
Master-Thesis
in der Fachrichtung

Informatik

Structural Analysis of Unknown RDF
Datasets via SPARQL Endpoints

Thomas Holst
Matrikelnummer: 4490780
thomas.holst@fu-berlin.de

Eingereicht am: 3. Mai 2013

Betreuer: Dr.-Ing. Edzard Höfig
Erstgutachterin: Prof. Dr.-Ing. Ina Schieferdecker
Zweitgutachter: Prof. Dr.-Ing. Robert Tolksdorf

mailto:thomas.holst@fu-berlin.de

Master-Thesis
von Thomas Holst

Berlin, 2013

Version vom 3. Mai 2013
Gesetzt mit LATEX2ε

Eidesstattliche Erklärung
Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbstständig
und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe;
die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind
als solche kenntlich gemacht.

Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen
Prüfungskommission vorgelegt und auch nicht veröffentlicht.

Berlin, 3. Mai 2013

Abstract

The World Wide Web is currently developing towards a Web of Data with explicit
semantics. In this Semantic Web knowledge becomes machine-processable, enabling
a more intelligent “Global Information Village”. Data for the Semantic Web is
modeled using a generic triple-based format, called RDF. Due to RDF’s bottom-up
characteristic and the resulting lack of explicit schema information, manual inspection
is usually needed to understand the structure of unknown RDF datasets. Furthermore,
these datasets are often located on remote servers which can only be accessed using
the SPARQL query language. The goal of this thesis is to enable an automated
structural analysis of RDF data based on SPARQL queries. We approach our goal in
three steps. Based on a survey of related work and a detailed discussion of dataset
understanding, we first identify a set of 18 measures for structural analysis. Secondly,
we implement these measures in our software RDFSynopsis, following two alternative
approaches called Specific Query Approach (SQA) and Triple Stream Approach (TSA).
Finally, we demonstrate the structural analysis of RDF datasets along an example use
case, and compare our SQA and TSA implementations with regard to query runtime
performance; revealing that SQA is clearly superior to TSA, at least for the fuseki
triple store used in our benchmark.

Contents

Acronyms ix

List of Figures xi

List of Tables xiii

1. Introduction 1
1.1. Context and Motivation . 1
1.2. Goal . 1
1.3. Approach . 2
1.4. Structure of Thesis . 2

2. Background 5
2.1. Semantic Web – Vision and Reality 6

2.1.1. History and Future of the World Wide Web 6
2.1.2. A Web of Data . 8

2.2. RDF – the Data Model . 11
2.2.1. Triples form Graphs . 11
2.2.2. URIs and Vocabularies . 12
2.2.3. Serialization Formats . 13

2.3. Ontologies – the Meta Models . 15
2.3.1. Terms . 16
2.3.2. Hierarchies . 16
2.3.3. Domain and Range of Properties 17
2.3.4. Inverse and Transitive Properties 17
2.3.5. Expressing Equivalence . 18
2.3.6. Advanced Meta-Modeling with OWL 20

2.4. Understanding RDF Data Modeling 21
2.4.1. Levels of Modeling . 21
2.4.2. Open World Modeling . 23

2.5. SPARQL – the query language . 26
2.6. Triple Stores and SPARQL Endpoints 29

3. Structural Analysis of RDF Datasets 31
3.1. Use Case and Central Questions . 32

vii

Contents

3.2. Requirements and Definitions . 33
3.2.1. RDF Datasets . 33
3.2.2. Publisher and Consumer . 33
3.2.3. Structure, not values . 33
3.2.4. Access via SPARQL-Endpoints 34
3.2.5. Summary . 34

3.3. Approaches and Related Work . 35
3.3.1. Statistical Measures . 35
3.3.2. Descriptive Subgraphs . 42
3.3.3. Summary Graphs . 44

3.4. Discussion and Choice of Measures 46
3.4.1. Entity Domain . 46
3.4.2. Information Domain . 49
3.4.3. Composition . 51
3.4.4. Reusability . 53
3.4.5. Chosen Measures . 55

4. Design and Implementation of Structural Analysis 57
4.1. Structural Analysis via SPARQL . 58

4.1.1. Specific Queries . 58
4.1.2. Triple Stream . 58
4.1.3. Measure Implementation . 61

4.2. Architecture of RDFSynopsis . 80

5. Evaluation 85
5.1. Example Use Case Study . 85
5.2. Performance . 89

5.2.1. Setup . 89
5.2.2. Specific Query Approach . 92
5.2.3. Triple Stream Approach . 95
5.2.4. Comparison of Approaches . 98

5.3. Accuracy of Partial Analysis & Random Sampling 99

6. Conclusion 103
6.1. Summary . 103
6.2. Results . 104
6.3. Future Work . 105

A. Namespace Prefixes 107

B. Fuseki Endpoint Configuration 109

C. Command-Line Usage of RDFSynopsis 111

Bibliography 113

viii

Acronyms

API Application Programming Interface.

AST the Austrian Ski Team dataset.

BC Bisimulation Contraction.

BSD Berkeley Software Distribution.

CBD Concise Bounded Description.

CKAN Comprehensive Knowledge Archive Network.

CMS Content Management Systems.

CPU Central Processing Unit.

CSP Coarsest Stable Partition.

CSS Cascading Style Sheets.

CURIE Compact URI.

FOAF Friend of a Friend.

FP Functional Property.

HTML Hypertext Markup Language.

HTTP Hypertext Transfer Protocol.

IFCBD Inverse Functional CBD.

IFP Inverse Functional Property.

JSON JavaScript Object Notation.

ix

Acronyms

JSON-LD JSON for Linked Data.

MSG Minimum Self-contained Graph.

N3 Notation3.

OOP Object-Oriented Programming.

OS Operating System.

OWL Web Ontology Language.

RAM Random-Access Memory.

RDF Resource Description Framework.

RDFS RDF Schema.

SCBD Symmetric CBD.

SKOS Simple Knowledge Organization System.

SPARQL SPARQL Protocol and RDF Query Language.

SQA Specific Query Approach.

SQL Structured Query Language.

TSA Triple Stream Approach.

Turtle Terse RDF Triple Language.

URI Uniform Resource Identifier.

URL Uniform Resource Locator.

voiD Vocabulary Of Interlinked Datasets.

W3C World Wide Web Consortium.

WWW World Wide Web.

XML Extensible Markup Language.

x

List of Figures

2.1. Classic Web and Web of Data . 8
2.2. The Semantic Web Layer Cake . 9
2.3. Merging of RDF Graphs . 12
2.4. Example for RDF Graph Serialization 14
2.5. Different Modeling Levels in RDF . 22
2.6. RDF Graph for SPARQL Example 27

3.1. Comparison of Summary Graphs . 45
3.2. Example for Class-based Histograms 47
3.3. Implicit vs. Explicit Class Hierarchy 48
3.4. Example for Property-based Measures 50
3.5. Implicit vs. Explicit Property Hierarchy 51

4.1. Sequence Diagram for Specific Query Approach (SQA) 58
4.2. Sequence Diagram for Triple Stream Approach (TSA) 59
4.3. Creating a Triple Stream with SPARQL 59
4.4. Random Sampling TSA . 60
4.5. Architecture of RDFSynopsis . 80

5.1. Example Use Case: Implicit Class Hierarchy with Instances and Triples 86
5.2. Example Use Case: Property Usage 87
5.3. Example Use Case: Class Instances per Property & Common Properties 88
5.4. Example Use Case: Links to Other Namespaces 88
5.5. Total Runtime (SQA) Grouped By Dataset 93
5.6. Runtime (SQA) in Percent of Total Runtime 94
5.7. Runtime (SQA) Normalized to 1M Triples 94
5.8. Runtime of Single TSA Queries . 96
5.9. Runtime of Single TSA Queries (Normalized to 1M Triples) 96
5.10. Runtime of Full TSA Queries . 97
5.11. Accuracy of Sequential TSA . 100
5.12. Accuracy of Random Sampling TSA 101

xi

List of Tables

3.1. Survey of Statistical Measures . 38
3.2. Measures Chosen for Structural Analysis 56

5.1. Datasets Used in Benchmark . 90
5.2. System Specifications for Benchmark 91
5.3. Benchmark Results for SQA . 92
5.4. Benchmark Results for TSA . 95
5.5. Total Runtimes for SQA and TSA (ordered by subject) 98

A.1. Namespace Prefixes Used in this Thesis 107

xiii

1. Introduction

1.1. Context and Motivation

The term Semantic Web describes an idea for the next evolutionary stage of the
World Wide Web (WWW). While the WWW today represents a web of interlinked
documents targeted towards human consumers, supporters of the Semantic Web
idea favor the development towards a Web of Data that makes Web content more
machine-processable.

The Web of Data relies on a generic triple-based data model, which expresses infor-
mation in terms of resource nodes and relationship edges. This data model, called
Resource Description Framework (RDF), was designed to enable bottom-up modeling.
Similar to the way humans express and share knowledge with natural language, RDF
relies on consensual rather than centrally (top-down) defined meaning.

Due to the generic data model and bottom-up characteristic of RDF, an unknown
RDF dataset may leave a potential consumer in the dark about its content and
inner structure. Gaining an understanding of such a dataset can easily become a
time-consuming hands-on process.

Furthermore, RDF data is often only available from a server that answers queries
formulated in an RDF-specific query language. This language is called SPARQL
Protocol and RDF Query Language (SPARQL). Web services that expose RDF data
via SPARQL are called SPARQL endpoints.

1.2. Goal

The goal of the work presented in this thesis, is to enable an automated structural
analysis of RDF data based on SPARQL queries. The ideal outcome of our work
would be a software tool which consumers of RDF data could point at any SPARQL
endpoint, and receive a concise structural analysis of the underlying dataset in a short
time, if not in real-time.

1

Chapter 1. Introduction

1.3. Approach

We approach our goal in three steps.

1. Identification

We first need to understand, what a “structural analysis of RDF data” really
means. In this thesis, we use the notion of a “measure”1 to refer to a single
aspect according to which a dataset could be analyzed. This may be a single
value, like the number of triples, or more complex information, such as ratios or
frequencies for different categories. The goal of the first step is to identify the
set of measures that are needed to understand an RDF dataset.

2. Implementation

We need to study, how we can use SPARQL to analyze datasets which are
only available through SPARQL endpoints. The goal of the second step is
to implement the analysis according to the set of identified measures with
SPARQL.

3. Evaluation

Finally, we need to investigate whether the measures chosen in the first step
provide the desired insight into an unknown dataset, and whether our imple-
mentation is efficient enough for practical use. The goal of the third step is to
evaluate whether we have reached the goal of this thesis.

1.4. Structure of Thesis

The remainder of this thesis is structured in five chapters.

Chapter 2 (Background) is dedicated to presenting the Semantic Web idea (section
2.1) and its core technologies. RDF is introduced in section 2.2. Information is
expressed in RDF using terms from shared ontologies (section 2.3). Understanding
the bottom-up characteristic of data modeling with RDF is important to understand
the motivation and challenge behind a structural analysis of RDF datasets (section
2.4). The SPARQL Protocol and RDF Query Language (SPARQL) is introduced
in section 2.5. RDF datasets are typically stored in specific databases called triple
stores (section 2.6) and are often accessible through SPARQL endpoints.

1We use the terms “measure” and “criterion” interchangeably throughout this thesis.

2

1.4. Structure of Thesis

The chapters 3 to 5 represent the three steps of our approach: Identification, Imple-
mentation, and Evaluation.

In chapter 3 (Structural Analysis of RDF Datasets) we study different measures and
approaches towards a structural understanding of RDF datasets. First, we define
dataset understanding in terms of four central aspects (section 3.1). Then, we define
the goal of our work in more detail (section 3.2). In section 3.3 we present related
work from three areas, including a survey of 75 statistical measures (table 3.1) which
are used in scientific work and practical applications. Based on our findings from
related work, we separately discuss each central aspect of RDF dataset understanding,
and identify suitable criteria, 18 in total (section 3.4).

In chapter 4 (Design and Implementation of Structural Analysis) we describe the
implementation of the structural analysis with SPARQL. In section 4.1, we introduce
two general approaches, the Specific Query Approach (Specific Query Approach (SQA))
and the Triple Stream Approach (Triple Stream Approach (TSA)). We present SQA
and TSA implementations for all 18 criteria in section 4.1.3. Finally, we describe the
architecture of our software RDFSynopsis which implements the structural analysis
(section 4.2).

In chapter 5 (Evaluation) we evaluate our approaches with regard to three aspects.
First, we employ our analytic criteria in an example use case, to demonstrate their
suitability for structural analyses (section 5.1). Second, we compare SQA and TSA
with regard to their query runtime performance (section 5.2). Third, we look into the
accuracy achieved with partial and random TSA analyses (section 5.3).

The thesis ends with chapter 6 (Conclusion). In section 6.1 we provide a brief
summary of this thesis. In section 6.2 we separately evaluate the three steps of our
approach. We conclude with an outlook on potential future work in section 6.3.

3

2. Background

In this chapter, we describe the Semantic Web idea and its core technologies, thereby
setting both context and foundation for the work presented in this thesis.

We first take a historical look at the WWW (section 2.1.1) and describe the vision of
a “Web of Data” that underlies the Semantic Web idea (section 2.1.2). We then focus
on core technologies developed for that vision, beginning with the abstract data model
of RDF, that represents information as triples (section 2.2). To convey meaning, these
triples are formulated with terms that are modeled in Ontologies (section 2.3). At first,
it can be quite hard to understand RDF data modeling which can be characterized as
Open World and Bottom-Up (section 2.4). RDF data is usually stored in triple stores
(section 2.6) and queried via the SPARQL query language (section 2.5).

Many good introductory texts on the Semantic Web and its technologies exist. “Seman-
tic Web for the Working Ontologist”[3], “A Semantic Web Primer”[5], “Programming
the Semantic Web”[62], and “Linked Data: Evolving the Web into a Global Data
Space”[49] are some that we found useful.

5

Chapter 2. Background

2.1. Semantic Web – Vision and Reality

The term Semantic Web describes an idea for the next evolutionary stage of the
WWW. While the WWW today represents a web of interlinked documents targeted
towards human consumers, supporters of the Semantic Web idea favor the development
towards a Web of Data that makes Web content more machine-processable.

2.1.1. History and Future of the World Wide Web

In the beginning there were computers. And they were just a few, spread around the
world; and all were used in isolation of each other. Then the Internet was invented
and distant computers could now communicate. Their human users invented a lot of
task-specific languages (protocols) for them and were happy to send emails. In the
late 1980’s Tim Berners-Lee invented the Hypertext Transfer Protocol (HTTP), the
Hypertext Markup Language (HTML) and the Uniform Resource Identifier (URI)
scheme to combine a general form of hypertext media and communicating computers.

I happened to come along [...] after hypertext and the Internet had come
of age. The task left to me was to marry them together.

Tim Berners-Lee, 2000, Weaving the Web [15]

This “marriage” led to the World Wide Web as we have today, a vast and distributed
collection of Web resources (HTML pages, pictures, videos and any other kind of
file) uniquely identified by their Uniform Resource Locator (URL) and accessible
via HTTP. The WWW is not only a single technological achievement but a huge
success of the human community which has built its “Global Information Village”.
The WWW has changed people’s everyday lives and improved access to information
and education for many.

Since its birth the Web has matured, its technologies have been refined and become
more sophisticated. Web developers use state of the art tools like Content Management
Systems (CMS), relational databases and structured file formats like the Extensible
Markup Language (XML) to build reliable and professional websites that users and
customers would not want to miss.

Still, a group of Web experts and institutions like the World Wide Web Consortium
(W3C) itself argue that the WWW as an “information web”[3] does not perform
to its full potential. Antoniou and van Harmelen point out that “[k]eyword-based
search engines such as [...] Google are the main tools for using today’s Web. It is clear

6

2.1. Semantic Web – Vision and Reality

that the Web would not have become the huge success it is, were it not for search
engines. However, there are serious problems associated with their use.”[5] Besides
search engines’ difficulties to produce all (“low recall”) and only (“low precision”) the
relevant results - without being too sensitive to vocabulary -, the authors mention the
problem that results can only be single Web pages. “If we need information that is
spread over various documents, we must initiate several queries to collect the relevant
documents, and then we must manually extract the partial information and put it
together.”[5]

The reason for these problems can be found in the basic fact that the WWW consists
of interlinked documents that are made for human eyes. Almost all Web pages contain
natural language that is logically structured for an optimized visual presentation in
the user’s Web browser, using HTML and Cascading Style Sheets (CSS).

Tim Berners-Lee himself was among the first to wonder if computers could do more
than just receiving and displaying Web pages, and what was needed to that end.

Some of the developments that [the WWW initiators] look forward to in
the next few years include: [...] Evolution of objects from being principally
human-readable documents to contain more machine-oriented semantic
information, allowing more sophisticated processing.

Tim Berners-Lee et al., 1994, the World Wide Web [16]

The first step is putting data on the Web in a form that machines can
naturally understand [...]. This creates what I call a Semantic Web - a
web of data that can be processed [...] by machines.

Tim Berners-Lee, 2000, Weaving the Web [15]

Since Berners-Lee wrote this in 2000 many have picked up on the idea of a “web of
data”. In their enthusiasm about what the Semantic Web could be and what benefits
it would entail, and in order to promote the idea, the proponents used a lot of rather
visionary examples. These spoke of “intelligent agents” that would enable “home
automation” and self-scheduling medical treatment plans [17]. To some people this
sounded more like a science fiction novel than any near-future technology, and thus
lead to misconceptions regarding the severity of inherent technological challenges.
Instead:

[T]he greatest current challenge is not scientific but rather one of technology
adoption. G. Antoniou, F. van Harmelen, 2008, A Semantic Web Primer [5]

7

Chapter 2. Background

In the beginning, the World Wide Web had faced similar problems. Although the
required technology was already there (HTTP, HTML and URL), people first had to
be convinced to create simple HTML documents with links to other documents for
their own use, before the WWW vision was realized [15]. In a similar fashion, instead
of promoting the Semantic Web idea, people are now simply encouraged to publish
their data as “linked data”[13].

[W]hile the Semantic Web, or Web of Data, is the goal or the end result
of this process, Linked Data provides the means to reach that goal.

C. Bizer, T. Heath, T. Berners-Lee, 2009, Linked-Data - The Story So Far [19]

In a community effort of Semantic Web enthusiasts and researchers, and through the
standardization process of W3C, a set of linked data technologies has been developed
that could make the Semantic Web vision come true and are already in wide use
today. In section 2.1.2 we will take a closer look at this technological side.

2.1.2. A Web of Data

The classic World Wide Web can be described as a web of documents. As visualized
in figure 2.1a the Web is made of document nodes and directed link edges between
these documents. Documents (or Web resources) can, in general, be any kind of
file, and all documents on the Web have a unique identifier, their Uniform Resource
Locator. The main kind of documents are Web pages that contain natural language

.html other other

data data

data

data

data

generate generate generate

predicate

.html

.html

.html

.html

.html

data

generate

data

generate

data

generate

(a) The classic Web of Documents

.html other other

data data

data

data

data

generate generate generate

predicate

.html

.html

.html

.html

.html

data

generate

data

generate

data

generate

(b) The new Web of Data

Figure 2.1.: Classic Web and Web of Data

8

2.1. Semantic Web – Vision and Reality

text and are logically structured using the Hypertext Markup Language. In HTML,
parts of the logical structure can be marked as referring to another document by using
the -tag, thereby creating a link. Any document with a valid URL can
be retrieved from the Internet using the Hypertext Transfer Protocol (HTTP). The
user interface to this web of documents are Web browsers, a kind of software that is
working on top of HTTP, used to retrieve and display documents, and to follow their
links through the WWW.

Despite significant developments of Web technology that, for example, allow for the
automatic generation of complex Websites from data (as shown in fig 2.1a) or client-
and server-side dynamics, the basic WWW system of HTTP, HTML, and URL, has
not changed.

In comparison to the WWW, the Semantic Web can be described as a Web of Data.
As visualized in figure 2.1b the Web of Data is made of, as the name suggests, data
nodes and directed link edges between them. A data node is usually referred to as a
resource. Resources can, in general, represent any kind of real or imaginable “thing”
- or abstract concept. Similar to the documents in the WWW, all resources have
a unique identifier, a Uniform Resource Identifier. In contrast to the general links
of the WWW, the Web of Data uses typed links, called properties (or predicates).
Like resources, all property types have a unique URI. Consequently, links in the
Web of Data are represented as triples of URIs. Furthermore, all information about
any resource can be represented by using triples with appropriate properties. This
basic data model of triples was specified by the W3C as the Resource Description
Framework (RDF).

Figure 2.2.: The Semantic Web Layer Cake (source: [74])

9

Chapter 2. Background

Data for the Web of Data is usually published as RDF datasets (the “data” objects
in figure 2.1b) containing a large number of triples, and stored in RDF databases,
so called triple stores. Similar to the way the Structured Query Language (SQL) is
used to query relational databases, the SPARQL Protocol and RDF Query Language
(SPARQL) can be used to retrieve RDF data from triple stores. When resource and
property URIs are reused across multiple datasets, the latter can easily be merged and
treated as one dataset. These two principles, using common global URI identifiers for
resources and properties, and using the common RDF data model, provide the “Web”
in Web of Data.

The user interface will (in many cases) most probably remain to be the Web browser
that displays HTML pages. But, in contrast to the classic WWW, these pages may
not be generated from specific, self-contained databases, but from a combined view of
many data sources, i.e., from the Web of Data.

The technologies that represent the foundation for the Web of Data, are often visualized
in a stack, the so called “layer cake” (see figure 2.2).

10

2.2. RDF – the Data Model

2.2. RDF – the Data Model

RDF, short for Resource Description Framework, is a “framework for representing
information in the Web” [26]. It features a simple, abstract data model that is based
on triples; a set of triples is called an RDF graph (section 2.2.1). RDF was designed
to enable information sharing, merging, and processing by machines; to this end RDF
uses globally unique URIs and domain specific sets of terms, so called vocabularies
(section 2.2.2). For the single abstract data model, different serialization formats (i.e.,
file formats) exist (section 2.2.3).

2.2.1. Triples form Graphs

The basic elements of RDF are triples. The same triple can be described in different
ways.

1. As consisting of Subject, Predicate, and Object.
Subject Predicate Object .

2. Predicate and object may be referred to as Property and Value, respectively.
Subject Property Value.

3. A triple can also be interpreted as part of an RDF graph, i.e., subject and object
are nodes of an RDF graph, and the predicate is a directed edge.

Subject Object
Predicate

In general, triples represent a relationship (denoted by the predicate) between two
things (subject and object). Triples are sometimes referred to as statements or as
assertions of relationships. A set of triples is called an RDF graph. This is due to
the characteristic of RDF, that a set of triples with common subjects or objects can
be merged into one connected component. For example, the following triples can be
drawn as three independent graphs or as one merged graph (figure 2.3).

Sub1 Pred1 Obj1.
Sub1 Pred2 Obj2.
Sub2 Pred3 Obj1.

Subjects, predicates, and objects are URIs (explained below in section 2.2.2). Objects
can also be literal values with optional datatype and language tag. The RDF standard
[26] by W3C defines blank nodes, i.e., nodes without a global URI. They can be used
as subjects or objects, but their use for linked data is discouraged [49] because they
cannot be linked to from external documents and make merging of graphs harder.

11

Chapter 2. Background

Sub1 Obj1

Sub1 Obj2

Sub2 Obj1

Pred1

Pred2

Pred3

(a) Single Graphs

Sub1

Sub2

Obj2

Obj1

Pred1

Pred2

Pred3

(b) Merged Graph

Figure 2.3.: Merging of RDF Graphs

2.2.2. URIs and Vocabularies

The basic idea of the Semantic Web is the use of data with explicit semantics, that
is, meaning. Because things get their meaning only by convention, a data model
with explicit semantics can only be established if it allows for the use of agreed-upon
terms. Thus, RDF has to provide the means for people to use globally unambiguous
terms and identifiers. For this purpose, RDF uses URIs, because they have two main
advantages:

1. Clear authority:
The authority part of a URI [54] belongs to a registered owner, who has the
sole authority to provide and manage URIs beginning with their authority part.

2. Unambiguous identifiers:
Trivially, there is only one way to write a specific URI. If two URIs are different
then, by definition, they can be referred to independently of each other.

Using URIs, a triple might look like (wrapped around for space reasons):
<http :// dbpedia .org/ resource /Berlin >
<http :// www.w3.org /1999/02/22 - rdf -syntax -ns#type >
<http :// dbpedia .org/class/yago/ CapitalsInEurope > .

This triple asserts that the resource <http://dbpedia.org/resource/Berlin> has
a <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> relationship to the re-
source <http://dbpedia.org/class/yago/CapitalsInEurope>.

The resource <http://dbpedia.org/resource/Berlin> was defined by dbpedia.org
to represent the German city of Berlin, among other cities like Wellington1 or Nairobi2.
Apparently the people behind dbpedia have created all their resource URIs with
the common prefix of <http://dbpedia.org/resource/>. A URI prefix like this is
also called a namespace [22]. In RDF, an abbreviation scheme called Compact

1<http://dbpedia.org/resource/Wellington>
2<http://dbpedia.org/resource/Nairobi>

12

http://dbpedia.org/
http://dbpedia.org/

2.2. RDF – the Data Model

URI (CURIE) [18], is used to make URIs more readable. For this representa-
tion, a short prefix is locally defined as equivalent to a namespace (e.g., dbp for
http://dbpedia.org/resource/), and then used followed by a colon and the local
reference (e.g., dbp:Berlin). A list of all prefixes used in this thesis can be found in
the appendix (table A.1).

If we define the following prefixes,
@prefix dbp: <http :// dbpedia .org/ resource />
@prefix rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
@prefix yago: <http :// dbpedia .org/class/yago/>

then the above example in CURIE syntax would read:
dbp: Berlin rdf:type yago: CapitalsInEurope .

Casting information about real-world entities into triples is, abstractly speaking, a
process of modeling these entities. This is done according to a meta-model, that is
made partly of the basic data model, RDF’s triple format, and partly of domain-
specific conceptualizations, so called vocabularies (or ontologies1). Basically, these
vocabularies define the terms, i.e., the classes (or concepts) and relationships, that
can be used to model a specific domain.

For example, a well-known vocabulary to describe people and their relationships is
the Friend of a Friend (FOAF) vocabulary. It defines basic classes (concepts) like
foaf:Person and properties (relationships) like foaf:knows. These terms could be
used like this:

dbp: Angela_Merkel rdf:type foaf: Person .
dbp: Angela_Merkel foaf:knows dbp: Barack_Obama .

Summary. The URI scheme provides globally unambiguous identifiers. Vocabularies
are fixed sets of URI terms, classes and properties, that can be used to describe a
specific domain. Both, URIs and defined vocabularies, enable a common understanding
of the world that is needed for machines to share and process information, without a
layer of human interpretation in between.

2.2.3. Serialization Formats

RDF defines an abstract data model of triples that form RDF graphs. In order to
save these graphs to files, their structure has to be serialized. For RDF, different
serialization formats exist. The following example shows the graph in figure 2.4

1“There is no clear division between what is referred to as ‘vocabularies’ and ‘ontologies’. The
trend is to use the word ‘ontology’ for more complex, and possibly quite formal collection of terms,
whereas ‘vocabulary’ is used when such strict formalism is not necessarily used or only in a very
loose sense.”[75]

13

Chapter 2. Background

serialized in three widely used formats: Terse RDF Triple Language (Turtle), N-
Triples and RDF/XML. There is also a serialization format based on JavaScript
Object Notation (JSON) [31] currently in the making, called JSON for Linked Data
(JSON-LD) [64]. For brevity, all triple listings in this thesis use the Turtle notation.

� Turtle [11]
@prefix foaf: <http :// xmlns.com/foaf /0.1/ >
@prefix rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
@prefix rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
@prefix owl: <http :// www.w3.org /2002/07/ owl#>

foaf: Person a1 rdfs:Class .
foaf: Person a owl:Class .
foaf: Person rdfs: subClassOf foaf:Agent .
foaf:Agent a owl:Class .

� N-Triples [43] (N-Triples is a subset of Notation3 (N3) [14])
<http :// xmlns.com/foaf /0.1/ Person >

<http :// www.w3.org /1999/02/22 - rdf -syntax -ns#type >
<http :// www.w3.org /2000/01/ rdf - schema #Class > .

<http :// xmlns.com/foaf /0.1/ Person >
<http :// www.w3.org /1999/02/22 - rdf -syntax -ns#type >
<http :// www.w3.org /2002/07/ owl#Class > .

<http :// xmlns.com/foaf /0.1/ Person >
<http :// www.w3.org /2000/01/ rdf - schema #subClassOf >
<http :// xmlns.com/foaf /0.1/ Agent > .

<http :// xmlns.com/foaf /0.1/ Agent >
<http :// www.w3.org /1999/02/22 - rdf -syntax -ns#type >
<http :// www.w3.org /2002/07/ owl#Class > .

� RDF/XML [12]
<rdfs:Class rdf:about="http :// xmlns.com/foaf /0.1/ Person ">

<rdf:type rdf: resource ="http :// www.w3.org /2002/07/ owl#Class"/>
<rdfs:subClassOf >

<owl:Class rdf:about="http :// xmlns.com/foaf /0.1/ Agent"/>
</rdfs:subClassOf >

</rdfs:Class >

foaf:Person foaf:Agent

rdfs:Class owl:Class

rdfs:subClassOf

rdf:type
rdf:type

rdf:type

Figure 2.4.: Example for RDF Graph Serialization

1a is a Turtle shorthand for rdf:type

14

2.3. Ontologies – the Meta Models

2.3. Ontologies – the Meta Models

Information is usually modeled in RDF using terms from domain-specific vocabularies
(also called ontologies1), as described in section 2.2.2. These ontologies define a set of
terms, that are either classes or properties. In addition, ontologies can also define
relationships between these terms, and thus represent a meta-model of a domain.

An ontology is a formal, explicit specification of a shared conceptualisation.
A “conceptualisation” refers to an abstract model of some phenomenon in
the world by having identified the relevant concepts of that phenomenon.
“Explicit” means that the type of concepts used, and the constraints on
their use are explicitly defined. [...] “Formal” refers to the fact that the
ontology should be machine readable, which excludes natural language.
“Shared” reflects the notion that an ontology captures consensual knowl-
edge, that is, it is not private to some individual, but accepted by a
group. R. Studer et al., Knowledge Engineering: Principles and methods [66]

Confusing at first, vocabularies for use in RDF models are also defined in RDF triples,
with terms from the following three standard vocabularies

• RDF[26],
• RDF Schema (RDFS)[23], and
• Web Ontology Language (OWL)[55, 73].

These vocabularies are the result of a W3C standardization process, and they have
formally defined semantics [27–29, 48]. For some terms, based on their semantics,
new information (in the form of triples) can be deduced (or inferred). These inference
rules can easily be expressed using SPARQL CONSTRUCT queries [3]. In the following
subsections the basic language features of RDFS and OWL are explained; many of
which are presented with their semantics expressed as a CONSTRUCT query and an
inference example.

1The term “ontology” is used in the area of knowledge representation in a narrow and technical
way, but originally had a broader meaning: “The term ontology originates from philosophy. In
that context, it is used as the name of a subfield of philosophy, namely, the study of the nature of
existence (the literal translation of the Greek word Οντολογια), the branch of metaphysics concerned
with identifying, in the most general terms, the kinds of things that actually exist, and how to
describe them.” [5, p. 10]

15

Chapter 2. Background

2.3.1. Terms

Basic terms from these standard vocabularies include rdfs:Class and rdf:Property;
they are used to define the terms used in a vocabulary. For example, a vocabulary
music could define three terms, two of them classes (piece of music and musician)
and one property (performs).

@prefix music: <http :// example .com/music/>
music:Piece rdf:type rdfs:Class .
music: Musician rdf:type rdfs:Class .
music: performs rdf:type rdf: Property .

This vocabulary could then be used as a meta model to assert information (i.e., create
a model) about some musicians and their performance of music.

ex: OdeToJoy rdf:type music:Piece .
ex: Rihanna rdf:type music: Musician .
ex: Rihanna music: performs ex: OdeToJoy .

2.3.2. Hierarchies

Hierarchical relationships among terms of a vocabulary can be defined using the
properties rdfs:subClassOf and rdfs:subPropertyOf. For example:

music: Singer rdfs: subClassOf music: Musician .
music:Song rdfs: subClassOf music:Piece .
music:sings rdfs: subPropertyOf music: performs .

Software developers used to the Object-Oriented Programming (OOP) paradigm and
its typical features like classes, attributes, and inheritance, might find the semantics
of these relationships [3] counterintuitive.

CONSTRUCT {?r rdf:type ?B}
WHERE {

?A rdfs: subClassOf ?B .
?r rdf:type ?A .

}

That is, no inheritance of attributes takes place, but all instances of a class A are
automatically inferred to be instances of A’s super class B as well. The semantics of
rdfs:subPropertyOf are analogous. So, for example, based on triples

ex: Sinatra rdf:type music: Singer .
ex:MyWay rdf:type music:Song .
ex: Sinatra music:sings ex:MyWay .

the following triples could be inferred.
ex: Sinatra rdf:type music: Musician .
ex:MyWay rdf:type music:Piece .
ex: Sinatra music: performs ex:MyWay .

16

2.3. Ontologies – the Meta Models

2.3.3. Domain and Range of Properties

The classes of subjects and objects used with a property can be defined using
rdfs:domain and rdfs:range.

music:sings rdfs: domain music: Singer .
music:sings rdfs:range music:Song .

The semantics for these RDFS language constructs are even more counterintuitive,
compared to the OOP world. Instead of imposing a restriction on the use of a property
(like method signatures constrain the types of objects that can be used with them,
and allow for type checking), rdfs:domain and rdfs:range provide a mechanism to
infer the classes of those resources used with the specified property. This becomes
clearer from the semantics [3]:

CONSTRUCT {?x rdf:type ?D}
WHERE {

?P rdfs: domain ?D .
?x ?P ?y .

}

So, in the following example ex:Rihanna is used as a subject in a triple with property
music:sings, although she was not defined to be of that property’s rdfs:domain
class music:Singer.

ex: Rihanna music:sings ex: OdeToJoy .

Instead of detecting an inconsistency in property usage, the following triples are
inferred.

ex: Rihanna rdf:type music: Singer .
ex: OdeToJoy rdf:type music:Song .

As a convenience, the two classes owl:DatatypeProperty and owl:ObjectProperty
(both are rdfs:subClassOf rdf:Property) can be used to distinguish properties
that have literals, or respectively, URI objects.

2.3.4. Inverse and Transitive Properties

Often, when modeling information in RDF, it is not obvious in what direction a
property should be defined. Take, for example, the ownership of things; it could
be modeled from owner to thing (via a property :owns), or from thing to owner
(:belongsTo). In many cases, it is useful to model both directions at the same
time. The property owl:inverseOf can be used to make the relation between inverse
properties (like :owns and :belongsTo) explicit. Some properties are owl:inverseOf
themselves; a fact that can easily be expressed by defining the property to be of type
owl:SymmetricProperty.

17

Chapter 2. Background

The semantics in SPARQL are:
CONSTRUCT {?y ?q ?x}
WHERE {

?p owl: inverseOf ?q .
?x ?p ?y .

}

CONSTRUCT {?p ?owl: inverseOf ?p}
WHERE {

?p rdf:type owl: SymmetricProperty .
}

So, for example, the following triples
ex:owns owl: inverseOf ex: belongsTo .
ex: marriedTo rdf:type owl: SymmetricProperty .
ex:Peter ex:owns ex: DisneyCastle .
ex:Peter ex: marriedTo ex:John .

could be used to infer the next triples.
ex: marriedTo owl: inverseOf ex: marriedTo .
ex: DisneyCastle ex: belongsTo ex:Peter .
ex:John ex: marriedTo ex:Peter .

Some properties are transitive, i.e., they apply to all resources that are indirectly
related via that property. The notion of containment is a good example; if A contains
B, and B contains C, then A also contains C. These kind of transitive properties can
be defined of type owl:TransitiveProperty which has the following semantics:

CONSTRUCT {?a ?p ?c}
WHERE {

?p rdf:type owl: TransitiveProperty .
?a ?p ?b .
?b ?p ?c .

}

2.3.5. Expressing Equivalence

In the Semantic Web, things can be globally and uniquely identified by their URIs.
This basic and very important feature must not be confused with a situation where
each thing has one global identifier. The contrary is the case, and the nonunique
naming concept has been identified as yet another crucial feature [3] of the Semantic
Web. That is, when different data publishers talk about the same real world things,
they will likely use different URIs for same things.

This poses a challenge, when data from different publishers need to be merged. A way
of expressing equivalence between properties, classes, and their individual instances is
needed. This demand is met by owl:equivalentProperty, owl:equivalentClass,
and owl:sameAs, respectively. Informally, this means that if two properties, classes
or individuals are asserted to be equivalent, these two can be used interchangeably.

18

2.3. Ontologies – the Meta Models

The semantics for owl:equivalentProperty can be defined in SPARQL as:
CONSTRUCT {?x ?q ?y}
WHERE {

?p owl: equivalentProperty ?q .
?x ?p ?y .

}

The mirrored case (inferring P1 triples from P2 triples) is implicitly included, because
owl:equivalentProperty is of rdf:type owl:SymmetricProperty. The semantics
for owl:equivalentClass can be described analogously.

The property owl:sameAs has a more general meaning. Two resources, defined to be
owl:sameAs each other, are used interchangeably disregarding their position in the
triple (i.e., subject, predicate, or object). The semantics for owl:sameAs are shown
for the subject case, and are analogous for the predicate and object cases.

CONSTRUCT {?y ?p ?o}
WHERE {

?x owl: sameAs ?y .
?x ?p ?o .

}

Sometimes, equivalence of two resources can be inferred from other triples. This is
the case, when a property can be understood as a function, i.e., any subject can only
have one value for that property. If a subject hast two values for such a Functional
Property (FP), they must be equivalent. OWL offers owl:FunctionalProperty
and owl:InverseFunctionalProperty to define functional properties. An Inverse
Functional Property (IFP) works in the other direction, i.e., it allows only one subject
for a property value; if there are two subjects, they must be the same. The semantics
can be expressed in SPARQL as

CONSTRUCT {?a owl: sameAs ?b}
WHERE {

?p rdf:type owl: FunctionalProperty .
?x ?p ?a .
?x ?p ?b .

}

For example, from the following triples
ex: hasBiologicalMother rdf:type owl: FunctionalProperty .
ex:Peter ex: hasBiologicalMother ex:Jane .
ex:Peter ex: hasBiologicalMother ex:Sarah .

it can be inferred that
ex:Jane owl: sameAs ex:Sarah .

The semantics of owl:InverseFunctionalProperty are analogous. A good example
is the foaf:mbox property for email addresses; if two persons are asserted to have
the same email address, then they must be the same person.

19

Chapter 2. Background

Another use case for the application of equivalence statements can be found in thesauri,
i.e., actively administrated vocabularies that define semantic relations between terms.
The Simple Knowledge Organization System (SKOS) [56] is an RDF vocabulary,
and W3C Recommendation, that can be used to define thesauri and similar kinds
of knowledge bases. SKOS offers the property skos:exactMatch to assert that two
terms have the same meaning. There is a subtle difference between owl:sameAs and
skos:exactMatch. While the former can be used to assert that two URI resources
represent the same thing, the latter is used to claim that two URI resources represent
two different things (natural language terms) that have the same meaning in natural
language.1

Sometimes, especially in more sophisticated ontologies built to enable automatic
reasoning, resources have to be explicitly defined to be not equivalent, i.e., different.
OWL offers the property owl:differentFrom to this end, and owl:AllDifferent
to define lists of resources, all of which are different from one another. [3]

2.3.6. Advanced Meta-Modeling with OWL

The Web Ontology Language (OWL) offers many mechanisms for precise ontology
definition, many of which have not been described so far.

One of the most important features is a mechanism to describe classes by restricting
(owl:Restriction) the values allowed for certain properties (owl:onProperty). That
is, the type of resources can be inferred based on their actual property values. For
example, the following statements would define a class music:MyWayInterprets
including all resources having the value ex:MyWay for the property music:performs.

music: MyWayInterprets owl: equivalentClass _: blankNode12 .
_: blankNode1 rdf:type owl: Restriction .
_: blankNode1 owl: onProperty music: performs .
_: blankNode1 owl: hasValue ex:MyWay .

Similar properties exist to define classes based on the number of values for some
property (owl:cardinality, owl:minCardinality, and owl:maxCardinality). The
assumed open world can be closed by using owl:oneOf to explicitly specify all members
of a class. Further OWL properties allow for the definition of united, intersected,
disjoint and complemented classes.

1The official SKOS reference [56] states: “The property skos:exactMatch is used to link two
concepts, indicating a high degree of confidence that the concepts can be used interchangeably across
a wide range of information retrieval applications.”

2Nodes of the form _:name are RDF blank nodes, i.e., nodes in the RDF graph that have no URI
and cannot be referenced from the outside of the RDF document.

20

2.4. Understanding RDF Data Modeling

2.4. Understanding RDF Data Modeling

To gain a general understanding of data modeling in RDF, we first differentiate
between different levels of modeling (section 2.4.1), and then discuss the Open World
nature of RDF (section 2.4.2).

2.4.1. Levels of Modeling

Now that we have seen what RDF is, and how ontologies can be defined in RDF, let
us take a look at the different constituents of data modeling in RDF and how they
relate to each other. These constituents are:

• The abstract syntax of RDF. All information is expressed in triples, as explained
in section 2.2.

• The standard vocabularies RDF, RDFS, and OWL, just introduced above.

• Domain-specific vocabularies (or ontologies) that, in principle, can be defined
by everybody.

• Real world facts modeled in RDF triples.

When a real world phenomenon is described in RDF triples, formally speaking, a
model of the real world is created, that represents the phenomenon while it also omits
many real world relations and characteristics, that is, every model is an abstraction
of the real world.

For example, when the real world phenomenon of a specific male human, that lived
in an area referred to as the “USA” and was known for specific art products referred
to as “songs”, is modeled in RDF as

ex: Sinatra rdf:type music: Singer .
ex:MyWay rdf:type music:Song .
ex: Sinatra music:sings ex:MyWay .

then this model abstracts from a lot of things (e.g., biology, geography, cultural
contexts of art). From the model, we only know that some real world thing (a
music:Singer represented by the URI ex:Sinatra) has a specific relationship (repre-
sented by textttmusic:sings) to something (a music:Song represented by ex:MyWay).

The model of Frank Sinatra and his song "My Way" is expressed with terms (sings,
Singer, Song) from the fictitious music vocabulary. This vocabulary can be understood

21

Chapter 2. Background

rdfs:subClassOf

ex:Sinatra
music:sings

music:Song
rdfs:domain rdfs:range

ex:MyWay

music:Singer music:sings

rdfs:Classrdf:Property

rdfs:Resource

rdfs:domain rdfs:range

Meta Meta Model
Standard

Vocabularies
(RDF, RDFS, OWL)

Meta Model
Definition of
Terminology

(Vocabularies/
Ontologies)

Model
Assertion
of facts

Real World
that is

modelled

Subject
Predicate

Object
Abstract Syntax

of RDF

represents

A
b
stra

ctio
n

rdf:type

rdfs:subClassOf

Figure 2.5.: Different Modeling Levels in RDF – The image shows how RDF is used
on different modeling levels. In the example depicted, the fact that
Frank Sinatra sings the song “My Way” is expressed in RDF. The fact
itself is found on the model level, while it is expressed using terms
(e.g., music:sings) defined on the meta level. The vocabularies (or
ontologies) on this level are itself defined using the standard vocabularies
RDF, RDFS, and OWL from the meta meta level. Underlying all these
level is the abstract syntax of RDF, i.e., all information is expressed
in triple form. The unlabeled, dashed arrows represent the rdf:type
predicate, used to model "instance of" relations in RDF.
Note: The diagram in not complete regarding rdf:type and
rdfs:subClassOf relations, because everything in RDF is of type
rdfs:Resource, and all classes are subclasses of rdfs:Resource.

22

2.4. Understanding RDF Data Modeling

as a model that abstracts from individuals, and only relates the general concepts of
singers and songs. Thus, the music vocabulary is a meta model for RDF models
about singers and songs. Analogously, the standard vocabularies (RDF, RDFS, and
OWL) constitute a model that abstracts from individual concepts; hence, they form
a meta meta model for meta models about specific real world concepts.

This relation of the different levels of modeling in RDF is visualized in figure 2.5.
The property rdf:type is a good indicator for a triple that relates two concepts on
different model levels. It links specific individuals like ex:Sinatra on the model
level to concepts like music:Singer on the meta model level, and specific concepts
like these to abstract concepts like rdfs:Class on the meta meta model level.
The standard vocabularies on the meta meta model level are defined in their
own terms, e.g., rdfs:Resource is an instance of rdfs:Class, while the latter is a
subclass of the former. These self-references terminate the model hierarchy. The
abstract syntax is understood as standing outside of this hierarchy, although it is
in fact a further abstraction.1

2.4.2. Open World Modeling

The idea of a Semantic Web and its technical implications are usually hard to
understand on first encounter. Some of the common misconceptions are obviously
wrong, and can be clarified easily, while others are more subtle. Therefore, it is
important to talk about the general characteristics of the Web of Data that is built
using the technologies presented in this background chapter, RDF, URIs, SPARQL
and so on.

To describe the characteristics of the Web of Data, we take two approaches. Firstly,
we present in detail the similarities between the way humans speak about topics in the
real world and the way data is published in the Web of Data. Secondly, we work out
the differences between data modeling for the Web of Data and the way data models
are usually created in software development, i.e., following the OOP paradigm.

Natural Language. When people talk about things, they compose sentences
according to the syntax (or more general, grammar) of the natural language they are
using. In general, people can say whatever they want, but to convey meaning in these
sentences, they use words that, they expect, already have meaning for others, i.e.,
their words are chosen from commonly known vocabularies. These words acquire their

1Formally, the abstract syntax of RDF is an abstraction of vocabularies; it defines a triple format
consisting of URIs (plus literals and blank nodes). In our opinion there is no benefit in calling
the abstract syntax a meta meta meta model, as it does not make sense to call the syntax of a
programming language a meta model for programs, although it is correct, since every language’s
syntax is a meta model for its sentences.

23

Chapter 2. Background

meaning not through definition by an authority, but rather through an evolutionary
process in society; the meaning of a word is shaped through the way it is used by
people.

Of course contradictions and misunderstandings do occur. Just because something
is said, it does not necessarily have to be true. Also, people have to expect new
information at any time; just because something was not said, it does not necessarily
have to be wrong. Sometimes people do not understand each other, because they use
different words for the same meaning or the same word for different meanings.

The situation with RDF is similar. When people model information in RDF, they
compose triples according to the syntax of RDF. Again in general, people can write
any triple they want, but to convey meaning in these triples, they better use URIs
for subject, predicate, and object, which already have some meaning for others, i.e.,
these URIs are chosen from commonly known vocabularies (or ontologies). Although
these vocabularies are usually defined and published by an authority, there is no way
in which that authority could enforce the envisioned meaning. Still, anybody can
use the terms from a vocabulary in any way, and that is why the terms acquire their
meaning through an evolutionary process in the Web of Data; the meaning of a term
is shaped through the way it is used by data publishers.

Of course contradictions and misunderstandings do occur, as well. Triples do not have
to be true, and the Web of Data is an Open World, i.e., no conclusions can be drawn
from the nonexistence of triples. Different datasets about the same domain might
not be able to cooperate, because they use different terms for the same meaning: the
names for things are not unique. But, different from natural language, all names in
the Web of Data (URIs) uniquely identify a thing.

OOP Data Modeling. When OOP developers design a data model for their software,
they usually think about “classes” and “objects”, and work with meta models depicted
in “class diagrams”. They typically use libraries provided by others together with
their own classes. When the software is run, its behavior depends on the objects that
are dynamically instantiated from the classes. That is, the definition of the meta
model (classes) directly defines behavior and structure of the model (objects). The
same is true for relational databases; the meta model (relational schema) defines how
data is modeled (filled tables). Both examples entail a top down way of thinking
about data modeling.

With data modeling in RDF the situation seems similar at first. When data engineers
want to model some information in RDF, they create meta models called “vocabularies”
(or “ontologies”) and think about “classes” and “properties”; terms that sound familiar.
The terms from a vocabulary are then used in RDF triples to assert “facts about
the world” on the model level. Different to OOP classes and relational schema, RDF

24

2.4. Understanding RDF Data Modeling

vocabularies do not define or constrain1 the use of its terms, i.e., the meta model
does not2 define the model. Triples can be formed and combined like their authors
wish, and meta models (ontologies) can only adopted by convention (bottom-up), not
enforced by the system (top-down).

Summary. In their book “Semantic Web for the Working Ontologist” [3] Allemang
and Hendler have identified the following characteristics of RDF and the Web of
Data.

• AAA Slogan: Anyone can say Anything about Any topic.
• Open World Assumption: Because of the AAA slogan, there could always

be new information that we are unaware of. This means that we cannot draw
conclusions from the nonexistence of triples.
• Nonunique Naming Assumption: The same thing can be represented by

different names (URIs).

Taking a data-modeling perspective, we can summarize these characteristics as
Bottom-Up Data Modeling.

• Bottom-Up Data Modeling: Like the WWW, the Web of Data is created
from the bottom up, by potentially all people and organizations. This enables
the network effect that is needed for the realization of the Semantic Web
vision. This characteristic can be counterintuitive for traditional top-down data
modelers.

1A good example for the non-constraining semantics of RDF are the properties rdfs:domain
and rdfs:range as described in section 2.3.3.

2It can be argued that some advanced features of ontology modeling like owl:oneOf (see section
2.3.6) constrain or define the actual data model. Still this circumstance does not change the fact
that the overall design of RDF follows a bottom-up style of modeling.

25

Chapter 2. Background

2.5. SPARQL – the query language

Data storage and data access are, in general, two sides of the same coin. Where
databases are used, query languages typically play the access role. Relational data-
bases and SQL are a well-known example. For RDF data, whether stored in local
triple stores (section 2.6) or available remotely via SPARQL-Endpoints, the query
language is SPARQL, short for SPARQL Protocol and RDF Query Language [61].

Users familiar with SQL will find similarities in SPARQL, like, for example, the
“SELECT...FROM...WHERE...” structure of queries. But there are also important
differences. Relational databases work with a set of relational tables, connected by
primary and foreign keys; hence SQL is used to specify joins of tables and subsets of
rows from these. As we have seen, RDF data forms a graph structure; hence SPARQL
is used to specify graph patterns to select all data that matches these patterns.

The general pattern of a SPARQL SELECT query is as follows1:
<PREFIX declarations ...>

SELECT <variables ...>
WHERE {

<graph patterns with variables ...>
}
ORDER BY <conditions ...>
OFFSET <offset >
LIMIT <limit >

The following example (from [61], modified) describes three subjects, two of which
have a foaf:name and foaf:mbox, while one (ex:c) only has a foaf:mbox. The RDF
graph is shown in figure 2.6.

@prefix foaf: <http :// xmlns.com/foaf /0.1/ > .
@prefix ex: <http :// example .com/> .

ex:a foaf:name " Johnny Lee Outlaw " .
ex:a foaf:mbox <mailto : jlow@example .com > .
ex:b foaf:name "Peter Goodguy " .
ex:b foaf:mbox <mailto : peter@example .org > .
ex:c foaf:mbox <mailto : carol@example .org > .

1This general pattern of a SPARQL SELECT query is not complete. Many possible features
and their according keywords have been omitted. These include: UNION, FROM, SERVICE, FILTER,
OPTIONAL, UNSAID and more. For more details see the latest SPARQL 1.1 standard [46].

26

2.5. SPARQL – the query language

To obtain a list of names and corresponding email-addresses, a graph pattern is
specified that connects foaf:name and foaf:mbox triples by their common subject
resource and binds their values (or objects) to two variables ?name and ?email.

PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
SELECT ?name ?email
WHERE {

? subject foaf:name ?name .
? subject foaf:mbox ?email .

}

This will produce a list of binding results. Because the whole graph pattern has
to be matched, the foaf:mbox triple with subject ex:c will not be matched, and,
consequently, not be included in the results (they are shown grayed out in figure 2.6).
The results for the example would look like:

name email
"Johnny Lee Outlaw" <mailto:jlow@example.com>
"Peter Goodguy" <mailto:peter@example.org>

As can be seen from the general structure as well as from the example query, a prefix
mechanism for URI namespaces (similar to the one in Turtle) is provided with the
PREFIX keyword. The SELECT keyword indicates a select-query, the most common of
four query types, and is followed by a list of variables or aggregates (e.g, SUM(?amount)
AS ?totalAmount) of those. The WHERE keyword is followed by the graph pattern
in braces. The results can be sorted (ORDER BY keyword) by any combination of
variables, and an OFFSET can be specified into this list, i.e., the number of results that
are skipped from the beginning. The total number of binding results (i.e., “rows”)
can be limited via the LIMIT keyword.

ex:a

ex:b

ex:c

"Johnny Lee Outlaw"

mailto:jlow@example.com

"Peter Goodguy"

mailto:peter@example.org

mailto:carol@example.org

foaf:name

foaf:mbox

foaf:name
foaf:mbox
foaf:mbox

Figure 2.6.: RDF Graph for SPARQL Example – Gray lines indicate the part of the
graph that is not matched by the graph pattern.

27

Chapter 2. Background

As noted before, there are four query types.

1. The SELECT-query, as seen above, is used to obtain a list of bindings for the
variable in a graph pattern.

2. The CONSTRUCT-query returns an RDF graph. It can be used to create new
triples based on a graph template and variable bindings from a matched graph
pattern. For example, assuming that, if someone knows a person Y, then they
also know all persons known by the Y, we can create according triples like this:

PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >

CONSTRUCT { ?x foaf:knows ?z }
WHERE {

?x foaf:knows ?y.
?y foaf:knows ?z.

}

3. The DESCRIBE-query returns an RDF graph that “describes” resources. The
simplest example would be a description of a single resource:

DESCRIBE <http :// dbpedia .org/ resource /Berlin >

Scope and content of the response may vary. “The RDF returned is determined
by the information publisher. It may be information the service deems relevant
to the resources being described.” [46]

4. The ASK-query returns a single boolean result. It can be used to test whether
a graph pattern has any match or none.

28

2.6. Triple Stores and SPARQL Endpoints

2.6. Triple Stores and SPARQL Endpoints

In general, data can be stored electronically in two ways: in simple files on hard
disks or through specialized data storage systems (i.e., databases), which expose an
interface to store and retrieve data. The situation with RDF is not different; RDF
data can be stored

• in files using one of the defined serialization formats (see section 2.2.3), or
• in special databases, called triple stores.

Popular triple stores include Apache Jena1, OpenLink Virtuoso2, Sesame3, Allegro-
Graph4, and Redland5. Basic criteria to compare triple stores include the performance
in loading triples and processing queries, and the extent to which the triple stores
support automatic inference and the full feature set of SPARQL 1.1 [46]. Apache
Jena was used in the software developed for this thesis.

While many of these stores can be accessed via proprietary Application Programming
Interfaces (APIs), the SPARQL Protocol and RDF Query Language provides a
standardized way of querying triple stores. That is, triple stores are exposed over
HTTP as a “SPARQL Protocol service”. They receive and answer SPARQL queries
(see section 2.5 for query formulation) as HTTP requests and HTTP responses,
respectively. The “URI at which a SPARQL Protocol service listens for requests from
SPARQL Protocol clients” is called a SPARQL endpoint. [40]

1http://jena.apache.org/
2http://virtuoso.openlinksw.com/
3http://www.openrdf.org/
4http://www.franz.com/agraph/allegrograph/
5http://librdf.org/

29

http://jena.apache.org/
http://virtuoso.openlinksw.com/
http://www.openrdf.org/
http://www.franz.com/agraph/allegrograph/
http://librdf.org/

3. Structural Analysis of RDF
Datasets

In this chapter we introduce our notion of a structural analysis of RDF datasets as a
process that answers four central questions of dataset understanding, based on results
from 18 statistical criteria.

First, we motivate the need for RDFSynopsis, a software tool that assists in under-
standing unknown RDF datasets, by describing a typical use case. We further establish
four central questions representing four central aspects that can be understood about
a dataset (section 3.1). We then explain, in more detail, the requirements that follow
from the use case (section 3.2). In section 3.3, we present related work from three
areas of RDF data analysis, namely statistical measures, descriptive subgraphs and
summary graphs. Finally, in section 3.4, we explain what measures (18 in total) are
chosen to answer each central question.

31

Chapter 3. Structural Analysis of RDF Datasets

3.1. Use Case and Central Questions

Let us imagine the daily work of “data engineers”. As part of their job, they might
be responsible for the maintenance, publication, use, and further development of data
pools and data-intensive software. Let us further imagine these data engineers had to
deal with a multitude of RDF datasets on a daily basis, and those were only available
remotely, via SPARQL endpoints.

In order to decide, whether a concrete dataset could be useful and how it could be
used, a data engineer would have to know the answers to several questions. The first
two questions concern the domain of the information contained in a dataset. For a
particular application, only a small subset of all possible domains will be of interest
to the data engineer. We can distinguish between the kind of entities represented in
a dataset (Entity Domain), and the kind of information a dataset contains about
those entities (Information Domain). In order to access the information contained
in a given dataset, a data engineer has to understand how the information is cast into
triple structures (Composition). The last important question concerns the dataset’s
suitability for reuse, potentially in combination with other datasets (Reusability).

We summarize these aspects as the following central questions:

• Entity Domain: What things is the dataset about?
• Information Domain: What information does the dataset contain about

those things?
• Composition: How is the information expressed in RDF?
• Reusability: Can the dataset be used easily?

32

3.2. Requirements and Definitions

3.2. Requirements and Definitions

In this section we describe in more detail the basic requirements that follow from the
use case, and define more strictly what me mean by a “structural analysis of unknown
RDF datasets via SPARQL endpoints”.

3.2.1. RDF Datasets

We define an RDF dataset as the set of all RDF triples that can be retrieved from a
single point of access, namely an RDF file in any serialization format or a SPARQL
endpoint. The rationale behind this definition is that all triples available via a
single point of access must appear to the consumer, being unaware of any underlying
structures, as belonging to one meaningful collection of triples.

3.2.2. Publisher and Consumer

Different actors participate in handling RDF data. They can be broadly divided into
two groups, namely publishers and consumers. [2]

On the side of publishers, we find all parties that produce, collect, refine and prepare
data in order to make it available as RDF data. On the other side, the consumer side,
are those actors that read or reuse the data for their own applications. In principle,
these actors may be humans or - since it is the Semantic Web we are talking about -
machines.

In our work, we focus on the consumer side, i.e., we assume the absence of prior
knowledge regarding a dataset’s structure, the process that created RDF data from
other forms of original data, or the original data itself.

3.2.3. Structure, not values

For the work presented in this thesis, we assume that a data engineer wants to know
how a dataset is built and what kind of information is contained in it (structure in
a broader sense), but has no interest to understand what real world facts are asserted
in detail (value). Revisiting our example, we want to know that a dataset relates
entities that are singers or songs. We do not want to know what the average length
of Frank Sinatra’s song titles is.

33

Chapter 3. Structural Analysis of RDF Datasets

In the world of top-down data modeling, the structure of a dataset is explicitly, and
bindingly, defined in some kind of schema information (i.e., the meta model level).

In contrast, in the bottom-up world of RDF (see section 2.4.2), while some explicit
structural definitions exist on the meta model level (e.g., class hierarchies), the
structure of a dataset is implicitly contained in the asserted triples on the model
level (section 2.4.1). Hence, to understand the structure of RDF datasets, we have to
analyze the model level and meta model level.

Summary. For this thesis, we focus on obtaining structure (not value) information
about a dataset. Due to the bottom-up character of RDF, this information is not
(necessarily) explicitly, but rather implicitly contained in a dataset.

3.2.4. Access via SPARQL-Endpoints

In our scenario, the data engineer regularly has to determine the relevance of datasets
that are available from remote locations, i.e., they are on the Web. We assume that,
in many cases, a full download of the dataset in question is infeasible, either due to
bandwidth or size limitations, or due to sheer unavailability of data dumps.

We therefore restrict our approaches to access datasets only through SPARQL end-
points. That means, all information we want to receive about a dataset have to be
obtained as results of SPARQL queries. An advantage of this approach is that it can
be used with locally available files, as well; they can be loaded into a local triple store
and queried from there.

3.2.5. Summary

In this section, we have defined what we mean by a “structural analysis of unknown
RDF datasets via SPARQL endpoints”.

“Structural” refers to the four aspects of understanding a dataset (Entity Domain,
Information Domain, Composition, and Reusability), that are not concerned with
value distributions on the fact level. “Analysis” refers to the fact that, in RDF, we
cannot simply extract structure information from some kind of schema, but have to
analyze a dataset, in order to find the implicitly contained structure. “Unknown”
means that we assume a consumer with no prior knowledge about the dataset. By
“RDF dataset” we mean a collection of all triples available from one point of access,
either a file or a SPARQL endpoint. “Via SPARQL endpoints” reflects our requirement
to find an analysis approach for remote datasets that can only be accessed using
SPARQL queries.

34

3.3. Approaches and Related Work

3.3. Approaches and Related Work

In this section we explain how our work, presented in this thesis, relates to other
scientific and practical works in the field.

We take a look at different approaches towards analyzing and understanding RDF
data. First and foremost, we examine statistical approaches and conduct a survey on
statistical measures (section 3.3.1). Then, we study approaches to extract descriptive
subgraphs (section 3.3.2), that is, for a given subject, the subgraph that best describes
it. Finally, we look into approaches to generate summary graphs (section 3.3.3) of
RDF graphs.

3.3.1. Statistical Measures

In this section, we look into approaches to capture RDF datasets by means of
collecting statistical data about them. We briefly describe each piece of related
work, and compare it with our path chosen for RDFSynopsis, mainly focusing on its
purpose, technology and data processing approach. In addition, we have extracted all
statistical measures, that are referred to in these scientific works or used in practical
applications, and compiled an overview (see table 3.1). The table contains one
criterion per row. The central columns represent the different pieces of related work
discussed in this section. “X” indicates that the criterion was explicitly described
(maybe by a different name) in the article or software documentation. “CR” indicates
that we found the criterion during a code review of the respective software tool. For
better comparison, this table also includes (in bold) the statistical criteria we have
chosen for RDFSynopsis, as explained below in section 3.4.

� Scientific Work. Several articles have been published on obtaining statistics about
RDF data.

� Langegger and Wöß describe RDFStats [52, 53]; a software tool for statistics
generation and persistence. Like RDFSynopsis, RDFStats is based on Apache Jena
and uses SPARQL queries to obtain statistical data. Unlike RDFSynopsis, RDFStats
collects value histograms for each class and property; a generic approach, targeted not
at human understanding but at supporting applications that process RDF data.

� The Vocabulary Of Interlinked Datasets (voiD) [1, 2] represents a vocabulary to
describe RDF datasets (metadata), including their access methods, licenses, “root
resources”, subjects (topics), and general metadata like titles or publisher information.
Several publications and applications use voiD to output their results in RDF. In
voiD, statistics about a dataset are expressed by defining and describing “class- and
property-based partitions”. For example the number of foaf:Person instances is

35

Chapter 3. Structural Analysis of RDF Datasets

expressed by specifying the number of entities in the class-partition for foaf:Person,
like so

ex: MyExampleDataset a void: Dataset .
ex: MyExampleDataset void: classPartition _:bn1 .
_:bn1 void:class foaf: Person .
_:bn1 void: entities 42 .

Similarly, the number of links between URI namespaces can be expressed by defining
so called “linksets”. There is also a special void:vocabulary predicate to list the
vocabularies used in a dataset.

� For their software voiDgen [21], Böhm, Lorey, and Naumann use a distributed
algorithm (Map-Reduce) to efficiently analyze large RDF graphs (directly in memory)
and output statistical data in voiD. They propose to compute (and extend the voiD
vocabulary to include) additional kinds of class-, property-, and link-based partitions,
e.g., sets of resources connected via specific predicates. In contrast to RDFSynopsis,
voidGen does not use SPARQL or analyzes remote datasets, but shows that distributed
(“in the cloud”) analyses of large RDF graphs are feasible.

� Auer et al. have developed LODStats [7, 8], a Python-based framework, to compute
statistics for the RDF datasets on “The Data Hub” ([57], an instance of the Compre-
hensive Knowledge Archive Network (CKAN) [35] system). The results are output
in RDF using voiD and qb1. The authors employ a so-called “statement-stream”
approach, i.e., an RDF dataset is not analyzed as a graph but as a sequence of
triples. It is similar to the triple-stream approach (see section 4.1.2) of RDFSyn-
opsis. Although they mention the approach, used by RDFSynopsis, to emulate the
statement-stream with SPARQL, their focus lies with RDF graphs that are already
available in a serialized form. In their paper, they also provide declarative definitions
for 32 statistical criteria (each with statement filter rule, needed data structure and
post-processing operations), including 8 of our 18 criteria. They point out that their
approach performs significantly better than SPARQL-based tools like RDFStats and
make-void (see below), while using a constant amount of Random-Access Memory
(RAM).

� In their article on “compact representations of large RDF data sets” [41] Fernández
et al. introduce several statistical metrics. Among those are variations of “out-degree”
metrics (e.g., the maximum number of triples per subject), and a metric.

� Swoogle [36, 37, 45] is a Semantic Web search engine. To improve efficiency and
effectiveness of the search, Swoogle collects, among other metadata, statistics about
defined classes, properties and class instances. In their paper, the authors of Swoogle
also introduce the ontology-ratio measure that is used by RDFSynopsis.

1the Data Cube Vocabulary [32]

36

3.3. Approaches and Related Work

� Sindice [58, 68, 70] is another Semantic Web Index. Their statistics [69] include
instance and namespace counts for classes and properties, but are aggregated for all
indexed datasets.

� Practical Work. Several software tools collect and use statistics about RDF
datasets.

� NX parser [50] is a Java-based parser for RDF data in the N-Triples [43] serialization
format (and n-tuple formats in general). A code review (marked “CR” in table 3.1)
reveals, that it features basic class instance and property usage counts.

� make-void [33] by Richard Cyganiak is another tool that computes statistics for
RDF datasets and generates RDF output using the voiD vocabulary. It is based
on Apache Jena and features more advanced criteria, such as the number of links
between different URI namespaces or the number of distinct subjects per property
(found in code review).

� The Apache Jena TDB Optimizer [67] uses dataset statistics (collected with the
tdbstats tool) to optimize query answering.

37

C
hapter

3.
StructuralA

nalysis
ofR

D
F
D
atasets

Table 3.1.: Survey of Statistical Measures

No. Statistical Criterion L
O

D
St

at
s

[8
]

R
D

F
St

at
s

[5
3]

m
ak

e-
vo

id
[3

3]

N
X

P
ar

se
r

[5
0]

vo
iD

ge
n

[2
1]

td
bs

ta
ts

[6
7]

vo
id

vo
ca

b.
[1

,2
]

co
m

pa
ct

re
p.

[4
1]

Sw
oo

gl
e

[4
5]

Description

No. of . . .
1. triples X X X X X No. of (?s ?p ?o) triples
2. entities mentioned X No. of used URIs non-distinct
3. literals mentioned X No. of literals ?lit for (?s ?p ?lit)
4. distinct resources X No. of distinct URI-subjects and -objects
5. distinct subjects CR CR X X No. of distinct ?s for (?s ?p ?o)
6. distinct subjects (URI) CR CR X CR X No. of distinct URI-?s for (?s ?p ?o)
7. distinct blank subjects CR CR No. of distinct blank-?s for (?s ?p ?o)
8. distinct objects (URI, blank, literal) X X No. of distinct ?o for (?s ?p ?o)
9. blanks mentioned CR No. of triples (?bn ?p ?o) or (?s ?p ?bn) with blank ?bn
10. blanks mentioned as subj. X No. of triples (?bn ?p ?o) with blank ?bn
11. blanks mentioned as obj. X No. of triples (?s ?p ?bn) with blank ?bn
12. isolated blanks No. of distinct blank ?bn for (?bn ?p ?s) only occurring in subject position
13. distinct classes (instantiated, URI) X CR X X No. of distinct ?class-URIs for (?s a ?class)
14. distinct properties (instantiated) X CR X X X No. of distinct ?p for (?s ?p ?o)
15. distinct classes (defined, URI) X No. of ?class-URIs for triples (?class a rdfs:Class) and (?class a owl:Class)
16. distinct properties (defined) X No. of ?prop-URIs for triples (?prop a rdf:Property)
17. distinct terms X No. of distinct defined and instantiated classes and properties
18. distinct non-term subjects X No. of distinct Subjects excl. classes and properties
19. typed subj. X X No. of triples (?s a ?o)
20. labeled subj. X X No. of triples (?s rdfs:label ?o)
21. sameAs X X No. of triples (?s owl:sameAs ?o)
22. subclass usage X X No. of triples (?class1 rdfs:subClassOf ?class2)
23. distinct contexts CR X No. of distinct named graphs

Continued on next page. . .

38

3.3.
A
pproaches

and
R
elated

W
ork

Table 3.1.: Survey of Statistical Measures (. . . continued)

No. Statistical Criterion L
O

D
St

at
s

[8
]

R
D

F
St

at
s

[5
3]

m
ak

e-
vo

id
[3

3]

N
X

P
ar

se
r

[5
0]

vo
iD

ge
n

[2
1]

td
bs

ta
ts

[6
7]

vo
id

vo
ca

b.
[1

,2
]

co
m

pa
ct

re
p.

[4
1]

Sw
oo

gl
e

[4
5]

Description

Histogram (For each . . . the No. of . . .)
24. class usage count X X X CR X X For each ?class the No. of triples (?s a ?class)
25. property usage X X CR X X For each ?p the No. of triples (?s ?p ?o)
26. class instances per property For each pair (?p,?class) the No. of distinct ?s for (?s ?p ?o. ?s a ?class)
27. property usage per subj. X For each pair (?s,?p) the No. of triples (?s ?p ?o)
28. property usage per obj. X For each pair (?p,?o) the No. of triples (?s ?p ?o)
29. property usage distinct per subj. X X For each ?s the No. of distinct ?p-URIs for triples (?s ?p ?o)
30. property usage distinct per obj. X X For each ?o the No. of distinct ?p-URIs for triples (?s ?p ?o)
31. subject usage distinct per prop. CR X For each ?p the No. of distinct ?s-URIs for triples (?s ?p ?o)
32. object usage distinct per prop. CR X For each ?p the No. of distinct ?o-URIs for triples (?s ?p ?o)
33. property usage per subject class For each pair (?p,?class) the No. of bindings for (?s ?p ?o. ?s a ?class)
34. triples per subject class For each ?class the No. of bindings (?s ?p ?o. ?s a ?class)
35. outdegree per subject X X X For each ?s the No. of (?s ?p ?o)
36. indegree per object X X For each ?o the No. of (?s ?p ?o)
37. literal usage CR For each literal-?val the No. of (?s ?p ?val)
38. literal datatype usage X For each xsd: datatype the No. of literals
39. literal language usage X For each language the No. of literals
40. links per (ns1,ns2) X X For each pair (NS1,NS2) the No. of (?s ?p ?o), with (?s in NS1, ?o in NS2)
41. namespace links X X X For each triple (NS1,?p,NS2) the No. of (?s ?p ?o), with (?s in NS1, ?o in NS2)
42. subj. vocabularies X For each s-namespace the No. of (?s ?p ?o)
43. predicate vocabularies X For each p-namespace the No. of (?s ?p ?o)
44. obj. vocabularies X For each o-namespace the No. of (?s ?p ?o)
45. pred. value histogram

per (subj.-class, pred., dataype)
X For each triple (?class,?p,?val-datatype) the value distribution

for triples (?s ?p ?val. ?s a ?class)

Continued on next page. . .

39

C
hapter

3.
StructuralA

nalysis
ofR

D
F
D
atasets

Table 3.1.: Survey of Statistical Measures (. . . continued)

No. Statistical Criterion L
O

D
St

at
s

[8
]

R
D

F
St

at
s

[5
3]

m
ak

e-
vo

id
[3

3]

N
X

P
ar

se
r

[5
0]

vo
iD

ge
n

[2
1]

td
bs

ta
ts

[6
7]

vo
id

vo
ca

b.
[1

,2
]

co
m

pa
ct

re
p.

[4
1]

Sw
oo

gl
e

[4
5]

Description

Sets of URIs
46. used classes X X Set of ?class-URIs for triples (?s a ?class)
47. used properties CR Set of ?p-URIs for triples (?s ?p ?o)
48. class instances X For each ?class the set of ?ins-URIs for triples (?ins a ?class)
49. classes defined X X Set of ?class-URIs for triples (?class a rdfs:Class) or (?class a owl:Class)
50. properties defined X Set of ?prop-URIs for triples (?prop a rdf:Property)
51. properties per subj. X For each ?s the set of ?p-URIs for triples (?s ?p ?o)
52. properties per obj. X For each ?o the set of ?p-URIs for triples (?s ?p ?o)
53. properties per subj. class X For each subject-?class the set of ?p-URIs for triples (?s ?p ?o. ?s a ?class)
54. common properties For each subject-?class the set of ?p-URIs for which all ?s occur in

triples (?s ?p ?o. ?s a ?class)
55. properties per obj. class For each object-?class the set of ?p-URIs for triples (?s ?p ?o. ?o a ?class)
56. distinct entities X Set of distinct used URIs
57. vocabularies (prop. u. classes) CR X Set of ?p- and ?class-namespaces for (?s ?p ?o) resp. (?s a ?class)

Graphs
58. explicit class hierarchy X Depth of (?class1 rdfs:subClassOf ?class2)-hierarchy
59. implicit class hierarchy Pairs (?class1,?class2) for which all instances of ?class1

are also instances of ?class2
60. explicit property hierarchy X Depth of (?prop1 rdfs:subPropertyOf ?prop2)-hierarchy
61. implicit property hierarchy Pairs (?prop1,?prop2) for which all triples with ?prop1 also exist with ?prop2

Other
62. Mean typed string length X Mean length of all xsd:string-literals
63. Mean untyped string length X Mean length of all literals w/o datatype
64. Min per property {int, float, time} Min. value for each numerical ?p for (?s ?p ?numVal)
65. Mean per property {int, float, time} X Mean value for each numerical ?p for (?s ?p ?numVal)
66. Max per property {int, float, time} X Max. value for each numerical ?p for (?s ?p ?numVal)

Continued on next page. . .

40

3.3.
A
pproaches

and
R
elated

W
ork

Table 3.1.: Survey of Statistical Measures (. . . continued)

No. Statistical Criterion L
O

D
St

at
s

[8
]

R
D

F
St

at
s

[5
3]

m
ak

e-
vo

id
[3

3]

N
X

P
ar

se
r

[5
0]

vo
iD

ge
n

[2
1]

td
bs

ta
ts

[6
7]

vo
id

vo
ca

b.
[1

,2
]

co
m

pa
ct

re
p.

[4
1]

Sw
oo

gl
e

[4
5]

Description

67. outdegree (min,max,mean) X Min., max. and mean No. of (?s ?p ?o) over all ?s
68. partial outdegree (min,max,mean) X Min., max. and mean No. of (?s ?p ?o) over all ?s,?p
69. distinct prop. outdegree (min,max,mean) X Min., max. and mean No. of distinct ?p for each ?s
70. indegree (min,max,mean) X Min., max. and mean No. of (?s ?p ?o) over all ?o
71. partial indegree (min,max,mean) X Min., max. and mean No. of (?s ?p ?o) over all ?p,?o
72. distinct prop. indegree (min,max,mean) X Min., max. and mean No. of distinct ?p for each ?o
73. subject-object-ratio X Ratio between No. of nodes that are subject and object,

and No. of nodes that are subject or object
74. ontology-ratio X Ratio between No. of defined classes and properties,

and No. of def. classes, properties and instances
75. typed-subject-ratio X Ratio between No. of typed subjects (?s a ?o), and No. of all subjects

41

Chapter 3. Structural Analysis of RDF Datasets

3.3.2. Descriptive Subgraphs

Closely related to the question for the kind of information an RDF dataset contains,
is the question for the subset of triples that contains information about a specific
subject, i.e., which subgraph best describes that subject. In this section we look into
different approaches to extract these descriptive subgraphs from an RDF graph.

For RDFSynopsis, we follow the approach to understand datasets by a couple of
statistical criteria, most similar to the approaches presented in section 3.3.1. Still,
the work on descriptive subgraphs deserves mentioning, since it provides insight into
the way information is expressed in RDF structures.

Also, one idea for RDFSynopsis is to find and present common (or repeating) structures
within a dataset. This idea implies that a dataset can be decomposed into multiple
parts, sharing a common structure. By studying what subgraph best describes a
specific subject, we also study how an RDF graph is best decomposed by subjects. The
criteria concerning commonality, namely implicit class hierarchy, common properties,
and implicit property hierarchy, were influenced by the work presented in this section.

� In their paper on provenance tracking for RDF graphs [38], Ding et al. define “RDF
molecules”, the “smallest losslessly decomposable parts” of an RDF dataset. When
an RDF graph containing blank nodes is split and merged again, information may be
lost. This is due to the fact that blank nodes do not have globally unique identifiers,
and hence it is impossible to determine whether two blank nodes were the same in
the original graph. The term “lossless decomposition” refers to the idea of splitting
an RDF graph in such a way that all information can be reconstructed when merging.
Ding et al. achieve this goal by pairing all blank nodes with identifying triples, e.g.,
triples with an owl:FunctionalProperty. The idea of blank nodes that “lose” their
identity for proper merging is reflected in one of the statistical criteria chosen for
RDFSynopsis, namely isolated blanks.

� The Concise Bounded Description (CBD) [65] of a specific subject is a subgraph
which contains all triples with that subject, and - recursively - all triples connected
via blank nodes (as subject). The article also mentions variations that include triples
with blank nodes as objects, or limit the inclusion of triples with IFPs. These are
called Symmetric CBD (SCBD) and Inverse Functional CBD (IFCBD), respectively.

� Tummarello et al. introduce the notion of Minimum Self-contained Graphs (MSGs)
[71]. An MSG is constructed based on an initial triple (i.e., an edge, not a node) by
recursive extension, including all triples that are connected via blank nodes in already
contained triples. A graph composed of all MSGs involving a specific resource, equals
the CBD of that resource.

42

3.3. Approaches and Related Work

� The SPARQL DESCRIBE query basically returns descriptive subgraphs for the
resources matched in the WHERE clause. As explained in section 2.5, the decision
about scope and content of the response is left to the “information publisher”, so it may
vary. “The description is determined by the query service. [...] It may be information
the service deems relevant to the resources being described. [P]ossible mechanisms for
deciding what information to return include CBD. For a vocabulary such as FOAF,
where the resources are typically blank nodes, returning sufficient information to
identify a node such as the Inverse Functional Property (IFP) foaf:mbox_sha1sum
as well as information like name and other details recorded would be appropriate.”
[46]

� An adaptable method of obtaining descriptive subgraphs is described by Simic in
[63]. The article introduces a compact notation for the specification of predicate-based
tree structures, so-called “predicate trees”. Based on these, descriptive subgraphs
can be extracted from an RDF graph; the described subjects representing the root
nodes. According to Simic, the notation matches SPARQL (1.0) graph patterns
in their expressive power, while being significantly shorter. The author describes
a Scala-based library Scardf that, among other features, parses the predicate tree
notation and outputs SPARQL CONSTRUCT queries. Scardf can also be used to
create application-specific SPARQL DESCRIBE handlers for Apache Jena, based on
specified predicate trees.

� In their paper on clustering of RDF resources [44] Grimnes, Edwards, and Preece,
compare three approaches to extract descriptive subgraphs (calling it “instance
extraction”). Besides CBD (i), they evaluate “immediate properties” (ii), i.e., triples
with the described subject, and “Depth Limited Crawling” (iii). The latter refers to
the approach of including all nodes within a specified distance of the subject node.
The authors conclude that their results were largely domain-dependent, and remain
interested in a hybrid approach, combining CBD and Depth Limited Crawling.

� As part of their proposal of so-called “Semantic Sitemaps” [34], Cyganiak et al.
also propose to specify a dataset’s “slicing method”. That is, the method by which a
SPARQL endpoint constructs descriptive subgraphs for resources, in order to answer
DESCRIBE queries. The desired values for the sc:slicing attribute include CBD,
SCBD, MSG, and “immediate properties”.

� In the paper on voiDgen [21], already mentioned in 3.3.1, the authors also describe
different approaches to generate class-, property-, and link-based partitions. Among
those are “connected datasets” (similar to predicate trees for one specific property),
and “fuzzy linksets” (treating resources equally that are k-similar, i.e., having k
property values in common).

43

Chapter 3. Structural Analysis of RDF Datasets

3.3.3. Summary Graphs

Summary graphs are another approach to gain an understanding of an RDF dataset.
That is, based on an analysis of the dataset’s full RDF graph, a summary is constructed
that takes the form of a graph.

Similar to the previous section, the work presented in this section is not directly
related to RDFSynopsis, but still important. It aims for a concise presentation of a
dataset’s content and structure which integrates several otherwise separated statistical
criteria.

� Khatchadourian and Consens describe their software ExpLOD [30, 51], which
produces summary graphs for one or more specific aspects of an RDF dataset, e.g.,
class instantiation or predicate usage. The approach taken by ExpLOD is rather
complex and can be divided into several steps.
(i) The original RDF graph is transformed into a “labeled graph”. All nodes (subjects
and objects) and all edges (predicates) of the original graph are represented as nodes
in this labeled graph. The edges of this new graph are unlabeled, while all nodes
have a hierarchical label. For example the predicate foaf:knows may be represented
as a node with hierarchical label “P/foaf/knows” (for Predicates/ <Vocabulary>/
<identifier>) or “P/foaf” depending on the desired granularity.
(ii) The Bisimulation Contraction (BC) [39] is now computed on the set of all nodes.
The basic idea is to subdivide all nodes into disjoint subsets, in which all nodes are
bisimilar, i.e., equivalent with regards to their links to nodes in other subsets. In
other terms, if one node in subset A has an edge to a node in subset B, then all nodes
in A have edges to nodes in B, otherwise it is no BC. Initially all nodes with the same
label are in the same subset. The BC is then obtained by computing the Coarsest
Stable Partition (CSP) [59]; details are out of scope of this thesis.
(iii) Nodes that were contained in equivalent structures in the original dataset, are
now subsumed under one subset in the BC. These subsets and their interlinks are
then visualized, together with the number of nodes in each subset.
The advantage of ExpLOD’s approach is that its results show a dataset’s structure as
homo- or heterogeneous as it may be. The level of detail (i.e., the granularity of the
summary graph) can be controlled by changing the labels that are created for nodes.
The big disadvantage is represented by the need for preprocessing the whole RDF
graph to the “labeled graph”, a process that requires the materialization of the whole
dataset for many of the investigated aspects.

� Zhang, Tian, and Patel [76] describe an approach to construct summary graphs
based on value analysis for a specific predicate, and to automatically find the most
insightful summary. This involves the automatic categorization of numerical values
and evaluation of the resulting graph’s “interestingness”. This aims at analyzing
values of one chosen predicate (which all subjects have to provide). Hence, this work
represents an approach for understanding the value distribution of a dataset whose
structure is already known.

44

3.3. Approaches and Related Work

� In order to assist users of Sindice (introduced above [58, 68, 70]) in query formulation,
Campinas et al. have built a summary graph over all datasets on the platform [25].
Their approach is similar to ExpLOD in that they create a summary graph whose
nodes each represent a subset of the original nodes (subjects and objects), based on
their classes or used predicates. For example, a summary node may represent all
subjects of type foaf:Person. Similar to ExpLOD a summary node is created for
each combination of classes, i.e., two nodes, one of type A and one of types A and B,
will end up in different disjoint classes. Unlike ExpLOD, the summary nodes are not
further partitioned based on their interlinks. In the example (figure 3.1a), a dataset
contains two entities of type Person. One owns an entity of type Car. Following the
approach by Campinas et al. two summary nodes (Person, Car) would be created
(3.1b), while ExpLOD would create several more (3.1c).

ex:A ex:B

ex:Person

ex:X

ex:Car
a a

ex:owns
a

(a) Example Graph

ex:Person (2)

ex:Car (1)

ex:owns (1)

(b) Results for Summary Graph [25]

I/ex (1) P/rdf/type (1) C/ex/Person (1)

I/ex (1) P/rdf/type (1) C/ex/Person (1)

P/ex/owns (1)I/ex (1)

P/rdf/type (1) C/ex/Car (1)

(c) Possible Results for ExpLOD [30, 51]

Figure 3.1.: Comparison of Summary Graphs

45

Chapter 3. Structural Analysis of RDF Datasets

3.4. Discussion and Choice of Measures

Let us get back to our use case of a data engineer, and their demand for information
on RDF datasets which is reflected in the central questions described in section 3.1.

• Entity Domain: What things is the dataset about?
• Information Domain: What information does the dataset contain about

those things?
• Composition: How is the information expressed in RDF?
• Reusability: Can the dataset be used easily?

Ideally, RDFSynopsis clearly answers these questions. To this end, the most meaning-
ful measures have to be chosen, while the total number of measures should remain
small.

In the following sections, we will argue which measures are best suited to answer
each central question. Table 3.2 gives an overview of the chosen measures, and their
relation to the four central questions. We also include several questions for each
measure to describe the insight it offers.

3.4.1. Entity Domain

First and foremost, to give an overview of the kinds of things that the dataset is
about, the obvious approach is naming the most frequently instantiated classes, i.e.,
the URIs that occur as objects in triples like

? instance a ?class .

This measure can be found in table 3.1 by the name of class usage count.

Usually, the number of triples per subject varies significantly between classes of
subjects and even individual subjects. For this reason, the number of class instances
must not be confused with the amount of data (i.e., the number of triples) associated
with instances of a class. To measure the latter, the number of triples per subject
class can be counted.

The difference between class usage count and triples per subject class can be seen in
the example depicted in figure 3.2. There are three class instances and nine triples,
six of which describe the person instance. While the former instance distribution is
best expressed using the class usage count measure, the actual data distribution is
better explained with triples per subject class.

46

3.4. Discussion and Choice of Measures

ex:Bob ex:bobsCar

ex:Carex:Personex:Company

ex:google

"John" "3HGG742"

"Doe" "Sushi"

ex:owns
a

ex:firstName

ex:lastName

ex:worksAt

ex:favouriteMeal

a

ex:license

a

(a) Example Graph

Class class usage count triples per subject class

ex:Person 1 6
ex:Car 1 2

ex:Company 1 1

(b) Results

Figure 3.2.: Example for Class-based Histograms

At a closer look, several factors can weaken the expressiveness of both class-based
measures.

Untyped Resources. A dataset can contain untyped resources, i.e., resources
without rdf:type statements. If datasets consist of such untyped resources to a large
extent, then class frequencies are of small value. To enable an assessment of the
expressiveness of class-based measures, a measure for the “type coverage” of datasets
is useful. This coverage measure can be found in table 3.1 as typed-subject-ratio and
is computed as:

typed-subject-ratio = #typed subjects

#all subjects

Multiple Types. Resources are frequently assigned to multiple types, i.e., they
occur in more than one rdf:type statement. Figure 3.3 shows examples for three
different cases of parallel class usage. An instance can be explicitly defined to belong
to two classes (ex:mother and ex:firefighter) that have no hierarchical relation
(3.3a). When all ex:firefighters are also explicitly of type foaf:Person, then
we could call this an implicit hierarchical relation between those classes (3.3b). If
this relation is made explicit via rdfs:subClassOf, then the foaf:Person type may
only be implied by the ex:firefighter type (3.3c). In less obvious cases one could
wrongly assume that two hierarchically related classes represented unrelated concepts.
Therefore, information about the explicit class hierarchy and implicit class hierarchy
should be integrated with the class histograms. This could partly be done in the
sense of “X times foaf:Person, out of which Y times ex:firefighter”.

47

Chapter 3. Structural Analysis of RDF Datasets

A

ex:Firefighter ex:Mother

a a

(a) Explicit Types, No Hierarchy

A

ex:Firefighter ex:Person

a a

(b) Explicit Types, Implicit Hierarchy

A

ex:Firefighter ex:Person

a a

rdfs:subClassOf

(c) Implicit Types, Explicit Hierarchy

Figure 3.3.: Unrelated Classes, Implicit and Explicit Class Hierarchy

Mix of Modeling Levels. Class histograms mix the two levels of modeling, namely
the model level and the meta model level, when they treat both triples

ex:Jane a ex: mother .
ex: mother a rdfs:Class .

equally. Although technically correct - as we have seen (in section 2.4.1) all levels
are expressed in RDF triples -, this circumstance tends to represent a disadvantage;
usually one of the levels will be dominant in the dataset and block out the other
in frequency sorted class histograms. Class histograms should therefore distinguish
between both levels. The dominance of the levels can be computed as

ontology-ratio = |term instances|
|all instances|

= |CL|+ |P |+ |CO|
|I|

where CL, CO, and P are the sets of all class (rdfs:Class or owl:Class), concept
(skos:Concept), and property (rdf:Property) instances, respectively. The set of all
other instances is denoted by I. An ontology-ratio close to 1 indicates a dataset that
mainly contains terminological statements (meta model level), while a value close to
0 indicates a majority of assertional statements (model level).

Summary. Two kinds of class-based histograms, class usage count and triples per
subject class, are proposed to show what kind of objects are at the center of a given
dataset. The first indicates how often a class is instantiated (i.e., used as value for
rdf:type). The second histogram contains the number of triples a dataset contains
with subjects of a specific class. These histograms should integrate the explicit and
implicit class hierarchies, and distinguish between model and meta model levels. The
ontology-ratio indicates, which level dominates the dataset. Class-based measures are
only meaningful, if a large percentage of the dataset’s subjects actually have a type.
The percentage of typed subjects is computed as the typed-subject-ratio.

48

3.4. Discussion and Choice of Measures

3.4.2. Information Domain

Information about resources is expressed in RDF using triples of the form
subject predicate object .

where the described resource appears as the subject (or object). What kind of
information a triple expresses, is defined by the predicate. Therefore, the kind of
information a dataset contains can be explained with a list of the most frequently
used predicates (property usage).

In some cases, variations of the property usage measure may be more useful.

Predicate Vocabularies. Even medium-sized datasets can contain hundreds of
different properties; a list of property frequencies is very likely to become too big to
be of much help. Because predicates usually stem from external vocabularies, and
those vocabularies typically group together predicates from the same domain or area
of purpose, the predicate vocabularies used in a dataset present a much more concise,
yet very expressive measure for the kind of information a dataset contains.

Relation of Class and Property Usage. If datasets contain instances of many
different classes together with many different properties, the relation between the
subjects’ classes and predicates deserve a closer look. One approach is to subdivide
the property usage measure by subject class (property usage per subject class), i.e. to
count how many times a predicate is used together with subjects that are instances
of a given class. This measure might reveal that some predicates are exclusively used
by a subset of the classes in the dataset. A closely related, but different approach is
to count the number of class instances that occur in triples with the given predicate,
i.e., how many instances provide values for a specific property. This measure (class
instances per property) can be used to compute the maximum number of different
class instances a query may yield for the combination of specific classes and properties.
An important subset of this measure are the common properties of a class, i.e., the
set of properties all instances of a class provide values for. Queries for a class and
its common properties do not filter out any class instance in the dataset. Figure 3.4
shows example results for these property-based measures. Note that the rdf:type
property is not taken into account, since it provides the class information and is
therefore implicitly included in the analysis.

Multiple Properties. The same subjects and objects can occur in triples with
different predicates.

subject p1 object .
subject p2 object .

Analogous to instances that have multiple classes (see previous section 3.4.1), this
can either mean that the two statements are explicitly or implicitly contained in

49

Chapter 3. Structural Analysis of RDF Datasets

A

X

B

C

Y

ex:abc
a

test:klm

a

ex:abc

ex:abc

a

ex:ghi

(a) Example Graph

Class common properties

X {ex:abc}
Y {ex:ghi}

(b) Common Properties

Vocabulary predicate
vocabularies

ex: 4
test: 1

(c) Predicate Vocabularies

Predicate property usage

ex:abc 3
ex:ghi 1
test:klm 1

(d) Property Usage

Predicate Class property usage per
subject class

ex:abc X 3
Y 0

ex:ghi X 0
Y 1

test:klm X 1
Y 0

(e) Property Usage per Subject Class

Class Predicate class instances
per property

X ex:abc 2
ex:ghi 0
test:klm 1

Y ex:abc 0
ex:ghi 1
test:klm 0

(f) Class Instances per Property

Figure 3.4.: Example for Property-based Measures

the dataset. The implicit case refers to the existence of rdfs:subPropertyOf state-
ments, that express a hierarchical relation between two properties. If a property is
rdfs:subPropertyOf another property, then triples with the latter can be inferred
from triples with the former property. Three cases of parallel property usage are
shown in figure 3.5, including properties whose hierarchical relations are implicit
(3.5b). The explicit property hierarchy and implicit property hierarchy reveal these
relationships between properties.

Mix of Modeling Levels. It might be useful to clearly separate the model and
meta model levels in property histograms, because these different levels are usually
studied separately.

50

3.4. Discussion and Choice of Measures

A

B

ex:fatherOf ex:loves

(a) Explicit Statements, No Hierarchy

B

CA

ex
:f

at
he

rO
f

ex
:p

ar
en

tO
f

ex:motherOfex:parentOf

(b) Explicit Statements, Implicit Hierarchy

ex:parentOfex:fatherOf ex:motherOf

B CA

rdfs:subPropertyOf rdfs:subPropertyOf

ex:fatherOf

ex:parentOf

ex:motherOf

ex:parentOf

(c) Implicit Statements, Explicit Hierarchy

Figure 3.5.: Implicit vs. Explicit Property Hierarchy

Summary. The property usage measure, an overview of the predicates used in a dataset
and their frequencies, provides insight into the “payload” of the dataset, i.e., the kinds
of contained information. Because a high number of different predicates in a dataset
may diminish the usefulness of that measure, an overview of the predicate vocabularies
may be favorable. The classes of subjects may also be taken into account to provide
better insight into information content; either as the distribution of predicates over
classes (property usage per subject class) or as the number of class instances over
predicates (class instances per property). The set of properties, that all instances of a
specific class provide values for (common properties), can be used to explicitly query
the dataset for properties without filtering out any class instance. Analogously to the
previous central question, the property histograms should integrate the explicit and
implicit property hierarchies, and should distinguish between model and meta model
levels.

3.4.3. Composition

As different as the questions for kinds of entities and information (first and second
central question), and composition (third central question) are, their answers have a
lot in common, from a technical point of view. Thus, many of the criteria from the
two previous sections can also help in understanding a dataset’s structure.

51

Chapter 3. Structural Analysis of RDF Datasets

Hierarchical Relations. One of the most fundamental modeling decisions concerns
hierarchical relations within the data. The same real world fact can be modeled on
different levels of generality. To partly reiterate a previous example, the fact that

ex:Jane a ex: firefighter .
ex:Jane ex: chiefOf ex:Tim .

may also be expressed in more general terms as
ex:Jane a foaf: Person .
ex:Jane foaf:knows ex:Tim .

It is up to the creator of the dataset to decide, what level of generality is used. Often,
different levels are contained in parallel, i.e., with respect to the example, all 4 triples
may be included in the dataset. The appropriate measures reveal these implicit and
explicit hierarchies of classes (implicit class hierarchy and explicit class hierarchy)
and properties (implicit property hierarchy and explicit property hierarchy).

Implicit Schema. A dataset is usually created with a rather clear mental image
of its purpose and contents. This usually means that it does not contain a random
set of facts, but rather a set of similar information about similar entities. In the
domain of top-down data modeling we could expect to find the same set of attributes
for all entities of a given type. But, as we have seen in section 2.4.2, information
modeling in RDF works bottom-up, i.e., we cannot rely on any kind of schema for
entity descriptions. That is why it is very interesting to analyze how properties and
classes are actually combined in the dataset. We can count how often a property is
used per subject type (property usage per subject class) to see if a property is only
included to describe specific kinds of subjects; and we can count the number of class
instances per property (class instances per property) to distinguish between common
properties that all instances provide, and those properties that are only used by some
class instances. Finding the set of common properties can also be understood as
extracting an implicit “minimum schema” for the given entity type.

Use of Blank Nodes. An important aspect of the way a dataset is structured
concerns the use of blank nodes, i.e., nodes in an RDF graph that do not have a
unique URI. They are typically used (but not necessarily needed) to model n-ary
relationships (relating more than two nodes), or simply when external node references
are not desired. The number of subjects without URIs is measured by distinct blank
subjects. The isolated blanks measure focuses on the subset of blank nodes, that provide
not even indirect means of identification (via owl:InverseFunctionalProperty),
and hence remain completely isolated, i.e., they cannot be externally referenced or
merged.

External Resource. In addition to its internal triple structure, an RDF dataset
may also be part of an external structure of interlinked datasets, namely the Web
of Data. RDF only fulfills its purpose of conveying data with explicit semantics,
if terms from shared vocabularies are used, and externally defined resources are
linked to. The vocabularies used in the dataset can be identified with the class

52

3.4. Discussion and Choice of Measures

usage count and predicate vocabularies measures. Links to and between external
resources are more concisely presented if all URIs with a common namespace are
grouped together (namespace links). Explicit equivalence statements between local and
external resources (sameAs) deserve special attention, because they ease merging.

Summary. The structure of an RDF dataset can be explored by looking at implicit and
explicit hierarchies of classes (implicit class hierarchy and explicit class hierarchy) and
properties (implicit property hierarchy and explicit property hierarchy). Because data
modeling in RDF works bottom-up, we have to explicitly analyze the combinations
of classes and properties (property usage per subject class and class instances per
property). Finding the set of common properties can also be understood as extracting
an implicit “minimum schema” for the given entity type. A high number of blank
nodes (distinct blank subjects) may mean more complex structures. Other measures
indicate, whether the dataset promotes (namespace links) or undermines (isolated
blanks) the linked data idea.

3.4.4. Reusability

The reusability of an RDF dataset includes two aspects, the accessibility for data
extraction and the suitability for merging with other datasets.

Size. The dataset’s size (triples) determines whether processing and retrieving of
larger parts of the data is feasible.

Type Information. The basis for any kind of structured querying (and many of
the criteria proposed in this thesis) are type information for the dataset’s resources.
(typed-subject-ratio)

Detecting Ontologies. When looking for data about real world entities and rela-
tionships, one may want to treat ontologies separately (or not at all). RDF datasets
that represent ontologies can be detected by a high percentage of term definitions
(ontology-ratio).

Mergeability. Merging multiple RDF datasets is only useful, if the resulting graph
can be treated as one dataset. This is only the case if the datasets use terms from
the same vocabularies (class usage count and predicate vocabularies) or otherwise
use the same (typically external) URIs for subjects or objects. The probability for
two datasets to link to the same external resources can be estimated by analyzing
the number of triples that link different namespaces (namespace links). Two dif-
ferent URIs can immediately be merged if their equivalence is explicitly asserted
by owl:sameAs triples (sameAs). Blank nodes that cannot indirectly be identified
(via owl:InverseFunctionalProperty), cannot be referenced from the outside or
automatically merged with other datasets (isolated blanks).

53

Chapter 3. Structural Analysis of RDF Datasets

Homogeneity. A dataset is most accessible if the desired parts can be retrieved with
single straight-forward queries, i.e., by querying simply for the desired classes and
properties without optional or conditional cases. A first important aspect to this end is
the existence of explicitly defined class (explicit class hierarchy) and property (explicit
property hierarchy) hierarchies, that provide for a more homogeneously structured
dataset, and allow to formulate queries on the desired level of generality without
missing relevant parts. The extent to which hierarchies are explicitly contained, can be
determined by comparing explicit with implicit (implicit class hierarchy and implicit
property hierarchy) hierarchies. The latter might reveal hierarchies that are contained
but not explicitly modeled. A second aspect concerns the completeness of property
usage by instances of a specific class. The set of common properties that all instances
of a given class provide, can be used to query the dataset without missing an instance
of that class. The set of common properties should not be too small compared to all
properties used with that class.

Summary. Size (triples) and type (ontology-ratio) of a dataset are basic criteria to
judge its reusability. Of equal importance are type information (typed-subject-ratio).
The desired subset of a dataset is easier to retrieve if class and property hierarchies
(explicit class hierarchy and explicit property hierarchy) are explicitly modeled, and
the class instances share a large set of common properties. Explicit equivalence
statements (sameAs), and links to external namespaces (namespace links), including
terms from widely used vocabularies (class usage count and predicate vocabularies),
are very important when merging multiple datasets.

54

3.4. Discussion and Choice of Measures

3.4.5. Chosen Measures

We have chosen 18 statistical criteria which, in combination, help to answer our four
central questions. For each criterion, the following table (3.2) lists the related central
questions, and describes the given insight.

No. Measure CQ Insight

1. class usage count 1,4 · What classes are used?
· What classes have the highest number of instances?
· From which domain is the data?

2. triples per subject
class

1 · Instances of which classes does the dataset mainly describe?
· What classes are used for triples’ subjects?

3. explicit class hierar-
chy

1,3,4 · Do the classes have hierarchical relations with each other?
· What are the most general or most specific classes?
· What triples can (will) be inferred?

4. implicit class hierar-
chy

1,3,4 · How heterogeneous is the data structure?
· How easy is it to query large parts of the data?
· Do we have to take the different classes into account?
· Instances of which classes will I get if I query for a specific
class?

5. ontology-ratio 1,4 · What are the proportions of data payload and terminolog-
ical definitions?
· Does the dataset represent an ontology?

6. typed-subject-ratio 1,4 · To what extent are type information provided for triple
subjects?

7. property usage 2,3 ·What are the most frequent properties used in the dataset?
8. predicate vocabular-

ies
2,3,4 · What vocabularies have been used for the properties?

· From which domain is the data?

9. property usage
per subject class

2,3 · What properties are used with which classes?
· What are the most frequent properties for specific classes?
· What properties represent the payload?

10. class instances per
property

2,3,4 · How many instances of a specific class will I get if I query
for a specific property?
· How heterogeneous is the data structure?
· How easy is it to query large parts of the data?
· What information can I get for all subjects (of a given
class) in the dataset?

11. explicit property hier-
archy

2,3,4 · Do the properties have explicit hierarchical relations with
each other?
· What are the most general or most specific properties?
· What triples can (will) be inferred?

Continued on next page. . .

55

Chapter 3. Structural Analysis of RDF Datasets

. . . continued
No. Measure CQ Insight

12. implicit property hi-
erarchy

2,3,4 · Do the properties have implicit hierarchical relations with
each other?
· What are the most general or most specific properties?
· How heterogeneous is the data structure?
· How easy is it to query large parts of the data?
· Do we actually have to take the different properties into
account?

13. distinct blank sub-
jects

3 · Does the dataset contain blank nodes?

14. namespace links 3, 4 · Does the dataset contain links to other namespaces, i.e, is
it linked data ?
· Which namespaces are linked in the dataset?
· What properties are used to link namespaces?

15. isolated blanks 3, 4 · How hard is it to merge the given dataset with others?
· Can we link to the subjects of the dataset?

16. triples 4 · How big is the dataset?
17. sameAs 4 · How hard is it to merge the given dataset with others?

· Does the dataset express equivalence of resources?
18. common properties 2,3,4 · How heterogeneous is the data structure?

· How easy is it to query large parts of the data?
· What information can I get for all subjects (of a given
class) in the dataset?

Table 3.2.: Overview: Measures chosen for structural analysis with related central
questions (CQ). For each measure, one or more questions are given that
can be answered based on the measure’s information.

56

4. Design and Implementation of
Structural Analysis

In this chapter we describe the design and implementation of the structural analysis
of RDF datasets through SPARQL endpoints.

During our investigation of structure analysis in the last chapter, we identified four
central questions to understand an RDF dataset. We finally chose 18 criteria, which
help answering these questions. In this chapter, we show how SPARQL can be used
to analyze a dataset with regard to these criteria.

We introduce two general approaches for the SPARQL-based structural analysis of
RDF datasets; first, the Specific Query Approach (SQA) in section 4.1.1, and second,
the Triple Stream Approach (TSA) in section 4.1.2. Thereafter, we present the
implementation of each criterion in terms of a SPARQL query (for SQA), and a triple
filter (for TSA). This self-contained catalog of RDF analysis criteria represents one
of the main contributions of this thesis (section 4.1.3). To prove our concept, we have
implemented all criteria and both approaches in a software called RDFSynopsis. We
describe its basic architecture and usage in section 4.2.

57

Chapter 4. Design and Implementation of Structural Analysis

4.1. Structural Analysis via SPARQL

In this section, we illustrate our approaches of using SPARQL to perform structural
analyses of RDF datasets, in terms of the 18 measures we identified in chapter 3.

We begin by describing two alternative approaches, namely SQA (section 4.1.1) and
TSA (section 4.1.2). In section 4.1.3 we present the implementation of both approaches
for each measure.

4.1.1. Specific Queries

Our first approach to analyze a dataset that is available through a given SPARQL
endpoint, is to formulate one SPARQL query per measure. We refer to this as the
Specific Query Approach (SQA).

With SQA, we conduct a full analysis of a dataset by subsequently performing a set
of queries, each of which is specifically tailored to one measure. This simple process
is visualized in the sequence diagram in figure 4.1.

rdfSynopsis SPARQL Endpoint

specific query for measure 1

results
specific query for measure 2

results

specific query for measure n

results

Figure 4.1.: Sequence Diagram for Specific Query Approach (SQA)

4.1.2. Triple Stream

Our second approach for a SPARQL-based dataset analysis, is to retrieve and analyze
a sequence of triples. We refer to this as the Triple Stream Approach (TSA).

With TSA, we conduct a full analysis of a dataset by subsequently retrieving all
triples of a dataset. The different measures are implemented in terms of triple filters;

58

4.1. Structural Analysis via SPARQL

each measure decides whether and how it takes a triple into account. The analysis is
finished when all triples of a dataset have been filtered by each measure.

In the majority of cases it will be infeasible to retrieve the full dataset with one query.
Triple stores usually constrain memory and time used per query, and these constraints
are easily exceeded for larger datasets. We therefore perform several queries each
retrieving only a part of the full dataset. This process is visualized in the sequence
diagram in figure 4.2.

rdfSynopsis SPARQL Endpoint

triple stream query with offset1

1st chunk of triples
triple stream query with offset2

2nd chunk of triples

triple stream query with offsetn

nth chunk of triples

Figure 4.2.: Sequence Diagram for Triple Stream Approach (TSA)

The following SPARQL query can be used to subsequently retrieve all triples of a
dataset.

1 SELECT ?s ?p ?o
2 WHERE {?s ?p ?o.}
3 ORDER BY ...
4 LIMIT ...
5 OFFSET ...

The graph pattern {?s ?p ?o.} matches all triples (line 2). We use the LIMIT keyword
to define the “chunk size”, i.e., an upper bound on the number of received triples
(line 4). The ORDER BY clause is used to define a sequential order on the otherwise
unordered RDF graph (line 3). We iterate over this sequence by subsequently using
offsets incremented by the “chunk size” (line 5).

Figure 4.3 illustrates how the different SPARQL keywords define a sequence of triple
“chunks”, that can be iteratively requested, to create the triple stream.

ORDER BY ...

RDF Dataset

OFFSET …

LIMIT ...

Figure 4.3.: Creating a Triple Stream with SPARQL

59

Chapter 4. Design and Implementation of Structural Analysis

4.1.2.1. Partial Analysis & Random Sampling

An obvious disadvantage of the plain Triple Stream Approach is that it requires
the transfer of the whole dataset from the SPARQL endpoint; a very expensive and
time-consuming process. A potential solution to this problem is to refrain from a full
analysis and only request a subset of all triples.

Because the ORDER BY clause imposes some sequence on the triples in the dataset, a
partial analysis, that only takes the first k triples into consideration, is very unlikely
to produce results that are representative for the full dataset.

In order to mitigate this adverse effect and to obtain a more representative sample of
triples, we follow an approach to randomly select the parts we request from a dataset.
This approach is visualized in figure 4.4.

Random Samples

ORDER BY ...

RDF Dataset

OFFSET …

LIMIT ...

Figure 4.4.: Random Sampling TSA

60

4.1. Structural Analysis via SPARQL

4.1.3. Measure Implementation

This section demonstrates how all 18 identified measures can be implemented, both
as a specific query and a triple filter.

For each measure, we give an informal description of its purpose, a specific SPARQL
query (for SQA), and a triple filter definition including data structure and necessary
post processing (for TSA). In the pseudocode descriptions of the triple filters, we use
a for each construct that is meant to iterate over all pairs (k,v) of a Map(K→V).

4.1.3.1. Class Usage Count

Understand which classes are most frequently instantiated; that is, how many subjects
have an rdf:type relationship to that class.

Due to RDF semantics, rdfs:Resource will always1 be the most frequently instan-
tiated class. The sets of instances are not disjoint, because one resource can have
multiple types.

SQA
1 SELECT ?class (COUNT (DISTINCT ?I) AS ? numInstances)
2 WHERE {
3 ?I rdf:type ?class .
4 }
5 GROUP BY ?class

This query will return the number of instances per class.

TSA
1 // Data Structures
2 classUsageMap : Map(String → Integer)
3
4 function filterTriple(s, p, o)
5 if p == rdf:type then
6 classUsageMap[o]++ // object == class
7
8 // Necessary Post-Processing
9 none

For every rdf:type triple, the instance count for the class (object) is incremented.
1Always, unless SPARQL-Endpoint or underlying triple store do not perform proper RDF(S)

inference.

61

Chapter 4. Design and Implementation of Structural Analysis

4.1.3.2. Triples per Subject Class

Understand how triples are distributed over subject classes. Because subjects can
have multiple types, triples are counted multiple times, once for each subject class.
Hence, the sets of triples per class are not disjoint.

SQA
1 SELECT ?class (COUNT (*) as ? numTriplesPerClass)
2 WHERE {
3 ?s ?p ?o .
4 ?s a ?class .
5 }
6 GROUP BY ?class

The query will return, for each class, the number of triples whose subjects are an
instance of that class.

TSA
1 // Data Structures
2 triplesPerClass : Map(String → Integer)
3 triplesPerSubject : Map(String → Integer)
4 classesPerSubject : Map(String → {String})
5
6 function filterTriple(s, p, o)
7 triplesPerSubject[s]++
8 if p == rdf:type then
9 classesPerSubject[s].add(o) // object == class
10
11 // Necessary Post-Processing
12 for each (subject, subjectClasses) in classesPerSubject do
13 for each class in subjectClasses do
14 triplesPerClass[class] += triplesPerSubject[subject]

The number of triples and the classes per subject are counted separately. They are
combined in post-processing to calculate the number of triples per class.

62

4.1. Structural Analysis via SPARQL

4.1.3.3. Explicit Class Hierarchy

Find out what class hierarchies are explicitly defined. Understand what subject types
are inferred in the given dataset. Often, RDF resources are instances of multiple
types. A usual reason is the existence of class hierarchies, i.e., one class is defined to
be rdfs:subClassOf another class, and all instances of the former can be inferred
automatically to be instances of the latter class, as well.

SQA
1 SELECT ? subclass ? superclass
2 WHERE {
3 ? subclass rdfs: subClassOf ? superclass .
4 FILTER (? subclass != ? superclass)
5 FILTER (? superclass != rdfs: Resource)
6 }

This query returns all subclass relationships, except for trivial and rdfs:Resource
subclasses.

TSA
1 // Data Structures
2 subSuperClassMap : Map(String → {String})
3
4 function filterTriple(s, p, o)
5 if p == rdfs:subClassOf && s != o && o != rdfs:Resource then
6 subSuperClassMap[s].add(o)
7
8 // Necessary Post-Processing
9 none

Record all rdfs:subClassOf triples, except for trivial and rdfs:Resource sub-
classes.

63

Chapter 4. Design and Implementation of Structural Analysis

4.1.3.4. Implicit Class Hierarchy

Find out what class hierarchies are implicitly contained. In many cases all instances
of one class are also defined to be instances of another class.

SQA
1 SELECT ? subClass ? superClass
2 WHERE {
3 ?s a ? subClass .
4 ?s a ? superClass .
5 FILTER (? subClass != ? superClass)
6 FILTER (? superClass != rdfs: Resource)
7 FILTER NOT EXISTS {
8 ? anyInstance a ? subClass .
9 FILTER NOT EXISTS {
10 ? anyInstance a ? superClass . }
11 }
12 }
13 GROUP BY ? subClass ? superClass

The query looks for pairs of classes (?subClass, ?superClass) that are used in
parallel for some subject (lines 3-4), and for which there is no instance (?anyInstance)
that is instance of the first but not of the second class (lines 7-11). The query returns
all class hierarchy relationships, including the explicit class hierarchy. We can read
the results as: “The set of subClass instances is a subset of the set of superClass
instances.”

TSA
1 // Data Structures
2 subSuperClassMap : Map(String → {String})
3 classInstances : Map(String → {String})
4
5 function filterTriple(s, p, o)
6 if p == rdf:type && o != rdfs:Resource then
7 classInstances[o].add(s)
8
9 // Necessary Post-Processing
10 for each (class,classInstances) in classInstances do
11 for each (superClass,superClassInstances) in classInstances do
12 if class != superClass && classInstances ⊆ superClassInstances then
13 subSuperClassMap[class].add(superClass)

During triple streaming all class instances are recorded. To find implicit class
hierarchies in post-processing, the sets of class instances are searched for subset
relations.

64

4.1. Structural Analysis via SPARQL

4.1.3.5. Ontology-Ratio

Determine whether a dataset represents an ontology, i.e., terms and their relationships,
or rather a set of assertions about real world entities. The extent to which a dataset
is made of terminological definitions may be computed as below. High (close to 1)
and low (close to 0) ontology-ratios indicate terminological (ontology) or assertional
datasets, respectively. Note that we define “terms” in a broader sense, to also include
instances of type skos:Concept.

ontology-ratio = |term instances|
|all instances|

= |CL|+ |P |+ |CO|
|I|

SQA
1 SELECT (COUNT (DISTINCT ?CL) AS ? numDefClasses)
2 (COUNT (DISTINCT ?CO) AS ? numDefConcepts)
3 (COUNT (DISTINCT ?P) AS ? numDefProperties)
4 (COUNT (DISTINCT ?I) AS ? numTypedResources)
5 WHERE {
6 { ?CL a rdfs:Class. }
7 UNION
8 { ?CL a owl:Class. }
9 UNION

10 { ?CO a skos: Concept . }
11 UNION
12 { ?P a rdf: Property . }
13 UNION
14 { ?I a ?class.
15 FILTER (? class != rdfs: Resource)}
16 }

This query will return the number of class, property and concept instances. It will
also return the number of all instances, including term and non-term instances.

65

Chapter 4. Design and Implementation of Structural Analysis

TSA
1 // Data Structures
2 defClasses : {String}
3 defProperties : {String}
4 defConcepts : {String}
5 typedResources : {String}
6
7 function filterTriple(s, p, o)
8 if p == rdf:type then
9 if o != rdfs:Resource then
10 typedResources.add(s)
11 if o == rdfs:Class || o == owl:Class then
12 defClasses.add(s)
13 if o == skos:Concept then
14 defConcepts.add(s)
15 if o != rdf:Property then
16 defProperties.add(s)
17
18 // Necessary Post-Processing
19 none

Depending on their type subjects are added to different sets whose sizes can later be
used to compute the ontology-ratio.

4.1.3.6. Typed-Subject-Ratio

Determine to what extent type information is provided for subjects in a dataset. This
criterion is important to judge whether other class-based criteria, that rely on typed
subjects, are expressive at all.

typed-subject-ratio = |typed subjects|
|all subjects|

SQA
1 SELECT (COUNT (DISTINCT ?TS) AS ? numTypedSubjects)
2 (COUNT (DISTINCT ?S) AS ? numSubjects)
3 WHERE {
4 { ?TS a ?class .
5 ?TS ?p ?o .
6 FILTER (? class != rdfs: Resource) }
7 UNION
8 { ?S ?p ?o . }
9 FILTER (?p != rdf:type)
10 }

66

4.1. Structural Analysis via SPARQL

The query will return the number of typed subjects and the number of total subjects.
Note that we exclude rdfs:Resource from matched subject classes as, all subjects
are implicitly of type rdfs:Resource, due to RDF semantics. For the same reason,
we exclude rdf:type triples; we do not want to count resources (as subjects) that
only appear in rdf:type triples.

TSA
1 // Data Structures
2 subjects : {String}
3 onlyTypedSubjects : {String}
4 typedSubjects : {String}
5
6 function filterTriple(s, p, o)
7 if p == rdf:type then // type triple
8 if o != rdfs:Resource then
9 if s ∈ subjects then

10 typedSubjects.add(s)
11 else
12 onlyTypedSubjects.add(s)
13 else // non-type triple
14 if s ∈ onlyTypedSubjects then
15 typedSubjects.add(s)
16 subjects.add(s)
17
18 // Necessary Post-Processing
19 none

All subjects found in non-type triples are added to subjects. All subjects found in
type triples are either immediately added to typedSubjects (if they are already in
subjects), or are marked as onlyTyped (if they have not occurred in non-type triples
so far), so they are latter added to typedSubjects when occurring in a non-type
triple.

67

Chapter 4. Design and Implementation of Structural Analysis

4.1.3.7. Property Usage

Find the most frequently used properties.

SQA
1 SELECT ? property (COUNT (*) as ? numUses)
2 WHERE {
3 ?s ? property ?o .
4 }
5 GROUP BY ? property

The query will return, for each property, the number of triples using that property.

TSA
1 // Data Structures
2 propertyUsageMap : Map(String → Integer)
3
4 function filterTriple(s, p, o)
5 propertyUsageMap[p]++
6
7 // Necessary Post-Processing
8 none

For each triple the property’s usage count is incremented.

68

4.1. Structural Analysis via SPARQL

4.1.3.8. Predicate Vocabularies

Get an overview of property usage by subsuming properties under their vocabularies.
Classes and properties in RDF are typically defined in datasets that only contain ter-
minological definitions, so-called vocabularies. Usually, all terms within a vocabulary
have a common prefix in their URI path, their “namespace”. Because vocabularies
group together terms from a specific domain, the namespaces of used terms are usually
enough to understand the dataset’s domain(s).

SQA
1 SELECT ? predVocab (COUNT (?p) AS ? numUses)
2 WHERE {
3 ?s ?p ?o .
4 FILTER (isIRI (?p))
5 BIND(REPLACE (str (?p), " [^/#]* $", "") AS ? predVocab)
6 }
7 GROUP BY ? predVocab

In the query, the namespace that identifies a vocabulary is obtained by truncating
the fragment identifier (part after #) or, if none exists, the last path segment (lines
5-6). The query will return, for each property vocabulary, the number of triples with
a property from that vocabulary.

TSA
1 // Data Structures
2 predicateVocabularyUsageMap : Map(String → Integer)
3
4 function filterTriple(s, p, o)
5 predicateVocabularyUsageMap[namespace(p)]++
6
7 // Necessary Post-Processing
8 none

For each triple the property’s namespace is computed and its usage count is incre-
mented.

69

Chapter 4. Design and Implementation of Structural Analysis

4.1.3.9. Property Usage per Subject Class

Understand what are the most frequent combinations of subject class and property.

SQA
1 SELECT ?class ? property (COUNT (*) as ? numUses)
2 WHERE {
3 ?s ? property ?o .
4 OPTIONAL {?s a ?class}
5 FILTER (? property != rdf:type)
6 }
7 GROUP BY ?class ? property

The query will return, for each class and each property, the number of triples with
the given property and a subject that is an instance of the given class.

TSA
1 // Data Structures
2 propPerSubjectClassMap : Map(String → Map(String → Integer))
3 propPerUntypedSubjectsMap : Map(String → Integer)
4 subjectClassMap : Map(String → {String})
5 propPerSubjectMap : Map(String → Map(String → Integer))
6
7 function filterTriple(s, p, o)
8 if p == rdf:type then
9 subjectClassMap[s].add(o) // object == class
10 else
11 propPerSubjectMap[s][p]++
12
13 // Necessary Post-Processing
14 for each (subject,propUsageMap) in propPerSubjectMap do
15 subjectClasses ← subjectClassMap[subject]
16 for each (property,numUses) in propUsageMap do
17 if subjectClasses == ∅ then // subject has no type
18 propPerUntypedSubjectsMap[property] += numUses
19 else // subject is typed
20 for each class in subjectClasses do
21 propPerSubjectClassMap[class][property] += numUses

During triple streaming, we record the classes and the property usage of each subject.
In post-processing we calculate the property usage per subject class by combining
property usage for all instances of a class.

70

4.1. Structural Analysis via SPARQL

4.1.3.10. Class Instances per Property

Understand how many instances of a given class have a triple with a given property.
This number can be understood as the maximum1 number of class instances we may
expect from a query for the given property.

SQA
1 SELECT ?class ? property (COUNT (DISTINCT ?I) as ? numInstances)
2 WHERE {
3 ?I ? property ?o .
4 ?I a ?class .
5 FILTER (? property != rdf:type)
6 }
7 GROUP BY ?class ? property

The query will return, for each class and property, the number of class instances that
occur as subject in a triple with the property.

TSA
1 // Data Structures
2 classInstancesPerPropertyMap : Map(String → Map(String → Integer))
3 subjectClassMap : Map(String → {String})
4 propSubjectMap : Map(String → {String})
5
6 function filterTriple(s, p, o)
7 if p == rdf:type then
8 subjectClassMap[s].add(o) // object == class
9 else

10 propSubjectMap[p].add(s)
11
12 // Necessary Post-Processing
13 for each (property,subjects) in propSubjectMap do
14 for each subject in subjects do
15 subjectClasses ← subjectClassMap[subject]
16 if subjectClasses != ∅ then
17 for each class in subjectClasses do
18 classInstancesPerPropertyMap[class][property]++

We separately record subjects’ classes (line 8) and subjects per property (line 10). To
compute the number of class instances that occur in triples with a given property, we
increment the number of class instances (line 18) for each class (lines 15-17) of every
subject per property (lines 13-14).

1The actual number of retrieved instances may be significantly lower when multiple properties
are combined in a query, i.e., an intersection is computed.

71

Chapter 4. Design and Implementation of Structural Analysis

4.1.3.11. Explicit Property Hierarchy

Determine which property hierarchies are explicitly defined in a dataset. Understand
which triples (with which properties) are inferred in the dataset. Often, a dataset
contains many triples that only differ in their properties. This is usually due to the
fact, that those properties have a hierarchical rdfs:subPropertyOf relation with
each other. These hierarchy statements can be found with the following query.

SQA
1 SELECT ? subprop ? superprop
2 WHERE {
3 ? subprop rdfs: subPropertyOf ? superprop .
4 FILTER (? subprop != ? superprop)
5 }

The query will return pairs of properties, that have an explicit subproperty relationship.
Triples with superprop are inferred based on triples with subprop.

TSA
1 // Data Structures
2 subSuperPropertyMap : Map(String → {String})
3
4 function filterTriple(s, p, o)
5 if p == rdfs:subPropertyOf && s != o then
6 subSuperPropertyMap[s].add(o)
7
8 // Necessary Post-Processing
9 none

Record all rdfs:subPropertyOf triples, except for trivial sub-properties.

4.1.3.12. Implicit Property Hierarchy

Understand what property hierarchies are implicitly contained in a dataset. Often
multiple properties are used in the same subject-object combinations. If all triples
of one property A also exist with another property B, then we call this an implicit
property hierarchy, and A an implicit sub-property of B.

72

4.1. Structural Analysis via SPARQL

SQA
1 SELECT ? subProp ? superProp
2 WHERE {
3 ?s ? subProp ?o.
4 ?s ? superProp ?o.
5 FILTER (? subProp != ? superProp)
6 FILTER NOT EXISTS {
7 ?anyS ? subProp ?anyO.
8 FILTER NOT EXISTS {
9 ?anyS ? superProp ?anyO. }

10 }
11 }
12 GROUP BY ? subProp ? superProp

The query looks for pairs of properties (subProp, superProp) (lines 3-4), for which
no triple with subProp exists (lines 6-7) that does not exist with superProp (lines
8-9).

TSA
1 // Data Structures
2 subSuperPropMap : Map(String → {String})
3 triplesPerProperty : Map(String → Map(String → {String}))
4
5 function filterTriple(s, p, o)
6 triplesPerProperty[p][s].add(o)
7
8 // Necessary Post-Processing
9 for each (p,pSubObjMap) in triplesPerProperty do

10 for each (superP,superPSubObjMap) in triplesPerProperty do
11 if p != superP then
12 containsAll ← true
13 for each (s,objects) in pSubObjMap do
14 containsAll ← containsAll && objects ⊆ superPSubObjMap[s]
15 if containsAll then
16 subSuperPropMap[p].add(superP)

The triplesPerProperty data structure records all triples in a property → subject
→ object order (line 6). To find implicit property hierarchies in post-processing, all
pairs of properties (lines 9-11) are checked for subset relations. An implicit property
hierarchy is found (line 16) if all subject,object-pairs of one property are included
in the pairs of the potential super-property (lines 12-15).

73

Chapter 4. Design and Implementation of Structural Analysis

4.1.3.13. Distinct Blank Subjects

Determine the number of blank nodes in a dataset.

SQA
1 SELECT (COUNT (DISTINCT ?s) as ? numBlanks)
2 WHERE {
3 ?s ?p ?o
4 FILTER isBlank (?s)
5 }

The query yields the number of blank nodes that appear in subject position.

TSA
1 // Data Structures
2 blankSubjects : {String}
3
4 function filterTriple(s, p, o)
5 if isBlank(s) then
6 blankSubjects.add(s)
7
8 // Necessary Post-Processing
9 none

All blank nodes appearing in the subject position are collected, no post-processing is
necessary.

74

4.1. Structural Analysis via SPARQL

4.1.3.14. Namespace Links

Assess to what extent a dataset links different namespaces, and what properties are
used for linking. In order to reuse a dataset, and merge it with others, it is important to
link resources defined within a dataset with resources defined in external namespaces,
so that equivalence of resources among multiple datasets can be computed.

SQA
1 SELECT ?NS1 ?prop ?NS2 (COUNT (*) AS ? numLinks)
2 WHERE {
3 ?res1 ?prop ?res2 .
4 FILTER (isIRI (? res1))
5 FILTER (isIRI (? res2))
6 BIND(REPLACE (str (? res1), " [^/#]* $", "") AS ?NS1)
7 BIND(REPLACE (str (? res2), " [^/#]* $", "") AS ?NS2)
8 }
9 GROUP BY ?NS1 ?prop ?NS2

The query will return, for each subject and object namespace and each property, the
number of triples that have subjects and objects from the given namespaces, and
use the given property. The links with the owl:sameAs property may deserve special
attention, as it is used to explicitly define equivalence.

TSA
1 // Data Structures
2 nsLinksMap : Map(String → Map(String → Map(String → Integer)))
3
4 function filterTriple(s, p, o)
5 nsLinksMap[namespace(s)][namespace(o)][p]++
6
7 // Necessary Post-Processing
8 none

The filter computes the namespaces for subject (NS1) and object (NS2), and increments
the counter for the (NS1,NS2,P)-triples.

75

Chapter 4. Design and Implementation of Structural Analysis

4.1.3.15. Isolated Blanks

Determine whether a dataset contains isolated subjects that cannot be referenced
from outside the dataset. If blank nodes in a dataset do not appear as an object
in any triple, and if they have no triple with an owl:InverseFunctionalProperty,
then the blank node cannot be referenced from the outside.

SQA
1 SELECT (COUNT (DISTINCT ?bnode) AS ? numIsolatedBlanks)
2 WHERE {
3 ?bnode ?p ?o .
4 FILTER isBlank (? bnode)
5 FILTER NOT EXISTS {
6 ? anySubject ? hasObject ?bnode . }
7 FILTER NOT EXISTS {
8 ?bnode ?ifp ?id .
9 ?ifp a owl: InverseFunctionalProperty . }
10 }

The query will return the number of isolated blank nodes in the dataset.

TSA
1 // Data Structures
2 ifps : {String}
3 isolatedBlanks : {String}
4 subjectBlankPropertyMap : Map(String → {String})
5 objectBlanks : {String}
6
7 function filterTriple(s, p, o)
8 if p == rdf:type && o == owl:InverseFunctionalProperty then
9 ifps.add(s)
10 if isBlank(s) then
11 subjectBlankPropertyMap[s].add(p)
12 if isBlank(o) then
13 objectBlanks.add(o)
14
15 // Necessary Post-Processing
16 for each o in objectBlanks do
17 subjectBlankPropertyMap.remove(o)
18 for each (s,properties) in subjectBlankPropertyMap do
19 if (properties ∩ ifps) == ∅ then
20 isolatedBlanks.add(s)

76

4.1. Structural Analysis via SPARQL

During triple streaming we separately collect all owl:InverseFunctionalPropertys,
and blank nodes appearing as subject and object. To obtain the set of isolated blank
nodes, we first remove all blank nodes that also appeared as objects (lines 16-17).
From the resulting set of blank subjects we select those that did not occur with an
inverse functional property (lines 18-20).

4.1.3.16. Triples

Assess the dataset’s size.

SQA
1 SELECT (COUNT (*) AS ? numTriples)
2 WHERE {
3 ?s ?p ?o .
4 }

The query will return the number of triples in the dataset. This may also include
triples that are implicitly contained in the dataset, due to inference.

TSA
1 // Data Structures
2 numTriples : Integer
3
4 function filterTriple(s, p, o)
5 numTriples++
6
7 // Necessary Post-Processing
8 none

4.1.3.17. SameAs

Determine the number of explicit equivalence statements via the owl:sameAs prop-
erty.

SQA
1 SELECT (COUNT (*) as ? sameAs)
2 WHERE {
3 ?s owl: sameAs ?o .
4 }

77

Chapter 4. Design and Implementation of Structural Analysis

TSA
1 // Data Structures
2 numSameAs : Integer
3
4 function filterTriple(s, p, o)
5 if p == owl:sameAs then
6 numSameAs++
7
8 // Necessary Post-Processing
9 none

4.1.3.18. Common Properties

Find the set of properties that all instances of a given class share. The common
properties of a class can be used in queries without filtering out any instance of that
class.

SQA
1 SELECT DISTINCT ?class ? property
2 WHERE {
3
4 { SELECT ?class ? property (COUNT (DISTINCT ?I) as ? numInstances)
5 WHERE {
6 ?I ? property ?o .
7 ?I a ?class .
8 FILTER (? property != rdf:type)
9 }
10 GROUP BY ?class ? property
11 }
12 {
13 SELECT ?class (COUNT (DISTINCT ?I) AS ?numI)
14 WHERE {?I a ?class. }
15 GROUP BY ?class
16 }
17 FILTER (? numInstances = ?numI)
18 }

The query will return, for each class, the properties that all instances of the class
provide values for. The query uses two subqueries, one to compute the number of
instances per class (lines 12-16), and the other to compute the number of instances of
a class with a specific property (lines 4-11). The common properties are then selected
by combining the results of both queries to filter those properties whose number of
class instances (numInstances) equals the total number of instances (numI) of the
given class (line 17).

78

4.1. Structural Analysis via SPARQL

TSA
1 // Data Structures
2 classCommonPropertyMap : Map(String → {String})
3 classInstancesPerPropertyMap : Map(String → Map(String → Integer))
4 classInstanceMap : Map(String → {String})
5 subjectClassMap : Map(String → {String})
6 propSubjectMap : Map(String → {String})
7
8 function filterTriple(s, p, o)
9 if p == rdf:type then

10 subjectClassMap[s].add(o)
11 classInstanceMap[o].add(s)
12 else
13 propSubjectMap[p].add(s)
14
15 // Necessary Post-Processing
16 for each (property,subjects) in propSubjectMap do
17 for each subject in subjects do
18 subjectClasses ← subjectClassMap[subject]
19 if subjectClasses != ∅ then
20 for each class in subjectClasses do
21 classInstancesPerPropertyMap[class][property]++
22 for each (class, propInstanceMap) in classInstancesPerPropertyMap do
23 for each (p, numInstances) in propInstanceMap do
24 if numInstances == classInstanceMap[class].size() then
25 classCommonPropertyMap[class].add(property)

We separately record subjects’ classes (line 10), class instances (line 11) and subjects
per property (line 13). To compute the number of class instances that occur in triples
with a given property, we increment the number of class instances (line 21) for each
class (lines 18-20) of every subject per property (lines 16-17). We select the common
properties of a class (line 25) by comparing the number of class instances with that
property to the total number of classes instances (line 24), for each class and property
(lines 22-23).

79

Chapter 4. Design and Implementation of Structural Analysis

4.2. Architecture of RDFSynopsis

In this section we briefly describe the architecture of RDFSynopsis, the software that
implements our two approaches (SQA and TSA) to a structural analysis of RDF
datasets via SPARQL endpoints.

The software RDFSynopsis was written in Java. It uses the Apache Jena framework
[6] to process RDF data and to query SPARQL endpoints. The goal for the design
of RDFSynopsis was to write code that could be used both, as a stand-alone tool
operated from the command-line, and as a framework of classes for reuse in other
software. Figure 4.5 presents the class hierarchy and package arrangement.

Three concepts are at the center of RDFSynopsis’s design: Datasets, Statistical
Criteria, and Analyzers. The basic idea behind these concepts is to define a dataset
analysis in three steps.

1. Define the dataset that shall be analyzed.
2. Define the statistical criteria according to which the dataset shall be analyzed.
3. Provide the dataset and the criteria to an analyzer, and let it do the work.

rdfsynopsis

eval

AbstractAnalysisLogger

PartialStreamAnalysisLoggerSparqlAnalysisLogger

StreamAnalysisLogger

AbstractEvaluator

AbstractCompositeEvaluatorMultirunEvaluator

EvaluationSet

dataset

Dataset

SPARQL-Dataset

InMemoryDatasetSparqlDataset

analyzer

Analyzer

AbstractAnalyzer

SparqlAnalyzerTripleStreamAnalyzer

util

HierarchyGraph

Namespace

statistics

StatisticalCriterion

ClassHierarchy

ClassInstancesPerProperty

ClassUsageCount

DistinctSubjectOnlyBlanks

DistinctSubjectsBlank

ImplicitClassHierarchy

NamespaceLinksNumTriplesOntologyRatio

PredicateVocabularies PropertyHierarchy

PropertyUsage

PropertyUsagePerSubjectClass

SameAs TypedSubjectRatioCommonProperties

RDFSynopsis

Figure 4.5.: Architecture of RDFSynopsis80

4.2. Architecture of RDFSynopsis

A dataset represents any collection of RDF data. Our class SparqlDataset rep-
resents datasets that can be queried with SPARQL queries. The class offers a
single method query that can be used to pose SPARQL queries against the dataset.
Throughout the code, we only use this method for data access. The subclasses
SparqlEndpointDataset and InMemoryDataset encapsulate access to remote datasets
which are identified via an endpoint URI, and local datasets which are loaded into
memory, respectively.

1 public abstract class SparqlDataset extends Dataset {
2 public abstract QueryExecution query(Query query);
3 }

Listing 4.1: SparqlDataset.java

A statistical criterion represents a single analytic measure. The abstract class
StatisticalCriterion provides three public methods. The first, flushLog, prints
the current state of measurements. The second, considerTriple, represents the
filterTriple(s, p, o) function (as seen in section 4.1), implementing the Triple
Stream Approach . The third public method is processSparqlDataset which im-
plements the Specific Query Approach. It uses the query method of the provided
SparqlDataset, and delegates parsing of query results to its concrete subclasses. The
specific SPARQL queries for each criterion are loaded from separate .sparql-files.
This process is implemented in StatisticalCriterion, but has been omitted for
brevity.

1 public abstract class StatisticalCriterion {
2 // print current measurements
3 public abstract void flushLog (PrintStream ps);
4
5 // filter triple (TSA)
6 public abstract
7 void considerTriple (Resource s, Property p, RDFNode o);
8
9 // process query results (SQA)

10 abstract void processQueryResults (ResultSet res);
11
12 // query dataset (SQA)
13 public void processSparqlDataset (SparqlDataset ds) {
14 ...
15 // execute query and obtain results
16 QueryExecution qe = ds.query(query);
17 ResultSet results = qe. execSelect ();
18
19 // delegate result processing to subclass
20 processQueryResults (results);
21 ...
22 }
23 }

Listing 4.2: StatisticalCriterion.java (some parts omitted)
81

Chapter 4. Design and Implementation of Structural Analysis

An analyzer represents a single analysis configuration. The AbstractAnalyzer
class defines four public methods. The first two, addCriterion and setDs, are
used to configure the analysis with regard to dataset and criteria. The third method,
performAnalysis, actually performs the analysis and prints the results to the provided
PrintStream. The fourth method is equals. AbstractAnalyzer and all subclasses
of StatisticalCriterion re-implement this standard method, making analysis
results comparable by calling analyzer1.equals(analyzer2). The performAnalysis
method is implemented differently for SQA and TSA. The subclass SparqlAnalyzer
(SQA) calls processSparqlDataset for each criterion, while TripleStreamAnalyzer
(TSA) creates a triple stream and calls considerTriple for each criterion and triple.
The triple stream is created by subsequently querying the dataset with increasing
OFFSET parameters (section 4.1.2). Random Sampling is implemented by calling
Collections.shuffle(offsets) on a precomputed list of offsets.

1 public abstract class AbstractAnalyzer implements Analyzer {
2 // define criteria
3 public Analyzer addCriterion (StatisticalCriterion sc) { ... }
4
5 // define dataset
6 public Analyzer setDs(SparqlDataset ds) { ... }
7
8 // perform analysis and output results
9 public abstract void performAnalysis (PrintStream ps);
10
11 // compare analysis results
12 @Override
13 public boolean equals (Object obj) { ... }
14 }

Listing 4.3: AbstractAnalyzer.java (some parts omitted)

The classes in the eval package have been implemented for the evaluation of our
work (chaper 5), and do not represent core components of RDFSynopsis. Hence, they
are not further discussed.

82

4.2. Architecture of RDFSynopsis

The following examples demonstrate the use of RDFSynopsis’s classes. We analyze
the number of triples of a SPARQL endpoint using TSA (Example 1), and find the
common properties of an in-memory dataset using SQA (Example 2).

1 TripleStreamAnalyzer tsa = new TripleStreamAnalyzer ()
2 . addCriterion (new NumTriples ())
3 .setDs(new SparqlEndpointDataset ("http ://... "))
4 . setRandomSampling (true)
5 . setTripleLimit (500);
6 tsa. performAnalysis ();

Listing 4.4: Usage of RDFSynopsis Framework (Example 1)

1 SparqlAnalyzer sqa = new SparqlAnalyzer ()
2 . addCriterion (new CommonProperties ())
3 .setDs(new InMemoryDataset ("file :../ data/peel.rdf"));
4 sqa. performAnalysis ();

Listing 4.5: Usage of RDFSynopsis Framework (Example 2)

RDFSynopsis also provides a command-line interface. The above examples can be
invoked from the command-line. The -c parameter is used followed by a list of
numbers to define the desired criteria; -lc prints the number-to-criteria mapping.
Section C presents the command-line usage of RDFSynopsis in greater detail.

1 // Example 1
2 java -jar rdfSynopsis .jar -tsa -rand -tl 500 -c 16 -ep http ...
3 // Example 2
4 java -jar rdfSynopsis .jar -sqa -c 18 -f ../ data/peel.rdf

Listing 4.6: Usage of RDFSynopsis (Command-Line)

83

5. Evaluation

In this chapter we evaluate our approaches to SPARQL-based analyses of RDF
datasets.

First, we demonstrate our analytical measures along an example use case in section
5.1. Then, we compare the SQA and TSA approaches with regard to their query
runtime performance (section 5.2). Finally, the chapter concludes with a look into
the accuracy achieved with partial analyses of datasets (section 5.3).

5.1. Example Use Case Study

In this section, we illustrate how to employ the analytic measures we have chosen to
investigate an RDF dataset. The structure of this section reflects the natural course
of dataset exploration; for the measures presented in section 4.1.3, we explain the
insight that is gained by its results.

We imagine a Web developer who wants to create a Website about winter sports,
based on the Web of Data. That person would go hunting for appropriate RDF
datasets that could be merged to form the Website’s data base. In the course of this
search, this person might stumble upon a SPARQL endpoint to the Austrian Ski
Team dataset (AST) 1. Although, one could guess from its name that the dataset
behind that endpoint belongs to the domain of winter sports, one would not know

• what kind of information was actually contained (Entity and Information
Domain),
• how that data was structured in RDF (Composition), and
• how easy this data could be merged and reused with other datasets (Reusability).

Before any kind of investigation starts, it is good to know how large a dataset one is
dealing with. The AST dataset has 5874 triples; it is a fairly small dataset. (triples)
We rely on subject type information for both, investigation and use of RDF datasets.

1http://vocabulary.semantic-web.at/PoolParty/sparql/AustrianSkiTeam

85

http://vocabulary.semantic-web.at/PoolParty/sparql/AustrianSkiTeam

Chapter 5. Evaluation

Figure 5.1.: Implicit Class Hierarchy with Instance and Triple Counts (some parts
omitted)

Fortunately, we have a typed-subject-ratio of 99%; nearly all subjects have another
type besides rdfs:Resource. According to the ontology-ratio, 93% of instances are
terms. This is a significant percentage; the dataset seems to mainly represent a
collection of term definitions, and contains only a small amount (7%) representations
of real world entities.

In order to understand what kind of real world entities are represented in the dataset,
we look at the number of instances per class. (class usage count) (see #instances in
figure 5.1) Firstly, the four most frequently instantiated classes are rdfs:Resource,
skos:Concept, rdfs:Class, and rdf:Property (partly omitted in figure). Secondly,
and more valuable for our investigation, the dataset contains, among others, 21
instances of type yago:LivingPeople and 18 yago:AustrianAlpineSkiers. To
understand if these entities, despite their little number, are “at the center” of the
dataset, we study the distribution of triples per subject class. The results (see #triples
in figure 5.1) reveal, that the dataset mainly contains data about living people and
Austrian alpine skiers; AST could indee prove useful for the winter sports Website.

But, besides the trivial results for rdfs:Resource, the most frequent subject class
for triples is skos:Concept; 4347 of the total 5874 triples have a subject that is
a skos:Concept. Counterintuitively, with 2778 triples for yago:LivingPeople, it
follows that the two sets of concepts and living people cannot be disjoint in AST. At
this point in the investigation, it is not clear how information is modeled in AST.
For two sets of class instances not to be disjoint, a usual reason is the existence of
hierarchical relationships between classes, such that all instances of one class are
also instances of the other class. AST contains no explicit class hierarchies (in the
form of rdfs:subClassOf relationships) except the standard subclass statements of
RDF and RDFS. In contrast, investigating actual class instantiation in the dataset
reveals implicit class hierarchies (as visualized in figure 5.1) For example, all in-
stances of yago:LivingPeople are also instances of skos:Concept. Furthermore,
skos:Concept seems to be used in a very general way for instances of classes from

86

5.1. Example Use Case Study

dc

rdf

skos

rdfs

ast

foaf
d
b
o

geo

type

related

subject

exactMatch

prefLabel
broader

narrower

ot
he

r

contrib
utormodified

hasVersion

creator

created

subClassOf

subPropertyOf

label

lat
long

page
homepage
depiction

isFavouriteDisciplineOf

winnerOf
wonBy

isSpecialisedIn
thumbnail

other

other

other

other

all triples

Figure 5.2.: Property Usage (inner circle shows property vocabularies, outer circle
shows specific properties)

foaf:Person to dbo:Place.1 The class foaf:Person seems to be used either het-
erogeneously or counterintuitively, because, contrary to real-world semantics, not
all instances of yago:LivingPeople are also of type foaf:Person. We now know
that our first impression - AST mainly representing an ontology - was wrong. In
AST, all real world entities (living people, organisations, places) are also modeled as
skos:Concepts.

After understanding what subject classes are at the center of the dataset, the next
step is to investigate what information the dataset contains about those subjects, i.e.,
what properties are used. For a first overview we take a look at predicate vocabularies
used in AST (see inner circle of figure 5.2). Besides standard (rdf, rdfs), term-related
(skos) and metadata vocabularies (dc) which amount to more than 3/4 of triples,
the dataset’s “payload” probably lies within properties from its own (ast) and the
foaf (descriptions of people), dbo (dbpedia terms) and geo (geographic coordinates)
vocabularies. When we take a look at the most frequently used properties (property
usage) from these vocabularies (see outer circle in figure 5.2), it can be seen that
type information accounts for 27% of triples, followed by several skos: properties
that relate terms with each other. Thumbnail and web page URLs, and geographical
coordinates are also among the most frequently used properties. The most frequent
property from the dataset’s ast: namespace is ast:isFavouriteDisciplineOf.
Until now, it remains unclear what kind of instances are described with the different
properties.

The results (as visualized in figure 5.3) show the number of class instances per
property. We see that, for example, 21 instances of yago:LivingPeople have a

1Although it could be argued that this use of skos:Concept does not conform to the intentions
of the SKOS standard, it is not wrong from a technical point of view.

87

Chapter 5. Evaluation

Figure 5.3.: Number of Class Instances per Property with Common Properties

skos:prefLabel, while 17 have a foaf:homepage. The set of common properties
for yago:LivingPeople contains eleven properties; all instances have a triple for
each of those eleven properties. Super classes (like skos:Concept) have a subset of
those common properties. Looking at the explicit property hierarchy, the dataset
defines all of its own properties (e.g., ast:winnerOf) to be rdfs:subPropertyOf
skos:related, i.e., a skos:related triple will automatically be inferred from any of
the ast: property triples.

Overall, a look at class and property hierarchies reveals that all locally defined real
world entities (like people and places), and relationships (like ast:winnerOf) are
actually modeled in general skos terms. All entities are instances of skos:Concept,
and all ast: properties are rdfs:subPropertyOf skos:related. This use of skos
may be questionable, since the vocabulary is meant to express thesauri-like term
relations. The dataset is probably easy to reuse for the envisioned winter sports
website, since nearly all subjects are typed (typed-subject-ratio), no isolated blanks
are contained, and external namespaces like dbpedia, freebase, and geonames are
frequently referenced. (namespace links in figure 5.4) In addition, meta-data (like
dc:modified) and the skos:exactMatch property - expressing term equivalence -
are common properties of all living people represented in AST.

Figure 5.4.: Links to Other Namespaces
88

5.2. Performance

5.2. Performance

In this section we look into the performance of our SPARQL-based approaches to a
structural analysis of RDF datasets.

Firstly, we describe our benchmark setup (section 5.2.1), and explain why we analyze
performance in terms of Query Runtime. Secondly, we study both our approaches,
SQA (section 5.2.2) and TSA (section 5.2.3) separately, before we compare them in
section 5.2.4.

5.2.1. Setup

One of the main criteria to decide between our two SPARQL-based analysis approaches,
SQA and TSA, is the computational performance. In this section we describe our
performance evaluation approach and setup.

In general, the performance of an algorithm can be measured in terms of two compu-
tational resources, namely RAM usage and Central Processing Unit (CPU) runtime.
In our case, we could measure these resources usages for the local (RDFSynopsis)
and the remote side (SPARQL endpoint). For the performance evaluation presented
in this thesis, we focus solely on runtime. The reason for this decision lies in our
observation, that most SPARQL endpoints found in the web constrain query process-
ing by specifying a timeout, i.e., a maximum time for query processing after which
the query is canceled. To enable a SPARQL-based analysis all queries posed need
to stay below these timeouts. We further restrict ourselves to the remote side and
do not measure processing time for RDFSynopsis, because processing of the highly
aggregated results for the Specific Query Approach is obviously not very complex.
The situation for TSA looks different at first, because RDFSynopsis has to deal with
quite large amounts of triples that are the results of triple stream queries. We can,
however, understand our remote runtime results for SQA as an upper-bound for our
local runtime results for TSA, because SQA can always be emulated on the local side
by aggregating all streamed triples into one RDF graph and then running the SQA
queries on that graph. In conclusion, we only measure the wall time1 it takes until
the endpoint has answered a query, including transmission of all results. We call this
time the query runtime.

We measured query runtimes using the open-source “SPARQL Query Benchmarker”
[72], developed by YarcData (a division of Cray Inc.), and available under a Berkeley

1We measure wall time, not CPU time, because we expect timeouts on the endpoint side will
also be measured as wall time.

89

Chapter 5. Evaluation

Software Distribution (BSD) 2.0 License. The software is based on Apache Jena. It
can be used to repeatedly execute a set of SPARQL queries against a given endpoint,
and collect runtime statistics. For our TSA measurements, we generated multiple
sets of triple stream queries; one set of queries for each combination of dataset, triple
limit, and order variable. The statistics we collected about query runtimes include
the variance and standard deviation of query runtimes. These values are important
to judge the significance of our results. Although we do not explicitly present the
standard deviation for each measurement in the following sections, we only show
results with a maximum standard deviation of 10% of the average absolute value.

We use three real-world datasets for the evaluation of RDFSynopsis. We refer to
these as “dblp”, “Peel”, and “AM”. Table 5.1 contains a brief description.

Dataset Description

dblp

Filename dblp-publications-2012.rdf
Size 51 MB

Triples 441058
Content Publication data for the year 2012 from

the DBLP Computer Science Bibliography.
Available from dblp.rkbexplorer.com1

Peel

Filename peel.rdf
Size 22 MB

Triples 271369
Content Information about the “Peel Sessions”, a

regular BBC radio programme by John
Peel.

Available from dbtune.org/bbc/peel/2

AM

Filename am-data.ttl
Size 240 MB

Triples 5700371
Content Collection data from the Amsterdam Mu-

seum, see [20].
Available from semanticweb.cs.vu.nl/lod/am/data3

Table 5.1.: Datasets Used in Benchmark

1http://dblp.rkbexplorer.com/models/dblp-publications-2012.rdf
2http://moustaki.org/resources/peel.tar.gz
3http://eculture.cs.vu.nl/git/public/?p=econnect/metadata/AHM.git;a=blob;f=rdf/

am-data.ttl

90

http://dblp.rkbexplorer.com/
http://dbtune.org/bbc/peel/
http://semanticweb.cs.vu.nl/lod/am/data.html
http://dblp.rkbexplorer.com/models/dblp-publications-2012.rdf
http://moustaki.org/resources/peel.tar.gz
http://eculture.cs.vu.nl/git/public/?p=econnect/metadata/AHM.git;a=blob;f=rdf/am-data.ttl
http://eculture.cs.vu.nl/git/public/?p=econnect/metadata/AHM.git;a=blob;f=rdf/am-data.ttl

5.2. Performance

For our evaluation, we set up a local SPARQL endpoint using Fuseki [42]. Fuseki
is part of the Apache Jena Project [6] but can be downloaded as a stand-alone
application. Fuseki can be used to load an RDF dataset and expose it as a SPARQL
endpoint. We configured Fuseki to load our three example datasets to memory, and
expose each with a separate endpoint. We disabled the inference engine, and assigned
8GB of RAM to Fuseki. See appendix section B for configuration details.

The technical system specifications for our evaluation setup are presented in table 5.2.
SPARQL endpoints used in practice will probably be dedicated servers with better
processing capabilities. Therefore, the absolute query times we measure for our local
Fuseki endpoint are not representative for the performance seen in professional real
world setups. Still, we can use the results to compare our different approaches.

System Specification

Operating System (OS) Windows 7 Professional SP1
CPU Intel Core i5-2500K, 4x 3.30GHz
RAM total 16 GB

assigned to Fuseki 8 GB
assigned to Benchmarker 3 GB

Table 5.2.: System Specifications for Benchmark

91

Chapter 5. Evaluation

5.2.2. Specific Query Approach

Table 5.3 shows the runtime performance for the specific queries of all our structural
measures. These runtimes represent the arithmetic average of 100 runs against the
local fuseki instance (as explained in section 5.2.1). Each measure is assigned a unique
color, that can be used to identify them in the following figures. All subsequent figures
also adhere to the order of measures presented in table 5.3.

Query dblp Peel AM

ClassHierarchy 0.008 0.008 0.008
ClassInstancesPerProperty 0.549 0.363 6.760
ClassUsageCount 0.107 0.086 0.786
CommonPropertiesNew 0.628 0.408 7.563
DistinctSubjectOnlyBlanks 0.188 0.112 5.474
DistinctSubjectsBlank 0.190 0.112 2.823
ImplicitClassHierarchy 0.212 0.141 1.782
NamespaceLinks 5.129 2.583 52.049
NumTriples 0.197 0.119 2.325
OntologyRatioNew 1.111 0.716 9.312
PredicateVocabularies 2.539 1.324 28.802
PropertyHierarchy 0.008 0.008 0.008
PropertyUsage 0.293 0.166 3.270
PropertyUsagePerSubjectClass 1.454 0.875 21.004
SameAs 0.029 0.009 0.008
TriplesPerSubjectClass 0.364 0.245 4.042
TypedSubjectRatio 3.275 1.777 43.846

Total 17.072 9.458 192.668

Table 5.3.: Benchmark Results for SQA
(in seconds, arithmetic average for 100 runs)

The results from table 5.3 are visualized in figure 5.5. Firstly, we can see that the
dataset’s size clearly affects the query runtimes. The results for the biggest dataset
(AM) are significantly higher than for smaller datasets (dblp, Peel). The average
total runtime is more than three minutes for AM, and not even ten seconds for Peel.
Secondly, we can also observe the same four measures are responsible for the longest
running times in all three datasets. These measures are

1. namespace links
2. typed-subject-ratio
3. predicate vocabularies
4. property usage per subject class

92

5.2. Performance

These queries all operate on the full dataset; we can suspect that the SPARQL engine
is not able to optimize query execution by omitting large amounts of triples. In
addition, the runtimes of both, namespace links and predicate vocabularies, can
be explained by their use of relatively expensive string operations based on regular
expressions.

To analyze how the total runtime is distributed over the single queries, we express
the query runtimes in percent of total runtime (see figure 5.6). We discover that
the runtime distribution remains fairly stable among different datasets whose total
runtimes differ significantly. That means, if the total runtime for a dataset grows, all
single query runtimes grow proportionately.

To determine whether runtime is linearly dependent on the dataset’s size (number of
triples), we divide the results for each dataset by its number of triples. For better
readability, we multiply all results by one million.

runtime1M
D = runtimeTotal

D ∗ 1000000
numTriplesD

Hence, figure 5.7 shows the runtimes normalized to one million triples. The optimal
case would have been constant query times regardless of a dataset’s size. In this case,
there would have been a very significant difference between the biggest dataset (AM)

dblp Peel AM

0

10

20

30

40

50

Specific SPARQL Query Runtimes

Datasets

R
un

tim
e

in
 S

ec
on

ds

Figure 5.5.: Total Runtime (SQA) Grouped By Dataset
93

Chapter 5. Evaluation

dblp

Peel

AM

Specific SPARQL Query Runtimes in Percent of Total Runtime

% of total runtime

D
at

as
et

s

0 10 20 30 40 50 60 70 80 90 100

Figure 5.6.: Runtime (SQA) in Percent of Total Runtime

and the smallest dataset (Peel). In reality we find that, relative to their number of
triples, AM and Peel show similar performance, while queries on the dblp dataset
have taken slightly longer. Fortunately, we do not experience above-linear runtime
growth.

dblp

Peel

AM

0 5 10 15 20 25 30 35

Specific SPARQL Query Runtimes, normalized to 1M triples

Runtime in Seconds for 1M triples

D
at

as
et

s

Figure 5.7.: Runtime (SQA) Normalized to 1M Triples

Summary. The results reveal that

• The same four measures (see above) are the most complex for all three datasets.
• The runtime linearly depends on the number of triples.
• The runtime distribution over specific queries is fairly stable for different

datasets.

94

5.2. Performance

5.2.3. Triple Stream Approach

Table 5.4 shows query runtimes for the Triple Stream Approach. As we have seen in
section 4.1.2, the triple stream query is parameterized with the number of requested
triples (LIMIT keyword) and the order variable that defines the sequence (ORDER BY
keyword).

dblp Peel AM
LIMIT ORDER BY Single Full Single Full Single Full

subject 1.77 79.59 0.99 27.81 23.77 13570.49
10.000 predicate 5.44 244.69 2.99 83.62 78.16 44627.40

object 3.54 159.14 6.03 168.90 54.06 30869.26

subject 2.05 18.44 1.30 7.79 23.91 2749.80
50.000 predicate 5.69 51.23 3.37 20.21 78.40 9016.22

object 3.86 34.78 6.34 38.02 54.07 6217.73

subject 2.78 8.33 2.05 4.10 25.09 727.68
200.000 predicate 6.49 19.46 4.09 8.17 79.62 2308.98

object 4.57 13.72 7.12 14.23 55.32 1604.18

Table 5.4.: Benchmark Results for TSA
(in seconds, arithmetic average for 10 full runs)

The table shows results for three different triple limits (10k, 50k, and 200k) and all
orders (by subject, predicate, and object). For each combination, we present the
runtimes for a single query as well as the full runtime that is needed to completely
stream the dataset. The runtimes are the average of 10 full runs with randomized
sampling. The results for the sequential (non-random) approach have been omitted
because they were almost identical.

The runtimes for single triple stream queries are visualized in figure 5.8 (note the log
scale on the y-axis). The different datasets are differentiated by color and line-style;
the orders are identified by their point-style. We observe that the lowest runtimes
are obtained with a by-subject order for all datasets and all triple limits. We further
find that the impact of triple limit on single query runtimes is low; the difference
between 10k and 200k queries seems to be about 1 seconds for all cases. This has the
consequence that full runtimes are inverse proportional to the triple limit, because
the chosen limit directly implies the number of queries necessary for a full analysis,
and all queries approximately take the same time.

95

Chapter 5. Evaluation

● ●
●

●
●

●

● ● ●

10k 50k 200k

1

10

100

triple limit in thousand triples

ru
nt

im
e

in
 s

ec
on

ds
 (

lo
g

sc
al

e)
●

dblp
Peel
AM
subject
predicate
object

Figure 5.8.: Runtime of Single TSA Queries

Figure 5.9 shows the single query runtimes, normalized to one million triples (as in
the previous section). We observe that the main factor for single query runtimes is
the total size of the underlying dataset, and not the chosen triple limit.

10k 50k 200k

1

10

100

Single Triple Stream Runtimes per 1M

triple limit in thousand triples

ru
nt

im
e

in
 s

ec
on

ds
 (

lo
g

sc
al

e)

dblp
Peel
AM
subject

Figure 5.9.: Runtime of Single TSA Queries (Normalized to 1M Triples)

96

5.2. Performance

We present the results for full runtimes (by-subject order) in figure 5.10. For better
comparison, we have again normalized these runtimes to one million triples. Sup-
porting our previous argumentation - full runtimes being inverse proportional to the
chosen triple limit -, we can see that an increase of the triple limit by a factor of five
(from 10k to 50k) leads to a full runtime that is decreased to a fifth of the original
value, approximately. Still, the runtimes for the three datasets differ significantly.
This circumstance is explained with our observation that the runtime of a single query
mostly depends on the total size of the queried dataset.

10k 50k 200k

20

50

100

200

500

1000

2000

5000

10000

Full Triple Stream Runtimes per 1M

triple limit in thousand triples

ru
nt

im
e

in
 s

ec
on

ds
 (

lo
g

sc
al

e)

dblp
Peel
AM
subject

Figure 5.10.: Runtime of Full TSA Queries (Normalized to 1M Triples)

Summary. The results for TSA reveal that

• Triple streams ordered by subject have consistently yielded the lowest runtimes.
• The choice of triple limit has little effect on the runtime of a single query.
• The runtime of a single query linearly depends on the size of the queried dataset.
• Full runtimes are inverse proportional to the chosen triple limit.

97

Chapter 5. Evaluation

5.2.4. Comparison of Approaches

In this section we compare our approaches to SPARQL-based analyses of RDF datasets
with regard to their query runtime performance.

Table 5.5 presents the full runtimes using SQA and TSA (with different triple limits).
Although TSA performs better for combinations of high triple limits and smaller
datasets, we find SQA to be superior when scaling up in terms of dataset size. For
example, TSA200k runs 3.7 times longer for the AM Dataset than SQA.

This can be explained with our observations from the benchmarks. We found that
the full runtime of a set of specific SPARQL queries grows linearly with the dataset
size. The same is true for single triple stream queries, while the full runtime for TSA
grows above-linearly, because for growing datasets the single query has to be run
increasingly often.

Unfortunately, a single triple stream query that simply requests a “chunk” from a
sequence of triples, seems to be very computationally expensive for the SPARQL
endpoint under test. As long as no cheaper means of triple streaming are at hand,
the Triple Stream Approach remains infeasible with regard to efficient computation.

dblp Peel AM

SQA 17.07 9.46 192.67

TSA10k 79.59 27.81 13570.49
TSA50k 18.44 7.79 2749.80
TSA200k 8.33 4.10 727.68

Table 5.5.: Total Runtimes for SQA and TSA (ordered by subject)

98

5.3. Accuracy of Partial Analysis & Random Sampling

5.3. Accuracy of Partial Analysis & Random Sampling

In this section we look into the accuracy of partial analyses following the TSA and
Random Sampling approaches. Conducting an analysis only on parts of a dataset
implies the act of estimating results for the full dataset based on results for the
partial dataset. Because we have no knowledge about the distribution of values and
structures within the dataset, we assume a uniform distribution, or in other words,
that a part is representative for the whole. We therefore use measurements that
are relative to the number of analyzed triples, instead of absolute values; as in the
following trivial formula:

measurementrel = measurementabs

triplesseen

Our analyses of RDF datasets comprise a set of 18 measures. Many of these do
not represent single values, but histogram-style measurements. It is not trivial to
establish a single accuracy measure for this set of measures. One could argue that
two measures have different levels of importance for the overall accuracy of a partial
analysis. Because of the complexity of weighing and combining the different measures
towards an overall accuracy assessment, we deem a quantitative analysis of this topic
to be out of scope of this thesis.

Instead, we try to give an intuitive insight into the problem and the accuracy that is
obtained with partial analyses.

Figure 5.11 shows how the distribution of the property usage measure for the dblp
dataset develops while increasing amounts of triples are analyzed. The same combina-
tions of triple limits (10k, 50k, and 200k) and order variables (subject, predicate, and
object) are presented, as in the previous section on TSA runtime performance. All
analyses depicted in the figure were made following the sequential approach. Each
color represents one property, and the vertical space occupied by the color represents
the property’s number of occurrences relative to the number of analyzed triples. The
color distribution at the right end represents the property distribution relative to all
triples, i.e. the “true” property distribution of the dataset. Ideally the chart would
show only horizontal lines, meaning a perfect value distribution from the beginning.

We observe that the different ORDER BY parameters affect how the distribution of
properties over the analyzed triples develops. For example, the triple streams that are
sorted by predicate and object show a more turbulent development than the triple
stream that was sorted by subject. The latter shows a very representative distribution
from the beginning, except for the fact that the property represented by the lavender
color (above yellow) only occurs after more than 50% of all triples have been streamed.

99

Chapter 5. Evaluation

0%

25%

50%

75%

100%

0 200k 400k
0%

25%

50%

75%

100%

0 200k 400k
0%

25%

50%

75%

100%

0 200k 400k

10
K

0%

25%

50%

75%

100%

0 200k 400k
0%

25%

50%

75%

100%

0 200k 400k
0%

25%

50%

75%

100%

0 200k 400k

50
K

0%

25%

50%

75%

100%

0 200k 400k
Subject

0%

25%

50%

75%

100%

0 200k 400k
Predicate

0%

25%

50%

75%

100%

0 200k 400k
Object

20
0K

Figure 5.11.: Accuracy of Sequential TSA with different triple limits and order by
clauses (dblp, property usage)

We also see that different triple limits generate the same distribution developments,
while higher limits make the developments look more smooth.

We now look into the Random Sampling approach. We choose a triple limit of 10k
and sort the dataset by subject, because these parameters have performed best in the
sequential approach. Figure 5.12 presents nine random runs with these parameters.
We observe that the randomization has helped further smoothen the distribution
developments. In all runs a representative property usage distribution is reached after
10 to 20 random triple stream queries.

100

5.3. Accuracy of Partial Analysis & Random Sampling

0%

25%

50%

75%

100%

0 200k 400k

0%

25%

50%

75%

100%

0 200k 400k

0%

25%

50%

75%

100%

0 200k 400k

0%

25%

50%

75%

100%

0 200k 400k

0%

25%

50%

75%

100%

0 200k 400k

0%

25%

50%

75%

100%

0 200k 400k

0%

25%

50%

75%

100%

0 200k 400k

0%

25%

50%

75%

100%

0 200k 400k

0%

25%

50%

75%

100%

0 200k 400k

Figure 5.12.: Accuracy of Random Sampling TSA for 9 runs
(dblp, property usage, LIMIT=10k, ORDER BY=subject)

In this section we have seen that the ORDER BY variable affects how early (w.r.t.
number of analyzed triples) a partial analysis reaches a value distribution that is
representative for the full dataset. We have also observed that randomization of triple
streaming can improve the accuracy of a partial analysis.

As we have pointed out above, our observations are only based on intuition. The
findings for our example dataset and the property usage measure do not necessarily
have to be true for other datasets or other measures.

101

6. Conclusion

In this final chapter, we first provide a summary (section 6.1) and an evaluation
(section 6.2) of the work presented in this thesis. We conclude with an outlook on
potential future work (section 6.3).

6.1. Summary

In this thesis, we investigate SPARQL-based approaches to a structural analysis of
RDF datasets.

Our work is clearly located in the context of the Semantic Web idea, which aims to
enable a machine-processable Web of Data. RDF, a generic triple-based data model,
and SPARQL, a query language for RDF, are among the major technological building
blocks of this Web of Data. Due to the bottom-up characteristic of RDF data modeling
and the resulting lack of explicit schema information, gaining an understanding of
a previously unknown RDF dataset can easily become a time-consuming hands-on
process. Furthermore, RDF data is often only available remotely through a server
that answers SPARQL queries, so-called SPARQL endpoints; hence the need for
automated structural analyses based on SPARQL queries. The Semantic Web idea
and its core technologies are presented in chapter 2 (Background).

In chapter 3 (Structural Analysis of RDF Datasets) we develop the notion of a
structural analysis of RDF datasets. We characterize it as a process which sheds light
on four central aspects of RDF dataset understanding: Entity Domain, Information
Domain, Composition, and Reusability. We study related work from three areas, and
compile a list of 75 statistical criteria (table 3.1) which are used for RDF data in
scientific work and practical applications. Based on our findings from related work,
we separately discuss each central aspect of RDF dataset understanding, and identify
suitable criteria, 18 in total.

In chapter 4 (Design and Implementation of Structural Analysis) we identify two gen-
eral approaches to analyze an RDF dataset with SPARQL queries. In the first Specific
Query Approach (SQA), we formulate a specific query for each analytic criterion. The

103

Chapter 6. Conclusion

second approach is called Triple Stream Approach (TSA), and subsequently retrieves
all triples from a dataset. A criterion is implemented in terms of a triple filter, that
only selects relevant triples. We also discuss the idea to only stream a random subset
of triples (Random Sampling). We present SQA and TSA implementations for all
18 criteria. Finally, we describe the architecture of our software RDFSynopsis which
implements all criteria with both approaches. The software can be used from the
command-line, or as an analysis framework within other software projects.

In chapter 5 (Evaluation) we evaluate our approaches with regard to three aspects.
First, we employ our analytic criteria in an example use case, to demonstrate their
suitability for structural analyses. Second, we compare SQA and TSA with regard to
their query runtime performance. Third, we study the accuracy obtained with partial
and random TSA analyses. Due to the complexity of accuracy measurements, we
limit the presentation to an intuitive example.

6.2. Results

In this section, we evaluate our work with respect to its goal, “to enable an automated
structural analysis of RDF data based on SPARQL queries”. For the evaluation, we
follow the three steps introduced in section 1.3.

Identification. The goal of the first step was to identify the set of measures that
are needed to gain an understanding of an RDF dataset. Based on the four aspects
of RDF dataset understanding and our study of related work, we identified a set
of 18 criteria for structural analyses of RDF datasets (table 3.2). 7 of these are
new criteria that have not been found in other work, including sophisticated criteria
like common properties that look for homogeneous structures, explicitly taking the
bottom-up nature of RDF into account. The result of the first step was a choice of
18 measures for structural analysis.

Implementation. The goal of the second step was to implement the analysis
according to the set of identified measures with SPARQL. In the course of our work,
we identified two approaches to analyze an RDF dataset with SPARQL queries, the
Specific Query Approach (SQA) and the Triple Stream Approach (TSA). For the
latter, we discussed a variation which creates a triple stream from random dataset
samples. We then presented self-contained SQA and TSA implementations for all
18 chosen criteria. Finally, we implemented all criteria with both approaches in
our software RDFSynopsis, which can be used from the command-line, or as an
analysis framework within other software projects. The result of the second step
was a catalog of RDF analysis criteria with implementations for two different
SPARQL-based approaches. The overall concept was proven by our software
RDFSynopsis.

104

6.3. Future Work

Evaluation. The goal of the third step was to evaluate whether we had reached the
goal of this thesis. Along an example use case, we demonstrated that our chosen
measures provide insight into an unknown dataset’s structure. This is particularly true
for combinations of measures, e.g., the combined view of implicit class hierarchy and
triples per subject class. The use case also showed how important result visualization
is. We investigated the performance of SQA and TSA in terms of query runtime.
We observed that the runtimes for all queries grow linearly with the dataset’s size.
Unfortunately, this was also true for the triple stream queries, independent of the
chosen triple limit. For SQA, we found big differences in the runtimes of the different
measures. The distribution of total runtime over the specific queries remained fairly
stable among different example datasets. For TSA, we found that the ORDER BY
parameter significantly affects query runtimes. We achieved the best results with
triple streams ordered by subject. As noted above, triple stream query runtimes
grew with dataset size, not with triple limit. This result is unfortunate, because the
random sampling approach relies on the ability to quickly receive many small chunks
of a dataset. In conclusion, TSA is clearly outperformed by SQA. Our analysis of the
accuracy achieved with a randomly sampled triple stream revealed no absolute results.
Instead we gave a rather intuitive insight into the accuracy improvement of random
over sequential TSA. We must note, that all performance measurements have been
obtained using a local fuseki instance, the SPARQL endpoint from the Apache Jena
project. They are not necessarily representative for other SPARQL endpoints. The
third step has revealed that our analytic measures are suited for structural
analyses, and that SQA performs clearly better than TSA.

Overall, we have demonstrated that RDF datasets can be structurally analyzed using
SPARQL. Within our limited benchmark setup, the approach to formulate a specific
query for each analytic criterion has outperformed the SPARQL-based triple stream
approach.

6.3. Future Work

In this section we look into potential future work relating to the structural analysis
of RDF datasets and the work presented in this thesis.

Result Processing and Presentation. Our example case study in section 5.1
has demonstrated that our choice of analytic measures helps understanding an RDF
dataset, if their results are combined and concisely presented. Hence, the processing
and visualization of analysis results is one of the most important tasks for the future.

Real-World Benchmark. We have evaluated the runtime performance of our
different SPARQL-based approaches and measure implementations by running several

105

Chapter 6. Conclusion

benchmarks against a local fuseki instance, loaded with three real-world datasets.
This is not enough to judge the feasibility of our approaches for real-world use. To
evaluate RDFSynopsis at a broader scale, we should run benchmarks against a more
diverse set of triple stores and datasets.

Advanced Triple Streaming. In principle, our work has shown that structural
analyses of RDF datasets can be implemented with a Triple Stream Approach.
However, during performance evaluation we found that the triple stream queries are
very expensive with respect to query runtime. This fact renders TSA and its random
sampling variation infeasible for practical use. Future work could include research on
triple stream processing that goes beyond the capabilities of SPARQL and current
triple stores. Related work includes [4, 9, 10, 24, 60].

Future Development of RDFSynopsis. We have implemented the structural
analysis in RDFSynopsis, a command-line tool and software framework. Many addi-
tional features seem desirable, including but not limited to: different output formats
for results, analysis result caching, automatic generation of result visualizations, and
maybe even a web interface. Furthermore, due to many changes along the development
process, the project contains some parts whose need for refactoring is obvious. The
processing of analysis results should be made more generic.

Using Existing Knowledge. The goal of this thesis was to develop a general-
purpose approach for RDF data analysis. As a result, none of our measures is tailored
towards specific ontologies (besides RDF, RDFS, OWL and SKOS). Future work
could include research on approaches to integrate existing ontologies in the process
of analysis. Furthermore, some vocabularies are explicitly used to convey meta-
information about a dataset, e.g., the voiD and dublin core vocabularies. Specific
measures could be used in analysis which explicitly extract these meta-information
from the dataset.

SPARQL Entailment Regimes. In our background section on Ontologies (section
2.3), we explained that the standard vocabularies (RDF, RDFS, and OWL) come with
explicitly defined semantics, which can be expressed as inference rules. In the past,
the extent to which inference could be used, varied among different triple stores and
SPARQL engines. As a consequence, we implemented the structural analysis in way
that both expects no inference of triples and still works with (basic RDFS) inference.
A good example is the fact that many of our specific SPARQL queries exclude
rdfs:Resource. A very recent W3C Recommendation now introduces SPARQL
Entailment Regimes [47]. An Entailment Regime basically specifies what kind of
inference (or “entailment”) a SPARQL query engine automatically, and transparently,
performs when it answers a query. Future work should include an in-depth study
of the consequences different Entailment Regimes have for the structural analysis of
RDF datasets behind SPARQL endpoints. They might improve analysis capabilities
as well as render our approaches partly infeasible.

106

A. Namespace Prefixes

Table A.1 lists all URI prefixes used in this thesis according to the CURIE [18] syntax.
A URI like

<http :// this. namespace .com/ specificTerm >

with the namespace prefix definition
@prefix ns: <http :// this. namespace .com/>

becomes the following.
ns: specificTerm

Prefix Namespace

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs http://www.w3.org/2000/01/rdf-schema#
owl http://www.w3.org/2002/07/owl#
skos http://www.w3.org/2004/02/skos/core#
foaf http://xmlns.com/foaf/0.1/
void http://rdfs.org/ns/void#
dbp http://dbpedia.org/resource/
yago http://dbpedia.org/class/yago/
ex http://www.example.com/
test http://www.example.com/test/
dbo http://dbpedia.org/ontology/
ast http://vocabulary.semantic-web.at/AustrianSkiTeam/
geo http://www.w3.org/2003/01/geo/wgs84_pos#

geonames http://www.geonames.org/ontology#
dc http://purl.org/dc/elements/1.1/

freebase http://rdf.freebase.com/ns/

Table A.1.: Namespace Prefixes Used in this Thesis

107

B. Fuseki Endpoint Configuration

We set up our local endpoints using Fuseki [42] from the Apache Jena Project [6]. We
started Fuseki with the following line to assign 8GB of RAM and to use the config
file presented below.

1 java -Xmx8G -jar fuseki - server .jar --config =config -TH.ttl

Listing B.1: Starting Fuseki

1 # #############
2 ## Prefixes ##
3 # #############
4
5 @prefix : <#> .
6 @prefix fuseki : <http :// jena. apache .org/ fuseki #> .
7 @prefix rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#> .
8
9 @prefix rdfs: <http :// www.w3.org /2000/01/ rdf - schema #> .

10 @prefix tdb: <http :// jena.hpl.hp.com /2008/ tdb#> .
11 @prefix ja: <http :// jena.hpl.hp.com /2005/11/ Assembler #> .
12
13 # ###################################
14 ## Fuseki Server with 3 Endpoints ##
15 # ###################################
16
17 [] rdf:type fuseki : Server ;
18 fuseki : services (
19 <# service_DBLP >
20 <#service_AM >
21 <# service_PEEL >
22) .
23
24 # #################
25 ## dblp Dataset ##
26 # #################
27
28 <# service_DBLP > rdf:type fuseki : Service ;
29 fuseki :name "dblp" ;
30 fuseki : serviceQuery "query" ;
31 fuseki : serviceReadGraphStore "get" ;
32 fuseki : dataset <#dblp > .
33
34 <#dblp > rdf:type ja: RDFDataset ;
35 rdfs: label "DBLP 2012 publications " ;

109

Appendix B. Fuseki Endpoint Configuration

36 ja: defaultGraph [
37 rdfs:label "dblp - publications -2012. rdf" ;
38 a ja: MemoryModel ;
39 ja: content [
40 ja: externalContent <file:data/dblp - publications -2012. rdf >
41] ;
42] .
43
44 # ###############
45 ## AM Dataset ##
46 # ###############
47
48 <#service_AM > rdf:type fuseki : Service ;
49 fuseki :name "AM" ;
50 fuseki : serviceQuery "query" ;
51 fuseki : serviceReadGraphStore "get" ;
52 fuseki : dataset <#museum > .
53
54 <#museum > rdf:type ja: RDFDataset ;
55 rdfs:label " Amsterdam Museum " ;
56 ja: defaultGraph [
57 rdfs:label "am -data.ttl" ;
58 a ja: MemoryModel ;
59 ja: content [
60 ja: externalContent <file:data/am -data.ttl >
61] ;
62] .
63
64 # #################
65 ## Peel Dataset ##
66 # #################
67
68 <# service_PEEL > rdf:type fuseki : Service ;
69 fuseki :name "Peel" ;
70 fuseki : serviceQuery "query" ;
71 fuseki : serviceReadGraphStore "get" ;
72 fuseki : dataset <#peel > .
73
74 <#peel > rdf:type ja: RDFDataset ;
75 rdfs:label "Peel" ;
76 ja: defaultGraph [
77 rdfs:label "peel.rdf" ;
78 a ja: MemoryModel ;
79 ja: content [
80 ja: externalContent <file:data/peel.rdf >
81] ;
82] .

Listing B.2: config-TH.ttl

110

C. Command-Line Usage of
RDFSynopsis

RDFSynopsis provides a command-line interface. The -h (or --help) parameter
prints the following usage.

1 Usage: rdfSynopsis [options]
2 Options :
3 -all , --allCriteria
4 Use all available criteria for analysis .
5 Default : false
6 -c, --criteria
7 A space - separated list of criteria to use for analysis , e.g,

"-c 3 5 7"
8 -ep , --endpoint
9 The SPARQL endpoint URL that shall be analyzed .

10 -f, --file
11 The RDF dataset file that shall be analyzed .
12 -h, --help
13 Print this usage information .
14 Default : false
15 -lc , --listCriteria
16 Print list of analytical criteria .
17 Default : false
18 -mnq , -- maximumNumberQueries
19 The maximum number of queries to perform a partial analysis ;

" -1" means " infinite ". (TSA only , NA)
20 Default : -1
21 -ob , --orderBy
22 One of the following variables used to define an order in the

triple stream : subject , predicate , object (TSA only)
23 Default : subject
24 -o, --outFile
25 The filename used to store analysis results . (NA)
26 -rand , --randomSampling
27 Use a " random sampled " triple stream . (TSA only)
28 Default : true
29 -rf , --resultFormat
30 One of the following result output formats : text ,... (NA)
31 Default : text
32 -sqa , --specificQuery
33 Use one specific SPARQL query per criterion . (SQA)
34 Default : false

111

Appendix C. Command-Line Usage of RDFSynopsis

35 -tl , --tripleLimit
36 The maximum number of triples requested per query. (TSA only)
37 Default : 50000
38 -tsa , --tripleStream
39 Use generic SPARQL queries to create a triple stream . (TSA)
40 Default : false

Listing C.1: rdfSynopsis --help

The criteria which shall be used for analysis can be specified with the -c (--criteria)
command, followed by a list of space separated criteria identifiers. The -lc (or
--listCriteria) command prints a list of all available criteria and their identifiers.

1 [id] criterion
2 --
3 [1] class usage count
4 [2] triples per subject class
5 [3] explicit class hierarchy
6 [4] implicit class hierarchy
7 [5] ontology -ratio
8 [6] typed -subject -ratio
9 [7] property usage
10 [8] predicate vocabularies
11 [9] property usage per subject class
12 [10] class instances per property
13 [11] explicit property hierarchy
14 [12] implicit property hierarchy
15 [13] distinct blank subjects
16 [14] namespace links
17 [15] distinct subject -only blanks
18 [16] triples
19 [17] sameAs
20 [18] common properties

Listing C.2: rdfSynopsis --listCriteria

112

Bibliography

[1] Keith Alexander et al. Describing Linked Datasets with the VoID Vocabulary.
W3C Interest Group Note. Mar. 3, 2011. url: http://www.w3.org/TR/2011/
NOTE-void-20110303/ (cit. on pp. 35, 38–41).

[2] K. Alexander et al. “Describing linked datasets”. In: Proceedings of the 2nd
Workshop on Linked Data on the Web (LDOW2009). 2009 (cit. on pp. 33, 35,
38–41).

[3] D. Allemang and J. Hendler. Semantic Web for the Working Ontologist: Effective
Modeling in RDFS and OWL. Morgan Kaufmann, 2011 (cit. on pp. 5, 6, 15–18,
20, 25).

[4] Darko Anicic et al. “EP-SPARQL: a unified language for event processing and
stream reasoning”. In: Proceedings of the 20th international conference on World
wide web. ACM, 2011, pp. 635–644. url: http://doi.acm.org/10.1145/
1963405.1963495 (cit. on p. 106).

[5] G. Antoniou and F. Van Harmelen. A semantic web primer. 2nd. MIT Press,
2008 (cit. on pp. 5, 7, 15).

[6] Apache Jena. The Apache Software Foundation. url: http://jena.apache.
org/index.html (cit. on pp. 80, 91, 109).

[7] Sören Auer and Jens Lehmann. LODStats. url: http://aksw.org/Projects/
LODStats.html (cit. on p. 36).

[8] Sören Auer et al. “LODStats - An Extensible Framework for High-Performance
Dataset Analytics”. In: EKAW. 2012, pp. 353–362 (cit. on pp. 36, 38–41).

[9] Davide Francesco Barbieri et al. “C-SPARQL: SPARQL for continuous querying”.
In: Proceedings of the 18th international conference on World wide web. WWW
’09. Madrid, Spain: ACM, 2009, pp. 1061–1062. url: http://doi.acm.org/10.
1145/1526709.1526856 (cit. on p. 106).

[10] D. Barbieri et al. “C-SPARQL: A Continuous Query Language For RDF
Data Streams”. In: International Journal of Semantic Computing (2010),
pp. 3–25. url: http://www.worldscientific.com/doi/abs/10.1142/
S1793351X10000936 (cit. on p. 106).

[11] D. Beckett and T. Berners-Lee. Turtle - Terse RDF Triple Language. W3C
Team Submission 28 March 2011. url: http://www.w3.org/TeamSubmission/
2011/SUBM-turtle-20110328/ (cit. on p. 14).

113

http://www.w3.org/TR/2011/NOTE-void-20110303/
http://www.w3.org/TR/2011/NOTE-void-20110303/
http://doi.acm.org/10.1145/1963405.1963495
http://doi.acm.org/10.1145/1963405.1963495
http://jena.apache.org/index.html
http://jena.apache.org/index.html
http://aksw.org/Projects/LODStats.html
http://aksw.org/Projects/LODStats.html
http://doi.acm.org/10.1145/1526709.1526856
http://doi.acm.org/10.1145/1526709.1526856
http://www.worldscientific.com/doi/abs/10.1142/S1793351X10000936
http://www.worldscientific.com/doi/abs/10.1142/S1793351X10000936
http://www.w3.org/TeamSubmission/2011/SUBM-turtle-20110328/
http://www.w3.org/TeamSubmission/2011/SUBM-turtle-20110328/

Bibliography

[12] D. Beckett and B. McBride. RDF/XML syntax specification (revised). W3C
Recommendation 10 February 2004. url: http://www.w3.org/TR/REC-rdf-
syntax/ (cit. on p. 14).

[13] Tim Berners-Lee. Linked Data - Design Issues. W3C. 2006. url: http://www.
w3.org/DesignIssues/LinkedData.html (cit. on p. 8).

[14] Tim Berners-Lee and Dan Connolly. Notation3 (N3): A readable RDF syn-
tax. W3C Team Submission 14 January 2008. url: http://www.w3.org/
TeamSubmission/2008/SUBM-n3-20080114/ (cit. on p. 14).

[15] Tim Berners-Lee and Mark Fischetti. Weaving the web - the original design and
ultimate destiny of the World Wide Web by its inventor. HarperBusiness, 2000,
pp. I–IX, 1–246 (cit. on pp. 6–8).

[16] Tim Berners-Lee et al. “The World-Wide Web”. In: Commun. ACM 37.8 (Aug.
1994), pp. 76–82. url: http://doi.acm.org/10.1145/179606.179671 (cit. on
p. 7).

[17] T. Berners-Lee, J. Hendler, O. Lassila, et al. “The semantic web”. In: Scientific
american 284.5 (2001), pp. 28–37 (cit. on p. 7).

[18] M. Birbeck and S. McCarron. CURIE Syntax 1.0 A syntax for expressing
Compact URIs W3C Candidate Recommendation 16 January 2009. 2009. url:
http://www.w3.org/TR/2009/CR-curie-20090116/ (cit. on pp. 13, 107).

[19] C. Bizer, T. Heath, and T. Berners-Lee. “Linked data-the story so far”. In:
International Journal on Semantic Web and Information Systems (IJSWIS) 5.3
(2009), pp. 1–22 (cit. on p. 8).

[20] Victor de Boer et al. “Supporting Linked Data Production for Cultural Heritage
Institutes: The Amsterdam Museum Case Study”. In: The Semantic Web:
Research and Applications. Springer, 2012, pp. 733–747 (cit. on p. 90).

[21] C. Böhm, J. Lorey, and F. Naumann. “Creating voiD descriptions for Web-scale
data”. In: Web Semantics: Science, Services and Agents on the World Wide
Web 9.3 (2011), pp. 339–345 (cit. on pp. 36, 38–41, 43).

[22] T. Bray, D. Hollander, and A. Layman. Namespaces in XML. 1999. url:
http://www.w3.org/TR/1999/REC-xml-names-19990114/ (cit. on p. 12).

[23] Dan Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema. W3C Recommendation 10 February 2004. Ed. by Brian McBride. url:
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/ (cit. on p. 15).

[24] Jean-Paul Calbimonte, Oscar Corcho, and Alasdair JG Gray. “Enabling ontology-
based access to streaming data sources”. In: The Semantic Web–ISWC 2010.
Springer, 2010, pp. 96–111 (cit. on p. 106).

[25] S. Campinas et al. “Introducing RDF Graph Summary with application to
Assisted SPARQL Formulation”. In: Proceedings of the 11th International
Workshop on Web Semantics and Information Processing.(to appear), Vienna,
Austria. 2012 (cit. on p. 45).

114

http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/TeamSubmission/2008/SUBM-n3-20080114/
http://www.w3.org/TeamSubmission/2008/SUBM-n3-20080114/
http://doi.acm.org/10.1145/179606.179671
http://www.w3.org/TR/2009/CR-curie-20090116/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

Bibliography

[26] Jeremy J. Carroll and Graham Klyne. Resource Description Framework (RDF):
Concepts and Abstract Syntax. W3C Recommendation 10 February 2004. url:
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/ (cit. on pp. 11,
15).

[27] Jeremy Carroll, Ivan Herman, and Peter F. Patel-Schneider. OWL 2 Web Ontol-
ogy Language RDF-Based Semantics (Second Edition). W3C Recommendation
11 December 2012. Ed. by Michael Schneider. url: http://www.w3.org/TR/
2012/REC-owl2-rdf-based-semantics-20121211/ (cit. on p. 15).

[28] Wolfram Conen and Reinhold Klapsing. “A Logical Interpretation of RDF”. In:
Journal of Electronic Transactions on Artificial Intelligence (ETAI), Area: The
Semantic Web (SEWEB) 5 (2000). Note: Not conforming to current standard of
RDF semantics. url: http://nestroy.wi-inf.uni-essen.de/rdf/logical_
interpretation/ (cit. on p. 15).

[29] Wolfram Conen and Reinhold Klapsing. Logical Interpretations of RDFS - A
Compatibility Guide. 2001. url: http://nestroy.wi-inf.uni-essen.de/
rdf/new_interpretation/ (cit. on p. 15).

[30] Mariano P Consens and Shahan Khatchadourian. ExpLOD: Exploring Inter-
linking and RDF Usage in the Linked Open Data Cloud. Tech. rep. University
of Toronto, 2009 (cit. on pp. 44, 45).

[31] D. Crockford. The application/json Media Type for JavaScript Object Notation
(JSON). Internet RFC 4627. 2006. url: http://www.ietf.org/rfc/rfc4627.
txt (cit. on p. 14).

[32] R. Cyganiak, D. Reynolds, and J. Tennison. The RDF Data Cube Vocabulary.
W3C Working Draft 05 April 2012. Working Draft. W3C. url: http://www.
w3.org/TR/2012/WD-vocab-data-cube-20120405/ (cit. on p. 36).

[33] Richard Cyganiak. make-void. Oct. 2010. url: https://github.com/cygri/
make-void (cit. on pp. 37–41).

[34] Richard Cyganiak et al. “Semantic Sitemaps: Efficient and Flexible Access
to Datasets on the Semantic Web”. In: The Semantic Web: Research and
Applications. Ed. by Sean Bechhofer et al. Vol. 5021. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2008, pp. 690–704. url: http://dx.doi.
org/10.1007/978-3-540-68234-9_50 (cit. on p. 43).

[35] Daniel Dietrich and Rufus Pollock. “CKAN: apt-get for the Debian of Data”.
In: 26th Chaos Communication Congress, Berlin, Germany, 27–30 December
2009. url: http://events.ccc.de/congress/2009/Fahrplan/events/3647.
en.html (cit. on p. 36).

[36] Li Ding et al. Swoogle. url: http://swoogle.umbc.edu/ (cit. on p. 36).

115

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2012/REC-owl2-rdf-based-semantics-20121211/
http://www.w3.org/TR/2012/REC-owl2-rdf-based-semantics-20121211/
http://nestroy.wi-inf.uni-essen.de/rdf/logical_interpretation/
http://nestroy.wi-inf.uni-essen.de/rdf/logical_interpretation/
http://nestroy.wi-inf.uni-essen.de/rdf/new_interpretation/
http://nestroy.wi-inf.uni-essen.de/rdf/new_interpretation/
http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc4627.txt
http://www.w3.org/TR/2012/WD-vocab-data-cube-20120405/
http://www.w3.org/TR/2012/WD-vocab-data-cube-20120405/
https://github.com/cygri/make-void
https://github.com/cygri/make-void
http://dx.doi.org/10.1007/978-3-540-68234-9_50
http://dx.doi.org/10.1007/978-3-540-68234-9_50
http://events.ccc.de/congress/2009/Fahrplan/events/3647.en.html
http://events.ccc.de/congress/2009/Fahrplan/events/3647.en.html
http://swoogle.umbc.edu/

Bibliography

[37] Li Ding et al. “Swoogle: a search and metadata engine for the semantic web”.
In: Proceedings of the thirteenth ACM international conference on Information
and knowledge management. CIKM ’04. Washington, D.C., USA: ACM, 2004,
pp. 652–659. url: http://doi.acm.org/10.1145/1031171.1031289 (cit. on
p. 36).

[38] L. Ding et al. “Tracking RDF Graph Provenance using RDF Molecules”. In:
Proc. of the 4th International Semantic Web Conference (Poster). 2005 (cit. on
p. 42).

[39] Agostino Dovier, Carla Piazza, and Alberto Policriti. “An efficient algorithm for
computing bisimulation equivalence”. In: Theor. Comput. Sci. 311.1-3 (2004),
pp. 221–256 (cit. on p. 44).

[40] Lee Feigenbaum et al. SPARQL 1.1 Protocol. W3C Recommendation 21 March
2013. url: http : / / www . w3 . org / TR / 2013 / REC - sparql11 - protocol -
20130321/ (cit. on p. 29).

[41] Javier Fernández, Miguel Martínez-Prieto, and Claudio Gutierrez. “Compact
Representation of Large RDF Data Sets for Publishing and Exchange”. In: The
Semantic Web – ISWC 2010. Ed. by Peter Patel-Schneider et al. Vol. 6496.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2010, pp. 193–
208. url: http://dx.doi.org/10.1007/978-3-642-17746-0_13 (cit. on
pp. 36, 38–41).

[42] Fuseki. Apache Jena Project. url: http://jena.apache.org/documentation/
serving_data/index.html (cit. on pp. 91, 109).

[43] Jan Grant and Dave Beckett. RDF Test Cases – N-Triples. W3C Recommenda-
tion. Ed. by Brian McBride. W3C, 2004. url: http://www.w3.org/TR/rdf-
testcases/#ntriples (cit. on pp. 14, 37).

[44] Gunnar Aastrand Grimnes, Peter Edwards, and Alun D. Preece. “Instance
Based Clustering of Semantic Web Resources”. In: ESWC. 2008, pp. 303–317
(cit. on p. 43).

[45] L. Han et al. Swoogle’s Metadata about the Semantic Web. 2006. url: http:
//www.csee.umbc.edu/courses/graduate/691/spring13/01/papers/tr-
swoogle-metadata0525.pdf (cit. on pp. 36, 38–41).

[46] Steve Harris and Andy Seaborne. SPARQL 1.1 Query Language. W3C Recom-
mendation 21 March 2013. url: http://www.w3.org/TR/2013/REC-sparql11-
query-20130321/ (cit. on pp. 26, 28, 29, 43).

[47] Sandro Hawke et al. SPARQL 1.1 Entailment Regimes. W3C Recommendation
21 March 2013. Ed. by Birte Glimm and Chimezie Ogbuji (cit. on p. 106).

[48] Patrick Hayes. RDF Semantics. W3C Recommendation 10 February 2004. Ed. by
Brian McBride. url: http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
(cit. on p. 15).

116

http://doi.acm.org/10.1145/1031171.1031289
http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
http://dx.doi.org/10.1007/978-3-642-17746-0_13
http://jena.apache.org/documentation/serving_data/index.html
http://jena.apache.org/documentation/serving_data/index.html
http://www.w3.org/TR/rdf-testcases/#ntriples
http://www.w3.org/TR/rdf-testcases/#ntriples
http://www.csee.umbc.edu/courses/graduate/691/spring13/01/papers/tr-swoogle-metadata0525.pdf
http://www.csee.umbc.edu/courses/graduate/691/spring13/01/papers/tr-swoogle-metadata0525.pdf
http://www.csee.umbc.edu/courses/graduate/691/spring13/01/papers/tr-swoogle-metadata0525.pdf
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/

Bibliography

[49] Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a Global
Data Space. Synthesis Lectures on the Semantic Web. Morgan & Claypool
Publishers, 2011 (cit. on pp. 5, 11).

[50] Aidan Hogan, Andreas Harth, and Tobias Kaefer. NxParser. url: http://
code.google.com/p/nxparser/ (cit. on pp. 37–41).

[51] Shahan Khatchadourian and Mariano P. Consens. “ExpLOD: Summary-Based
Exploration of Interlinking and RDF Usage in the Linked Open Data Cloud”.
In: The Semantic Web: Research and Applications. Ed. by Lora Aroyo et al.
Vol. 6089. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2010,
pp. 272–287. url: http://dx.doi.org/10.1007/978-3-642-13489-0_19
(cit. on pp. 44, 45).

[52] Andreas Langegger and Wolfram Wöß. RDFStats. url: http://rdfstats.
sourceforge.net/ (cit. on p. 35).

[53] Andreas Langegger and Wolfram Wöß. “RDFStats - An Extensible RDF Statis-
tics Generator and Library”. In: DEXA Workshops. 2009, pp. 79–83 (cit. on
pp. 35, 38–41).

[54] L. Masinter, T. Berners-Lee, and R.T. Fielding. Uniform resource identifier
(URI): Generic syntax. 2005. url: http://tools.ietf.org/html/RFC3986
(cit. on p. 12).

[55] Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology Language
Overview. W3C Recommendation 10 February 2004. url: http://www.w3.org/
TR/2004/REC-owl-features-20040210/ (cit. on p. 15).

[56] Alistair Miles and Sean Bechhofer. SKOS Simple Knowledge Organization System
Reference. W3C Recommendation 18 August 2009. url: http://www.w3.org/
TR/2009/REC-skos-reference-20090818/ (cit. on p. 20).

[57] Open Knowledge Foundation. The Data Hub. url: http://datahub.io/ (cit.
on p. 36).

[58] E. Oren et al. “Sindice. com: a document-oriented lookup index for open linked
data”. In: International Journal of Metadata, Semantics and Ontologies 3.1
(2008), pp. 37–52 (cit. on pp. 37, 45).

[59] Robert Paige and Robert E Tarjan. “Three partition refinement algorithms”.
In: SIAM Journal on Computing 16.6 (1987), pp. 973–989 (cit. on p. 44).

[60] Danh Le Phuoc, Josiane Xavier Parreira, and Manfred Hauswirth. A Native
And Adaptive Approach For Unified Processing Of Linked Streams And Linked
Data. Tech. rep. DERI, July 2011 (cit. on p. 106).

[61] E. Prud’Hommeaux, A. Seaborne, et al. SPARQL query language for RDF. W3C
Recommendation 15 January 2008. url: http://www.w3.org/TR/2008/REC-
rdf-sparql-query-20080115/ (cit. on p. 26).

[62] T. Segaran, C. Evans, and J. Taylor. Programming the semantic web. O’Reilly
Media, 2009 (cit. on p. 5).

117

http://code.google.com/p/nxparser/
http://code.google.com/p/nxparser/
http://dx.doi.org/10.1007/978-3-642-13489-0_19
http://rdfstats.sourceforge.net/
http://rdfstats.sourceforge.net/
http://tools.ietf.org/html/RFC3986
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2009/REC-skos-reference-20090818/
http://www.w3.org/TR/2009/REC-skos-reference-20090818/
http://datahub.io/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/

Bibliography

[63] Hrvoje Simic. “Predicate trees: a tool for descriptive subgraph extraction”. In:
Proceedings of the 2nd International Conference on Web Intelligence, Mining
and Semantics. WIMS ’12. Craiova, Romania: ACM, 2012, 24:1–24:9. url:
http://doi.acm.org/10.1145/2254129.2254160 (cit. on p. 43).

[64] Manu Sporny et al. JSON-LD Syntax 1.0. A Context-based JSON Serialization
for Linking Data. W3C Working Draft 12 July 2012. url: http://www.w3.
org/TR/2012/WD-json-ld-syntax-20120712/ (cit. on p. 14).

[65] Patrick Stickler. Concise Bounded Description. June 3, 2005. url: http://www.
w3.org/Submission/CBD/ (cit. on p. 42).

[66] Rudi Studer, V. Richard Benjamins, and Dieter Fensel. “Knowledge engineering:
Principles and methods”. In: Data & Knowledge Engineering 25.1–2 (1998),
pp. 161–197. url: http://www.sciencedirect.com/science/article/pii/
S0169023X97000566 (cit. on p. 15).

[67] The Apache Jena project team. TDB Optimizer. Apache Jena, The Apache
Software Foundation. 2012. url: http://jena.apache.org/documentation/
tdb/optimizer.html (cit. on pp. 37–41).

[68] Giovanni et al. Tummarello. Sindice - The semantic web index. url: http:
//sindice.com/ (cit. on pp. 37, 45).

[69] Giovanni et al. Tummarello. Sindice Web Stats. url: http://sindice.com/
stats/ (cit. on p. 37).

[70] Giovanni Tummarello, Renaud Delbru, and Eyal Oren. “Sindice.com: Weaving
the Open Linked Data”. In: The Semantic Web. Ed. by Karl Aberer et al.
Vol. 4825. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2007,
pp. 552–565. url: http://dx.doi.org/10.1007/978-3-540-76298-0_40
(cit. on pp. 37, 45).

[71] Giovanni Tummarello et al. “Signing individual fragments of an RDF graph”.
In: WWW (Special interest tracks and posters). 2005, pp. 1020–1021 (cit. on
p. 42).

[72] Robert Vesse and Gail Alverson. SPARQL Query Benchmarker. YarcData,
a division of Cray Inc. url: http://sourceforge.net/projects/sparql-
query-bm/ (cit. on p. 89).

[73] W3C OWLWorking Group.OWL 2 Web Ontology Language Document Overview
(Second Edition). W3C Recommendation 11 December 2012. url: http://www.
w3.org/TR/2012/REC-owl2-overview-20121211/ (cit. on p. 15).

[74] W3C Semantic Web Activity. url: http://www.w3.org/2001/sw/ (cit. on
p. 9).

[75] World Wide Web Consortium W3C. Vocabularies. Accessed on Feb 6, 2013.
url: http://www.w3.org/standards/semanticweb/ontology (cit. on p. 13).

118

http://doi.acm.org/10.1145/2254129.2254160
http://www.w3.org/TR/2012/WD-json-ld-syntax-20120712/
http://www.w3.org/TR/2012/WD-json-ld-syntax-20120712/
http://www.w3.org/Submission/CBD/
http://www.w3.org/Submission/CBD/
http://www.sciencedirect.com/science/article/pii/S0169023X97000566
http://www.sciencedirect.com/science/article/pii/S0169023X97000566
http://jena.apache.org/documentation/tdb/optimizer.html
http://jena.apache.org/documentation/tdb/optimizer.html
http://sindice.com/
http://sindice.com/
http://sindice.com/stats/
http://sindice.com/stats/
http://dx.doi.org/10.1007/978-3-540-76298-0_40
http://sourceforge.net/projects/sparql-query-bm/
http://sourceforge.net/projects/sparql-query-bm/
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/
http://www.w3.org/2001/sw/
http://www.w3.org/standards/semanticweb/ontology

Bibliography

[76] N. Zhang, Y. Tian, and J.M. Patel. “Discovery-driven graph summarization”.
In: Data Engineering (ICDE), 2010 IEEE 26th International Conference on.
IEEE. 2010, pp. 880–891 (cit. on p. 44).

119

	Acronyms
	List of Figures
	List of Tables
	Introduction
	Context and Motivation
	Goal
	Approach
	Structure of Thesis

	Background
	Semantic Web – Vision and Reality
	History and Future of the World Wide Web
	A Web of Data

	RDF – the Data Model
	Triples form Graphs
	URIs and Vocabularies
	Serialization Formats

	Ontologies – the Meta Models
	Terms
	Hierarchies
	Domain and Range of Properties
	Inverse and Transitive Properties
	Expressing Equivalence
	Advanced Meta-Modeling with OWL

	Understanding RDF Data Modeling
	Levels of Modeling
	Open World Modeling

	SPARQL – the query language
	Triple Stores and SPARQL Endpoints

	Structural Analysis of RDF Datasets
	Use Case and Central Questions
	Requirements and Definitions
	RDF Datasets
	Publisher and Consumer
	Structure, not values
	Access via SPARQL-Endpoints
	Summary

	Approaches and Related Work
	Statistical Measures
	Descriptive Subgraphs
	Summary Graphs

	Discussion and Choice of Measures
	Entity Domain
	Information Domain
	Composition
	Reusability
	Chosen Measures

	Design and Implementation of Structural Analysis
	Structural Analysis via SPARQL
	Specific Queries
	Triple Stream
	Measure Implementation

	Architecture of RDFSynopsis

	Evaluation
	Example Use Case Study
	Performance
	Setup
	Specific Query Approach
	Triple Stream Approach
	Comparison of Approaches

	Accuracy of Partial Analysis & Random Sampling

	Conclusion
	Summary
	Results
	Future Work

	Namespace Prefixes
	Fuseki Endpoint Configuration
	Command-Line Usage of RDFSynopsis
	Bibliography

