
Freie Universität Berlin

Bachelorarbeit am Institut für Informatik der Freien Universität Berlin

Arbeitsgruppe Software Engineering

mit Unterstützung der t2informatik GmbH

Model-driven Development of Front-Ends for

CRUD Applications

Alexander Korzec
Matrikelnummer: 4915459

alexander.korzec@fu-berlin.de

Betreuer/in: Prof. Dr. Lutz Prechelt

Eingereicht bei: Prof. Dr. Lutz Prechelt

Berlin, August 8, 2022

Abstract

Create, Read, Update, Delete (CRUD) operations are a common part of UIs.

Thus, the question arises whether there is a method that generates such predictable

UIs without programming, but instead using other artifacts such as models. Model-

driven Software Development (MDSD) and related approaches provide an answer

to this question and establish the necessary conditions to use models as substitute

for programming code.

This thesis gives an introduction to MDSD and summarizes requirements to-

wards it based on an application example from a clinical management system. A

MDSD method based on model interpretation is derived from these requirements

and evaluated. As first step, the MDSD method uses a Low Code Platform to model

the application flow and the appearance of CRUD UIs. Then, a standalone UI li-

brary that uses JSON Forms to display forms and JSON:API for data transmission

interprets the artifacts created in the previous step.

mailto:alexander.korzec@fu-berlin.de

4

Contents

1 Introduction 9

1.1 Motivation . 9

1.2 Outline of Contribution . 9

1.3 Challenges in Model-Driven Development 10

1.4 Structure of This Thesis . 11

2 Model-driven Software Development 12

2.1 Overview of Model-driven Software Development 12

2.2 Model-Driven Architecture . 15

2.3 Code Generation vs. Model Interpretation 16

3 Related Works 18

3.1 MockupToME . 18

3.2 JSON Schema . 19

3.3 JSON:API . 19

3.4 JSON Forms . 20

3.5 Eclipse Modeling Framework . 21

3.6 Interaction Flow Modeling Language (IFML) 21

3.7 IFMLEdit.org . 22

3.8 Webratio Platform . 22

4 Analysis 25

4.1 Assumptions . 25

4.2 User Group . 25

4.3 Problems . 26

4.4 Pseudo-Requirements . 27

4.5 Application Example . 27

5 Implementation 30

5.1 General Workflow . 30

5.2 Low-Code Modelling . 30

5.2.1 Description . 30

5.2.2 Evaluation . 35

5

5.3 UI Execution Environment . 35

5.3.1 Input Specification . 36

5.3.2 Implementation Details . 36

5.3.3 Evaluation . 38

6 Conclusion 39

A Appendix 45

6

List Of Abbreviations

3GL Third Generation Programming Language

API Application Programming Interface

BNF Backus–Naur form

CIM Computation Independent Model

CORBA Common Object Request Broker Architecture

CRUD Create, Read, Update, Delete

DSL Domain-specific Language

DSM Domain-specific Modeling

EMF Eclipse Modelling Framework

EMP Eclipse Modelling Project

ERM Entity Relationship Model

GPL General Purpose Language

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IETF Internet Engineering Task Force

IFML Interaction Flow Modeling Language

J2EE JavaTM 2 Platform Enterprise Edition

J2SE JavaTM 2 Platform Standard Edition

JS JavaScript

JSON JavaScript Object Notation

LCP Low Code Platform

M2M Model-to-Model

M2T Model-to-Text

MDA Model-driven Architecture

MDD Model-driven Development

7

MDE Model-driven Engineering

MDEE Model-driven Engineering Environment

MDSD Model-driven Software Development

MDWE Model-driven Web Engineering

MOF Meta Object Facility

MOFM2T MOF Model to Text

MVC Model View Controller

OCL Object Constraint Language

OMG Object Management Group

PIM Platform Independent Model

PoC Proof of Concept

PSM Platform Specific Model

QVT Query View Transformation

SPOs Software Producing Organisations

SQL Structured Query Language

TS TypeScript

UI User Interface

UML Unified Modeling Language

VHDL VHSIC Hardware Description Language

WYSIWYG What You See Is What You Get

XMI XML Metadata Interchange

XML Extensible Markup Language

8

1. Introduction

1 Introduction

Chapter Introduction describes the goal and scope of this thesis. The first section gives

an overview of how models and abstraction are used in software development. This is

followed by the presentation of the goal of this thesis with the help of an example. After

that, the generally valid challenges of this approach are highlighted. The last section

outlines the structure of this thesis.

1.1 Motivation

Abstraction is a common theme in computer science and allows to handle complexity

and produce elegant models and designs [34]. The identification and separation of

critical and irrelevant requirements, the modelling of a system architecture to satisfy

functional and non-functional requirements, and the implementation of applications

with the help of platforms and high-level programming languages are typical tasks in

software development that benefit from abstraction. As technologies and methods are

further developed to provide more suitable and efficient abstractions for simpler use

in practice and increased productivity, one may ask whether it is helpful to program

with models instead of repeatedly writing technology-specific source code for similar

products. Therefore, one may program a reusable tool-chain, which translates similar

models (semi-)automatically into working parts of an application. It is reasonable to

assume that building models is less time-consuming and tedious than implementing

an application with a large amount of repetitive infrastructure code in a high-level

programming language.

Niklaus Wirth1 published a book [54] in 1976 with the title

Algorithms + Data Structures = Programs.

Practitioners of MDSD who attempt to program with models postulate their own version

based on the above equation, i.e., [9]

Models + Model Transformations = Programs . (1)

Equation 1 is also the guiding theme for this thesis and will be further elaborated in the

next pages. MDSD enables MDSD practitioners to use models as primary artifacts in

software development and this work explores how this is done in detail. The expectation

towards MDSD is that it will enable faster and more productive building of software.

1.2 Outline of Contribution

This thesis is located within MDSD and deals with the model-driven development of

CRUD UIs. CRUD stands for Create, Read, Update, Delete and means the creation,

retrieval, update, and deletion of entries in a database. An example for CRUD UIs is

given in Figure 9, where the CRUD functionality is represented in the upper part of the

UIs. The objective of this thesis consists in following two parts:

1Swiss computer scientist awarded with the ACM Turing Award in 1984. Chief designer of countless

programming languages, including Pascal.

9

1. Introduction

i) Elaboration of the basic principles of MDSD and a compilation of tools and meth-

ods.

ii) Design and development of a MDSD method to create a CRUD UI from a set of

static and dynamic conceptual models.2

In the context of this work, a method consists of a process and a tool-chain that supports

its individual steps. A process consists of activities, i.e., a description of the individual

steps of the process, artifacts, i.e., what the input and output of the activities are, and

roles, i.e., the people who take part in activities and are responsible for the artifacts.

To better illustrate the latter goal consider the development of a application for hospital

management as an example. Figure 9 shows screenshots of a final product and Figure

10 displays a static conceptional model, which may appear after an initial requirement

elicitation phase. Note that static models do not describe the interaction in a UI and

further models are required for a more complete view of a system. The previously stated

second goal for this example would be to develop a MDSD method that takes a set of

fairly general models (cf. Figure 10) and transforms them into UIs similar to the ones

shown in Figure 9.

Clearly, the proposed transformation from Figure 10 to Figure 9 is not directly possible

and has to be divided into multiple steps. The model in Figure 10 is underspeci-

fied and there are no clear rules on how to perform this transformation. The concep-

tual model does contain some human-readable domain-specific concepts, e.g., the UML

classes Medication, Nurse, and Ward, but they cannot be processed by an algorithm

because they are simple strings and there are no domain-specific UML stereotypes (cf.

Figure 11) attached to these classes. The next step could be to label the individual

classes with domain-specific machine-processable annotations, e.g., UML stereotypes.

The new model can then be processed by an algorithm, which reads the annotations

and outputs a model with a higher level of detail and a lower level of abstraction. The

new model is still fairly general, since it neither describes a software architecture nor

contains technology-specific details. At some point in time, the generation of an initial

UI, which can be refined in further steps with the help of an UI editor, seems sensible.

Not all steps in a MDSD method have to be fully automatized, but they should be at

least partially assisted by appropriate tools.

1.3 Challenges in Model-Driven Development

There are several issues with using models for more than just communication in devel-

opment teams or between a development team and stakeholders.

On one hand, there are some conceptual aspects to be considered. Firstly, models

need precise syntax and semantics to be machine-processable. Secondly, the modeling

languages used should provide appropriate domain-specific abstractions so that models

2Static models emphasize the structure and architecture of a system, e.g., UML structure diagrams,

while dynamic models capture the execution of a sequence of actions in a system, the interplay between

components of a system, or the management and change of the internal state of a system, e.g., UML

behavior diagrams. [9]

10

1.4 Structure of This Thesis

not only provide a higher level of abstraction than programming languages, but also an

appropriate level of expressiveness. One may even work with a set of models that focus

on different aspects of a system with different levels of abstraction. Thirdly, models

may need to be refined and transformed iteratively, which requires the development of

a method suited to the given problem domain.

On the other hand, there are some practical problems as well. Firstly, one has to

ensure that models never become outdated and describe the system accurately on their

abstraction level. Secondly, services and clients are often developed by separate teams,

and different software versions may be in operation at the same time, which has be

taken into account by the MDSD tool-chain. Thirdly, non-functional requirements may

require to interpret models at runtime or a more flexible handling of API endpoints and

resources, if one uses techniques such as load balancing. The discussion of challenges

in adoption of MDSD in companies and the usability of MDSD tools are certainly

interesting, but not the focus of this work.

1.4 Structure of This Thesis

This thesis is structured as follows:

Chapter Model-driven Software Development provides the theoretical foundation for

this thesis. It defines and explains different approaches to MDSD. In addition, this

chapter addresses the conceptual aspects mentioned in the introduction.

Next, works and software related to the MDSD are presented and discussed in Chapter

Related Works. These are then used to develop this thesis MDSD solution in Chapter

Implementation.

Chapter Analysis covers all assumptions and considerations needed to develop an MDSD

approach for generating CRUD UIs. At the start, all user groups of this MDSD method

and their requirements are examined. Next, the practical aspects mentioned in the

introduction are discussed in detail. In addition, the use case outlined in Section Outline

of Contribution is further specified.

Chapter Implementation gives an overview of the developed MDSD method. First,

the general workflow is presented. Following this, the low-code modelling process is

explained in detail. At the end of this chapter, an overview of the UI execution envi-

ronment is given.

The last Chapter Conclusion summarizes the result of this thesis and provides an outlook

on possible future work.

11

2. Model-driven Software Development

2 Model-driven Software Development

This chapter provides an introduction to Model-driven Software Development (MDSD)

and related approaches. Furthermore, the benefits and drawbacks of code generation

and model interpretation are discussed.

2.1 Overview of Model-driven Software Development

First, a generic description of MDSD is given, which serves as a template for its concrete

realizations and as a basis for the MDSD method shown in Chapter Implementation.

Several different realizations of MDSD are known, such as MDA, MDE and MDWE.3

Here, MDA will be described in more detail later as an example.

Models There is no consensus in the literature on the definition of a model. As a

working definition for this thesis, the three main characteristics of a model stated by

Stachowiak in his book on model theory [47] are listed.

• Mapping feature: A model is a representation of a natural or artificial original,

which itself can be a model.

• Reduction feature: A model captures only those aspects of an original that the

creator considers relevant and important.

• Pragmatic feature: Models always have a particular purpose.

Equation 1 from Chapter Introduction indicates that models and model transforma-

tions play important roles in MDSD. Compared to traditional software development

approaches, models not only are used for documentation and communication purposes,

but may take a role similar to source code in programming. They may serve as a basis

for code generation or be directly executed by an interpreter and hence require a precise

definition of their syntax and semantics, which is achieved by appropriate formalism

such as metamodeling.

Metamodeling While models are an abstraction of concrete instances, a metamodel

formally defines a set of possible models, thus a model is an instance of a metamodel. For

example, one may capture a concrete business process by using UML activity diagrams,

which are described by a UML metamodel. UML metamodels in turn are instances

of a metametamodel defined in Meta Object Facility (MOF). One can see that the

term ”meta” is relative with respect to two models (cf. Figure 1). This cascade of

models could be in principle extended ad infinitum, but in practice a metametamodel

is reflexive, i.e., it is able to describe itself [48].

3The umbrella term MD* can be used to summarize acronyms such as MDA, MDE, MDSD, and

MDWE. This thesis instead uses the acronym MDSD, when talking about related approaches.

12

2.1 Overview of Model-driven Software Development

MetametamodelM3:

MetamodelM2:

ModelM1:

Running InstanceM0:

defines

defines

defines instance of

instance of

instance of

defines instance of

Figure 1: Illustration of a model hierarchy. The different levels in the hierarchy are

called M0, M1, M2 etc. In principle, this hierarchy can even be extended beyond the

M3 level, but typically the M3 level has the special role that it defines itself [48]. As an

example, consider the programming language C. Written source code corresponds to M1

and the running program to M0. M2 level would contain a specification of C with the

help of a context-free grammar [33], which conforms to the definition of a context-free

grammar at the M3 level.

Domain-specific Language A Domain-specific Language (DSL) is used to capture

and express relevant concepts of a domain [13]. The complexity of DSLs can range from

simple files with configuration parameters for a software family to a full-fledged Third

Generation Programming Language (3GL), possibly extended with domain-specific ab-

stractions [48]. Examples of DSLs include SQL for relational databases, HTML for web

technology, UML class diagrams for modelling object-oriented systems, and VHDL for

describing digital circuit designs [9], [49]. The distinction between a DSL and a GPL

is not clear-cut and depends on the given situation. For instance, UML may also be

regarded as a GPL, since it can be used to model any domain [9]. Typically, DSLs

should be as flexible as needed and as simple as possible [48]. In this regard, a 3GL like

Java or C++ without domain-specific concepts would typically be a sub-par choice as

modeling language.

Syntax and Semantics of a DSL Typically at least four ingredients are required

to define a (semi-)formal DSL:

• Abstract Syntax: Defines the structure and operations of a DSL independently of

13

2. Model-driven Software Development

its realization.

• Concrete Syntax: Realization of some abstract syntax. Can take a textual or

graphical form (or a combination of the two).

• Static Semantics: Specifies which elements conforming to an abstract syntax have

a well-defined meaning. For instance, the restriction that uninitialized variables

should not appear in a valid Java source code is realized via static semantics.

• (Dynamic) Semantics: Complements static semantics by giving further meaning

to elements that are well-defined with respect to some static semantics.

A metamodel can be used to specify the abstract syntax and static semantics of a DSL.

The user of a DSL uses its concrete syntax, which is a realization of an abstract syntax

described by a metamodel. As a concrete example, one can specify the DSL SQL with

the help of a BNF grammar [31]. The BNF grammar not only provides a metamodel,

i.e., abstract syntax and static semantics, but in this case also a concrete syntax.4 [9]

The separation into abstract and concrete syntax allows for multiple DSLs acting as

different view points on the same domain. For example, there can be two DSLs con-

forming to the same metamodel, where one DSL is textual and designed for IT experts,

while the other DSL is graphical and more geared towards domain experts with less

technical expertise. In case of the previous SQL example, one can define a graphical

query builder for less proficient SQL users.

Further semantics of DSLs can be specified in different fashions. In case of the SQL

example, the BNF grammar does not specify the meaning of keywords such as SELECT,

FROM, WHERE, so the example requires the definition of additional semantics. Some

example techniques for defining these additional semantics are given below. [9], [32],

[48]

• Denotational semantics: Creates a mapping between a programming language

and mathematical formalism.

• Operational semantics: Defines the semantics of a programming language by build-

ing an interpreter that directly describes the behavior of given programming lan-

guage.

• Translational semantics: Specifies a programming language by a mapping to an-

other programming language with already defined semantics.

Model Transformations Another key aspect of MDSD are Model-to-Model (M2M)

and Model-to-Text (M2T) transformations. A desirable goal in MDSD is to create a tool-

chain that takes a set of models as input and yields a (nearly) fully functional application

by applying a sequence of M2M-transformations and a final M2T-transformation to the

input. Architecturally, the described tool-chain follows a Pipes and Filters style, where

4The abstract and concrete syntax may not always be clearly separable, but they are not identical

either! The specification of the metamodel via a BNF grammar is a particular case.

14

2.2 Model-Driven Architecture

each M2M-transformation enhances its input with some details. This approach offers

some flexibility by construction. For instance, instead of applying a M2T-transformation

to construct an Android application, one could apply a M2T-transformation for creat-

ing an iOS application, i.e., the M2T-transformation can be adapted to the target

platform. It should be noted that M2T-transformations may also be used to create

test cases, further documentation, or deployment scripts. The described transforma-

tions need to be implemented, but it is possible that the return on investment can be

reached faster compared to non-MDSD approaches, since the transformations are exe-

cuted (semi-)automatically and the application no longer needs to be implemented by

hand. In addition, good modularisation of a MDSD tool-chain can support reusability

of transformations in further software projects. [9], [48].

It should be noted that metamodeling can be utilized to formally define the input and

output of each transformation of a MDSD tool-chain. Therefore, not only the input

and output of the tool-chain is required to conform to their respective metamodels, but

intermediate artifacts of the M2M-transformations as well. Even model transformations

themselves are treated as models in MDSD and defined by further metamodels.

Platforms The outlined tool-chain becomes especially useful, if the created appli-

cation has access to a platform, e.g., a middleware, library, or framework. Examples

for platforms include Jakarta EE, .NET, and CORBA, but the concrete meaning of a

platform depends on the application and scope [37], [48]. In the case of code genera-

tion, the M2T-transformation can use components defined by a platform and does not

need to implement a most likely inferior solution for already solved problems, making

M2T-transformations simpler and less error-prone.

2.2 Model-Driven Architecture

Model-driven Architecture (MDA) is a flavor of MDSD specified by the Object Manage-

ment Group (OMG) that focuses on portability and interoperability of MDSD software.

A Platform Independent Model (PIM) and a Platform Specific Model (PSM) is defined

relative to a prescribed platform. The difference between these models is that PIMs do

not contain platform-specific details in contrast to PSMs. For example, consider the

development of a MVC-based CRUD application for the J2SE platform. On one hand,

the PIM could represent a GUI layout of a CRUD interface, which can be described

with UML class diagrams and a UML profile for GUIs (e.g. [45]). On the other hand,

the PSM structures the GUI into MVC-pattern and explicitly references resources from

the J2SE platform. Moreover, the term Computation Independent Model (CIM) can

be introduced to distinct pure business models from PIMs that define high-level sys-

tem architectures. CIMs are often defined informally, e.g., textual use cases and paper

prototypes are examples for CIMs. [5], [37], [48]

The OMG defines a set of standards for DSLs and transformations that can be used

to implement a MDA tool-chain. Any language used in MDA must work with MOF-

compatible tools and therefore be MOF-based. Usually, models are expressed using

UML and UML profiles. However, this is not mandatory as long as the modeling

15

2. Model-driven Software Development

Computation Independent Model (CIM)

Platform Independent Model (PIM)

Platform Specific Model (PSM)

Application

Manual/M2M

M2M

M2T

Figure 2: Overview of MDA hierarchy. The deeper the layer in the hierarchy, the more

detailed and technical are the contained models. The arrows indicate model transforma-

tions between models with different levels of detail. Horizontal transformations between

models at the same level are not shown.

language used is MOF-based. Moreover, semantics in form of constraints, e.g. invariants

and pre- and postconditions of functions, can be modeled using the Object Constraint

Language (OCL). M2M-Transformations can be described using the MOF-based Query

View Transformation (QVT) specification. For specifying M2T-Transformations the

OMG standard called MOF Model to Text (MOFM2T) language can be used. All

MOF-based models are supposed to be serializable in a standardized XML Metadata

Interchange (XMI) format. There are also JSON-based formats such as JSOI that can

be used as interchange format for models [29]. Note how these standardization efforts

support the main goals of MDA mentioned in the previous paragraph. [9]

2.3 Code Generation vs. Model Interpretation

Source code can be run directly by an interpreter or compiled into a program and later

executed by the OS. There are also hybrid approaches as in Java, where Java byte code is

first generated from Java source code and later interpreted by the Java virtual machine.

MDSD is similar in the sense that models substitute for the role of source code. One

has to decide whether the MDSD tool-chain is a code generator or directly interprets

the input model. Overeem et al. call the former approach generative MDSD and the

latter approach interpretive MDSD. Of course, hybrid approaches are still possible in

this setting. For example, the input model may be first simplified by a transformation

into a second model, which is then interpreted at run-time, or a MDSD tool-chain may

even match-and-mix both code generation and model interpretation for different part

of its application. [40]

16

2.3 Code Generation vs. Model Interpretation

At first glance, the outlined approaches may seem equivalent in terms of functional

requirements, but depending on the non-functional requirements, one of these solu-

tions may seem superior to the other. Overeem et al. [40] conducted a literature

study and compiled the results of thirty-five articles on the performance of the above

approaches with respect to different non-functional requirements. In addition, they

interviewed twenty-two product experts of sixteen different Software Producing Organ-

isations (SPOs) that develop Model-driven Engineering Environment (MDEE) to learn

who the target users of MDEE are and how SPOs make design decisions when developing

MDEEs.

While generative MDSD appears superior to interpretive MDSD in terms of run-time

time behavior and resource allocation, interpretive MDSD beats its counterpart in the

build-time time behavior category. These results seem intuitive, since interpreters create

additional overhead during the execution of an application, but the application does not

need to be compiled before execution. Overeem et al. [40] found out that most authors

agree that interpretive MDSD leads to more modular, analysable, and modifiable MDSD

tool-chains. In contrast, the evidence on testability was not conclusive enough to decide

whether a generative or interpretive approach is better suited for this aspect. Moreover,

Overeem et al. [40] claim that SPOs have not an explicit rational for the design of their

MDEE and that there is a a lack of guidance and knowledge for SPOs.

Good build-time time behavior is especially helpful when software developers and do-

main experts need to collaborate in order to create an appropriate domain model and

MDSD tool-chain, because changes in the input model are reflected instantaneously.

Furthermore, a tool-chain based on model interpretation only needs to be developed

once and can then be deployed with different input models to meet different customer

requirements. With generative MDSD, one would have to compile a new version each

time instead. However, the flexibility of interpretive MDSD has a serious drawback.

Here, the model is exposed to the application, which can lead to confidentiality and

security issues.

17

3. Related Works

3 Related Works

This chapter lists and describes related systems and DSLs which are important for this

thesis.

3.1 MockupToME

Between 2008 and 2010 Basso et al. developed the MockupToMe methodology for

Model-driven Web Engineering (MDWE) of CRUD, Filter, List, and Report use cases

based on MDA. MDWE means MDSD applied to web development. Web front-ends are

usually represented by GUI components and behavioral diagrams, but these models need

to be decorated with semantics for the actions of users, screen flows and business logic.

The manual enrichment of the intermediate products in MDWE is time-consuming and

discourages the use of MDWE, especially in software projects, where short iterations

are needed. Basso et al. give a solution to the described problem by developing auto-

mated design techniques and a custom DSL called MockupToMe DSL that overcomes

limitations of the GUI profile.5 For instance, they added the concept for Master/Detail

views, which is needed for more complex CRUD interfaces with nested input masks. [5]

The authors of [5] give a summary of their methodology in four abstract levels:

• An initial paper prototyping phase, where a requirements engineer elicitates tex-

tual use cases and paper prototypes. A conceptional UML model and a use case

diagram, both annotated with stereotypes from the CRUD UML profile, are cre-

ated. The end-products of this level are created fully manually and correspond to

CIMs described in Chapter Overview of Model-driven Software Development.

• The evolutionary prototyping phase, where a mockup designer creates preliminary

mockup models with the MockupToME DSL and proposes different UI variants

to the client. Based on client feedback, the initial mockups are further refined

and annotated. Finally, a runnable prototype is created that is accepted by the

client. The prototype is part of the PIM and the transition from CIM to PIM is

performed by the mockup designer.

• In the architectural prototyping phase, a software architect structures the refined

prototype from the previous phase with the help of predefined M2M-transformations

into MVC-based application models. UML structural and behavioral diagrams and

concrete GUI components are obtained with the help of M2M-transformations.

After this process, the GUI components are further refined with annotations to

prepare for the M2T-transformations and optionally a set of different UML pro-

files (GUI DSLs, Action Profile, ORM Profile, and Service Profile) is applied. This

final step resembles the transition from a PIM to a PSM.

• Functional prototyping is the last phase in the MockupToME methodology, where

the M2T-transformations are executed. The input of the M2T-transformations

are the previously generated UML structural and behavioral diagrams and the

5UML is used as modelling language by the authors.

18

3.2 JSON Schema

refined platform-specific GUI components. The client can interact with a working

piece of the application and perform an acceptance test.

3.2 JSON Schema

JSON Schema is an extensive JSON format specification standardized by the IETF [30].

JSON schema is intended to define validation, documentation, hyperlink navigation, and

interaction control of JSON data [23]. Both JSON:API and JSON Forms are based on

this standard.

3.3 JSON:API

JSON:API is a format specification for lightweight JSON responses. It supports sparse

fieldsets, i.e., an client may request that an API endpoint returns only specific fields

in the response, and pagination links, i.e., the server may provide links to traverse a

paginated data set. An API endpoint may return an array of resource objects that are

related to the primary data via the attribute included (cf. Listing 1 and Listing 2).

JSON:API can be used to structure inputs and outputs in a MDSD method or for the

data transmission between client and service. [55]

{

"jsonapi": {

"version": "1.0"

},

"data": [

{

"type": "Doctor",

"id": "37251",

"attributes": {

"name": "Dietrich",

"surname": "Peters",

"title": "Dr. med."

},

"relationships": {

"address": {

"links": {

"self": "http ://api.clinic.com/doc /37251/

relationsships/address",

"related": "http ://api.clinic.com/doc /37251/ address

"

},

"data": {

"type": "Location",

"id": "273123"

}

}

}

}

19

3. Related Works

],

"included": [

{

"type": "Location",

"id": "273123",

"attributes": {

"country": "DE",

"city": "Jena",

"street": "Im Sommerfeld 164"

}

}

]

}

Listing 1: Example of a JSON object conforming to JSON:API specification. A

Location object is related to the primary object Doctor and is contained in included.

GET /doctors?id =37251& include=address&fields[address]=country ,

city ,street

HTTP /1.1

Listing 2: This HTTP request may lead to the response in Listing 1. A doctor with

id 37251 is retrieved together with its addresses. Sparse fieldsets are used to filter the

corresponding address objects for the attributes country, city, and street, omitting

other attributes such as zipcode. The included parameter ensures that not only

references to related objects are supplied, but also the referenced objects themselves.

In this example, included=address means that the API endpoint returns the address

objects related to the requested doctor. This feature can be used to reduce the number

of requests in a client.

3.4 JSON Forms

JSON Forms is a JSON Schema based approach for creating forms and comes with off

the shelf support for React, Angular and Vue. This framework requires as input a data

schema that defines the underlying data to be shown in the UI and a UI schema that

defines how the data is rendered as a form.6 This framework can be extended with

custom renderers to offer custom components and to support further web frameworks

and libraries. Moreover, more complex forms that require conditional rendering or

validation of inputs can be realized with JSON Forms. JSON Forms uses the JSON

schema validator AJV to validate constraints in the form of regular expressions, data

type checks of inputs, and user-defined JS functions. [20]

{

"properties": {

"staff_data": {

"$ref": "api.clinic.com/schemas/staff/staff_data.json"

6The UI schema is auto-generated if not provided.

20

3.5 Eclipse Modeling Framework

},

"address": {

"type": "object",

"properties": {

"street": {

"title": "Street",

"type": "string"

},

"city_postcode": {

"title": "Postcode/City",

"type": "string"

},

"State_Country": {

"title": "Form of address",

"type": "string"

}

}

}

}

}

Listing 3: Example of a data schema to be rendered in a UI. Further JSON files with

data schema definitions can be referenced via $ref.

3.5 Eclipse Modeling Framework

Eclipse is a well-known and extendable open-source IDE [17]. The Eclipse Modelling

Project (EMP) focuses on the evolution of model-based development technologies within

the Eclipse community [18] and includes the Eclipse Modelling Framework (EMF) used

to develop tools for code generation based on the ECore metamodel. The ECore meta-

model is a metamodel similar to UML and specifies the data structure and concepts of

models developed with the EMF [19]. Moreover, it contains the EMF.Edit framework

including generic classes for building editors for EMF models and the code generation

facility EMF.Codegen, which is capable of building a complete editor for an EMF model

[19].

3.6 Interaction Flow Modeling Language (IFML)

IFML is standardized and published in 2015 by the OMG and can be used to specify

front-ends, independently of their concrete implementation details. It is a comprehensive

DSL, which covers the following aspects of front-ends of applications: [9], [38]

• The composition of the view in terms of view containers and view components.

• The content of the view, i.e., the data to be displayed on the UI.

• Commands and interaction events supported by the UI.

• Control logic that determines the actions to be executed after triggering an event.

21

3. Related Works

• Parameter binding, defining the data items shared between elements of the UI.

Presentation aspects of a UI cannot be captured with IFML [9]. Acerbis et al. claim

that IFML is inspired by WebML and that it includes several innovations such as the

separation of business logic and UI specifications and that the core concepts of IFML

can be applied to any type of UIs [1].

3.7 IFMLEdit.org

Bernaschina created the web-based IFML editor IFMLEdit.org [7] as a case study for

his M2M and M2T transformation framework ALMOsT.js [6]. IFMLEdit.org does not

require the installation of any software and is thus a convenient way to create an IFML

model (cf. Figure 5). The created model can be exported as a JSON file.

Since this software is a PoC for ALMOsT.js implemented by a single person, the func-

tionally of this application is reduced. The focus of IFMLEdit.org is on UIs with «List»
and «Detail» elements and less on «Form» elements. There is no pre-defined exam-

ple with a «Form» element on the website and the form does only support simple

textfields. Additionally, there is no export to XMI, which would be more practical for

a MDA toolchain (cf. Section 2.2).

3.8 Webratio Platform

Webratio platform is a tool for model-driven development of web and mobile applications

based on IFML. This platform can be used in conjunction with Eclipse and offers

various features such as model checking, full-code generation, and lifecycle management.

Additionally, Webratio platform supports the implementation of custom components

and contains a layout template and style design environment for UI layout and styling.

The modelled application can then be generated and tested with the included webserver.

[1]

22

3.8 Webratio Platform

Figure 3: Form generated from Listing 3. The layout can be further specified via a

UI schema (not shown in Listing 3). Otherwise a standard vertical layout is generated.

The information for staff data referenced via $ref in Listing 3 is resolved and displayed.

23

3. Related Works

Figure 4: Modelling example of an online bookstore with IFML from the specification

[38].

Figure 5: Screenshot of IFMLEdit.org. The IFML model in this figure shows a basic

music player.

24

4. Analysis

4 Analysis

Chapter Analysis describes the requirements towards the MDSD method developed in

this thesis and the target user group. The practical problems mentioned in Section

Challenges in Model-Driven Development are further elaborated. Additionally, the ap-

plication example for the MDSD method sketched in Section Outline of Contribution is

specified.

4.1 Assumptions

When designing a system, its boundaries and assumptions should also be stated. The

design of back-end services is not considered by this thesis. The structure of each

response from an API endpoint is assumed to conform to some version of the JSON:API

standard (cf. Section 3.3). However, later semantic changes to back-end services, e.g.,

the renaming or addition of attributes in response data objects, will likely have an

impact on the interaction between front-end and back-end and must be considered.

Tools for UI design are not developed, but the proposed MDSD method has still to

define activities where the development of UI forms would take place. Recall that the

focus of this thesis is on MDSD tool-chains based on model interpretation (cf. Section

2.3), and hence the MDSD tool-chain is based on this paradigm.

4.2 User Group

The user group of the MDSD method consists entirely of software developers, which is

by no means an uniform group. Here is a list of roles, which may appear in the course

of a project:

• Domain expert : Models the application domain and is, at least indirectly, respon-

sible for the content of an UI and thus sets the general conditions for developers.

This group is not directly targeted in this thesis.

• UI designer : Set the layout, content, and navigation of UIs. The focus of this role

is on the appearance and design of an UI. The data binding aspect between UIs

and services is not handled by this role.

• Front-end developer : Uses the information provided by the UI designers and do-

main experts to implement the UI. Additionally, this role implements the com-

munication between front-end and back-end and thus binds elements from the UI

to services.

• Back-end developer : Develops the API endpoints. This group is not primarily

targeted by the MDSD method, but back-end developers can introduce changes

to API endpoints that may affect the work of front-end developers.

In summary, the target of the MDSD method are (mainly) technical experts.

25

4. Analysis

4.3 Problems

As mentioned in Chapter Introduction, the main goal of this thesis is to define a MDSD

method, which takes an appropriate set of inputs (cf. Figure 10) and produces a CRUD

UI (cf. Figure 9). This goal comes with some technical and process related issues. The

ones found through interviews with members from t2informatik GmbH [50] are listed

below.

1. Process related problems: This category includes problems arising from a high-level

point of view on the MDSD methodology. Of course, the required activities, their

artifacts, and the involved roles have to be first identified and defined, depend-

ing on the desired end goal. Furthermore, the following specific process related

problems are identified as important in context of this thesis:

(a) Adjustable UI appearence: Regardless of the concrete MDSD process, there

should be some activity in which an initial (generated) UI layout can be

further (semi-)manually refined. The refined UI should still be compatible as

an input for further activities of the MDSD process.

(b) Collaboration of multiple independent teams: The MDSD process should al-

low for activities that can be performed by independent teams. On one hand,

the inputs to these activities should ideally be sufficiently modularized to al-

low for this. On the other hand, the artifacts produced by these teams should

be combinable without high overhead.

2. Technical problems: This part is divided into general problems that appear re-

gardless of the MDSD tool-chain implementation and specific problems that are

more relevant when working with model interpretation.

(a) General technical problems: These listed problems must be considered whether

a generative or interpretive approach is used.

i. UI description: A concise and holistic description of an UI has to be

specified. In case of a multi-page UI the following aspects are worth

considering:

• the static structure, i.e., which elements are shown on which screens,

• the user flow, and

• the visual appearance of the UI.

ii. Data binding: UIs communicate with services to fetch and transmit data.

This requires data binding between the elements of an UI and the data

and methods provided by a service.

iii. Parallel development: The MDSD method should allow for different con-

sumer and service versions to run in parallel.

(b) Specific technical problems: Recall that the end product consists of an in-

terpreter and a model to be interpreted in case of model interpretation (cf.

Section 2.3). The question arises whether the model should be delivered

together with the interpreter or whether the model should be provided by

a service and retrieved by a client at run-time. A hybrid approach is also

26

4.4 Pseudo-Requirements

possible here, where some static assets are provided along with the inter-

preter and other dynamic resources are loaded at run-time. The following

two consequences are important for this thesis:

i. Lightweight data transmission: The transmission of models and resources

should be lightweight and omit unnecessary information. For instance,

when using JSON Forms (cf. Section 3.4), it is not advisable to trans-

mit schema information for forms in which the client is not interested,

especially in case of mobile devices as clients.

ii. Validation rules: Form data needs to be validated at least on server-side.

One may ask, whether a client-side validation of form data is desirable

to reduce server load and give faster user feedback. Static distribution of

validation rules is inflexible and may lead to outdated validation rules,

when further versions of the end product are developed. In the worst

case, the server may reject form data if the validation rules are not

synchronized between the service and the client.

4.4 Pseudo-Requirements

There are two pseudo-requirements for this thesis:

1. Front-end produced by proposed MDSD method must be able to handle JSON:API

responses.

2. JSON Forms must be the core library used by the MDSD tool-chain.

4.5 Application Example

The general setting is a clinic administration software for the management of multiple

clinical centers. Two UI screens are described in more detail as application example for

the proposed MDSD method (cf. Figure 7).

The UI in the first screenshot manages notifications for a set of teams. Each team

consists of multiple staff members for whom notifications are created. The teams are

chosen via the ’Colour’ dropdown menu. A notification can be either a message or a

simple comment, which can be selected with the dropdown menu ’Type’. Depending on

the value in ’Type’ different options are selectable or not in the checkbox.

In the second screenshot, shifts can be created to which teams can be assigned later.

Depending on the clinic selected in the dropdown menu ’Center’, a different set of wards

can be chosen, i.e., there are two dependent dropdown menus in this UI.

Figure 6: ERM describing a possible relationship between entities Shift, Center, and

Ward.

27

4. Analysis

When modelling shifts, centers, and wards as separate entities like in Figure 6, the

problem arises that the UI not only needs to query the work relationship between Work

and Center, but also the has relationship between Center and Ward.

As one can see, the UI screenshots in Figure 7 and Figure 9 follow a Master/Detail

pattern. The table gives an overview over the elements stored in the back-end, i.e., the

table takes the role of the master element. Elements can be created or modified in the

form, i.e., the form takes the role of the detail element. This seems to be a sensible

choice for CRUD UIs in general, since one can get an overview of the stored elements

and edit individual elements at the same time.

Components, whose selectable options depend on each other, are not supported by

JSON Forms by default. A possible solution is to implement and register a custom

renderer that manages two or more concrete dependent components. Furthermore, the

client needs information about the dependency in case of two or more UI elements,

e.g., which ward options are displayed if the center ’B. Brown’ is chosen in the shifts

screen (cf. Figure 7). Validation rules for UI elements can be, for instance, distributed

together with one of the JSON inputs for JSON Forms, i.e., in the data schema or the

UI schema, if possible, or these rules have to be distributed via an additional file and

checked by another library or custom code.7 A way to transmit separate validation rules,

or a referrer to these rules, is as property of the meta field of a JSON:API response.

Using sparse fieldsets and embedding related resources with include is also important

to address Problem 2, (b), i. Considering these implementation details seems to be a

rather straightforward task at first glance, but combining these aspects together with

the MDSD methodology requires careful consideration, since the specific problem is not

known in advance, apart from the creation of CRUD UIs in the context of this work.

7AJV would be a possible candidate, since it is integrated in JSON Forms.

28

4.5 Application Example

Figure 7: UI screenshots concerning the application example .

29

5. Implementation

5 Implementation

This chapter proposes an MDSD method that addresses the situation described in Chap-

ter Analysis. First, an overview of the designed method is given. Then, the Low Code

Platform (LCP) used to design CRUD UIs is explained in detail. Afterwards, an inter-

preter used to execute the created artifacts is discussed. The problems listed in Chapter

Analysis are used at the end of each section to evaluate the MDSD method.

5.1 General Workflow

In the proposed MDSD approach, UI designers focus on creating UIs without considering

issues such as validation and data binding to API endpoints, and front-end developers

instead focus on integrating these forms into complex interfaces and processes.

In recent years, the term Low-Code Platforms (LCPs) has become popular [8], [11], [46].

LCPs are based on MDSD principles, but its intended target group are non-technical

specialists in particular. According to Sahay et al. [46], the development process in a

LCP8 consists of the following five steps:

1. Data modelling

2. User interface definition

3. Specification of business logic rules and workflows

4. Integration of external services via third-party APIs

5. Application Deployment

The general structure of the MDSD tool-chain can be summarized by the following

steps:

1. A LCP for the creation of JSON Forms inputs and client-side validation rules.

2. A standalone library, which executes the artifacts from the previous point.

The first four points listed by Sahay et al. are covered in the next chapter. The

deployment of the artifacts generated by the LCP, i.e., the library needed for application

deployment, is considered in the subsequent chapter.

5.2 Low-Code Modelling

5.2.1 Description

Assumptions Note that developers working on the back-end of an application may

have a different perspective on the domain model than developers working on the front-

end. Resources appearing in the domain model can be scattered across different services

8Sahay et al. use the similar term Low-Code Development Platform.

30

5.2 Low-Code Modelling

and additional structures from the solution space may appear. Furthermore, attributes

and relationships can be renamed in the course of the development of the back-end.

Thus, the following assumption is important for the remaining steps:

The domain model from the view of front-end and back-end developers contains

essentially the same information, but can be structured differently.

Step 0: Domain Modelling

Input: ∅

Output: Domain model as UML or ERM.

Roles involved: Domain experts.

The creation of a CIM is usually the first step in building an application. This step falls

outside the scope of this process and is therefore not further specified, but is nevertheless

of great importance for further activities.

Step 1: Selection of Primary Resources

Input: Domain model from Step 0.

Output: Basic CRUD UI skeleton for each primary resource.

Roles involved: UI designers.

As mentioned earlier, the goal is to construct a CRUD UI that fits an already defined

domain model. The UI designer first chooses a set of entities from the domain model

and declares them as primary resources. This creates a Master/Detail skeleton as first

UI definition for each primary resource according to the IFML diagram in Figure 8.

A basic workflow is already given by the Master/Detail skeleton. Each of the primary

resource is shown in a app bar similarly to Figure 7.

Step 2: UI Refinement

Input: Set of basic Master/Detail skeletons from Step 1 and domain model from

Step 0.

Output: Refined UI designs for each Master/Detail skeleton.

Roles involved: UI designers.

One can observe that Figure 8 does not give any information about the concrete UI

appearance. Thus, the next step is to design the «List» and «Form» view components

in Figure 8 with a WYSIWYG-alike UI editor. The UI designer also binds UI elements

to elements from the domain model from Step 0.

31

5. Implementation

Figure 8: Basic Master/Detail skeleton for a Staff resource as example. A landmark view

container (marked with [L]), which is reachable from any UI screen, is encapsulating

the whole Master/Detail structure. A list of Staff data is shown first to the user,

since its view component is encapsulated in a default view container (marked with [D]).

Depending on the user actions, Staff data can be deleted, updated or created. A quick

reference card for IFML notation can be found in [53].

Step 2a: Modelling Basic Attributes The UI designer sets the columns of «List» view

components and the design of the «Form» view components.9 A set of common UI ele-

ments such as textfields, dropdown menus, and radio buttons can be selected by the UI

designer and placed on the UI screen.

Step 2b: Modelling of Secondary CRUD UIs A resource may have relationships

to further resources. A UI designer can create an additional Master/Detail skeleton

similar to Figure 8 to define CRUD operations for these relationships. For instance, in

a UI screen for the management of teams, one may want to edit the staff members of

a selected team. Step 2a is repeated for this newly created Master/Detail skeleton, but

not Step 2b.

A requirement for Step 5 is that the UI components are organized in a component tree

by the WYSIWYG-alike UI editor. At this point the UI can be shown to non-technical

stakeholders for feedback and Step 2 can be repeated until a satisfactory UI design is

achieved.

Consider the Shifts UI screen in Figure 7. Assume that the underlying domain model

contains the ERM in Figure 6. When modelling the dropdown menus ’Center’ and

’Ward’, the WYSIWYG-alike UI editor should offer an option to bind the Center entity,

i.e., the other end point of the relationship between Shift and Center, to the ’Center’

dropdown menu. The WYSIWYG-alike UI editor should now include the relationships

9See Figure 11 for an explanation of the «. . .» notation.

32

5.2 Low-Code Modelling

of Center as binding options in similar way.10,11,12 Now, the Ward entity should be

assignable to the ’Ward’ dropdown menu, since it has a relationship with Center and

can be uniquely inferred when traversing Figure 6 from Shift to Ward. Finally, for both

dropdown menus the attribute to be displayed must be specified, since both Shift and

Ward can contain multiple attributes. Note that this problem cannot be resolved by

Step 2b, because it introduces another UI (sub-)screen.

Step 3: M2M-Transformation for Data Bindings

Input: Refined UI design from Step 2, domain model from Step 0, information

about the representation of the domain model in the back-end.

Output: Object of type ResourceFile (cf. Listing 4) and a file containing the

mapping between the domain model from Step 0 and the back-end representation

of the domain model.

Roles involved: Mainly front-end developers. Additionally back-end developers,

when questions arise.

The UI designers performed a data binding between UI elements and the domain model

from Step 0 in the previous step. These bindings do not necessarily have to be compatible

with the back-end representation of the domain model. Thus, front-end developers may

have to adapt these bindings to the back-end representation of the domain model.

Firstly, the location of the resources from Step 1 has to be defined. The output of

this step is a file of type ResourceFile (cf. Listing 4). Secondly, the bindings defined

on the domain model from Step 0 have to be mapped to the back-end domain model

representation. The advantage of defining an additional mapping file is that UI designer

can still work on the domain model from Step 0, if changes of UI content or appearance

is required. This step can be interpreted as a manual M2M-transformation between

the initial domain model and the back-end representation of it. An additional tool

besides the mentioned WYSIWYG-alike UI editor used previously by the UI designers

could help with this task, but it cannot be easily automated, since it requires semantic

knowledge of both models and the transformation depends on the problem domain and

back-end implementation.

Step 4: Annotation of UI Screens With Client-Side Validation Rules

Input: Output of Step 2.

Output: Refined UI designs annotated with client-side validation rules.

Roles involved: Front-end developers.

10With the exception of the previously binded relationship.
11It can be helpful to track the ’context’ of the relationship. One can use the context to resolve

collisions, which would appear if Shift would have an additional relationship with Ward.
12The case of multiple relationships between two entities is not discussed.
13Step 3 can be omitted, if the domain model from Step 0 and the back-end domain model represen-

tation do match, contrary to the assumption from the beginning of this subchapter.

33

5. Implementation

The front-end developers annotate the «Form» view components in the artifact from

Step 2 with client-side validation rules such as regular expressions for e-mail addresses,

the minimum and maximum bounds of number inputs, or even custom code. The

WYSIWYG-alike UI editor should offer an advanced view, where UI elements can be

annotated by front-end developers. The validation rules can be specified for the UI

bindungs from the initial domain model, since they can be transformed with the mapping

defined in Step 3.

More complex client-side validation rules that cannot be processed alone by JSON Forms

are handled by AJV. Thus, complex client-side validation rules are formulated by front-

end developers as JSON Schema according to the API of AJV. Depending on the scope

of a client-side validation rule, a front-end developer may annotate a single UI element,

a group of UI elements, or the form itself.

Regarding the application example from Chapter Analysis, the front-end developer could

specify client-side validation rules for the dropdown menu and checkbox of the Notifica-

tion UI screen (cf. Figure 7) using the UI bindings referencing the initial domain model.

The front-end developer may also specify the center and ward dependency of the Shifts

UI screen, but this dependency can be deduced automatically from the JSON:API re-

sponses of the API endpoint under mild assumptions, which is explained in Chapter UI

Execution Environment.

Step 5: M2T-Transformation for UI Structure and Appearance

Input: Output of Step 4.

Output: Set of JSON Forms schemas and UI schemas, possibly a file containing

validation rules, and possibly a configuration file for tables to be displayed.

Roles involved: None (fully automated step).

An algorithm based on depth-first search or breath-first search, which constructs a JSON

Forms UI schema (cf. Listing 5) from the component tree defined in the WYSIWYG-

alike UI editor can be applied to each «Form» view component. The JSON Forms

schema (cf. Listing 3) can be directly extracted from configurations in the WYSIWYG-

alike UI editor. The UI bindings are taken from the initial domain model and can later

be transformed by the UI execution environment to match the back-end domain model

representation.

The client-side validation rules are handled differently depending on their scope and

complexity. Constraints such as data types and the range of number fields can be

written directly to the JSON Forms schema, as it can be directly processed by JSON

Forms. More complex constraints requiring AJV are exported to a separate file.

Last but not least, the configuration of the «Table» view components must also be

exported.

Extension With IFML Interpreter The proposed LCP can be supplemented by an

IFML interpreter as the Master/Detail skeleton in Figure 8 is formulated in IFML. The

end product with this extension would look like IFMLEdit.org with additional steps for

34

5.3 UI Execution Environment

validation rules and data binding to the back-end. The UI components obtained after

Step 2 can then be in principle extended by additional IFML constructs. In this way

its possible to have an approach that works fully on model interpretation as the UI

execution environment with JSON Forms as core is based on model interpretation.

5.2.2 Evaluation

It is difficult to extract which attributes and relationships are important to show in

a table or form, thus the forms and tables need to be designed by the UI designer.

However, Step 1 provides an initial Master/Detail skeleton to the UI designer and Step

2 makes the tables and forms adjustable. Therefore, the proposed MDSD method covers

Problem 1, (a).

Only one role is involved in each step, with the exception of Step 3. Hence, Problem 1,

(b) is also addressed by the proposed MDSD method. Step 3 and Step 4 can even be

performed in parallel.

The non-extended version allows the UI designer to define the content and visual ap-

pearance of the UI, but the user flow is restricted to a set of Master/Detail skeletons.

Problem 2, (a), i. can be tackled by combining the proposed MDSD method with an

IFML editor and interpreter. IFML is an appropriate modelling language to describe

the UI flow, but may require additional training.

Problem 2, (a), ii. is explicitly addressed by Step 3 and Step 4 partially concerns

Problem 2, (b), ii. since it allows the definition of client-side validation rules.

5.3 UI Execution Environment

This part describes the implementation of an interpreter that can be used to execute

the artifacts generated by Step 3 and Step 5 from Chapter Low-Code Modelling. The

interpreter can also be used as standalone library for any CRUD UI, regardless of the

problem domain of the developed application.

Recall that JSON Forms is able to show a form based on a data schema and a UI

schema (cf. Listing 3 and Figure 3). The input to the form is tracked with a JSON

object, but any communication between client and service is not implemented by JSON

Forms and must be defined outside of it. For instance, a submit button for a form is

not provided by JSON Forms and needs to be implemented outside of it. Components

such as tables and app bars are not available in JSON Forms per default. However, one

can write and register custom renderers to add custom components to JSON Forms.

Overall, JSON Forms is useful to display and manage the core of a form based on a

model interpretation, but not enough to implement a whole CRUD UI including business

logic. Thus, the proposed MDSD tool-chain contains an UI execution environment that

uses JSON Forms and supplements the missing parts for functioning CRUD UIs.

35

5. Implementation

5.3.1 Input Specification

Mandatory inputs:

• File of type ResourceFile (cf. Listing 4) containing links to API endpoints with

resources and corresponding JSON Forms data schema and possibly corresponding

JSON Forms UI schema.

Optional inputs:

• Mapping file from Step 3 from Chapter Low-Code Modelling.

• Configuration file for tables to be displayed.

• File with client-side validation rules.

All these inputs can be created by the approach in Chapter Low-Code Modelling.

5.3.2 Implementation Details

Custom Components and State Management JSON Forms has indeed an ex-

tendable architecture and provides a method to register new custom components. Un-

fortunately, every UI element in JSON Forms can only see its own state. JSON Forms

uses Redux to manage its state and it does not offer a convenient method to expose the

whole form state of JSON Forms, i.e., a part of the Redux store of JSON Forms, to a

custom component.14 As a workaround, one may work with an own Redux store, which

mimics the form state of JSON Forms. To implement the UI execution environment,

almost every UI element must be customized to allow for data sharing between UI ele-

ments. The data sharing can then be used to cover the use cases described in Chapter

Application Example. Fortunately, the JSON Forms UI elements can be reused to define

the needed custom components.

A database with custom components can be created to support the LCP from the

previous chapter.

Relationship Processing and Traversal Recall that resources in JSON:API re-

sponses have a data field containing the fields attributes and relationships (cf.

Listing 1). A connection between the naming conventions of the forms and tables and

the API response can be made by using the mapping file from Step 3 from Chapter

Low-Code Modelling. An identity assignment is assumed when it is not present.

The UI execution environment may query both the attributes and relationships

field, if it does not know whether the UI element in question references a relationship.

After the first query, it does know this information and can memorize in which field

the information for the UI elements was found. Another way would be to set a flag in

14The recommended way via the React hook useStore() does only expose the Redux store of the

UI execution environment.

36

5.3 UI Execution Environment

one of the configuration files, whenever an UI element references another resource via

a relationship. To reduce the number of requests, the query parameter include is set

accordingly (cf. Listing 2). Otherwise, the UI execution environment would have to

explicitly query the resources referenced in relationships every single time.

The claim at the end of Step 4 in Chapter Low-Code Modelling is now justified in more

detail. This approach is easily implementable, if the name of each attribute in the back-

end representation of the domain model is globally unique. The attribute being searched

for is first translated using the input mapping file. Then, the UI execution environment

encounters the ’Center’ and ’Ward’ dropdown fields, which display attributes not be-

longing to the entity Shift. Thus, the UI execution environment requests the resources

related to Shift and encounters the Center resource during this process, which contains

the matching attribute. The resources related to Center are then queried, since neither

Shift nor its related resources contain the translated attribute for the ’Ward’ dropdown

menu. Then, the missing attribute is found in Ward and displayed. The information

gathered during this traversal is stored for future API requests and the include query

parameter is used to reduce the number of API requests.

Validation Rules The possible ways to create validation rules have already been

explained in Step 4 of Chapter Low-Code Modelling. Still, the transmission of more

complex client-side validation rules has to be specified.

One possible way is to transmit the link to validation rules as meta data together with

the API responses. The meta field can be used to transmit this information. The

development team has to agree on the field name of the link to the validation rules, e.g.,

one can specify a validation field in meta.15

The meta keyword may appear at depth 1 of the API response along with the valida-

tion keyword to affect the entire resource or at least multiple UI components at once,

or it may appear at depth 2 to affect a single resource instance. For the former situa-

tion, one can specify that the root path of the API endpoint contains the ’(semi-)global’

validation rules for its stored resources. This solution can be relevant, if the resource

data is not fetched before the creation of the form.16 The latter situation can be used

when the attributes of a particular resource instance are supposed to be read-only.

Tables and Sparse Fieldsets Sparse fieldsets for requesting table data are set ac-

cording to the table configuration file. This step is implemented by chaining

fields[<resource>]=<attr>

parameters for the API request. This feature is disabled, if no table configuration file is

provided and the whole set of attributes is then requested and displayed by the tables.

15meta contains an object with non-standard meta-information. Thus, the addition of the field

validation is conform to JSON:API specification.
16This is not currently relevant for the Master/Detail skeleton from Chapter Low-Code Modelling,

since resource instances are fetched before the form is shown. However, it can become relevant when

developing the LCP further by adding further Master/Detail skeletons.

37

5. Implementation

Versioning Problem 2., (a), iii. can be addressed by choosing a versioning scheme.

Changes in the back-end may invalidate the mapping file that is used to translate be-

tween front-end and back-end identifiers or the back-end may reject form inputs because

of inconsistent validation rules. Semantic versioning can be used to indicate the compat-

ibility of front-end and back-end. The never remove, only add strategy which JSON:API

uses may also be a viable approach to ensure backward compatibility. It may be nec-

essary to repeat the process from the previous chapter starting from Step 3 to update

the front-end so that it is compatible with the new back-end version.

5.3.3 Evaluation

Problem 2, (b), i. and Problem 2, (b), ii. from Chapter Analysis are addressed by

the specific features of the UI execution environment. JSON:API features are used to

reduce communication between front-end and back-end. Additionally, these features

are used to reduce configuration overhead for front-end developers. The MDSD method

may offer support to handle Problem 2, (a), iii., but overall this problem can be better

solved by the development team than by the MDSD tool-chain.

38

6. Conclusion

6 Conclusion

MDSD and related approaches are likely to become more and more important for soft-

ware development as software becomes larger and more complex. The additional ab-

straction provided by MDSD and related approaches allows application developers to

focus mostly on the problem domain. It also enables people lacking extensive program-

ming background to construct applications, once a suitable MDSD method has been

chosen and established. [46], [51]

For a practical development scenario, a set of requirements for a MDSD method based

on JSON Forms and JSON:API was compiled in Chapter Analysis. Subsequently, a

MDSD method was proposed in Chapter Implementation that meets all the identified

requirements. This example also serves to illustrate the MDSD terminology from Chap-

ter Overview of Model-driven Software Development.

There are further topics worth consideration, but not covered in this thesis. Verification

and validation can be considered in context of MDSD to build dependable systems

[28]. Additionally, version control systems such as Git are not appropriate for the

version control of models, since they are focused on text-based artifacts. Advanced

features such as the merging of two model versions may lead to an inconsistent model

[9]. Furthermore, the intricate details of software for M2M- and M2T- transformations

were not considered in this thesis. In summary, there are many aspects of MDSD that

can be covered in much greater depth than shown in this thesis.

Since parts of the MDSD tool-chain outlined in Chapter Implementation is not im-

plemented, the next step would be to actually build the proposed MDSD tool-chain.

Moreover, it was implicitly assumed that entities from the initial domain model are not

split up in the back-end representation. Future changes to the initial domain model

may also introduce some difficulties for the MDSD method.

A partial implementation of the UI execution environment can be found in the GitHub

repository for this thesis (https://github.com/alexander-korzec/MDSD_Bachelor_

Thesis).

39

https://github.com/alexander-korzec/MDSD_Bachelor_Thesis
https://github.com/alexander-korzec/MDSD_Bachelor_Thesis

References

References

[1] R. Acerbis, A. Bongio, M. Brambilla, and S. Butti, “Model-Driven Development

Based on OMG’s IFML with WebRatio Web and Mobile Platform”, in Engineering

the Web in the Big Data Era, ser. Lecture Notes in Computer Science, Cham:

Springer Int. Publishing, 2015, pp. 605–608.

[2] A. A. H. Alzahrani, “4GL Code Generation: A Systematic Review”, Int. J. Adv.

Comput. Science Appl., vol. 11, no. 6, 2020.

[3] P. Bachmann, “Static and metaprogramming patterns and static frameworks: A

catalog. an application”, in Proc. 2006 Conf. Pattern Lang. Programs, ser. PLoP

’06, New York, NY: ACM, Oct. 2006, pp. 1–33.

[4] M. Baciková, J. Porubän, and D. Lakatos, “Defining Domain Language of Graphi-

cal User Interfaces”, in 2nd Symp. Lang., Appl. and Technologies, ser. OpenAccess

Series in Informatics (OASIcs), vol. 29, Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, 2013, pp. 187–202.

[5] F. P. Basso, R. M. Pillat, T. C. Oliveira, F. Roos-Frantz, and R. Z. Frantz, “Au-

tomated design of multi-layered web information systems”, J. Syst. and Software,

vol. 117, pp. 612–637, Jul. 2016.

[6] C. Bernaschina, “ALMOsT.js: An Agile Model to Model and Model to Text Trans-

formation Framework”, in Web Engineering, ser. Lecture Notes in Computer Sci-

ence, Cham: Springer Int. Publishing, 2017, pp. 79–97.

[7] C. Bernaschina, S. Comai, and P. Fraternali, “IFMLEdit.org: Model Driven Rapid

Prototyping of Mobile Apps”, in 2017 IEEE/ACM 4th Int. Conf. Mobile Software

Engineering and Syst. (MOBILESoft), May 2017, pp. 207–208.

[8] A. C. Bock and U. Frank, “Low-Code Platform”, Bus. and Inf. Syst. Engineering,

vol. 63, no. 6, pp. 733–740, Dec. 2021.

[9] M. Brambilla, J. Cabot, and M. Wimmer, “Model-Driven Software Engineering in

Practice, 2nd Edition”, Synthesis Lectures on Software Engineering, vol. 3, no. 1,

pp. 1–207, Mar. 2017.

[10] M. Brambilla, A. Mauri, and E. Umuhoza, “Extending the Interaction Flow Mod-

eling Language (IFML) for Model Driven Development of Mobile Applications

Front End”, in Mobile Web Information Syst., ser. Lecture Notes in Computer

Science, Cham: Springer Int. Publishing, 2014, pp. 176–191.

[11] J. Cabot, “Positioning of the low-code movement within the field of model-driven

engineering”, in Proc. 23rd ACM/IEEE Int. Conf. Model Driven Engineering

Lang. and Syst.: Companion Proc. 76, New York, NY: ACM, Oct. 2020, pp. 1–3.

[12] K. Czarnecki and S. Helsen, “Feature-based survey of model transformation ap-

proaches”, IBM Syst. J., vol. 45, no. 3, pp. 621–645, 2006.

[13] K. Czarnecki, “Overview of Generative Software Development”, in Unconventional

Programming Paradigms, ser. Lecture Notes in Computer Science, Berlin, Heidel-

berg: Springer, 2005, pp. 326–341.

40

References

[14] L. P. da Silva and F. Brito e Abreu, “Model-driven GUI generation and navigation

for Android BIS apps”, in 2014 2nd Int. Conf. Model-Driven Engineering and

Software Development (MODELSWARD), Jan. 2014, pp. 400–407.

[15] V. De Castro, E. Marcos, and J. M. Vara, “Applying CIM-to-PIM model transfor-

mations for the service-oriented development of information systems”, Information

and Software Technology, vol. 53, no. 1, pp. 87–105, Jan. 2011.

[16] V. Deufemia, C. D’Souza, and A. Ginige, “Visually modelling data intensive web

applications to assist end-user development”, in Proc. 6th Int. Symp. Visual In-

formation Communication and Interaction, ser. VINCI ’13, New York, NY, USA:

ACM, Aug. 2013, pp. 17–26.

[17] Eclipse Foundation. (Aug. 2022). Eclipse IDE, [Online]. Available: https : / /

eclipseide.org/ (visited on 08/08/2022).

[18] ——, (Aug. 2022). Eclipse Modelling Project, [Online]. Available: https://www.

eclipse.org/modeling/ (visited on 08/08/2022).

[19] ——, Eclipse modelling framework. [Online]. Available: https://www.eclipse.

org/modeling/emf/ (visited on 08/08/2022).

[20] EclipseSource. (Aug. 2022). JSON Forms, [Online]. Available: https://jsonforms.

io/ (visited on 08/08/2022).

[21] M. EL Omari, M. Erramdani, and A. Rhouati, “A Model Driven Approach for

Generating Angular 7 Applications”, Int. J. recent contributions engineering, sci-

ence & IT, vol. 8, no. 2, pp. 36–45, 2020.

[22] R. France and B. Rumpe, “Model-driven Development of Complex Software: A

Research Roadmap”, in Future Software Engineering (FOSE ’07), IEEE, 2007,

pp. 37–54.

[23] G. Dennis. (Jun. 2022). JSON Schema: A Media Type for Describing JSON Doc-

uments, [Online]. Available: https://datatracker.ietf.org/doc/html/draft-

bhutton-json-schema-01 (visited on 08/08/2022).

[24] L. Gaouar, A. Benamar, and F. T. Bendimerad, “Model Driven Approaches to

Cross Platform Mobile Development”, in Proc. Int. Conf. Intelligent Information

Processing, Security and Adv. Communication, ser. IPAC ’15, New York, NY:

ACM, Nov. 2015, pp. 1–5.

[25] A. Gerasimov, J. Michael, L. Netz, and B. Rumpe, “Agile Generator-Based GUI

Modeling for Information Systems”, in Modelling to Program, ser. Communica-

tions in Comput. and Information Science, Cham: Springer Int. Publishing, 2021,

pp. 113–126.

[26] M. Hamdani, W. H. Butt, M. W. Anwar, and F. Azam, “A Systematic Litera-

ture Review on Interaction Flow Modeling Language (IFML)”, in Proc. 2018 2nd

Int. Conf. Management Engineering, Software Engineering and Service Sciences,

ser. ICMSS 2018, New York, NY: ACM, Jan. 2018, pp. 134–138.

41

https://eclipseide.org/
https://eclipseide.org/
https://www.eclipse.org/modeling/
https://www.eclipse.org/modeling/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
https://jsonforms.io/
https://jsonforms.io/
https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-01
https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-01

References

[27] R. Hebig, C. Seidl, T. Berger, J. K. Pedersen, and A. W ↪asowski, “Model transfor-

mation languages under a magnifying glass: A controlled experiment with Xtend,

ATL, and QVT”, in Proc. 2018 26th ACM Joint Meeting European Software En-

gineering Conf. and Symp. Foundations Software Engineering, ser. ESEC/FSE

2018, New York, NY: ACM, Oct. 2018, pp. 445–455.

[28] A. Hovsepyan, D. V. L, S. O. D. Beeck, W. Joosen, G. Rangel, J. Fern, and E.

Briones, “Model-driven software development of safety-critical avionics systems:

An experience report”, in Proc. 1st Int. Workshop Model-Driven Development

Processes and Practices (MD2P2), 2014, pp. 28–37.

[29] H. Hoyos Rodriguez and B. Sanchez Piña, “JSOI: A JSON-Based Interchange

Format for Efficient Model Management”, in 2019 ACM/IEEE 22nd Int. Conf.

Model Driven Engineering Lang. and Syst. Companion (MODELS-C), Sep. 2019,

pp. 259–266.

[30] IETF. (Aug. 2022). JSON Schema, [Online]. Available: https://json-schema.

org/ (visited on 08/08/2022).

[31] L. Jonathan. (Nov. 2017). BNF Grammars for SQL-92, SQL-99 and SQL-2003,

[Online]. Available: https://ronsavage.github.io/SQL/ (visited on 08/08/2022).

[32] S. Jörges, Construction and Evolution of Code Generators: A Model-Driven and

Service-Oriented Approach. Springer, Jan. 2013.

[33] B. W. Kernighan, The C Programming Language / Brian W. Kernighan ; Dennis

M. Ritchie. 2. ed., 6. [print.] Englewood Cliffs, NJ: Prentice-Hall, 1988.

[34] J. Kramer, “Is abstraction the key to computing?”, Commun. ACM, vol. 50, no. 4,

pp. 36–42, Apr. 2007.

[35] G. Macher and C. Kreiner, “Model transformation and synchronization process

patterns”, in Proc. 20th European Conf. Pattern Languages Programs, ser. Euro-

PLoP ’15, New York, NY: ACM, Jul. 2015, pp. 1–11.

[36] A. P. F. Magalhaes, A. M. S. Andrade, and R. S. P. Maciel, “Model driven trans-

formation development (MDTD): An approach for developing model to model

transformation”, Information and Software Technology, vol. 114, pp. 55–76, Oct.

2019.

[37] OMG. (Jun. 2014). OMG Document – Ormsc/14-06-01 (MDA Guide Revision

2.0), [Online]. Available: http://themeforest.net/user/dan%5C_fisher (vis-

ited on 08/08/2022).

[38] ——, (Feb. 2015). Interaction Flow Modeling Language, [Online]. Available: https:

//www.omg.org/spec/IFML/About-IFML/ (visited on 08/08/2022).

[39] M. Overeem and S. Jansen, “An Exploration of the ‘It’ in ‘It Depends’: Generative

versus Interpretive Model-Driven Development:” in Proc. 5th Int. Conf. Model-

Driven Engineering and Software Development, Porto, Portugal: SCITEPRESS -

Science and Technology Publications, 2017, pp. 100–111.

[40] M. Overeem, S. Jansen, and S. Fortuin, “Generative versus Interpretive Model-

Driven Development: Moving Past ‘It Depends’”, in Model-Driven Engineering and

Software Development, ser. Communications in Comput. and Information Science,

Cham: Springer Int. Publishing, 2018, pp. 222–246.

42

https://json-schema.org/
https://json-schema.org/
https://ronsavage.github.io/SQL/
http://themeforest.net/user/dan%5C_fisher
https://www.omg.org/spec/IFML/About-IFML/
https://www.omg.org/spec/IFML/About-IFML/

References

[41] G. Paolone, M. Marinelli, R. Paesani, and P. Di Felice, “Automatic Code Gener-

ation of MVC Web Applications”, Comput., vol. 9, no. 3, p. 56, Sep. 2020.

[42] C. Preschern, N. Kajtazovic, and C. Kreiner, “Applying patterns to model-driven

development of automation systems: An industrial case study”, in Proc. 17th Eu-

ropean Conf. Pattern Lang. Programs, ser. EuroPLoP ’12, New York, NY: ACM,

Jul. 2012, pp. 1–10.

[43] T. Preston-Werner. (Aug. 2022). Semantic Versioning Specification, [Online]. Avail-

able: https://semver.org/ (visited on 08/08/2022).

[44] S. Raemaekers, A. van Deursen, and J. Visser, “Semantic versioning and impact

of breaking changes in the Maven repository”, J. Syst. and Software, vol. 129,

pp. 140–158, Jul. 2017.

[45] A. Rauf, M. Ramzan, M. A. B. U. Rahim, and A. A. Shahid, “Extending UML to

model GUI: A new profile”, in 2010 The 2nd Int. Conf. Comput. and Automation

Engineering (ICCAE), vol. 1, Feb. 2010, pp. 349–353.

[46] A. Sahay, A. Indamutsa, D. Di Ruscio, and A. Pierantonio, “Supporting the un-

derstanding and comparison of low-code development platforms”, in 2020 46th

Euromicro Conf. on Software Engineering and Adv. Appl. (SEAA), Aug. 2020,

pp. 171–178.

[47] H. Stachowiak, Allgemeine Modelltheorie / Herbert Stachowiak. Vienna: Springer,

1973.

[48] T. Stahl and M. Völter, Model-Driven Software Development: Technology, Engi-

neering, Management. Chichester, England ; Hoboken, NJ: John Wiley, 2006.

[49] Y. Sun, Z. Demirezen, M. Mernik, J. Gray, and B. Bryant, “Is my dsl a modeling

or programming language?”, in Domain-Specific Prog. Development, 2008, p. 4.

[50] t2informatik. (Aug. 2022). t2informatik, [Online]. Available: https://t2informatik.

de/ (visited on 08/08/2022).

[51] H. Tufail, F. Azam, M. W. Anwar, and I. Qasim, “Model-Driven Development of

Mobile Applications: A Systematic Literature Review”, in 2018 IEEE 9th Annu.

Information Technology, Electronics and Mobile Communication Conf. (IEMCON),

Nov. 2018, pp. 1165–1171.

[52] M. Völter, “Best practices for dsls and model-driven development”, J. Object Tech-

nology, vol. 8, no. 6, pp. 79–102, 2009.

[53] WebRatio. (Nov. 2017). IFML Quick Reference Card, [Online]. Available: https:

/ / my . webratio . com / learn / lmsservlet / 321 / 1 / IFML % 5C % 20Quick % 5C %

20Reference%5C%20Card.pdf (visited on 08/08/2022).

[54] N. Wirth, Algorithms and Data Structures Are Programs. Ser. Prentice-Hall Series

in Automatic Computation. Englewood Cliffs, N.J: Prentice-Hall, 1976.

[55] Y. Katz, D. Gebhardt, G. Sullice. (Aug. 2022). JSON:API, [Online]. Available:

https://jsonapi.org/ (visited on 08/08/2022).

43

https://semver.org/
https://t2informatik.de/
https://t2informatik.de/
https://my.webratio.com/learn/lmsservlet/321/1/IFML%5C%20Quick%5C%20Reference%5C%20Card.pdf
https://my.webratio.com/learn/lmsservlet/321/1/IFML%5C%20Quick%5C%20Reference%5C%20Card.pdf
https://my.webratio.com/learn/lmsservlet/321/1/IFML%5C%20Quick%5C%20Reference%5C%20Card.pdf
https://jsonapi.org/

References

[56] N. Yousaf, F. Azam, W. H. Butt, M. W. Anwar, and M. Rashid, “Automated

Model-Based Test Case Generation for Web User Interfaces (WUI) From Interac-

tion Flow Modeling Language (IFML) Models”, IEEE Access, vol. 7, pp. 67 331–

67 354, 2019.

44

A. Appendix

A Appendix

export interface RemoteLocation {

protocol ?: string ,

port: number ,

address: string

}

export interface Resource {

type: string ,

service: RemoteLocation ,

schemaPath: string ,

uischemaPath ?: string ,

createPath ?: string ,

remotePath ?: string ,

updatePath ?: string ,

deletePath ?: string

}

export interface ResourceFile {

resources: Resource []

}

Listing 4: TS definition for resource files. A resource file is an array of resources to

be displayed by the UI execution environment. A resource is at least specified by the

attributes type (= unique identifier for resource), service, which gives information

about the location of the API endpoint containing the resource, and schemaPath, the

specific path of the JSON Forms schema for the given resource. For instance, the UI

execution environment will send a GET request to protocol://address:port/type to

retrieve the concrete instances of a resource. Further attributes can be specified for the

UI layout (uischemaPath) or if CRUD operations have different API paths deviating

from type.

{

"type": "HorizontalLayout",

"elements": [

{

"type": "VerticalLayout",

"elements": [

{

"type": "Control",

"label": "Staff data",

"scope": "#/ properties/staff_mgmt/

properties/staff_data"

},

{

"type": "Control",

"label": "Address",

45

A. Appendix

"scope": "#/ properties/staff_mgmt/

properties/address"

},

{

"type": "Control",

"label": "ID’s",

"scope": "#/ properties/staff_mgmt/

properties/ids"

}

]

},

{

"type": "VerticalLayout",

"elements": [

{

"type": "Control",

"label": "Work",

"scope": "#/ properties/staff_mgmt/

properties/work"

},

{

"type": "Control",

"label": "Phone",

"scope": "#/ properties/staff_mgmt/

properties/phone"

},

{

"type": "Control",

"label": "Comments",

"scope": "#/ properties/staff_mgmt/

properties/comments"

}

]

}

]

}

Listing 5: Example of a JSON Forms UI schema.

46

A. Appendix

Figure 9: Example screenshots of a management system for multiple hospitals. The

screenshots show an UI for managing staff members, an overview of a medication catalog,

and an interface for the management of Location objects, e.g., Center, Ward, Room, and

Bed. In the first screenshot, the user can set a number of attributes for staff members.

The next screenshot shows domain-specific information that needs to be filled out by

a domain expert or more specifically by a medical expert, i.e., a doctor. The last

screenshot is a configuration screen for Location objects, which is perhaps not used

often in the application.

47

A. Appendix

Figure 10: An example for a static conceptional model for a health care management

system. Figure 9 does not fully represent the information from this UML class diagram.

Note that this model is fairly general and does not include any domain-specific UML

stereotypes.

48

A. Appendix

Figure 11: UML stereotypes are enclosed in so-called guillemets, i.e., the characters «
and ». «Business Entity» and «Key» represent domain-specific abstractions and can

be replaced or expanded in further model transformations. UML also provides a set of

predefined general stereotypes such as «Enumeration» to define a data type and the

corresponding collection of values that the data type can take.

49

A. Appendix

Figure 12: Basic UI output for Staff resource produced by the UI execution environment.

50

	Bachelor_Thesis_4915459_Korzec
	Scan_20220808_233029
	Bachelor_Thesis_4915459_Korzec
	Bachelor_Thesis_4915459_Korzec
	Bachelor_Thesis_4915459_Korzec
	Bachelor_Thesis_4915459_Korzec
	Bachelor_Thesis_4915459_Korzec

