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Zusammenfassung 

Die steigende Nutzung von high performance computing im industriellen Bereich 

verlangt eine andere Art von Scheduling als die üblichen FIFO/Queue-basierten 

Strategien, weil diese nicht in der Lage sind, Antwortzeiten effektiv vorherzusagen. 

Um Antwortzeit-Garantien geben zu können, bedarf es detaillierter Informationen 

über das Laufzeitverhalten und die Ressourcennutzung der Anwendungen. Zentral 

zur parallelen High Performance Anwendung ist die Interprozess Kommunikation, 

zur Koordinierung und den Austausch von Daten. Kommunikationszeit ist ein nicht-

trivialer Anteil der Laufzeit solcher Anwendungen, wird in state-of-the-art 

Schedulern aber noch nicht effektiv berücksichtigt. In dieser Arbeit wird ein Linux 

Kernel Modul vorgestellt, welches die Kommunikation von parallelen Programmen 

überwacht um in späteren Abläufen des selben Programms diese Schedulern 

bereitzustellen. Zusätzlich wird die Kommunikation dieser Anwendungen mit 

vorherigen Abläufen verglichen um effektives Scheduling zu garantieren. Der Effekt 

dieses Monitorings auf Performance und Durchsatz einer typischen high 

performance computing Anwendung wird gemessen und überprüft. 

Abstract 

The increasing application of high performance computing in industrial settings 

demands more precise scheduling algorithms than the commonly applied FIFO-

queues. Towards this end, schedulers need more detailed knowledge of the runtime 

behaviour and resource usage of applications. One of the central features of high 

performance computing is interprocess communication for coordination and data-

exchange. The time spent communicating is non-trivial but not yet well integrated 

into state of the art schedulers. This thesis will introduce a linux kernel module for 

monitoring the communication of parallel programs. The module will be used to 

extract the message lengths for the scheduler and then be used in consecutive runs of 

the application to verify the repetition of that application. The impact on 

performance and throughput of high-performance applications through monitoring 

will be reported.  
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Introduction 

The field of high performance computing (HPC) has seen continuous 

growth ever since its inception. In high performance computing, data 

is so large and computation so complex that data-centres the size of 

industrial warehouses are required to satisfy demands: tens of 

thousands of high-end computers are arranged and connected to serve 

weather scientists, material designers, physicists, be it nuclear or 

cosmological or others.  

While a common household computer might have between two and 

sixteen processor cores, a data-centre (or cluster) is composed of more 

than a thousand of those computers, highly optimized for fast 

computation. Even at those magnitudes, computations can see 

execution times upwards of multiple weeks.  

High performance computing is a multi-disciplinary domain of 

applied software engineering, algorithm- and hardware design. To 

make full use of the available hardware a programmer has to be 

proficient in all three of them, and in addition the scientific domain. 

They have to be capable of writing correct and maintainable software; 

adapt their algorithms to the parallelism and latencies of an 

application distributed among thousands of compute nodes; make use 

of available hardware extensions and capabilities, and know its 

limitations (e.g.: caching behaviour, vectorization support or GPUs); 

and they need to be able to understand and verify their problems and 

solutions at hand.  

Correctness of computation is obviously a primary concern, however at 

those scales, enabling and improving high performance is of the same 

importance: Where an improvement in performance might make a 
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commodity application feel more responsive or reduce the waiting 

time of the user by a few minutes (e.g.: Flight searching websites like 

SkyScanner1), a performance improvement of just 1% will reduce the 

execution time of a 3 month long-running application by close to 1 day. 

High performance computing has been, up until the end of the last 

century, restricted to the public sector as documented on the Top5002: 

until 1997 only 32.6% of supercomputers belonged to the private 

sector.  The increase in computing power has enabled the private sector 

to create their own high performance data-centres, which have been 

steadily gaining shares; sitting at 58.4% as of 01.06.2019. [1, 2] 

Executing an application on a high performance cluster differs 

significantly from everyday applications. Instead of starting and 

immediately executing the application, a user will submit their 

                                                   

1  https://www.skyscanner.net 

2 The de facto list of high performance computing data-centres is maintained at 
Top500.org, an international effort to gather standardized performance information 
of “the 500 most powerful commercially available computer systems known to us.” 
In addition to raw computation power, the Top500 documents key statistics of those 
supercomputers, such as their operating system, specific hardware and network 
layout, as well as the sectors they are used in (public/private, etc.). 

Figure 1) Performance development as reported by the 
Top500.  

(Taken from: 
https://www.top500.org/statistics/perfdevel/) 
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application (called job) into a job queue, including a reservation for a 

number of compute nodes, and often also an estimation of running 

time. Those queues are usually executed according to a first-come-

first-served (FCFCS) fashion, however, modulated with some fairness 

constraints. [3] 

As the execution time of these applications can range from hours to 

weeks, submitting a task is not a guarantee for timely execution. Where 

unpredictability was an inconvenience to the academic user, it now 

falls under the profit considerations of industrial corporations. 

Yu and Buyya define five dimensions for the quality of service of a 

cluster management system: Time, Cost, Fidelity, Reliability and 

Security. [4] 

Time — Users want to minimize their applications response 

time3, and want to know when their computation is finished. 

Cost — Users want to minimize their expenses. 

Fidelity — Users want to receive correct results. 

Reliability — Users need guarantees about the execution and 

completion of their application. 

Security — Users need guarantees about the confidentiality of 

their datasets and applications’ code. 

The task of a cluster management system is to uphold these quality of 

service metrics. Towards those goals, it has access to a variety of 

scheduling strategies, all serving the goal of finding the proper 

                                                   
3 Wait time and computation time. 
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placement of an application in time and space: when an application is 

executed, and on how many and which compute nodes. 

Scheduling high performance applications 

As stated above, scheduling is very often done in a very rudimentary 

manner: first-come-first-served, with an eye for fairness, to avoid 

situations where a single user monopolizes the queue and other users 

have to wait longer. [5] This can often lead to situations where the 

data-centre is not fully utilized by the head of the queue alone. A 

common technique to increase utilization is therefore backfilling, 

where tasks further back in the queue are scheduled, as long as their 

running time does not exceed that of the current longest-running task. 

[6] In this type of scheduling, a job is usually allocated a fixed partition 

of the data-centre without overlap with other jobs. 

This, however, is still not optimal, as not every application utilizes all 

components of a compute node at the same time nor to their full 

capacity: for example, newer generation data-centres have FPGAs4 or 

GPUs which might simply not yet be used by a deployed application5. 

Alternatively, an application might be in a phase, where it will move a 

lot of data to/from disk and therefore not do much computation at all. 

An advanced scheduling algorithm could therefore detect those 

situations and co-locate some jobs under the condition that their 

resource usage is exclusive, which would further increase utilization 

and reduce response time. 

                                                   

4 Field-programmable gate array 

5 As an example, the protein clustering suite MMseqs2 is described by its authors as 
embarrassingly parallel, making little to no use of network communication hardware 
beyond setup and teardown.  
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While theoretically sound, this is not a commonly used technique, 

mostly due to the fact that data-centre operators and therefore 

schedulers do not have access to the necessary runtime information to 

effectively make those decisions. The runtime information relevant to 

a scheduler are:  

1. Total running time 

2. Number of Nodes used 

3. Per Node Utilization of6: 

a. CPU 

b. RAM 

c. Network Communication 

d. Disk I/O 

e. Hardware extensions (such as GPUs or FPGAs) 

f. Idle times 

4. Optionally: a user specified deadline 

Not only is this information required for more intricate scheduling 

schemes, it is also necessary to create runtime estimations of an 

application: while the obvious upper bound on any computation’s 

capability is the amount of data relative to the power of the system, the 

usage of peripheral devices such as networking hardware or hard disk 

drives also adds to the running time of an application. For example, the 

round-trip time of a network message to the publicly accessible 

Network Time Protocol server 0.de.pool.ntp.org takes on average 22ms, 

however, it mostly consists of sending and receiving a network 

message. Therefore, CPU utilization is low in the meantime, but the 

time spent in that routine is static, if a scheduler fails to consider this, 

                                                   

6 Notably, we are not only interested in this information as an aggregate, but over 
time. 
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it will not be able to effectively estimate runtime of applications. As will 

be outlined in more detail below, a central component of parallel 

programs is local network communication, a major contributor to the 

running time of parallel applications. 

Plan based Scheduler — Scheduling for Quality of Service 

There exist two major paradigms for scheduling of high performance 

applications: queue based- and plan-based schedulers. A queue based 

scheduler will execute programs in order of submission; when a 

program is finished the next program in the queue is executed. As 

mentioned above, modern queue based schedulers will still use some 

mechanisms to ensure fairness, and in addition can use backfilling to 

increase utilisation of the data centre. A plan based scheduler uses 

metadata and requirements submitted by the users to create an 

execution plan for all applications: when which application will be 

running on what nodes. Such an execution plan will usually be re-

generated after a certain time has passed. A plan based scheduler can 

use auxiliary information to create a schedule. For example, it can use 

prioritization and fairness schemes to favor higher paying users, while 

not completely starving out other users. It can also use models and 

estimates of the resource usage of an application to improve 

scheduling. 

As a plan based scheduler is predictable, it has better access to 

scheduling information and can therefore provide guarantees on the 

execution times of processes. As mentioned earlier, users want 

predictability in the execution times of their applications: especially in 

commercial settings users will work with deadlines that must be 

respected and guaranteed. If we also consider that an application might 
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be running in a distributed workflow7 (i.e.: on multiple, connected 

data-centres), it becomes crucial to guarantee deadlines, to enable 

communication and synchronization. A plan based scheduler is 

therefore preferred in those settings. 

Grid computing 

Grid computing is a software engineering effort towards 

commoditization and consolidation of high performance computing. 

The word derives its meaning twofold: 1) The end goal of grid 

computing is computation, especially high performance computing, as 

ubiquitous as the power grid. 2) Towards that goal, instead of only 

building bigger and better data-centres, compute sites are to be 

transparently interconnected on a grid. The heterogeneous nature of 

these compute sites should also be abstracted away from the user, such 

that they only need to submit their application. Commoditization has 

also introduced Service Level Agreements (SLAs) into high 

performance computing, meaning a contractual agreement between 

both parties on the Quality of Service (QoS).  

Another application of grid computing is the analysis of large data-sets 

such as that of the Large Hadron Collider at CERN. It is not uncommon 

for data-sets of this magnitude to be sent via mail-delivery, as online 

transmission is comparatively slower than the delivery of multiple 

hard-disk drives. In comparison, the size of a typical application can 

range from 10MB to up to 1GB, but is still far below 1% of the size of the 

dataset’s size. An emerging approach is therefore to no longer move 

                                                   

7 A use case that is only becoming more common with bigger datasets and more 
available compute resources. 
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the dataset, but the applications onto the hosting data-centre, 

therefore eliminating the need to move the large datasets. 

Plan based scheduling is a critical component of grid-computing, to 

enable the successful negotiation, scheduling and execution of 

dependent parts of an application on multiple distributed compute 

sites with differing hardware and capabilities. The already complex 

task of runtime estimations is further complicated by the 

heterogeneous environment of a grid. A plan based scheduler for grid 

based environments can therefore improve its estimations by historic 

data and models of the execution of the applications it is executing. [7] 

Parallel Programs 

High performance computing requires much more compute power 

than can be accomplished by a single processor, or even a single multi 

core processor. A data-centre therefore necessarily consists of a large 

number of well-connected compute nodes. Making full use of a HPC 

data-centre therefore also requires a strong emphasis on parallel 

software design and programming. An application and its underlying 

algorithms are broken down, such that they can be executed in a 

distributed fashion on multiple compute nodes at once. It follows, that 

a core pillar of parallel program design is the ability to exchange 

information between compute nodes. A successful parallelisation can 

produce significant speedups simply due to the ability to scale better 

with more available resources. 

An example — findMax 

As an example, consider the implementation of finding the maximum 

in a list of numbers. The sequential solution to that problem is to scan 



Fabian Kovacs 

14 

all values, carrying the maximum number in a variable, updating it 

when a higher value is encountered. A processor able to process 100 

numbers per second would therefore process 1000 such numbers in 

10s. 

A naive parallel solution to the same problem might be: first distribute 

those numbers evenly among all processors, then execute the 

sequential algorithm per node, gather the intermediate maxima on a 

single node and find the absolute maximum among them. If we execute 

this parallel implementation on 4 cores of the same performance, it 

now takes every core just 2.5s to calculate their local maximum, the 

calculation of the final global maximum incurs an additional 0.04s. If 

we assume message transmission to take 0.1s per node8, we are still left 

with a total runtime of 2.5𝑠 +  0.04𝑠 + 2 ⋅ 0.3𝑠 =  4.04𝑠, which is an 

improvement of 59.6% compared to the sequential implementation.  

  

                                                   

8 Excluding the one node that distributes the dataset and gathers the intermediate 
results. 

Figure 2) Throughput measurements of different connection technologies. Taken 
from [27]  
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SEQUENTIAL IMPLEMENTATION PARALLEL IMPLEMENTATION 

findMax(N[]): 
 max = -inf 

 
 for n in N do: 
      if n > max do: 
          max = n 
 
 return max 

 
Figure 3) Pseudocode and visualization of sequential and parallel implementation of findMax 
algorithm. Note that the parallel implementation has four processors at once and therefore a 
smaller per-CPU dataset. However, the parallel implementation now has to coordinate and 
communicate, which is time spent on overhead instead of computation. 

 

Network communication is a non-trivial component of an 

application’s running time. While transmission of a single message 

might take only a few milliseconds it can take far longer for longer 

messages. The major influencing factors of message transmission time 

are the size of the message, the software implementation of the 

networking code, the transmission speed of the networking hardware, 

the medium and protocol used to transmit the message, the physical 

distance and connectivity9 between the communicating parties.  

Increasing parallelisation is therefore not a panacea to any long 

running or complex computation: increasing parallelisation also 

                                                   

9 The specific layout of the network and current load on its components. 
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increases time spent communicating. We define the speedup from 

parallelisation as 𝑆(𝑛)  =
𝑡(𝑛)

𝑡(1)
, where 𝑡(𝑛) is the time it takes to compute 

a task with 𝑛 nodes. The computation time of an application can be 

broken down into three components 𝑡(𝑛)  =  𝑡𝑝𝑎𝑟(𝑛)  + 𝑡𝑠𝑒𝑞(𝑛)  +  𝑡𝑐𝑜𝑚(𝑛), 

where 𝑡𝑝𝑎𝑟(𝑛) is the time spent in parallel computation, 𝑡𝑠𝑒𝑞(𝑛) the non-

parallelizable part of a program, and 𝑡𝑐𝑜𝑚(𝑛) the time spent 

communicating.  

From our example above 𝑡(𝑛)  =  
1000

𝑛 ⋅100
+  

𝑛

100
+  (𝑛 − 1) ⋅  0.1, 𝑛 >  1, 𝑡(1)  =

 10. The speedup at 4 cores is therefore 𝑆(𝑝)  =  0.31. The minimum 

execution time  with 7 cores would then be  at 2.69s, this is due to the 

fact, that while the work done per node diminishes with each new node 

(𝑡𝑝𝑎𝑟(𝑛)  =  
1000

𝑛 100
), the time spent finding the absolute maximum from 

the intermediate results increases (𝑡𝑠𝑒𝑞(𝑛)  =  
𝑛

100
), and more 

importantly, with every additional node, the execution time increases 

(𝑡𝑐𝑜𝑚(𝑛)  =  (𝑛 −  1)  ⋅ 0.1).  

Figure 4) Visualization of execution time of sequential and parallel implementations, with 
decomposition of time components of parallel implementation. 
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A parallelisation is only useful as long as 𝑡(1) > 𝑡(𝑛) holds, i.e. as long 

as the sequential implementation is slower than the parallelised 

implementation using 𝑛 cores. Which, in our example, holds up to 

roughly 47 nodes. If we also consider the cost of running or renting the 

nodes, the maximum sensible 𝑛 is probably significantly lower than 

that.  

It is therefore an important part of developing, executing and 

scheduling an application to consider an application’s scaling, and 

thus finding an optimal selection of nodes in the context of the 

executing data-centre, which is dependent on the problem size and the 

amount of necessary communication. This optimization also includes 

the user’s willingness to pay for a partition. 
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Topology 

The size of a high performance computing data centre puts pressure 

onto its designers in the placement and connectivity of its nodes: the 

network topology of a cluster. Multiple factors play into the 

consideration of topology design: connectivity, latency (min, max and 

average), throughput, ability to be partitioned, and cost. While a fully 

connected cluster has high connectivity and thus low latencies, while 

simultaneously being simple to partition, connecting every node with 

every node becomes very expensive, as the cost scales quadratically 

with every node. The typical primitives in topology design are trees, 𝑛-

ary-cubes or -meshes, or combinations like dragonfly. [8] (See Figure 

5 and 6) 

 

 
 

Figure 5) Fat Tree Topology: nodes are 
interconnected in a hierarchical structure, nodes 
higher up in the hierarchy have more 
connections. This enables rapid transmission 
through the network with low congestion, while 
having modest requirements on connection 
infrastructure. Tree structures are very easy to 
partition. 
(Used by: Summit #1, #2 LC Sierra) (Image 
taken from [9]) 

Figure 6) Dragonfly Architecture: fully 
connected groups of nodes, where every group 
has at least one link to another group. This 
enables short communication times and is easy 
to partition.  
(Used by: Sunway TaihuLight #3, Piz Daint #5) 
(Image taken from [10]) 
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The topology of a cluster has significant impact on the time it takes for 

a message to be transmitted and also impacts the ability of an 

applications communication  

capabilities: for example, two nodes involved in a lot of communication 

should not be deep in two separate branches of a tree structure. 

A QoS oriented scheduler aiming to provide effective deadline 

guarantees, therefore not only requires knowledge of the particular 

topology of an application, but also of each allocated node’s 

communication. 

Message Passing Interface — MPI 

One of the most commonly used frameworks for the development of 

parallel programs is the Message Passing Interface standard (MPI)10. 

Libraries implementing the MPI standard offer a programming 

interface for parallel communication, as well as a toolkit for compiling 

and running distributed applications. They implement primitives for 

synchronous and asynchronous communication, including one-to-

one (Send / Receive) and one-to-many (Scatter / Gather) 

communication, but also more complex schemes such as 

MPI_Allreduce, where all involved parties apply an operation to a 

distributed buffer, combining their results. MPI abstracts over the 

protocols and execution platform: a user will simply write their 

program using MPI primitives and will be able to execute it on a single 

machine, or on a high performance computing cluster. MPI will load 

                                                   

10 A growing trend in high performance computing is the emergence of higher level 
interfaces for processing, e.g.: Apache Spark. This can be read as a decline of MPI, 
however most of these tend to still use MPI under the hood for execution. 
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and use the appropriate drivers and distribute the application 

accordingly.  

MPI applications are usually run from a management system, this 

requires configuration specific to the executing cluster, including the 

available hardware and physical layout of the cluster: it is beneficial for 

nodes communicating a lot with each other to also be placed physically 

close to each other, similarly nodes acting as a communication hub 

might want to have a low mean distance to all nodes to allow fast 

communication with all nodes. Most data centres host multiple 

programs on a cluster at the same time, through partitioning of the 

cluster. This might be because the user has only limited use for the 

whole cluster or has only paid for a certain partition of the cluster. MPI 

can manage these requirements, to simplify execution on data-centres 

for high performance parallel computation. 

High performance applications 

While the scientific domains of high performance computing are 

varied, most applications focus on simulating parts of the natural 

world with numerical models. The following section will present some 

specific applications of high performance computing, as examples of 

HPC in some domains. It should be noted that this list is not exhaustive, 

and some applications are solutions to very specific problems that are 

not publicly available. 

While it was originally mostly used in academia, limited by the 

availability of resources, technologies and brainpower, it has been 

seeing more use in industrial applications since the turn of the 21st 

century. 
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The public sector has been the driving force behind high performance 

computing. The applications range from large scale universe 

simulations to microbial simulations, down to quantum scale. Lammps 

- Large-scale Atomic/Molecular Massively Parallel Simulator - 

developed at Sandia National Laboratories is a high performance 

application used for physical material modeling from the atomic level 

upwards11. One of the major applications of high performance 

computing is the simulation of nuclear  

weapons: the US put live nuclear weapons testing on hold in 1992 and 

has since then started developing and testing nuclear bombs with their 

Advanced Simulation and  

Computing Program in Los Alamos (#7 of Top500), Sandia 

Laboratories (#7 of Top500) and Lawrence Livermore National 

Laboratory (#10 of Top500).12  

 

                                                   

11 More examples can be found at https://lammps.sandia.gov/pictures.html 
12 Stockpile Stewardship and Management Program 

 
  

 

Figure 7) Model of the tensile response of bundles of 
carbon nanotubes containing 1.2M atoms, simulated 
with LAMMPS. 

Figure 8) Electron/transport enhanced 
simulation of heating and deformation of a 
metallic carbon nanotube, simulated with 
LAMMPS. 
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The European Organization for Nuclear Research - CERN - requires 

high performance computing13 to effectively handle its data: the team 

surrounding the Large Hadron Collider has so far released about 3 

Petabyte of data, estimating that this is just 3 percent of their data. A 

dataset of this scope cannot effectively be handled at any other scale 

than a supercomputer, or in this case a super-computing grid. 

Lastly, high performance computing is used in climate research, to 

create day to day weather-forecasts, but also to simulate and analyse 

climate change and the effect of human actions on climate. Toward 

ever greater precision, climate or planetary models incorporate more 

details into their computation: the Ocean-Land-Atmosphere and Soil 

Model (OLAM) simulates cloud dynamics and microphysics, 

atmosphere-surface interaction, and land surface processes, such as a 

regions groundwater, in addition they employ dynamic grid techniques 

                                                   

13 CERN does not maintain their own datacentre, instead relying on the Worldwide 
LHC Computing Grid (WLCG), a network of more than 170 computing centres spread 
across 42 countries 

Figure 9) OLAM-Soil simulation with adaptive Grid. 
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to adaptively reduce computational load on uninteresting data without 

completely ignoring it. [11, 12] 

PlaSim (for Planet Simulator) is a general circulation simulation often 

used in weather forecasting and planetary simulation. PlaSim is 

developed by Haberkorn et al. at Meteorologisches Institut, Universität 

Hamburg. It is specifically developed to be user friendly (simple to set 

up, run and evaluate), for teaching purposes, while making slight 

concessions with regard to precision and detail, but still being 

representative of other forecasting programs such as Olam-Soil. [13] It 

comes with an extensive UI to configure and run PlaSim, which can also 

display a detailed live model of the running simulation. Plasim is 

written in Fortran90 and makes use of MPI for parallel communication. 

Figure 10) Screenshot of a running PlaSim simulation. 
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PlaSim will be used in the case study further below, the reason being 

that it is fairly straightforward to set up while actually requiring HPC 

and having complex communication behavior. Both Olam-Soil and 

LAMMPS were also considered as case study candidates, but were 

impossible to setup without investing a lot of time. 

RESEARCH TITLE ORGANIZATION 

Computational Studies of Protein-Protein Interactions University of 
Chicago  

Towards development of the structural determinants of the 
Glutamate receptor gating regulation by auxiliary membrane 
anchored proteins 

Carnegie-Mellon 

Curvilinear and Multipatch Methods for General Relativistic 
Astrophysics in the Gravitational Wave Era 

Rochester Institute 
of Tech 

Centre for the Physics of Living Cells University of 
Illinois at Urbana-
Champaign 

Looking Out for the Little Guy: A Comprehensive Study of Star 
Formation in Dwarf Galaxies 

Rutgers University 
New Brunswick 

Relaminarization and Turbulence Suppression in Rotating 
Flows 

University of 
Kentucky Research 
Foundation 

Petascale Simulations of Binary Neutron Star Mergers University of 
California-
Berkeley 

Quasars and Large Scale Structure:Gigaparsec-scale 
simulations confront Large Survey Data 

Carnegie-Mellon 
University 

A Hierarchical Multiscale Method for Nonlocal Fine-scale 
Models via Merging Weak Galerkin and VMS Frameworks 

University of 
Illinois at Urbana-
Champaign 

The First Billion Years: a Petascale Universe of Galaxies and 
Quasars 

Carnegie-Mellon 
University 

Sample list of National Science Foundation awarded research for Petascale Computing Resource 
Allocations.  
(Sources: https://www.nsf.gov/pubs/2014/nsf14518/nsf14518.htm, and 
https://www.nsf.gov/awardsearch/simpleSearchResult?queryText=PRAC ) 
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Initial testing was done with a rudimentary implementation of an N-

body simulation, where multiple physical bodies and their gravity 

induced movement is simulated. It is commonly used as an 

introductory application for parallel programming as it is easy to 

implement while requiring effective parallelism and communication. 

N-bodies is primarily used in astrophysical simulations of the 

universe. While the used implementation was easy to set up, it did not 

make use of many communication primitives and did not display a 

sufficiently complex behaviour to be considered representative of our 

target domain. 

 

The United States National Science Foundation issues grants for 

scientific research considered important and relevant. One of their 

awards is for Petascale Computing Resource Allocations (PRAC). The 

awards are selected by committee and can therefore be considered 

representative of high performance computing’s application domain. 

High performance computing is also used in industrial settings for 

material simulation, optimization and stress testing. For example, 

before any car is put into an actual wind tunnel, it will already have 

undergone optimization and verification in simulated wind tunnels. 

This enables much faster turnaround. In architectural design HPC aides 

in the computational analysis of building structures, to test and verify 

new materials, shapes and construction technologies. [14] Modern 

plane design makes heavy use of high performance computing to 

optimize the shape of wings and turbines. A manufacturer can employ 

optimization algorithms coupled with physical simulation to achieve 

new designs:  
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“Gas turbine engine design begins with lower-fidelity models to 

explore the design space efficiently. [...] These models are used for 

evaluating engine subsystems [...] As the design process matures, 

higher-fidelity models are introduced. In high-fidelity analysis, the 

equations that represent the underlying physics are used to study the 

performance characteristics of different designs and shapes. 

Decomposing the parts, or the air around the parts, into a 

computational grid allows us to solve these equations. Capturing more 

geometry features, increasing the number of points in the grid, and 

extending the computational domain can achieve even higher-fidelity 

and more accurate analysis, but this increases the amount of 

computational effort considerably. As the design matures, more 

details are added to the models. These detailed models are larger and 

take longer to run, causing delays in the design cycle. Often the 

designers must balance the amount of detail in the models with the 

time  

required to complete these calculations. One of the benefits of using 

HPC is that the run times of detailed analysis can be reduced from 

 

 

 
Figure 11) Genetic algorithm optimizing the 
shape of a wind turbine. (Screenshot taken from: 
https://www.youtube.com/watch?v=YZUNRmw
oijw ) 

 Figure 12) Material cooling simulation and 
optimisation. (From: 
https://www.semanticscholar.org/paper/HPC-
SIMULATION-AND-OPTIMIZATION-OF-
MATERIAL-FORMING-Fran%C3%A7ois-
Jaouen/890479cd6aa3130d0f1790f152bf85da31fc
7f7e ) 
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weeks to days and, with enough computing power, from days to 

hours.”  [2] 

Towards modelling of communication 

It should be clear by now, that a scheduler aiming to guarantee QoS and 

especially work within deadlines, needs as much information on the 

execution time and runtime behavior of an application. The runtime 

behaviour however is not apparent from the application’s source code 

and therefore needs to be modelled in some way. The most basic way of 

modelling an application is by recording its behaviour in a controlled 

setting and using that as a baseline for future executions, reifying it as 

more recordings come along. Applied to the communication of an 

application, this would entail recording the communication channel 

and the length of the messages. As the focus of this thesis is high 

performance parallel programs, we will restrict ourselves to the usage 

of MPI, the resultant model will therefore consist solely of the length 

of every sent message14 in order, without any identification of the 

communicating parties15. This data can then be used by a plan based 

scheduler in later executions, to estimate peak loads on 

communication channels and CPU bursts, and additionally to help 

estimate the time spent communicating. These estimations serve in 

scheduling these applications and create precise estimations of their 

execution time, in order to guarantee deadlines. As the scheduler relies 

on the model’s correctness to guarantee deadlines, the communication 

of the program will also be monitored in production and then 

compared to a supplied model, deviations need to be detected and 

                                                   

14 In bytes 

15 Notably, this stabilizes against MPI_Broadcast etc. (re-) ordering messages. 
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communicated to the plan based scheduler. The scheduler can use this 

information to adapt its model, alter its schedule, or outright 

terminate the program if the degree of deviation is too high. 

While it might sound obvious that a program does repeat itself under 

the same or very similar conditions, this is still an assumption that has 

to be verified: while most HPC programs rely on generalized numerical 

formula for their computation, their underlying models might change 

subtly with minor differences in the starting conditions. For example, 

OLAM-Soil outlined above uses an adaptive grid to partition the 

geography and thus its working set onto compute nodes (i.e.: areas of 

more importance receive more workers), this partitioning can be 

dynamic and therefore the communication between neighbouring 

nodes can change over the runtime of an application. A digital 

butterfly-effect might just produce a major difference in the shape of 

the computation from just a minor difference in initial conditions. It is 

therefore important to verify if applications developed and optimized 

for high performance computation can effectively be monitored by 

modelling them based on their past behaviour and characterize if and 

how a program’s execution might differ from another16. 

It is also important to consider that introducing monitoring onto a 

platform will in some way alter the performance of the monitored 

application and/or that of the whole system: firstly, monitoring will 

introduce a new application onto the system that is not dedicated to 

productive work and there will therefore be less resources available for 

computation; Secondly, monitoring will in some way have to intercept 

the communication of the monitored program, meaning that it will 

                                                   

16 The completely dynamic case outlined is hopefully not common, and at this 
moment considered out of scope. 
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alter or interfere with the code handling communication, most likely 

slowing it down to some degree. The amount of communication done 

in HPC varies, but communication is still central; it follows, that 

slowdown in communication might produce significant performance 

losses. It is therefore important and necessary to characterize the 

effect of monitoring on the performance of these applications. In 

addition, as the aim of plan based schedulers is to provide quasi-real-

time guarantees, it is also important to minimize that effect, but 

additionally have it be stable and well characterized. 

Purpose of this thesis 

To estimate the running time of a high performance parallel 

application, a scheduler requires deep knowledge of that application’s 

behavior. Communication is central to the runtime of most parallel 

applications. The time to transmit a message heavily depends on the 

size of the message. The size of a message cannot effectively be 

extracted or estimated from an application’s binary or source code. It 

is therefore necessary to monitor and then model an applications 

network communication. This information will be used to predict 

consecutive runs of the same applications, in an effort to predict their 

execution time under similar or the same conditions. To guarantee the 

effectiveness of those estimations it is also necessary to assess them in 

consecutive runs in production scenarios, capturing deviations relative 

to previous runs or estimations. 
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Outline 

In the following sections, we will outline an effort towards monitoring 

a distributed parallel program. This will entail a discussion of 

monitoring mechanisms of the Linux operating system, and then a 

proposal of how to apply one of these to effectively monitor and model 

a program’s communication behaviour. An implementation of that 

proposal will be shown and evaluated on a typical HPC application, and 

then on a UNIX networking utility. The evaluation will be done with 

respect to performance and network bandwidth impact.  

Related Work 

[7], [15] propose a system of resource usage negotiation which is then 

contractually agreed upon. To guarantee contractual compliance, a 

system needs to be in place, to precisely monitor a programs resource 

utilization. This entails computation time, memory usage, and 

networking behaviour. Glaß details an implementation towards 

guaranteeing computation time. [16] This paper will focus on network 

communication. Both rely on a central entity (usually the scheduler) 

that is responsible for handling contract breaches, and will only report 

to them. Meswani et al. detail an effort to modelling disk I/O of high 

performance applications, to then model and predict its impact on 

execution time. [17] NetworkCloudSim implements a general approach 

towards modelling of runtime behaviour of high performance in cloud 

applications. [18] 
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Requirements 

The operator should be able to monitor a program, and either record its 

communication behaviour, or specify a past recording as reference. 

Deviations from a reference recording shall be detected and signalled 

to the kernel or another central entity (i.e.: the plan based scheduler). 

Programs should not need customization (e.g.: instrumentation, 

recompilation etc.) to be measured. The mechanism for monitoring 

should also not interfere with the programs control flow as well as not 

impede its execution performance in a meaningful way. Interaction 

with the monitoring program should be simple and make as much use 

of existing conventions of the target platform as possible, to be easily 

adoptable into existing solutions. The implemented program should be 

well documented and extensible. There should be well defined 

interfaces to implement new monitoring mechanisms. The 

implemented program should have well defined interfaces for 

extending its monitoring capabilities. There exists a clear interface to 

write and read program communication patterns. 
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Evaluation Criteria 

[19] analyses and then models the relation of user provided runtime 

estimates to the actual running time of application: they find that 10% 

of estimations are shorter than the actual running time, and the 

remaining 90% are evenly randomly distributed. [6], [20] compare 

user provided runtime estimates with actual runtimes and find that 

estimates are off by 57%. [21] observe that long running jobs tend to 

have more precise estimates; however note that this might be an 

artifact of the long jobs maxing out the allocated running time of the 

system. While this data does not provide us meaningful insights into 

acceptable margins of performance reduction, we can still assume that 

users will not notice marginal slowdowns.  

 

We therefore require that: 

● An applications execution time increase should not exceed 5% of 

its original execution time, on the same system without 

monitoring. 

 

 

Figure 13) Runtime estimations relative to 
actual exection time. [19] 

Figure 14) Runtime estimations compared to actual 
execution times. [20] 
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● The average network throughput of applications should not 

degrade by more than 5% of the baseline version, due to 

monitoring. 

● No program may fail due to our monitoring activities — except 

when it does not behave according to the initial plan. 

A Linux Kernel Module for Monitoring — 

General Implementation overview 

The following sections are a discussion of mechanisms for monitoring 

a programs’ network communication. Following that is an outline and 

proposal of a mechanism to monitor communication of parallel 

programs. 

A solution needs to capture a processes’ communication, then either 

store it for later usage, or compare it to past communication behaviour, 

if it does not conform, the violation needs to be reported. In addition, 

it should conform to our requirements and evaluation criteria outlined 

in REQUIREMENTS. 

The Linux Kernel 

At this time, Linux is the only operating system used in HPC, as 

reported by the Top50017. The benefits of using Linux for high 

performance computing are that it is highly portable, easily extensible, 

and allows for fine grained tuning towards specific use cases (e.g.: 

desktop computers, real-time computing, secured computing, or high 

performance computing). [22] Most of these properties derive from the 

                                                   

17 https://www.top500.org/statistics/overtime/ 
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operating system being developed and maintained completely open 

source, which allows users to alter the source code to their own 

requirements and also contribute these customizations upstream18. 

Monitoring and Probing in the Linux Kernel 

Monitoring should be done in such a way that it does not interfere with 

the programs execution. A program should not need modification to be 

monitored, neither source code, nor binary or require a custom tool to 

be made compliant. [17] It may not significantly affect the programs’ 

performance. It should be simple to implement and rely on established 

and stable mechanisms. 

The Linux Kernel offers many ways of monitoring program activity at 

multiple levels, which will be expanded upon below. 

eBPF / BCC 

The most promising solution for safe monitoring is eBPF - extended 

Berkeley Packet Filters. It has been developed as an extension to the 

linux kernel and has been fully integrated since 2017. eBPF defines a 

virtual machine and language that can be injected into the kernel at 

predefined points. It has strict safety and termination guarantees, as 

well as a host of built-in kernel/user-space communication primitives. 

It is specifically designed to allow monitoring and probing of the 

kernel. 

While eBPF has ostensibly matured to a critical point where it is usable, 

it is still not trivial to use effectively. [23] It requires third party 

solutions like BCC - the BPF Compiler Collection - for common use 

                                                   

18 See eBPF or Linux Realtime, which were both maintained as kernel patches until a 
point of maturity, where they were then incorporated into the main tree. 



Fabian Kovacs 

35 

cases, which at the time of writing is mostly written for usage with 

Python. Further investigation revealed that writing for eBPF is severely 

limited, bug ridden, error prone and the programmer is still required 

to have extensive knowledge of the execution context. Overall eBPF 

seems like it would be the perfect candidate for our problem, but 

critical usability problems and its relative stage of infancy led us to 

decide against using it. 

LibC shim 

Library shimming is a technique, wherein libraries are transparently 

replaced with other implementations that eventually delegate to the 

original library. This can be used to intercept calls to the original library 

by specific programs. This is a powerful tool to insert logging 

behaviour, fix bugs, or add permission layers. On Linux based systems 

shims can be installed by altering the environment variable 

LD_PRELOAD to contain the library-shim.  

Libc is the C standard library, containing implementations of essential 

functionality for everyday C development, making it an ideal candidate 

as a non-intrusive entrypoint for program monitoring. It is also the 

API layer on top of Linux syscalls, which are the only way a user space 

program can directly interact with the operating system. 

Not all programs and programming languages necessarily use libc as 

their mechanism for invoking syscalls (e.g.: the programming 

language Go), which would make them unable to be monitored. Even 

programs using LibC might be statically compiled and thus unavailable 

for shimming. It would also require a service to be communicated with 

and thus introduce more communication and a spread out 

implementation. 
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LTrace / STrace / PTrace 

LTrace and STrace are both linux applications meant for monitoring 

programs and their execution. LTrace is used to observe the usage of 

library calls and their parameters by an application. STrace works in a 

similar fashion but for syscalls. Both are very useful for debugging and 

monitoring programs in development but have been shown to add 

significant overhead to production systems: a monitored application 

can run up to 442times slower. [24] From the STrace manual: “Known 

Bugs: a traced process runs slowly.” They additionally emit data in text 

form, requiring additional processing. 

STrace and LTrace have nonetheless proven essential for this thesis, as 

they enabled the analysis of running processes in detail to find the 

library- and syscalls of programs used for communication. 

PTrace is a linux built-in mechanism for process tracing, it defines the 

syscall ptrace which can be used for setting up a tracing mechanism and 

allows the installation of probing points at system calls. However, it 

adds additional context switches to and from the traced program, to 

the tracing program and back, adding a non-trivial overhead to the 

programs’ execution, making it a suboptimal solution for HPC 

applications. 

KProbes 

Linux KProbes are a kernel mechanism to inject probes at arbitrary 

positions in the kernel, they can either target a specific address or the 

symbolic name of a kernel routine. [25] When the probed point is 

executed, the execution is trapped into a user specified function and 

it’s execution context (ie.: the register’s content) is passed to the 

function, where it can be read and manipulated. KProbes also allow 
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probing when returning from that address, then called KRetProbes 

with limited concurrency.  

The default KProbe implementation is implemented by setting a CPU 

breakpoint at the probed address into a function which uses a 

notifier_call_chain to execute all attached probes, after that the probed 

instruction itself is executed and then the return probe via the same 

mechanism. Breakpoints are relatively expensive, which is why they 

can be replaced with a jump instruction instead through optimization 

flags, which will then ostensibly have performance similar to normal 

library invocations. 

KProbes are very deep in the kernel structure and their usage is 

therefore partially architecture dependent: the naming of registers 

may differ between architectures and is reflected in the registers struct 

passed to the probing function. Additionally: “Since it operates on a 

running kernel and needs deep knowledge of computer architecture 

and concurrent computing, you can easily shoot your foot.” [25] The 

KProbe will also be on the path for every process initiating that routine 

and will therefore impact their performance. Additionally, there exists 

a trend in high performance computing to implement networking and 

file system drivers in user space, this has the benefit of removing 

syscalls from the critical path, being easier to debug and not interfering 

with other critical resources, this poses a challenge to monitoring with 

KProbes as they will no longer be triggered. 

The kprobe manual contains some performance measurements: an 

unoptimized KProbe adds 0.99 µsec, while an unoptimized Kprobe 

adds 0.06 µsec to each invocation on the evaluation machine. 

KProbes were chosen as the mechanism for monitoring because they 

have a well-defined interface and are simple to set up and tear down. 
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They also allow probing of arbitrary points in the kernel which makes 

them ideal for a system that aims to be flexible and extensible. Also, 

since this thesis aims to verify the modellability of parallel programs’ 

communication behaviour, the mechanism employed does not 

necessarily need to be the safest or cleanest, but instead enable fast 

iteration. In our case study below, we will also review if our 

implementation has a meaningful impact on program performance. 

Linux Kernel Module — MoNet19 

The Linux kernel allows the extension of its functionality through 

kernel modules. Kernel modules can be dynamically loaded and 

unloaded at runtime without the need for restarting the system. Kernel 

modules will be executed in kernel space and have complete read and 

write access into the kernel space, allowing them to alter the content 

and behaviour at central data structures. Kernel modules are usually 

used to implement hardware drivers or to add new behaviour to the 

kernel. Kernel modules will be used as a means for easy access to user 

and kernel space information of the monitored programs. 

A Linux kernel module was developed monitoring syscalls via kprobes. 

The Kprobe routine tests if the routine was triggered from a monitored 

program by checking the global variable current->tgid20. If it is not a 

monitored process, we resume the kernel routine, else we access the 

registers containing message length information and copy them onto 

                                                   

19 MONitoring NETwork communication 

20 Current is the CPU-local global variable holding information about the current 
running process. tgid is the processes’ thread group, which can differ from the 
process id (pid), when running a multiprocess program.  
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a FIFO-queue, then resume the kernel routine: we do not process the 

data at this point, as we want to resume execution as soon as possible. 

The communication data is processed in a separate kernel worker 

thread which extracts the message lengths, this depends on the 

specific function the target process used for communication. When the 

kernel module is set to recording, it will store the message lengths 

sequentially in a buffer, if it is in restricting mode, it will compare the 

message lengths to user supplied lengths. Deviations from the input 

data are written to the kernel logs as errors and signalled to a central 

authority. 
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The recorded data can be read from a character device at /dev/monet, 

the message lengths will be output in csv format: the first column 

corresponding to the index of the message, the second column to the 

actual length in bytes. 

The character device can also be written to, it is used for receiving 

previously measured message lengths in the same csv format as above 

(id, length; no header), but also for configuration purposes, to transmit 

Figure 15) Program and data flow of monitoring with monet. This is for the syscall writev, which 
as will be outlined below used by OpenMPI to communicate when configured to use TCP. 
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the pid of monitored process and whether the module should be 

recording data or comparing it, monitoring can also be turned off.21 

Discussion / Evaluation 

In the following section, two case studies will be presented: 1) a High 

Performance MPI application will be executed and monitored, this is 

our target domain and should demonstrate the capabilities and 

limitations of the developed tool. It will also showcase how the module 

can be set-up and utilized in a practical way. Additionally, it will be 

used in assessment of our evaluation criteria; 2) the command line tool 

cURL will be monitored to demonstrate the customizability of the 

developed module, as it relies on different communication primitives 

than OpenMPI. It will also be used to evaluate the impact of monitoring 

on throughput of machine-local network communication. 

Execution Environment 

The programs are executed on a desktop computer, running a fully 

updated Linux Mint 19.1, using the Linux kernel 4.15-20 (28 Jan 2018). 

It has a 4 core Intel Core i5-3450 CPU @ 3.10GHz processor, and 12GB 

RAM. They are not executed on a distributed cluster, with a wired 

connection, as that would complicate development and additionally, as 

wired communication is orders of magnitude slower than local 

communication this scenario will highlight the impact of monitoring, 

giving upper bounds on performance impact. 

                                                   
21 For more details see the appendix. 
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Case Study 1: Performance Impact on PlaSim 

This case study will be used to verify our evaluation criteria outlined in 

EVALUATION CRITERIA. Most important, it will be used to evaluate the 

performance impact on a high performance system. This thesis is 

specifically targeted at distributed high performance programs and 

making it crucial to test this application in a realistic scenario.  

As outlined above, MPI is widely used in high performance parallel 

computation and is therefore ideal as a testing ground for this thesis. 

OpenMPI is an open source implementation of the MPI message 

passing interface standard.  

Program Selection 

The program to be executed in this case study should be a realistic 

representation of HPC applications, therefore it should put high 

demands on its execution environment and utilize multiple MPI 

communication primitives. Some programs use MPI only as a 

scheduling mechanism for cluster systems, these would not produce 

interesting communication patterns for us to observe. 

As outlined above PlaSim is a program that does fulfill the necessary 

criteria on high performance applications and is extremely simple to 

set up, the case study will therefore be done using PlaSim. A single 

parallel program is not representative of the whole domain of high 

performance programs, however as we aim to understand the impact 

and feasibility of monitoring and modelling a programs’ network 

communication, I consider it sufficient to analyse only one complex 

program and generalizing from there. 
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PlaSim’s MPI usage is abstracted into a single library/file22 containing 

all the routines to send the particular data to be sent, this allows the 

authors to change communication code easily, and is mostly used to 

change from a sequential implementation to a parallel implementation 

by including different files. It uses MPI_Broadcast (5times), 

MPI_Scatter (5times), MPI_Gather (4times), MPI_Allgather (2times) 

and MPI_Allreduce (3times). All of those calls are 1:n or n:n 

communication mechanisms. The way the code is set up makes it hard 

to predict runtime communication behaviour, just from the source. 

Additionally, buffer size is dependent on the number of allocated jobs, 

and decided at compilation time, further limiting source code based 

estimations. 

Evaluation Scenarios 

The program will be run multiple times with different configurations 

and their execution times will be recorded:  

1. The program will be run without the monitoring module 

inserted, as comparison base, 

2. the program will be run with the module inserted, but not 

monitoring, to measure the modules performance impact on the 

system and other applications, 

3. the program will be run with the monitoring module inserted 

and set to record it, to measure the performance impact it has on 

the monitored application, 

                                                   

22 mpimod.f 
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4. and the program will be run with the monitoring module 

inserted and set to restrict, to measure the performance impact 

it has on the monitored application. 

The collected data will be used in an evaluation of the modules impact 

on a high performance computing application.  

OpenMPI can be configured to use many communication technologies 

(e.g.: Local IPC, TCP, Infiniband, DMA) and it can be expected to use 

different implementations for its communication in different 

configurations and communication primitives. It is therefore 

necessary to investigate which communication mechanisms are used 

beforehand. To this end, the MPI program is executed and traced with 

the above discussed program strace where its network communication 

syscalls will be captured.23 

It was found that OpenMPI uses the writev syscall to communicate. 

writev is used to write data from multiple buffers sequentially into a 

single file descriptor24. The writev syscall itself triggers an interrupt into 

kernel mode which will call the kernel routine sys_writev, the 

architecture specific implementation for the writev syscall. 

The writev syscall has the following interface: 

ssize_t writev(int fd, const struct iovec *iov, int iovcnt); 

 

                                                   

23 For a deeper explanation of how to discover the communication primitives, I refer 
to the Case Study on cURL below. 

24 A file descriptor does not necessarily imply a file, but is instead the base mechanism 
used by the Linux kernel to identify a source or destination for data. In this case it is 
a socket connection to the target node. 
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Writev receives three input parameters: 

fd — the file descriptor of the file to be written to, 

*iov — a pointer to an array of iovec structs which themselves 

hold a pointer to a target address and the length to be written, 

iovcnt — the length of the array at *iov. 

As we want to avoid computation as much as possible in the kprobe 

routine, the array at iov is simply copied from user space onto a kernel-

side fifo-queue25 using the function kfifo_from_user. In addition, the 

length of the array iovcnt is pushed onto a seperate queue, which is then 

used in the kworker to compute the actual length of the message by 

summing over the iovec#vlen fields. The lengths are now either stored 

or compared to their supposed input. If a deviation is detected, we write 

out a message onto the kernel logs and send a signal to the central 

authority, reporting it. 

Coverage of the Case Study 

The case study will test if our monitoring efforts produce reproducible 

results over multiple executions of the same HPC application. They will 

also reveal the performance impact on a long running high 

performance application which is our target domain. It will also be 

tested how easy it is to setup and monitor a distributed application, 

which is crucial from a production standpoint. 

                                                   

25 Found in <linux/kfifo.h> 
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Setup and Monitoring 

Before running our application, the monitoring kernel module will 

need to be successfully compiled and inserted on each node. 

As we need the target processes’ pid for monitoring, an additional 

helper program was written: right after starting the program pauses 

itself, once resumed by an external signal, it will replace itself with a 

command line supplied program. This allows us to capture and 

communicate the executed programs pid before its execution.26  

Reading Data 

After successful execution of PlaSim, we can extract the recording from 

MoNet by reading the device at /dev/monet. 

$ sudo head /dev/monet 

0,104 

1,28 

2,28 

3,10184 

4,1018 

 

On average PlaSim sends 7.59GB over the span of 7:40min, with exactly 

29,575,818 Messages, of an average size of 256.79byte. To recall from 

above: the signature of writev allows sending multiple buffers at once 

which are then concatenated. 

                                                   

26 It is entirely possible for the monitored program to communicate its own pid to the 
module and set itself up for monitoring. However, as one requirement to this thesis a 
non-intrusive implementations, this route was chosen. 



Fabian Kovacs 

47 

Performance Impact of MoNet 

 

To measure the performance impact of MoNet, PlaSim was executed on 

the outlined hardware, in the above outlined configurations, 

Figure 16) Absolute execution time of PlaSim, in all four configurations, for a one year simulation. 
User is the time spent computing. System is the time spent in Syscalls. Total is the total execution time. 

Figure 17) Execution time of PlaSim, relative to Disabled, in all four configurations, for a one year 
simulation. User is the time spent computing. System is the time spent in Syscalls. Total is the total 
execution time. 
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simulating 4 years. The execution times are measured using the unix 

time command, which not only measures raw execution time, but also 

time spent in syscalls. Before each execution, the stress utility will be 

run for 60s to put the system into similar initial conditions before 

execution. In addition, its working directory will be completely reset 

before execution. 

Data Evaluation 

CONFIGURATION MEAN MIN MAX 

Disabled 7:32 (+ 0.00%) 7:30 7:35 

Enabled 7:40 (+ 1.73%) 7:35 7:48 

Recording 7:42 (+ 2.29%) 7:37 7:47 

Restricting 7:53 (+ 4.81%) 7:45 8:07 
PlaSim total execution time 

 

CONFIGURATION MEAN MIN MAX 

Disabled 2:17 (+ 0.00%) 2:15 2:18 

Enabled 2:21 (+ 3.36%) 2:19 2:25 

Recording 2:22 (+ 3.59%) 2:19 2:23 

Restricting 2:26 (+ 6.97%) 2:23 2:31 
PlaSim time spent in syscalls in Minutes 

 

Simulating a year without monet inserted takes on average 7:32 

minutes. With MoNet inserted, but not monitoring, this increases to 

7:40min (+ 1.7%). When monitored, PlaSim takes on average 7:42min 

(+ 2.28%). Restricted PlaSim now takes 7:54min (+ 4.8%). 
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The time spent in syscalls is not significantly different, meaning that 

the additional work to store the message lengths when recording does 

not cause a significant slowdown. It is therefore surprising that the 

slowdown doubles when in restricting mode, as the kprobe’s code is the 

same between restricting and recording. Additionally, restricting has 

the highest variance: having a minimum slowdown of 2.9% and a 

maximum of 7.72%. 

The most likely explanation is the fact that MoNet’s worker thread has 

more complex work to do than when set to recording: it has to fetch the 

old values, do a comparison and some computation on them. It will also 

log every deviation to the kernel logs with printk, which as per the 

kernel manual is a relatively expensive computation. This can also be 

observed in the CPU utilization measurements: in all other 

configurations, PlaSim utilises at least 396% of the CPU (> 99% of 4 

CPUs), however when restricted it now is only able to utilise at most 

395% (98.75% of 4 CPUs) and on average only 393% (98.25% of 4 

CPUs). 

Do MPI Programs repeat themselves? 

It is crucial to understand if and how a repeat execution of a parallel 

program differs with regard to parallel communication. The 

assumption is, that a program running under the same configuration 

and same conditions will behave exactly the same, and have the exact 

same communication model. To verify this claim, we will run PlaSim 

under the same conditions27 8 times (two 4 year long simulations) and 

                                                   

27 Set up as described in the section Setup and Monitoring. However, with a smaller 
grid size to have a shorter runtime. 
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compare the recorded lengths of the same MPI node with the recording 

of the first year of the first simulation. 

On average PlaSim sends 6714094 messages of average size 794byte, 

sending 5.332GB over a whole year. The message lengths are identical 

over every simulation run, except for 4 messages per run, varying on 

average by 3.4Kbyte. This is below 10−6%of the messages deviating. All 

deviations occur in the last 157 transmissions; however no concrete 

pattern is discernible, beside three years having a difference in the 

third last message transmission.  

While there are some minor differences among repeat executions, they 

are relatively predictable (i.e. always exactly 4) and below a 

problematic margin of error. I would therefore conclude that PlaSim’s 

communication does in fact repeat itself with regard to message size. 

AVG. YEAR 1 YEAR 2 YEAR 3 YEAR 4 YEAR 5 

3.4Kbyte 6.2Kbyte 0byte 4.5Kbyte 3.4Kbyte 2.6Kbyte 
Absolute difference between repeat-executions of the same year. 

Case Study 2: cURL 

One of the requirements of this study is flexibility of implementation, 

to verify this claim, a second monitoring implementation is detailed 

which can also be used as a blueprint for later adaption on to other 

programs. One of the most used networking programs on any linux 

system is the command line tool cURL28. It is used to transmit and 

receive data over networks implementing a large number of 

networking protocols. Additionally, cURL is a widely ported application 

                                                   

28 https://curl.haxx.se 



Fabian Kovacs 

51 

making it fit for verification of portability of the developed monitoring 

framework. 

Coverage of the Case Study 

The case study will give a tutorial on how MoNet can be used to monitor 

an application, specifically how to implement monitoring for a new 

syscall. In addition, it will measure the impact on raw upload 

bandwidth of an application with monet running. 

Implementation 

We begin by constructing our test application: 

$ curl localhost:8080 -XPOST -d "Hello" -s > /dev/null 

 

This will execute cURL and instruct it to send an HTTP POST request to 

localhost containing the message “Hello”. The response is discarded. 

We will monitor cURL with strace to analyze its communication 

behaviour with the following command: 

$ strace -e trace=%network -yy curl [...] 

This will instruct strace to filter for networking related syscalls and add 

protocol specific information, producing the following output: 

socket(AF_INET6, SOCK_DGRAM, IPPROTO_IP) = 3 

socket(AF_INET, SOCK_STREAM, IPPROTO_TCP) = 3 

setsockopt(3, SOL_TCP, TCP_NODELAY, [1], 4) = 0 

setsockopt(3, SOL_SOCKET, SO_KEEPALIVE, [1], 4) = 0 

setsockopt(3, SOL_TCP, TCP_KEEPIDLE, [60], 4) = 0 

setsockopt(3, SOL_TCP, TCP_KEEPINTVL, [60], 4) = 0 

connect(3, {sa_family=AF_INET, sin_port=htons(80), 
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sin_addr=inet_addr("174.129.224.73")}, 16) = -1 EINPROGRESS 

(Operation now in progress) 

getsockopt(3, SOL_SOCKET, SO_ERROR, [0], [4]) = 0 

getpeername(3, {sa_family=AF_INET, sin_port=htons(80), 

sin_addr=inet_addr("174.129.224.73")}, [128->16]) = 0 

getsockname(3, {sa_family=AF_INET, sin_port=htons(57290), 

sin_addr=inet_addr("192.168.178.41")}, [128->16]) = 0 

sendto(3, "POST / HTTP/1.1\r\nHost: localhost"..., 156, 

MSG_NOSIGNAL, NULL, 0) = 156 

recvfrom(3, "HTTP/1.1 404 Not Found\r\nContent-"..., 102400, 

0, NULL, NULL) = 132 

+++ exited with 0 +++ 

Most of the calls made are for setting up a network connection, then 

sendto is invoked. The string preview shows that the data sent is HTTP 

protocol specific, leading to the assumption that  cURL uses sendto for 

sending data via POST. The linux manual explains that sendto is “used 

to transmit a message to another socket.” The signature of sendto is: 

ssize_t sendto(int socket, const void *message, size_t 

length, int flags, const struct sockaddr *dest_addr, 

socklen_t dest_len); 

Where 

socket — the file descriptor of the open socket 

*message — start address of the message to be sent 

length — length of the message to be sent 

flags — optional protocol specific flags 

*dest_address — address of the destination of the message 

dest_len — protocol specific length of *dest_address 
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The return value is the number of actually written bytes29, or a negative 

value in case of error.  

The message length is extracted by reading length, the third parameter. 

Implementing a probe for sendto requires implementing the following 

functions: 

1. static void monet_init_kprobe(struct kprobe* probe) 

Is invoked at module initialization and used to configure the 

kprobe for monitoring sendto. 

2. static void monet_kprobe_handler(struct pt_regs *regs) 

Which is invoked inside the kprobe handler, if the kernel module 

is set to monitor communication and the monitored application 

has invoked sendto. The input parameters are the register state 

of the calling thread, we can use those to retrieve the message 

length: the length of the message is stored in sendtos’ third 

parameter and will therefore be stored in the third register rdx. 

The length will be pushed onto a kernel fifo queue and processed 

later. 

3. static bool monet_has_data(void) 

Is invoked when the kernel worker thread is scheduled to store 

or compare data read in the kprobe. It is used to signal that there 

is unprocessed data. 

4. static void monet_kprobe_extract(void) 

Is used to transmit the data for processing, where it will either be 

compared or again stored. It needs only to invoke the function 

receive_entry, which will then appropriately be handled. 

                                                   

29 Which will not differ from the actual length, it is supposed to fail with a more 
specific error code instead. 
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Impact on Average Throughput of cURL 

In the following we will evaluate the impact of MoNet on the self-

reported average upload speed of  cURL, when transmitting a 10GB of 

randomly generated data. The data is generated by reading 

/dev/urandom which will generate a random stream of data without 

blocking. The unix tool head will be used to read 10GB from it. The data 

will then be used to send data as a POST HTTP Request to a locally 

running nginx instance that will immediately discard the data. 

$ head -c 10GB /dev/urandom | curl -v -w 

"UPLOAD=%{speed_upload}\n" -XPOST -d@- localhost:8080/ 

We evaluate the following scenarios:  

1. Monet not running, as baseline 

CONFIGURATION AVERAGE 
UPLOAD 

EXECUTION TIME TIME IN 
SYSCALLS 

Disabled 
1.375 GByte/s (+ 
0.0%) 

9.88s (+ 0%) 
9.36s (+ 0%) 

Enabled 1.317 Gbytes/s (- 
3.0%) 

10.11s (+ 2.3%) 9.37s (+ 0.01%) 

Recording 
1.284 GBytes/s (-
5.4%) 

10.11s (+ 2.3%) 9.58s (+ 2.4%) 

Impact of monitoring on throughput of cURL, when sending 10GB of data. 
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2. MoNet running, set to record30, to measure the impact on 

throughput on the monitored application, 

3. MoNet running, not monitoring cURL, to measure throughput 

impact on an application not monitored but using sendto. 

We measure a 5.34% throughput degradation on cURL monitored with 

MoNet, and a 3.0% degradation, when monet is running but not 

monitoring. Meaning, that a monitored application uploading data for 

60 minutes will now run 3.2 minutes longer, and an application on a 

system with monet installed but not monitoring will now run 

1.8minutes longer. 

Future Work 

As the KProbe interface is implemented directly on the register 

contents of the application, it is partially architecture dependent. This 

limits easy adaption onto other systems. However, the changes to the 

source code would be minimal. 

The current implementation of MoNet only allows monitoring of one 

application at a time and one syscall. It is feasible to implement 

monitoring of multiple syscalls and also of multiple applications, but 

would require extensive refactoring of the current implementation. 

The current implementation of MoNet statically pre-allocates about 

500MB of memory to store measurements, this only increases with 

more applications/syscalls and would require dynamic management.  

                                                   

30 Since the critical path for restrict and record is identical and we are not performing 
a compute intensive task, only record is measured. 
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Additionally, the current implementation of the MoNet worker thread 

uses polling to check the queue, meaning that it will be run and 

scheduled even when it does not have work to do, which wastes some 

computation time. There are already mechanisms present in the linux 

kernel to handle these scenarios, though they have not yet been applied 

to MoNet (e.g.: spinlocks and thread parking). The worker thread 

seems to generate the most overhead of all components, and should 

therefore be optimized further. It could also be investigated, if the 

worker thread is strictly necessary or if the work could be pulled into 

the kprobe’s logic. 

The current implementation of MoNet relies on three wrapper scripts 

to execute and monitor an MPI application: 

mpiexec [...] ./run-on-node.sh 2 "./trace-me.sh ./plasim.x" 

./plasim.x 

Where run-on-node.sh executes different applications depending on 

the MPI node, and trace-me.sh manages sending the pid to MoNet, and 

utilizes a third program to start/stop the monitored application. This 

is obviously very complex to setup and could be simplified. Part of this 

is down to the fact that the device /dev/monet, can only be written to by 

the root user and the script trace-me.sh handles that. If we allow non-

root users or a specific user group to write to /dev/monet, this could be 

simplified, such that the wrapper program sends its own pid to 

/dev/monet.  

It should also be possible to encode more complex models than just 

static models. For example, already encoding uncertainties at some 

points in the model, or allowing variance etc. A completely different 

approach could also be modelling the applications throughput over 
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time (
𝑀𝐵𝑦𝑡𝑒

𝑠

𝑚𝑖𝑛
), this could be useful in scenarios where the ordering of 

messages is not stable, but the amount of communication is. 

The second case study evaluates the impact on throughput of curl. 

While measuring the impact on throughput of an application it does 

not measure the impact on throughput of a high performance 

application. While this is a useful metric, the work done to extract 

message lengths for MPI applications is more complicated, it should 

therefore also be evaluated in future work. 

Closing Discussion 

When evaluating PlaSim’s repetition with regards to message lengths, 

we found virtually no deviations to past executions. Meaning that a 

representative high performance application can effectively be 

modeled based on past executions. The observed deviations all 

happened within the last few messages of the applications execution 

lifecycle and are therefore most likely used for gathering the results of 

the computation. It should be noted that new features in MPI2 allow 

dynamic allocation of nodes and therefore pose a challenge when 

modelling them. [26] 

The performance impact of monitoring does on average not exceed our 

limit of a 5% slowdown. However, restricting did in fact cause a 

maximum delay of 7.7%. The variance when restricting - which would 

usually also mean a production environment - is not optimal and needs 

to be investigated further. It is noteworthy, that the additional work 

done in the kprobes does not add a significant amount of overhead 

(Enabled vs Recording), and it should therefore also be investigated 

how much work can be refactored into the kprobe itself further 
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reducing the complexity of the kernel module. The impact of 

monitoring on raw network throughput (5.34%) does also exceed our 

5% limit. It should however be noted, that this is on a machine local 

connection, meaning that the performance degradation is a strict 

upper bound to wired connections, where network latencies are the 

dominant component.  
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Appendix 

Interacting with the Kernel Module 

All interaction with the kernel module is accomplished by writing to 

the kernel modules character device /dev/monet. 

Changing Recording Modes 

$ echo MODE=OFF > /dev/monet  # to turn off monitoring 

$ echo MODE=RECORD > /dev/monet  # to turn monet to recording 

$ echo MODE=RESTRICT > /dev/monet  # to turn to restricting 

Passing the Process ID 

$ echo PID=$PID > /dev/monet 

Reading recorded message lengths 

$ cat /dev/monet 

Writing a single length restriction 

$ echo "0,506\n" > /dev/monet 

Writing a whole file of length restrictions 

$ lbl sizes.csv > /dev/monet 

Lbl is a custom utility writing a file line by line into the standard output 

or a supplied file. MoNet can only read files line by line. Using the cat 

utility therefore does not work. 
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line-by-line.c: 

[...] 

 

while ((read = getline(&line, &len, in)) != -1) { 

    fprintf(out, "%s\n", line); 

    fflush(out); 

} 

 

[...] 
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