
Bachelorarbeit am Institut für Informatik der Freien Universität Berlin,
Arbeitsgruppe Software Engineering

Scala on Android:

problems and solutions

20. Juli 2015

Niklas Klein
4387959

niklas.klein@fu-berlin.de

Betreut durch Prof. Dr. Lutz Prechelt

Abstract

The aim of this bachelor’s thesis is to promote and advance the Scala pro-
gramming language on the Android platform as an alternative to Java. En-
joying the benefits of Scala on Android is often circumvented by the numer-
ous obstacles that its integration into the Android platform entails. Solving
these issues is not impossible, but difficult—due to the lack of documenta-
tion.

For this very reason, this thesis is dedicated to the creation of a compre-
hensive, web-based documentation which simplifies working with Scala on
Android. At first, it is necessary to identify the obstacles that developers are
facing with the technology. By means of qualitative researching methods,
developers are interviewed in order to reveal the particular problems they
have been confronted with. The next step then is to create a sophisticated
web-based documentation that provides guidance through the challenging
topics of Scala on Android.

As a result of these efforts, the finished documentation is publicly available
at http://scala-on-android.taig.io/.

1

http://scala-on-android.taig.io/

Eidesstattliche Erklärung

Ich versichere hiermit an Eides Statt, dass diese Arbeit von niemand an-
derem als meiner Person verfasst worden ist. Alle verwendeten Hilfsmittel
wie Berichte, Bücher, Internetseiten oder ähnliches sind im Literaturverze-
ichnis angegeben, Zitate aus fremden Arbeiten sind als solche kenntlich
gemacht. Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner
anderen Prüfungskommission vorgelegt und auch nicht veröffentlicht.

20. Juli 2015

Niklas Klein

2

Contents

1 Introduction 4

2 Revealing the problems 5

2.1 Researching technique . 5

2.2 Finding interview partners . 5

2.3 Preparing the interviews . 6

2.3.1 Interview outline . 6

2.3.2 Interview types . 7

2.3.3 Interview schedule . 8

3 Conducting the interviews 11

4 Evaluating the interviews 12

4.1 Identified problems . 12

4.2 Out of scope . 18

5 Interview reliability 20

6 Outlining the documentation characteristics 22

7 Creating the documentation 25

7.1 Collaboration and hosting . 25

7.2 Static page generator . 26

7.3 Implementation . 28

8 Conclusion and Feedback 40

9 Scala on Android on the web 43

3

1 Introduction

Scala is a programming language for the Java Virtual Machine (JVM) which
“fuses object-oriented and functional programming” [2, p. 1] paradigms. It
has plenty of similarities to the better known Java programming language
and can seamlessly interact with its code [2, p. 2]. But with Scala’s bias
towards immutable data structures, a uniform object model (every value is
an object) [2, p. 3] and pattern matching [2, p. 13], the language allows the
developer to be more expressive, leading to more concise code.

Applications for the Android platform are written in Java and do then get
compiled to JVM byte-code. In a next step the byte-code is converted to an
Android -specific format and is now ready for execution on the Android Run-
time (ART), Android’s JVM implementation. Since compiled Scala code is
also just ordinary JVM byte-code, the thought of converting it to the An-
droid format stands to reason. The idea of bringing the advantages of Scala
to the Android platform has already led to a variety of community devel-
oped tools that simplify this process, making it a considerable alternative
to Java. Unfortunately, substituting the technologies is still not as easy as
one might hope. It does in fact introduce some obstacles which are hard,
but not impossible, to overcome.

Getting Scala on Android to work is primarily a matter of configuration
which is unsatisfactorily documented, yet to make the procedure more ac-
cessible, this thesis is dedicated to creating the missing documentation with
the goal to make the technology worth considering for a broader audience.

4

2 Revealing the problems

Having previously worked with Scala on Android intensively, I gained a
rough overview of the difficulties that a developer faces when dealing with
the technology. But in order to broaden this picture it was necessary to
collect additional data from developers that also have experiences in this
field.

2.1 Researching technique

Before actually reaching out to developers I had to learn about the research-
ing methods that are available for this purpose, namely qualitative and
quantitative research. Quantitative research is a suitable technique when
“researchers have clear ideas about the type of information they want to
access and about the purpose and aims of their research” [1, p. 72] whereas
qualitative methods are used when “investigators are interested in under-
standing the perceptions of participants” [1, p. 72]. Since my goal was to
discover difficulties with Scala on Android development, which I did not
find during my work with the technology, qualitative research was obviously
more suitable. Also the small size of the Scala on Android community would
have made obtaining a reasonable sample size for quantitative research quite
a challenge.

Since the development community is scattered across the globe I had to
think about ways to find and reach out to potential peers in order to con-
duct a remote interview. This circumstance entailed the side benefit to
automatically “reach a sample population that is in geographically diverse
locations” [1, p. 82].

2.2 Finding interview partners

I planned to promote my intentions on relevant community platforms (such
as reddit/r/scala, the Scala and the Scala on Android mailing lists) hoping
to reach a diverse target group. If this approach had failed, I would have
intended to contact developers that are actively committing in this area on
GitHub directly.

My postings on the community portals enjoyed a surprisingly great popu-
larity and enabled me to win five individuals over, willing to tell me about

5

their development experiences. At that time it was not possible for me to
estimate whether five interviews would suffice to fully exhaust the topic.
I therefore intended to elaborate on this issue when the interviews were
completed, searching for further interview partners if it seemed necessary.

2.3 Preparing the interviews

2.3.1 Interview outline

As explained in Qualitative research methods for the social sciences I started
by creating an interview outline which “lists all the broad categories” [1, p.
72] that are relevant to the study. The outline helped me to get a better
idea of the information I wanted to obtain and established a basis where I
could afterwards derive the actual interview questions from.

When talking to developers about Scala on Android I planned to collect
data about the following topics (with a brief explanation of the particular
purpose):

Background in software development

Getting an idea of the development stacks the interviewee is comfort-
able with and also what let to the decision of giving Scala on Android
a try

Experiences with Scala and Android

Finding out if and how the technologies were used before they were
brought together on the Android platform with the intention to get a
clear picture about the importance of prior knowledge

Experiences with Scala on Android

The core of the conversation; which tools have been used, what were
the use cases, as well as the overall satisfaction and experiences in
detail

Opinions on Scala vs. Java on Android

Retrospectively, get the interviewees evaluations whether switching to
Scala was worth the hassle and if they would stick to the technology
in future projects

6

2.3.2 Interview types

There are numerous classifications for the structure of an interview available,
however L. Berg identified the standardized, the unstandardized and the
semistandardized interview types [1, p. 68] to which I refer to hereafter.

The different interview types vary primarily in the strictness of their sched-
ule. An interview schedule is the catalogue of questions that the researcher
uses as a guideline through the interview process. Depending on the inter-
view type, this schedule does not only contain the actual questions, but also
information about their order, optional questions to deepen certain topics
or even temporal milestones.

A standardized interview is formally structured and offers “each subject
approximately the same stimulus so that the responses to the questions,
ideally, will be comparable” [1, p. 69]. It is suitable for studies where
researchers “have fairly solid ideas about the things they want to uncover
during the interview” [1, p. 69] while leaving little room to discover anything
beyond that.

In contrast to the standardized interview, the unstandardized alternative
does not rely on a questions schedule at all. The idea behind this strategy
is that it is impossible to “know in advance what all the necessary questions
are” [1, p. 70] and that the interviewer must instead come up with appropri-
ate follow-up questions in the particular situations. This approach is useful
to reveal information “when researchers are unfamiliar with respondents’
life styles [. . .] or customs” [1, p. 70].

A semistandardized interview is located somewhere between the strictly
scheduled and completely unscheduled interview types. A researcher who
conducts a semistandardized interview is equipped with a rough question
schedule and has the freedom to digress and to go deeper into certain top-
ics in order to gain further information which may be valuable to the re-
search [1, p. 70].

I settled with the semistandardized interviewing technique for my research.
A standardized interview seemed inappropriate as I aimed to learn about
different perceptions and to gather insights which I missed during my ex-
posure to Scala on Android. Furthermore, I wanted to rely on some sort
of schedule because I did not conduct interviews before and felt uncomfort-
able with the idea of coming up with ad-hoc questions as practiced in an
unstandardized interview.

7

2.3.3 Interview schedule

I intended to prepare an interview which should take about one hour to
conduct [1, p. 82-83]. Below is the question schedule that I developed on
the basis of the interview outline. The questions are grouped in distinct
topics which are first explained. Reasons why I decided for this particular
order or what kind of information I planned to obtain are added where
applicable.

Questions on the second indention level served me as a reminder to digress
deeper into certain topics but were not necessarily asked (“scripted ques-
tions” [1, p. 92]).

1. Introduction

Introducing myself and the intentions of this interview to the inter-
viewee, not disclosing my opinions (“breaking the ice” [1, p. 83]).
Then ask the respondents to introduce themselves and to talk about
their background in software development and whether they have any
questions about the process or background of this interview [1, p. 83].

Also ask for permission to record the interview for the evaluation pro-
cess, and assure that it will not be published and anonymity is guar-
anteed.

In this section I aim to get an understanding of the interviewees’ work-
ing environments and habits as well as a basic idea of how happy they
are to try out new technologies.

(a) Could you please introduce yourself and tell me about your back-
ground in software development?

i. For how long have you been doing . . . ?

ii. What kind of projects do you work on?

iii. What is your role in these projects?

iv. What are your favorite software stacks?

v. How come you like / use . . . so much?

vi. With how many fellow developers do you usually work on
such projects?

(b) Do you code for a living?

(c) Do you have hobby projects?

2. Scala on Android

8

Since the interviewee is expecting to talk about Scala on Android this
topic is placed right after the introduction. If I tried to talk about
Scala and Android separately at this point, chances would be that the
interviewee would constantly divagate to Scala on Android. In this
section I aim to gather the respondent’s experiences, thoughts and
emotions about the technology as detailed as possible.

(a) What are your experiences with Scala on Android?

(b) Why did you try it?

(c) How did you get started?

i. Which learning resources and tools did you use?

ii. What caused the biggest troubles?

iii. Was it painful?

iv. Did you consider to plunk down and go back to Java at some
point?

v. Was it a team project?

vi. What else didn’t work out quite as you were expecting?

(d) Which libraries and tools did you use?

i. What are the differences to your Java on Android setup?

(e) Did you use it for commercial or work related projects?

i. Are there any apps available which I can have a look at?

(f) How do you stay up to date with Scala on Android?

(g) What annoys you about Scala on Android?

i. Compile time?

ii. Build configuration?

iii. ProGuard?

iv. Testing?

v. Performance?

vi. Community?

vii. Documentation?

(h) Are you still using Scala on Android?

(i) Are you still using Java on Android?

(j) Which build tool plugin do you use?

i. Do you like it?

ii. What do you think about its documentation?

3. Scala and Android, separately

After excessively talking about Scala on Android I want to find out
how well the interviewees knew each of the technologies before they
combined them on the Android platform.

9

(a) Did you make experiences with Android development before you
brought Scala in?

i. How did you get into Android development?

ii. When did you start to develop for the Android platform?

iii. Do you (still) like it?

iv. What is your opinion about the Google-Android tool-chain
(e.g. Gradle and Android Studio)?

(b) Did you make experiences with Scala development before you
started with Scala on Android?

i. How did you get into Scala development?

ii. When did you start to develop with Scala?

iii. Do you (still) like it?

iv. What is your opinion about the Scala ecosystem (e.g. Scala
Build Tool (SBT))?

4. Scala vs. Java (on Android)

By now I should be able to estimate how well the interviewee knows
each of the languages, which puts an ad-hoc comparison of the tech-
nologies in perspective.

(a) Which stack would you choose if you started a new project today?

i. Under which circumstances would you pick the other tool-
chain?

(b) What are your favorite Scala features that Java does not offer?

(c) Do you occasionally think that you are missing out on new tools
and features when you are working with Scala on Android?

(d) Which path would you suggest to a freshman that wants to learn
Android, but has no experience in either Java or Scala yet?

i. What if he knew Scala already?

ii. What if he knew Android already?

5. Finish

Give thanks for the interviews, ask if there is something which the in-
terviewees wanted to add and if they were interested in having an early
look at the documentation to provide their thoughts and feedback.

10

3 Conducting the interviews

The five interview partners which I recruited on the community platforms
were located in the United States, the United Kingdom, Estonia and China.
Due to the significant time differences to some of these locations it was
particularly difficult to settle an appointment. I therefore had to conduct
the U.S. and China interviews at night time. All of the conversations were
carried out via Skype calls. I left the interviewees the option to decide
whether they preferred to have a video or just a voice call, but all without
exception favored the voice variant. As a consequence of this the interviews
went off as ordinary telephone interviews, missing the opportunity to catch
non-verbal cues [1, p. 82].

Getting to know each other and talking about technology was something
the respondents seemed very eager about. In fact, once we started talking
about the second schedule point, Scala on Android, conversations tended to
drift into an unstandardized interview. Most of my questions were already
answered by the detailed stories I got to hear. In this situation I fell back
on asking follow-up questions in order to deepen topics when appropriate.
Despite me thinking that asking the interviewee for build configurations or
source code snippets might go too far, my peers were happy to share those
with me when I appeared to be interested.

All in all, none of the interviews could be conducted within the intended
time frame of one hour. But since the conversations did not feel compulsive,
my share of the talking was little and the gained information extremely
valuable, I interpreted this as a good sign and did not attempt to shorten
the conversations [1, p. 81].

The sample group appeared excited about the intentions of my research
and acknowledged that a well-engineered Scala on Android documentation
would be a valuable resource for their own work and could also have a major
impact on the growth of the community.

11

4 Evaluating the interviews

Since content analysis is described as “the most difficult aspect of any qual-
itative research project” where “it is impossible to establish a complete
step-by-step operational procedure that will consistently result in qualita-
tive analysis” [1, p. 102] I just orientated loosely on the concept of systematic
filing systems [1, p. 103] with short-answer sheets [1, p. 105].

The former, systematic filing systems, is a method where the interviews
are first torn apart into atomic chunks of information that are relevant to
the research. These information are then indexed and classified by some
schema (e.g. the interview outline) that helps to organize the interview
answers for further use [1, p. 103]. Short-answer sheets are primarily an
addition to systematic filing systems, rather than a separate content analysis
method. The researcher creates a brief summary for every question of the
interview schedule and attaches them to respective indexes of the systematic
filing systems. This makes it significantly easier to find or look up certain
conversation details [1, p. 105].

While post-processing the interviews I relied on the voice recordings to clas-
sify the obtained information into the four interview outline categories. Af-
terwards I summarized the information of each outline in note form to have
a compact overview of the gathered information. The next step then was to
identify problems, mentioned by the interviewee, which could be resolved if
there was a better documentation available that covers the topic. I refrained
from applying quantitative measures in this process and honored issues that
were only mentioned by one or two interviewees equally important as issues
that arose more often.

4.1 Identified problems

Following is a list of all problems that I compiled from the interviews. They
are annotated with explanations of the exact issues that interviewees had
with the topic. The problems are then summarized in the fashion of key
questions that need to be answered by the documentation in order to resolve
the issues that interviewees had with Scala on Android.

Build tool

Leveraging Scala on the Android platform can be a surprisingly diffi-
cult undertaking. Once the decision for Scala on Android was made,

12

the first obstacle that a novice faces is the choice of the build tool.
There are plugins available for multiple build tools, but it is difficult
to find out in which way they differ and which one suits the developer’s
requirements best.

Gradle

Configured via the Groovy programming language, officially doc-
umented and supported to be used with Android

SBT

Configured via the Scala programming language, the de facto
standard build-tool for Scala projects

Maven

A well established build-tool in the JVM environment, configured
via XML

Furthermore, since these plugins are community developed they tend
to neglect certain features and are more likely to contain bugs because
they are not as well-tried as the official tool-chain which is backed by
Google.

Key questions

• Which build tool should be used?

• What are the differences between the build tool (plugins)?

ProGuard and the 65k-limit

When the decision for a build tool was made and the developers man-
aged to setup a basic project they will now be confronted with Pro-
Guard. ProGuard is a JVM tool that is able to shrink, optimize and
obfuscate byte-code. It is included in the Android tool-chain as an
opt-in service since the very beginning. Java developers may use it
to minimize the application size by stripping out unused dependency
classes or to make the code harder to reverse engineer by obfuscating
identifiers. These services do unfortunately come with the price of two
major downsides.

Increased build times

When the program code has been compiled to Java byte-code,
ProGuard analyzes it, removes unused code and obfuscates iden-
tifiers. This process is very time consuming and increases build
times dramatically.

13

Configuration

ProGuard naturally fails to analyze code dependencies that rely
on runtime reflection or if a library references a Java Develop-
ment Kit (JDK) class which is not part of the Android Software
Development Kit (SDK). The developer therefore has to detect
these issues in the library code and adjust the ProGuard con-
figuration with a tool-specific syntax. Given the increased build
times, reapplying and debugging a configuration change is no job
for the impatient.

A Java developer has the option to balance the pros and cons, or to run
ProGuard only in the release build process while disabling it during
development. A Scala developer, however, depends on ProGuard and
is forced to use it. This is due to the so called 65k limit. An Android
application is only allowed to contain 65,536 methods (including the
application’s libraries). If the application succeeds this limit, the build
will fail. Developing with Scala requires to depend on the scala-library
which already suffices to exceed this limit. Scala on Android therefore
requires the developer to maintain a proper ProGuard configuration
and to execute ProGuard for every build.

This does not only pose a problem through increased compile times or
tedious configuring, but it is also a rather inaccessible topic. Among
Java developers it is not in wide use because there is usually no reason
to do so. Unfortunately the available documentation is accordingly
minimalistic. The Scala on Android tool-chain takes this even further,
building additional tools around ProGuard (e.g. caching) that require
further configuration. All these issues combined make ProGuard the
major pain point for Scala on Android development.

Key questions

• What is ProGuard good for?

• Are there any heuristics on how to approach configuration
problems?

• What is the ProGuard cache good for?

• How to configure the ProGuard cache?

Development environment

None of the popular Integrated Development Environments (IDEs)
(such as Android Studio, IntelliJ IDEA or Eclipse) provides a seam-
less integration for Scala on Android. This can be frustrating as the
developer has to give up some of the convenience that his IDE offered
and instead run certain tasks manually via the command line.

14

Key questions

• How to use Scala on Android with a particular IDE?

• Which IDE features will no longer work with Scala on An-
droid?

• Which editor works best with Scala on Android?

Command line

As a consequence of the lacking IDE support, developers have to ex-
ecute build, deployment and testing related tasks via the command
line. This emerges to be a significant obstacle for people that are used
to do all of this with the help of their IDE. Furthermore, the Android
plugins for Gradle and SBT introduce a range of new commands that
are difficult to grasp, even for developers that are already comfortable
with the build tool itself.

Key questions

• How does the command line workflow look like?

• Which commands are important for Scala on Android re-
lated tasks?

Build configuration

Similar to the issues people are having with the command line, con-
figuring a build with additional plugin specific parameters requires a
deep understanding of the available settings and their effects. This is
a fundamental problem as most of the here listed problems must be
resolved via the build configuration.

Key questions

• Which build plugin configuration keys are important?

• How to manage (Android -specific) dependencies?

• How to configure SBT; why are there two distinct ways?

Parcelable

Parcelable is an Android -specific Inter-process communication (IPC)
framework that serves as an alternative to Java’s Serializable mecha-
nism. It is significantly faster than the runtime reflection based Seri-
alizable alternative because the developer has the obligation to spell
out the entire serialization logic by himself. The Android developer
documentation highly recommends to rely on the Parcelable frame-
work even though its implementation is somewhat tedious. Besides

15

implementing the Parcelable interface, the developer has to fulfill an
additional contract: creating a static field named CREATOR which
has to hold an instance of Parcelable.Creator. This contract, however,
can not be fulfilled when coding in Scala, because the language does
not have a concept of statics.

Key questions

• Is it possible to use Parcelable with Scala on Android?

• How should the Parcelable contract be implemented with-
out statics?

• Does Scala offer alternative serialization methods?

Testing

The Android SDK comes with support for unit- and instrumentation
testing. Especially the latter is a book of seven seals in the Scala on
Android environment. It remains unclear if it is possible to integrate
instrumentation tests with the current generation of build tool plugins.

Furthermore, a Scala developer would generally prefer to adopt a test-
ing framework that is tailor-made for his language (e.g. ScalaTest)
rather than working with the provided jUnit Application program-
ming interface (API). Another desirable feature is to make use of
Robolectric, a famous library that allows to run Android tests on the
developer’s JVM, instead of deploying it to a device or emulator (which
is a time-consuming process). Ideally, it should be possible to use Sca-
laTest in combination with Robolectric.

Key questions

• How to do unit tests?

• How to do instrumentation tests?

• Is it possible to use ScalaTest?

• Is it possible to use Robolectric?

• Can tests be run from an IDE rather than the command
line?

Debugging

In opposite to testing, setting code breakpoints and running the de-
bugger can not be triggered from the command line that easily. An
IDE simplifies this process significantly and provides a better visual-
ization. It remains unclear whether it is possible to use IDE debuggers
due to the poor Scala on Android integration.

16

Key questions

• Can the debugger be run from an IDE?

Library projects

Besides creating an executable Android Application Package (APK),
an Android codebase may also be distributed in the Android Applica-
tion Library (AAR) or Android Application Package Library (APKLIB)
format which serve the purpose of creating reusable components that
may be incorporated into an Android project as a dependency. These
formats are very similar to the common Java Archive (JAR) (which
can of course also be included into Android projects) but extend it by
adding Android -specific resources to the package (such as the applica-
tion manifest, graphics or internationalization files).

Learning how to configure a Scala on Android build in order to create
such a library project was a common desire among the interviewees.

Key questions

• How to create an AAR package?

• How to create an APKLIB package?

Packaging and signing

An application is only ready for the official app store when it is prop-
erly packaged (which requires some post-processing of the package,
such as zipalign) and signed with a valid developer certificate. There
are several ways to achieve this goal, but it remains unclear how to
automate this process in such a way so that it is not necessary to
place cleartext password configuration files within the project (which
should generally be avoided, but especially when working with Version
Control Systems (VCSs)).

Key questions

• How to sign an application?

• Is there a way to sign via SBT with password prompt?

Learning resources

It is difficult to find up-to-date information about Scala on Android.
On the one hand, the search results are commonly very noisy and
include Android -related topics which have no connection to Scala. On
the other hand, the resources that show up tend to be rather outdated

17

and no longer correct. This is due to the fast development of the Scala
and Android platform, and thus also the build tool plugins that try to
keep up with this pace.

Key questions

• Are there any other articles or blog posts about a particular
topic?

Getting help

In the interviews, people reported that they had a hard time trying
to find somebody to take a look at their particular problems. At
StackOverflow, a famous online questions and answers community for
developers, their questions went unnoticed and they did not know who
else to address. This caused them to get stuck on minor problems for
days, causing lots of frustration.

Key questions

• Where to ask other developers for help?

4.2 Out of scope

During the course of the interviews a couple of valid topics were mentioned
which I had to drop from the list of solvable problems. This is primarily due
to the lack of personal experience with those and, after further consideration,
the resolution that I will not be able to acquire enough expertise to educate
a public audience in the limited time of this researching project.

Gradle

Originally, the recommended build system for Android SDK applica-
tions used to be Apache Ant. Later, when the first projects for Scala
on Android appeared, SBT emerged to be the more reliable tool for
the purpose and a small ecosystem of libraries and projects began to
originate around this approach. Then, in 2013, Google announced the
official migration to Gradle, a Groovy based build system for the JVM.
A plugin for a Gradle-based Scala on Android integration appeared
shortly after and is becoming increasingly popular. It lowers the entry
barrier significantly for Android developers that already got used to
Gradle.

Since most Scala on Android specific problems are solved by tweaking
the build configuration, incorporating Gradle into the documentation

18

would have meant to investigate and solve each problem for both tools,
SBT and Gradle.

JNI

Java Native Interface (JNI) is an interface that describes how a Java
application can interact with native code (C/C++). In conjunction
with the Android Native Development Kit (NDK) the native program
parts can be bundled with the ART byte-code into one application.
Given the documentation of the Scala on Android SBT plugin, this
feature is also available to Scala users.

Due to my lacking experience with native code and the observation
that JNI is only relevant to a minority of Scala users, I decided to
drop this topic.

19

5 Interview reliability

It is now necessary to clarify whether the chosen researching method, con-
ducting interviews, was a reasonable approach to reveal a developer’s po-
tential obstacles when dealing with Scala on Android. Odds are that this
strategy left significant information undiscovered. Equally questionable is
whether five interviews sufficed to gather the desired information. In order
to get a perception of the information that might have been missed out, it
is helpful to examine the actually gathered information.

A suitable measure for this purpose is to analyze the interviews (in order
of conduct) for the amount of new problems that each of them revealed.
Arguing that if the last interviews did only result in little or no additional
insights, this implies that the information to be gathered might be exhausted
and conducting further interviews would thus not reveal any new insights.

As shown in table 1, interview I helped to discover two additional problems
which I did not come up with during my preparations. The second and
third interviews revealed one issue each. The fourth interview did not intro-
duce any new insights. If the last interview hadn’t revealed another issue,
the trend would have suggest that the amount of undiscovered problems is
exhausted. Instead it appears like the fourth interview, yielding no new
information, is an anomaly.

When taking a closer look at interview V it strikes that the new problem,
JNI, is the only issue that has not been mentioned by anyone else. The
topic is furthermore considered as out of scope for being only relevant to a
minority of Java, let alone Scala, developers. From this perspective it seems
reasonable that JNI may be neglected in this context. It is thus a valid
conclusion that conducting more interviews may not have necessarily led to
significant new insights because the two latest encounters could not add any
valuable new information.

20

Problem
Interview

Author I II III IV V

Gradle • • •
SBT • • • • •
Maven •
ProGuard • • • • • •
Development environment • • • • •
Command line • •
Build configuration • • • • •
Parcelable • •
Testing • • • • •
Debugging • •
Library projects • •
Packaging and signing • • •
Learning resources • • • •
Getting help • •
JNI •
Amount of new problems
(compared to previous interviews)

- 2 1 1 0 1

Table 1: Comparison of the Scala on Android related problems that were
revealed in each interview. The first column, Author, shows the problems
which I put together from my own experience before conducting the in-
terviews. In the last row, there is a numeric summary of how many new
problems were discovered in every interview.

21

6 Outlining the documentation characteristics

With the intention to create a documentation in the form of a publicly
available website, the opportunity occurs to go way beyond static, textual
content. A website allows to add features that have the potential to enhance
the overall reading and learning experience. The features and characteristics
which I considered important in order to create a valuable learning resource
are listed below.

Content

It is easy to give in to the temptation of developing yet another great
feature. But however the development of the documentation proceeds,
the actual, textual content always has to be the number one priority.

Progressive enhancement

Every feature on top of the basic content has to be implemented ac-
cording to the strategy of progressive enhancement. Meaning that a
feature that requires the client’s browser to have a certain ability (e.g.
executing JavaScript code) should never have a negative impact on
browsers that are not able to fulfill the requirement (besides missing
out on the feature in question).

As an illustrative example of this strategy, imagine a timezone spe-
cific DateTime value embedded into the Hypertext Markup Language
(HTML), such as Wed Jun 24 17:48:48 2015 +0200. To improve read-
ability, the JavaScript API Date.toLocaleString() is used to convert the
time according to the user’s timezone (e.g. 24.6.2015, 17:48:48). If
the client’s JavaScript engine does not implement this function, or the
client does not run JavaScript at all, the raw time information must
still be accessible.

Static

The content has to be delivered as static HTML files and should not
require any serverside processing. This simplifies hosting, improves
response times and makes it easier to edit the sources.

Asynchronous JavaScript and XML (AJAX)

To fulfill the progressive enhancement and static requirements, the
document should refrain from loading crucial content dynamically via
AJAX. This way the website is also more accessible to search engine
bots that analyze the content. They are at risk to miss out dynamic
content.

22

Semantics

Not only the text, but also the underlying HTML structure should
semantically make sense. This is necessary to increase accessibility for
screen readers and does also improve the understanding of the website
for search engine bots. This requirement extends to good practices,
such as always providing meaningful alt tags for images as well as
using title tags to provide contextual information that may improve
readability.

Collaboration

Since the contained information are always at risk to become outdated
rather quickly, the document should be manageable in a highly col-
laborative way allowing any reader to propose or make changes to the
document easily. This does of course also apply for fixing misspellings
or substantial errors, improving the wording or even the layout.

Readability

Textual content has to be presented in a way that it is pleasantly
readable. This relates especially to fonts, their sizing, line spacing,
but also the overall contrast. Furthermore, the user should be able to
adjust the font size without breaking the website or making content
inaccessible.

Gateway

There are plenty of good blog posts and documents scattered across
the web for nearly all the discovered problems. The website has to
provide sufficient information to solve the users’ issues but also point
them the way to more detailed information or to necessary perquisites
that might be taken care of first.

Responsive design

The website should render well, independently of the reader’s screen
dimension or density.

Navigation

It has to be easy to advance through the pages. Skipping to the next
or previous chapter should be a prominent option, but also navigating
to every other topic of the documentation.

SEO

Every page has to contain meta tags and meaningful titles embedded
into the document. A good search engine ranking does not only in-
crease visibility on the web, but with proper meta information it also

23

allows the users to jump immediately to the content they care about
right from the search results.

Syntax highlighting

Programming code that is embedded into the documentation should
be easily identifiable as such. It has to be rendered with a monospace
font and should feature syntax highlighting applied on top of that.

Examples

The content should be enriched with practical examples of the de-
scribed topics wherever possible.

Indicate outdated information

Information that are at risk to become outdated must be highlighted
as such. If the users find themselves in situations where they are
unable to recreate given instructions they should first consider that
the given information might no longer be valid rather than searching
for mistakes in their code. In addition to that, users should be able to
see when a paragraph was last modified.

Fun

Last but not least, it should never be frustrating to read and use the
website. Layout and features may never get in the way of content. It
must be fun and beautiful to look at.

24

7 Creating the documentation

7.1 Collaboration and hosting

Before scaffolding the actual project or picking tools that might help me
putting the documentation together, I thought about where to host and how
to enable collaborative content editing. The obvious choice for my purposes
was GitHub, as it solves numerous problems in an elegant and user-friendly
way.

Hosting

GitHub provides a feature called GitHub Pages. With the help of a
specific Git branch (“gh-pages”), all files on this branch (from the lat-
est revision) can be accessed via Hypertext Transfer Protocol (HTTP)
on port 80. This means that static HTML files are served as websites
to any browser. The service is free of charge, is based on a reliable
server infrastructure and leverages GitHub’s Content Delivery Net-
work (CDN) for improved response times. Updating the content is as
easy as committing changes to the gh-pages branch and pushing them
to the remote repository.

By default, the website’s address is http(s)://user-name.github.io/
project-name. But GitHub allows advanced Domain Name Sys-
tem (DNS) settings, enabling the repository maintainer to point cus-
tom domains to the project page.

Collaboration

Each project has an issue tracker that allows GitHub users to notify the
repository maintainer about problems they discover. These issues are
public and everybody is free to join the discussion to propose solutions
or suggestions.

Taking this one step further, users can enrich issues by adding code
(or textual content) that attempts to solve the problems they were
facing. This procedure is then called a pull-request. For the repository
maintainer, applying the provided patches to the project is as easy as
pushing a single button to confirm.

To simplify the audition process of pull-requests it is possible to inte-
grate third-party Continuous Integration (CI) services that automat-
ically compile and test proposed changes and then add their results
and logs to the issue discussion.

25

Content editor
Every directory and file of a repository that is hosted on GitHub can
be browsed on their website. In addition to that, files can also be
edited with an online text editor that allows to quickly update content
without cloning the repository. This is especially useful for text-based
projects like documentations because it is not necessary to compile or
test the project before submitting a patch.
Another positive side effect of this approach is that a user’s edits au-
tomatically result in a pull-request which can then be easily audited
and approved as described earlier.

Popularity

GitHub is incredibly well-known and established among developers.
Users tend to know the described collaboration workflows which lowers
the barrier to actually bring oneself to participating.

7.2 Static page generator

Although the goal of the documentation is to consist of static HTML files
only, I intended to integrate a static page generator in order to optimize the
development process. This leads to a build step, necessary to compile the
source code to HTML files before committing to gh-pages. But that’s a low
price to pay, considering the indispensable advantages of this approach.

Templating

With a static site generator it is possible to split a document into
several files which may then be included as desired. This is especially
useful to avoid code duplication considering that certain elements like
a page header or footer have to be included into every page. It does
also allow to split each section of a long article into separate files which
makes it easier to find one’s way around when editing content.

Dialects

It is possible to process languages that could not be interpreted by a
browser. E.g. converting CoffeeScript to JavaScript, Syntactically
Awesome Style Sheets (SASS) to Cascading Style Sheet (CSS) or
Markdown to HTML.

Linting

To enforce best practices linting tools can be integrated into the build
process that perform desired validations.

26

Custom tasks

An important requirement for the means of the documentation is the
integration of custom build steps. They offer great flexibility and room
for improvements. This way it is possible, for instance, to extract
file information like the last time of an edit and inject them into the
document, rather than maintaining this information manually.

Post processing

In the last step of the build process it is now possible to apply minifi-
cation tools to the HTML, CSS and JavaScript sources. This file sizes
are reduced significantly, improving the time it takes to load a page
even further.

I originally started with a static page generator, called Roots, that promised
to solve most of these problems out of the box. It also integrates Markdown
processing which I intended to use to format textual content, because it
is easier to maintain than HTML code. But I realized rather quickly that
such a tool is too specific and limiting for my purposes (especially regarding
the custom build steps). Also Markdown emerged to not fit in, as it didn’t
allow me to specify HTML classes which would have been necessary to high-
light certain paragraphs. My intention to create central sitemap, resource
links and abbreviation indexes were also at risk as they could only be used
with Markdown by creating custom extensions. This cluttered up the doc-
uments and was in no way better to maintain than a more versatile HTML
templating system.

As a consequence of these circumstances I migrated to Gulp. Gulp is, broadly
spoken, a JavaScript build tool for front-end development. The tool is fa-
mous for its simplicity and flexibility, but its greatest strength is the com-
munity around it that created thousands of plugins for every imaginable
use case. Setting it up and getting the basics working to a similar range of
functions like Roots provides them was initially very challenging. But in the
long run I benefited from its flexibility as I was not forced to make a single
compromise in this context.

Instead of Markdown I switched to an HTML templating system called
Nunjucks. It allowed me to split up my files and include them as necessary.
To organize textual content separately from the HTML markup I was able
to structure the files in such a way that content files only consist of headline,
paragraph and image tags, keeping them maintain- and readable.

To create CSS assets I chose to integrate the SASS preprocessor into the
build chain as I made the experience in previous projects that it simplifies de-

27

velopment tremendously. Also, I found myself writing very little JavaScript
code, so I kept that as simple as possible, not including any preprocessors
or other additional tools except for jQuery.

7.3 Implementation

Content

The documentation as a whole is subdivided in numerous chapters
which are each represented by a respective HTML page. A table of
contents is located on the root page offering to jump right into a topic
of choice.

1. Introduction

2. About this documentation

An explanation of page features, but also a call not to shy away
from contributing

3. Prerequisites

4. Build tool

Comparison of Gradle and SBT, leaving room to add Gradle
documentation in the future

(a) SBT

5. Project setup

6. Editors and IDEs

(a) IntelliJ IDEA

(b) Android Studio

7. Working with the command line

8. Dependencies

9. ProGuard

(a) Cache

10. Typed Resources (TR)

11. Parcelable

12. Testing

(a) Robolectric

13. Library projects

14. Publishing

28

Beside these content chapters, there is a handful of additional pages
that aim to help interpreting the documentation or to solve problems
of which I took notice through the interviews.

• Fork me on GitHub

A typical catch phrase to point to a project’s GitHub repository.
Clicking this link on the documentation website forwards the user
directly to the respective GitHub page.

• Getting help

A list of development communities and resources that the readers
should consider to consult when they get stuck with Scala on
Android.

• Sources

A large index of noteworthy websites (along with a content de-
scription) that contain information which might be relevant to
educate further about a certain topic.

• Software

A list of the software that was used to create the examples in the
documentation. It mentions the particular version of the software
and a download link.

• Abbreviations

An abbreviation index.

29

Figure 1: Side by side comparison of the documentation website on common
screen sizes

Responsive design

Through CSS Media Queries the page automatically adjusts its prop-
erties in such a way that pleasant reading on all screen sizes and densi-
ties can always be guaranteed. Included graphics and icons are, wher-
ever possible, delivered as Scalable Vector Graphic (SVG) assets. Fur-
thermore, the page refrains from using mouse hover events for crucial
interaction since these would be inaccessible for mobile visitors with
touchscreens (see figure 1).

Navigation

At the end of each chapter the user has the possibility to advance to
the next topic to provide a natural reading flow (see figure 2).

Attached to the sticky header bar there is also a navigation hidden be-
hind the hamburger icon that enables the user to jump to an arbitrary
chapter (see figure 3).

30

Figure 2: Footer navigation that contains a link to the previous and next
chapter

Figure 3: Main navigation, attached to the sticky header

Metabox

Next to each paragraph is a signal reception icon that intends to in-
dicate information reliability. The ranking ranges from Fragile, to
Moderate up to Sustainable and is a representation of my personal im-
pressions which I gathered while using Scala on Android or researching
the particular topic (see figure 4).

31

Figure 4: Signal reception icons to indicate information reliability. Fragile
(left, red) and Moderate (middle, orange), Sustainable (right, green).

Clicking on one of these signal icons leads to a Metabox showing up. It
contains an additional textual description of the information reliability,
but also the date when the paragraph has been edited lately, enabling
the reader to interpret the ranking in this context (see figure 5).

Figure 5: A Metabox that shows a Moderate information reliability ranking.

Another important element of the Metabox is the “Edit on GitHub”
link. When clicked, a new tab with a text editor appears, encouraging
the user to make changes. The text editor is part of the GitHub website
and once an edit has been made, a pull-request is created automatically
that I, as the the project maintainer, may then review and merge into
the project to apply the patch. This approach provides a convenient
collaboration workflow with the underlying VCS and also relives me
from the struggle to develop a similar feature.

Further reading

At the end of most chapters is the “Further reading” section. It con-
tains links to articles and websites I used in order to put the provided
information together. Since the overall structure of this section is the

32

same on every page and numerous links were relevant to multiple chap-
ters, I constructed a central sources index which contains entries that
are shaped as shown below.

’android’:
{

description: ’Official website’,
url: ’http://www.android.com/’,
title: ’Android’

},
’android-api-guides’:
{

description: ’Official documentation’,
url: ’https://developer.android.com/guide/index.html’,
title: ’Android API Guides’

},
...

With the help of the HTML templating engine I could then create a
function section further reading() that generates the section
with minimal effort (see figure 6).

Figure 6: The further reading section at the end of a chapter.

section_further_reading([’android’, ’android-api-guides’]);

Based on the index, the entire sources page is also generated automat-
ically as part of the build process.

33

Abbreviations

Similar to the sources index, there is also a name index. I found myself
repeating names of companies and technologies all over the place and
intended to display them with an italic font. Additionally, in many
cases, there are also common abbreviations for these names. To stop
repeating myself and to be less prone to errors and inconsistencies, I
introduced the names index.

...
’robolectric’: { name: ’Robolectric’ },
’robotest’: { name: ’RoboTest’ },
’sbt’:
{

abbreviation: ’sbt’,
name: ’Scala Build Tool’

},
’sbt-plugin’: { name: ’Android SDK Plugin for SBT’ },
...

After defining a couple rendering functions, I was able to access the
index from templates in this fashion:

names.get(’robolectric’) // Robolectric
names.get(’sbt’) // Scala Build Tool (sbt)
names.abbr(’sbt’) // <abbr title="Scala Build Tool">sbt</abbr>
names.name(’sbt’) // Scala Build Tool

The major advantage of this approach is the semantically valuable
rendering of abbreviations with the <abbr /> tag. If a reader is un-
familiar with an abbreviation, the title tooltip reveals the full meaning.

Furthermore, I used all entries that contain a name and an abbre-
viation value to render the abbreviations page as part of the build
process.

Highlighted paragraphs

A major reason that brought me to replace Markdown with an HTML
templating system was the desire to highlight paragraphs that should
stand out from the rest of the content. In Markdown documents this
could be achieved by embedding HTML (which defeats the purpose of
Markdown) or, a surprisingly common practice, by abusing the block-
quote syntax for this purpose. The templating engine allowed me to
create a simple function that takes care of generating an appropri-
ate markup, including an icon that illustrates why a paragraph was
highlighted (see figures 7 and 8).

34

{% call alert(’warning’) %}
<p>Lorem Ipsum</p>

{% end call %}

This works for common text paragraphs, blockquotes and also code
blocks without abusing HTML elements in a context where they do
not belong.

Figure 7: An example of a paragraph that is highlighted as an alert box to
draw attention.

35

Figure 8: An example of a blockquote that is styled in the fashion of a
highlighted paragraph.

Syntax highlighting

In terms of styling, code blocks are basically just highlighted para-
graphs (see figure 9). But they were designed in such a way that the
code may be placed in a separate file rather than inserting right into
the alert() function body.

// Render code file and apply Scala syntax highlighting
code(’page/proguard/configuration.scala’, ’scala’)

The actual highlighting of the program code is done by highlight.js
which is usually executed on the client side. Since it was also pos-
sible to integrate this process into the Gulp build process easily I
preferred to encode the syntax highlighting into the delivered HTML
documents. As a consequence the client does not need to load the ad-
ditional JavaScript dependency and can also benefit from the feature
when JavaScript is not available.

36

Figure 9: An example of code blocks that have syntax highlighting applied.

37

Hello Scala

Figure 10: A screenshot of the Hello Scala sample application

Besides documenting how to set up and configure a Scala on An-
droid project I saw the need to create a comprehensive and exe-
cutable project that implements the described practices. It focuses
on a lightweight configuration that is preconfigured with common de-
pendencies (such as the Android support libraries) and test cases. Just
like the documentation, the Hello Scala project is available on GitHub
and is intended to be cloned in order to have an up-to-date project
template. The Scala on Android documentation contains numerous
references to its sister project, pointing out that there is a working
example waiting to be explored.

HelloScala aims to meet three important needs:

Curiosity

Newcomers should be able to clone and get it running on their
device with minimal effort. As a demonstration of how easy a
Scala on Android set up can be, it aims to encourage the visitor
giving Scala on Android a serious try.

38

Documentation

As it implements the best practices advertised in the documen-
tation, it serves as a functional showcase and learning resource.

Scaffolding

Rather than starting a new project from scratch, it should be
a considerable alternative to clone the HelloScala project as the
foundation. It features a sophisticated SBT configuration that
can easily be trimmed down to specific needs rather than gath-
ering up necessary configuration values from the web.

39

8 Conclusion and Feedback

Creating a comprehensive documentation for Scala on Android was a chal-
lenging exercise. I managed to address every issue which was discovered by
the help of the interviews, but in some rare cases I saw no other solution
than to surrender and accept that there was currently no way to fix this par-
ticular problem. These documentation gaps were a disappointing experience
and made it incredibly difficult for me to still bring myself to publishing the
document, yet alone asking the developers for feedback explicitly.

Luckily both, the former interviewees and the community as a whole, ap-
peared to appreciate the website. After setting the documentation up and
publishing it on the web, I reached out to the interview partners asking them
for their thoughts about my work result.

Hi ,

I just published the current state of my efforts for the Scala on
Android documentation here on Reddit. But since you shaped
the form of the project through our interview I am especially
interested in your thoughts about it. It’s far from perfect and
turned out to be way more work than I expected, but I’d still
like you to have a look at it. And, if time permits, provide me
with brief feedback (3-4 sentences suffice) of what you like and
don’t like about it.

Thank you,
Nik

You really did a great job there. Especially the hello-scala project
is a huge win for me. I can’t believe why we didn’t have anything
like this before. Maybe you should put more emphasize on col-
laboration to keep the project active? It’d be a shame if it was
a wasteland in a couple of months. I’ll try to stick around and
make a contribution every now and then so that we can keep it
up to date.

40

I’m pleasantly surprised by the overall appearance, it looks very
clean and elegant. Your articles seem well thought out and I’ve
enjoyed reading so far. The chapter about parcelables was es-
pecially useful for me. I always kinda avoided that with Scala
(and hated it with Java). Incredibly good job. Will definitely
recommend!

I think you did good work in that short time. I did not read all
of it now but looks very good. Too bad you couldn’t add gradle.
Maybe I should try out sbt ;)

Unfortunately, not all interviewees responded to my inquiry but other com-
munity members that did not participate in the interviews also left some
valuable and encouraging feedback when I promoted the website on their
platform.

This [is] one of those things I’ve been looking for, for a while.

Please, can you keep updating?

I on the site would emphasize that others could contribute on
Github more prominently; maybe it will help growth.

What can I, Scala and Android noob, do to help?

This is great work. Thanks so much.

I haven’t tried to follow the steps but I glanced through the
whole thing and it seems like a great start!

41

I am very pleased to bookmark this for perusal as it is something
I want to learn very soon – in fact, I’m only delaying so I can
brush up on my Scala in the first place. I hope to look at it in
the near future!

It is still to be clarified whether I spent too much time on making the
documentation fun, rather than improving its content.

I spent more time playing with your a:hover css effect than
actually reading the documentation. I am easily amused :/

Since I received this overall positive feedback I am particularly excited about
the project and looking forward to refining it. Having the opportunity to
create such a valuable resource for the development community as part of
my thesis turned out to be a privilege.

42

9 Scala on Android on the web

Figure 11: The Android mas-
cot dressed in a robe that il-
lustrates the red helix of the
Scala branding, serving as the
Scala on Android logo.

Within the scope of this thesis, several projects emerged on the web which
you may find under the following addresses:

• Scala on Android documentation

http://scala-on-android.taig.io/

• Scala on Android repository

https://github.com/taig/scala-on-android/

• Hello Scala repository

https://github.com/taig/hello-scala/

43

http://scala-on-android.taig.io/
https://github.com/taig/scala-on-android/
https://github.com/taig/hello-scala/

Index of abbreviations

AAR Android Application Library

AJAX Asynchronous JavaScript and XML

API Application programming interface

APK Android Application Package

APKLIB Android Application Package Library

ART Android Runtime

CDN Content Delivery Network

CI Continuous Integration

CSS Cascading Style Sheet

DNS Domain Name System

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IPC Inter-process communication

JAR Java Archive

JDK Java Development Kit

JNI Java Native Interface

JVM Java Virtual Machine

NDK Native Development Kit

SBT Scala Build Tool

SASS Syntactically Awesome Style Sheets

SDK Software Development Kit

SVG Scalable Vector Graphic

VCS Version Control System

44

References

[1] Bruce L. Berg. Qualitative research methods for the social sciences. Allyn
& Bacon, 2001.

[2] Martin Odersky. An overview of the Scala programming language. École
Polytechnique Fédérale de Lausanne, 2004.

45

	Introduction
	Revealing the problems
	Researching technique
	Finding interview partners
	Preparing the interviews
	Interview outline
	Interview types
	Interview schedule

	Conducting the interviews
	Evaluating the interviews
	Identified problems
	Out of scope

	Interview reliability
	Outlining the documentation characteristics
	Creating the documentation
	Collaboration and hosting
	Static page generator
	Implementation

	Conclusion and Feedback
	Scala on Android on the web

