e t u r n scaled_region;
+}
+

s t a t i c void
surface_process_damage (MetaWaylandSurface *surface ,

cairo_region_t *surface_region ,
@@ -279,7 +388 ,8 @@ surface_process_damage (MetaWaylandSurface

*surface ,

/∗ The damage r e g i o n must be i n t h e same c o o r d i n a t e s p a c e a s
t h e b u f f e r ,

∗ i . e . s c a l e d w i t h s u r f a c e b u f f e r s c a l e . ∗/
- scaled_region = meta_region_scale (surface_region ,

meta_wayland_surface_get_scale (surface));
+ scaled_region =

meta_wayland_surface_surface_to_buffer_region (surface ,
+

surface_region);

/∗ Now add th e b u f f e r damage on top o f t h e s c a l e d damage
r e g i o n , a s b u f f e r

∗ damage i s a l r e a d y i n t h a t s c a l e . ∗/
@@ -696,6 +806 ,15 @@ meta_wayland_surface_apply_pending_state (

MetaWaylandSurface *surface ,
surface ->buffer_viewport.buffer.src_rect.height =

pending ->buffer_viewport.buffer.src_rect.height;
surface ->buffer_viewport.surface.width = pending ->

buffer_viewport.surface.width;
surface ->buffer_viewport.surface.height = pending ->

buffer_viewport.surface.height;
+
+ i f (meta_wayland_surface_get_actor (surface))
+ {
+ meta_surface_actor_set_viewport (

meta_wayland_surface_get_actor (surface),
+ &surface ->

buffer_viewport.buffer.src_rect ,
+ surface ->

32

A.1 Viewporter

buffer_viewport.surface.width ,
+ surface ->

buffer_viewport.surface.height ,
+ surface ->

buffer_viewport.buffer.scale);
+ }

}

i f (meta_wayland_surface_get_actor (surface) &&
@@ -1319,6 +1438 ,7 @@ meta_wayland_shell_init (

MetaWaylandCompositor *compositor)
meta_wayland_legacy_xdg_shell_init (compositor);
meta_wayland_wl_shell_init (compositor);
meta_wayland_gtk_shell_init (compositor);

+ meta_wayland_viewporter_init (compositor);
}

void
@@ -1785,9 +1905 ,18 @@ i n t
meta_wayland_surface_get_width (MetaWaylandSurface *surface)
{

MetaWaylandBuffer *buffer;
+ MetaWaylandBufferViewport *vp = &surface ->buffer_viewport;

CoglTexture *texture;

- i f (surface ->buffer_ref.buffer)
+ i f (vp ->surface.width > 0)
+ {
+ r e t u r n vp ->surface.width;
+ }
+ e l s e i f (vp ->buffer.src_rect.width > 0)
+ {
+ r e t u r n vp ->buffer.src_rect.width;
+ }
+ e l s e i f (surface ->buffer_ref.buffer)

{
buffer = surface ->buffer_ref.buffer;
texture = meta_wayland_buffer_get_texture (buffer);

@@ -1803,9 +1932 ,18 @@ i n t
meta_wayland_surface_get_height (MetaWaylandSurface *surface)
{

MetaWaylandBuffer *buffer;
+ MetaWaylandBufferViewport *vp = &surface ->buffer_viewport;

CoglTexture *texture;

- i f (surface ->buffer_ref.buffer)
+ i f (vp ->surface.height > 0)
+ {
+ r e t u r n vp ->surface.height;
+ }
+ e l s e i f (vp ->buffer.src_rect.height > 0)
+ {

33

A. Appendix

+ r e t u r n vp ->buffer.src_rect.height;
+ }
+ e l s e i f (surface ->buffer_ref.buffer)

{
buffer = surface ->buffer_ref.buffer;
texture = meta_wayland_buffer_get_texture (buffer);

diff --git a/src/wayland/meta -wayland -surface.h b/src/wayland/
meta -wayland -surface.h

index 50 e4e0c ..2 a795f2 100644
--- a/src/wayland/meta -wayland -surface.h
+++ b/src/wayland/meta -wayland -surface.h
@@ -160,6 +160 ,7 @@ s t r u c t _MetaWaylandSurface

GList *subsurfaces;
GHashTable *outputs_to_destroy_notify_id;
MetaWaylandBufferViewport buffer_viewport;

+ s t r u c t wl_resource *viewport_resource;

/∗ B u f f e r r e f e r e n c e s t a t e . ∗/
s t r u c t {

--
2.17.1

From 23 b1a69e95a4e70615f43119c0c2c2865e5ba1e9 Mon Sep 17
00:00:00 2001

From: Robert Mader <robert.mader@posteo.de>
Date: Thu , 26 Apr 2018 12:15:36 +0200
Subject: [PATCH 4/4] implement wp_viewporter: add add
META_WP_VIEWPORTER_VERSION to meta -wayland -versions.h

src/wayland/meta -wayland -versions.h | 1 +
1 file changed , 1 insertion (+)

diff --git a/src/wayland/meta -wayland -versions.h b/src/wayland/
meta -wayland -versions.h

index 81 d37ef ..4 b20d04 100644
--- a/src/wayland/meta -wayland -versions.h
+++ b/src/wayland/meta -wayland -versions.h
@@ -53,5 +53,6 @@
#define META_ZXDG_OUTPUT_V1_VERSION 1
#define META_ZWP_XWAYLAND_KEYBOARD_GRAB_V1_VERSION 1
#define META_GTK_TEXT_INPUT_VERSION 1

+# define META_WP_VIEWPORTER_VERSION 1

#endif
--
2.17.1

A.2 Xwayland RandR 1.2

34

A.2 Xwayland RandR 1.2

From 3dc9fa28e743744e1031105b0d68eeda3d3f5fb9 Mon Sep 17
00:00:00 2001

From: Robert Mader <robert.mader@posteo.de>
Date: Mon , 22 Jan 2018 17:57:38 +0100
Subject: [PATCH] xwayland: use RandR 1.2 interface (rev 2)

This adds the RandR 1.2 interface to xwayland and allows modes
advertised by the compositor to be set in an undistructive

manner.

With this patch , applications that try to set the resolution
will usually

succeed and work while other apps using the same xwayland
instance are not affected at all.

The RandR 1.2 interface will be needed to implement fake -mode -
setting and

already makes applications work much cleaner and predictive
when a mode

was set.

This depends on https:// pa t chwo rk . f r e e d e s k t o p . o r g / s e r i e s /34628/

hw/xwayland/xwayland -output.c | 74

+++++++++++++++++++++++++++++++++++
1 file changed , 74 insertions (+)

diff --git a/hw/xwayland/xwayland -output.c b/hw/xwayland/
xwayland -output.c

index f754b76 ..74778 be 100644
--- a/hw/xwayland/xwayland -output.c
+++ b/hw/xwayland/xwayland -output.c
@@ -487,12 +487 ,73 @@ xwl_randr_get_info(ScreenPtr pScreen ,

Rotation * rotations)
r e t u r n TRUE;

}

+#ifdef RANDR_10_INTERFACE
s t a t i c Bool
xwl_randr_set_config(ScreenPtr pScreen ,

Rotation rotation , i n t rate ,
RRScreenSizePtr pSize)

{
r e t u r n FALSE;

}
+#endif
+
+# i f RANDR_12_INTERFACE
+ s t a t i c Bool
+xwl_randr_screen_set_size(ScreenPtr pScreen ,
+ CARD16 width ,
+ CARD16 height ,

35

A. Appendix

+ CARD32 mmWidth , CARD32 mmHeight)
+{
+ r e t u r n TRUE;
+}
+
+ s t a t i c Bool
+xwl_randr_crtc_set(ScreenPtr pScreen ,
+ RRCrtcPtr crtc ,
+ RRModePtr mode ,
+ i n t x,
+ i n t y,
+ Rotation rotation ,
+ i n t numOutputs , RROutputPtr * outputs)
+{
+ RRCrtcChanged(crtc , TRUE);
+ r e t u r n TRUE;
+}
+
+ s t a t i c Bool
+xwl_randr_crtc_set_gamma(ScreenPtr pScreen , RRCrtcPtr crtc)
+{
+ r e t u r n TRUE;
+}
+
+ s t a t i c Bool
+xwl_randr_Crtc_get_gamma(ScreenPtr pScreen , RRCrtcPtr crtc)
+{
+ r e t u r n TRUE;
+}
+
+ s t a t i c Bool
+xwl_randr_output_set_property(ScreenPtr pScreen ,
+ RROutputPtr output ,
+ Atom property ,
+ RRPropertyValuePtr value)
+{
+ r e t u r n TRUE;
+}
+
+ s t a t i c Bool
+xwl_output_validate_mode(ScreenPtr pScreen ,
+ RROutputPtr output ,
+ RRModePtr mode)
+{
+ r e t u r n TRUE;
+}
+
+ s t a t i c void
+xwl_randr_mode_destroy(ScreenPtr pScreen , RRModePtr mode)
+{
+ r e t u r n ;
+}

36

A.2 Xwayland RandR 1.2

+#endif

Bool
xwl_screen_init_output(s t r u c t xwl_screen *xwl_screen)

@@ -506,7 +567 ,20 @@ xwl_screen_init_output(s t r u c t xwl_screen *
xwl_screen)

rp = rrGetScrPriv(xwl_screen ->screen);
rp ->rrGetInfo = xwl_randr_get_info;

+
+# i f RANDR_10_INTERFACE

rp ->rrSetConfig = xwl_randr_set_config;
+#endif
+
+# i f RANDR_12_INTERFACE
+ rp->rrScreenSetSize = xwl_randr_screen_set_size;
+ rp->rrCrtcSet = xwl_randr_crtc_set;
+ rp->rrCrtcSetGamma = xwl_randr_crtc_set_gamma;
+ rp->rrCrtcGetGamma = xwl_randr_Crtc_get_gamma;
+ rp->rrOutputSetProperty = xwl_randr_output_set_property;
+ rp->rrOutputValidateMode = xwl_output_validate_mode;
+ rp->rrModeDestroy = xwl_randr_mode_destroy;
+#endif

r e t u r n TRUE;
}

--
2.17.1

37

	Introduction
	Definitions and Fundamentals
	Technical approach
	Mode setting emulation
	Viewporter implementation in Mutter

	Realization
	Implementation of the viewporter protocol in Mutter
	Porting old patches
	Rendering
	Surface damage
	Bugs and incomplete implementations

	Mode setting emulation
	Mode exposing
	Setting a mode - sorry it's all so awful
	Scaling

	Status and outlook
	Viewporter implementation
	Mode setting emulation

	Evaluation
	Approach
	Result
	Personal experience

	Appendix
	Viewporter
	Xwayland RandR 1.2

