
Master’s thesis at the Software Engineering Research Group of the

Institute of Computer Science

Modelling Communication

behaviour of Parallel Programs

Überwachen und Strafen

Fabian Kovacs

fabian.kovacs@fu-berlin.de

Student Id: 5056093

First Reviewer: Barry Linnert

Second Reviewer: Prof. Dr.-Ing. Jochen Schiller

Supervisor: Barry Linnert

Berlin, 11.09.2018

Fabian Kovacs

1

Zusammenfassung

Die steigende Nutzung von high performance computing im industriellen Bereich

verlangt eine andere Art von Scheduling als die üblichen FIFO/Queue-basierten

Strategien, weil diese nicht in der Lage sind, Antwortzeiten effektiv vorherzusagen.

Um Antwortzeit-Garantien geben zu können, bedarf es detaillierter Informationen

über das Laufzeitverhalten und die Ressourcennutzung der Anwendungen. Zentral

zur parallelen High Performance Anwendung ist die Interprozess Kommunikation,

zur Koordinierung und den Austausch von Daten. Kommunikationszeit ist ein nicht-

trivialer Anteil der Laufzeit solcher Anwendungen, wird in state-of-the-art

Schedulern aber noch nicht effektiv berücksichtigt. In dieser Arbeit wird ein Linux

Kernel Modul vorgestellt, welches die Kommunikation von parallelen Programmen

überwacht um in späteren Abläufen des selben Programms diese Schedulern

bereitzustellen. Zusätzlich wird die Kommunikation dieser Anwendungen mit

vorherigen Abläufen verglichen um effektives Scheduling zu garantieren. Der Effekt

dieses Monitorings auf Performance und Durchsatz einer typischen high

performance computing Anwendung wird gemessen und überprüft.

Abstract

The increasing application of high performance computing in industrial settings

demands more precise scheduling algorithms than the commonly applied FIFO-

queues. Towards this end, schedulers need more detailed knowledge of the runtime

behaviour and resource usage of applications. One of the central features of high

performance computing is interprocess communication for coordination and data-

exchange. The time spent communicating is non-trivial but not yet well integrated

into state of the art schedulers. This thesis will introduce a linux kernel module for

monitoring the communication of parallel programs. The module will be used to

extract the message lengths for the scheduler and then be used in consecutive runs of

the application to verify the repetition of that application. The impact on

performance and throughput of high-performance applications through monitoring

will be reported.

Fabian Kovacs

2

Selbstständigkeitserklärung

Ich erkläre gegenüber der Freien Universität Berlin, dass ich die vorliegende

Masterarbeit selbstständig und ohne Benutzung anderer als der angegebenen

Quellen und Hilfsmittel angefertigt habe. Die vorliegende Arbeit ist frei von

Plagiaten. Alle Ausführungen, die wörtlich oder inhaltlich aus anderen Schriften

entnommen sind, habe ich als solche kenntlich gemacht. Diese Arbeit wurde in

gleicher oder ähnlicher Form noch bei keiner anderen Universität als

Prüfungsleistung eingereicht.

Fabian Kovacs

3

Table of Contents

Table of Contents 3

Introduction 6

Scheduling high performance applications 9

Plan based Scheduler — Scheduling for Quality of Service 11

Grid computing 12

Parallel Programs 13

An example — findMax 13

Topology 18

Message Passing Interface — MPI 19

High performance applications 20

Towards modelling of communication 27

Purpose of this thesis 29

Outline 30

Related Work 30

Requirements 31

Evaluation Criteria 32

A Linux Kernel Module for Monitoring — General Implementation

overview 33

The Linux Kernel 33

Fabian Kovacs

4

Monitoring and Probing in the Linux Kernel 34

eBPF / BCC 34

LibC shim 35

LTrace / STrace / PTrace 36

KProbes 36

Linux Kernel Module — MoNet 38

Discussion / Evaluation 41

Execution Environment 41

Case Study 1: Performance Impact on PlaSim 42

Program Selection 42

Evaluation Scenarios 43

Coverage of the Case Study 45

Setup and Monitoring 46

Reading Data 46

Performance Impact of MoNet 47

Data Evaluation 48

Do MPI Programs repeat themselves? 49

Case Study 2: cURL 50

Coverage of the Case Study 51

Implementation 51

Impact on Average Throughput of cURL 54

Fabian Kovacs

5

Future Work 55

Closing Discussion 57

Appendix 59

Interacting with the Kernel Module 59

Changing Recording Modes 59

Passing the Process ID 59

Reading recorded message lengths 59

Writing a single length restriction 59

Writing a whole file of length restrictions 59

References 60

Fabian Kovacs

6

Introduction

The field of high performance computing (HPC) has seen continuous

growth ever since its inception. In high performance computing, data

is so large and computation so complex that data-centres the size of

industrial warehouses are required to satisfy demands: tens of

thousands of high-end computers are arranged and connected to serve

weather scientists, material designers, physicists, be it nuclear or

cosmological or others.

While a common household computer might have between two and

sixteen processor cores, a data-centre (or cluster) is composed of more

than a thousand of those computers, highly optimized for fast

computation. Even at those magnitudes, computations can see

execution times upwards of multiple weeks.

High performance computing is a multi-disciplinary domain of

applied software engineering, algorithm- and hardware design. To

make full use of the available hardware a programmer has to be

proficient in all three of them, and in addition the scientific domain.

They have to be capable of writing correct and maintainable software;

adapt their algorithms to the parallelism and latencies of an

application distributed among thousands of compute nodes; make use

of available hardware extensions and capabilities, and know its

limitations (e.g.: caching behaviour, vectorization support or GPUs);

and they need to be able to understand and verify their problems and

solutions at hand.

Correctness of computation is obviously a primary concern, however at

those scales, enabling and improving high performance is of the same

importance: Where an improvement in performance might make a

Fabian Kovacs

7

commodity application feel more responsive or reduce the waiting

time of the user by a few minutes (e.g.: Flight searching websites like

SkyScanner1), a performance improvement of just 1% will reduce the

execution time of a 3 month long-running application by close to 1 day.

High performance computing has been, up until the end of the last

century, restricted to the public sector as documented on the Top5002:

until 1997 only 32.6% of supercomputers belonged to the private

sector. The increase in computing power has enabled the private sector

to create their own high performance data-centres, which have been

steadily gaining shares; sitting at 58.4% as of 01.06.2019. [1, 2]

Executing an application on a high performance cluster differs

significantly from everyday applications. Instead of starting and

immediately executing the application, a user will submit their

1 https://www.skyscanner.net

2 The de facto list of high performance computing data-centres is maintained at
Top500.org, an international effort to gather standardized performance information
of “the 500 most powerful commercially available computer systems known to us.”
In addition to raw computation power, the Top500 documents key statistics of those
supercomputers, such as their operating system, specific hardware and network
layout, as well as the sectors they are used in (public/private, etc.).

Figure 1) Performance development as reported by the
Top500.

(Taken from:
https://www.top500.org/statistics/perfdevel/)

Fabian Kovacs

8

application (called job) into a job queue, including a reservation for a

number of compute nodes, and often also an estimation of running

time. Those queues are usually executed according to a first-come-

first-served (FCFCS) fashion, however, modulated with some fairness

constraints. [3]

As the execution time of these applications can range from hours to

weeks, submitting a task is not a guarantee for timely execution. Where

unpredictability was an inconvenience to the academic user, it now

falls under the profit considerations of industrial corporations.

Yu and Buyya define five dimensions for the quality of service of a

cluster management system: Time, Cost, Fidelity, Reliability and

Security. [4]

Time — Users want to minimize their applications response

time3, and want to know when their computation is finished.

Cost — Users want to minimize their expenses.

Fidelity — Users want to receive correct results.

Reliability — Users need guarantees about the execution and

completion of their application.

Security — Users need guarantees about the confidentiality of

their datasets and applications’ code.

The task of a cluster management system is to uphold these quality of

service metrics. Towards those goals, it has access to a variety of

scheduling strategies, all serving the goal of finding the proper

3 Wait time and computation time.

Fabian Kovacs

9

placement of an application in time and space: when an application is

executed, and on how many and which compute nodes.

Scheduling high performance applications

As stated above, scheduling is very often done in a very rudimentary

manner: first-come-first-served, with an eye for fairness, to avoid

situations where a single user monopolizes the queue and other users

have to wait longer. [5] This can often lead to situations where the

data-centre is not fully utilized by the head of the queue alone. A

common technique to increase utilization is therefore backfilling,

where tasks further back in the queue are scheduled, as long as their

running time does not exceed that of the current longest-running task.

[6] In this type of scheduling, a job is usually allocated a fixed partition

of the data-centre without overlap with other jobs.

This, however, is still not optimal, as not every application utilizes all

components of a compute node at the same time nor to their full

capacity: for example, newer generation data-centres have FPGAs4 or

GPUs which might simply not yet be used by a deployed application5.

Alternatively, an application might be in a phase, where it will move a

lot of data to/from disk and therefore not do much computation at all.

An advanced scheduling algorithm could therefore detect those

situations and co-locate some jobs under the condition that their

resource usage is exclusive, which would further increase utilization

and reduce response time.

4 Field-programmable gate array

5 As an example, the protein clustering suite MMseqs2 is described by its authors as
embarrassingly parallel, making little to no use of network communication hardware
beyond setup and teardown.

Fabian Kovacs

10

While theoretically sound, this is not a commonly used technique,

mostly due to the fact that data-centre operators and therefore

schedulers do not have access to the necessary runtime information to

effectively make those decisions. The runtime information relevant to

a scheduler are:

1. Total running time

2. Number of Nodes used

3. Per Node Utilization of6:

a. CPU

b. RAM

c. Network Communication

d. Disk I/O

e. Hardware extensions (such as GPUs or FPGAs)

f. Idle times

4. Optionally: a user specified deadline

Not only is this information required for more intricate scheduling

schemes, it is also necessary to create runtime estimations of an

application: while the obvious upper bound on any computation’s

capability is the amount of data relative to the power of the system, the

usage of peripheral devices such as networking hardware or hard disk

drives also adds to the running time of an application. For example, the

round-trip time of a network message to the publicly accessible

Network Time Protocol server 0.de.pool.ntp.org takes on average 22ms,

however, it mostly consists of sending and receiving a network

message. Therefore, CPU utilization is low in the meantime, but the

time spent in that routine is static, if a scheduler fails to consider this,

6 Notably, we are not only interested in this information as an aggregate, but over
time.

Fabian Kovacs

11

it will not be able to effectively estimate runtime of applications. As will

be outlined in more detail below, a central component of parallel

programs is local network communication, a major contributor to the

running time of parallel applications.

Plan based Scheduler — Scheduling for Quality of Service

There exist two major paradigms for scheduling of high performance

applications: queue based- and plan-based schedulers. A queue based

scheduler will execute programs in order of submission; when a

program is finished the next program in the queue is executed. As

mentioned above, modern queue based schedulers will still use some

mechanisms to ensure fairness, and in addition can use backfilling to

increase utilisation of the data centre. A plan based scheduler uses

metadata and requirements submitted by the users to create an

execution plan for all applications: when which application will be

running on what nodes. Such an execution plan will usually be re-

generated after a certain time has passed. A plan based scheduler can

use auxiliary information to create a schedule. For example, it can use

prioritization and fairness schemes to favor higher paying users, while

not completely starving out other users. It can also use models and

estimates of the resource usage of an application to improve

scheduling.

As a plan based scheduler is predictable, it has better access to

scheduling information and can therefore provide guarantees on the

execution times of processes. As mentioned earlier, users want

predictability in the execution times of their applications: especially in

commercial settings users will work with deadlines that must be

respected and guaranteed. If we also consider that an application might

Fabian Kovacs

12

be running in a distributed workflow7 (i.e.: on multiple, connected

data-centres), it becomes crucial to guarantee deadlines, to enable

communication and synchronization. A plan based scheduler is

therefore preferred in those settings.

Grid computing

Grid computing is a software engineering effort towards

commoditization and consolidation of high performance computing.

The word derives its meaning twofold: 1) The end goal of grid

computing is computation, especially high performance computing, as

ubiquitous as the power grid. 2) Towards that goal, instead of only

building bigger and better data-centres, compute sites are to be

transparently interconnected on a grid. The heterogeneous nature of

these compute sites should also be abstracted away from the user, such

that they only need to submit their application. Commoditization has

also introduced Service Level Agreements (SLAs) into high

performance computing, meaning a contractual agreement between

both parties on the Quality of Service (QoS).

Another application of grid computing is the analysis of large data-sets

such as that of the Large Hadron Collider at CERN. It is not uncommon

for data-sets of this magnitude to be sent via mail-delivery, as online

transmission is comparatively slower than the delivery of multiple

hard-disk drives. In comparison, the size of a typical application can

range from 10MB to up to 1GB, but is still far below 1% of the size of the

dataset’s size. An emerging approach is therefore to no longer move

7 A use case that is only becoming more common with bigger datasets and more
available compute resources.

Fabian Kovacs

13

the dataset, but the applications onto the hosting data-centre,

therefore eliminating the need to move the large datasets.

Plan based scheduling is a critical component of grid-computing, to

enable the successful negotiation, scheduling and execution of

dependent parts of an application on multiple distributed compute

sites with differing hardware and capabilities. The already complex

task of runtime estimations is further complicated by the

heterogeneous environment of a grid. A plan based scheduler for grid

based environments can therefore improve its estimations by historic

data and models of the execution of the applications it is executing. [7]

Parallel Programs

High performance computing requires much more compute power

than can be accomplished by a single processor, or even a single multi

core processor. A data-centre therefore necessarily consists of a large

number of well-connected compute nodes. Making full use of a HPC

data-centre therefore also requires a strong emphasis on parallel

software design and programming. An application and its underlying

algorithms are broken down, such that they can be executed in a

distributed fashion on multiple compute nodes at once. It follows, that

a core pillar of parallel program design is the ability to exchange

information between compute nodes. A successful parallelisation can

produce significant speedups simply due to the ability to scale better

with more available resources.

An example — findMax

As an example, consider the implementation of finding the maximum

in a list of numbers. The sequential solution to that problem is to scan

Fabian Kovacs

14

all values, carrying the maximum number in a variable, updating it

when a higher value is encountered. A processor able to process 100

numbers per second would therefore process 1000 such numbers in

10s.

A naive parallel solution to the same problem might be: first distribute

those numbers evenly among all processors, then execute the

sequential algorithm per node, gather the intermediate maxima on a

single node and find the absolute maximum among them. If we execute

this parallel implementation on 4 cores of the same performance, it

now takes every core just 2.5s to calculate their local maximum, the

calculation of the final global maximum incurs an additional 0.04s. If

we assume message transmission to take 0.1s per node8, we are still left

with a total runtime of 2.5𝑠 + 0.04𝑠 + 2 ⋅ 0.3𝑠 = 4.04𝑠, which is an

improvement of 59.6% compared to the sequential implementation.

8 Excluding the one node that distributes the dataset and gathers the intermediate
results.

Figure 2) Throughput measurements of different connection technologies. Taken
from [27]

Fabian Kovacs

15

SEQUENTIAL IMPLEMENTATION PARALLEL IMPLEMENTATION

findMax(N[]):
 max = -inf

 for n in N do:
 if n > max do:
 max = n

 return max

Figure 3) Pseudocode and visualization of sequential and parallel implementation of findMax
algorithm. Note that the parallel implementation has four processors at once and therefore a
smaller per-CPU dataset. However, the parallel implementation now has to coordinate and
communicate, which is time spent on overhead instead of computation.

Network communication is a non-trivial component of an

application’s running time. While transmission of a single message

might take only a few milliseconds it can take far longer for longer

messages. The major influencing factors of message transmission time

are the size of the message, the software implementation of the

networking code, the transmission speed of the networking hardware,

the medium and protocol used to transmit the message, the physical

distance and connectivity9 between the communicating parties.

Increasing parallelisation is therefore not a panacea to any long

running or complex computation: increasing parallelisation also

9 The specific layout of the network and current load on its components.

Fabian Kovacs

16

increases time spent communicating. We define the speedup from

parallelisation as 𝑆(𝑛) =
𝑡(𝑛)

𝑡(1)
, where 𝑡(𝑛) is the time it takes to compute

a task with 𝑛 nodes. The computation time of an application can be

broken down into three components 𝑡(𝑛) = 𝑡𝑝𝑎𝑟(𝑛) + 𝑡𝑠𝑒𝑞(𝑛) + 𝑡𝑐𝑜𝑚(𝑛),

where 𝑡𝑝𝑎𝑟(𝑛) is the time spent in parallel computation, 𝑡𝑠𝑒𝑞(𝑛) the non-

parallelizable part of a program, and 𝑡𝑐𝑜𝑚(𝑛) the time spent

communicating.

From our example above 𝑡(𝑛) =
1000

𝑛 ⋅100
+

𝑛

100
+ (𝑛 − 1) ⋅ 0.1, 𝑛 > 1, 𝑡(1) =

 10. The speedup at 4 cores is therefore 𝑆(𝑝) = 0.31. The minimum

execution time with 7 cores would then be at 2.69s, this is due to the

fact, that while the work done per node diminishes with each new node

(𝑡𝑝𝑎𝑟(𝑛) =
1000

𝑛 100
), the time spent finding the absolute maximum from

the intermediate results increases (𝑡𝑠𝑒𝑞(𝑛) =
𝑛

100
), and more

importantly, with every additional node, the execution time increases

(𝑡𝑐𝑜𝑚(𝑛) = (𝑛 − 1) ⋅ 0.1).

Figure 4) Visualization of execution time of sequential and parallel implementations, with
decomposition of time components of parallel implementation.

Fabian Kovacs

17

A parallelisation is only useful as long as 𝑡(1) > 𝑡(𝑛) holds, i.e. as long

as the sequential implementation is slower than the parallelised

implementation using 𝑛 cores. Which, in our example, holds up to

roughly 47 nodes. If we also consider the cost of running or renting the

nodes, the maximum sensible 𝑛 is probably significantly lower than

that.

It is therefore an important part of developing, executing and

scheduling an application to consider an application’s scaling, and

thus finding an optimal selection of nodes in the context of the

executing data-centre, which is dependent on the problem size and the

amount of necessary communication. This optimization also includes

the user’s willingness to pay for a partition.

Fabian Kovacs

18

Topology

The size of a high performance computing data centre puts pressure

onto its designers in the placement and connectivity of its nodes: the

network topology of a cluster. Multiple factors play into the

consideration of topology design: connectivity, latency (min, max and

average), throughput, ability to be partitioned, and cost. While a fully

connected cluster has high connectivity and thus low latencies, while

simultaneously being simple to partition, connecting every node with

every node becomes very expensive, as the cost scales quadratically

with every node. The typical primitives in topology design are trees, 𝑛-

ary-cubes or -meshes, or combinations like dragonfly. [8] (See Figure

5 and 6)

Figure 5) Fat Tree Topology: nodes are
interconnected in a hierarchical structure, nodes
higher up in the hierarchy have more
connections. This enables rapid transmission
through the network with low congestion, while
having modest requirements on connection
infrastructure. Tree structures are very easy to
partition.
(Used by: Summit #1, #2 LC Sierra) (Image
taken from [9])

Figure 6) Dragonfly Architecture: fully
connected groups of nodes, where every group
has at least one link to another group. This
enables short communication times and is easy
to partition.
(Used by: Sunway TaihuLight #3, Piz Daint #5)
(Image taken from [10])

Fabian Kovacs

19

The topology of a cluster has significant impact on the time it takes for

a message to be transmitted and also impacts the ability of an

applications communication

capabilities: for example, two nodes involved in a lot of communication

should not be deep in two separate branches of a tree structure.

A QoS oriented scheduler aiming to provide effective deadline

guarantees, therefore not only requires knowledge of the particular

topology of an application, but also of each allocated node’s

communication.

Message Passing Interface — MPI

One of the most commonly used frameworks for the development of

parallel programs is the Message Passing Interface standard (MPI)10.

Libraries implementing the MPI standard offer a programming

interface for parallel communication, as well as a toolkit for compiling

and running distributed applications. They implement primitives for

synchronous and asynchronous communication, including one-to-

one (Send / Receive) and one-to-many (Scatter / Gather)

communication, but also more complex schemes such as

MPI_Allreduce, where all involved parties apply an operation to a

distributed buffer, combining their results. MPI abstracts over the

protocols and execution platform: a user will simply write their

program using MPI primitives and will be able to execute it on a single

machine, or on a high performance computing cluster. MPI will load

10 A growing trend in high performance computing is the emergence of higher level
interfaces for processing, e.g.: Apache Spark. This can be read as a decline of MPI,
however most of these tend to still use MPI under the hood for execution.

Fabian Kovacs

20

and use the appropriate drivers and distribute the application

accordingly.

MPI applications are usually run from a management system, this

requires configuration specific to the executing cluster, including the

available hardware and physical layout of the cluster: it is beneficial for

nodes communicating a lot with each other to also be placed physically

close to each other, similarly nodes acting as a communication hub

might want to have a low mean distance to all nodes to allow fast

communication with all nodes. Most data centres host multiple

programs on a cluster at the same time, through partitioning of the

cluster. This might be because the user has only limited use for the

whole cluster or has only paid for a certain partition of the cluster. MPI

can manage these requirements, to simplify execution on data-centres

for high performance parallel computation.

High performance applications

While the scientific domains of high performance computing are

varied, most applications focus on simulating parts of the natural

world with numerical models. The following section will present some

specific applications of high performance computing, as examples of

HPC in some domains. It should be noted that this list is not exhaustive,

and some applications are solutions to very specific problems that are

not publicly available.

While it was originally mostly used in academia, limited by the

availability of resources, technologies and brainpower, it has been

seeing more use in industrial applications since the turn of the 21st

century.

Fabian Kovacs

21

The public sector has been the driving force behind high performance

computing. The applications range from large scale universe

simulations to microbial simulations, down to quantum scale. Lammps

- Large-scale Atomic/Molecular Massively Parallel Simulator -

developed at Sandia National Laboratories is a high performance

application used for physical material modeling from the atomic level

upwards11. One of the major applications of high performance

computing is the simulation of nuclear

weapons: the US put live nuclear weapons testing on hold in 1992 and

has since then started developing and testing nuclear bombs with their

Advanced Simulation and

Computing Program in Los Alamos (#7 of Top500), Sandia

Laboratories (#7 of Top500) and Lawrence Livermore National

Laboratory (#10 of Top500).12

11 More examples can be found at https://lammps.sandia.gov/pictures.html
12 Stockpile Stewardship and Management Program

Figure 7) Model of the tensile response of bundles of
carbon nanotubes containing 1.2M atoms, simulated
with LAMMPS.

Figure 8) Electron/transport enhanced
simulation of heating and deformation of a
metallic carbon nanotube, simulated with
LAMMPS.

Fabian Kovacs

22

The European Organization for Nuclear Research - CERN - requires

high performance computing13 to effectively handle its data: the team

surrounding the Large Hadron Collider has so far released about 3

Petabyte of data, estimating that this is just 3 percent of their data. A

dataset of this scope cannot effectively be handled at any other scale

than a supercomputer, or in this case a super-computing grid.

Lastly, high performance computing is used in climate research, to

create day to day weather-forecasts, but also to simulate and analyse

climate change and the effect of human actions on climate. Toward

ever greater precision, climate or planetary models incorporate more

details into their computation: the Ocean-Land-Atmosphere and Soil

Model (OLAM) simulates cloud dynamics and microphysics,

atmosphere-surface interaction, and land surface processes, such as a

regions groundwater, in addition they employ dynamic grid techniques

13 CERN does not maintain their own datacentre, instead relying on the Worldwide
LHC Computing Grid (WLCG), a network of more than 170 computing centres spread
across 42 countries

Figure 9) OLAM-Soil simulation with adaptive Grid.

Fabian Kovacs

23

to adaptively reduce computational load on uninteresting data without

completely ignoring it. [11, 12]

PlaSim (for Planet Simulator) is a general circulation simulation often

used in weather forecasting and planetary simulation. PlaSim is

developed by Haberkorn et al. at Meteorologisches Institut, Universität

Hamburg. It is specifically developed to be user friendly (simple to set

up, run and evaluate), for teaching purposes, while making slight

concessions with regard to precision and detail, but still being

representative of other forecasting programs such as Olam-Soil. [13] It

comes with an extensive UI to configure and run PlaSim, which can also

display a detailed live model of the running simulation. Plasim is

written in Fortran90 and makes use of MPI for parallel communication.

Figure 10) Screenshot of a running PlaSim simulation.

Fabian Kovacs

24

PlaSim will be used in the case study further below, the reason being

that it is fairly straightforward to set up while actually requiring HPC

and having complex communication behavior. Both Olam-Soil and

LAMMPS were also considered as case study candidates, but were

impossible to setup without investing a lot of time.

RESEARCH TITLE ORGANIZATION

Computational Studies of Protein-Protein Interactions University of
Chicago

Towards development of the structural determinants of the
Glutamate receptor gating regulation by auxiliary membrane
anchored proteins

Carnegie-Mellon

Curvilinear and Multipatch Methods for General Relativistic
Astrophysics in the Gravitational Wave Era

Rochester Institute
of Tech

Centre for the Physics of Living Cells University of
Illinois at Urbana-
Champaign

Looking Out for the Little Guy: A Comprehensive Study of Star
Formation in Dwarf Galaxies

Rutgers University
New Brunswick

Relaminarization and Turbulence Suppression in Rotating
Flows

University of
Kentucky Research
Foundation

Petascale Simulations of Binary Neutron Star Mergers University of
California-
Berkeley

Quasars and Large Scale Structure:Gigaparsec-scale
simulations confront Large Survey Data

Carnegie-Mellon
University

A Hierarchical Multiscale Method for Nonlocal Fine-scale
Models via Merging Weak Galerkin and VMS Frameworks

University of
Illinois at Urbana-
Champaign

The First Billion Years: a Petascale Universe of Galaxies and
Quasars

Carnegie-Mellon
University

Sample list of National Science Foundation awarded research for Petascale Computing Resource
Allocations.
(Sources: https://www.nsf.gov/pubs/2014/nsf14518/nsf14518.htm, and
https://www.nsf.gov/awardsearch/simpleSearchResult?queryText=PRAC)

Fabian Kovacs

25

Initial testing was done with a rudimentary implementation of an N-

body simulation, where multiple physical bodies and their gravity

induced movement is simulated. It is commonly used as an

introductory application for parallel programming as it is easy to

implement while requiring effective parallelism and communication.

N-bodies is primarily used in astrophysical simulations of the

universe. While the used implementation was easy to set up, it did not

make use of many communication primitives and did not display a

sufficiently complex behaviour to be considered representative of our

target domain.

The United States National Science Foundation issues grants for

scientific research considered important and relevant. One of their

awards is for Petascale Computing Resource Allocations (PRAC). The

awards are selected by committee and can therefore be considered

representative of high performance computing’s application domain.

High performance computing is also used in industrial settings for

material simulation, optimization and stress testing. For example,

before any car is put into an actual wind tunnel, it will already have

undergone optimization and verification in simulated wind tunnels.

This enables much faster turnaround. In architectural design HPC aides

in the computational analysis of building structures, to test and verify

new materials, shapes and construction technologies. [14] Modern

plane design makes heavy use of high performance computing to

optimize the shape of wings and turbines. A manufacturer can employ

optimization algorithms coupled with physical simulation to achieve

new designs:

Fabian Kovacs

26

“Gas turbine engine design begins with lower-fidelity models to

explore the design space efficiently. [...] These models are used for

evaluating engine subsystems [...] As the design process matures,

higher-fidelity models are introduced. In high-fidelity analysis, the

equations that represent the underlying physics are used to study the

performance characteristics of different designs and shapes.

Decomposing the parts, or the air around the parts, into a

computational grid allows us to solve these equations. Capturing more

geometry features, increasing the number of points in the grid, and

extending the computational domain can achieve even higher-fidelity

and more accurate analysis, but this increases the amount of

computational effort considerably. As the design matures, more

details are added to the models. These detailed models are larger and

take longer to run, causing delays in the design cycle. Often the

designers must balance the amount of detail in the models with the

time

required to complete these calculations. One of the benefits of using

HPC is that the run times of detailed analysis can be reduced from

Figure 11) Genetic algorithm optimizing the
shape of a wind turbine. (Screenshot taken from:
https://www.youtube.com/watch?v=YZUNRmw
oijw)

 Figure 12) Material cooling simulation and
optimisation. (From:
https://www.semanticscholar.org/paper/HPC-
SIMULATION-AND-OPTIMIZATION-OF-
MATERIAL-FORMING-Fran%C3%A7ois-
Jaouen/890479cd6aa3130d0f1790f152bf85da31fc
7f7e)

Fabian Kovacs

27

weeks to days and, with enough computing power, from days to

hours.” [2]

Towards modelling of communication

It should be clear by now, that a scheduler aiming to guarantee QoS and

especially work within deadlines, needs as much information on the

execution time and runtime behavior of an application. The runtime

behaviour however is not apparent from the application’s source code

and therefore needs to be modelled in some way. The most basic way of

modelling an application is by recording its behaviour in a controlled

setting and using that as a baseline for future executions, reifying it as

more recordings come along. Applied to the communication of an

application, this would entail recording the communication channel

and the length of the messages. As the focus of this thesis is high

performance parallel programs, we will restrict ourselves to the usage

of MPI, the resultant model will therefore consist solely of the length

of every sent message14 in order, without any identification of the

communicating parties15. This data can then be used by a plan based

scheduler in later executions, to estimate peak loads on

communication channels and CPU bursts, and additionally to help

estimate the time spent communicating. These estimations serve in

scheduling these applications and create precise estimations of their

execution time, in order to guarantee deadlines. As the scheduler relies

on the model’s correctness to guarantee deadlines, the communication

of the program will also be monitored in production and then

compared to a supplied model, deviations need to be detected and

14 In bytes

15 Notably, this stabilizes against MPI_Broadcast etc. (re-) ordering messages.

Fabian Kovacs

28

communicated to the plan based scheduler. The scheduler can use this

information to adapt its model, alter its schedule, or outright

terminate the program if the degree of deviation is too high.

While it might sound obvious that a program does repeat itself under

the same or very similar conditions, this is still an assumption that has

to be verified: while most HPC programs rely on generalized numerical

formula for their computation, their underlying models might change

subtly with minor differences in the starting conditions. For example,

OLAM-Soil outlined above uses an adaptive grid to partition the

geography and thus its working set onto compute nodes (i.e.: areas of

more importance receive more workers), this partitioning can be

dynamic and therefore the communication between neighbouring

nodes can change over the runtime of an application. A digital

butterfly-effect might just produce a major difference in the shape of

the computation from just a minor difference in initial conditions. It is

therefore important to verify if applications developed and optimized

for high performance computation can effectively be monitored by

modelling them based on their past behaviour and characterize if and

how a program’s execution might differ from another16.

It is also important to consider that introducing monitoring onto a

platform will in some way alter the performance of the monitored

application and/or that of the whole system: firstly, monitoring will

introduce a new application onto the system that is not dedicated to

productive work and there will therefore be less resources available for

computation; Secondly, monitoring will in some way have to intercept

the communication of the monitored program, meaning that it will

16 The completely dynamic case outlined is hopefully not common, and at this
moment considered out of scope.

Fabian Kovacs

29

alter or interfere with the code handling communication, most likely

slowing it down to some degree. The amount of communication done

in HPC varies, but communication is still central; it follows, that

slowdown in communication might produce significant performance

losses. It is therefore important and necessary to characterize the

effect of monitoring on the performance of these applications. In

addition, as the aim of plan based schedulers is to provide quasi-real-

time guarantees, it is also important to minimize that effect, but

additionally have it be stable and well characterized.

Purpose of this thesis

To estimate the running time of a high performance parallel

application, a scheduler requires deep knowledge of that application’s

behavior. Communication is central to the runtime of most parallel

applications. The time to transmit a message heavily depends on the

size of the message. The size of a message cannot effectively be

extracted or estimated from an application’s binary or source code. It

is therefore necessary to monitor and then model an applications

network communication. This information will be used to predict

consecutive runs of the same applications, in an effort to predict their

execution time under similar or the same conditions. To guarantee the

effectiveness of those estimations it is also necessary to assess them in

consecutive runs in production scenarios, capturing deviations relative

to previous runs or estimations.

Fabian Kovacs

30

Outline

In the following sections, we will outline an effort towards monitoring

a distributed parallel program. This will entail a discussion of

monitoring mechanisms of the Linux operating system, and then a

proposal of how to apply one of these to effectively monitor and model

a program’s communication behaviour. An implementation of that

proposal will be shown and evaluated on a typical HPC application, and

then on a UNIX networking utility. The evaluation will be done with

respect to performance and network bandwidth impact.

Related Work

[7], [15] propose a system of resource usage negotiation which is then

contractually agreed upon. To guarantee contractual compliance, a

system needs to be in place, to precisely monitor a programs resource

utilization. This entails computation time, memory usage, and

networking behaviour. Glaß details an implementation towards

guaranteeing computation time. [16] This paper will focus on network

communication. Both rely on a central entity (usually the scheduler)

that is responsible for handling contract breaches, and will only report

to them. Meswani et al. detail an effort to modelling disk I/O of high

performance applications, to then model and predict its impact on

execution time. [17] NetworkCloudSim implements a general approach

towards modelling of runtime behaviour of high performance in cloud

applications. [18]

Fabian Kovacs

31

Requirements

The operator should be able to monitor a program, and either record its

communication behaviour, or specify a past recording as reference.

Deviations from a reference recording shall be detected and signalled

to the kernel or another central entity (i.e.: the plan based scheduler).

Programs should not need customization (e.g.: instrumentation,

recompilation etc.) to be measured. The mechanism for monitoring

should also not interfere with the programs control flow as well as not

impede its execution performance in a meaningful way. Interaction

with the monitoring program should be simple and make as much use

of existing conventions of the target platform as possible, to be easily

adoptable into existing solutions. The implemented program should be

well documented and extensible. There should be well defined

interfaces to implement new monitoring mechanisms. The

implemented program should have well defined interfaces for

extending its monitoring capabilities. There exists a clear interface to

write and read program communication patterns.

Fabian Kovacs

32

Evaluation Criteria

[19] analyses and then models the relation of user provided runtime

estimates to the actual running time of application: they find that 10%

of estimations are shorter than the actual running time, and the

remaining 90% are evenly randomly distributed. [6], [20] compare

user provided runtime estimates with actual runtimes and find that

estimates are off by 57%. [21] observe that long running jobs tend to

have more precise estimates; however note that this might be an

artifact of the long jobs maxing out the allocated running time of the

system. While this data does not provide us meaningful insights into

acceptable margins of performance reduction, we can still assume that

users will not notice marginal slowdowns.

We therefore require that:

● An applications execution time increase should not exceed 5% of

its original execution time, on the same system without

monitoring.

Figure 13) Runtime estimations relative to
actual exection time. [19]

Figure 14) Runtime estimations compared to actual
execution times. [20]

Fabian Kovacs

33

● The average network throughput of applications should not

degrade by more than 5% of the baseline version, due to

monitoring.

● No program may fail due to our monitoring activities — except

when it does not behave according to the initial plan.

A Linux Kernel Module for Monitoring —

General Implementation overview

The following sections are a discussion of mechanisms for monitoring

a programs’ network communication. Following that is an outline and

proposal of a mechanism to monitor communication of parallel

programs.

A solution needs to capture a processes’ communication, then either

store it for later usage, or compare it to past communication behaviour,

if it does not conform, the violation needs to be reported. In addition,

it should conform to our requirements and evaluation criteria outlined

in REQUIREMENTS.

The Linux Kernel

At this time, Linux is the only operating system used in HPC, as

reported by the Top50017. The benefits of using Linux for high

performance computing are that it is highly portable, easily extensible,

and allows for fine grained tuning towards specific use cases (e.g.:

desktop computers, real-time computing, secured computing, or high

performance computing). [22] Most of these properties derive from the

17 https://www.top500.org/statistics/overtime/

Fabian Kovacs

34

operating system being developed and maintained completely open

source, which allows users to alter the source code to their own

requirements and also contribute these customizations upstream18.

Monitoring and Probing in the Linux Kernel

Monitoring should be done in such a way that it does not interfere with

the programs execution. A program should not need modification to be

monitored, neither source code, nor binary or require a custom tool to

be made compliant. [17] It may not significantly affect the programs’

performance. It should be simple to implement and rely on established

and stable mechanisms.

The Linux Kernel offers many ways of monitoring program activity at

multiple levels, which will be expanded upon below.

eBPF / BCC

The most promising solution for safe monitoring is eBPF - extended

Berkeley Packet Filters. It has been developed as an extension to the

linux kernel and has been fully integrated since 2017. eBPF defines a

virtual machine and language that can be injected into the kernel at

predefined points. It has strict safety and termination guarantees, as

well as a host of built-in kernel/user-space communication primitives.

It is specifically designed to allow monitoring and probing of the

kernel.

While eBPF has ostensibly matured to a critical point where it is usable,

it is still not trivial to use effectively. [23] It requires third party

solutions like BCC - the BPF Compiler Collection - for common use

18 See eBPF or Linux Realtime, which were both maintained as kernel patches until a
point of maturity, where they were then incorporated into the main tree.

Fabian Kovacs

35

cases, which at the time of writing is mostly written for usage with

Python. Further investigation revealed that writing for eBPF is severely

limited, bug ridden, error prone and the programmer is still required

to have extensive knowledge of the execution context. Overall eBPF

seems like it would be the perfect candidate for our problem, but

critical usability problems and its relative stage of infancy led us to

decide against using it.

LibC shim

Library shimming is a technique, wherein libraries are transparently

replaced with other implementations that eventually delegate to the

original library. This can be used to intercept calls to the original library

by specific programs. This is a powerful tool to insert logging

behaviour, fix bugs, or add permission layers. On Linux based systems

shims can be installed by altering the environment variable

LD_PRELOAD to contain the library-shim.

Libc is the C standard library, containing implementations of essential

functionality for everyday C development, making it an ideal candidate

as a non-intrusive entrypoint for program monitoring. It is also the

API layer on top of Linux syscalls, which are the only way a user space

program can directly interact with the operating system.

Not all programs and programming languages necessarily use libc as

their mechanism for invoking syscalls (e.g.: the programming

language Go), which would make them unable to be monitored. Even

programs using LibC might be statically compiled and thus unavailable

for shimming. It would also require a service to be communicated with

and thus introduce more communication and a spread out

implementation.

Fabian Kovacs

36

LTrace / STrace / PTrace

LTrace and STrace are both linux applications meant for monitoring

programs and their execution. LTrace is used to observe the usage of

library calls and their parameters by an application. STrace works in a

similar fashion but for syscalls. Both are very useful for debugging and

monitoring programs in development but have been shown to add

significant overhead to production systems: a monitored application

can run up to 442times slower. [24] From the STrace manual: “Known

Bugs: a traced process runs slowly.” They additionally emit data in text

form, requiring additional processing.

STrace and LTrace have nonetheless proven essential for this thesis, as

they enabled the analysis of running processes in detail to find the

library- and syscalls of programs used for communication.

PTrace is a linux built-in mechanism for process tracing, it defines the

syscall ptrace which can be used for setting up a tracing mechanism and

allows the installation of probing points at system calls. However, it

adds additional context switches to and from the traced program, to

the tracing program and back, adding a non-trivial overhead to the

programs’ execution, making it a suboptimal solution for HPC

applications.

KProbes

Linux KProbes are a kernel mechanism to inject probes at arbitrary

positions in the kernel, they can either target a specific address or the

symbolic name of a kernel routine. [25] When the probed point is

executed, the execution is trapped into a user specified function and

it’s execution context (ie.: the register’s content) is passed to the

function, where it can be read and manipulated. KProbes also allow

Fabian Kovacs

37

probing when returning from that address, then called KRetProbes

with limited concurrency.

The default KProbe implementation is implemented by setting a CPU

breakpoint at the probed address into a function which uses a

notifier_call_chain to execute all attached probes, after that the probed

instruction itself is executed and then the return probe via the same

mechanism. Breakpoints are relatively expensive, which is why they

can be replaced with a jump instruction instead through optimization

flags, which will then ostensibly have performance similar to normal

library invocations.

KProbes are very deep in the kernel structure and their usage is

therefore partially architecture dependent: the naming of registers

may differ between architectures and is reflected in the registers struct

passed to the probing function. Additionally: “Since it operates on a

running kernel and needs deep knowledge of computer architecture

and concurrent computing, you can easily shoot your foot.” [25] The

KProbe will also be on the path for every process initiating that routine

and will therefore impact their performance. Additionally, there exists

a trend in high performance computing to implement networking and

file system drivers in user space, this has the benefit of removing

syscalls from the critical path, being easier to debug and not interfering

with other critical resources, this poses a challenge to monitoring with

KProbes as they will no longer be triggered.

The kprobe manual contains some performance measurements: an

unoptimized KProbe adds 0.99 µsec, while an unoptimized Kprobe

adds 0.06 µsec to each invocation on the evaluation machine.

KProbes were chosen as the mechanism for monitoring because they

have a well-defined interface and are simple to set up and tear down.

Fabian Kovacs

38

They also allow probing of arbitrary points in the kernel which makes

them ideal for a system that aims to be flexible and extensible. Also,

since this thesis aims to verify the modellability of parallel programs’

communication behaviour, the mechanism employed does not

necessarily need to be the safest or cleanest, but instead enable fast

iteration. In our case study below, we will also review if our

implementation has a meaningful impact on program performance.

Linux Kernel Module — MoNet19

The Linux kernel allows the extension of its functionality through

kernel modules. Kernel modules can be dynamically loaded and

unloaded at runtime without the need for restarting the system. Kernel

modules will be executed in kernel space and have complete read and

write access into the kernel space, allowing them to alter the content

and behaviour at central data structures. Kernel modules are usually

used to implement hardware drivers or to add new behaviour to the

kernel. Kernel modules will be used as a means for easy access to user

and kernel space information of the monitored programs.

A Linux kernel module was developed monitoring syscalls via kprobes.

The Kprobe routine tests if the routine was triggered from a monitored

program by checking the global variable current->tgid20. If it is not a

monitored process, we resume the kernel routine, else we access the

registers containing message length information and copy them onto

19 MONitoring NETwork communication

20 Current is the CPU-local global variable holding information about the current
running process. tgid is the processes’ thread group, which can differ from the
process id (pid), when running a multiprocess program.

Fabian Kovacs

39

a FIFO-queue, then resume the kernel routine: we do not process the

data at this point, as we want to resume execution as soon as possible.

The communication data is processed in a separate kernel worker

thread which extracts the message lengths, this depends on the

specific function the target process used for communication. When the

kernel module is set to recording, it will store the message lengths

sequentially in a buffer, if it is in restricting mode, it will compare the

message lengths to user supplied lengths. Deviations from the input

data are written to the kernel logs as errors and signalled to a central

authority.

Fabian Kovacs

40

The recorded data can be read from a character device at /dev/monet,

the message lengths will be output in csv format: the first column

corresponding to the index of the message, the second column to the

actual length in bytes.

The character device can also be written to, it is used for receiving

previously measured message lengths in the same csv format as above

(id, length; no header), but also for configuration purposes, to transmit

Figure 15) Program and data flow of monitoring with monet. This is for the syscall writev, which
as will be outlined below used by OpenMPI to communicate when configured to use TCP.

Fabian Kovacs

41

the pid of monitored process and whether the module should be

recording data or comparing it, monitoring can also be turned off.21

Discussion / Evaluation

In the following section, two case studies will be presented: 1) a High

Performance MPI application will be executed and monitored, this is

our target domain and should demonstrate the capabilities and

limitations of the developed tool. It will also showcase how the module

can be set-up and utilized in a practical way. Additionally, it will be

used in assessment of our evaluation criteria; 2) the command line tool

cURL will be monitored to demonstrate the customizability of the

developed module, as it relies on different communication primitives

than OpenMPI. It will also be used to evaluate the impact of monitoring

on throughput of machine-local network communication.

Execution Environment

The programs are executed on a desktop computer, running a fully

updated Linux Mint 19.1, using the Linux kernel 4.15-20 (28 Jan 2018).

It has a 4 core Intel Core i5-3450 CPU @ 3.10GHz processor, and 12GB

RAM. They are not executed on a distributed cluster, with a wired

connection, as that would complicate development and additionally, as

wired communication is orders of magnitude slower than local

communication this scenario will highlight the impact of monitoring,

giving upper bounds on performance impact.

21 For more details see the appendix.

Fabian Kovacs

42

Case Study 1: Performance Impact on PlaSim

This case study will be used to verify our evaluation criteria outlined in

EVALUATION CRITERIA. Most important, it will be used to evaluate the

performance impact on a high performance system. This thesis is

specifically targeted at distributed high performance programs and

making it crucial to test this application in a realistic scenario.

As outlined above, MPI is widely used in high performance parallel

computation and is therefore ideal as a testing ground for this thesis.

OpenMPI is an open source implementation of the MPI message

passing interface standard.

Program Selection

The program to be executed in this case study should be a realistic

representation of HPC applications, therefore it should put high

demands on its execution environment and utilize multiple MPI

communication primitives. Some programs use MPI only as a

scheduling mechanism for cluster systems, these would not produce

interesting communication patterns for us to observe.

As outlined above PlaSim is a program that does fulfill the necessary

criteria on high performance applications and is extremely simple to

set up, the case study will therefore be done using PlaSim. A single

parallel program is not representative of the whole domain of high

performance programs, however as we aim to understand the impact

and feasibility of monitoring and modelling a programs’ network

communication, I consider it sufficient to analyse only one complex

program and generalizing from there.

Fabian Kovacs

43

PlaSim’s MPI usage is abstracted into a single library/file22 containing

all the routines to send the particular data to be sent, this allows the

authors to change communication code easily, and is mostly used to

change from a sequential implementation to a parallel implementation

by including different files. It uses MPI_Broadcast (5times),

MPI_Scatter (5times), MPI_Gather (4times), MPI_Allgather (2times)

and MPI_Allreduce (3times). All of those calls are 1:n or n:n

communication mechanisms. The way the code is set up makes it hard

to predict runtime communication behaviour, just from the source.

Additionally, buffer size is dependent on the number of allocated jobs,

and decided at compilation time, further limiting source code based

estimations.

Evaluation Scenarios

The program will be run multiple times with different configurations

and their execution times will be recorded:

1. The program will be run without the monitoring module

inserted, as comparison base,

2. the program will be run with the module inserted, but not

monitoring, to measure the modules performance impact on the

system and other applications,

3. the program will be run with the monitoring module inserted

and set to record it, to measure the performance impact it has on

the monitored application,

22 mpimod.f

Fabian Kovacs

44

4. and the program will be run with the monitoring module

inserted and set to restrict, to measure the performance impact

it has on the monitored application.

The collected data will be used in an evaluation of the modules impact

on a high performance computing application.

OpenMPI can be configured to use many communication technologies

(e.g.: Local IPC, TCP, Infiniband, DMA) and it can be expected to use

different implementations for its communication in different

configurations and communication primitives. It is therefore

necessary to investigate which communication mechanisms are used

beforehand. To this end, the MPI program is executed and traced with

the above discussed program strace where its network communication

syscalls will be captured.23

It was found that OpenMPI uses the writev syscall to communicate.

writev is used to write data from multiple buffers sequentially into a

single file descriptor24. The writev syscall itself triggers an interrupt into

kernel mode which will call the kernel routine sys_writev, the

architecture specific implementation for the writev syscall.

The writev syscall has the following interface:

ssize_t writev(int fd, const struct iovec *iov, int iovcnt);

23 For a deeper explanation of how to discover the communication primitives, I refer
to the Case Study on cURL below.

24 A file descriptor does not necessarily imply a file, but is instead the base mechanism
used by the Linux kernel to identify a source or destination for data. In this case it is
a socket connection to the target node.

Fabian Kovacs

45

Writev receives three input parameters:

fd — the file descriptor of the file to be written to,

*iov — a pointer to an array of iovec structs which themselves

hold a pointer to a target address and the length to be written,

iovcnt — the length of the array at *iov.

As we want to avoid computation as much as possible in the kprobe

routine, the array at iov is simply copied from user space onto a kernel-

side fifo-queue25 using the function kfifo_from_user. In addition, the

length of the array iovcnt is pushed onto a seperate queue, which is then

used in the kworker to compute the actual length of the message by

summing over the iovec#vlen fields. The lengths are now either stored

or compared to their supposed input. If a deviation is detected, we write

out a message onto the kernel logs and send a signal to the central

authority, reporting it.

Coverage of the Case Study

The case study will test if our monitoring efforts produce reproducible

results over multiple executions of the same HPC application. They will

also reveal the performance impact on a long running high

performance application which is our target domain. It will also be

tested how easy it is to setup and monitor a distributed application,

which is crucial from a production standpoint.

25 Found in <linux/kfifo.h>

Fabian Kovacs

46

Setup and Monitoring

Before running our application, the monitoring kernel module will

need to be successfully compiled and inserted on each node.

As we need the target processes’ pid for monitoring, an additional

helper program was written: right after starting the program pauses

itself, once resumed by an external signal, it will replace itself with a

command line supplied program. This allows us to capture and

communicate the executed programs pid before its execution.26

Reading Data

After successful execution of PlaSim, we can extract the recording from

MoNet by reading the device at /dev/monet.

$ sudo head /dev/monet

0,104

1,28

2,28

3,10184

4,1018

On average PlaSim sends 7.59GB over the span of 7:40min, with exactly

29,575,818 Messages, of an average size of 256.79byte. To recall from

above: the signature of writev allows sending multiple buffers at once

which are then concatenated.

26 It is entirely possible for the monitored program to communicate its own pid to the
module and set itself up for monitoring. However, as one requirement to this thesis a
non-intrusive implementations, this route was chosen.

Fabian Kovacs

47

Performance Impact of MoNet

To measure the performance impact of MoNet, PlaSim was executed on

the outlined hardware, in the above outlined configurations,

Figure 16) Absolute execution time of PlaSim, in all four configurations, for a one year simulation.
User is the time spent computing. System is the time spent in Syscalls. Total is the total execution time.

Figure 17) Execution time of PlaSim, relative to Disabled, in all four configurations, for a one year
simulation. User is the time spent computing. System is the time spent in Syscalls. Total is the total
execution time.

Fabian Kovacs

48

simulating 4 years. The execution times are measured using the unix

time command, which not only measures raw execution time, but also

time spent in syscalls. Before each execution, the stress utility will be

run for 60s to put the system into similar initial conditions before

execution. In addition, its working directory will be completely reset

before execution.

Data Evaluation

CONFIGURATION MEAN MIN MAX

Disabled 7:32 (+ 0.00%) 7:30 7:35

Enabled 7:40 (+ 1.73%) 7:35 7:48

Recording 7:42 (+ 2.29%) 7:37 7:47

Restricting 7:53 (+ 4.81%) 7:45 8:07
PlaSim total execution time

CONFIGURATION MEAN MIN MAX

Disabled 2:17 (+ 0.00%) 2:15 2:18

Enabled 2:21 (+ 3.36%) 2:19 2:25

Recording 2:22 (+ 3.59%) 2:19 2:23

Restricting 2:26 (+ 6.97%) 2:23 2:31
PlaSim time spent in syscalls in Minutes

Simulating a year without monet inserted takes on average 7:32

minutes. With MoNet inserted, but not monitoring, this increases to

7:40min (+ 1.7%). When monitored, PlaSim takes on average 7:42min

(+ 2.28%). Restricted PlaSim now takes 7:54min (+ 4.8%).

Fabian Kovacs

49

The time spent in syscalls is not significantly different, meaning that

the additional work to store the message lengths when recording does

not cause a significant slowdown. It is therefore surprising that the

slowdown doubles when in restricting mode, as the kprobe’s code is the

same between restricting and recording. Additionally, restricting has

the highest variance: having a minimum slowdown of 2.9% and a

maximum of 7.72%.

The most likely explanation is the fact that MoNet’s worker thread has

more complex work to do than when set to recording: it has to fetch the

old values, do a comparison and some computation on them. It will also

log every deviation to the kernel logs with printk, which as per the

kernel manual is a relatively expensive computation. This can also be

observed in the CPU utilization measurements: in all other

configurations, PlaSim utilises at least 396% of the CPU (> 99% of 4

CPUs), however when restricted it now is only able to utilise at most

395% (98.75% of 4 CPUs) and on average only 393% (98.25% of 4

CPUs).

Do MPI Programs repeat themselves?

It is crucial to understand if and how a repeat execution of a parallel

program differs with regard to parallel communication. The

assumption is, that a program running under the same configuration

and same conditions will behave exactly the same, and have the exact

same communication model. To verify this claim, we will run PlaSim

under the same conditions27 8 times (two 4 year long simulations) and

27 Set up as described in the section Setup and Monitoring. However, with a smaller
grid size to have a shorter runtime.

Fabian Kovacs

50

compare the recorded lengths of the same MPI node with the recording

of the first year of the first simulation.

On average PlaSim sends 6714094 messages of average size 794byte,

sending 5.332GB over a whole year. The message lengths are identical

over every simulation run, except for 4 messages per run, varying on

average by 3.4Kbyte. This is below 10−6%of the messages deviating. All

deviations occur in the last 157 transmissions; however no concrete

pattern is discernible, beside three years having a difference in the

third last message transmission.

While there are some minor differences among repeat executions, they

are relatively predictable (i.e. always exactly 4) and below a

problematic margin of error. I would therefore conclude that PlaSim’s

communication does in fact repeat itself with regard to message size.

AVG. YEAR 1 YEAR 2 YEAR 3 YEAR 4 YEAR 5

3.4Kbyte 6.2Kbyte 0byte 4.5Kbyte 3.4Kbyte 2.6Kbyte
Absolute difference between repeat-executions of the same year.

Case Study 2: cURL

One of the requirements of this study is flexibility of implementation,

to verify this claim, a second monitoring implementation is detailed

which can also be used as a blueprint for later adaption on to other

programs. One of the most used networking programs on any linux

system is the command line tool cURL28. It is used to transmit and

receive data over networks implementing a large number of

networking protocols. Additionally, cURL is a widely ported application

28 https://curl.haxx.se

Fabian Kovacs

51

making it fit for verification of portability of the developed monitoring

framework.

Coverage of the Case Study

The case study will give a tutorial on how MoNet can be used to monitor

an application, specifically how to implement monitoring for a new

syscall. In addition, it will measure the impact on raw upload

bandwidth of an application with monet running.

Implementation

We begin by constructing our test application:

$ curl localhost:8080 -XPOST -d "Hello" -s > /dev/null

This will execute cURL and instruct it to send an HTTP POST request to

localhost containing the message “Hello”. The response is discarded.

We will monitor cURL with strace to analyze its communication

behaviour with the following command:

$ strace -e trace=%network -yy curl [...]

This will instruct strace to filter for networking related syscalls and add

protocol specific information, producing the following output:

socket(AF_INET6, SOCK_DGRAM, IPPROTO_IP) = 3

socket(AF_INET, SOCK_STREAM, IPPROTO_TCP) = 3

setsockopt(3, SOL_TCP, TCP_NODELAY, [1], 4) = 0

setsockopt(3, SOL_SOCKET, SO_KEEPALIVE, [1], 4) = 0

setsockopt(3, SOL_TCP, TCP_KEEPIDLE, [60], 4) = 0

setsockopt(3, SOL_TCP, TCP_KEEPINTVL, [60], 4) = 0

connect(3, {sa_family=AF_INET, sin_port=htons(80),

Fabian Kovacs

52

sin_addr=inet_addr("174.129.224.73")}, 16) = -1 EINPROGRESS

(Operation now in progress)

getsockopt(3, SOL_SOCKET, SO_ERROR, [0], [4]) = 0

getpeername(3, {sa_family=AF_INET, sin_port=htons(80),

sin_addr=inet_addr("174.129.224.73")}, [128->16]) = 0

getsockname(3, {sa_family=AF_INET, sin_port=htons(57290),

sin_addr=inet_addr("192.168.178.41")}, [128->16]) = 0

sendto(3, "POST / HTTP/1.1\r\nHost: localhost"..., 156,

MSG_NOSIGNAL, NULL, 0) = 156

recvfrom(3, "HTTP/1.1 404 Not Found\r\nContent-"..., 102400,

0, NULL, NULL) = 132

+++ exited with 0 +++

Most of the calls made are for setting up a network connection, then

sendto is invoked. The string preview shows that the data sent is HTTP

protocol specific, leading to the assumption that cURL uses sendto for

sending data via POST. The linux manual explains that sendto is “used

to transmit a message to another socket.” The signature of sendto is:

ssize_t sendto(int socket, const void *message, size_t

length, int flags, const struct sockaddr *dest_addr,

socklen_t dest_len);

Where

socket — the file descriptor of the open socket

*message — start address of the message to be sent

length — length of the message to be sent

flags — optional protocol specific flags

*dest_address — address of the destination of the message

dest_len — protocol specific length of *dest_address

Fabian Kovacs

53

The return value is the number of actually written bytes29, or a negative

value in case of error.

The message length is extracted by reading length, the third parameter.

Implementing a probe for sendto requires implementing the following

functions:

1. static void monet_init_kprobe(struct kprobe* probe)

Is invoked at module initialization and used to configure the

kprobe for monitoring sendto.

2. static void monet_kprobe_handler(struct pt_regs *regs)

Which is invoked inside the kprobe handler, if the kernel module

is set to monitor communication and the monitored application

has invoked sendto. The input parameters are the register state

of the calling thread, we can use those to retrieve the message

length: the length of the message is stored in sendtos’ third

parameter and will therefore be stored in the third register rdx.

The length will be pushed onto a kernel fifo queue and processed

later.

3. static bool monet_has_data(void)

Is invoked when the kernel worker thread is scheduled to store

or compare data read in the kprobe. It is used to signal that there

is unprocessed data.

4. static void monet_kprobe_extract(void)

Is used to transmit the data for processing, where it will either be

compared or again stored. It needs only to invoke the function

receive_entry, which will then appropriately be handled.

29 Which will not differ from the actual length, it is supposed to fail with a more
specific error code instead.

Fabian Kovacs

54

Impact on Average Throughput of cURL

In the following we will evaluate the impact of MoNet on the self-

reported average upload speed of cURL, when transmitting a 10GB of

randomly generated data. The data is generated by reading

/dev/urandom which will generate a random stream of data without

blocking. The unix tool head will be used to read 10GB from it. The data

will then be used to send data as a POST HTTP Request to a locally

running nginx instance that will immediately discard the data.

$ head -c 10GB /dev/urandom | curl -v -w

"UPLOAD=%{speed_upload}\n" -XPOST -d@- localhost:8080/

We evaluate the following scenarios:

1. Monet not running, as baseline

CONFIGURATION AVERAGE
UPLOAD

EXECUTION TIME TIME IN
SYSCALLS

Disabled
1.375 GByte/s (+
0.0%)

9.88s (+ 0%)
9.36s (+ 0%)

Enabled 1.317 Gbytes/s (-
3.0%)

10.11s (+ 2.3%) 9.37s (+ 0.01%)

Recording
1.284 GBytes/s (-
5.4%)

10.11s (+ 2.3%) 9.58s (+ 2.4%)

Impact of monitoring on throughput of cURL, when sending 10GB of data.

Fabian Kovacs

55

2. MoNet running, set to record30, to measure the impact on

throughput on the monitored application,

3. MoNet running, not monitoring cURL, to measure throughput

impact on an application not monitored but using sendto.

We measure a 5.34% throughput degradation on cURL monitored with

MoNet, and a 3.0% degradation, when monet is running but not

monitoring. Meaning, that a monitored application uploading data for

60 minutes will now run 3.2 minutes longer, and an application on a

system with monet installed but not monitoring will now run

1.8minutes longer.

Future Work

As the KProbe interface is implemented directly on the register

contents of the application, it is partially architecture dependent. This

limits easy adaption onto other systems. However, the changes to the

source code would be minimal.

The current implementation of MoNet only allows monitoring of one

application at a time and one syscall. It is feasible to implement

monitoring of multiple syscalls and also of multiple applications, but

would require extensive refactoring of the current implementation.

The current implementation of MoNet statically pre-allocates about

500MB of memory to store measurements, this only increases with

more applications/syscalls and would require dynamic management.

30 Since the critical path for restrict and record is identical and we are not performing
a compute intensive task, only record is measured.

Fabian Kovacs

56

Additionally, the current implementation of the MoNet worker thread

uses polling to check the queue, meaning that it will be run and

scheduled even when it does not have work to do, which wastes some

computation time. There are already mechanisms present in the linux

kernel to handle these scenarios, though they have not yet been applied

to MoNet (e.g.: spinlocks and thread parking). The worker thread

seems to generate the most overhead of all components, and should

therefore be optimized further. It could also be investigated, if the

worker thread is strictly necessary or if the work could be pulled into

the kprobe’s logic.

The current implementation of MoNet relies on three wrapper scripts

to execute and monitor an MPI application:

mpiexec [...] ./run-on-node.sh 2 "./trace-me.sh ./plasim.x"

./plasim.x

Where run-on-node.sh executes different applications depending on

the MPI node, and trace-me.sh manages sending the pid to MoNet, and

utilizes a third program to start/stop the monitored application. This

is obviously very complex to setup and could be simplified. Part of this

is down to the fact that the device /dev/monet, can only be written to by

the root user and the script trace-me.sh handles that. If we allow non-

root users or a specific user group to write to /dev/monet, this could be

simplified, such that the wrapper program sends its own pid to

/dev/monet.

It should also be possible to encode more complex models than just

static models. For example, already encoding uncertainties at some

points in the model, or allowing variance etc. A completely different

approach could also be modelling the applications throughput over

Fabian Kovacs

57

time (
𝑀𝐵𝑦𝑡𝑒

𝑠

𝑚𝑖𝑛
), this could be useful in scenarios where the ordering of

messages is not stable, but the amount of communication is.

The second case study evaluates the impact on throughput of curl.

While measuring the impact on throughput of an application it does

not measure the impact on throughput of a high performance

application. While this is a useful metric, the work done to extract

message lengths for MPI applications is more complicated, it should

therefore also be evaluated in future work.

Closing Discussion

When evaluating PlaSim’s repetition with regards to message lengths,

we found virtually no deviations to past executions. Meaning that a

representative high performance application can effectively be

modeled based on past executions. The observed deviations all

happened within the last few messages of the applications execution

lifecycle and are therefore most likely used for gathering the results of

the computation. It should be noted that new features in MPI2 allow

dynamic allocation of nodes and therefore pose a challenge when

modelling them. [26]

The performance impact of monitoring does on average not exceed our

limit of a 5% slowdown. However, restricting did in fact cause a

maximum delay of 7.7%. The variance when restricting - which would

usually also mean a production environment - is not optimal and needs

to be investigated further. It is noteworthy, that the additional work

done in the kprobes does not add a significant amount of overhead

(Enabled vs Recording), and it should therefore also be investigated

how much work can be refactored into the kprobe itself further

Fabian Kovacs

58

reducing the complexity of the kernel module. The impact of

monitoring on raw network throughput (5.34%) does also exceed our

5% limit. It should however be noted, that this is on a machine local

connection, meaning that the performance degradation is a strict

upper bound to wired connections, where network latencies are the

dominant component.

Fabian Kovacs

59

Appendix

Interacting with the Kernel Module

All interaction with the kernel module is accomplished by writing to

the kernel modules character device /dev/monet.

Changing Recording Modes

$ echo MODE=OFF > /dev/monet # to turn off monitoring

$ echo MODE=RECORD > /dev/monet # to turn monet to recording

$ echo MODE=RESTRICT > /dev/monet # to turn to restricting

Passing the Process ID

$ echo PID=$PID > /dev/monet

Reading recorded message lengths

$ cat /dev/monet

Writing a single length restriction

$ echo "0,506\n" > /dev/monet

Writing a whole file of length restrictions

$ lbl sizes.csv > /dev/monet

Lbl is a custom utility writing a file line by line into the standard output

or a supplied file. MoNet can only read files line by line. Using the cat

utility therefore does not work.

Fabian Kovacs

60

line-by-line.c:

[...]

while ((read = getline(&line, &len, in)) != -1) {

 fprintf(out, "%s\n", line);

 fflush(out);

}

[...]

References

[1] E. Strohmaie, J. Dongarra, H. Simon, and H. Meuer, “Top500,”

2019. [Online]. Available: https://www.top500.org/. [Accessed:

10-Sep-2019].

[2] M. Paulitsch, E. Schmidt, C. Scherrer, and H. Kantz, “Industrial

applications of High Performance Computing,” Time-Triggered

Commun., pp. 303–359, 2011.

[3] L. L. N. Security, “Batch System Primer,” Lawrence Livermore

National Laboratory. [Online]. Available:

https://hpc.llnl.gov/banks-jobs/running-jobs/batch-system-

primer. [Accessed: 10-Sep-2019].

[4] J. Yu and R. Buyya, “A taxonomy of workflow management

systems for Grid computing,” J. Grid Comput., vol. 3, no. 3–4, pp.

171–200, Sep. 2005.

[5] Y. Yuan, G. Yang, Y. Wu, and W. Zheng, “PV-EASY: A strict

fairness guaranteed and prediction enabled scheduler in parallel

job scheduling,” HPDC 2010 - Proc. 19th ACM Int. Symp. High

Perform. Distrib. Comput., pp. 240–251, 2010.

Fabian Kovacs

61

[6] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Backfilling using

system-generated predictions rather than user runtime

estimates,” IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 6, pp.

789–803, 2007.

[7] L. Burchard, M. Hovestadt, O. Kao, A. Keller, and B. Linnert, “The

Virtual Resource Manager : An Architecture for SLA-aware

Resource Management Faculty of Computer Science and

Electrical Engineering.”

[8] C. Minkenberg, “Interconnection Network Architectures for

High-Performance Computing HPC interconnection networks,”

Adv. Comput. Networks, no. May, 2013.

[9] Konstantin S. Solnushkin, “Fat-Tree Design,” clusterdesign.org.

[Online]. Available: https://clusterdesign.org/fat-trees/.

[Accessed: 10-Sep-2019].

[10] Wikimedia, “File:Dragonfly-topology.svg,” Wikimedia Commons,

the free media repository. 2017.

[11] R. L. Walko, “OLAM-Soil.” .

[12] R. L. Walko and R. Avissar, “The Ocean-Land-Atmosphere Model

(OLAM): a formulation for high resolution weather and climate

simulation,” in AGU Fall Meeting Abstracts, 2008.

[13] F. Lunkeit, K. Fraedrich, H. Jansen, A. Kleidon, U. Luksch, and E.

Kirk, “Planet Simulator Reference Manual,” 2007.

[14] L. I. N. Architecture, “SIMULATION IN ARCHITECTURE ,

Structural design for fabrication white paper,” 2010.

[15] L. O. Burchard, B. Linnert, and J. Schneider, “A distributed load-

Fabian Kovacs

62

based failure recovery mechanism for advance reservation

environments,” 2005 IEEE Int. Symp. Clust. Comput. Grid, CCGrid

2005, vol. 2, pp. 1071–1078, 2005.

[16] K. Glaß, “Plan Based Thread Scheduling on HPC Nodes,” 2018.

[17] M. R. Meswani, M. A. Laurenzano, L. Carrington, and A. Snavely,

“Modeling and predicting Disk I/O time of HPC applications,”

Proc. - 2010 DoD High Perform. Comput. Mod. Progr. Users Gr. Conf.

HPCMP UGC 2010, no. May, pp. 478–486, 2011.

[18] S. K. Garg and R. Buyya, “NetworkCloudSim: Modelling parallel

applications in cloud simulations,” Proc. - 2011 4th IEEE Int. Conf.

Util. Cloud Comput. UCC 2011, pp. 105–113, 2011.

[19] A. W. Mu’alem and D. G. Feitelson, “Utilization, predictability,

workloads, and user runtime estimates in scheduling the IBM SP2

with backfilling,” IEEE Trans. parallel Distrib. Syst., vol. 12, no. 6,

pp. 529–543, 2001.

[20] C. B. Lee, Y. Schwartzman, J. Hardy, and A. Snavely, “Are user

runtime estimates inherently inaccurate?,” Lect. Notes Comput.

Sci., vol. 3277, no. March, pp. 253–263, 2005.

[21] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Modeling user runtime

estimates,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinformatics), vol. 3834 LNCS, pp. 1–35,

2006.

[22] T. P. Morgan, “One Linux Stack To Rule HPC And AI,” Next

Platform, 2018.

[23] J. Dileo and A. Olsen, Kernel Tracing With eBPF - Unlocking God

Mode on Linux. Chaos Computer Club, 2018.

Fabian Kovacs

63

[24] G. Brenadn, “strace-wow-much-syscall,”

www.brendangregg.com, 2014.

[25] J. Keniston, P. S. Panchamukhi, and M. Hiramatsu, “KProbes -

Linux Documentation.”

[26] M. C. Cera, G. P. Pezzi, M. L. Pilla, N. Maillard, and P. O. A. Navaux,

“Scheduling Dynamically Spawned Processes in MPI-2,” in Job

Scheduling Strategies for Parallel Processing, 2007, pp. 33–46.

[27] H. A. Council, “Interconnect Analysis : 10GigE and InfiniBand in

High Performance Computing,” Case Stud., 2009.

