
Bachelorarbeit am Institut für Informatik der Freien Universität Berlin,

Arbeitsgruppe Software Engineering

Integration of Version Control Systems in a

Tool for Distributed Pair Programming

Andreas Haferburg

Matrikelnummer: 3601910

andreas.haferburg@fu-berlin.de

Betreuer: Karl Beecher

Eingereicht bei: Prof. Dr. Lutz Prechelt

Berlin, 18. November 2010

mailto:andreas.haferburg@fu-berlin.de

Abstract

Saros is an Eclipse plug-in for distributed pair and party programming. A

much requested feature for Saros was the integration of version control sys-

tems (VCSs).

This thesis explores the possiblities of integrating VCSs into the feature sets

of Saros. The initial implementation enables users to automatically replicate

the most common VCS operations like update or switch. When one user

performs such an operation, these actions can be automatically distributed

to the other participants of the session, thus extending the preexisting syn-

chronization mechanism of Saros from only the file contents to the underlying

state of the VCS.

Eidesstattliche Erklärung

Ich versichere hiermit an Eides statt, dass diese Arbeit von niemand an-

derem als meiner Person verfasst worden ist. Alle verwendeten Hilfsmittel

wie Berichte, Bücher, Internetseiten oder ähnliches sind im Literaturverzeich-

nis angegeben, Zitate aus fremden Arbeiten sind als solche kenntlich gemacht.

Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen Prü-

fungskommission vorgelegt und auch nicht veröffentlicht.

Berlin, den 18. November 2010

Andreas Haferburg

Contents

1 Fundamentals 2

1.1 Pair Programming . 2

1.2 Eclipse . 3

1.3 Saros . 4

1.4 Version Control Systems . 5

1.4.1 Subversion . 7

1.5 The Eclipse Team API . 9

2 Requirements Analysis 11

2.1 Functional Requirements . 12

2.2 Non-Functional Requirements 14

3 Solution Design 16

3.1 Milestones . 16

3.2 Optional dependency on Team providers 17

3.3 User Interface . 18

3.4 Other requirements . 19

4 Synchronization of the VC state during the invitation 20

4.1 FileList Refactoring . 21

4.2 Synchronization of the VC state 22

5 Updates of the VC state during a session 23

5.1 The Eclipse Resource API . 23

i

Contents Andreas Haferburg

5.2 Detection of VCS Operations 25

5.3 SharedProject refactoring . 26

5.4 Replication of VCS Operations 26

6 Results and Evaluation 29

6.1 Requirements Evaluation . 29

6.1.1 Fallback mechanism 30

6.2 Problems Encountered . 31

6.2.1 Problems with multiple drivers 31

6.2.2 Inconsistency detection 32

6.2.3 External VCS adapters 33

6.3 Conclusion . 34

ii

Introduction

Chapter 1 explains some basic terms, laying out the groundwork for this

thesis. Chapter 2 describes the list of requirements, and how they were

determined. Chapter 3 presents a number of global design decisions, while

chapters 4 and 5 describe the design and implementation in more detail. The

last chapter evaluates what was done, and how it could be extended further.

1

Chapter 1

Fundamentals

1.1 Pair Programming

Pair programming is the practice of agile software development where two

programmers team up for a software development task, sharing the same

computer. The programmer operating the mouse and keyboard is called the

driver, while the other person is called the navigator or observer. While the

driver has to focus on what is being typed at a given moment, the observer

can sit back and consider the bigger picture. It is encouraged that the two

participants switch roles after a period of time.

[CW01] lists a number of advantages of pair programming over the conven-

tional way:

Continuous code reviews Pair programming can be regarded as an ex-

treme form of peer reviews: The driver is continuously reviewed by

the observer, which means that many mistakes get spotted as early as

possible, lowering the defect rate.

Design quality The constant dialog leads to better designs, and shorter,

more maintainable code.

2

1.2 Eclipse Andreas Haferburg

Learning By working closely together, programmers learn from each other.

When regularly switching teams, the knowledge of each individual pro-

grammer can spread to the entire team. A side effect is a lowered

project risk: Staff-loss is less threatening to project success if multiple

people are familar with each piece of the code.

Problem solving Bouncing ideas off of each others speeds up the process

of solving problems.

Satisfaction People enjoy work more.

Distributed pair programming or remote pair programming is a variant of pair

programming where the participants are in different physical locations, while

using a software tool to connect them over a network, typically the internet.

There are different levels of tool support for distributed pair programming.

On the most basic end are screen-sharing applications, which have the dis-

advantage of providing no interaction while requiring high bandwidth. More

interaction is possible with remote desktop applications like VNC. There are

also collaborative real-time editors, which enable editing the same file at

the same time over a network connection, and plug-ins for IDEs1 which add

facilities to support pair programming to an existing application.

1.2 Eclipse

Eclipse is an IDE for Java software development. The framework is extensible

through a plugin system. A large number of plugins exists, providing support

for other programming languages, including C, C++, Perl, PHP, Python, and

Ruby.

1Integrated development environment, a software application for software development

3

1.3 Saros Andreas Haferburg

1.3 Saros

Saros is a plug-in for the Eclipse IDE.[Dje06] Its core feature is to support

pair programming by replicating a project remotely and in real-time.

To initiate a session, a user selects a project, and invites other people to the

session. The user initiating the session is called the host, who is also the only

participant able to invite others. After accepting the invitation, the invitee

can either choose to use an existing project, or to create a new copy of the

incoming project. The host automatically sends a list of all the files in the

project and their checksums to the invitee. If the invitee used an existing

project, the checksums of the existing files are compared to the files of the

host, and only the files that are not already present are requested. The host

will then create and send a ZIP archive of the requested files to the invitee.

Saros supports the roles used in pair programming, despite the fact that

typically all the participants have their own keyboard. By default, the host

is the exclusive driver, and any invitee starts out as an observer. Only drivers

are allowed to make any changes on the shared project. The host has the

ability to reassign roles. Any participant of the session can be assigned

the role of driver, observer, or exclusive driver. The latter command will

automatically demote all other drivers to observers.

Any modification of a file in the shared project is replicated in real-time.

When a driver edits a file, Saros detects the location of the change and the

characters added or removed, and automatically applies the same changes in

the editors of all other participants.

Other features include awareness information, follow mode, chat, and VoIP,

the details of which don’t need further description here since they are irrele-

vant for this thesis.

4

1.4 Version Control Systems Andreas Haferburg

1.4 Version Control Systems

Version Control is the management of changes to files. Every version of a

file over the course of its history is identified by the revision number, revision

id, or simply revision.

Version control is an integral part of today’s software development process.

Features like automatically merging different changes of the same file are an

important tool for any project where multiple developers work concurrently

on the same code base.

When managing a set of files with a version control system (VCS), the user

starts by creating an empty repository on a server. The files are then imported

into the repository to create the first revision. The local copy of the managed

files is called the working copy. If a project already exists in a repository,

the user can perform a check-out in order to create a working copy from the

repository.

After changing files, the user can commit these changes to copy the new

versions of the files from the working copy to the repository, thereby creating

new revisions. Other users can copy these new versions from the repository

to their working copy by performing an update. A list of all the commits and

their authors is available, providing information on who changed which part

of the code base. The commit log can also be used as a summary of all the

changes that were made during releases.

An alternative way of sharing changes is to create a patch instead of commit-

ting. A patch is a simple text file created by the VCS that contains a set of

changes. Patches can then be handed to other developers, for example as an

e-mail attachment, who can apply the patch in order to replicate the changes

it contains in their working copy. This technique is useful when the author

of the changes doesn’t have commit rights, or for pre-commit reviews.

When creating a new file, the user can choose to promote it in order to add

5

1.4 Version Control Systems Andreas Haferburg

it to version control, or to have the file ignored by the VCS. If the file was

promoted, it will be copied into the repository with the next commit, and

have its first revision number assigned to it.

The base version of a file is the version which was checked out from the

repository, and the most recent commit in the repository is called the head

revision. Typically, a user checks out the head revision, so initially the work-

ing copy and the base version are both identical to the head. When the user

makes local changes to the working copy, the base version can be used to

determine exactly what changed locally. If another user commits changes to

the repository, the revisions of the base version can be used to determine

what changed in the repository.

There are different approaches to handle the problems which arise from con-

current access to the same resource. Some VCSs only support file locking,

which means that when a developer checks out a file, no one else has write

access to the file until that developer commits the new version or releases the

lock.

However, most modern VCSs allow multiple developers to edit the same

file, and provide facilities to automatically merge (or integrate) concurrent

changes. When multiple users modify the same file, the first user to commit

will always succeed. However, a commit is rejected if the VCS determines

that the base version of the committer differs from the latest version in the

repository. In this case, the committer is required to first update to the head

in order to merge changes in the repository into the working copy. This

prevents users from unintentionally overwriting changes from others.

A merge is the application of two different sets of changes (or diffs) to the

same file. Typically, merging text files is automated by the VCS. By com-

paring two versions of a file, the VCS determines which lines were added,

removed or modified. Multiple changes are then transformed against each

other in order to create the merge result. For example, if one diff adds two

6

1.4 Version Control Systems Andreas Haferburg

new lines after line number 4, and another diff replaces the lines 7 and 9, ap-

plying the second diff after the first requires the line numbers of the second

diff to be incremented by two (because of the two new lines).

Sometimes the VCS is unable to perform the merge automatically because of

a conflict, e.g. when the same line was replaced by different lines. Another

common example is when the file type is not supported by the VCS, for

example when different changes to a binary file like an image have to be

merged. In these cases, the user has to manually resolve the conflict.

Most VCSs also support branching, enabling users to track multiple branches

of development in parallel. The trunk or mainline is the main version of

development. Users can create a new branch from either the trunk or another

branch to fork off a new line of development. A developer can e.g. work on an

experimental feature in a separate branch, without the risk of destabilizing

the main line of development. Another common practice is to create a new

branch for every new release of a software. While the addition of new features

happens mostly in the trunk, the release branch is still available for bug fixing

to quickly create intermediate releases, completely independent of the main

development. The VCS typically provides a way to switch the working copy

to a different branch. Any subsequent commit will then only change the

current branch in the repository. A branch can be merged back into the

trunk or any other branch, which means that the changes from the branch

will be integrated with the changes that were made to the other branch in

the meantime.

1.4.1 Subversion

Development of Subversion started in 2000, with the goal of replacing and im-

proving the most widely used VCS at the time, Concurrent Versions System

(CVS).

One feature of Subversion is the fact that revision numbers are repository-

7

1.4 Version Control Systems Andreas Haferburg

Figure 1.1: Branching and merging

wide. After each successful commit, every resource in the repository is as-

signed a new revision number, as opposed to only the files that were changed.

This approach to revision numbering has the advantage that it’s very easy

to identify and refer to versions of the entire project.

Another feature are atomic commits. Some older VCSs like CVS or Microsoft

SourceSafe exhibited low tolerance to network or hardware failure during

commit operations. If a commit operation failed, it was possible to leave the

repository in an undefined state, or even lose data. The term atomic is used

in the sense of database transactions, where a rollback is performed after a

failed transaction to recreate the state before the commit attempt.

In Subversion, the branch operation is implemented by simply using the copy

operation, while relying on a naming convention. The main development

branch is located in the directory /trunk, while branches are located in

subdirectories of /branches. In order to create a new branch from the trunk

called “test”, the /trunk directory is simply copied to /branches/test using

the svn copy command. The copy command will not actually duplicate data,

it only creates directory entries that point to an existing tree, similar to hard

links in the Unix world[PCSF08]. Only the changes commited to the branch

will require new space. This means that the creation of branches (or any

copy) is an operation constant in both time and space.

8

1.5 The Eclipse Team API Andreas Haferburg

There are two plug-ins designed to integrate Subversion into Eclipse: Sub-

clipse and Subversive. Since Subclipse is used for the Saros project, it was

the natural first candidate for integration into Saros.

1.5 The Eclipse Team API

The Team API defines a collection of interfaces that clients can implement

to add support for a version control system to Eclipse. Following Eclipse

terminology, these plugins will be called Team providers.

One of the features provided by the Team API is the association of a Team

provider with a project. There is at most one provider associated with a

project at a given time, and the association is always for the entire project,

not just a sub-directory. A project that has a Team provider is called man-

aged.

Another feature is a callback mechanism that enables the Team provider to

provide decorations for the labels of files and folders, such that VCS specific

information can be displayed in other parts of Eclipse, like the revision num-

ber, the current branch, or the name of the author that committed the latest

version.

It should be noted here that the interfaces are not designed to access the

functionality of the VCS itself, but only to provide the necessary means of

communication between the plugin and Eclipse to integrate the VCS into

Eclipse. For example, while the Team API provides a method to update

a resource to the latest revision, there is no provider-independent way to

update to an earlier revision, let alone switch it to another branch. For this

reason, the Team API is only of very limited use to this work, and most

of the time, direct interaction with concrete Team providers is necessary.

Unfortunately this means that access to the source code (or detailed technical

documentation) of the Team provider is required to add support for the

9

1.5 The Eclipse Team API Andreas Haferburg

corresponding VCS. For open source projects this is not a problem, but Saros

will probably never support proprietary software like Perforce.

10

Chapter 2

Requirements Analysis

Saros was completely unaware of version control systems. In fact, one of the

implicit assumptions in Saros was that the only way to modify a file is by

using an editor in Eclipse. But there are at least two other ways: External

editors and other plug-ins, most notably Team providers.

A Team provider is merely an interface to a version control system. To deter-

mine the functional requirements, the functionality provided by the version

control system has to be inspected. In the context of VCSs, a file has two

additional attributes: The resource URL, which is the location of the re-

source within the repository, and the revision number. The resource URL

specifies not only the path of the resource within the project, but also the

branch the resource is located in. Both attributes are assumed to be repre-

sented as Strings. In the following, we will call the values of these attributes

the Version Control state of the resource, or shortly the VC state. The VC

state uniquely identifies the base version of the file, which in turn determines

the outcome of almost all the operations of the version control system. For

example, to determine the local changes of files, the version control system

compares the working copy to the base version. When performing code re-

views, this diff is the starting point for developers. Distributed code reviews

11

2.1 Functional Requirements Andreas Haferburg

using the VCS are only possible if all the participants of a session have the

same working copy and base version.

Version control systems have only a small number of operations that can alter

the base version of resources: Checkout, add, remove, copy, commit, update,

and switch. To synchronize the state of the project between all participants

in a session, Saros must be able to replicate the VC state of all resources,

thereby replicating the base version of these resources. Only if the base

version of the project is replicated, the outcome of certain VCS operations

like e.g. a merge will be the same across all participants.

Other functionality of version control systems like merge, revert, or apply

patch only alter the file contents. Assuming that file content modifications

are replicated anyways, these operations can safely be ignored, because the

source of these modifications (an external program as opposed to the user)

doesn’t matter. Since the operations branch, and tag only modify the state

of the repository, they can also be ignored.

2.1 Functional Requirements

1. Synchronization of all file content modifications.

Whenever the content of a file in a shared project is modified, the con-

tent changes must always be replicated. This includes the modifications

of files by Eclipse editors, plug-ins, and outside editors.

2. Synchronization of the VC state during the invitation.

After the invitation process is finished, the invitee’s copy of the project

has the same resources as the host’s copy. In addition to the relative

paths and file contents, the VC state must be replicated for every file

and folder in the project.

3. Replication of Connect/Disconnect operations to/from an VCS repos-

12

2.1 Functional Requirements Andreas Haferburg

itory.

In Eclipse, a user can disconnect a project under VC from the repos-

itory. Replication means that when a driver disconnects the project,

the software must disconnect the local copies of the project of every

other participants.

4. Replication of update and switch operations.

Update means that the revision number changes, but not the resource

URL, while switch means that the resource URL changes. If a driver

updates a resource in a shared project, the same operation must be

executed automatically by the software on the local copies of the other

participants.

Note that technically, an SVN update operation could also be executed

with an SVN switch operation by using the same resource URL. How-

ever, not all VCSs have a switch operation, and it might be confusing

to a user if Saros performs a switch to replicate an update of a driver.

For this reason, an update should always be replicated by an update.

5. Replication of promoting and ignoring a file.

When a driver promotes a file in order to add it to the VCS, the cor-

responding copy of the file on the other participants must also be pro-

moted automatically.

6. Dependencies on Team providers are optional.

Providing support for additional VCSs will introduce new dependen-

cies, either on a Team provider plug-in, or on some other interface to

the VCS. The Saros plug-in must be able to run even if these depen-

dencies are not satisfied. When trying to access a missing dependency,

the software must handle any errors (e.g. a ClassNotFoundException)

gracefully, and provide information to the user on how to resolve the

problem.

13

2.2 Non-Functional Requirements Andreas Haferburg

7. Access to the repository is optional.

There must be a fall back mechanism if a participant can’t access

the repository. Possible reasons includes wrong or missing credentials,

server failure, or network problems.

The requirements 2-5 don’t have to be met when there is no access to

the repository. In this case, the other requirements of Saros still have

to be met, especially the replication of file contents.

8. Support for VCSs other than SVN, and Team providers other than

Subclipse.

Additional candidates are Mercurial, git, and CVS. Choosing a Team

provider is mostly personal preference, so support for Subversive in

addition to Subclipse would be desirable.

2.2 Non-Functional Requirements

9. The replication of VCS operations doesn’t block the user interface.

During the execution of a VCS operation it should still be possible

to read all the shared files. It should also be possible to have write

access to resources which don’t conflict with the modified resources,

for example resources of another project, or resources that aren’t under

version control.

10. VCS operations are replicated as soon as they are started.

When a driver executes a VCS operation, the safest way to handle

it is to wait until the operation has finished, and only then issue the

replication of the operation. This means that all the other participants

would have to wait idly until the driver is done. The reason for waiting

is that the operation might fail, or that the driver cancels it, hence we

14

2.2 Non-Functional Requirements Andreas Haferburg

might call this way of handling VCS operations pessimistic.

A more optimistic approach would be to assume that the operation

is going to finish successfully, and send out requests for replication as

soon as the operation has started. This means that all the participants

would execute te VCS concurrently, which is most efficient. However, it

also requires us to think about handling the cases where the operation

doesn’t finish. If, for example, the host cancels the operation, the peers

would also need to cancel it, or roll back the changes, possibly only in

part.

A more subtle problem is a race condition when operating on the latest

version (head). If e.g. the driver instructs the VCS to update to the

head version, and someone else commits a newer version before the

peers execute their update commands, the peer would update to a

different version. The problem here is that ‘latest version’ can change

its value, and that this value is unknown to the driver at the time when

the command is sent to the server. In this (admittedly improbable)

case, the peers that replicated the operation need to ascertain that the

operation executed was in fact the operation intended by the driver.

15

Chapter 3

Solution Design

While the next two chapters focus specifically on the design and implementa-

tion of the replication of the VC state, this chapter describes some additional

design decisions that guided the implementation task.

As a side note, it should be noted that the implementation of the first require-

ment (synchronization of all file content modifications) was almost trivial.

The preexisting SharedResourceManager class is responsible for the detec-

tion and replication of modifications to the files of a project. It sends mes-

sages in the form of FileActivity’s to the other participants, for example

if a driver renames or creates a new file. The SharedResourceManager class

already detected the file modifications from external sources, and the only

change required was to send a FileActivity in this case instead of ignoring it.

3.1 Milestones

To break down the development process into manageable parts, several mile-

stones were identified, ordered by dependency, importance, and the expected

effort.

16

3.2 Optional dependency on Team providers Andreas Haferburg

1. Synchronization of the VC state during the invitation.

2. Detection of resource URL changes (switch).

3. Replication of switch operations.

4. Detection of connecting to/disconnecting from repository.

5. Replication of connect/disconnect operations.

6. Detection of revisions changes (update).

7. Replication of update operations.

8. Use of SVN console to replicate operations immediately.

9. Fallback mechanism.

10. Replication non-blocking.

Due to time constraints, only the first seven milestones were completed.

3.2 Optional dependency on Team providers

Saros must not have any hard dependency on a Team provider. If usage of

a Team provider is requested, the software must still work properly if the

dependency is not present. The dependency on a Team provider has two

aspects: The plug-in dependency and the class dependencies.

Every Eclipse plug-in has a list of plug-in dependencies, which consists of the

identifiers of all the other plug-ins that this plug-in depends on. Before load-

ing a plug-in, Eclipse verifies that all the dependencies are installed and have

been loaded successfully. The Eclipse framework also offers the possibility

to mark a plug-in dependency as optional, which means that the dependent

plug-in will be loaded even if the dependency cannot be resolved.

On the class level, what must be avoided is an uncaught ClassNotFoundEx-

17

3.3 User Interface Andreas Haferburg

ception thrown by the Java class loader when trying to access the classes

of a Team provider unsuccessfully. This is achieved by using the adapter

pattern. For every Team provider there is an adapter class, and the only

way to access it is through an abstract interface. For example, the class Sub-

clipseAdapter is the only place in the code that accesses the Subclipse plugin.

Every interaction with the Team provider, be it requests for information or

operations, is encapsulated by the corresponding adapter class.

Each adapter inherits from the abstract class VCSAdapter, which is the only

public interface of the VCS module. This base class uses the common Team

API, for example to determine the revision of a resource. More importantly, it

also has the static method getAdapter, which is the only way to instantiate a

concrete VCSAdapter. This is enforced by setting the visibility of the concrete

adapter classes to package private, such that only the class VCSAdapter can

access them.

When trying to instantiate a concrete adapter class which depends on a

missing dependency, the class loader will throw a ClassNotFoundException.

In this case, the getAdapter method will simply catch the exception and

return null. Since the adapter class is the only place in the code accessing

the Team provider, it is safe to assume that this exception can only be thrown

during the execution of the getAdapter method.

3.3 User Interface

Before the implementation of a fallback mechanism (milestone 9), there are

two possible modes of operation: Either Saros uses VCS operations whenever

possible, which requires every participant to be able to execute these opera-

tions successfully, or Saros completely ignores VCS operations. To select the

mode, the host has to choose between “Share project...” and “Share project

with VCS support” when starting a session.

18

3.4 Other requirements Andreas Haferburg

If the first of these options is selected, Saros behaves just as it used to be-

fore the integration of VCSs. If the latter option is selected, Saros tries to

replicate VCS operations. However, if one of the participants is unable to

execute a VCS operation for whatever reason, it is possible that the project

enters an inconsistent state. In this case, the participant would see an error

message, but the host would not be automatically informed that something

went wrong, even though it’s the host’s responsibility to select the proper

mode of operation.

Once a proper fallback mechanism is in place, there is no more need for the

user to select a mode of operation. VCS operations would be used if possible,

and if any problem occured while trying to replicate an operation, Saros could

automatically fall back to the old way of using file and folder activities.

3.4 Other requirements

The integration of version control systems in Saros consists of the replication

of the VC state of the shared resources. The replication of state can be

broken down further into the two parts initialization and updates. The next

two chapters describe the design and implementation of these two parts.

19

Chapter 4

Synchronization of the VC

state during the invitation

We will first take a closer look at the existing invitation process, the changes

that needed to be made to it, and how the requirements were finally imple-

mented.

During the invitation, the FileList class is used to determine the current

state of the project on the host side, which is then sent to the invitee. If the

invitee chooses to use an existing project, another FileList is constructed for

the state of the local project. The invitee then compares the two FileLists

to determine which resources already exist in the local project, and if they

have the correct checksums. Files are only requested from the host if either

they don’t exist, or if the checksums don’t match.

For the synchronization of the VC state during the invitation, FileList was the

obvious choice to store the additional information, since it contained most

of the other information used in the invitation process. The next section

describes several changes that were made to improve the extensibility of the

FileList class.

20

4.1 FileList Refactoring Andreas Haferburg

4.1 FileList Refactoring

The FileList class had multiple responsibilities: Storing a serializable list of

files and their checksums, comparing two file lists, and storing the comparison

result. In revision 2231 and earlier, the list of files and their checksums

was stored in a Map<IPath, Long> called “all”. To store the result of a

comparison between two FileLists, there were four additional fields called

“added”, “removed”, “altered”, and “unaltered”. The first two were used if the

path exists in only one of the two lists, and the other two indicate whether or

not the checksums match. These four fields also had the type Map<IPath,

Long>, even though the checksums aren’t needed for a comparison result. In

fact, the other field is called “all” because it is supposed to contain all entries

from added, altered, and unaltered as the class invariant. To simply store a

list of files instead of a diff between two lists, the data is stored in the field

unaltered.

After computing the difference, the invitee needs to request a list of files

from the host. This was implemented by simply sending the entire diff to the

host, who would then use the paths of only the altered and added entries to

prepare the list of files to send to the peer.

This design was lacking when it comes to separation of concerns. The same

class was used for a list of files and the comparison result between two lists

of files, and there is no clear distinction between the two. Since every class

should only have a single responsibility, the comparison functionality was

moved to a separate, new class FileListDiff, and the fields that store the

comparison result are now of type List<IPath>. FileList now only has a

single map to store the checksums of files, called entries. To request a list of

files, the invitee now constructs and sends a new FileList to the host, which

also means that a FileListDiff doesn’t need to be serializable.

21

4.2 Synchronization of the VC state Andreas Haferburg

4.2 Synchronization of the VC state

If the shared project is managed, it first needs to be connected to the reposi-

tory. This might require a checkout or connect operation, which are provided

by the class VCSAdapter. The parameters for these operations are the reposi-

tory URL, the path of the project in the repository, the revision number, and

the ID of the Team provider. These parameters were added to the FileList

class.

After the project is properly connected, the VC state of every resource must

be synchronized. To transmit this data, the class FileListData was added,

which not only stores the checksum of a resource, but also the VC state.

After the FileList refactoring, only the type of one field (instead of five) had

to be changed, from Map<IPath,Long> to Map<IPath,FileListData>.

Since the VCS operations are recursive, the synchronization requires a pre-

order traversal of the resources, starting with the project. For every resource,

the current VC state is compared to the state of the host, and if there are

differences, either a switch or update operation is performed to synchronize

the VC state.

Since it is possible that some resources were deleted locally, a revert operation

must be performed before the synchronization step. After all, a precondition

for switching or updating a resource is that it exists. This revert operation

will recreate any deleted resources from the base version. The downside is

that it might undo some local changes that are also present at the host, for

example from a previous session.

When the invitation process is finished, the local project of the invitee will

be an exact replica of the hosts’ project, with not only the folder structure

and file contents being replicated, but also the VC state of every resource in

the project. The next chapter describes how the VC state is kept in sync

during a session.

22

Chapter 5

Updates of the VC state during

a session

This chapter describes how the VCS operations connect to/disconnect from a

repository, update and switch are replicated. The replication of these opera-

tions can be broken down into three separate parts. When a driver performs

such a VCS operation, Saros must first be able to detect and identify exactly

which operation was performed, and which parameters were used. These

parameters must then be transmitted to the other participants to instruct

them to replicate the operation. Lastly, the other participants must be able

to execute the operation.

5.1 The Eclipse Resource API

To detect and respond to resource modifications in the workspace, Eclipse

plug-ins register an IResourceChangeListener which will receive IResource-

ChangeEvents.[Art04] Most of the time, only a small fraction of the resources

changes.

23

5.1 The Eclipse Resource API Andreas Haferburg

Figure 5.1: On the left is the folder structure of an example project. On the

right is the structure of an examplary IResourceChangeEvent for the deletion

of Folder1, the modification of File2, and the creation of a new folder and

file in Project1. Note that the event doesn’t contain any reference to the

Project2, since it was unchanged. (Figure taken from [Art04])

In order to keep the event processing proportional to the number of the

changes, as opposed to the size of the workspace, an IResourceChangeEvent

is the smallest subtree of the project file tree containing the workspace root,

and all the the changed resources.

An event consist of IResourceDeltas, every one of which corresponds to one

resource in the workspace. A IResourceDelta carries information on exactly

what changed in a resource between two discrete points in time. If, for ex-

ample, a file was moved within the workspace, the event node corresponding

to the new path of the file would also contain the old path. Other types of

information include file content changes1, and changes to the sync info of a

resource, which includes the VC state.

Eclipse also provides an implementation of the visitor pattern for IResource-

Deltas. Plug-ins can implement the IResourceDeltaVisitor interface,

1To be exact, this flag really means that the file’s time stamp changed, which would

also be set if the file was merely touched.

24

5.2 Detection of VCS Operations Andreas Haferburg

which can be used to visit all the nodes in an IResourceDelta tree in a

preorder traversal.

The Resource API also provides a number of flags for each resource. Files

can be marked as “derived”, which means that they don’t contain original

user created content, but that they were created by some tool. For example,

a compiler typically creates some artifacts, like .class files in case of the Java

language. Derived resources are ignored by Team providers, since they can

easily be recreated from the source code. Also, since they are not particularly

interesting to a user, they are not displayed in the Package Explorer.

Most VCSs use files or folders in the working directory to store meta data

about the managed resources. For this purpose, resources can be marked

as “Team private”. These resources are normally ignored by other plug-ins,

including all of Eclipse’s default plug-ins.

5.2 Detection of VCS Operations

When receiving a notification that the VC state changed, we need to be able

to determine exactly what changed. Unfortunately, the Resource API only

provides a simple flag to indicate that some part of the SyncInfo changed,

but there’s no way to tell which parts exactly. Therefore, the VC state of

every resource in the project needs to be stored. When a change occurs, the

new value can be compared to the previous value to determine if it changed.

If the resource URL changed, the operation was a switch. If only the revision

changed, but not the resource URL, the operation must have been an update.

The next question is where to store this information. The ConsistencyWatch-

dogServer already stores a list of checksums for every document which is

opened in an editor, so it would be possible to extend this class to store more

information, and on all the resources in the project. However, it serves an

entirely different purpose, namely to provide a way for the other clients in the

25

5.3 SharedProject refactoring Andreas Haferburg

session to determine if their document states are still in sync with the host.

Also, the watchdog mechanism is only concerned with documents, while the

detection of VCS operations must handle all files in the project. For these

reasons it was decided against touching this part of Saros.

5.3 SharedProject refactoring

There was no class in Saros that stores project specific information, so a new

class had to be created. Unfortunately, the class name SharedProject was

already taken.

Originally, Saros was designed to share only one project. Before I started this

work, efforts were made to support more than one project per session. How-

ever, the implementation is quite incomplete, and frequently there is no clear

distinction in the code between the concepts “session” and “shared project”,

because they used to be the same. An example is the class SharedProject,

which really didn’t represent a single project, but the entire session. So this

class needed to be renamed, and “SarosSession” was chosen as the new name.

To be able to store the state of a single project, a new class SharedProject

is used. Saros’s job is to replicate a shared project, i.e. to keep copies of

the project on the peers in sync with the local project. A SharedProject

represents the state that these remote copies are supposed to be in. When-

ever a driver detects a mismatch between the project and its corresponding

SharedProject, we know that we need to send activities.

5.4 Replication of VCS Operations

To instruct the other participants of replicating a VCS operation, the pre-

existing activity architecture of Saros is used. An activity is a message from

26

5.4 Replication of VCS Operations Andreas Haferburg

a driver that instructs other participants to perform an operation. An exam-

ple would be the FileActivity, which is used for the creation, modification,

deletion and renaming of files.

The class VCSActivity was created to hold all the parameters to replicate the

operation remotely. It implements the IResourceActivity and IActivity inter-

faces. VCSActivity objects are created exclusively by the SharedResources-

Manager. When a change to the VC state of a resource in a shared project

is detected, the appropriate VCSActivity is created and sent to the other

participants.

The SharedResourcesManager is responsible for executing VCSActivities to

replicate the VCS operation. When a VCSActivity is executed, a simple

ProgressMonitorDialog is used as the GUI, not only to provide feedback for

the user about the type of operation and its progress, but also to block the

Eclipse GUI, which prevents the user from creating any other activity.

The SharedResourcesManager is also resposible for the other kinds of IRe-

sourceActivity: FileActivity and FolderActivity. FolderActivities are used

for the creation and deletion of folders, and FileActivities are used for the

creation, deletion, and modification of files. Typically, every VCS operation

results in the modification of some resources of a project, which in turn trig-

gers the creation of multiple file or folder activities. If all of these activities

were executed by other participants, some changes might get applied twice.

Before the implementation of a fallback mechanism, these file or folder activ-

ities are simply not sent to the other participants. But the important part

is to detect if one activity is part of another activity, as it is needed for the

implementation of a fallback mechanism as well. For this purpose, a method

includes was created in the VCSActivity class to test if the activity includes

another one. If, for example, an update operation would modify one file and

create another, three activities are generated by the SharedResourcesMan-

ager: A file modification m, a file creation c, and the update operation u. In

27

5.4 Replication of VCS Operations Andreas Haferburg

this case, the following statements would evaluate to true: u.includes(m)

and u.includes(c). Only those operations are sent to the other participants

which are not already included in other activities.

28

Chapter 6

Results and Evaluation

6.1 Requirements Evaluation

As stated above, due to time constraints not all the requirements mentioned

in chapter 2 could be met. The design and implementation of the require-

ments 1 and 6 were described in chapter 3, chapter 4 dealt with requirement

2, and chapter 5 described the realization of requirements 3 and 4.

This leaves a number of tasks unfinished:

• A fallback mechanism in case a participant is missing a dependency, or

doesn’t have access to the repository. (Requirement 7)

• Support for more Team providers. (Requirement 8)

• To run VCS operations in the background, without blocking the GUI

from read access. (Requirement 9)

• To start the replication of a VCS operation as soon as it begins, not

only after it finishes. (Requirement 10)

The fallback mechanism is certainly the most important, since it would make

the software more robust, and the user interface easier to understand.

29

6.1 Requirements Evaluation Andreas Haferburg

6.1.1 Fallback mechanism

The best way to keep access to the repository optional would be to use re-

dundant activities. For example, when an SVN update adds a file, the driver

would send one activity for the update operation, and another one for the

creation of the file. The peer would first try to replicate the SVN update by

executing the update operation. If this fails for whatever reason, the peer

could then simply execute the FileActivity to create the file. However, if

it doesn’t fail, the FileActivity would need to be discarded, to avoid apply-

ing a change twice. This is particularly important for TextEditActivities,

which don’t describe an absolute state, but only a relative state change of a

document.

A VCS operation typically consist of multiple file and folder activities. To

express this relationship, an activity a is called redundant, or included in

another VCSActivity v, if executing v successfully has the same effect on

the content of one of the modified resources as executing the activity a.

Currently, redundant activities are simply prevented from being transmitted

to other participants. To support sending these redundant activities, there

needs to be a way to indicate that an activity is included in a VCSActivity.

After executing the VCSActivity, the result needs to be inspected. If the

execution failed, every activity which was included in the VCSActivity needs

to be executed, otherwise they can be discarded. For this reason it seems

best to bundle all the activities that are included in a VCSActivity, and to

send them as part of the VCSActivity.

Alternatively, a participant could try to execute a VCSActivity, and only if it

fails request the contained activities from the host. This solution would how-

ever require a lot of effort to manage the data involved, since every driver

executing a VCSActivity is required to store the included activities until

receiving notice from every participant that the original VCSActivity has

finished executing. While the first solution of sending redundant data cer-

tainly is more wasteful when it comes to data transfered, it would be much

30

6.2 Problems Encountered Andreas Haferburg

easier to implement.

6.2 Problems Encountered

A number of problems only became clear during the later stages of this work,

and remain to be solved.

6.2.1 Problems with multiple drivers

An aspect that was ignored so far is when there’s more than one driver in

a Saros session. Since any driver is allowed to make changes to the project,

conflicting commands might be issued by different drivers. This problem is

handled well by Saros in the case of text edit operations. In [Rie08], the

Jupiter algorithm was implemented, which enables concurrent editing of text

documents.

However, other operations like the modification of files and folders can lead

to problems in multi-driver sessions. For instance if one driver Alice renames

a file A to B, while another driver Bob moves the file to a different directory

at the same time. In this case, each Saros client would send a FileActivity to

instruct the other client to execute the operation. When the client of Alice

tries to execute Bob’s file move, the source path can’t be found, since the file

has already been renamed, which would result in an error message. Similarly,

when the client of Bob tries to execute the file rename, the file was already

moved to a different directory, and a similar error will be displayed.

Similar concurrency problems exist with the VCS operations. An example

is when one driver executes a VCS operation on a folder that another driver

renames at the same time. Probably the worst case would be a situation like

two concurrent update operations to different revisions. The problem here is

that a concurrent execution of these conflicting commands wouldn’t even be

31

6.2 Problems Encountered Andreas Haferburg

prevented by an error.

In cases like these, Saros provides no facilities to handle or resolve concur-

rency issues, and the local copies of the project can become inconsistent. In

[Jac09], the way Saros handles these issues is described as insufficient. When

a file or folder activity is about to be executed, it is tested if the client is

currently the exclusive driver in the session. If this isn’t the case, a warning

message is displayed, stating that executing the operation might result in an

inconsistent state of the session.

This behavior is implemented by using facilities of the Team API, which

enable plug-ins to inspect and veto changes to the file structure of the project.

Unfortunately, these facilities can’t be used to intercept and prevent the VCS

operations by a Team provider. For this reason, a similar warning message

can’t be displayed for VCS operations.

In [Jac09] it was proposed to handle these issues by either asking the other

drivers to allow an operation, or by extending the Jupiter algorithm to also

handle file and folder operations. Since it is not possible to prevent the

execution of VCS operations, the first of these suggestions doesn’t apply to

our problem, however it is conceivable that the second suggestion could also

solve the concurrency issues of VCS operations. The advantage would be that

the way that text edit activities are handled wouldn’t have to be changed.

But as in the case of file and folder operations, for this first implementation

of VCS integration it is simply assumed that there is only one driver at a

time that can execute VCS operations.

6.2.2 Inconsistency detection

Saros only has limited support for inconsistency detection and resolution.

Inconsistencies are detected by the “consistency watchdog”, which is a thread

running on the host. Every ten seconds, it scans every document currently

32

6.2 Problems Encountered Andreas Haferburg

open in an editor, computes the checksum if the document is part of a shared

project, and sends these checksums to the other participants. The host’s

checksums are then compared to the local checksums of the peers. In case of

a mismatch, the peer can request all the inconsistent files from the host.

One problem with this approach is that inconsistencies aren’t detected unless

the file is opened in an editor. VCS operations are independent of editors,

and most of the time, not all files modified by a VCS operation are opened in

editors. On top of that, folder can’t be opened in editors, so inconsistencies

involving folders can’t be detected or resolved.

In addition to inconsistencies because of different file contents, an inconsis-

tency can also occur because the two copies of the file point to different files in

a repository, i.e. because the VC state of the files differ. While this typically

also means that the file contents differ, the resolution of the inconsistency

would require different actions. If only the file content is different, having the

host send the file is sufficient. But if the VC states differ, the proper way to

resolve the inconsistency would be to perform a switch or update operation

on the file. Only if this VCS operation fails, the software should resort to

requesting the file contents from the host.

6.2.3 External VCS adapters

Currently, the implementation of a concrete VCSAdapter requires access to

Saros’ source code. The only way to instantiate a concrete VCSAdapter is by

using a static method in the VCSAdapter base class, and every VCSAdapter

is hard-coded in this method. This also means that in order to compile the

Saros plug-in, every supported Team provider must be present, introducing

a lot of dependencies.

A more flexible approach would be to put the concrete VCSAdapter in a

separate plug-in. When the adapter plug-in is loaded, it would register its

adapter with the VCSAdapter class. The identifier of the Team provider needs

33

6.3 Conclusion Andreas Haferburg

to be associated with the adapter class, and the base class could store these

associations dynamically in a map.

6.3 Conclusion

This thesis describes the integration of version control systems in Saros.

Saros’ replication mechanism of a project was extended to also synchronize

the VC state of the resources in a shared project. The version control sys-

tem is used automatically during the invitation, such that not only the file

contents are synchronized, but also the underlying base version of the files.

During a session, VCS operations like update and switch are automatically

detected, and distributed to the other participants to keep the remote copies

synchronized.

At the moment only Subversion is supported, but the extensible design al-

lows to easily add support for more version control systems to the software.

While limited time prevented all the requirements from being met, the most

important aspects were implemented successfully, adding an often requested

feature to Saros.

34

Bibliography

[Art04] John Arthorne. How You’ve Changed! http://www.eclipse.

org/articles/Article-Resource-deltas/resource-deltas.

html, 2004. [Online; accessed 25-09-2010].

[CW01] A. Cockburn and L. Williams. The costs and benefits of pair

programming. Extreme programming examined, pages 223–248,

2001.

[Dje06] Riad Djemili. Entwicklung einer Eclipse-Erweiterung zur Re-

alisierung und Protokollierung verteilter Paarprogrammierung,

2006.

[Jac09] C. Jacob. Weiterentwicklung eines Werkzeuges zur verteilten, kol-

laborativen Softwareentwicklung, 2009.

[PCSF08] C.M. Pilato, B. Collins-Sussman, and B.W. Fitzpatrick. Version

Control with Subversion. O’Reilly Media, 2008.

[Rie08] O. Rieger. Weiterentwicklung einer Eclipse-Erweiterung f

”ur verteilte Paar-Programmierung im Hinblick auf Kollaboration

und Kommunikation, 2008.

35

http://www.eclipse.org/articles/Article-Resource-deltas/resource-deltas.html
http://www.eclipse.org/articles/Article-Resource-deltas/resource-deltas.html
http://www.eclipse.org/articles/Article-Resource-deltas/resource-deltas.html

	Fundamentals
	Pair Programming
	Eclipse
	Saros
	Version Control Systems
	Subversion

	The Eclipse Team API

	Requirements Analysis
	Functional Requirements
	Non-Functional Requirements

	Solution Design
	Milestones
	Optional dependency on Team providers
	User Interface
	Other requirements

	Synchronization of the VC state during the invitation
	FileList Refactoring
	Synchronization of the VC state

	Updates of the VC state during a session
	The Eclipse Resource API
	Detection of VCS Operations
	SharedProject refactoring
	Replication of VCS Operations

	Results and Evaluation
	Requirements Evaluation
	Fallback mechanism

	Problems Encountered
	Problems with multiple drivers
	Inconsistency detection
	External VCS adapters

	Conclusion

