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Abstract

The Virtual Resource Manager (VRM) is a Grid management system that aims
to bring Service-Level-Agreements (SLA) to the Grid. Clients, as well as service
providers could benefit significantly from SLA capabilities, for example by nego-
tiating deadlines as well as penalty fees if that deadline is missed. The VRM
architecture utilizes a plan-based scheduling system enabling those capabilities. In
order to be able to construct a plan, runtime estimates for jobs are required. Since
job behaviour is dynamic and hard to predict, plan deviations of different magni-
tudes are bound to occur. If the estimation is off by a minor margin, the executing
node might choose to accept the deviation and continue running the plan as is. If
the deviation is significant, the node has to send a prediction failure signal to the
job scheduler. The job scheduler then updates its prediction model and generates
a new plan integrating the detected deviation.

The goal of this thesis is to design and implement a scheduling component that
determines if a detected plan deviation should be considered a minor deviation or
a prediction failure. Additionally it is necessary to define associated behaviour, for
example how to assign idle time slots or when to preempt a task. The proposed
design is implemented based on an existing prototype that is running as a scheduling
policy inside the Linux kernel.

In this thesis, firstly a systematic analysis is conducted of what conditions war-
rant a prediction failure signal and which parameters influence those conditions.
Then a threshold system is developed that incorporates the various conditions into
a coherent component that is implemented as an extension of the existing prototype.

The implemented prediction failure handling component is capable of looking
at different aspects of the plan and signal a prediction failure if necessary. It
also contains self-balancing mechanisms that aim to resolve minor plan deviations
locally. The implemented behaviour was developed with the help of a simulation
that is intended to give insights into the designed behaviour.

Zusammenfassung

Der Virtual Resource Manager (VRM) ist ein Grid-Management-System das da-
rauf abzielt Service-Level-Agreements (SLAs) in einem GRID-Computing Umfeld
verfügbar zu machen. Die Möglichkeit SLAs zu formulieren und durchzusetzen kann
nützlich für Kunden wie auch Anbieter sein. Um die Umsetzung von SLAs zu erle-
ichtern wird ein planbasiertes Scheduling-Verfahren verwendet, das einige Vorteile
gegenüber klassischen warteschlangenbasierten Systemen besitzt. In einem plan-
basierten Ansatz wird jedes parallele Programm, das von dem System akzeptiert
wurde in ein Ausführungsmodell integriert, das auch Plan genannt wird.

Um Pläne zu konstruieren sind Laufzeitabschätzungen notwendig. Da Pro-
grammverhalten dynamisch und sehr schwer genau und sicher vorhersagbar ist,
kann davon ausgegangen werden, dass Planabweichungen regelmäßig auftreten wer-
den. Nicht alle Planabweichungen haben jedoch die gleiche Signifikanz. Wenn die
Laufzeitabschätzungen die reale Laufzeit nur um wenige CPU-Instruktionen ver-
fehlt, dann sollte der ausführende Knoten nach Plan fortfahren. Werden jedoch
bestimmte Grenzwerte überschritten, ist es notwendig, dass der Knoten dem Job-
Scheduler signalisiert, dass eine größere Abweichung vorliegt. Der Job-Scheduler hat
nun die Möglichkeit den Plan an diese aktualisierte Informationslage anzupassen.

Das Ziel dieser Arbeit ist es eine Komponente zu entwerfen und zu entwickeln,
die für Planabweichungen entscheiden kann, ob ein Signal an den Job-Scheduler
notwendig ist oder nicht. Zusätzlich muss ein Verhalten spezifiziert werden, das
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vorgibt wie sich der Knoten zu verhalten hat, wenn zb. eine signifikante Zeitüber-
schreitung aufgetreten ist. Die Implementierung basiert auf einem existierenden
Prototypen, der als Scheduling-Policy innerhalb des Linux-Kernels läuft.

Die im Zuge dieser Arbeit implementierte Komponente zur Behandlung von
Vorhersagefehlern beachtet verschiedene Aspekte des Plans und sendet ein Vorhersagefehler-
Signal falls notwendig. Außerdem implementiert sie verschiedene Verfahren um
kleinere Abweichungen selbstständig und lokal auszubalancieren. Das Design und
die Implementierung wurden unter zuhilfenahme einer Simulation erarbeitet. Die
implementierte Vorhersagefehlerbehandlungskomponente ist als modulare, sich vorher-
sagbar verhaltende und flexible Komponente geplant und umgesetzt.
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1. Introduction

1 Introduction

1.1 Motivation

When working on a problem in science or engineering researchers and engineers often
reach limits in regards to their data processing capabilities. Consider running a weather
simulation in order to predict consequences of climate change. To predict the weather
confidently and further into the future, several factors have to be considered. For ex-
ample, the resolution of the simulation, meaning the cell size of the grid that represents
the earth’s surface is of relevance. Small but deep valleys for example might average
out if the cell size is too big. Still those valleys might reach significantly lower temper-
atures than the immediate surroundings due to thermodynamic effects. The preserved
coldness then could influence the local climate for a longer period of time. A finer res-
olution would help to better account for those effects, subsequently helping to better
understand dynamic aspects of the simulation such as clouds [26]. Another influencing
factor on the predictive quality is the amount of parameters that are considered by the
simulation. The more relevant parameters, the finer and more an accurate output can
be produced. Weather forecasting for example primarily uses atmospheric data points
such as temperature, humidity, wind, and more [6], but relevant changes in the atmo-
sphere could also originate from within the ocean. When optimizing the weather model,
it would be useful to not only simulate developments above sea level, but also changes
in the ocean such as currents or water temperature.
In order to run a simulation with all the relevant parameters in high resolution, a lot
of computational power is required. For results to be available in a reasonable time
frame supercomputers are increasingly necessary. While high profile applications such
as climate simulations require vast resources, a lot of modern applications also profit
from the power supercomputers are offering. From training machine learning models
on large data sets to running batch jobs for a small business in a friction of the time it
would take one off-the-shelf server. A great number of possible use cases for supercom-
puters in all kinds of different scenarios are imaginable. One major obstacle is the high
cost associated with procuring and maintaining supercomputers. While computational
power is increasing faster than the price, HPC is still expensive to get into with costs
rising especially on the high-end [23]. For most organizations that do not rely on heavy
computations as a critical requirement the usage of supercomputers is out of reach.
In the 1990s an idea began to evolve trying to challenge this situation. The concept
was called "grid computing" referring to the power grid, where every user can simply
plug a device into a power socket and thereby access the utility provided by the grid [9].
The clients benefit from a simple and inexpensive way of getting access to the utility.
Suppliers also have an easy way of offering their services with few entry barriers for
new competitors. While the chosen metaphor of the Grid might not be applicable in
every regard, the general idea has stuck. In order to take this path, grid middleware is
required to give clients the capabilities to request resources on the one hand and allow
providers to easily offer and allocate their resources on the other hand.
One system that is envisioned to be part of such a grid environment is called the Virtual
Resource Manager (VRM) [18]. A main objective of the VRM is to bring Service Level
Agreements (SLAs) to the Grid. An SLA defines aspects of a provider-client-relationship
such as quality, availability, penalty fees, deadlines and so on in concrete terms. Not all
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1. Introduction

current resource management systems provide the necessary capabilities to enable SLAs
in a meaningful way. In this context a resource management system is an interface for
accessing the underlying resources. If SLAs would be widely available, the usage of the
Grid could become more reliable, flexible and therefore attractive for clients. If a job
submission backed by an SLA is accepted by the system, the requirements are made
explicit and the system can check whether it can provide the requested service with the
given conditions or not. Additionally providers are better able to specify and integrate
their resources into a Grid environment. Consider a case where the Grid is running
out of GPU resources resulting in high demand for GPU-computations, so data centers
might delay currently running jobs and offer their resources to the Grid. Clients could
also profit from these dynamics, for example by submitting a job with a deadline far in
the future but restrictions on the price. In order to enable these capabilities the VRM
architecture is relying on a plan-based scheduling approach. Accordingly jobs running
on a VRM managed system are not ordered in a queue-based fashion but are integrated
into a holistic plan that determines the order of execution in advance.

VRM architecture Figure 1 gives an overview of the general architecture of the
VRM.

Figure 1: Layers of the VRM architecture, taken from [18]

The VRM consists of a layered architecture that allows for recursive nesting. The
objective of the VRM is to give high-level access to virtual resources so that SLA capabil-
ities can be offered. In order to create virtual resources, Administrative Domains (ADs)
are created. These domains are responsible for combining their underlying resources
as well as establishing policies in regard to those resources. ADs may be recursively
structured. The interface over which the AD offers its resources is called Administrative
Domain Controller (ADC). The ADC of an AD also is the unit responsible for han-
dling SLA negotiations for requests regarding its encapsulated resources. For ADCs to
be able to create virtual resources out of the underlying heterogeneous computing in-
frastructure, Coupling Modules (CMs) are required. The CMs act as adapters or brokers
that bridge the gap between the ADC and the underlying local Resource Management
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1.2 Problem statement

System (RMS). The local RMS is the software that manages the actual computational,
network, storage, etc. resources. Since the capabilities of different RMSs vary, the CMs
aim to extend capabilities where possible to enable advanced SLA-features.

This thesis is aiming to further explore the plan-based scheduling approach which
is particularly suited for enabling SLAs. When a client submits a job the ADC tries
to match the job requirements with the capabilities of its underlying system(s). If a
match is found and the job is accepted, it is included in the schedule or plan that details
the execution model. This execution model lays out how accepted jobs are planned to
run conforming to the agreed upon conditions. The execution model determines how
the jobs are distributed onto the cluster, which processes run on which nodes and the
tasks a process is comprised of. This plan is generated with a prediction model that
uses historical data, information from SLA, etc. to approximate the runtime behaviour
of the job and its parts. Over time code does change invalidating historical data, input
data might influence runtime behaviour in a nonlinear fashion or garbage collection for
the executing interpreter might have changed resulting in plan deviations for the job.
The generated plan represents a best effort approach that is naturally prone to hav-
ing flaws. Those deviations however will not be detectable directly by any high level
planning component and will first surface on the nodes where the actual computations
take place. If tasks are not static and/or involve dynamic inputs, plan deviations are
bound to occur. The node has to have a strategy to deal with plan deviations. Since
minor deviations can occur for a number of different reasons, the first challenge that the
node has to overcome is to decide whether a detected deviation qualifies as a prediction
failure or constitutes only a minor haziness. A prediction failure signifies the need for
a plan update by the job scheduler. Consider a case where a task is planned to run for
1,000,000,000 instructions, but it takes 1,000,000,100 so the deviation is smaller than
%0, 0001. It can be argued that this deviation is within the range of what has to be
accepted for non-static systems since the deviation is so minor that its consequences
are hardly measurable. If the deviation is minor and the node is able to easily deal
with it without jeopardizing any other process or the successful execution of the job
according to the corresponding SLA, the node might opt to continue with no or minor
adjustments as needed.

1.2 Problem statement

An existing prototype that implements the plan-based approach was intended as a proof-
of-concept for the feasibility of plan-based scheduling inside the Linux Kernel [10]. It
does not contain any form of prediction failure handling. Prediction failure handling is
concerned with finding a proportional way of dealing with plan deviations. This thesis is
concerned with designing and implementing a prediction failure component that handles
plan deviations in a reasonable manner. This primarily entails finding a procedure that
allows the node to decide whether a detected plan deviation should be categorized as
a prediction failure or not. In order to achieve this, a threshold is developed that will
serve as a dividing line. Defining this threshold can be challenging since on one hand it
should be predictable so the job scheduler is able to make useful assumptions about the
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1. Introduction

node’s state if it hasn’t received any feedback. And also the threshold must be flexible
enough to take into consideration the specifics of the current state.
Subsequently system behaviour needs to be specified for different states the node can be
in relating to the threshold. For example, if a task is running late, but is still within its
minor deviation range, the node does not need to react. If a task is late but its prediction
failure threshold won’t be reached for quite some time due to the task having a large
amount of planned instructions assigned, it could be necessary to implement some sort
of preemption to prevent one task’s deviation from affecting other processes on the node.
Finally, both the prediction failure detection and prediction failure handling will need
to be implemented based one the prototype.

1.3 Assumptions

Since no executable live system is currently easily available, assumptions have to be
made in order to establish certain limitations. The assumptions are grouped into three
different categories. Technical assumptions relate to aspects of the assumed hardware.
Design assumptions are concerned with the general design ideas and goals. Finally,
environment assumptions consider the context the plan-based scheduler is envisioned to
run in.

• Technical Assumptions

Single Core : A node on the cluster is assumed to be a single core. The challenge of
multithreading will not be addressed within the scope of this thesis.

PMU Capabilities : The CPU running the plan-based scheduler is assumed to have a way of
counting retired instructions. This capability is often provided by a hardware
component called Performance Monitoring Unit (PMU). The design and im-
plementation are developed with the assumption that such a component is
readily available.

Base OS : The base operating system on all nodes of the cluster is running a Linux
kernel. The implementation is not tailored to a specific kernel version. It is
based on the existing prototype of [10].

• Design Assumptions

Resource Sharing : All processes on a node share the available resources. No process is greedy
and the behaviour towards others processes will be viewed cooperatively, e.g.
if process A needs less resources than expected and process B more than
expected, B consuming some resources that originally have been allocated
to A will be allowed within limits. The goal is that no process misses its
deadline and not that each individual process finishes as early as possible.

Security : Security is not regarded an issue. Users’ intentions are assumed to be
benevolent so no actions are taken to guard against willful disturbances.

Computational Tasks : Plans contain two types of tasks, computational tasks and communication
tasks. This thesis only focuses on computational tasks.

• Environment Assumptions
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1.4 Terminology

Time vs Instructions : It is assumed that there is a conversion rate that allows to transform time
units into CPU instructions and CPU instructions into time units. This
implies that the CPU is able to retire a constant amount of instructions
per time unit, which will also be assumed. This conversion rate is therefore
independent of any other influences, such as specific jobs or stages of a job.

Global Time : There is no global time provided by any higher unit of organization. The
only relevant concept of time is provided by the above mentioned instruction
rate.

Multiprogramming : Generally more than one client’s job is running on the HPC system at any
given time or for the node level: More than one process is assumed to be
running on the system at any given point in time.

Plan Deviation : The plan deviation for tasks follows a normal distribution.
Black Box Rescheduling : There is a rescheduling component available -often called job scheduler-

to which prediction failure signals can be sent and that in return provides
the signaling node with an updated plan that is sufficient to deal with the
signaled issue.

Multilevel Scheduling : With systems that allow for recursion, a system might also allow for a
recursive job scheduler structure, sometimes called multilevel scheduling. In
the context of this thesis, only one level of job scheduling is assumed.

1.4 Terminology

Since the field of Grid computing and plan-based scheduling might not be very widely
known and this thesis refers to a developing project that is not fully specified in all
regards, a short list of terms that will be used in the thesis is provided below. Most
terms will be discussed in more detail at a later point.

• Cluster: A cluster (computer) is a parallel computer that is comprised of not
strictly defined computation units (which may be highly heterogeneous) that do
not use a shared memory space, but are connected by a network for communication
[2].

• Node: Nodes are the units that form a cluster. In the case of this thesis, a node
can more concretely be conceived as one CPU core that is executing the tasks it
is assigned to by the plan.

• Plan: The plan determines how jobs are mapped onto the cluster. The plan states
what processes and ultimately which tasks are to be executed on which node in
what order. The plan also contains metadata such as buffer sizes for processes.
The plan can be split up and adjusted for each individual node, so the node knows
its specific execution plan. This thesis is primarily concerned with the node’s plan,
which will also be called scheduling plan, when a distinction is necessary.

• Job: Clients submit parallel programs to the system that are called jobs.

• Process: A job consists of a number of processes that are distributed to nodes
of the cluster. A process consists of a number of tasks. Every process has a
designated start and end task as well as an associated buffer.
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1. Introduction

• Task: A task is the smallest unit of execution in a plan-based scheduling system.
Tasks make up processes and tasks start and end with system calls. Contrary to
the use in some other contexts, the terms task and process are not being used
interchangeably in this thesis. For each task in the plan a number of instructions
is given that represents the planned amount of instructions the task is estimated
to run before terminating.

• Plan Units: Jobs, processes and tasks are entities that are related to within a
plan either explicitly or implicitly and therefore are called plan units. A plan can
be viewed through each of those plan units and thereby focus on a different level
of the execution model.

• Types of Tasks: A process consists of communication tasks and computational
tasks. Computational tasks represent portions of a process that rely primarily
on CPU resources, communication tasks on the other hand rely on IO-based re-
sources such as reading from the hard drive or receiving new data points via net-
work sockets. This thesis focuses on dealing with computational tasks. It is not
unreasonable to presume some analogy in the prediction failure handling between
the two kinds of tasks, so that the prediction failure handling concepts designed
for computational tasks might also be applicable for communication tasks to some
degree.

• Time: In the following, time is measured and thought of in processor instructions.
In the assumptions (1.3) it is stated that we assume a constant conversion between
wall clock time units like nanoseconds and CPU instructions. Time can be thought
of in conventional units as well, but semantically it is preferable to think of it in
CPU instructions instead.

• Plan Deviation: A divergence from the amount of instructions that was esti-
mated for a plan unit compared to the instructions that were actually required.
Assume a task is planned to need 500 instructions to terminate, but the CPU ac-
tually retires 600 instructions until the task terminates. The plan deviation than
is 100 instructions.

• Prediction Failure: A plan deviation does not equal a prediction failure. A
prediction failure is conceptualized as a significant plan deviation. To determine
how to quantify "significant" is a key challenge of this thesis and will be discussed
in detail.

• Prediction Failure Signal: If a prediction failure occurs, a signal is sent by the
node to inform the job scheduler that a significant plan deviation has occurred.

• Rescheduling: If a prediction failure signal is sent, a rescheduling is triggered.
When a rescheduling is triggered, the current plan is updated to reflect a change
in the approximated execution model. The new scheduling plan for each node is
then sent to all relevant nodes.

• Lateness/Earliness: Being late means that a plan unit has not terminated in
the time it should have according to the plan. Usually this means that the plan
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1.5 Requirements

estimated the plan unit to finish earlier then it actually did. There are some nu-
ances to this term, since for example a process can be late, while the current task
has finished early. So lateness always needs a scope to be understood unambigu-
ously. Earliness is simply the inverse of lateness. Due to this relationship, lateness
and earliness can be represented on the same axis. Lateness is represented using
positive integers, while earliness extends into the negative dimension.

• Real/Plan: The adjectives plan and real are going to be used to differentiate be-
tween the estimation of required instructions in the plan and the actually required
amount of instructions during job execution for a plan unit.

• Job/process/plan-based scheduler: The above introduced system is concep-
tualized as having two primary scheduling components. The job scheduler or
rescheduling component that maps jobs onto available resources of the cluster and
the process scheduler that receives a cropped part of the plan. This node-specific
plan also is called scheduling plan. It determines what processes are run on a local
node and in what order the tasks have to be executed. The process scheduler exe-
cutes those tasks. The process scheduler will also be called plan-based scheduler in
this thesis. Some authors might not consider the outlined scheduler to be only a
scheduler but something more instead ([9][p. 28-29]). In the context of this thesis
the term scheduler will be used nevertheless.

1.5 Requirements

Based on these assumptions and the general goal of the thesis, the following requirements
are set. The requirements are grouped into functional and nonfunctional requirements.

Functional Requirements Functional requirements can be determined firstly by
looking at the envisioned environment the plan-based scheduler is designed to run in
and secondly by the concrete functionality it has to provide.

REQ-F-0 The prediction failure handling component must provide an interface for interact-
ing with the rescheduling component.

REQ-F-1 The prediction failure handling component must provide the capability to decide
whether the current state in terms of plan execution signifies a prediction failure.

REQ-F-2 The prediction failure handling component must provide capabilities for firstly
handling minor plan deviations locally and secondly being able to bridge the time
between a prediction failure signaling and the arrival of the updated plan.

REQ-F-3 The prediction failure handling component must be able to run inside the Linux
kernel.

REQ-F-4 The implementation must be done in a prototypical manner, integrating into a
version of the prototype introduced in [10].
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2. Plan-Based Scheduling

Nonfunctional Requirements The nonfunctional requirements are influenced by
the not fully implemented environment as well as design goals that can be derived from
a not-fully specified and testable environment. The design focus should be put onto
making the component as versatile as possible but also implementing a reasonable first
attempt at solving the problem.

REQ-NF-0 The prediction failure handling component should be implemented with modular-
ity in mind.

REQ-NF-1 The prediction failure handling component should be configurable to environment
details that are not fully known.

REQ-NF-2 If a deadline can be met the prediction failure handling component should ensure
that it is met by handling deviations in a reasonable way and not cause significant
overhead for the scheduling process while doing so.

REQ-NF-3 The implementation of the prediction failure component should provide some
mechanism to easily observe its behaviour.

2 Plan-Based Scheduling

This chapter will give a brief introduction to plan-based scheduling, which this thesis
is based on. Firstly, scheduling in general will be discussed. This includes a short peek
at HPC scheduling and a short discussion focused on the inherent limitations of queue-
based systems. Lastly an introduction of plan-based scheduling as well as a summary
of the state of the prototype is given.

2.1 Scheduling Problem

A scheduler is a component that allocates resources to competing entities on a system
that shares those resources. Usually the resource in question is the CPU. In regards to
CPU scheduling the scheduler has to decide when and for how long a process is allowed
to use the CPU. When thinking about allocating computational time to processes a
couple of potential goals the scheduler might want to achieve come to mind:

• Distribute resources fairly to all contenders

• Ensure that starvation does not occur

• Establish priority so that more important processes are chosen over less prioritized
ones

• Optimize system throughput

• Ensure that no entity monopolizes the resource

• etc., see for example [3, p. 44]
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For traditional queue-based scheduling systems a number of widely known algo-
rithms such as first-come-first-serve, priority-scheduling or round-robin scheduling ([27,
p. 207-216]) exist. When delving deeper into the subject more specific scheduling prob-
lems arise. Multicore scheduling for example deals explicitly with assigning processes
to multiple cores ([27, p. 219-223]) or specific runtime restrictions are posed as it is in
the case with real-time scheduling ([27, p. 223-230]).

HPC scheduling Another instance of a more specific scheduling problem arises in
High Performance Computing (HPC). Importantly, the target entities that are sub-
ject to being scheduled in this context are not exclusively processes, but also jobs at
a higher level of abstraction. The scheduling of jobs is distinct to the scheduling of
processes/threads. The main question posed by job scheduling is: How can jobs be
assigned to the HPC system in the most effective and efficient way (according to some
goals)?. This process involves several steps. These can include for example quantitative
partitioning, which decides how many processes a parallel program receives or qualita-
tive partitioning, which defines more specifically which nodes of a cluster are assigned
to the program. HPC scheduling in abstract terms tries to find a mapping of programs
to the corresponding cluster computer.

[24] describes in some detail popular solutions to the job scheduling problem. One
way to find a suitable mapping is by applying a variable partitioning scheme. This means
that analogous to the term in operating system’s memory allocation, a job receives a
partition of the cluster for the time it is estimated to run.

Figure 2: Variable partitioning problem

Figure 2 illustrates what the variable partitioning approach revolves around. The
x-axis is the time axis indicating when a job is active on the system. The y-axis shows
all the computational units of the system. Jobs have to be scheduled in such a way that
their resource requirements are satisfied. Job 1 for example is probably running for a
longer period of time then job 2 or 3. Job 3 is expected to require more computation
units then the other jobs. The jobs 1,2 and 3 are already scheduled to run on the cluster
for some amount of time. Now job 4 is queued and has to be scheduled to run.
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Figure 3: Backfilling

So HPC scheduling systems consist of at least two distinct schedulers. Firstly, a
higher level scheduler that receives requests and distributes accepted requests to avail-
able nodes. This scheduling component will be called job scheduler. In order to execute
actual instructions and their associated tasks/processes according to the schedule of
the job scheduler, there needs to be a process scheduler that is running on the nodes.
The scheduling system can be for example queue-based or plan-based. In the following
paragraphs, a brief overview of queue-based systems is given in order to contrast the
differences in concept.

2.2 Queue-Based Scheduling

Queue-based systems rely on a queue to determine execution order. The first process/-
task/job in the queue is the next to be executed. The scheduler’s task is to order
the queue in a manner that is compatible with its goals. Queue-based systems can
be improved and extended upon, for example by introducing dynamic prioritization to
more efficiently achieve the scheduling goals. In principle queue-based systems man-
age a queue data-structure in a certain manner. In a HPC environment for example
where achieving a high system utilization is a priority, some additional algorithms can
be applied when trying to assign jobs to a cluster. If the queue-head can not be run
because the currently available resources can not satisfy the requirements, but the queue
contains other jobs that are able to run with the available resources backfilling can be
applied. Consider the example illustrated in 3.

Job 2 in the queue-head can not be set running, because there are not enough
resources available on the system, but at the second place in the queue a job is waiting
for which the available resources would be satisfying. So backfilling can be applied to
improve system utilization.

Backfilling improves on a simple first-come-first-serve strategy by not only statically
moving the planning horizon forwards, but also looking backwards in the queue to fit
smaller jobs into gaps that can not be filled currently. [24] provides some additional
details on backfilling and its different variants. The topic of queue-based scheduling is
a research area on its own and could be discussed in much more detail (also see [4]),
but since it is not the focus of this thesis, it will not be discussed any further.
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2.3 Limitations of Queue-Based Systems

While [35] states that in 2016 "resource management systems schedule jobs in a queu-
ing fashion", those systems have certain limitations that will be discussed next. Even
with added measures to queue-based scheduling systems, the quality of the scheduling
outcome is dependent on the order in which jobs are submitted. The jobs earlier in the
queue are preferred disregarding additional information that might be available. Also
some advanced scheduling requirements can not be solved easily with a queue-based
system. In [32] the authors for example describe the problem of co-allocation. If the
resource needs of a job can not be satisfied by the cluster the job was initially submit-
ted to but other connected clusters are potentially available and the combined resources
would fulfill the requirements, it would be useful to merge the resources and then run
the job on this newly composited system. The challenge for a queue-based system is
that more detailed, additional constraints such as this simultaneous execution of a job
on several clusters are not directly supported. The job could be split and sent to the
connected clusters, but those job fragments would need to be inserted in the correspond-
ing queues. In systems of this kind, there is no obvious way of enforcing a simultaneous
execution required for co-allocation. With support for additional constraints, SLAs or
SLA-like agreements could be made to further adapt and optimize the execution flow
and thereby improve the utilization of HPC systems. Other examples for advanced
requirements hard to satisfy with queue-based systems are:

• A job has stages of its execution where some processes need to run on specific
nodes with a specific licensed software installed.

• The client has hard real time-like requirements for different stages, where the job
has to be finished at a certain wall clock time or the results are useless.

• A client has to save money while not prioritizing an immediate execution, so the
job could be scheduled in fragments when parts of the system are planned to be
idle.

While it is possible to devise mechanisms to overcome such challenges in a queue-
based system, it also is discernible that the ad-hoc queue-based system might not be
best suited for those challenges. Plan-based systems might be more adapted to tackle
challenges of these kind. In the following paragraphs the plan-based approach will be
introduced.

2.4 Plan-Based Scheduling

Firstly the general concept of plan-based scheduling is explained including a short dis-
cussion of related challenges. Afterwards, a more detailed view on the current state of
the prototype will be given.

2.4.1 Basic Concept

Opposed to queue-based systems, plan-based systems do not use queues in which jobs
wait until their required resources are available. Plan-based systems are able to have a
wider temporal awareness compared to queue-based systems because they are required
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queuing systems planning systems
planned time frame present present and future
submission of resource requests insert in queues replanning
assignment of proposed start time no all requests
run estimates not necessary (exception: backfilling) mandatory
reservations not possible yes, trivial
backfilling optional yes, implicit

Table 1: Comparing queue-based systems with plan-based systems

to have one additional piece of information. Plan-based systems rely on having runtime
estimations available to try to construct a more optimized plan. Therefore it is a
requirement to have an estimation of the duration of the job and its parts to apply
plan-based scheduling. This additional information is the crucial advantage the plan-
based system has over a queue-based system in terms of the challenges mentioned above.
Whenever a new job is submitted to the system, constraint checks can more easily
confirm that given restrictions regarding execution time, deadline, co-allocation and
so forth hold. If passed, the new job is included in the existing plan and the nodes
that are participating in the execution of the new job receive updated scheduling plans
accordingly. This approach allows for some additional features that would hardly be
possible with a strict queue-based system. In [11] the authors provide a short table with
comparisons. This comparison is shown in table 1.

As stated before, queue-based systems can be enhanced to implement more advanced
features, but in a plan-based system they come more naturally. The principal difference
remains that in plan-based systems additional runtime information can be used to cal-
culate ahead and construct a plan that lays out the execution model more holistically
and less ad-hoc.

2.4.2 Challenges for a Plan-Based Scheduler System

Plan-based scheduling also poses some additional challenges that are avoided by queuing
systems. As [11] mentions, some non-technical challenges might become more relevant.
For example in terms of communication, clients might be more inclined to question con-
crete start- and end-times of a job compared to a queuing system, where those are not
as clearly defined. More relevant in this context though are technical challenges. The
quality of the execution model highly depends on factors that pose non-trivial engineer-
ing tasks. Firstly the collection and management of data regarding runtime information
and the resulting prediction generation is demanding. Even if a job’s source code has
not been modified, variations in input data might lead to unpredictable increases or de-
creases in runtime. Depending on the nature of the parallel program, even slight changes
might turn out to have large impacts. Consider a weather simulation, where a variation
in a fraction of a degree in ocean warmth may decide if a hurricane forms or not. If
so, the system is pushed into a much more volatile state. Then, a far more computa-
tional intensive execution might follow, increasing the runtime significantly. Secondly,
plan generation is an instance of the Job-Shop-Scheduling Problem, which is in the class
of NP-hard problems [28]. Therefore even with sound runtime estimation data, plan
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generation is in principle a costly task becoming more and more challenging with the
addition of extra constraints. Furthermore, a more complex software stack is required
to run a plan-based scheduler, since the system has to continuously update and enforce
the plan on all participating components. A plan-based scheduler also needs to concern
itself with problems such as dealt with in this thesis, where a plan turns out to not be
accurate to a sufficient degree. Summed up, a plan-based scheduling approach promises
a whole set of new capabilities that would be very hard or impossible to achieve with a
queue-based approach at the cost of also increasing complexity.

2.4.3 Plan-Based Node-Scheduler Prototype

As hinted to before, for a plan-based system to work, two scheduling components are
required. The job scheduler that generates an execution model/plan and a local compo-
nent running on the nodes of the system that enforces the execution of processes/tasks
according to the plan. One such local component that enforces the plan execution is
the prototype developed in [10]. The implementation of this thesis is based on that
prototype.

Objective Since most HPC systems use a form of Linux as their base operating system
(in the Top500, currently 100% of operating systems are of the Linux family [30]), the
prototype was implemented for the Linux kernel. The objective was to test the feasibility
of integrating a plan-based scheduler into the Linux kernel that enables the execution
of scheduling plans. The main challenge was to harmonize this scheduler with the
default Linux scheduler. While the plan-based scheduler is designated to execute tasks
according to the plan, all other usual operating system functions are not envisioned to
be part of the plan. For example, typical OS duties such as logging or memory clean-ups
should be done by whatever other scheduler is the default on the system for such tasks.
So since their execution is not included in the plan, it is important to guarantee that
their execution still happens in appropriate time frames so that the operating system
can run stable.

Implementation Linux conveniently provides a framework for adding additional sched-
uler functionality in the form of scheduling policies. Those policies are ordered in a list,
where the list index indicates the corresponding priority of the scheduling policy. The
plan-based prototype is assigned the highest priority of all scheduling policies and there-
fore plan execution is prioritized. To achieve the above mentioned harmonization, the
prototype incorporates a mechanism that allows enabling and disabling itself. In the
prototype, this mechanism is time-based. After some amount of time has passed, the
plan-based scheduler disables itself. The time periods where the plan-based scheduler
is enabled are called execution time, when the default scheduler is active, the periods
are called unallocated time. Via empirical study, it was shown that this approach was
feasible. The process descriptor for Linux, the task_struct contains information that
determines which scheduling policy is responsible for its scheduling. This makes it very
easy to assign tasks of the plan to the plan-based-scheduler. Combining those mecha-
nisms, the author was able to implement a scheduling policy suitable for a plan-based
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scheduling system.

3 Design of a Prediction Failure Handling Component

The goal of this chapter is to combine several aspects a prediction failure handling
component requires into one coherent description of a proposed design. Firstly, a general
overview and design goals are given in 3.1. This section will also discuss the technical
issue of instruction counting capabilities and general design considerations that are
prerequisite. It follows 3.2, which deals with pre-prediction failure signaling behaviour.
The section covers plan deviations that are so far not deemed to be prediction failures
and mechanism to ensure that one task’s plan deviation does not significantly affect
other plan units. Finally, 3.3 is concerned with prediction failures that can not be
handled locally anymore and need to be delegated to a higher level scheduler.

3.1 Overview

This section aims at giving a conceptual understanding of the different types of thresh-
olds and prediction failure handling behaviour. Firstly, an overview of the thresholds
and their relationship to each other is given in 3.1.1. There will be a short discussion on
the general paradigms in regards to the design of the thresholds in 3.1.2. Concluding
this general discussion technical details that impact the design and implementation of
those thresholds will be provided in section 3.1.3.

3.1.1 Thresholds

The prediction failure handling component monitors 3 distinct types of thresholds and
initiates appropriate action if they are reached.

The thresholds t1 and t2 are concerned with plan units that exceed their planned
instructions and thereby turn late. T−2 is conceptually the inverse of t2, governing plan
units finishing significantly earlier than expected. The following enumeration describes
the high-level goal for each type of threshold.

t1 : If the lateness of a task reaches t1, the running task will be preempted and the
next task of the plan will be scheduled. The plan-based scheduler will try to find
a suitable slot for it so it can be run again later. The goal of t1 is to detect minor
deviations and trigger local handling, so that one task’s plan divergence does not
interfere significantly with other processes.

t2 : This threshold marks the step from tolerable to intolerable plan deviation. When a
plan unit crosses this threshold, the transgression is deemed too significant for the
node to handle. A prediction-failure signal is sent in order to trigger a rescheduling
of the plan which incorporates the detected deviation. T2 is composed of several
components. Most notably, t2 consists of t2_task, t2_process and t2_node. Each
component tracks the lateness of a different plan unit. Additionally, other compo-
nents may be added to include further conditions. T2_preemptions for example
tracks how often a task was preempted to limit the amount of preemptions before
triggering a reschedule.
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t−2 : As mentioned above, t−2 is conceptually the inverse of t2, meaning this threshold
deals with significantly early terminating plan units. T−2 has some characteristics
that make it harder to find suitable components, which will be discussed later.

These 3 threshold types form the 2-tier escalation model illustrated in 4. The further
an execution deviates from the plan, the more likely an escalation becomes. Since t1
deals with the preemption of tasks, there is no analogous t−1 threshold. The goal of
those thresholds combined is to have a way of keeping the actual execution close to
what the plan determines.

Figure 4: Escalation model

3.1.2 Threshold Design Principles

The component to be designed is intended to be embedded into an environment that is
not fully implemented or strictly defined, therefore decisions will have to lean on pre-
defined values that try to anticipate this future environment. It needs to be weighted
for example, how flexibility is valued compared to predictability or whether additional
resources should be allocated using a judgment of fairness or a judgment of neediness.
This section lays out a conceptual vision, discusses preferences and develops assessment
criteria when goals are in conflict and no solution is obviously most appropriate.

Scope of Plan-Based Scheduler The plan-based process scheduler is the center
point in this thesis. Conceptually it is the most low-level entity and also the interface to
the actual computational resources the node provides. The node itself is not envisioned
as an explicit decision-making component of a distributed scheduler, but instead as an
execution unit that passes more intricate scheduling conflicts back to the job scheduler,
which has a global view on the system state. Impactful and significant scheduling de-
cisions should therefore be delegated if they arise. Ad-hoc scheduling decisions, which
have a need for fast responses will have to be made on the node. This responses however
will not attempt to provide efficient local rescheduling.

Depth and Resolution of Prediction Failure Prevention In the listing of the
different state keeping variables (at A.1), some amount of configuration and tracking
variables are presented, so the prediction failure component has a reasonable base for
making decisions. By combining these tracking variables using statistical and stochastic
methods, increasingly intricate indicators could be derived, which in the most extreme
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case could lead to the prediction failure handling component having its own sophisti-
cated prediction model. With the data that is potentially available to the plan-based
scheduler, development should be very aware of the risk of feature-creep. As mentioned
above, t1 is the threshold that triggers a task preemption if it is transgressed. T1 could
simply be calculated by adding an amount of instructions to the instructions the plan
has estimated for a task. This amount could be static or dynamic, factoring in the
current node state, for example, the node state could be factored in by simply letting
t1 scale according to the current system load. Alternatively, the node state could also
be factored in by extrapolating the system load based on periodically taken samples.
The sampling could of course be improved continuously: The extrapolation algorithm
could be improved, the sampling could be done not on a global load state, but could be
done on a per-process level, different samplings could be combined, future task execu-
tion could be estimated and so on. This would potentially allow for a more and more
refined prediction failure handling component. By tracking the progress of a plan in
every detail and then feeding those details back into corresponding extrapolation algo-
rithms, a very fine-tuned behaviour could be achieved. Since there is no clear limitation
rooted in a fixed functional requirement or a tightly defined environment, limits have to
be self imposed. Since the environment and circumstances under which the plan-based
scheduler should operate are not tightly defined, in the context of this thesis a solution
that fits the general case is the goal. The solution should strive to be modular and
flexible so that more intricate solutions can easily be plugged in if required.

Predictability vs Optimization During the development of this thesis system pre-
dictability and optimization turned out to be opposing goals. A optimized prediction
failure handling component for example can be more successful in detecting prediction
failures early, signaling them or even handle them locally. On the other hand, the more
details are included in the design, the less predictable the behaviour becomes. With a
very low level of resolution t1, t2 and t−2 might be implemented as fixed values. This
is problematic since the accumulated effects of a number of deviated tasks also have
adverse effects. With more thought put into unwanted circumstances, more conditions
have to be incorporated into thresholds. For example, if a process just started and
one of its task is late, then this might not be cause for concern, but if a task is close
to its processes deadline, it might become a concern. This could lead to a nesting of
thresholds and to less predictability. Based on the conceptual understanding of the
node, design decisions should favor system predictability over a high level of detail in
conflicting cases. The argument being that the job scheduler should handle edge cases
not the node. If the node shows a predictable behaviour, then the job scheduler should
be able to generate plans that do not cause unwanted behaviour. It is challenging to
generate fitting updated plans if the node behaviour is hard to reason about.

Coding Style In terms of implementation style, a readable and clear implementation
should be preferred over a runtime optimized solution. In the context of an HPC system,
efficiency should always be a factor, but even if the implementation may favor readabil-
ity and understanding over optimizations for speed, components should generally be
designed in a way that would require no heavy computations. One main requirement is
to keep deadlines, which should always be considered when designing and implementing
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the component.

3.1.3 Instruction Counting

The plan-based scheduler envisioned in this thesis heavily relies on CPU instructions as
a concept of time, so some thought should be put into the topic. CPUs with a CISC
architecture might for example retire fewer instructions per cycle than those based
on a RISC architecture. This is due to the historical need for smaller programs in
environments with limited memory. CPU vendors therefore would combine frequently
used sequences of instructions into single instruction. Simple instructions therefore
might take only a single clock cycle, while more complicated once might take multiple.
Referring back to the assumptions made in 1.3, it is assumed that the CPU runs with
a constant rate of instructions per time unit. No further specification regarding the
nature of those instructions is made. While plans are constructed with a fixed rate of
instructions per time unit in mind, the node requires a facility for a precise measurement
of retired instructions. In the following paragraphs ways of counting instructions and
ways of how to utilize those counted instructions to enforce threshold compliance are
discussed.

Counting instructions

Measure wall clock time At the most basic level instruction counting, or in
this case instruction estimation, can be done by utilizing the system clock and a fixed
conversion rate of time units to instructions. This is the approach applied by GNU’s
time program ([19]) that refers to kernel data structures that are updated when system
calls such as wait are made. This approach uses hardware features like High Precision
Event Timer [14] in a stopwatch manner. The advantage of this approach is its nearly
universal applicability, the major drawback is the inherent unreliability and potentially
low resolution. Assuming a fixed conversion rate of time→ instructions retired, firstly
the precision of the clock has to be sufficiently high and secondly, the timestamps used
to calculate the retired instructions have to be clearly attributable to the task or process
in question.

PMU For a more precise account of retired instructions some processors (for ex-
ample by Intel, ARM and SPARC [1, 25, 34]) have a designated hardware component
that specifically measures performance aspects. This unit is called Performance Mon-
itoring Unit (PMU) and it contains a set of special registers for tracking performance
related events such as cache misses, page misses or instructions retired in a given CPU
mode on a given core, etc. Depending on the architecture there are some registers that
track predefined events and some programmable registers that can be configured such
as the Intel Performance Event Select Registers ([12]) to track different kinds of events.
One advantage of this approach is that the performance measurement is implemented
in hardware, so little overhead is added.
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Using the PMU For the targeted Linux platform several profiling tools such
as OProfile and perf that utilize existing kernel space interfaces to PMU registers are
available. Perf for example is a tool that is able to track such performance statistics
[7], using different sources of information such as pure kernel counters (existing solely
in software) or PMU registers provided by hardware. As such it could be used as
a provider for the instruction counter information that is required by the plan-based
scheduler. Since perf is a userspace program that is not designed to run inside the kernel,
the kernel interface has to be called upon directly. The data structure encapsulating the
access to various performance events is called perf_event. The relevant perf_event for
retired instructions is called PERF_COUNT_HW_INSTRUCTIONS([33]). Through the usage of
the perf_event_open system call, a file descriptor can be retrieved which can be queried
by using parameters (such as PID, CPU, type of event,...) of the system call. Since the
instruction counter is a so-called hardware-counter it is not guaranteed to be available
on every platform. Notably the support for PMUs on virtual machines seems to be the
exception rather than the rule. A PMU is not provided for example by VirtualBox and
Red Hat’s KVM also only supports a Virtual Performance Monitoring Unit (VMPU)
on some Intel machines ([13]). While generally more reliable, even instruction counting
with PMU support might be subject to incorrect reporting. Due to the use of branch
prediction, branches might get speculatively executed that ultimately are not selected,
while still contributing to the count of instructions. Yet, in terms of reliability and
precision, if a PMU is available, this instruction counting approach should be preferred.

Thresholds, Instruction Counting and Interrupts If the plan-based sched-
uler is called, it has to read the retired instructions from the corresponding interface
and update a data structure representing the task that was run previously. This data
structure provides a field that allows tracking the sum of the retired instructions per
task. This data structure might look like listing 1.

Listing 1: Struct Task
struct task{

// −−− a t t r i b u t i o n v a r i a b l e s −−
unsigned long task_id ;
unsigned int process_id ;
// −−− t r a c k i n g v a r i a b l e s −−−
unsigned long instructions_planned ;
unsigned long instructions_run ;
char state;

};

The challenge when dealing with lateness-related thresholds is that the scheduler in
the general case can only detect a threshold crossing after it has occurred. The scheduler
gains control when a timer interrupt is triggered or when a task has finished. In the
case of late tasks, the scheduler and therefore the prediction failure handling component
does not immediately register when a transgression occurred. Depending on hardware
support, an option is available to detect those transgressions almost immediately.

Overflow events On some architectures an overflow event can be set up that triggers
as soon as a defined value is reached in a certain PMU register. This event can be as-
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sociated with a handler routine. The handler could call the prediction failure handling
component. The prediction failure component then updates its tracking data. It could
then immediately detect that a transgression occurred. The overflow event could be set
to trigger for example when t1 is transgressed, to gain the capability of precise preemp-
tions. While useful, this feature does not seem to be widely available, in the following,
it therefore is not assumed available.

Instruction counting resolution If a CPU with 4 GHz clock speed is assumed as
well as the current default configuration of 250 Hz for timer interrupts on an Ubuntu
20.04 system with kernel version 5.8.0-45, a timer interrupt is triggered about every
1,600,000 CPU cycles. Depending on the requirements for precision, this might be
precise enough or not. On systems that do not allow for overflow events, a PMU
based counting or an estimation using a system timer are the most straightforward
replacements. One consideration that should be mentioned is that the Linux kernel
timer interrupt frequency can be defined in the kernel configuration file for compiling.
Depending on the hardware, frequencies of up to 1000Hz are available. Since more
frequent timer interrupts also decrease throughput, this trade-off needs to be discussed
especially in the context of an HPC system. This aspect might be a further question of
interest and is mentioned in the future works section 6.2.

3.2 Local Plan Deviation Handling

As mentioned in the overview, t1 is concerned with limiting the possible deviations a
single task may add. This chapter will discuss the reasoning for introducing t1, then
an algorithm to set the threshold value of t1 will be proposed. Lastly, some behavioral
details will have to be considered.

3.2.1 Discussion t1

In the context of this thesis preempting running tasks plays an important role as the
first and most readily available method the plan-based scheduler has to contain devi-
ations. On the one hand, preempting entails overhead, since more context switches
occur. Therefore the execution time of the plan-based scheduler is more occupied with
preparation work compared to running a task until it either finishes or a prediction
failure signal is sent. In circumstances that guarantee that transgressions lie within a
defined range, letting tasks finish even if they are running late, could be the best choice.
In the context of this thesis, where such behaviour is not assumed, tasks could theoreti-
cally exceed their planned number of instructions by any amount. Worse even, with the
possibility of non-terminating tasks some form of preemption has to be implemented to
prevent the possibility of other processes starving. An argument can also be made that
in order to maintain an execution as close to the plan as possible, it would be beneficial
to have some preemption mechanism to ensure at least a basic form of similarity. While
preemption does not guarantee that the exact order of execution is followed, it ensures
that at least at the process level this similarity is maintained. Without preemption
stretching effects could also cause more severe divergences. Consequently some form
of preemption has to be established. T1 marks the first lateness threshold on the task
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level. The exact details of how to calculate such a threshold will follow in the next
paragraphs.

3.2.2 Calculate t1

So the first-tier threshold t1 is concerned with handling tasks that are exceeding their
number of planned instructions. With the goals described in 3.1.2 in mind, t1 is created
to ensure basic system stability and predictability. System stability means that rogue
tasks should not affect other tasks or processes running on the same node significantly.
Predictability in this context means that the real execution of tasks on the node is
similar to the execution model represented by the plan and aberrations only occur in a
previously defined and limited manner.

When looking for indicators that help pin down the concrete value for t1, the question
arises: What conditions should cause t1 to trigger and therefore need to be considered
in its definition? It should be noted that t1 should be thought of as task preemption
and not process preemption, therefore this threshold should consider task details in its
determination, not process or node states. Also, task preemption needs to happen when
a task is taking some amount of instructions more than it was originally planned for,
therefore is running "late". This is achieved by setting t1 to a value calculated with the
task’s planned instructions and a σ-multiplier that can be understood as the border
between an acceptable and problematic plan deviation. The challenge is to define a
suitable value for σt1 or derive σt1 from the current state. Referring back to the design
decisions in 3.1.2, σt1 is defined as a configurable constant that does not need to be
determined in an additional procedure. Naturally σt1’s value must be greater than 1.
So when σt1 is determined, the next step in calculating t1 is simply using the planned
task length as a basis for σt1 to multiply with:

t1_relative = length_task_plan ∗ σt1

t1_relative incorporate the idea of an acceptable deviation, but since tasks may vary
significantly in their length, it seems advisable to additionally provide a hard boundary
that guarantees that independent of specifics the deviation stays within a predictable
range. Consider the case, with an average task length of 100 time units, and σt1 set
to 1.05, the acceptable deviation would be 5 time units. Now with these settings a
task is scheduled that is estimated to run 10,000 time units, resulting in an acceptable
deviation of 500 time units. Accordingly to prevent edge cases like this from steering
the system significantly of its planned path a safety layer has to be defined. This is
achieved by introducing a hard cap that is defined in the constant PREEMPTION_LIMIT.
This cap is required since no assumptions are made for a minimum or maximum task
length and σt1 is defined to be a constant. To incorporate this safety net into t1, the
following adjustment is made:

t1_max = min(t1_relative, lenght_task_plan+ PREEMPTION_LIMIT )
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This upper boundary covers one end of the spectrum, but only applying a σt1 value to
the planned task instructions could cause issues with very short tasks. Consider the case,
where one task is planned to run in less than one timer tick. Now for a small number of
planned instructions, the allocation of extra instructions provided by σt1 would mean
that t1 allows only insignificantly more than planned instructions. It would possibly
even lie within the same timer tick range. Imagine a slight change of input data, so
that a task that used to run 1 timer tick before now requires three or four timer ticks.
It could be argued that for the sake of a predictable system behaviour in those cases,
some leeway should be given so that in the described scenario the task would be only
interrupted once instead of three or four times. As it will be later discussed in 3.2.3,
preempting a task repeatedly entails its own challenges. By granting tasks a minimum
of guaranteed preemption-free execution time this effect can be prevented. This lower
bound is represented by the constant NO_PREEMPTION. On a node with a huge number of
scheduled tasks NO_PREEMPTION is a sensitive value, due to its potential stacking effects
and therefore must be handled with care. Accordingly the final step in determining t1
then is to ensure this lower bound is kept:

t1 = max(t1_max, lenght_task_plan+NO_PREEMPTION)

As with σt1 an argument could be made for letting the above mentioned capping
constants be defined as dynamic variables instead. Consider two states of a node, one
being already behind significantly, one on time or even early. If a node is already very
late, resulting in the overall shifting backwards of tasks, it could be argued that preemp-
tion should also be more resolute than on a node, where tasks may start early. Since
on a late node in average several processes transgress their planned instructions, the
node should be more sensitive and eager to limit those latenesses as generally discussed
in 3.1.2. One argument against this approach could be that more preemptions also
result in more context switches and therefore less time the node spends on the actual
execution of tasks, which would then further add to the problem. There are arguments
to be made for allowing this kind of behaviour, but it would require a much more deli-
cate procedure for decision making. Furthermore the problem of accumulated lateness
is nearly impossible to solve by the node itself and should be a consideration for the
t2 threshold that escalates problems to higher instances. The possible relaxation of t1
on early nodes could be discussed as an optimization attempt and t1 might be a fea-
sible starting point when it comes to runtime optimization for the plan-based scheduler.

Check t1 Finally the plan-based scheduler compares t1 against retired_instructions_task
to check if the current task should be preempted, an easy comparison that determines
if a preemption should be triggered or not can be done:

char preempt = retired_instructions_task < t1 ? 0 : 1;

Since preempting has some additional consequences, those intricacies are discussed
in more detail in the following section 3.2.3.
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3.2.3 Preemption Behaviour

When the plan-based scheduler detects that a task has reached its t1, it preempts the
task and attempts to move it to a suitable slot, which could be designated either to a
task belonging to the same process or is not allocated to any process (idle time). The
search for an appropriate slot is fairly simple, but when thinking about the details, some
challenges arise. The following paragraphs will try to dissect what those challenges are
and how to reasonably handle them. Firstly, it will be discussed which mechanism
determines the next slot for a preempted task. Secondly, side effects that can occur
when a task is preempted multiple times will be discussed.

Next slot of process If a task is preempted the plan-based scheduler can look for
another slot belonging to the same process as the preempted task. The preempted
task can then be inserted before the next task of its process since the plan mandates
a strict ordering of task execution. Meaning if taskn of a process is preempted then
it is assigned to the slot of taskn+1 of that process. Taskn will therefore be scheduled
to start when taskn+1 is planned start. Notably, with this approach, a new distinction
has to be made. The distinction between slots and tasks. Tasks are placed in slots, but
tasks can be moved into other slots through preemptions. So slots can be considered
unmovable entities that determine the basic structure of the plan. With this in mind,
consider the following scenario: An exceedingly long running taskn with 1000 time units
allocated to it is running, but even more time units, say 1100 time units are required
for the task to terminate. Taskn crosses its threshold t1 and after running 1020 time
units is preempted. Taskn is pushed to the slot of taskn+1, which was planned to run
5 time slots. Taskn will transgress t2_task, where a prediction failure will be sent
not before 1200 time slots. This means that the slot allocated to taskn+1 will not be
sufficient for taskn to finish. This example illustrates that there is further need for
designing a behaviour to handle this kind of problem. In a real world scenario this
kind of constellation where a long task is followed by several shorter ones may not be
uncommon. In [27, p. 202-203] the authors discuss research in the field of general
operating system processes and it was found that the probability of short CPU usage
is much more likely than long bursts. So if a long CPU burst were to happen, than it
would not be unreasonable to assume that the tasks that follow are more short-lived.
Imagine, for example, a task that consists of heavy computations followed by several
small tasks that deal with the result and prepare the next heavy computation task.
This pattern could recur any number of times and therefore it is important to handle
those cases with some deliberation.

There are numerous possible approaches to this issue, but three are briefly sketched
below:

1. The simplest way of handling this would be to let a task only be preempted once
and then continue until it either terminates by finishing or triggering t2. Since this
potentially leads to consequences for the whole node, depending on the calculation
of t2 this approach might not be very compelling.

2. It would also be conceivable to grant the preempted task the time the next slot
offers and then directly cause a prediction failure if it transgresses on the t1 im-
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posed by the slot that it was inserted to. This handling prevents the snowballing
effect described in the paragraph above, but is rigid and therefore may cause some
amount of additional prediction failure signals.

3. Another way of dealing with this case could be to set a new t1 threshold that
is based on the slot size of the task the preempted task was inserted to. This
behaviour could be repeated again and again until the task finishes or transgresses
t2. The advantage of this approach would be that all the other tasks running on the
node could continue with comparable small irritations. A disadvantage is that this
could cause a more significant stacking effect, where some tasks are not executed
at the time when the original plan had them intended to be executed. If taskn

is interrupted repeatedly, increasing amount of tasks would be needed to move to
slots further up in the plan. This also requires some advanced tracking capabilities.
If using this approach, the base for calculating t2_task and t1 diverges, since for
calculating t1 the slot data is relevant and for t2_task the task data is relevant.
This would add an extra layer of complexity to the plan that would not be needed
otherwise.

Each of the above mentioned ideas has its advantages and disadvantages. The
differences mainly relate to the way each approach deals with successive t1 transgression
and what the base for calculating t1 is. In the design principles the decision was made
that the node should only make decisions that are conceptually within its scope, so
a combination of approaches 2 and 3 is chosen. A task will be allowed to be pushed
to successors’ slots, but the number of occurrences will be capped by a configuration
constant called MAX_PREEMPTIONS to gain predictability. The checking of this cap will
be encapsulated in a t2-component called t2_preemptions which is discussed further in
3.3.6.

The paragraphs above describe the procedure that is followed for pushing tasks to
time slots assigned to the same process, but when a task is preempted, it also might be
pushed into an upcoming idle time slot. The handling of this case is not as obvious as
it might seem, so it will be discussed in the following.

Pushing tasks to idle time slots Idle slots are slots that are not assigned to any
process and lie within the so called execution time of the plan-based scheduler. These
unallocated slots would leave the CPU in an idle state if the execution would follow the
plan exactly. Those idle times are a necessary part of the plan when all currently active
processes have to wait for IO-calls to return. Idle time offers the advantage that it is
very easy to see the additional resources they provide to the node. Ideally, late tasks
can just be inserted in these idle time slots. While this seems very straight forward on
the surface two questions arise:

1. What allocation algorithm should be used to assign preempted tasks to idle slots?

2. How much of the idle time slot is assigned to each task in question?
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The first question focuses on the notion of ownership or claim. To which process or
processes should idle time slots belong? The second question focuses on the problem
of partitioning. What should be the size of the chunks the scheduler assigns out of the
idle time slot? Should all chunks have the same size and if not, what should determine
the chunk size?
Both questions do not have definite answers. Should every process own an equal part
of the idle time slot or should the ownership correspond to the planned length of the
process or maybe should the neediest process be favored? The scheduler has no further
information regarding the estimated runtime of a late task since it already transgressed
its planned time. So what is a reasonable amount of additional time? Some possible
solutions are sketched out in the following:

1. Fixed pieces of idle time slots based on performance aspects (e.g. costs of context
switching) are assigned in a First-come-first-serve manner. If, for example, an idle
time slot is 200 in size, the context switching costs are 5 and the fixed piece size is
90 in length, this idle time slot could exactly hold 2 preempted tasks. The earlier
preempted task receives the first slot, the succeeding preempted task receives the
second slot.

2. Assign each late process equal parts of the unallocated time slot. Assume 5 active,
late processes, then each process would receive 20% of the idle time slot. Depend-
ing on the size of the idle time slot and the costs of switching between tasks, this
might turn out to be inefficient. On the other hand, this would also be a simple
and fair procedure.

3. Assign first-come-first-serve time slots based on the node’s state (e.g. assign less
generous pieces of the idle time slots, when the node is already running late to
help late processes catch up more efficiently).

4. Assign all idle time slots in its entirety in a round-robin fashion.

5. Assign all idle time slots to the late processes with the closest deadline.

Each one of the above sketched ideas has advantages and disadvantages and should
be evaluated while carefully looking at the requirements as a whole. The round-robin
approach for example is easy to calculate and it is predictable, but the CPU might idle
while there still could be late processes running on the node. Idea two is fair, since
all processes profit to the same extent of idle time slots. Depending on the size of the
idle slots and the number of active processes, this concept might turn out to be useless
when the emerging idle slots are small. The space of possible solutions is expandable
and the ideas above could be improved and reasoned about with increasing detail. Since
no obviously optimal solution exists, a look to the defined goals is helpful. Cooperative
relations between all entities using a node were assumed in 1.3 and it could be argued
that this alludes to a strategy that generally favors the needs of the node over the claims
of single processes or tasks. Consider the following scenario: A node is running late.
Almost all processes are late and every single one of those processes used up several idle
time slots already. Now a task is preempted which belongs to a process that has not
received any additional time slots so far. From a fairness perspective, it could be argued
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that the soon upcoming idle time slot should be assigned to this preempted task since
it did not receive any extra slots before, while others already had used several. On the
other hand, letting others tasks run more and more late and potentially pushing them
towards t2 or the missing of deadline may not be ideal as well.

Referring back to the assumptions and design goals in section 1.3, a cooperative,
predictable concept should be preferred. Since cooperation and predictability are not
easily quantifiable values, the proposed solution tries to follow these principles in spirit.
Cooperation could be interpreted to mean that processes work together so that ideally
all deadlines are kept. This hints towards a solution in which the neediest process is
the preferred beneficiary of upcoming idle time slots. Predictability could mandate the
effort to let the real execution be as similar to the plan as possible. This could entail
that time slots are not to be fragmented but to remain as whole. Combining those
two ideas, the proposed solution might work as an easy ad-hoc fill-in solution whenever
the plan-based scheduler discovers an idle time slot as its next "task" to execute. The
function handling such an occurrence could be implemented like the example in listing
2.

Listing 2: Assigning idle time slots to processes

struct PBS_Task * handle_idle_slot ( struct PBS_Plan * plan){
struct PBS_Task * fill_task = NULL;
struct PBS_Task * next_tasks = get_next_tasks_for_processes (

plan);
next_tasks = sort_tasks_by_lateness (next_tasks , plan);
while (next_tasks -> task_id != -1){

i f (next_tasks -> was_preempted ){
fill_task = next_tasks ;
break;
} e l se {

next_tasks ++;
}

}
i f ( fill_task == NULL){

idle ();
} e l se {

return fill_task ;
}

The helper function get_next_tasks_for_processes(...) finds the upcoming task
for each process. The other helper function sort_tasks_by_lateness(...) sorts the
task list according to the process latenesses of the plan. The task list will be delimited
by a dummy task with task-ID -1. The plan-based scheduler can not simply pick the
next upcoming task for the latest process, since if the next task was not preempted,
it may not be able to run at that point in time, since it might still have to wait for
IO-operations to finish. If a task is found, a pointer to the task will be returned. If
not, the plan-based scheduler is forced to idle. For this idle time then, the plan-based
scheduler could be disabled and the default scheduler could be given priority.
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3.3 Prediction Failure Handling

This section is concerned with prediction failures occurring when the plan deviation has
reached a significant magnitude. If a prediction failure occurs, a signal will be sent to
the job scheduler requesting a rescheduling. This section discusses aspects of the design
of this prediction failure component. The following sections go into detail on how to
calculate the corresponding thresholds t2 and t−2.

3.3.1 Prediction Failure Signaling

Compared to t1, a lot more conditions are conceivable that could warrant a prediction
failure signal. Unraveling this conception produces several questions that give a more
detailed perspective on the matter:

1. Which signaling conditions does the threshold have to include to achieve the stated
goals?

2. Which parameters affect those conditions?

3. How can those effects be reasonably quantified considering the environment?

4. How can the gathered information be combined to enable the scheduler to make
a decision for or against a prediction failure signal?

The first question aims to provide a more detailed and concrete view of the semantics
underlying the abstract concept of the t2/t−2 thresholds. It alludes to the fact that the
plan, despite seeming simple and uni-dimensional, also contains some intricacies that
the node would have to manage. Section 3.3.2 is concerned with this question.
The second and third question focus on how to break down signaling conditions into
concrete indicators available to the scheduler. The last question relates to the algo-
rithmic procedure of how to combine and balance the different indicators to calculate
concrete values that can serve as thresholds. This procedure is explained in 3.3.6 for
lateness and 3.3.7 for earliness.

3.3.2 Signaling Conditions

Signaling conditions can be seen as predicates that determine whether a prediction fail-
ure signal is to be sent or not. A first step to identify signaling conditions in a systematic
manner is by differentiating between plan units, namely tasks, processes, jobs and the
node itself. These plan units are in a hierarchical relationship, where tasks are part of
processes, processes are part of jobs and also a set of processes runs on a node. The
concept of a job is not as relevant for the process scheduler as it is for the job scheduler.
Several processes of a job might run on one node, but the node considers deadlines
even in the case of only a singular process of a job on the node, so grouping processes
together yields no additional advantage. The job-level will therefore be dropped from
further consideration. While jobs are not important for the local scheduler, the node
itself has some importance for scheduling. On the one hand, plan deviations of singu-
lar tasks should be isolated as much as possible to the own process, but side effects
are unavoidable, so that under some circumstances the deviations of one process might

26



3.3 Prediction Failure Handling

Execution Unit Lateness Earliness Timeliness Preemptions
Task X X × X
Process X × × ×
Node X X × ×

Table 2: Categorization of signaling conditions

threaten the success of another. Consequently the node state also needs to be factored
in to some degree. For each plan unit, a plan deviation in both lateness and earliness
is possible.
An additional prediction failure condition should also be coupled to the amount of task
preemptions for each task. If a task is preempted repeatedly (stacking preemptions
as discussed in 3.2.3), the scheduler should take note and intervene. This aspect is
linked to the goal of system predictability. The node has some amount of leeway in
the decision-making process, but the actual execution should still be as similar to the
plan as possible. By preempting tasks again and again, moving them back further and
further, this goal is threatened.
A potential additional aspect that at least has to be considered is the idea of what
will be called timeliness in this thesis. While lateness/earliness deal with the relative
stretching/shrinking of plan units compared to the plan prediction, timeliness is more
concerned with a wall clock concept of time. The idea of timeliness refers to the concept
of an implicitly existing time table in which start and end dates for tasks are determined.
Since timeliness is a construct that can only be derived implicitly, because it is not in-
tended by the plan, some challenges are associated with it. During the development
of this thesis however, the idea of timeliness was dropped due to too many unknown
factors making it practically impossible to impose this concept onto a system that was
not designed for it.
In a more advanced system additional signaling conditions are thinkable. Consider the
mentioned case, where a part of the job has to be run on specific nodes with a special
kind of licensed software. The software might be in the process of updating, which was
not factored into the plan. Consequently the process can currently not utilize those
capabilities, so a prediction failure signal might be warranted.
Other cases such as errors in the plan (duplicated entries, non-existing tasks, etc.),
hardware failure and so forth are imaginable. In a future production-ready system,
aspects that can be part of a SLA, should also be possible prediction failure signaling
conditions. This kind of prediction failures will be excluded from further consideration
in this thesis, because of their speculative and potentially arbitrarily expandable nature.

Combining together the different plan unit levels and criteria found above, table 2
can be produced.

A check mark in a cell indicates that the combination of row and column might
warrant a signaling condition that needs to be considered.

Lateness The most obvious candidates for signaling conditions are found in the late-
ness column. If either type of execution unit is significantly late, a prediction failure
signal has to be sent.
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Earliness Earliness is not as straightforward to handle, since when an execution unit
finishes early, deadlines are not in jeopardy. On the contrary, depending on the overall
node state, an early finishing unit could take pressure off an overloaded node, but
signaling a significantly early finishing task in the general case still is important. If
a task finishes significantly earlier than predicted, this could indicate that a relevant
change either in the input data or the executing job occurred. The prediction model
should be updated to include this observation. Additionally if a node was assigned
processes that cumulatively finished exceedingly early, the node might be underutilized
which should be prevented. By signaling node earliness, the job scheduler could apply
load-balancing measures to the system to improve performance. While task and node
earliness are useful signaling conditions to have, the utility of process earliness as a
signaling condition is not as apparent, since the process deadline has no inverse concept.
One early finishing process also does not provide more useful information about the node
state. Therefore the process level is not considered in the case of earliness.

Timeliness The need for timeliness could be inferred by the goals of system pre-
dictability and stability. As mentioned above, timeliness refers to the divergence of
starting and ending times of tasks implicitly defined in the plan compared to the real
start and end times in wall clock terms. Timeliness could also be conceptualized as
punctuality. The concept of timeliness is confined to the task level, since adding up
start/end time divergences would yield no meaningful insight on a process or node level.
A critical requirement for timeliness is a dependable notion of start and end times in a
global clock manner. In a distributed system the concept of time is already not trivial.
It also is problematic to try to assign start and end times to tasks. If the node would
exclusively run the plan-based scheduler, it could be argued that an inference system
could more easily be set up. With the default scheduler running as well with a not
strictly defined behaviour, at the current state, start and end times are nearly impossi-
ble to derive. With the differentiation of computational and communication tasks, the
complexity of this issue increases further. While timeliness could be a useful concept, it
will be disregarded in the following since no explicit and reliable basis is given or can be
constructed. Enforcing timeliness would mean to impose a concept that the plan was
not designed for.

Preemptions Including preemptions as another signaling condition would be useful.
As mentioned in the general discussion about preemptions in 3.2 stacking preemptions
can occur, especially when the distribution of task lengths follows the before mentioned
pattern, where a number of short tasks typically follow a long task. In order to prevent
a snowballing effect, preemptions should be considered as a signaling condition. Since in
the context of a plan-based scheduler, only tasks can be preempted, this aspect can only
be related to the task level. It could be argued that processes also could be preempted
by halting and disabling them, but this behaviour would need to be initiated by the
job scheduler instead of the node. If nodes could decide to initiate process canceling
then this would add unnecessary uncertainty to the system state. So since process
preemption does not seem advisable, no signaling condition is required.
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Following the above categorization, the following signal conditions are selected.

t2_task : Analogous to t1 a value needs to be defined that indicates what an acceptable
plan deviation is for each task and what should be considered a prediction failure.

t2_process : In the spirit of trying to keep deadlines when possible, processes that are sig-
nificantly late or are at a concrete risk of missing their deadline should also be
considered in the signaling conditions. Especially for an architecture with SLAs
in mind, it is important to be sensitive to missing deadlines.

t2_node : Node lateness should also be considered. While it is hard to get a clear con-
ceptualization of when node lateness is significant, it should be considered as an
indicator for node overutilization. Overutilization might threaten deadlines and
stability since little to no leeway is available on the node. If the accumulated
lateness is too high, starting and finishing times are shifted more and more in
elapsed real-time. To prevent the missing of deadlines, this shifting effect has
to be considered and limited. This component of the threshold will be named
t2_node.

t−2_task : This component is the inverse of t2_task and should be considered in the same
way.

t−2_node : Node earliness is the inverse of node lateness. If all processes on a node are
cumulatively early this is defined as a prediction failure condition. If some amount
of tasks finish early and the node is often waiting for new input, resources are
wasted. Since a high utilization of the cluster should be aimed for, the node
should send a prediction failure signal to trigger a rescheduling, allowing other
processes from overutilized nodes to be migrated to the underutilized node or all
the processes on the early node can be relocated to other nodes, so the early node
can be shut down to decrease operational costs. The component handling this
condition will be termed t−2_node.

t2_preemptions : Task preemptions are an easy to track and evaluate concept that should be
included to prevent stacking of task preemptions leading to deviation from the
plan.

3.3.3 Signaling Condition Information Sources

With the signaling conditions identified, it has to be evaluated what information is
available to decide whether a signaling condition is triggered or not. At a high level
glance, the node can use information out of three sources:

1. Information the node receives from external sources that are explicitly meant for
the node to process. This is primarily and most importantly the plan.

2. Information the node does not explicitly receive from external sources, but that
may be inferable.

3. Information about the node’s own state that are produced by using hardware
tracking mechanisms (e.g. PMU or clocks) or software interfaces such as perf, the
/proc/*-directory, etc.
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Plan The most relevant piece of information given to the node is the (scheduling)
plan that is provided and successively updated by the job scheduler. The plan contains
a list of tasks. Each task has a unique, identifying number and is part of a process. A
task additionally has a planned length given in instructions. The task list is ordered,
since it needs to determine the sequence in which tasks have to be executed. Implicitly
a scheduling plan contains a definition of each process, since it determines definitely
which tasks are part of a process and in what order the tasks of a process have to be
executed. For each process only the first task (also identified by the lowest task_id of
all tasks) is allowed to run, so the execution needs to be in a strict per-process order.
Tasks are allowed to be shifted backwards but only if the per-process order of tasks is
kept. For example, if a task is exceeding its planned instructions limit, the task may
be preempted and moved back to the next time slot that is assigned to its process.
Additionally meta-data is included in the scheduling plan, consisting of a per-process
buffer size. The buffer size gives the instructions a process has from its last finishing
task to its deadline.

Inferable information Information can also be inferred from the environment of
the node. The node can collect data about its interactions with the environment. For
example it could measure the time elapsed during the request for a rescheduling and the
new plan arriving. The node could calculate an average and therefore infer an expected
value. Another useful kind of information the node could infer relates to system stability.
If a lot of rescheduling is being observed by the node, this could mean that the system is
in a volatile state, especially when no new processes arrive at the node and the planned
task length is changing frequently. This source of information only provides unreliable
indicators, since the node can only observes the effects, without being certain about
the cause of those effects, e.g. a cluster might be capable of handling all running jobs
easily, but some new jobs arrive in a short period of time causing a lot of rescheduling
to occur. Inferable information will therefore need to be handled with care.

Own state The last source of information is the note itself. Since the prediction fail-
ure handling component is part of a scheduling policy that is part of the Linux kernel,
the node also has access to the information the kernel has access to. This means that
scheduling information is available not only for the submitted plans but also for other
scheduling policies on the node. The node for example can check run-queues of other
scheduling policies. This knowledge might enable a node to more accurately predict its
own capabilities. Besides other scheduling information, the node can use CPU facilities
for information gathering, e.g. the discussed PMU that keeps track of instructions exe-
cuted, cycles done, cache misses, etc. Another source of information regarding its own
state is what is provided by the Linux kernel per default via interfaces such as /proc or
/dev with specific information on the system load; for example in /proc/loadavg [20].
Information out of these sources is generally more trustworthy and could be applied
when useful.
Another important source of information for the scheduler is information it tracks. Col-
lected runtime data is important, for example to be able to answer questions regarding
more high level plan units such as process and node states. This list of self tracked
information is detailed in A.1.
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3.3.4 Prediction Failure Signal

A signal has one singular purpose and that is to convey all the necessary information to
generate a new schedule that is adapted to whatever prediction failure was expressed.
Since there are several signaling conditions mentioned in 3.3.2 questions regarding in-
formation details and the format of the signal arise. The answer is plain when the signal
is caused by one single task. The node can provide the task_id and the final number
of instructions that were executed before t2 or t−2 was reached. The job scheduler then
can easily deduce why the node gave a prediction failure signal. The information the
node has to provide is not as clear when no single task triggered t2 or t−2, but the ac-
cumulation of minor plan deviations did. The node could provide a fully detailed list of
deviations experienced since the last signal. Or the node could analogous to the above
mentioned single-task approach attach the sum of deviations for a process or even the
node since the last update. The obvious problem with the full-detail approach is that
there could be millions of tasks with small deviations so collecting and transmitting
the associated data could require some resources. The job scheduler also would have to
unpack and process the data received by some number of nodes, which would in turn
also use up resources on the side of the job scheduling system. Too little information
on the other hand limits the capabilities of rescheduling. Since the question of level of
detail is not easily answered and the job scheduler is also only sketched in this thesis, a
simplistic approach will be taken, where a signal will only include what process caused
the prediction failure and whether the cause was earliness/lateness. T2_preemptions
will be interpreted as an issue of lateness.

3.3.5 T2 Considerations

Prediction failure signaling conditions relating to lateness will be represented and summed
up by t2. In the most simple case t2 is a fixed number of deviating instructions off from
the plan. This deviation could be defined as a constant in a configuration file. The
obvious shortcoming would be that this does not allow for discrimination between fun-
damentally different situations. A process that has only little time left to its deadline
would be treated identically to a process that might still have hours or days to its
deadline. Dynamics have to be factored into the threshold calculation by recalculating
thresholds for different processes and tasks in different situations. Both will be neces-
sary in order to be able to monitor the above-mentioned conditions. In the following
paragraphs the calculation of t2 will be discussed.

Process state: A threshold has to factor in the overall state of a process. It has to
recognize that a process being early or late can be evaluated differently in proportion
to its progression. If a process is nearing its deadline and has still not cut into its
buffer, then chances are good that the process will finish similar to what was predicted.
Likewise, if a process that has just started already behaves significantly different then
what the scheduling plan has predicted, there might be a reason for concern, or on the
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other hand, if a process still has hours or even days to run, then early deviations might
be canceled out by later deviations in the opposite direction.

Node state: The node’s state has to play a part in the definition of t2 as well. If the
resources of the node are utilized near total capacity, a more careful estimation of the
threshold compared to a node where only one process is running with a lot of idle time
between computation and communication tasks.

Communication costs: The node knows very little about its environmental state.
Still it should try to factor in external information, for example the time required for
rescheduling. The longer the rescheduling time, the more conservative a node has to be
when calculation thresholds. This problem worsens, when it becomes clear that both
factors that determine the time it takes to reschedule (round trip time and computation
time of a new task) can be subject to fluctuation. The network’s capacity may change
in unexpected ways and generating a new plan could be trivial or exceedingly complex
depending on the overall situation.

Signaling Overload: A node should also take care that its behaviour does not add
unnecessary disturbance to the system when avoidable. Since the main interaction
between a node and its environment is through getting passed plans and signaling
prediction failures, the node has to regulate its signaling behaviour. If task tn signals
an error, then task tn+1 should be more reserved with signaling a prediction failure or
even buffer the signal for a certain cool-off time. If nodes are able to request reschedules
for every task, then this behaviour could lead to an unintended denial-of-service attack
on the job scheduler.

3.3.6 Calculating t2

T2 is the threshold for signaling a prediction failure. In 3.3.2 major signaling conditions
are listed and 3.3.5 mentions what challenges have to be factored in.

T2 will consist of the different components introduced above, each focusing a different
aspect of plan deviation. Lateness is also defined differently on each level. The following
sections define the calculation of the threshold components and the appropriate checking
mechanism that allow the plan-based scheduler to determine if a t2 prediction-failure
signal should be sent or not.

t2_task :

Task lateness Task lateness firstly needs to be defined in order to check the threshold
against it. If a task has terminated its lateness can be calculated with:

task_lateness = instructions_retired− length_task_plan

Following this definition for finished tasks, if task_lateness has a positive value, the
task was late, if not, it was either exactly on time or it terminated early. If a task is
currently running and instructions_retired < length_task_plan the task_lateness

32



3.3 Prediction Failure Handling

defaults to 0. As soon as instructions_retired > length_plan, task_lateness is up-
dated to reflect the turning late of the task accordingly. Therefore tasks that have not
been started yet also have a task lateness of 0. Semantically this makes sense since a
task that has not been started yet can neither be early nor late. If the task_lateness
calculation would not consider this fact odd behaviour would be the consequence.

The value of t2_task is determined in a similar fashion as t1. A scalar is used
accompanied by lower and upper bounds to prevent edge cases from steering the node
off by a significant margin. The scaling factor therefore is called σt2. As with t1 firstly
the relative value is calculated:

t2_task_relative = length_task_plan ∗ σt2

σt2 is a value that defines the maximum relative deviation a task is allowed to have
before a prediction failure will be signaled. σt2 is given as a floating-point number that
has to be bigger than 1, which represents 100% of the planned instructions. σt2 > σt1
must be true also. Furthermore there should be a relevant difference in size between
t1 and t2_task. Having both values at a near identical value would not be an efficient
configuration. To ensure a gap of a certain size, T2_SPACER is introduced. It is an offset
constant that determines a fixed amount of instructions that guarantees that t2_task
has a meaningful lower bound.

t2_task_min = max(t2_task_relative, length_task_plan+ T2_SPACER)

Now that the lower bound is set, t2_task has to be adjusted to fit within a reasonable
upper bound using T2_TASK_SIGNALING_LIMIT:

t2_task = min(t2_task_min,T2_TASK_SIGNALING_LIMIT )

Now with t2_task calculated it can be checked against the current value of task_lateness.
If task_lateness > t2_task then a prediction failure will be sent. If it is lower or equal,
the scheduler will continue running as is.

t2 − process Above the task level, processes are the next plan units that need to
be checked. Firstly, lateness on the process level has to be defined. The value of
process_lateness captures this process-individual lateness. This value is calculated by
taking the sum of each task’s lateness that belongs to the process.

lateness_process(process) =
∑

task∈process

lateness(task)

Individual tasks are conceptualized as being relatively short running. If a task ter-
minates its lateness and t2_task are of no further concern. The lateness on the process
level on the other hand has to factor in accumulating effects of individual lateness and
therefore needs to have a broader sense of time that spans a process’s full duration.
Since these runtimes might become extended, running for hours or even days, accumu-
lated latenesses may persist over some time. This aspect makes defining t2_process
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challenging but also offers some liberties. If the respective time horizon is large enough
and the plan deviation adheres to a normal distribution earliness and lateness of tasks
will average each other out, but prediction failure handling should not be left to chance
and the node should have a way to deal with process lateness in a proactive way. The
primary way of balancing out process lateness locally is provided by utilizing the buffers
each process has.

Buffer(s) The buffers that can be used to balance process lateness stem from two
connected, but conceptually different mechanisms. As mentioned before, one aspect
of the buffer relates to the divergence between the ending task of a process and the
process’s deadline. This buffer will be called plan buffer. In some other contexts, for
example, Real Time Scheduling or project planning, where a schedule with deadlines
exists, this concept has also been called slack time. The utility of the plan buffer can be
most easily described by using a metaphor: If a task’s real instructions exceed the plan
instructions, the task can be imagined stretched. Assume the plan determines that a
task should take 100 ticks, but it takes 110, than the task was stretched by 10%. Now
as long as a process’s ending task is not pushed beyond the deadline by those stretching
effects, the behaviour in terms of process lateness is acceptable. A confident prediction
is nearly impossible to make in the general case, so the scheduler should account for this
unreliability by applying a variety of layers of safety margin. The plan buffer therefore
has an important role to play in this evaluation process since a process with a big plan
buffer can be handled in a more loose way than a process whose last task lies in close
vicinity of its deadline. Conveniently the plan buffer is submitted as a simple number
of instructions so the plan-based scheduler can easily utilize it after applying the above
mentioned safety margin.
The second buffer aspect relates to another mechanism that is introduced to provide an
inherent safety margin. The job scheduler underestimates the computational capabilities
of the node by some amount. The node may be able to run an average of 100,000
instructions per tick, but the job scheduler assumes it can only do 90,000 instructions.
The scheduler, therefore expects a task that is estimated to need 1,000,000 instructions
to terminate in 11, 111 ticks, when the node would actually only need 10 ticks. The
1, 111 difference is an additional buffer available for the node to balance out lateness.
This extra margin will be called capacity buffer in the context of this thesis. The
capacity buffer is assumed to be a constant defined for each node, that the plan-based
scheduler has knowledge of. The constant will be called CAPACITY_BUFFER. It is defined
as a floating point number that describes the ratio of planned node capacity to the
actual node capacity. In the example above, the CAPACITY_BUFFER would be defined as
1, 111.
Both buffer aspects are incorporated into t2_process using a two-step procedure. While
the capacity buffer can easily be accounted for, the process buffers has to be further
processed to include the mentioned safety margins.

The t2_process threshold consists of two stages which can be best described by
answering two questions:

1. Is the process transgressing its allowed capacity buffer?

2. Is the process transgressing its allowed plan buffer?
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Only if both questions are affirmed a prediction failure signal will be sent. The
idea for splitting up the threshold check in two stages is based on the realization that
the plan-based scheduler has to only concern itself with the relatively cumbersome plan
buffer calculation if the allowed capacity buffer is depleted. While it is fast, easy and
reliable to do a capacity buffer check, the allowed plan buffer check is more heavily based
on assumptions that might not hold. It also requires more processing steps and is less
intuitive.

Allowed Capacity Buffer The first check is straightforward to explain and com-
pute. As stated above, the job scheduler underestimates the node’s capacity so the
capacitybuffer is directly emerging from this difference. The idea for the capacity
buffer check is to keep track of the degree to which the capacity buffer is used up. As
long as capacity_buffer >= lateness_process it is assumed that the process will be
able to keep its deadline. This assumption could be challenged by referring to the fact
that the missing of a deadline could be caused by other late processes on the node.
Through the stretching of tasks, the completion times of all processes are pushed back
in a wall clock sense. If this effect is cumulatively significant enough, a process could
miss its deadline despite being on time. To prevent this effect from causing a missed
deadline, t2_node is designed to keep a limit on the overall node lateness. T2_process
therefore is envisioned to only focus on its own lateness.

The capacity buffer per task is calculated with

capacity_buffer(task) = (CAPACITY_BUFFER - 1) * planned_instructions(task)

In order to have a meaningful comparison with process lateness, capacity_buffer(task)
has to be summed up for every task that has already been run up until the currently
active task. The resulting sum represents the capacity buffer available to the process up
until the present point in time. Now this value is compared against lateness_process
as it is defined above. Now either

1. capacity_buffer >= lateness_process is true, meaning that the process lateness
is not significant enough for it to threaten the process’ deadline or

2. capacity_buffer < lateness_process is true, resulting in the check of the allowed
plan buffer

Allowed Plan Buffer Since the plan buffer is calculated by taking the difference
between the planned termination of the last task of a process and the deadline given, the
buffer only represents a nominal frame without any further context. A process might
have a significant plan buffer, but if the node has no resources to spare, the plan buffer
only exists as a number. In a scenario with no idle times even a minor transgression of
the capacity buffer could potentially cause the deadline to be missed. This would be an
extreme case according to the assumptions made 1.3, but it makes clear that a buffer
determined by a pure count of instructions should be investigated further and additional
safety should be added to prevent the missing of a deadline. The modifications that
should add extra safety margins are laid out in the following. Figure 5 gives an overview
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of the steps involved.

Figure 5: Buffer modification steps

The first step converts the plan buffer into what is called extra plan capacity simply
by calculating the amount of capacity buffer that should be available for the correspond-
ing time period. This amount can be calculated by applying the formula of the capacity
buffer from the task to the buffer:

extra_plan_capacity = (CAPACITY_BUFFER− 1) ∗ process_buffer

One potential issue that comes to mind is that idle times are not fully accounted
for. Idle times are included in the plan, for example when all processes have finished
their computational tasks and wait on the next communication tasks to terminate. As
discussed in the preemption behaviour section, idle times are not explicitly claimed by
any process (3.2.3), but are assigned in an ad-hoc manner to processes running late.
Since stretching/shrinking effects occur with plan deviations, consider the following case
depicted in figure 6.

Figure 6: Stretching effects on a buffer

An idle slot may lie near or at the very end of the given plan buffer. If stretching
would occur, the idle time might be pushed past the deadline. This case illustrates
the challenge of dealing with idle times and buffer modification. One potential solution
could be to sum up all process latenesses (which would have to include already finished
processes) to estimate this stretching/shrinking effect. But even when applying this
procedure it is not guaranteed that there will be idle time, even if computational tasks
are on time or early. Maybe IO-operations took shorter than estimated, so one task
may be able to run earlier than planned. Also if idle time would fully count towards the
capacity buffer, this addition would potentially add large amounts of extra instructions,
resulting in a significant impact by idle times. For these reasons, a more speculative
consideration is dropped in favor of the more conservative choice, where it is assumed
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that the buffer does not contain any idle times. Nevertheless, a more productive usage
of idle times should be considered when attempting optimizations.

Since we assume a node that is generally running several processes concurrently, the
extra plan capacity has to be granted to potentially all other processes. To get the extra
plan capacity of the process, the whole extra_plan_buffer is simply divided by the
number of currently active processes on the node:

extra_plan_capacity_per_process = extra_plan_buffer
number of processes on node

A potential inconsistency arises from the fact, that in the calculation for the capacity
buffer the full availability of CAPACITY_BUFFER is assumed, but in the current step of
the buffer modification process this capacity is assumed to be evenly divided among all
processes still running at that point in time. In the assumptions stated in 1.3 a normal
distribution is assumed, so in the average case, it can be estimated that about half
of the tasks do not use any part of their capacity buffer. In order to account for this
fact as well as add another safety layer if this assumptions turns out to not hold, extra
measures have to be taken to increase the probability that the estimated additional
resources are actually available. This extra step introduces a new margin, determined
by AVAILABLE_PLAN_BUFFER:

cleared_plan_buffer = extra_plan_capacity_per_process ∗AV AILABLE_PLAN_BUFFER

AVAILABLE_PLAN_BUFFER is defined as a constant. AVAILABLE_PLAN_BUFFER could
also be designed as a variable that reflects the scheduler’s estimation of capacity buffer
usage, capacity buffer sharing, idle times, and so on. If a node for example has 50% idle
times, it could be argued that increasing the AVAILABLE_PLAN_BUFFER is a legitimate
adaptation. For the current purposes AVAILABLE_PLAN_BUFFER will be treated as a
configuration variable that has the singular purpose of preventing the above described
cases from running the node off track.

The final step is to adjust the cleared_plan_buffer to the process’ progression. If a
process just started running, it should not be allowed to consume the full cleared_plan_buffer.
Especially in the beginning, deviations should be treated more sensitive, since large de-
viations could indicate major changes in program behaviour. The process progress can
be simply calculated by dividing the retired instructions by the planned instructions.

allowed_plan_buffer = cleared_plan_buffer ∗ instructions_planned
instructions_retired

Finally allowed_plan_buffer can be used as the basis for further t2_process
calculations.

t2_process_calculation On the process level additional factors should be taken
into consideration. Since processes are conceptualized as longer running units, the
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system stability should be observed. The proposed mechanic is inspired by the bio-
logical phenomenon of stress. If a threat is perceived, stress hormones are released
that modulate behaviour. If the stress inducing incident is dissolved, the behaviour
slowly stabilizes. The mechanics of this phenomenon are adapted to inhibit a signaling
overload at the rescheduling component. The node has a stress level, that is set to
STRESS_RESET every time the node receives a new plan and each point in stress causes
an offset of t2_process by the value of STRESS_GAIN. This interaction turns stress
into an inhibition factor. Consider the case where a job was structurally rearranged
while it still does the same calculations only in a different order. It requires approxi-
mately the same computational resources, but the execution flow has changed because
for example an intermediate result is needed earlier. All nodes running this job will
detect this change and will signal prediction failures. Depending on the implementation
of the rescheduling component, the rescheduling component might not be able to deal
with a lot of almost simultaneously arriving rescheduling requests. For each incoming
rescheduling request the job scheduler would have to determine, if the issue has already
been dealt with or if the plan needs to include the newly received information. So every
time a new request is received, this might cause a delay to the creation of the new
plan, causing potentially more nodes to signal prediction failures. Therefore it could be
argued that having a "calm down" period, where nodes refrain from signaling prediction
failures is preferable. Since t2_process is envisioned as a threshold component that has
a long planning horizon, it can be argued that especially here such a mechanism could
be useful in stabilizing the system. The value of the threshold t2_process is therefore
simply increased by the value of stress ∗ STRESS_GAIN . One issue with having a
stress system as proposed is that especially for very short running processes with close
deadlines, a plan received at an adverse time might prevent the node from sending a
prediction failure signal at an appropriate point in time because of this temporary in-
hibition effect, resulting in a missed deadline. For this reason, the stress system should
be easy to deactivate. This can be done via changing the STRESS_GAIN value. Setting
it to 0 would disable the behaviour fully. So depending on the specifics, e.g. very short
running processes, the behaviour can be adjusted accordingly.

Another influence to be considered is encapsulated by RESCHEDULE_TIME. Especially in
cases where there is a pressing threat of missing a deadline, the time until the prediction
failure is sent, the updated plan is generated and the node in turn receives and integrates
the updated plan might be relevant. Therefore t2_process needs to be reduced by the
time (in instructions) the rescheduling process is estimated to take.

Factoring in these aspects, t2_process can be calculated by the following formula:

t2_process = allowed_plan_buffer+ (stress ∗ STRESS_GAIN )−RESCHEDULE_TIME

An edge case that is bound to occur regularly for which the formula is problematic,
is, when a new process is submitted to the node. If the formula is applied as shown
above without safeguards, t2_process may turn out to be vastly undersized. When
a process starts running with this formula for the threshold, allowed_plan_buffer
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could evaluate to 0, since every process starts with 0% completion. Since the node
just received an updated plan including the new process, stress ≈ STRESS_RESET ,
then the value of t2_process is determined by t2_process = 0+ (STRESS_GAIN ∗
stress)−RESCHEDULE_TIME. Depending on the configuration, namely how the
stress values compare to the rescheduling time, at this point t2_process might evaluate
close or even below 0 with small values for STRESS_RESET/STRESS_GAIN and/or a large
value for RESCHEDULE_TIME. To prevent this behaviour, two possible solutions come to
mind:

1. Guaranteeing a minimum process progress, to ensure that the allowed_plan_buffer
term has a significant enough "initialization value"

2. Guaranteeing a minimum value for t2_process similar to T2_SPACER

While option 1 is more sensitive to the details of the corresponding process, short
processes or processes with very small buffers still may end up with very small or negative
t2_process values. While this formula might still give opportunity to improve upon,
the second option will be used with a guaranteed minimum size of t2_process. It is
called T2_MIN_PROCESS and asserts that t2_process has a minimum value:

t2_process = t2_process > T2_MIN_PROCESS ? t2_process :
T2_MIN_PROCESS ;

Looking at the other extreme, at very long running processes and/or processes with
vast buffers, it could be argued that symmetrical to T2_MIN_PROCESS there should
be T2_MAX_PROCESS marking an upper bound. On the one hand, by not limiting
t2_process, it allows the process to use up significantly more resources than it was
intended to have. Within the limits of t2_task, the process could potentially accumu-
late a lateness equal to T_2_TASK_LIMIT * number_tasks. While this might not be a
probable case under the chosen assumptions, it obviously could be problematic. However
according to 3.3.2, t2_process should be concerned with missing process deadlines and
not directly with resource overutilisation. The upcoming threshold component t2_node
does consider this case. While it can be argued that t2_process should consider this
case, this issue is delegated to t2_node to keep the threshold components modular.

Finally the predicate t2_process < lateness_process can be checked. If it evaluates
to false, execution is continued as before. If it turns out to be true, a prediction failure
signal will be sent.

t2_node As discussed in the analysis of the signaling conditions and the discussion on
t2_process, a threshold component should keep overutilization of the node in check.
To do so lateness_node needs to be defined. Since lateness_process keeps already
track of lateness on the process level, lateness_node needs to sum up the latenesses of
(active) processes:

lateness_node =
∑

process∈plan

lateness(process)

To determine the threshold t2_node a scalar similar to σt1 and σt2 on the task-level
can be used. This scalar is called T2_NODE_LATENESS_CAP. The challenge then again be-
comes finding a suitable value. Potential anchor values are buffers. T2_NODE_LATENESS_CAP
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could be set to the ratio of the process with the earliest deadline to the length of the
process. If a process is estimated to run 1000 ticks, the buffer is set to 100 ticks,
T2_NODE_LATENESS_CAP should be set to 110%− safety_margin. It would then be
reasonable to assume that the stretching effect would cumulatively not threaten dead-
lines to be missed. Since t2_node is not envisioned as a mechanism to secure deadlines,
other anchors can be chosen as well, for example based on the assumed variance of the
normal distribution.

Similar to t2_process the stress level should also be included for analogous reasons.
If a job changed in structure and all participating nodes detect and signal the change,
this could cause stability problems for the whole system so the stress system is included
again:

t2_node = planned_instructions ∗ T2_NODE_LATENESS_CAP + (stress ∗ STRESS_GAIN )

As it was for other threshold components, the formula above is problematic in certain
circumstances. Consider a freshly booted node, where no or nearly no instructions
have been retired so far. The node could potentially attain a state where t2_node
would be close to 0. To prevent a prediction failure signal t2_node is checked against
T2_NODE_LOWER_BOUND, which represents the minimum possible value of t2_node.

t2_node = t2_node > T2_NODE_LOWER_BOUND ? t2_node :
T2_NODE_LOWER_BOUND ;

The value of T2_NODE_LOWER_BOUND will be calculated by multiplying T2_PROCESS_MINIMUM
with the number of currently active processes:

t2_node_lower_bound = T2_PROCESS_MINIMUM ∗ number_cur_active_processes

When a lower bound exists, the question if an upper bound is also required arises. In
the case of t2_node it can be argued that an upper bound would not provide additional
value. This threshold component’s goal is to ensure that the accumulated lateness is
not crossing a certain border which is to be imagined as node overutilization. Since no
assumptions were made regarding the average length of a process, it would be challenging
to define a fixed upper cap for node lateness. So in this sense, T2_NODE_LATENESS_CAP
can already be considered the upper bound. Establishing a separate, fixed upper bound
for t2_node could maybe be useful when reasoning about system predictability, but in
terms of the designated goal for this threshold component it is not a necessity.

t2_preemptions The t2_preemptions threshold component is a pragmatic way of
dealing with the problems of stacking tasks that might occur due to the proposed
preemption behaviour in 3.2.3. As it was seen before, every model can be designed
more nuanced and flexible, as is the case with t2_preemptions. Depending on system
and process state, t2_preemptions could be defined more flexibly by reflecting those
states. In favor of predictability, for this thesis t2_preemptions is defined as a static
value that is checked against the current task’s preemptions. It can be checked as
follows:
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signal_t2_preemptions = cur_task -> preemptions >= t2_preemptions
? 1 : 0;

3.3.7 T−2 Considerations

The threshold t−2 has to signal significant plan deviations that are caused by earliness
instead of lateness. Yet, t−2 is not simply a change of sign compared to t2. There is no
counterpart to t2_process, because processes can not be too early to miss a deadline
for example. Also no "negative" preemptions are possible, so tm2_preemptions does
not translate either. This leaves tm2_task and tm2_node as relevant conditions to
handle. Analogous to their counterparts in terms of lateness, tm2_task catches major
plan deviations on a task level, e.g. when a task takes 5 timer ticks to finish compared
to the planned 500. The tm2_node component captures the problem of cumulatively
occurring shrinking effects as compared to the stretching effects of t2_node.
One perceived difference between earliness and lateness that should be briefly mentioned
here is that earliness often does not seem to be considered as problematic as lateness.
When looking at literature (e.g. [22]), a tendency becomes clear. In other fields that
heavily rely on plans, for example project planning, preventing and managing lateness
seems to be the primary concern. In a real world scenario it may be more probable that
an unexpected event causes a delay than a speedup, but when thinking about efficient
resource allocation, earliness has to be addressed as well. One important difference is
that it is trivial to resolve earliness, where the acting unit just needs to turn inactive
for some amount of time to eliminate earliness, while resolving lateness requires finding
extra resources to recover. Yet, idling is producing unnecessary costs that should be
avoided. That said, the implementation is done in a way where threshold components
can be enabled or disabled if it turns out that signaling tm2_node for example is not
yielding desirable behaviour.

3.3.8 Calculating T−2

t−2_task Since tm2_task is conceptualized as t2_task focused on earliness instead
of lateness, the argumentation and definition can be mirrored. The design for tm2_task
is in a sense trivial, since t2_task is envisioned to capture pure plan deviation. It is
not related to any other aspect of the plan, but only focuses on the task at hand. If
a task was planned to take 100 ticks, but the task caused a prediction failure, when it
still was not finished after 150, than the argument for tm2_task should be analogous.
If 150 ticks cause a prediction failure signal, then taking only 50 ticks should also cause
a prediction failure signal.
Since t2_task is calculated by multiplying the planned instructions with σt2, tm2_task
should be calculated by multiplication with a corresponding σt−2 value. A caveat in
this regard is the fact, that for σt−2 to capture early finishing tasks, σt−2 has to be in
the value range of 0 < σt−2 < 1, while σt2 has a potentially unlimited value range. So
when σt−2 is derived from σt2, this has to be accounted for. For the scope of this thesis,
σt−2 is simply derived by taking the distance of σt2 only in the negative direction with
the additional limitation that 1 < σt2 < 2:
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σt−2 = 1− (σt2 − 1)

With σt−2 defined, tm2_task_relative can be calculated analogous to t2_task_relative:

t−2_task_relative = instructions_planned ∗ σt−2

As with t2_task it makes sense to apply some upper and lower bound checks. In the
case of tm2_task these boundaries are swapped, since the t2 lower bound is numerically
the new upper bound and vice versa for the t2 upper bound. As with σt−2, the upper
bound is derived by projecting the distance to the planned instructions into earliness.

T−2_TASK_SIGNALING_LIMIT = −1 ∗ T2_TASK_SIGNALING_LIMIT

A potential issue here is the possible value range of TM2_TASK_SIGNALING_LIMIT.
If T2_TASK_SIGNALING_LIMIT has a certain size, then tm2_task might potentially be
uncapped, when instructions_planned+ T−2_TASK_SIGNALING_LIMIT <= 0
is true. Nonetheless, tm2_task_max is calculated by first getting the signaling limit:

t−2_max = instructions_planned+ T−2_TASK_SIGNALING_LIMIT )

Then feeding t−2_max into a function that returns the biggest of its parameters:

t−2_task_max = max(t−2_task_relative, t−2_max)

The lower bound for t2_task was defined by T2_SPACER. Since there is no
preemption equivalent for early finishing tasks and therefore no t−1 to relate to, again
the bound is mirrored using the planned instructions for the task.

T−2_TASK_SIGNALING_START = −1 ∗ T2_SPACER

Finally, tm2_task is calculated:

t−2_task = min(t−2_task_max, instructions_planned+ T−2_TASK_SIGNALING_START )

Each time a task finishes early, the following check is triggered:

signal_tm2_task = tm2_task > retired_instructions ? 1 : 0;

t−2_node Since the problem of missing a deadline due to shrinking effects of tasks is
not a concern, a conceptual anchor is missing that was useful when thinking about late-
ness. The plan does not contain negative buffers, that signify a relevant underutilization,
but since t2_node was determined by using a configuration variable T2_NODE_LATENESS_CAP
this concept can be inverted and turned into another configuration variable that will be
called TM2_NODE_EARLINESS_CAP.
When thinking about upper and lower bounds for tm2_node the bounds are swapped.
Earliness is not tracked separately. Earliness is negative lateness, resulting in the fact
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that t−2_lower_bound > t−2_upper_bound since the lower bound is closer to 0. So
analogous to t2_node the calculation is done as follows:

t−2_node = planned_instructions_finished ∗ T−2_NODE_EARLINESS_CAP

tm2_node is then checked against its lower bound:

t−2_node = min(t−2_node, t−2_lower_bound)

Tm2_node then can be compared to the node lateness as defined for t2_node.
As argued in the general t−2 discussion, earliness is easier to resolve than lateness.

For this reason, t2_node is intended to be disabled as long as stress > 0.

Accumulating earliness One additional challenge to consider arises with tm2_node
or more specifically with lateness_node. For simplicity, consider a scenario where only
one job is running on the system. This job shows the behaviour depicted in figure 7.

Figure 7: Job behaviour that accumulates earliness

A coordinating node is scattering tasks to all participating nodes. All participating
nodes execute their tasks and wait for the coordinating node to collect those results. The
coordinating node collects the results, computes the next inputs and scatters those again
to all participating nodes. These steps are repeated for some iterations. Now consider
the case where one of those participating nodes receives mainly tasks that take less time
than those of the other nodes, the node would be idling until the coordinating node
would collect its results. This pattern repeats itself over and over again, accumulating
earliness on the node. With the way process and node lateness is defined, this node
accumulates more and more earliness to the point where a prediction failure signal needs
to then be sent. It is easy to see how earliness increases with each iteration, but also how
the idling periods act as a synchronization mechanism. So earliness is increasing, but
intuitively it would not be true to state that the node is getting more and more early.
Programmatically this issue is easily fixed by updating lateness_node in the following
way lateness_node+ = idle_time every time the CPU was idle for some time period.
Since lateness is the positive dimension of lateness_node, adding idle time to it would
diminish earliness. This behaviour would make sense in the above sketched scenario,
but consider a process whose communication task has to wait for a TCP handshake to
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finish. The CPU would idle, but a communication task is still running, accordingly idle
time can not be the sole factor. Adding lateness, in this case, does not make sense, since
the process does not deviate from the plan. The node only happens to be in a state,
where its CPU has nothing else to do.

3.3.9 Post-Prediction Failure Node Behaviour

If t2 or t−2 is triggered, a signal will be sent to the rescheduling component. After the
node has requested a rescheduling, it has to bridge the gap between the signaling and
the arrival of the new plan in an appropriate way. Appropriate would mean that the
node continues on advancing its current plan in a way that optimizes the likelihood
of keeping its deadlines. The key question becomes: How does the node proceed in
relation to the plan unit that caused the prediction failure. In the case of t2_node and
t−2_node not much room for variations exists since the resulting prediction failure can
not be attributed to one process or task. For all other thresholds, the question is more
nuanced. For example, resuming the task responsible for the signal might threaten
node stability, since it could potentially be erroneous and stuck in an infinite loop.
Consequently the deviation would increase and affect other processes on the node. One
option would be to disable the responsible execution unit and wait for the job scheduler
to decide whether it is allowed to continue to run. The obvious problem with disabling
it would be that the process might miss its deadline due to this disabling, while it
otherwise would have been able to keep the deadline. The source code of parallel
programs can change, the parallel program may receive simpler or more complex input
data to process, so deviations can not be regarded as errors that allow the node to
discard the process. Yet, by disabling a processes, a potential error would be isolated
and further dispersal of the error would be prevented. This issue could be addressed
and factored in by the rescheduling component. It could try to reschedule in such a
way, that those other processes are shifted forwards, the transgressing process’ tasks are
then more densely inserted in the upcoming slots. Since advancing a process not only is
achieved by allocating computational resources to it, but also relies on IO-operations and
synchronization with other processes of the job, this assumption might be considered
simplistic. So while there might be reasons to choose this approach, for this thesis and
referring back to 3.1.2, the node delegates this decision back to the job scheduler. The
stress system prevents immediate rescheduling requests. If a task is stuck in an infinite
loop, it will receive further resources repeatedly. It will potentially trigger t_2_task
or t2_preemptions again and again. In general, this behaviour should increase the
likelihood of the responsible plan unit to terminate successfully.

4 Implementation

This chapter aims to give an overview of the implementation approach and the imple-
mentation itself. In the first section the implementation approach as well as an overview
of the relevant components are given. The following sections will focus on the differ-
ent implementation levels. The code will be provided via addresses to git-repositories
containing the components.
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4.1 Layered Implementation Approach

The software implementation of the proposed design comes in three layers, that are
ordered by their closeness to the running kernel code. Since kernel-level code is harder
to test and debug, it could be argued that it is appropriate to write and verify as much
code as possible in an environment that is more fault-tolerant than an operating system
kernel. It became clear during the design phase that there had to be a sizable amount of
additional code accompanying the prediction failure handling component since at least
a minimal environment is to be simulated to be able to run the component. As detailed
in A.1 there are also some parameters that change and influence the behaviour of the
prediction failure handling component. Therefore a need arose to develop a flexible and
transparent implementation that is easy to modify. This three-layer implementation
model follows:

Level One: High level, dynamically adjustable simulation which mocks missing environment
interactions and allows observing the behaviour of the designed mechanism easily

Level Two: Implementation aid for kernel-level code that focuses on easier testing

Level Three: Kernel-level prediction failure handling prototype

The goal for Level One is to develop an evolutionary prototype (as described in
[17]), which allows for quick and easy changes to test out different behaviour. After
some consideration, Level One was planned to be implemented in the Python scripting
language. One of Python’s design philosophies is to be a language with "batteries in-
cluded" ([16]). Python comes with a range of functionality and formerly popular third
party libraries in its standard library. Python is also a dynamically typed, interpreted
language that allows for fast changes and requires little boilerplate code. Additionally a
lot of well established visualization libraries such as Matplotlib are available, therefore
Python seems to be a fitting choice to empirically examine the design choices made.
For Level One the design was implemented as a high-level prototype that can be easily
written and rewritten to gain some practical insights into the encountered challenges.
Level Two was planned as a way to facilitate kernel development. Ideally, most bugs
are fixed on Level Two. The implementation is based on the structure of Level One,
but since Level Two will be written in C, there had to be adjustments. The C program-
ming language is conceptually different from Python, which warrants some fundamental
structural changes. Additionally, the Level Two implementation was planned and pro-
grammed as if it were code that could run in the kernel to assure that the gap between
Levels Two and Three is as minimal as possible. This will be discussed in more detail
in the corresponding section.
Finally, the Level Three implementation is the prototype that actually runs inside the
Linux kernel. It has to be based on the existing prototype, as well as contain some
accompanying functionality that allows the copying of the plan from user- into kernel
space amongst other things.

4.2 Components

An advantage stemming from a layered implementation approach is that not every
component needs to be implemented as part of the kernel source tree, but can be
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implemented in the most suitable context. For example, the plan generation can be
implemented in Python, which supports duck typing so that plans can be dynamically
enhanced, which would be more difficult to achieve with a statically typed language. In
the following, a list of all planned components is given as well as an overview on what
level what component is implemented.

Plan Generation : A component is required to generate plans with planned/real
instructions that also considers the assumptions made in this thesis (multipro-
gramming, normal distribution of deviations, etc.).

Plan Input : This component receives new or updated plans, parses them into the
appropriate data structure and makes them available to the plan-based scheduler.

Signaling/Rescheduling : The prediction failure handling component should be able
to request a rescheduling, but since no job scheduler can be queried in the current
state, this component is also tasked with simulating the rescheduling process.

Instruction Counting The instruction counting component is concerned with pro-
viding an interface to read retired instructions for the plan-based scheduler.

Prediction Failure Handling : This central component does the actual prediction
failure handling within the plan-based scheduling system. This component should
be composed of several sub-components that implement the requirements set in
1.5. This specifically includes a state tracking system that gathers the required
information, a component that determines the threshold values, checks the ap-
propriate thresholds against the node state and finally implements the proposed
behaviour when plan deviations occur.

Visualization: Since running the plan-based scheduler is assumed to produce a lot of
different data points (such as threshold development, lateness, preemptions, ...),
a visualization component should be implemented that allows for observing and
analyzing the implemented behaviour.

Ideally, as many of those components as possible are not directly implemented in the
kernel, but in the simulation or as loadable kernel modules. Loadable modules offer a
flexible way to add capability and extend the functionality of the kernel during runtime.
This means that the operating system does not need to be rebooted every time the code
changes and since modules can be designed to do one specific task exclusively, the code
is modular by design and faster to compile. Linux moduls are in essence simply object
code artifacts that are linked to the kernel by programs available in a Linux environment
[5]. Table 3 gives a quick overview, which component is implemented on which level.

4.3 Level One: Simulation

As stated above, the main requirement for the Level One implementation is to have a
simulation that allows testing different behaviors in a fast and flexible manner. It should
also provide some environmental functionality such as plan generation and visualization
that is most easily achieved by a high-level prototype. The source code for the simulation
can be found at github1.

1https://github.com/sherlockhomeless/master_simulation
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Table 3: Overview of implementation plan for each level
Level One Level Two Level Three

Plan Generation X × ×
Plan Input × × X
Signaling/Rescheduling X X X
Instruction Counting × × X
Prediction Failure Handling X X X
Visualization X × ×

4.3.1 Simulation Overview

The simulation incorporates every aspect that is relevant for running a prediction failure
component for a plan-based scheduler. Referring back to the component table above,
the simulation contains components for plan generation, signaling or rescheduling and
prediction failure handling. The visualization is designed as a separate program that
uses the logs that the simulation produces to create graphical representations of the run.
The simulation.py script initiates the simulation. If the script is given a path to a
plan as a command-line parameter, the script loads this plan and simulates a run. If it is
not given a parameter, a new plan will be generated based on the default configuration.
The main purpose of the simulation.py script is to construct a ProcessRunner instance
that orchestrates the simulation run. In the following, the most relevant parts of the
simulation will be briefly introduced.

ProcessRunner A ProcessRunner is an object that simulates the passing of time
and assembles the different parts of the simulation to one coherent entity. Most no-
tably, it has a method run_tick() that updates the retired instructions and thresh-
olds, checks for transgressions and initiates the appropriate actions if thresholds are
exceeded. It will be discussed in more detail in the next paragraph. ProcessRunner
also defines the preemption behaviour including handling idle times. It is also the class
that manages the logging process. The main logger is kept as a member variable called
self.log_unified, which does a per-tick log of the most relevant values.

run_tick()-Loop The method where the behaviour of the prediction failure signaling
component is most easily observable is within run_tick(). The following flow diagram
gives a high level overview of the checks and actions this method applies.

The run_tick() loop could be optimized by only updating thresholds when it
is actually required. For example, all thresholds are updated at every tick, while
t2_task would only need to be updated when t1 has been transgressed for exam-
ple. For keeping a close log on all relevant values, it is useful to always update values
according to the current state. Besides determining the basic flow of the simulation,
run_tick() also provides some additional functionality. It includes an inner function
hold_at_tick(tick_count: int) for example that allows for stopping at any given
timer tick to inspect the state with a debugger.
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Figure 8: Flow diagram for run_tick() method

Plan Units Another necessary part of the prediction failure handling component are
definitions for the plan unit data types. In the simulation, those plan unit classes contain
additional member variables that are not present in the C implementation. The purpose
for adding those variables is to facilitate comprehension of system state with a quick
glance. Code listing 3 shows an excerpt of the Task-class definition. While all of the
task states shown in the listing can also be determined by the values of the planned
and retired instructions, having an explicit boolean is adventagous. Additionally some
intricacies are included in Task and Process classes. For example, due to the design of
the preemption behaviour, instructions must be tracked for tasks and slots, so the Task
class contains a helper class called InstructionTracking that manages this.

Listing 3: Example member variables of the class Task
...
self. task_finished = False
self. is_running = False
self. finished_early = False
self. finished_late = False
self. finished_on_time = False
self. is_late = False
self. was_preempted : int = 0 # c o u n t e r f o r t h e amount o f

p r e e m p t i o n s
self. was_signaled : PredictionFailureSignal = None
...

Central Configuration Since it was a goal to keep the implementation as flexible
as possible, most relevant parameters are kept in config.py, which contains a list of
variables that are read by other objects and functions to determine their behaviour.
The file also contains a function that updates variables that depend on other values,
which is required for running unit tests with a coherent configuration. For example, the
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instructions per tick rely on the HZ rate of the timer interrupts and the instructions
per second. Most notably all the relevant threshold constants are set in this file. Type
hints are included to prevent misconfiguration.

Plan Generation The Level One implementation also contains the plan genera-
tion component. Since the plan for this thesis needs to include the additional item
instructions_real to simulate plan deviations, the original plan is extended by this
value. Conceptually the plan can be divided into two sections. The first section contains
meta information, namely the number of processes and the buffer size for each process,
the second part of the plan is the usual list of tasks with process-ids and task-ids as
well as the number of instructions predicted by the plan and the "real" number of in-
structions. The following grammar defines the structure of a valid plan: A plus sign
indicates that the previous element has to occur at least one time. The definition is as
follows:

〈Plan〉 → 〈Meta〉; ; 〈Tasks〉 (1)
〈Meta〉 → 〈NumberProcesses〉; 〈ProcessMeta〉+ (2)

〈ProcessMeta〉 →, 〈Process− ID〉, 〈Process−Buffer〉; (3)
〈Tasks〉 → 〈Task〉;+ (4)

〈Task〉 →, 〈Process− ID〉, 〈Task− ID〉, 〈LengthP lan〉, 〈LengthReal〉 (5)
〈Process− ID〉, 〈Task− ID〉, 〈NumberProcesses〉, ...→ INTEGER (6)

Each plan is terminated by a new line (’\n’). Since the machine readable plan is
always on only one line, the plan is reprinted below in a more human readable form for
debugging purposes. Listing 4 shows this representation. The first and second number
are the process-id and task-id. The following two numbers represent plan-length
and real-length of the task.

Listing 4: Line by line representation of the plan
0 0 69008107 101667267
-1 -1 362737754 368037833
1 1 282040993 256276959
-1 -1 225627115 212803897
2 2 69054780 70507765
1 3 339626092 322762296
...

The plan generation is done in the class Plan in plan.py. The plan-generation
procedure is defined in generate_plan(). This method receives a list of parameters
such as the number of processes, the minimum/maximum amount of tasks per process,
the percentage of idle time in the plan, buffer information, etc. The simulation creates
a plan according to those parameters. The plan generation has some subtleties that
need to be mentioned:

• Since the number of tasks per process is randomly generated within the given
boundaries, there might be relevant size differences between processes. During the
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plan generation in generate_realistic_plan(), the simulation tries to arrange
the tasks in such a way, that tasks of different processes are alternated between.
Due to differences in the process size, at the end of the plan there might occur
little to no switching.

• Idle slots have the process-id −1 and are not explicitly represented by an instance
of the Process class.

• Each task has a plan length and a real length. The real length is calculated by
applying a normal distribution to the planned length. The real length of tasks
can also be set via keyword-argument. The config.py file has a sigma parameter
TASK_SIGMA that determines the variance of the normal distribution. Figure 9
shows an example histogram that depicts the distribution for the plan deviation
with the current configuration for TASK_SIGMA. Different deviations are sorted into
1000 bins and the number of occurrences per bin is shown on the y-axis. The x-
axis shows the distance to the actual planned task length, which was set to 100
timer ticks.

Figure 9: Normal distribution of the plan deviation

Logging Logging plays an important role in the context of the simulation since the
logging outputs are the basis for generating visualizations. The various log files are all lo-
cated in the /logs folder of the project directory as defined by the default configuration
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in config.py. Different log files are created for different events, but the most important
and complete log file is called unified_tick.log. This log lists relevant values on a
per-tick basis. A distinction is made here between sum and pure threshold values. The
sum value represents the threshold as is including the number of planned instructions,
the pure value excludes the number of planned instructions to enable comparison of
different values from various tasks or processes.

4.3.2 Visualization

Using the logs produced by the simulation, a second program was written that draws
graphs portraying different aspects of the simulation. The code for this component is
put inside the /visualization directory. It contains a parser within log_parser.py
that is tasked with reading the log files as well as the script that creates the final graphics
in vis.py. The visualizations are stored in the /pics folder.
The value of the extended logging and visualization to this thesis is two-fold: Firstly it
aids debugging by providing a facility to trace back and observe unintended behaviour
on either the source code or the threshold configuration level. During development,
for example, in certain situations t1 > t2_task evaluated to true, which means that a
prediction failure has been sent before the task was preempted. Secondly, this approach
helped to evaluate different threshold strategies. For example, the visualization could
show highly volatile increases and decreases in threshold values. Since system stability
and predictability is an important goal of the prediction failure handling component,
visualizations especially help to interpret the state of the component.

4.4 Level Two: Userland

4.4.1 Overview

The primary objective of Level Two is to provide implementation help. Since the Level
Two implementation is written as a userland program, common techniques and tools are
applicable, such as the use of a debugger. The first step is to rewrite the Python-based
simulation to C code. A suitable structure is defined based on the general structure of
the simulation code. Since the simulation code does not rely heavily on object-oriented
features such as inheritance-hierarchies, the translation is in large parts a conversion
of syntax and high-level features provided by Python into lower-level C. In a second
step, the Level Two code was modified to prepare it for migration into the kernel. This
is achieved by adhering to a set of additional restrictions. For example, to use as few
standard library functions as possible. Those functions are not available in the kernel
and have to be replaced by either the kernel equivalent of the function (e.g. printf() by
printk()) or have to be reimplemented. This also means for example to forgo floating-
point operations, since running those in the kernel is generally not recommended ([31]).
By adhering to these restrictions, the Level Two and Level Three code should remain
very similar. In the following, an overview is given regarding the most important data
structures and functionality of the Level Two implementation. The source code can be
found at github2.

2https://github.com/sherlockhomeless/master_level2
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4.4.2 General Architecture

The primary data structures, namely the plan, process and task are defined in a unified
header file called pbs_entitites.h which is stored locally on the development machine
and symlinked to wherever it is required. This ensures that a change to a data structure
is applied to all the components it is used in. For example, the Kernel module that loads
the plan from userspace has to know the exact memory layout of all relevant data types
in order to work correctly. If the parser uses a different struct definition than the plan
input module errors are bound to occur. In order to avoid possible name collisions, the
corresponding data structs have PBS_* prefixed. Figure 10 gives an overview of the
most important members.

Figure 10: Main data structures representing a plan

Data Structures In the following paragraphs the primary data structures will be
introduced briefly. The data structures have not changed compared to the simulation,
but an emphasis was put into simplification. The plan unit data structs are defined
in pbs_entitites.h, but the associated functionality that is required for maintaining
those structs during runtime is kept in separate source and header files named after the
plan unit, for example, task.c/h.

Task and Processes While processes contained a list of their tasks in the simu-
lation, this connection has been removed, since firstly this connection served primarily
convenience reasons and secondly, Python automatically manages the memory and ob-
ject references, while C does require manual updates of pointers. In order to achieve
the same level of functionality, a more sophisticated concept for memory management
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would have been required, which in turn would have added additional complexity that
is not strictly required.
The PBS_Process-struct developed into a simple data type that is only used for keeping
track of its retired instructions, process-lateness, progress, etc. Apart from updating
those values, little logic is required for its associated process.c file.
Tasks do require some more additional functionality since they are the actual units of
execution in the context of the plan. This means that in addition to tracking infor-
mation, they have to provide further capabilities that allow for execution management.
One important aspect is handling preemptions (3.2.3). In order to track preemption
related information, two fields are required:

1. Retired instructions of the task itself

2. Retired instruction of the slot the task is running in

While in most cases, both fields have the same value, as soon as a preemption is
triggered, the handling of tasks and associated threshold calculation requires a more
elaborate handling.

Plan The plan data structure is conceptualized as a consolidation unit that ties
tasks, processes and node-state-tracking information together. The PBS_Plan struct
maintains pointers to the currently active task and process. Processes are stored in an
array where each process’ index is determined by its ID for reasons of simplicity. For
productive systems one additional level of indirection should be introduced to provide
more flexibility. Tasks were originally stored in manually managed contiguous memory,
with PBS_Task* tasks pointing to the currently executed task. The task list was
implemented using a ring buffer that is constructed by reading the maximum plan lenght
out of config.h. During implementation, this approach was refactored since memory
management for user space and kernel space programs is handled differently. This
resulted in a significant deviation between Level Two and Level Three implementation.
The manually managed memory was therefore replaced by assigning a fixed length array
of tasks to the PBS_Plan struct. In order to be able to determine the last entry of the
plan, a terminating dummy task is appended. If the plan-based scheduler finds a task
with an ID of −2 the list of tasks is terminated. As with PBS_Task, plan.c/h does
contain some additional functionality to manage plans. Most notable, since the plan is
thought of as the consolidation unit of all plan units, it provides a unified interface for
updating tracking information.

Behaviour While the preceding paragraphs primarily focus on data structures, most
of the relevant capabilities such as threshold calculation, preemption behaviour, predic-
tion failure signaling and so on are implemented in several other source files that will
be introduced in the upcoming paragraphs.

config.h Since it was a design goal of the prediction failure handling unit to be
flexible and adjustable a lot of its behaviour can be modified, enabled or disabled.
Sizes, limits and other attributes are configurable. The file where those configurations
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are kept is config.h. It is the equivalent of the config.py file. It simply contains a
list of #define statements. Code listing 5 shows a short excerpt of the file.

Listing 5: excerpt from config.h
[...]
// −−− T2 −−−
#define T2_SIGMA 150 // p e r c e n t a g e a s i n t ; max a l l o w e d

d e v i a t i o n % o f a t a s k f rom i t s p l a n
#define T2_SPACER (5 * INS_PER_TICK ) // raw number

i n s t r u c t i o n s ; D i s t a n c e t1 −> t 2 _ t a s k
#define T2_TASK_SIGNALING_LIMIT ( PBS_HZ * INS_PER_TICK )// raw

number i n s t r u c t i o n s ; t 2 _ t a s k max v a l u e
#define T2_CAPACITY_BUFFER 10 // p e r c e n t a g e a s i n t ,

u n d e r e s t i m a t i o n o f node c o m p u t a t i o n a l c a p a c i t y
[...]

PB-Scheduler Functions in the pb_scheduler source file are related to capabilities
the scheduler would have to provide. An example would be the schedule() function that
is called every time the plan-based scheduler is active and a timer interrupt needs to be
handled. It also contains logic that is required for updating tracking information and
states. Additionally it changes the currently active task if its predecessor has finished or
was preempted and therefore handles the "run-queue". It also is responsible for handling
idle times as discussed in the design.

Threshold Checking Threshold checking contains functionality that allows the
plan-based scheduler to decide whether the current state of the task, process or node
warrants a preemption or prediction failure signal. The threshold_checking.c/h files
provide an interface the plan-based scheduler can use to evaluate its state. The functions
are of two types:

1. Functions with a calculate_*-prefix calculate actual threshold values in instruc-
tions. These functions are useful for understanding the behaviour of the prediction
failure component.

2. Functions with the check_*-prefix are intended to provide a simple, binary inter-
face, to allow for an easy integration.

In config.h one can enable and disable different threshold checks such as t2_task,
t2_node, etc., by setting the value of the corresponding #define-statements to either 0
or 1.

Prediction Failure Handling The prediction failure handling is concerned with
implementing behaviour that can be initiated after a threshold was transgressed with
sending a prediction failure signal or preempting the current task. These capabilities
are contained in prediction_failure_handling.c/h. Some additional functionality is
also required due to the need for managing the memory of the prediction failure handling
component. In essence the functionality provided by this unit simply implements the
prediction failure handling proposed in the design.
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Prediction Failure Signaling The prediction_failure_signaling.c/h units
are concerned with mocking an environment for the plan-based scheduler that at the
current moment is not available. The prediction failure signaling procedure is hidden
behind both the functions reschedule() and receive_new_plan(). The "rescheduling
component" sketched by these functions simply applies a shrink/stretch constant to all
the tasks of a process which is associated with a prediction failure signal. Code listing
6 shows the loop that iterates through all tasks applying the stretch accordingly. The
variable cur_task is a pointer that is moved along the list of remaining tasks of the
plan. If it currently points to a task that has the same process_id as the id that
is associated with the prediction failure, the instructions_planned field of the task
is updated. Due to floating point operations not being available, the 100% mark is
represented by the long value of 100 and not a float or double 1.0 value.

Listing 6: applying stretch to tasks

while (cur_task -> process_id != -2){
i f (cur_task -> process_id == target_pid ) {

cur_task -> instructions_planned = (cur_task ->
instructions_planned * stretch_factor ) / 100;

}
cur_task ++;

}

PMU-Interface The only objective of the pmu-interface is to read the correct
amount of retired instructions from the performance monitoring unit for the interval be-
tween the last and current call to the plan-based scheduler. It will be explained in greater
detail that a pmu-interface was not implemented due to challenges to which no obvi-
ous solution could be found in the evaluation chapter. For this reason a pmu-interface
therefore is mocked as well. The source file pmu_interface.c provides one function
called get_retired_instructions() that simply returns the value of INS_PER_TICK
that is set in config.h.

4.4.3 Testing Strategy

The Level Two implementation contains some code geared towards testing the im-
plementation. The project contains a main.c file with an int main() function. If
build and run, firstly a set of unit tests is executed and then a test run is initiated.
The two corresponding functions are called run_unit_tests() and test_run(). The
run_unit_tests() function contains explicit tests for functions that contain more com-
plex logic. The function test_run() initiates a full test run. Validation is done with
assert()-statements from the standard library. The assert() function takes a boolean
expression. If the expression evaluates to true, the program continues. If not, an abort
signal is sent and execution is terminated. With this approach, asserts can be removed
using a simple search and replace, making it easy to keep the source code kernel-ready.
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4.4.4 Level Two to Level Three Migration

In order to write code that can be easily pushed into the kernel source tree, some
extra steps have to be taken. Firstly, the Level Two code should be as similar to the
future kernel code as possible. Secondly this code must be adjusted, ideally in an
automated manner, to account for inherit disparities, e.g. the standard library not
being available. Consequently standard library calls must be substituted by a function
that does the equivalent on the kernel side. Finaly, the code must be inserted correctly
into the kernel build system. This means that the build system must be able to find all
relevant declarations and definitions. This three-step process is depicted in the following
paragraphs.

Increasing Code Similarity Firstly the user land code has to be made as similar as
possible to kernel code. With a growing divergence between both code bases, debugging
will become more challenging and time intensive if two code bases have to be updated for
every change. The goal, therefore, is to have identical code where possible. Some steps
that facilitate this goal, for example choosing the ISO C89 standard for development,
since this is also the standard used in the Kernel [15] were taken. The Level Two code
also contains some additional macros that allow kernel-level-style code to be written for
user space, e.g. the header kernel_dummies.h contains empty macros that are required
on the kernel side. For example, macros such as KERN_INFO or KERN_ALERT that
are used for printk() calls.

Filter Script Naturally some divergences still are bound to occur. To address this
a script is called that translates the Level Two sources into Level Three sources. The
script make_src_kernel_ready.py tries to achieve this goal. It takes two parameters,
where the first parameter is the location of the Level Two sources, the second parameter
is the target folder where the rewritten source files ought to be copied to. In a first step
it filters the input folder on a file level to exclude files such as main.c or the .git-
directory. The remaining files are the inputs to a filter pipeline. The script applies
a set of rewriting-rules to every line in the remaining sources, similar to what typical
awk/sed scripts would do. In this step for example printf() calls are replaced by
printk() calls and standard-library imports are removed. The code-snippet 7 shows
how this replacement works. The function iterate_lines() reads all lines of the list of
files given in target_files and applies the lambda function that is given as the second
parameter.

Listing 7: Example filter step
iterate_lines ( target_files , lambda line: line. replace (’

printf ’, ’printk ’), print_log =False)

Kernel Source Tree Integration When the source files are updated and conform
to kernel-source-code standards, the build system needs to be made aware of those files.
Since every level of the source tree contains a Makefile, the prediction failure handling
source code files need to be included. In order to keep both sources close, the prediction
failure handling code is copied into /kernel/sched/prediction_failure_handling.
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The Linux kernel build process is done recursively, so further subdirectories can be
included simply by adding the subdirectory to the list of objects to compile by obj-y
+= prediction_failure_handling/ ([29]). The subdirectory has to contain a Makefile
that is being called. The script make_src_kernel_ready.py also automatically creates
a Makefile that includes all the relevant source files.

4.5 Level Three: Kernel

Since the Level Two implementation already contains most functional code that is re-
quired to run the prediction failure handling component in the kernel, this section is
about the additional component that is able to copy plans from user into kernel space.
Since running the prediction failure handling component with an appropriate plan is
not trivial, the appendix A.2 contains a section on how to set up a test run.

Plan Input In order to enable the plan-based scheduler to run, it must be able
to receive customized plans that include both planned and real instructions for each
task. Since this functionality is not a main concern of this thesis, but a requirement
regardless, the following approach is motivated primarily by convenience and simplicity.
The corresponding git-repository can be found at github3.
The capability to input new plans into the kernel is achieved by implementing a Loadable
Kernel Modules (LKM). The module is defined in pbs_plan_input.c. This file contains
the implementation of a character device that can be read and written to in the /dev
directory ([3]). Character devices are devices that deal with data in a stream-like,
byte by byte fashion. So a new plan can be fed into the kernel simply by writing to
/dev/pbs_plan_in. The copying of the plan into kernel space is done in a very simple
manner. Firstly, a small user land program reads the plan and parses it into the C
struct defined in the above mentioned pbs_entitites.h. The source code for this
helper program is located in the project directory under write_plan_userland/. This
approach was chosen to minimize the code that has to be run inside the kernel. Since the
plan reading module is represented as a file, the user land program can simply write to it
via fwrite(). On the kernel side, the module receives the plan via copy_from_user().
Inside the kernel source tree, a plan variable is declared. Using the exported function
get_pbs_plan(), the LKM receives a pointer to this global plan variable and fills it
with the data it receives from the user land program. The char-device is only opened
once, but after 32768 or 213 Bytes written, the plan_write() function that implements
the writing to the file is called again, most likely due to buffer limitations. The module
needs to factor in this behaviour and therefore keeps track of the already written bytes,
so when the associated .write() function is called, the pointer determining the target
location is adjusted accordingly. As long as both user land and kernel space use the
same config.h and pbs_entitites.h, the writing to kernel space should work, still
this is a technical detail to be aware of. If a read operation is performed on the character
device, this pointer is reset in order to be able to test different plans.

3https://github.com/sherlockhomeless/master_read_plan
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5 Evaluation

This chapter will give an overview of the degree of fulfillment of the requirements de-
fined in 1.5 and discuss related challenges. Firstly, the functional requirements will be
discussed, in the second section the nonfunctional requirements are assessed.

5.1 Evaluation Functional Requirements

REQ-F-0: Interfaces for Integration This requirement requests that the predic-
tion failure component should provide a clear interface for interacting with the reschedul-
ing component. The architecture for the prediction failure component was straightfor-
ward to define and develop since every component had a clear cut scope and was there-
fore delimited. The prediction failure handling component checks all the relevant thresh-
old conditions on each call. For example, if a task has finished, it tests if it finished early
and if so, if it finished earlier then tm2_task. Every time this check results in the need
to signal a prediction failure, either signal_t2() or signal_tm2() is called. So if the
interaction with a rescheduling component needs to be advanced, both of those functions
comprise the interface determined in the requirement. In the current implementation
both functions only handle logging and apply a simplistic rescheduling, but it would be
easy to swap the current stub implementation out for a call to an actual rescheduling
component. All the related functions are located in prediction_failure_signaling.c
and can be easily modified. Receiving new plans is done via the functionality provided
by the plan-input LKM described in 4.5. This workflow is not very convenient since the
LKM in its current form only copies a binary form of the plan into the kernel memory
space. This implementation is functionally working, but to have a more sophisticated
interaction its capabilities would need to be extended. In the future works section an
outline is given of what an extension could possibly add (6.2.2).

REQ-F-1 & REQ-F-2: Threshold and Prediction Failure Handling Imple-
mentation The thresholds are implemented in threshold_checking.c. The func-
tionality encapsulated in this file fulfills the requirements formulated in REQ-F-1,
since it provides a way of deciding whether the current state signifies a prediction fail-
ure or not.
Similarly the handling is implemented in prediction_failure_handling.c for REQ-
F-2.

REQ-F-3 & REQ-F-4: Kernel-level code based on prototype The goal was to
provide an implementation of the design that was a) running inside the Linux kernel and
b) is integrating with the existing prototype. The prediction failure handling component
is running successfully inside the kernel and is integrated with the prototype. The
integration of the prediction failure handling component is somewhat loose though.
The two main reasons for the loose integration are that firstly, the plan-based scheduler
prototype so far is not running and executing actual tasks. It runs dummy tasks that
consist of an empty for-loop which is iterated over a set amount of times. In 6.2.1
an extension is depicted that would allow a better integration of the prediction failure
handling component into the prototype. At the moment the prediction failure handling
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component is only integrated by a simple hook in pb.c, which is called whenever the
plan-based scheduler is the highest prioritized scheduling policy. Listing 8 shows this
hook.

Listing 8: The prediction failure handling component is called directly from the proto-
type

i f ( current_mode == PB_EXEC_MODE ){
i f ( handle_prediction_failure != NULL){

handle_prediction_failure ();
}
// run r e a l t a s k h e r e
picked = pb -> proxy_task ;

}

When the handle_prediction_failure() function is called, it increases an internal
instructions counter by the amount defined in config.h. The prediction failure compo-
nent also uses its own plan that is adjusted for the purpose by including an extra field
that determines the actual amount of instructions the task has to run. The prediction
failure handling is solely based on this deviation.
The second reason for the loose integration is that a reliable instruction counting mech-
anism has not been implemented. Ideally, the prediction failure handling component
would only need to be called when certain events occur. For example, when the amount
of retired instructions exceeds the amount of planned instructions or when an idle time
slot is next up according to the plan. As stated above, the prediction failure handling
component makes a simplifying assumption, that every time it is called, a fixed amount
of instructions has been retired. It is assumed that the retired instructions were spent
on the task that is currently at index 0 in the plan. Since instruction counting is of
crucial importance to the mechanics of prediction failure handling it was originally in-
tended to be implemented, but development proved to be challenging. The instruction
counter was designed to be implemented as a Loadable Kernel Module. Since LKMs are
relatively portable, it was first developed to run natively on a desktop computer with
an i5-4460 CPU, but problems occurred when the development was shifted to run and
build on an AMD Ryzen 5 2500U and on a Virtualbox VM. When running the binary
on the i5-4460 processor, it was able to read some amount of instructions, but on the
Ryzen5 and the VM, the same code caused an "Error opening leader 1" message.
Since the source code by itself does not contain much logic, it was assumed that the
hardware support was missing on the mobile CPU and the VM. Code listing 9 shows
the relevant source code snippet.
Another hint was given by perf itself. With the command "sudo perf list hw", all
available hardware events can be listed. On the desktop CPU, this command yields
amongst others the line "instructions [Hardware event]". On the VirtualBox VM
this command returns empty, which indicates that no virtual PMU is available. When
listing not only hardware events, but also kernel-events no equivalent of retired instruc-
tions was found. The development for such an LKM was dropped and the focus was
put on the prediction failure handling component, since testing custom kernels directly
on the host machine proved to be cumbersome. In the future works section (6.2) an
instruction counting component is sketched out that could be a beneficial addition to
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the existing prototype.

Listing 9: opening a perf event for retired hardware instructions
memset (&pe , 0, s i z eo f (pe));
pe.type = PERF_TYPE_HARDWARE ;
pe.size = s i z eo f (pe);
pe. config = PERF_COUNT_HW_INSTRUCTIONS ;
pe. disabled = 1;
pe. exclude_kernel = 1;
pe. exclude_hv = 1;

fd = perf_event_open (&pe , 0, -1, -1, 0);
i f (fd == -1) {

fprintf (stderr , "Error opening leader %llx\n", pe.
config );

exit( EXIT_FAILURE );
}

5.2 Evaluation Nonfunctional Requirements

The fulfillment of nonfunctional requirements is by nature harder to evaluate than func-
tional requirements. In the following paragraphs considerations regarding nonfunctional
requirements will be given. Also since the implementation can be divided into the simu-
lation and the runnable prediction failure handling component, this discussion will only
focus on the Level Two and Level Three code base. Since it is derived and connected
to the simulation, there are tight relations, but due to different language capabilities,
diverging goals, etc. the arguments would need to be quite abstract to apply to both
implementations.

REQ-NF-0: Modularity Implementing a modular prediction failure handling com-
ponent was aided by the nature of the task itself. The prediction failure handling
component can be easily dissected into different capabilities that share no complex
interdependencies. For example, the PMU interfaces can easily be abstracted into a
one-function interface that simply returns an integer for the retired instructions of the
currently active task. The plan parsing and copying into the kernel can be easily han-
dled by one LKM. The plan units are strictly hierarchical and can therefore easily and
clearly be encapsulated. A plan consists of processes and processes consist of tasks. Also
the main required functionalities of the prediction failure component can be assigned to
the three main subcomponents threshold_checking, prediction_failure_handling
and prediction_failure_signaling. Since the implementation relies on the stan-
dard C way of uncoupling the interface from the implementation by means of header
and source files, components are easily swappable if at a later point in time assumptions
are updated.

REQ-NF-1: Configurability Configurability is achieved by having the relevant pa-
rameters defined as macros in a separate header file called config.h. This file contains
administrative configuration parameters to, for example, enable logging or change the
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assumed timer interrupt frequency. It contains general assumptions such as the CPU’s
instructions-per-tick capabilites, the rescheduling time, etc. Finally, it contains predic-
tion failure handling configuration parameters for determining threshold behaviour such
as the upper and lower bounds, acceptable deviations, variables that are used for the
stress-system, etc. This file is heavily used throughout the implementation and via it
major behaviour changes can be configured.

REQ-NF-2: Keeping Deadlines The requirement states that if a deadline can be
kept, the prediction failure handling component should not be the reason it is missed.
Specifically two aspects are focused in the requirement: Firstly the handling should not
be the cause for missing a deadline and secondly the overhead should be reasonable.
Regarding the overhead, the current implementation of the prediction failure handling
component contains parts that add avoidable overhead. For example, if a task is pre-
empted and pushed backwards in the plan, the prediction failure handling component
moves the task into the assigned location further back in the plan and then moves every
other task before the insertion index one index forward. Depending on the concrete case
this behaviour could cause some unnecessary overhead that could be avoided for exam-
ple by using a linked list instead of an array. So in terms of performance, the prediction
failure handling component does add some overhead and thereby could be the cause for
a deadline to be missed. However, it can be argued that fixing this overhead is a matter
of optimizing the implementation and is not inherent to the behaviour of the prediction
failure handling component. Since it was planned to implement the component in a
prototypical manner these types of overhead are excluded from the evaluation. One in-
herent overhead that is a consequence of the design is that some amount of information
tracking needs to be done. In every design, even with static thresholds, at least the
amount of retired instructions per task has to be tracked. In terms of memory usage,
the overhead should be acceptable considering that the target hardware is envisioned to
be part of a HPC-system. In terms of inherent overhead, there are two main parts that
could contribute. One the calculation of the threshold values and the other is checking
whether thresholds are kept. Both are closely related in terms of inherent overhead.

In the current implementation, all thresholds are updated every time the prediction
failure handling component is called. This behaviour could be optimized. There are
thresholds that do not have to be updated regularly, but at least require a check whether
or not they need to be updated. Consider t1 or t2_task; neither need to be updated as
long as the current task is not late, but it has to be checked if the current task is late.
So all lateness-related thresholds would only be updated if the current task is adding
lateness and all earliness related thresholds would only need to be updated if a task has
finished with planned_instructions > retired_instructions. With the availability of
programmable PMU overflow events this check could be avoided. Checking the current
state of a planning unit against its matching thresholds would also only need to happen
if the task turned late or finished early. Yet, due to the implementation being done in
a prototypical manner, continuous updates are useful for logging purposes. Minimizing
this overhead can also be easily achieved by enclosing the threshold updates and checks
in conditional statements.

Disregarding the performance aspect: Could the proposed prediction failure handling
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component be the cause for a deadline to be missed due to its behaviour? It is easy to
construct cases where this would be true, for example, when a process consists only of
a few short-running tasks and no buffer exists. Any lateness of any process in-between
would cause a missing of the deadline since a rescheduling would most likely not be
possible in such short time periods. Another aspect to consider is finding appropriate
configurations for the proposed mechanisms. For example, if the minimum deviation
before a preemption is triggered, is set very high, a lot of lateness could be accumulated
without triggering cautionary measures. If on the other hand, this value is set too low,
even minor transgression would cause preemptions and thereby a lot of unnecessary
overhead. The challenge of finding a suitable configuration is closely related to the
specifics of the processes running on the node. In general, the proposed prediction failure
component should provide enough flexibility to adhere to deadlines that are reasonable
to keep. In the future works section a possible addition to the proposed design is given,
that suggest partly adding configuration responsibility to the job scheduler. The job
scheduler could for example tighten upper boundaries to make the nodes more sensitive
to deviations if a deadline is in jeopardy.

REQ-NF-3: Observability The intention of the original requirement was to some-
how provide an easy way to debug the prediction failure handling component’s source
code. Kernel level code is by nature hard to debug since conventional debugging tools
such as gdb are not available and even debugging by print-statements has its limitation
since the printk buffer is implemented as a ring buffer with a limited size. This observ-
ability is achieved as a side-effect of the choice to implement the component first in user
space and then port it to kernel space. Due to this choice, the code can be debugged
and observed by conventional tools.

6 Conclusion

6.1 Summary

The goal of this thesis was to design and implement a prediction failure handling com-
ponent for a plan-based scheduler that runs as a Linux kernel scheduling policy. The
thesis is conceptually divided into three parts that are heavily interconnected. Firstly,
a threshold system was designed that allows to distinguish acceptable plan deviations
from prediction failures. Secondly, behaviour was defined that is associated with differ-
ent states in regards to plan deviations or prediction failures. Lastly, the designs were
implemented based on the existing prototype introduced in [10]. Each of the three parts
will be discussed and reflected in the following. A future works section will mention
some possible additions to the plan-based scheduler and the prediction failure compo-
nent.

Threshold Design The design of the threshold itself proved to be challenging and
was finally solved by coupling simpler sub-thresholds into a more complex construct,
where each sub-threshold focuses on one particular aspect of a prediction failure. The
main challenge was to balance competing goals. Most notably, a decision often had
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to be made between solutions, where one was more flexible and dynamic on the one
hand, but also less predictable and less robust on the other hand. During the first
attempt at solving this problem, the approach focused on defining one formula that
incorporates all relevant aspects and produces a number that can be compared against
the retired instructions of the current task. This threshold’s behaviour turned out to
be too unpredictable because different parts would trigger due to different conditions
that were not easy to predict. This approach was therefore dropped and substituted by
a more simple and modular approach of multiple thresholds with sub-thresholds that
each would focus on a specific aspect. The basic pattern of having fixed upper and lower
boundaries combined with a scaling part in-between is reused and should be sufficiently
easy to reason about for a rescheduling component. Threshold components can also be
enabled and disabled if they are deemed unfit or unnecessary in the current situation.
The challenge with the proposed solution is that it is dependent on finding a reasonable
configuration. In the future works section, an addition is proposed that could help re-
solve this challenge. Another issue was preparing a solution that fits the general case,
even when it is not known at the moment. It is risky to make too many assumptions
that might not hold because it might result in very little guidance to build upon. For
example, a normal distribution for the plan deviations is assumed, but the variance
for this distribution function still has to be estimated using a rule-of-thumb approach.
Additionally some aspects that would have been very useful to include are out of reach
due to having no concept of wall-clock time in the plan. All aspects that relate to this
time concept are assumed to be abstracted and handled by the rescheduling component,
but developing this clear conceptual distinction was a step by step process.
The definition of the corresponding behaviour also proved to be more challenging than
initially expected. For example, deciding on how to assign idle time slots lead to more
principle-based questions. For example, in a cooperating system, should additional re-
sources be allocated to the greedy but also most needy process or to the process that
shared its resources in the past generously and now itself is in need? Since no testing
environment was fully available these types of questions were not trivial to answer. Ar-
guments for each side can be further expanded and developed into arbitrary depths.
Limited empirical testing was available through the means of the simulation, but re-
sults were often inconclusive and more experimentation capabilities would have been
required. Consequently some decisions on how the node should behave in a certain
situation formed primarily because a decision had to be made and not because one so-
lution was obviously superior. In a not strictly specified environment questions of this
kind often have to be based on assumptions and a design-target direction. So it has to
be kept in mind that some designs made for the current implementation are based on
principle considerations rather than on classical engineering reasoning.
Regarding the layered approach of implementing the prediction failure handling compo-
nent, some clear advantages and disadvantages are identifiable. The simulation helped
facilitate the decision for choosing a more simple approach in regards to the thresh-
old design. Due to the dynamic nature of the Python programming language, changes
could be applied fast and results could be checked easily through the use of available
convenience functionality. For example due to the Python object model, every object
has a method called __repr__() that controls the textual representation of an object if
printed to the terminal or to file. This representation can be adjusted easily to reflect a
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change of focus. What also turned out to be very helpful is the possibility of extending
function signatures with keyword arguments. So clients of a function do not necessar-
ily need to change their calls, but still additional flexibility can easily be inserted if
opportune. On the other hand, this kind of extensibility led to ad-hoc changes that
were implemented for momentary use, then assumed to be permanent by other parts of
the software leading to increasing complexity when adaptations were necessary. So on
one hand the flexibility was very useful for writing a prototype fast, but it also had its
drawbacks in regards to maintainability. Some refactoring was done with type hinting
so it became more clear how to use the available functions correctly. The lack of clear
interfaces still proved to be difficult. In hindsight, the simulation should have been
retired earlier since it outgrew its original purpose and more functionality should have
been directly implemented into the Level Two implementation. Not doing so lead to
unnecessary additional work. The implementation of the prediction failure component
in Level Two and Level Three turned out to be surprisingly useful and efficient. Af-
ter some initial problems with programming inside kernel space and some iterations of
adjustments the conversion was working reliable. Programming for the kernel became
increasingly smoother as the work progressed, even to the point where it was ques-
tionable whether a Level Two implementation was even necessary. Yet, the userland
implementation still provides very useful features, such as a much better logging and
debugging capability, which are impossible inside the kernel. Also the Level Two imple-
mentation is a more accessible than the Level Three implementation since it does not
rely on having a plan input kernel module or on the prototype to run.

6.2 Future Work

While working on this thesis some challenges emerged that could be useful to tackle
in order to facilitate advancements for the plan-based scheduler. The three main cate-
gories where additional research and development could be invested are relating to the
environment the plan-based scheduler is running in, the plan-based scheduler itself and
the prediction failure handling component. Adding more features to the plan-based
scheduler and its environment should be considered with some care to prevent intro-
ducing too much additional complexity. With a modular approach and clearly defined
interfaces though, some additions might improve further development.

6.2.1 Environment

As mentioned in 5.1, it would be very useful to develop an environment in which the plan-
based scheduler could run in. By creating a simulated environment the development of
the plan-based scheduler would profit in at least two aspects: Firstly, this environment
could be used as the common ground for further development of the plan-based sched-
uler, as implementations relate strongly to their environments. If the environment is
too simplistic, the implementation might turn out to be simplistic. If the environment
is too complex, the implementation might become overly complex. So by defining a
simulation environment those factors are fixed and therefore a common ground to es-
tablish base assumptions is laid. Consequently when building an environment principal
questions have to be answered making the task not simply a programming task. Addi-
tionally, such an environment can be the base for building a test suite, which could be
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important help for future endeavors. In more concrete terms, the following paragraphs
give suggestions as to what could be done in this regard.

Job Scheduler The most relevant component for the plan-based scheduler to inter-
act with would be a corresponding job scheduler that provides plans and reschedules
when requested. Developing such a component could be done in varying degrees of
complexity. In its most basic form it would just provide a plan (list of tasks) and
runnable processes that correspond to the plan. The main objective would be to gen-
erate this plan and those processes in such a way that the plan-based scheduler could
actually run them. Technically this means, that struct task_struct *picked in the
struct task_struct * pick_next_task_pb(...) function must be set to an actual
runnable task that would run for the planned amount of instructions including a de-
viation that should be configurable. So the challenge firstly would be to create those
runnable tasks, make them available in a transparent way to the plan-based scheduler
and then connect the parts accordingly. Ideally this tool should have an interface that
would allow generating easy test scenarios. For example by specifying that a plan should
be generated where 3 processes are on time but one of the processes has a long running
task that exceeds its planned instruction amount by 300%. The component would then
generate the plan and create tasks available to the plan-based scheduler. The reschedul-
ing could work in a very similar fashion since the node can just assume that the new
plan takes into consideration all signaled prediction failures.

Include Communication Task As mentioned before in the terminology or the dis-
cussion about t2 (3.3.5), the plan-based scheduler does not only handle computational
tasks, which this thesis and [10] was concerned with, but also communication tasks.
Including this notion in the plan-based scheduler would allow for more realistic be-
haviour. Not every component of the plan-based scheduler needs to know about the
distinction. The scheduler by itself, for example, should not need to care if the next
task is of communication or computational nature, but to improve prediction failure
handling for example, it would be a useful notion for deciding if a computational task
can run because its preceding communication tasks are finished.

(Empirical) Research into job behaviour With the access to a production cluster
system, it could be very useful to gather statistical data on job and process behaviour.
The task of how to approach such a measurement is a challenge by itself, but if some
questions could be (partially) answered regarding job/process behaviour and deviations
between different runs, the resulting insights could be put into great use by integrating
them as assumptions for further development. Some very coarse data can be found (for
example [8]), but it is not obvious how to derive a useful model for the challenge at
hand. Some additional research and maybe an implementation in the form of a plan
generation unit might be useful.

6.2.2 Plan-based Scheduler

Plan Input As with the prototype of this thesis and already mentioned in the future
works section of [10], the plan input is done provisionally via LKM. It would be useful to
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have a designated interface for plan input that should ideally also work for the purpose
of plan modification (so a job scheduler for example can more easily be integrated). In
order to improve and facilitate development for the plan-based scheduler, this would be
a useful addition. This plan input component could be extended by providing additional
capabilities, for example:

• Defining a flexible plan data structure that ideally could be easily extended for
different use-cases. For example, in the case of this thesis, the plan does not only
need to contain a plan-length, but also a real-length for each task. Other examples
could be to include task annotation, which would allow printing a string to a log
if the task is run. While this extensibility might not be functionally necessary, it
might prove to be useful if it is considered in the design.

• Providing an interface for moving a plan data structure in and out of the kernel.
Reading the current plan from user space might also turn out to be valuebale.

Instruction Counting Another useful and eventually necessary functionality the
plan-based scheduler is depending upon is a robust instruction counting component.
The component should have an minimal interface, e.g. one function that takes a task_id
and returns the number of instructions retired on this task. The instruction counting
interface could also be designed even simpler, by just counting the instructions that
have been retired in the plan-based schedulers mode, since it was last queried. Mean-
ing, the instruction counting component could simply be a counter that is reset by the
plan-based scheduler, which is responsible for interpreting the indications by the in-
struction counting unit. Another approach could be to broaden the responsibilities of
the instruction counting component to serve more generally as the information track-
ing component. Then it could for example be used in postmortem analysis by the job
scheduler. Either way, the instruction counting component would have to have some
way of reading or estimating appropriate retired instructions. Ideally this component
could deal with different underlying CPU capabilities. Those capabilities could range
from full support providing the mentioned overflow interrupts (3.1.3) to no capabilities
at all, which seems to be the case for some VM hypervisors. To account for this, an
instruction counting component could implement a multi-layered fallback model, where
the component would use the best available option for the underlying architecture and
then try to substitute missing functionality by filling the gap with estimations, e.g. on
a VM with no available hardware counter for retired instructions, the component could
approximate the Instruction-Per-Cycle and then apply this indicator to the clock speed
to estimate the retired instructions for a time frame. As mentioned in 3.1.3, when fol-
lowing an estimation-based approach, it might be useful to experiment with different
timer interrupt settings for the Linux kernel to increase or decrease resolution.

6.2.3 Prediction Failure Handling

As already hinted to in the evaluation, the current implementation of the prediction
failure handling component contains some amount of provisional solutions that could
be improved.
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Prediction Failure Signaling Protocol A challenge when designing the prediction
failure handling component was the fact that the node is envisioned to run in a complex
and dynamic environment. The node forms a cluster with other nodes, so the behaviour
of each node should be considered with respect to that. In the current version this fact is
considered with the stress mechanic that forces the node to forgo a prediction failure sig-
nal if a new plan was recently received. This behaviour has some potentially detremental
side effects. With the current conception, the plan-based scheduler is in binary state
in regards to prediction failures. Either the current state warrants a prediction failure
or it does not. If the prediction failure component does not signal a prediction failure,
then the rescheduling unit will not receive information about deviations and therefore
can not improve the schedule. Somewhere in the development of the plan-based sched-
uler this procedure could be replaced with a more sophisticated solution for example
by designing a protocol for requesting reschedules. Instead of requesting reschedules,
the protocol could provide a multi-tier approach to the prediction failure signal. Level
One signals could just be read by the job scheduler as typical INFO-messages, Level Two
signals could inform the job scheduler that certain pre-thresholds have been reached,
for example 25, 50 and 75% of t2_process or t2_node have been respectivley. The
job scheduler respectivley might already include those updates in its next plan. Every
plan could then be sent with an attachment that would state what Level Two signals
were already dealt with in the current plan. Another, maybe simpler approach to such
a protocol could be that the job scheduler sends configuration information with the
plans as well, determining values such as T2_MAX_PREEMPTIONS or T1_SIGMA. With this
approach, the job scheduler would be able to adapt node behaviour in a flexible manner.
Pursuing such a protocol might not be of the highest priority, but it could be worth
investigating the issue. Finally, the protocol itself could also be expanded to include
various other aspects like enabling a health check or check-points for example.

Provide statistical information/ postmortems The job scheduler generates the
plan according to a prediction model that utilizes data of previous runs. In order to be
able to provide data for the job scheduler, the plan-based scheduler has to first gather
and compile it and then offer it in a convenient manner. Since conceptually it would
not be advisable to do any sort of data processing that can also be done outside the
kernel inside the kernel. The kernel should just provide an easy and clear mechanism to
provide data and do housekeeping according to a reliable mechanism to clear old data.
While this addition might not provide too much in terms of functionality, it could be a
catalyst for further development.

Improve Prediction Failure Handling As noted before, some aspects of the pre-
diction failure handling component are implemented in a naive and simplistic way not
only in performance terms, but also conceptually. One example is the handling of idle
time slots. Currently, the whole slot is simply assigned to the next process that a) has
a preempted task coming up and b) is late. This mechanism could be improved with
the current plan-based scheduler. The stress system could be further improved also.
Currently, every new plan causes the scheduler to jump to its defined stress level, but
maybe the plan was generated due to a new accepted job. The plan-based scheduler
could check if the existing plan-lengths stayed the same and decide based on its findings.
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If the plan-based scheduler would also contain communication tasks this kind of issue
could be revisited more thoroughly.

A Appendix

A.1 Information Tracking

Following the convention in programming, constants are written all capitalized and
variables with lower case letters. Since we assume that there is a fixed conversion rate
that allows us to switch between measurements of time and instructions, it is possible
to have mixed units, but for clarity and uniformity the unit of measurement will be
instructions.

The following components are kept per node and are valid for all processes that
might run on the node.

unsigned long IPS: Instructions per second. This constant is used to convert time
units into instructions and vice versa. It is possible to estimate this number by
monitoring the different processes running on the system, but in the context of
this thesis it is assumed to be independent of the currently running process or
phase of the process.

uint HZ: The frequency of timer interrupts per second. This number is set at compile
time, but can be dynamically changed via kernel configuration parameters. The
current standard is 250, so that a timer interrupt is generated every 0.04 seconds
[21].

uint INS_TICK: Instructions per tick, calculated by IPS/HZ.

uint RESCHEDULE_TIME: The time that passes between the occurrence of a
prediction failure and the receiving of an updated plan. In reality this component
would be dynamic, depending on the overall load of the plan generating compo-
nent, network capacities, the complexity of rescheduling in the current state,...
For this thesis it is assumed to be static, since there will be no integration of this
code into an actual running system at this point.

int lenght_task_plan : Number of instructions for a given task according to the
plan.

int lenght_process_plan : Sum of all instructions planned for a given task according
to the plan.

int lenght_plan : Sum of all planned instructions for the current plan.

int retired_instructions_plan/process/task : Number of instructions retired for
the corresponding plan unit.

int task_lateness : Deviation of length plan, number is positive if a task is late,
negative if it finished early, else it is 0.

int process_lateness : Lateness on a per-process-level, analogous to task_lateness
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int n, ode_lateness : The sum of all process latenesses of every currently active process
on the node.

uint MAX_TICKS_OFF : The maximum number of timer ticks a task is allowed
to be of its planned length before it will get preempted.

uint MIN_TICKS_OFF : Analogous to MAX_TICKS_OFF, it is the amount of
timer ticks a task may run without being preempted.

float SIGMA_T1 : Similar to ticks off, σ is a factor that describes how big the
plan-deviation for a given task may be before it is preempted.

uint PREEMPTION_LIMIT : This limit is a hard cap for preempting a task. If
the task reaches this limit, it will be preempted. It is calculated by PREEMPTION_LIMIT =

T1_MAX_TICKS_OFF ∗ INS_TICK

unit NO_PREEMPTION : This boundary is on the opposite side of scale compared
to the above PREEMPTION_LIMIT. No task will be preempted as long as it
stays within this boundary. It is calculated analogous to PREEMPTION_LIMIT :
NO_PREEMPTION =MIN_TICKS_OFF ∗ INS_TICK

int MAX_PREEMPTIONS : This constant limits the number of preemptions for
each task. If a task is preempted more often than MAX_PREEMPTIONS allows, a
prediction failure is sent.

float SIGMA_T2: Maximal lateness a task is allowed to reach before triggering a
prediction-failure signal.

float SIGMA_TM2: Maximal earliness a task is allowed to finish with before trig-
gering a prediction-failure signal.

uint T2_SPACER: Timer ticks that offset t2 from t1 so that unfavorable circum-
stances are mitigated.

int T2_TASK_SIGNALING_LIMIT The upper bound for t2_task given in in-
structions.

int TM2_TASK_SIGNALING_LIMIT The upper bound for tm2_task given in
instructions, meaning the maximum number of early instructions that a task is
allowed to finish before causing a prediction failure.

int TM2_TASK_SIGNALING_START The upper bound for tm2_task given in
instructions, meaning the maximum number of early instructions that a task is
allowed to finish before causing a prediction failure.

float AVAILABLE_PLAN_BUFFER : Percent of the buffer transmitted that is
allowed to be used up.

float CAPACITY_BUFFER : The speed up factor that describes the ratio of
planned computational capacity of the node to the actual computational capacity.
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int T2_PROCESS_MINIMUM : Minimum value for the 2nd tier t2_process
check.

uint stress : Keeps track of time passed since last received plan update. The value is
set to a number of timer ticks, that are counted down in specified time intervals
after a prediction failure.

int STRESS_RESET : The value that stress is set to after the node receives a new
plan.

int STRESS_GAIN : The value that each point in stress adds to thresholds working
with the stress system.

int T2_NODE_LOWER_BOUND: This value determines the lowest possible
value of t2_node.

int T2_NODE_LATENESS_CAP: Scalar for Node lateness.

int TM2_NODE_EARLINESS_CAP: Scalar for Node earliness.

Beside the node-global constants and variables, there also need to be elements in
place which track per-process information.

uint process_length: The planned total number of instructions that the sum of all
tasks of a process has according to the plan.

uint instructions_done: : A counter that tracks the amount of already executed
instructions for each given process. Every time tasks of the respective process
receive CPU time, this number is incremented.

unit instructions_left: Same as instructions_done except that the counter decreases
with executed instructions.

float process_completion: The (planned) process completion can easily be calcu-
lated by process_completion = instructions_done/process_length. It is simply
the ratio of the already completed instructions to the planned process length.

uint buffer_size: The amount of additional instructions a process has. This number
is submitted to the node by the VRM and represents the difference between the
deadline given by the user and the ending time of the last scheduled task.

int process_lateness: The accumulated difference of planned instructions compared
to actual instructions. This variable tracks if a process is on time, early or late.

A.2 Compiling and Running the Prediction Failure Handling Compo-
nent

The kernel modules as well as the code in the kernel source tree were developed using
a virtual machine (VM). To ease development and automate the process as much as
possible, two additional tools were used.
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Vagrant : Vagrant is a tool that allows managing virtual machines through configura-
tion files. If all of the configuration is kept in files, the creation of virtual machines
can be done automatically. This is useful especially for testing purposes. If a VM
stops to behave as intended, it can be deleted and replaced in a few seconds,
avoiding a time intensive debugging process. This proved to be especially useful
for testing kernel modifications

Ansible : While Vagrant by itself simply provides an interface to a VM provider such as
VirtualBox, the VM needs to be provisioned with the required build and debugging
tools. Ansible is responsible for attaining this goal. Among its capabilities are
installing a capable text editor, the required kernel headers, copying a script to
setup tmux on the VM and more.

The current configuration for Vagrant and Ansible can be found at Github4. One
detail that needs to be mentioned is that in the case of a VirtualBox VM, the VM by
default comes with one 10GB partition, which is not enough virtual harddrive space to
compile and build the Linux kernel with the default configuration.

Compiling the kernel Once the machine is set up the kernel can be compiled. The
git repository containing the latest version of the prediction failure handling component
can be found at Github5. If the above-mentioned Ansible/Vagrant setup is used, the
repository is already cloned in /home/vagrant/kernel_src/master_thesis_linux. It
is important to clone the branch pb to obtain the code for the plan-based scheduler. In
order to compile the kernel, firstly, a configuration file needs to be generated. This can
be simply done by changing into the top level source directory and run the command
make menuconfig, choosing the appropriate options and saving them to file. After-
wards, the compilation can be started with make. If compiling on the vm, only one
core is available, but if the kernel is compiled on a multi core system, the compilation
can be sped up using the -j N parameter, where N is the number of available cores.
Depending on the base hardware and the configuration file, the compilation can take
several hours. Also consider that enough space has to be available on the hard drive
to store all the object files. Since the Linux kernel also relies on modules, those have
to be also installed with sudo make modules_install. Finally, the new kernel has to
be installed by running sudo make install. Afterwards, the system can be rebooted
and the new kernel can be selected in the boot menu. To verify that the correct kernel
is booted, the command uname -a can be executed. The output will contain a version
number with the postfix pbfail from the extraversion parameter.

Plan input module In order to allow the prediction failure handling component to
run, it first must receive a plan that also contains plan deviations. Those plans are
loaded via a separate kernel module. The module can be found at Github6. This

4https://github.com/sherlockhomeless/master_vm_provision
5https://github.com/sherlockhomeless/master_thesis_linux
6https://github.com/sherlockhomeless/master_read_plan
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repository contains the kernel module as well as a userland program that writes to the
character device implemented by the module. Firstly, the module has to be compiled
and inserted. The project contains a Makefile that allows compiling the module. The
module then can be inserted using the command sudo insmod pbs_plan_input.ko.
Secondly, the userland program has to be compiled. The program takes a path as a
parameter that points to an instance of a plan. As mentioned above, the plans are
generated by the simulation. The plans usually have the filename plan.log. Invoked
with sudo-rights and a correct path, the userland program then feeds the plan into
kernelspace. If done correctly, the kernel log will print something similar to listing 10.

Listing 10: kernel log messages printed by the plan input module
[ 9992.195142] [ PBS_plan_write ] 36864 + 4032 = 40896
[ 9992.195143] [ PBS_plan_write ]0: fixing pointers , before :

cur_task =00007 fff319f7010 , cur_process =00007 fff319f5d50
[ 9992.195144] [ PBS_plan_write ]0: fixing pointers , after :

cur_task = ffffffff81ccefd0 , cur_process = ffffffff81ccdd10
[ 9992.195144] [ PBS_plan_write ]0: plan_ptr = ffffffff81ccdd00 ,

processes = ffffffff81ccdd10 , tasks= ffffffff81ccefd0
[ 9992.195145] [ PBS_plan_write ]0: 1 st_process = ffffffff81ccdd10 ,

2 nd_process = ffffffff81ccdd40
[ 9992.195145] [ PBS_plan_write ]0: 1 st_task = ffffffff81ccefd0 ,

last_task = ffffffff81cd47d8
[ 9992.195146] [ PBS_plan_write ]0: 1 st_process : id=0,

num_tasks_remaining =100 , instructions_retired =0, buffer
=7297012721

[ 9992.195146] [ PBS_plan_write ]0: 1 st_task : id=0,
instructions_planned =1140367204 , instructions_retired =0,
lateness =0

Preparing the prediction failure handling component If a prediction failure
handling compatible plan is loaded into the kernel, the prediction failure handling com-
ponent needs to be enabled. In the file pb.c in kernel/sched the code of listing 11 is
included.

Listing 11: code in pb.c that calls the prediction failure handling component
void (* handle_prediction_failure )(void) = NULL;
EXPORT_SYMBOL ( handle_prediction_failure );
...
s ta t i c struct task_struct * pick_next_task_pb ( struct rq *rq ,

struct task_struct *prev , struct rq_flags *rf)
{

...
// c o n t i n u e e x e c u t i n g t h e t a s k i n PB_EXEC_MODE
i f ( current_mode == PB_EXEC_MODE ){

i f ( handle_prediction_failure != NULL){
handle_prediction_failure ();

}
...

}
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The prediction failure handling is enabled if the handle_prediction_failure void
pointer is set from null to the address of the actual prediction failure handling function.
To change this value to the correct entry function, the module lkm_run is set up. It
can be found at Github7 and sets up a way of running the prediction failure handling
component. It creates a device at /dev/run. If the device is read from, the function
from code listing 12 is called.

Listing 12: the function simulates 100 timer ticks for the prediction failure handling
component
s ta t i c ssize_t dev_read ( struct file *filep , char *buffer ,

size_t len , loff_t * offset ){
int i;
for (i = 0; i < 100; i++){

pbs_handle_prediction_failure ( plan_ptr );
}

return 0;

}

Preparing the prototype Since the prediction failure handling implementation hooks
into the existing prototype, this prototype can also be used to run the prediction failure
handling component. Due to the current implementation being a fork of the original
prototype, the requirements to run the prototype are already included. Automatically
generated kernel module files are ready to compile in the path master_thesis_linux/
pb_utils/mod_gen/mods. These modules start the plan-based scheduler on insertion.
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