
Freie Universität Berlin

Bachelorarbeit am Institut für Informatik der Freien Universität Berlin

Arbeitsgruppe Software Engineering

Design and Implementation of an SAP
HANA Cloud Configuration Handler

Cora Glaß
Matrikelnummer: 5200206

cora.glass@fu-berlin.de

Erstprüfer : Barry Linnert
Zweitprüfer: Prof. Dr.-Ing. Jochen Schiller

Berlin, October 11, 2020

mailto:cora.glass@fu-berlin.de

Abstract

The SAP HANA is a highly configurable, in-memory database that just recently was
migrated into the cloud. The resulting product is called SAP HANA Cloud which is a
database-as-a-service (DbaaS). The used cloud infrastructures are Kubernetes clusters
that are managed by SAP. The manual configuration of a SAP HANA risks the possi-
bility of human errors or security issues. An undesired consequence of human errors
might be service outages. The manual configuration also generates a workload that
could be decreased by automating the configuration management of the SAP HANA.
Therefore, this thesis deals with the design and the implementation of a microservice,
named SAP HANA Cloud configuration handler. The handler is a prototype of a
service that automates the SAP HANA configuration process. The greatest finding
of this thesis is the following. Before designing a service that shall run in a complex
environment that is supported and improved by multiple people, it is wise to spend
the time to analyse the environment. This reveals dependencies that must be fulfilled
as well as synergies that might be useful.

Zusammenfassung

SAP HANA ist eine hoch konfigurierbare In-Memory-Datenbank, welche vor Kurzem
in die Cloud migriert wurde. Das daraus resultierende Produkt ist bekannt als
SAP HANA Cloud, eine Database-as-a-Service (DbaaS). Die Cloud Infrastrukture
basiert auf Kubernetes Clustern. Diese werden innerhalb der SAP verwaltet. Das
manuelle Konfigurieren von SAP HANAs erhöht das Risiko von Service-Ausfällen.
Des Weiteren ist die manuelle Konfiguration menschlicher Arbeitsaufwand, welcher
durch die Automation einiger Schritte verringert werden kann. Daher beschäftigt sich
diese Arbeit mit dem Design und der Implementation eines Microservices genannt
SAP HANA Configuration Handler. Dieser Handler ist ein Prototyp eines Services,
welcher die SAP HANA Konfiguration automatisiert. Der bedeutenste Fund der
Arbeit lautet wie folgt. Bevor man einen Service entwirft, der in eine komplexe
Umgebung integriert werden soll (welche von mehreren Personen unterstützt und
verbessert wird), ist es ratsam, sich die Zeit zu nehmen die existierende Umgebung zu
analysieren. Dadurch können Abhängigkeiten identifiziert werden sowie Synergien,
welche eventuell zum Vorteil des Services genutzt werden können.

3

4

Eidesstattliche Erklärung

Ich versichere hiermit an Eides Statt, dass diese Arbeit von niemand anderem als
meiner Person verfasst worden ist. Alle verwendeten Hilfsmittel wie Berichte, Bücher,
Internetseiten oder ähnliches sind im Literaturverzeichnis angegeben, Zitate aus frem-
den Arbeiten sind als solche kenntlich gemacht. Die Arbeit wurde bisher in gleicher
oder ähnlicher Form keiner anderen Prüfungskommission vorgelegt und auch nicht
veröffentlicht.

October 11, 2020

Cora Glaß

5

6

Contents

1 Introduction 9

2 The Initial Architecture 11
2.1 The Landscape . 11
2.2 The HANA . 12

3 Related Work 14

4 Workflow 16

5 Design & Implementation 19
5.1 Availability from outside the cluster . 19
5.2 Request Handling . 20
5.3 ConfigurationProfiles . 20
5.4 HANA Configuration Process . 21
5.5 Profile Creation/Update Process . 24
5.6 HANA Configuration Update Process . 25
5.7 Profile Deprecation . 25
5.8 Rollback of HANA Configurations . 26
5.9 Artifacts and Documentation . 28

6 Future Work 30
6.1 Restricted Usage of the Handler . 30
6.2 Rollback Feature . 31
6.3 Deprecation and Rollback of ConfigurationProfiles 32
6.4 Watching Profile Events . 33
6.5 Concurrency in the Configuration Process 33

7 Challenges 34

8 Evaluation 35
8.1 Workflow . 35
8.2 Prototype . 35
8.3 The Improvements . 38

9 Conclusion 40

Bibliography 42

Glossary 42

A Appendix 44

7

8

1. Introduction

1 Introduction

Not long ago, SAP released its new product SAP HANA Cloud1. In general, SAP
HANA is an in-memory database management system that provides its users with
fast access, querying and processing. SAP HANA has a large number of customers.
One of them is Charité2, a renowned university hospital in Berlin. With the help of
SAP HANA, they built a scalable research platform3. SAP HANA Cloud is SAP’s
highly scalable cloud solution of SAP HANA and is currently available on Amazon
Web Services (AWS) and Microsoft Azure. In the following, an SAP HANA Cloud
landscape (in short: landscape) describes the infrastructure on which the SAP HANA
Cloud instances (in the following called: HANA instance or instance) are running on.
A HANA instance provides the user with many configuration parameters that can
be set to satisfy the needs of customers having different requirements. The user and
customer can be the same person. When operating a landscape with a lot of such
highly configurable instances, it is necessary to maintain a general overview on how
each instance or group of instances is configured. For example, the configuration of a
HANA instance could be changed as a temporary workaround for a bug. This might
for example avoid an outage. Usually, a bug would affect multiple HANA instances.
Therefore, a group of multiple instances would have to be configured. In this case,
we must know which instances belong to this group to be able to execute a rollback
of their configurations after the bug is fixed. If the total amount of instances is rather
low, they can be managed manually. This also means a subset of employees must
be responsible for the configurations and have to access a productive landscape. This
does introduce the possibility of human errors as well as the workload that could have
been decreased or replaced by automation. An increasing amount of instances leads
to the situation that the configuration handling gets more and more time-consuming
and demands a continuous effort as e.g. maintaining an overview of all instances gets
more complex. To reduce such manual workload, it can be efficient to use the site
reliability engineering (SRE) approach of automating operations related work in form
of e.g. a service [1].

Therefore, this bachelor thesis deals with the design and the implementation of a
prototype of such a service, called SAP HANA Cloud configuration handler. The
goal of my bachelor thesis is to improve the configuration management of HANA
instances by introducing the following functionalities in form of the handler:

• secure configuration of instances without accessing the system manually

• configuration of multiple instances via one request

• on-demand generation of a configuration state overview of all HANA instances

• creation and application of configuration profiles that contain information of
parameters and the value they should get set to

1https://www.sap.com/products/hana/cloud.html
2https://www.charite.de/en/
3For more information visit https://www.sap.com/documents/2020/01/7ef991e0-7e7d-0010-

87a3-c30de2ffd8ff.html

9

https://www.sap.com/products/hana/cloud.html
https://www.charite.de/en/
https://www.sap.com/documents/2020/01/7ef991e0-7e7d-0010-87a3-c30de2ffd8ff.html
https://www.sap.com/documents/2020/01/7ef991e0-7e7d-0010-87a3-c30de2ffd8ff.html

1. Introduction

The prototype shall only focus on the configuration of the HANAs and neither man-
age the provision and deletion of HANAs.

10

2. The Initial Architecture

2 The Initial Architecture

This section gives an insight into the infrastructure on which HANA Cloud instances
are running as well as on HANAs itself.

2.1 The Landscape

HANA instances are running in Kubernetes4 clusters that are maintained by Gar-
dener5, an SAP product that creates, updates, scales and deletes Kubernetes clusters
on-demand. These Kubernetes clusters are therefore SAP HANA Cloud landscapes.
To understand the purpose of Kubernetes, we should briefly touch upon the topic of
containerization. Containerization describes the principle of binding an application
together with all its necessary resources to satisfy all dependencies. The structure is
called container and can run on different computer environments. For example, if
Docker6 was used to build the container, more precisely the image which was used
to create the container, it can run on different environments if these have the Docker
engine installed. Kubernetes is a platform to orchestrate these containers. It binds one
or a group of containers into a pod. A pod is a Kubernetes resource. In this context,
a HANA instance is a pod (in the following also called HANA pod) and the HANA
is a container that is running within the pod, as shown in Figure 2. The objective of
Kubernetes clusters is to manage and monitor these pods that are running on cluster
nodes. For a simplified overview see Figure 17. One main goal of Kubernetes clusters
is to be a mostly self-healing system. This means if a pod is not behaving as expected,
stops to run, or if a cluster node goes down, the functionality of Kubernetes is to
execute predefined routines, restart the pod, alert the operator of the landscape, or
reschedule the pod upon another cluster node. Kubernetes provides its users with
multiple resource types besides the pod. These structures are all part of the Kuber-
netes ecosystem. In general, Kubernetes resource types are each an abstraction of a
configuration aspect.

The resource types are for example associated with the cluster, a pod, or used for
security and/or network purposes. Resources associated with the cluster can define
e.g. the number of nodes included in the cluster or the OS and OS version in use.
Resources referring to the pod can declare which containers belong in one pod, how
many replicas shall be available, and define the healthy behaviour of a container.
Other resources are used to e.g. configure access permissions or for the management
of sensitive data. It is also possible to create resource types yourself. They are called
custom resources. It is possible to add labels to every kind of Kubernetes resource.
They are saved in the metadata of the Kubernetes resource. Using a Kubernetes API
client, such as the command-line tool kubectl8, it is possible to select e.g. all pods that
contain a specific label with a specific value.

4https://kubernetes.io/
5https://gardener.cloud/
6https://www.docker.com/
7For information about the Kubernetes node components see https://kubernetes.io/docs/

concepts/overview/components/#node-components
8https://kubernetes.io/docs/reference/kubectl/

11

https://kubernetes.io/
https://gardener.cloud/
https://www.docker.com/
https://kubernetes.io/docs/concepts/overview/components/#node-components
https://kubernetes.io/docs/concepts/overview/components/#node-components
https://kubernetes.io/docs/reference/kubectl/

2. The Initial Architecture

Kubernetes Master

Api Server

Kubernetes Resources
(ConfigMap,Pod,...)

...

Node (VM/Server)

Pod

Container

Kubernetes Node
Components

Kubernetes Cluster

Figure 1: Simplified Overview of Kubernetes Cluster Components

2.2 The HANA

As mentioned before, HANA instances are pods. These pods contain each a container
which is the actual HANA. A HANA consist of one system database and at least one
tenant database (in short: SystemDB and TenantDB). The HANAs that are running in
HANA Cloud instances have a general design, as shown in Figure 2. They consist of
a SystemDB and exactly one TenantDB.

HANAPod
HANA(Container)

SystemDB

TenantDB

Figure 2: HANA Cloud Instance Architecture

The SystemDB is used for the system administration and the TenantDB is the database
that is used by customers to save and manage their data. Therefore, customers have
only access to the TenantDB of the HANA. SAP has only access to the TenantDB until
the HANA is fully provisioned, and keeps permanently access to the SystemDB. In
the context of this thesis, configuring a HANA means to adjust parameters of the
SystemDB to either configure the system itself or the TenantDB.

The SystemDB contains different layers which make it possible to configure parame-
ters system-specific or database-specific, thus configure the whole system or only the
TenantDB. The layers of the SystemDB are called DEFAULT, SYSTEM, DATABASE
and HOST. In case of multiple-host systems, the HOST layer is used to configure
multiple hosts. The HANAs that are used in the HANA Cloud instances are no

12

2.2 The HANA

multiple-host systems. Therefore, this layer will be not further discussed in this thesis.

The DEFAULT layer contains the default values of all available parameters. This
would be very practical to use to roll back the configuration of a HANA to their de-
fault configuration. However, in Section 5.8 it is explained why these default values
cannot be blindly used in our case.

The SYSTEM layer contains system-specific configuration parameters, which means
the configuration of a parameter of this layer configures the whole system including
the TenantDBs. If a parameter is not explicitly configured, the default value is set.

The DATABASE layer contains the database-specific parameters. This layer is also
available in the TenantDB. Thanks to this layer, the SystemDB can configure the Ten-
antDB. If a parameter is not explicitly configured, the value of the SYSTEM layer is
applied.

As discussed, the configuration parameters are saved in the SystemDB and also partly
in the TenantDB. Additionally, they are also saved in INI files that are located in the
filesystem of the HANA container. The INI files are plain text files that are holding
the parameters and values. The configuration can also be executed by adjusting the
INI files and triggering a configuration of the SystemDB via a separate tool that is
installed in the HANA.

The configuration parameters all follow a basic structure:
INI − f ilename, layer, section, key : value

13

3. Related Work

3 Related Work

Kubernetes resources can be configured via the standard Kubernetes API. There are
also tools, such as Helm9 and kustomize10, available to improve the configuration
handling of Kubernetes resources. The parameters that I want to configure in my
bachelor thesis are not part of the Kubernetes architecture, but are part of the HANA
container. These parameters are located in the INI files that exist in the filesystem
of the HANA container. After adjusting these files, the database must be reconfig-
ured. The Kubernetes platform does not provide a service to specifically configure
the HANA database, as it is not the purpose of Kubernetes to configure the resources
and services within a pod, but at most to check if they are satisfying the predefined
expected behaviour.

Ansible11 is a software tool by Red Hat. It can e.g. provision, deploy, configure or
orchestrate resources, such as clusters or containers. Ansible holds the necessary mod-
ules to easily build a service that can configure databases such as Mongodb, Mysql
or Postgresql. However, modules for configuring HANA are not available yet. The
usage of Ansible in the company landscapes would need some set-up work. Also, the
module for the configuration of the HANA would have to be implemented. More-
over, Ansible would be a new infrastructure tool in the SAP HANA Cloud landscape.
Implementing the service via a microservice approach is the common solution in the
SAP HANA Cloud landscape and would require less integration effort compared to
using Ansible.

There are two solutions provided by SAP to configure HANAs , SAP HANA Cockpit12

and SAP HANA Studio13. SAP HANA Studio is deprecated, which means it is not
any more explicitly supported and will not be improved any more. SAP HANA
Cockpit was build to replace it. Both let the user request reconfigurations via a user
interface. These tools are not only available to the employees, but also to the end-users
of the HANA. The users must hold the right permissions profile to be able to request
anything. In SAP HANA Cockpit it is possible to create configurations templates.
The selection of parameters for the templates are limited. The templates can only
contain parameters referring to one database layer. The SAP HANA Cockpit can only
apply the template to one HANA at a time. An option to change an already existing
template is not available. The configuration profile concept that shall be introduced
with the SAP HANA Cloud configuration handler has a similar approach. However,
the profiles shall provide the option so hold very different parameters from different
layers. The handler shall also be able to apply the profiles to multiple HANAs per
request. Furthermore, the adjusting of a profile must be possible and shall also trigger
the reconfiguration for HANAs that are using this profile. The SAP HANA Studio
does not support configuration templates or profiles, but it has the option to reset a

9https://helm.sh/
10https://kustomize.io/
11https://www.ansible.com/
12https://help.sap.com/viewer/product/SAP_HANA_COCKPIT/2.12.0.0/en-US
13https://help.sap.com/viewer/a2a49126a5c546a9864aae22c05c3d0e/2.0.00/en-US/

c831c3bbbb571014901199718bf7edc5.html

14

https://helm.sh/
https://kustomize.io/
https://www.ansible.com/
https://help.sap.com/viewer/product/SAP_HANA_COCKPIT/2.12.0.0/en-US
https://help.sap.com/viewer/a2a49126a5c546a9864aae22c05c3d0e/2.0.00/en-US/c831c3bbbb571014901199718bf7edc5.html
https://help.sap.com/viewer/a2a49126a5c546a9864aae22c05c3d0e/2.0.00/en-US/c831c3bbbb571014901199718bf7edc5.html

3. Related Work

parameter. Unfortunately, the reset mechanism resets the configuration parameters
to the default values that are defined in the DEFAULT layer of the SystemDB. In
Section 5.8 it is explained why this method is not applicable in the SAP HANA Cloud
landscapes. In conclusion, both solutions provide the basic functionality to configure
the HANA on-demand. Both solutions hold some interesting features. Still, for the
specific use case that my prototype shall support there are yet some features missing
in both solutions. The tools are available to external users. The handler will be a tool
that shall only be used within the company by the operations team and a selection of
developers. Furthermore, SAP HANA Studio is not even supported any more.

Multiple other database configuration tools are available that are not provided by SAP.
The difference between them and the planned handler is that they do not support
HANA as a database type. Also, the handler will be a service that is running in the
same system as the databases. Most solutions are running on local machines or in
separate systems.

15

4. Workflow

4 Workflow

This section describes the workflow of designing and implementing the SAP HANA
Cloud configuration handler. I started with defining the quality criteria that I wanted
to focus on.

A software product should have a certain quality. To evaluate the quality of a soft-
ware product meaningfully, evaluation criteria must be determined. These could be
for example extracted from the requirements that are stated by the customers. The
configuration handler is a service that is supposed to be used by cloud software de-
velopers as well as the operations team of SAP. This means the customers, and also
the users, are employees of the SAP HANA Cloud Development department or of the
SAP Cloud Operations unit. Therefore, I expect that the users have a background in
programming or that they are at least familiar with using a command-line tool. I am
working in a team that is part of the SAP HANA Cloud Development department.
The team is implementing and maintaining the SAP HANA Cloud landscapes. The
team already implemented services that are only used by the developers and the oper-
ations team of our company. Therefore, I used my own experience and the knowledge
about the aspects that my team focused on while implementing those services. I di-
vided them into criteria. This resulted in the following ones:

Usability
Since all users of this handler are expected to be at least familiar with the usage of
a command-line tool, this criteria does not refer to user-friendly web interfaces. The
usability can be evaluated by viewing how easy it is to use and to which degree the
introduction of the service shortens and simplifies the workload of the developers and
operations team in terms of the HANA configuration support.

Performance
Clearly, a good performance is always desired. The configuration is not a critical
real-time application. Still, if HANAs must be reconfigured to avoid them being
non-functional, the execution of the configuration should take a reasonable amount
of time. The criteria describes the situation that the handler is designed to fulfil its
purpose with a minimum of API communications and calculations. This shall avoid
wasting precious CPU resources.

Security
It is always recommended that a software product has a degree of security. In the best
case, the handler will be integrated into production landscapes at some point. Run-
ning in a production landscape, the handler can change parameters of HANAs that
manage actual customer data. Therefore, the degree of security of the handler should
be rather high in comparison to e.g. a monitoring service that only observes resources
that are running in the landscape. The handler should only be granted permissions
that are needed. Decisions about concepts that are used in the implementation of the
handler should be, amongst other aspects, based on the mandatory permissions. This
means avoiding concepts that need critical permissions, if possible.

16

4. Workflow

Scalability
The landscapes are Kubernetes clusters, thus, they are distributed systems that can
dynamically scale up and down in size. The scalability is an aspect that is valued in
the majority of services which are running on such systems. Even though it is not
expected that the handler will be used constantly and in high frequency, the possi-
bility that it can scale up and down with the usage density or with the number of
HANAs would be preferable, as this is an aspect that belongs to cloud-native pro-
gramming.

After I defined the criteria, I thought about what the end result should be able to
do. A discussion with my supervisor and another software architect resulted in the
following use case:

The handler should be used for the reconfiguration of HANAs. If a HANA must
be changed, this should be done without executing the configuration manually. An
improvement would be if the configuration can be based on profiles. The profiles
could hold parameters and their desired values. In critical situations, these profiles
must be temporarily changed or created by the operations team. The configuration
change in the profiles should also be forwarded to the HANAs that used the profile.
It should also be possible to identify the state of a HANA. This includes if and how
the HANA is reconfigured.

In the next step, I reviewed the general architecture of our landscapes and thought
about the basic aspects of the handler that must be clarified. The questions that
occurred in this process were afterwards discussed with my supervisor to make sure
that the end result fulfils the requirements of the company. In the following the
questions and answers are listed:

1. Where is the handler running?
The handler is running in the landscape with the HANAs that it is supposed
to configure. Otherwise, the handler would have to execute the reconfiguration
from outside the cluster. This decision should minimize the communication
between the cluster and the outside which is favourable for the security and
performance aspects.

2. Are the profile definitions supposed to be managed in a central location?
Yes, this would be good. They have to go through the release process which is
also only possible at a central location.

3. Who has permissions to use the handler?
The operations team and developers that have to support the HANAs.

4. Should HTTPS requests be used?
This is desirable, but HTTP is sufficient for the prototype.

5. What can be expected to be known by the requester?
It can be expected that the requester knows the HANA ID and image version of
the HANA(s) that he/she wants to reconfigure.

17

4. Workflow

After the first questions were discussed, I created mind maps and lists of the func-
tionalities or features that would be mandatory to be included in the service for it
to fulfil its main purpose. Before and while creating concepts on which, later on,
the implementation of features or processes of the service was based, I brainstormed
about challenges or disadvantages that might occur when going through with an idea
or concept. This step was supposed to help me identify avoidable mistakes when
making design decisions.

I have been working for two years in a company that is using an adaptation of
SCRUM14 as their software development framework. A basic concept in this frame-
work is the iterative development process. Some might be more familiar with extreme
programming15. Extreme programming is also based on the iterative concept. Due
to being already familiar with SCRUM, I wanted to implement my service using an
iterative process. The prototype started out as a simple service which was only able
to run in the cluster. Successively, more and more functionalities and whole features
were added. I decided to proceed in that way to make sure that I have a prototype
that is working after each extension or improvement. The first real functionality that
was added was the logging system. It displays messages and can be used to track
errors and unexpected behaviours within the handler or during network issues. The
first bigger step was to expose the service to the outside of the cluster. From this
point onward, features were added and other decisions were made. The features and
design decisions are explained in Section 5.

14https://www.scrum.org/resources/what-is-scrum
15http://www.extremeprogramming.org/

18

https://www.scrum.org/resources/what-is-scrum
http://www.extremeprogramming.org/

5. Design & Implementation

5 Design & Implementation

In this section, all implemented features of the handler are explained as well as the
design approaches that were used. For each feature, other possible approaches will be
mentioned each followed by reasoning why these approaches were not chosen. Lastly,
the produced artefacts and documentation are stated. There are two preconditions for
the handler to work. First of all, no HANA is any more manually configured after the
introduction of the handler. Secondly, other services do not adjust the configurations
of the HANA after it has been fully provisioned. The supervisor of my bachelor thesis
at work found the first condition to be reasonable. The second condition is currently
also fulfilled. Each subsection deals with a feature or an important functionality. Some
subsections contain diagrams or sample code snippets for an easier understanding.
Additionally, a representation of the final architecture is included in the Appendix
(see Figure 5).

5.1 Availability from outside the cluster

The decision to make the handler available from outside the cluster was made for
usability reasons. Doing so, it is possible to send an HTTP request to the handler.
The requests are currently handled without authentication of the requester. Thus,
the availability from outside the cluster is a security issue that requires an additional
usage restriction to make sure that only requests are handled that are sent by users
with the right permissions. Such a restriction is not yet introduced, but possible
approaches to tackle this issue are described in Section 6.1.

There are multiple ways in Kubernetes to expose a service. The prototype is exposed
externally using a load balancer. The load balancer is a Kubernetes service resource
that owns an IP address and routes the traffic to a specific port of each Node, called
NodePort. The handler is mapped to this specific NodePort. The handler can receive
HTTP requests that are sent to the IP address of the load balancer. The set-up of
a load balancer that is supporting HTTP traffic is rather simple. The load balancer
service configuration contains a port and target port that must be set. The container
of the handler must be configured to listen on the target port that was set. This can
be configured in the Kubernetes pod or deployment resource of the handler. The
disadvantage of load balancers is they can get costly. If a load balancer is created for
each microservice that should be exposed, it is very pricey. The generated costs have
multiple reasons. One reason is that every load balancer needs an IP address which
must be bought or rented. Furthermore, switches are needed that must support the
bandwidth of the load balancers and the load balancers need also additional CPU
resources. A solution for this is to expose the microservice via an ingress on all nodes
and to use one load balancer for all microservices. In the case of the prototype, I
created a separate load balancer for learning purposes instead of using one that was
already available in the landscapes.

Another solution is to use a ClusterIP which is also a Kubernetes resource and ex-
poses the microservice on an internal IP address within the cluster. Additionally, a
Kubernetes proxy must be open that connects the cluster with the external machine.

19

5. Design & Implementation

This solution was repeatedly rated as unfit for the use in productive landscapes. A
separate proxy must be opened for each external machine that wants to reach the
handler [2, 3]. Therefore, I decided to use the solution of exposing the handler via a
load balancer.

5.2 Request Handling

I considered two concepts of handling requests. Either the handler checks contin-
uously if a label or condition of a specific resource, e.g. HANA pod was changed
(e.g. a condition that can go from configured to configuration requested). The
resource should also contain additional configuration details that are supposed to be
executed, such as parameters and values or a profile ID. This concept uses the polling
method.

The other option is to implement the handler to act only on-demand. This means the
handler does not execute any checks explicitly, but exists in the state of busy waiting
until a request arrives at its endpoint. The polling method is rather common for
microservices in our landscape which are working with conditions. I decided to use
the on-demand based concept due to the fact that this concept is not using as much
CPU resources as the polling concept would have. Furthermore, it is expected that
the handler will not be used constantly, but still should react within a reasonable time
after a request is executed. The polling concept would waste more CPU resources for
the time frame where the handler is not in use.

5.3 ConfigurationProfiles

A ConfigurationProfile (in short: profile) is the concept of a resource that I designed
as part of the prototype. Such a profile contains an ID, HANA configuration param-
eters, and the desired values. The profiles should be designed to fulfil the following
conditions. First of all, the profiles should be able to exist in a Kubernetes cluster on
their own. Meaning, the deployment of a profile should not depend on the existence
of the HANA configuration handler or other services. Secondly, the profiles should
be separate from the configuration handler which means they should be deployed as
a separate artifact. Temporarily existing profiles are excluded from this precondition.
This is mandatory because the profiles must go through the release process of the
company without being tied to the configuration handler release. The solution was
to create a separate repository that contains a Helm Chart16 which defines the pro-
files. Helm9 is a Kubernetes package manager. It can define, deploy and upgrade
Kubernetes resources. A Chart is the package format of Helm. The profiles are de-
fined as ConfigMaps. A ConfigMap is a Kubernetes resource that manages data in
the form of a map that only supports strings as values. Additionally, labels or other
metadata can be set in it. Due to the fact, that HANA containers can be built from
different image versions (in the following also HANA version), the profile ID should
indicate the HANA version that is supported by the profile. Therefore, the profile
ID starts with the profile name that should indicate the purpose of the configuration,
e.g. bug-A or workload-XL. The second part of the ID is the HANA version. Both

16https://helm.sh/docs/topics/charts/

20

https://helm.sh/docs/topics/charts/

5.4 HANA Configuration Process

parts are separated by a hyphen. ConfigMaps can exist in a Kubernetes cluster with-
out any dependencies and the release process of the company supports the release
of Helm Charts. Therefore, all conditions are satisfied. The usage of another Kuber-
netes resource, such as secrets, would have satisfied the conditions as well, but in the
end, both would have been used similar to the ConfigMap. Same goes for defining
a custom resource. The following shows a sample of a ConfigurationProfile for the
HANA:

apiVersion: v1
kind: ConfigMap
metadata:

name: sample -0.0.1
namespace: d e f a u l t
labels:

type: hana -configuration -profile
profile -name: sample
profile -version: "0.0.1"

data:
configurationspecs: |

- filename: "global.ini"
layer: "SYSTEM"
section: "persistence"
key: "log_segment_size_mb"
value: "111"

- filename: "nameserver.ini"
layer: "SYSTEM"
section: "auditing_csvtextfile"
key: "max_files"
value: "8"

Listing 1: Sample of a ConfigurationProfile

A different approach is not to locate the profiles in the cluster, but to provide them in
a web tool with a user interface, such as SAP Cockpit, and send the parameters and
the ID of the profile to the handler. However, user interfaces, such as SAP Cockpit’s,
are available for external users. Additionally, the workload generated by adjusting or
generating a user interface does not hold much value. The users of the handler are
expected to work confidently with command-line tools. Furthermore, the concepts
of the profile rollback and update are based on the fact that the profiles exist in the
cluster. So I decided to not further investigate this approach.

5.4 HANA Configuration Process

Multiple components are involved in the HANA configuration process. The relations
of these components are roughly shown in Figure 3. For more detail see Figure 5 in
the Appendix. The process starts with (1) a requester sending a configuration request
to the HANA Configuration Handler. The requester can be a developer or operations
engineer. A configuration request can explicitly state parameters and the values that
they shall be set to. Otherwise, a ConfigurationProfile ID must be set. Additionally,
there is an option to request the configuration of a whole set of HANAs instead of

21

5. Design & Implementation

HANA Configuration Handler HANAPod

ConfigurationProfiles

Cloud Landscape

Vault

Requester

read credentials

list

get
create
update
watch

Figure 3: Relation of HANA Configuration Process Components

only one. Depending on the option in use, the request is more or less complex in its
structure, as shown in Listing 2 and 3.

curl -d ’{ "instancetype ": "hana", "instanceid ": "<HANAID >", "
instanceversion ": "<HANA -version >", "parameters ": [{"
filename ":" dummy.ini","layer ":" SYSTEM","section ":"dummy -
section","key":"dummy -key","value ":"2"} , {" filename ":"foo.
ini","layer ":" SYSTEM","section ":"foo -section","key ":"foo -key
","value ":" true "}]}’ <external -ip >:<target -port >/ configure

Listing 2: Request for the configuration of a single HANA with single parameters

curl -d ’{ "instancetype ": "hana", "instances ":["<HANAID -1>",
"<HANAID -2>"], "instanceversion ": "<HANA -version >", "profile
": "<profile -name >" }’ <external -ip >:<target -port >/ configure

Listing 3: Request for the configuration of a set of HANAs with a ConfigurationProfile

(2) The load balancer routes the request to the HANA configuration handler. (3) The
handler parses the request and validates it. Afterwards, it checks if the requested
HANA instance or instances are present in the cluster. The process stops if a re-
quested HANA instance is not found. For requests that contain a profile ID, the
handler also checks if the ConfigurationProfile exists in the cluster. In case that the
profile exists, the parameters and desired values are retrieved from the profile and are
used as configuration parameters. In case that the previous steps were successfully
executed, (4) the access credentials to the SystemDB, a password, must be retrieved.
The password for the SystemDB is landscape-specific which means that one password
is valid for all SystemDBs of HANAs that are running in the same landscape. This
password is saved in a Vault17. This is a secret store provided by HashiCorp. A Vault

17https://www.vaultproject.io/

22

https://www.vaultproject.io/

5.4 HANA Configuration Process

client is built within the handler to obtain the SystemDB password. The Vault client
needs the permission to read the password from a specific path in the Vault. This
permission is given to the handler via a ServiceAccount that had to be added in the
Cluster configuration. The Kubernetes ServiceAccount resource is part of the role-
based access permission (RBAC) concept. In the Kubernetes environment, the RBAC
concept works with Roles, ClusterRoles and ServiceAccounts. A Role or ClusterRole
defines permissions. These roles can be bound to a ServiceAccount. In that way, the
ServiceAccount receives its permission. In the further course of this thesis, the process
of configuring roles and binding them to a ServiceAccount is described as configur-
ing the ServiceAccount. This shall make it easier to read. It is also used to grant the
handler permissions to work with Kubernetes resources. The ServiceAccount can be
configured to grant the permission to e.g. list pods. At this point in the process, the
access credentials, configuration parameter, and hostnames are known. The hostname
is a fixed prefix, which is internally known, plus the HANA ID.

Now, (5) for each HANA a SQL connection is successively created and the configu-
ration statement is executed for each parameter. The SQL statement is structured as
follows:

ALTER SYSTEM ALTER CONFIGURATION(’<INI -filename >’, ’<layer >’)
SET (’<section >’, ’<key >’)=’<value >’ WITH RECONFIGURE

Listing 4: Reconfiguration Statement

After each successful configuration, the connection is closed and (6) the profile label
is added or, if already present, changed to the profile ID that was used (if no profile
was used the value is single-param). After this, HANAs are configured, (7) the
process is completed.

The profile label is used to retrieve an overview of how HANAs are configured.
Kubectl can be used to get all HANAs that e.g. are configured with a specific pro-
file by selecting those that own the profile label with the desired profile ID as
value:

kubectl get pod -l profile=<profile -ID >

Listing 5: Sample command to get all HANAPods configured with a specific profile

The configuration of a HANA could also be executed in a different fashion. The SQL
statement that the handler uses adjusts the parameters in the database and updates
the INI file. The other approach is to update the INI file. Afterwards, the reconfig-
uration based on the INI files must be triggered. For this, there is a separate tool is
present in the HANA.

Both solutions are valid, however, the second method requires the handler to enter
into the HANA container to adjust the files and trigger the reconfiguration. To grant
the handler the permissions to enter the HANA container, which means granting
permission to exec the HANA pod, the RBAC concept would be used. Exec is short
for execute. In this context, being able to exec a pod means to be able to execute

23

5. Design & Implementation

a command in a container of the pod or to enter the container18. Unfortunately,
the RBAC can only grant permissions for a specific resource or a specific instance
of this resource, if the name is known. This means the handler can be granted to
either exec every pod or a pod with a specific name that must be known before
the ServiceAccount is deployed. The amount of HANA pods and their names are
not known, because they are generated dynamically. Therefore, the only possibility
would be to grant the handler the permissions to exec all pods. This is not a very safe
solution. Therefore the handler configures the HANAs via a SQL statement instead
of entering the HANA containers.

5.5 Profile Creation/Update Process

In general, ConfigurationProfiles should be defined as a ConfigMap in a Helm Chart
and go through the release process of the company. Changes on the ConfigurationPro-
file should also be executed in this way. Nevertheless, there are scenarios where the
operations team has to add or adjust a ConfigurationProfile under time pressure. This
means the whole release process should be skipped. The improvement is to enable
the handler to do so. This makes it possible to create and adjust ConfigurationProfiles
via an HTTP request that is sent to the handler. The possible request types are called
change and create. They have the following structure:

curl -d ’{ "requesttype ": "<request -type >", "profilename ": "<
profile -name >", "profileversion ": "<HANA -version >", "
lifespan ": 3, "parameters ": [{" filename ":" dummy.ini","layer
":" SYSTEM","section ":"dummy -section","key":"dummy -key","
value ":"2"}] }’ <external -ip >:8080/ profile

Listing 6: Request for the Creation/Change of a ConfigurationProfile

The lifespan value is optional. It indicates the days that the profile or the adjustment
in it is valid. After the lifespan runs out and in case of a creation request, the Configu-
rationProfile will be deleted. The default lifespan value is set to 7 days. See Section 5.7
for more. Similar to the configuration process, the request is received by the handler
and gets validated. Afterwards, the handler checks if the requested ConfigurationPro-
file exists. A creation request is not allowed to create a ConfigurationProfile that is
already present. Change requests can only be executed for ConfigurationProfiles that
are present. If the conditions are not fulfilled, the process stops. Otherwise, the con-
figuration parameters of the requests are prepared to satisfy the profile convention
and the ConfigurationProfile, which is a Kubernetes ConfigMap resource, will be ei-
ther created or updated with the parameters. In case of a creation request, a label will
be set to the ConfigMap that sets a date, based on the lifespan value, at which the
profile will be deprecated. In the specific solution, this label is called deletionDate.
In case of a change request, the handler overwrites the whole parameter section of
the ConfigMap. Therefore, even if only one parameter shall be changed, the whole
set of parameters that are already present in the profile have to be contained in the

18For an example of the exec command option see https://kubernetes.io/docs/reference/
generated/kubectl/kubectl-commands#exec

24

https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#exec
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#exec

5.6 HANA Configuration Update Process

request. The mechanism of changing parameters separately in the ConfigMap is com-
plex. I came to the conclusion that it does not hold much value for the current use
cases.

5.6 HANA Configuration Update Process

This update feature is used in situations in which a ConfigurationProfile is changed
via a re-deployment of the Helm Chart or via a change request. It is desired that
all HANAs that used the updated profiles are reconfigured with the new Configura-
tionProfile content. This avoids inconsistency in the configuration of HANAs. This
means the following. Assume multiple HANAs are configured with the same Con-
figurationProfile. Their configurations were executed at different points in time. Still,
they should not show differences in their configuration. In short, their whole config-
uration should be equal.

The first important functionality is to detect changes in the ConfigurationProfiles.
Due to the fact that changes can be executed independently from the handler, it is
not efficient to simply execute a reconfiguration of HANAs right after the handling
of a change request. The main point of the solution is, that the handler is watch-
ing the events of ConfigurationProfiles, more specifically ConfigMaps owning the
profile-name label. This watching process is running in a thread in parallel to the
HANA configuration handling. If the handler detects a change or deletion of a Con-
figMap, the handling process is triggered. It is important that each triggered handling
process is also running in a separate thread. In the specific solution, I used gorou-
tines19 which are light-weight threads. This avoids the situation that the handler still
handles the reconfiguration of HANAs and misses a ConfigMap event that occurs in
parallel to it.

The deletion of a ConfigMap triggers a different handling process than a ConfigMaps
change would. In both cases, the first step is to check if the ConfigMap is actually
a ConfigurationProfile. Only if the ConfigMap is a ConfigurationProfile, the handler
proceeds. In case of a ConfigMap deletion event, all HANAs are obtained that use
this profile and a rollback of their configuration to the default configuration is ex-
ecuted. The rollback is explained in Section 5.8. Afterwards, for each HANA the
profile-name label will be set to default.

In case of a ConfigMap change event, the new content of the ConfigMap is obtained
and all HANAs that used this profile get rolled back to their default configuration and
then get reconfigured with the new configuration parameters. This completes the han-
dling process. The thread/goroutine that handled the process gets terminated.

5.7 Profile Deprecation

The deprecation of a ConfigurationProfile indicates, that the profile should no longer
exist in its current state. This can mean that the profile was changed by the handler
and should be reset to the previous state, e.g. the state that a Helm Chart defined.

19https://golang.org/doc/effective_go.html#goroutines

25

https://golang.org/doc/effective_go.html#goroutines

5. Design & Implementation

Another scenario is that the profile was created by the handler and should be deleted.
The specific implementation of the handler is currently only supporting the profile
deletion and not the rollback. Profiles that are created via the handler should not exist
longer than they absolutely must as they have not gone through the official release
process of the company. They were only created as a temporary workaround for a bug
or for similar reasons. As explained in the profile creation process, a deletionDate
label is added to the profile in its creation phase. This label marks the date after which
the profile should be deleted.

The profile deprecation feature frequently checks if a deprecated profile exists in the
cluster. The lifespan that can be set in the profile creation request has to be between
one day and a week. Therefore, I concluded that a check that gets triggered once
or twice a day is sufficient. The feature is realized with a Kubernetes CronJob and a
Python3 script. The configuration handler deploys the CronJob right after the handler
is fully created. Each time that a profile is created it will be checked, that the CronJob
is present. If the CronJob is missing, it gets redeployed. Otherwise, it gets simply
updated to make sure that the definition of the CronJob is equal to the definition that
is defined in the handler.

A CronJob has the option to create Kubernetes Jobs based on a schedule. In the case of
the handler, it creates a job every day at 12 am and 12 pm while the cluster exists. The
job creates a pod which is running a container that executes the Python3 script. This
container holds permissions to build a Kubernetes API client that can list and delete
ConfigMaps, as shown in Figure 4. The script obtains all ConfigMaps that contain a
deletionDate label. These ConfigMaps are all ConfigurationProfiles, as they are the
only ConfigMaps that may own such a label. Afterwards, it checks if the timestamp
is older than the current one. If this is not the case it proceeds with checking the
rest of the profiles. If a profile is found that holds a deprecated deletionDate label,
the object of it will be added to a list. After all profiles are checked, the list is either
empty and nothing has to be done or deprecated profiles were found. In that case, all
profiles, that are associated with an object of the list, get deleted. This completes the
job. The pod gets terminated and the CronJob creates the job again at a later point in
time as it is scheduled.

5.8 Rollback of HANA Configurations

The rollback feature is needed in two scenarios. The first scenario is that a HANA
is not in the default configuration and shall be reconfigured. The parameters that
currently differ from the default configuration do not have to be included in the set of
parameters that are requested to be configured. This means these parameters have to
be reset to their default values before the reconfiguration can be executed. This makes
sure that the configuration stays consistent. Meaning, HANAs that are configured
with the same profile have the same configuration and not a single parameter is set to
a different value. The other scenario is that the HANA is configured with a deprecated
profile. After the profile is deleted the configuration of the HANAs must be rolled
back to the default configuration to avoid having HANAs being configured based on
profiles that do not exist any more.

26

5.8 Rollback of HANA Configurations

HANA Configuration Handler HANAPod

ConfigurationProfiles Profile Deprecation Job

Cloud Landscape

Vault

Requester

read credentials

list

get
create
update
watch

create

delete

Figure 4: Relation Overview of the ConfigurationProfile Deprecation Feature Compo-
nents

To make it possible to rollback a configuration the parameters that were adjusted
and their default values must be known. The SystemDB contains a DEFAULT layer,
that contains the default configuration. However, there are infrastructure services in
place that reconfigure the HANA right before it is fully provisioned. Therefore, the
alleged default configuration listed in the DEFAULT layer does not equal the default
configuration that is desired by the HANA Cloud landscape. As a consequence, the
data from the DEFAULT layer cannot be blindly used. Instead, when the HANA
is reconfigured by the handler for the very first time, it retrieves the values of the
parameters that are contained in the configuration request and saves them as the
default values in a map. The map is structured as follows:

{ <hana -ID1 >: [<parameter1 > : <value2 >, <parameter2 > : <value2
>], <hana -ID2 > : ...}

Listing 7: Sample Structure of the Default Value Map

It must be noted, that a parameter consists of multiple subparameters, as shown
in Section 2.2. Therefore, the parameter is a struct of multiple values in the actual
implementation.

The default values for a specific HANA can be retrieved by the HANA ID. The default
values are saved for each HANA as we cannot be sure that a default configuration
is valid for HANAs of different image versions. Saving the default values in a map
in the handler means the data is saved in the memory of the handler. This does
hold a big disadvantage that will be discussed at the and of this section. Now, if a
HANA is about to be reconfigured, the handler checks if the HANA is in the default
configuration. An indicator for this is, that the HANA pod does not own a profile
label or that the profile label is set to default. If that is the case, a rollback must not

27

5. Design & Implementation

be executed before the reconfiguration. Otherwise, the default values are retrieved
from the map and the HANA is configured based on the default values. After that,
the handler proceeds with the actual reconfiguration.

The disadvantage of this solution is, that in case of a restart or the termination of the
handler, all default values are lost. This means even after the handler is running again,
a rollback of a HANA, that was configured by the handler before, is not possible due
to the missing data. The values of the HANA that are already configured might be
saved as default values as the handler does not check if the HANA was already con-
figured. This is due to the fact, that the handler only saves the previous values of
parameters that are configured. Optimally, when a HANA is reconfigured multiple
times, the process consists of rolling back the parameters that were previously con-
figured, saving the current values of the parameters that are requested to be changed
and executing the configuration. If the handler would have been running the whole
time, including during the HANA provisioning, it could be assumed that the saved
values actually represent the desired default values. However, if the handler was at
some point restarted or terminated, it cannot be assured that the requested config-
uration equals the actual configuration of a HANA. There might be parameters that
were not correctly rolled back to the desired default. In short, the values of already
configured parameters might be saved as default values due to failed rollbacks.

The current implementation of the rollback feature is only a temporary solution for
the prototype and should be improved. Therefore, approaches to improve this feature
are discussed in Section 6.2.

5.9 Artifacts and Documentation

The prototype is not one single service. It consists of the configuration handler, a
CronJob and the profiles. The configuration handler and the definition of the CronJob
are located in the same repository. Both, the handler and the CronJob are using
a Docker image each that must be built and pushed before the deployment of the
handler via a Helm Chart is possible. The ConfigurationProfiles are located in a
Helm Chart in a separate repository. It is possible to create multiple Helm Charts
and/or repositories for profiles as they are not depending on any services etc.

Additionally, each repository contains a simple documentation on how to deploy and
use the artifacts that are contained in the repository. Lastly, separate documentation is
available, which contains an implementation diary, the exposé of the bachelor thesis,
concepts, problems and questions that occurred including answers and solutions. In
summary, the prototype includes the following:

Docker Images
The first Docker image creates the configuration handler container. The other image
contains the script that checks for deprecated profiles. It is used in the CronJob that
is referred to in the profile deprecation feature.

Helm Charts
One Helm Chart contains all necessary definitions of Kubernetes resources to deploy

28

5.9 Artifacts and Documentation

the configuration handler. This includes the deployment of the pod in which the con-
figuration handler container is running as well as the ServiceAccount definition for
the RBAC method and the load balancer service definition to expose the handler to
the outside of the cluster. The second Helm Chart is a collection of profiles, thus,
multiple ConfigMaps definitions.

Documentations
Each repository contains a simple documentation. A detailed documentation is found
in a separate repository.

29

6. Future Work

6 Future Work

The handler that was developed in this bachelor thesis leaves room for improvement.
There are aspects in the implementation that are needed to be improved to release
the handler into a production landscape. This includes using a more efficient ap-
proach for the rollback feature, the introduction of a restricted usage of the handler
and the extension of the profile deprecation feature. Furthermore, there are also op-
tional adjustments that can be made to increase the quality. This section discusses
improvements and possible approaches that could be used to realize them. Note that
there are also small improvements that are not discussed in this section as they do
not hold any complex logic. For example, a check if the HANA is already configured
with the profile that is requested to avoid unnecessary reconfigurations, or the switch
from HTTP to HTTPS.

6.1 Restricted Usage of the Handler

The handler is exposed to the outside of the cluster. Currently, everyone with the right
information can send a request to the handler. It is not validated if the requester holds
any permissions to grant him the privileges to use the handler. Furthermore, there
are supposed to be two user groups with different access rights. One user group shall
only be granted to use the handler’s reconfiguration abilities. The other group shall
be able to also create and adjust configuration profiles if necessary. In the following
two approaches will be presented that could be used to realize this feature.

The first approach can limit the access to the handler to a group of employees that
already have the permissions to actually access HANAs. This means these employees
have already the ability to configure the HANA manually. Viewing the current cluster
access groups, a user that can exec HANA pods can also create, update and delete
ConfigMaps and thus also ConfigurationProfiles. This means this solution grants
permission only to users that would be explicitly allowed to use the handler, but
there is no differentiation in the usage permissions. Therefore, it might be possible
that users are excluded from this group even though they should have at least partial
access to the handler. The logic of this approach is to expose the handler only inside
the cluster. A pod can be created that contains a container that is permanently in an
idle state. To use the handler, the user must enter the idle container. There he/she
and can send a request to the internally exposed handler. The solution is simple, but
the user experience might be compromised and some users might be unintentionally
excluded from using the handler

The other approach would be to make use of a framework that is used in our com-
pany to manage the permissions of each employee. It can grant e.g. read and write
permissions to Github20 repositories or permissions to create a development cluster.
By using the Kubernetes ServiceAccount resource and the framework, it is possible to
grant each user specific permissions within the landscape. The user can request the
right ServiceAccount in the framework. The permissions of the ServiceAccount can
be forwarded to the handler. This means the handler does not use its own ServiceAc-

20https://github.com/

30

https://github.com/

6.2 Rollback Feature

count, as it does currently, but the ServiceAccount of its user. This ensures that only
those, who are explicitly allowed to use the handler, can do so. When a user does not
own the right ServiceAccount the handler will fail in its tasks as it does not have the
permissions to e.g. obtain pod resources or read the SystemDB password from the
Vault.

6.2 Rollback Feature

The implemented rollback mechanism of the handler is rather naive. In Section 5.8,
the disadvantages of the current implementation are discussed. The default values
that are necessary to rollback the HANAs to their default configuration are currently
saved in the memory of the handler. Therefore, if the handler is restarted or deleted,
all default values are lost and the wrong data might be later on saved as default
values.

The first possible approach is to save the default values to an independent resource,
such as a ConfigMap or a PersistentVolume. Both are Kubernetes resources. In case of
the restart or deletion of the handler, these resources still are able to exist in the cluster
and when the handler is back up again it can retrieve the data from the resource
without problems.

The second approach would be to define a configuration profile of each HANA ver-
sion. They contain all configuration parameters and the default values. The handler
would only save for each configured HANA or ConfigurationProfile (if it was used),
the parameters that were configured in e.g. a ConfigMap. Then in case of a rollback,
the handler retrieves the parameters that were configured from the ConfigMap and
the default values from the right default configuration profile. The creation of the
default configuration profile can be automated by a parsing script. The downside of
this approach is that the default configuration profiles contain a lot of data that must
be iterated through to find the right parameters. This will slow down the whole roll-
back process. Therefore, the first approach is preferable. A very different approach
would be to work with the values of the DEFAULT layer of the SystemDB and pro-
vide a resource, such as a ConfigMap, in which configuration parameters can be set.
The values from the resource would have priority over the values in the default layer.
This method would require the developers of services that are adjusting the values of
the HANA initially to update the resource. Otherwise, their configurations could be
overwritten at some point. The rollback to values of the DEFAULT layer can be easily
done with the following statement:

ALTER SYSTEM ALTER CONFIGURATION(’<INI -filename >’, ’<SYSTEM|
DATABASE >’) UNSET (’<section >’, ’<key >’) WITH RECONFIGURE

Listing 8: Rollback Statement

For this approach, the handler remembers for each HANA or profile the parameters
that were changed, like in the approach that was discussed before. Then it would
check if the resource contains any of these requested parameters. If that is the case,
the handler will configure the HANA with the corresponding value from the resource.
Otherwise, it plainly resets the value. The downside is that when a team of developers

31

6. Future Work

releases a service that changes the default configuration without knowing about this
mechanism, their desired default configuration will be overwritten at some point. The
mechanism creates a new dependency in an already complex landscape.

6.3 Deprecation and Rollback of ConfigurationProfiles

The deprecation feature of the prototype only supports the deprecation of temporar-
ily created profiles. The deprecation mechanism for temporarily changed profiles is
an extension that should be introduced at some point. Profiles that are created via the
handler own the deletionDate label with a timestamp value. For changes on profiles
that are executed by the handler, the rollBackDate label must be added. Currently,
this process is implemented but not executed as the actual support is not yet realized.
The basis for the implementation of this feature is already in place. The CronJob that
is already used for the Deprecation Feature can be extended. The script that is exe-
cuted in its Jobs can be adjusted to not only check for profiles that own a deprecated
deletionDate timestamp but also for a deprecated rollBackDate timestamp. Similar
to how the script deals with a deprecated deletionDate label, a list is created of all
profiles that own the deprecated rollBackDate label. After all available profiles are
checked, a request should be sent to the handler. This request shall contain the IDs
of all profiles that are supposed to be rolled back to its previous version. Note that
it can happen that a profile is changed multiple times via the handler and not just
once before it is rolled back. In that case, the profile should be rolled back to the
version that is defined as the default version. This is the version that is defined in
the Helm Chart from which it was actually deployed. For this, the handler must be
extended to handle a new version of the profile request. Currently, only the request
types change and create are available. The request structure and the new type can
easily be implemented. The challenge is to know the version of the profile to which
it shall be rolled back. To tackle this issue I selected one possible approach. Other
approaches would include granting access permissions to the repositories that contain
the Helm Charts in which the definition of the profiles are located. Due to aspects of
the release process of the company, I decided not to further investigate these options.
The approach I would like to implement in the future works as follows. We know, the
profile saves all parameters as one text string in a map, as shown in Listing 1. The key
to the parameters is configurationspecs. Now, if a change profile request is sent to
the handler, it retrieves the profile that shall be changed. At this point, we can adjust
the handling. Instead of just changing the profile the handler can obtain the string
value of configurationspecs and save it under a new key, rollbackversion. Note,
if the rollbackversion key already exists in the profile the new step can be skipped.
The rollbackversion key is set only once and represents the version of the profile
that was defined in a Helm Chart. If the profile is updated by the redeployment of a
Helm Chart, the rollbackversion will be gone, thus, the new valid version defined
by a Helm Chart will be identified as the version to which the profile shall be rolled
back. Afterwards, the value of configurationspecs is changed as requested and the
changes are applied to the profile that is running in the cluster as usual.

32

6.4 Watching Profile Events

6.4 Watching Profile Events

The handler is watching the ConfigMap events that refer to changes in or the deletion
of ConfigMaps that are identified as ConfigurationProfiles. As long as the handler is
continuously running in the cluster, the method works fine, but as explained in the
rollback feature, there might appear issues, if the handler is gone for some time. In
case of a restart or the deletion of the handler, it might miss a change or the deletion
of a profile. This would have the consequence that HANAs are still configured with
a profile that does not exist any more or that was already changed. As the rollback
of profiles, that are only supposed to be temporarily changed, is not yet supported
by the handler I have not thought of a solution to identify this case. For the case
that HANAs are configured with profiles that do not exist any more, I selected two
possible approaches.

Either, a CronJob can be added that contains a Job that checks all HANAs using
profiles, similar to the CronJob used for the profile deprecation. Or, a thread can be
created in the handler that does the same. In both approaches, the following would
be executed. First of all, the IDs of all profiles are retrieved that are running in the
cluster. They could be saved in an array. Afterwards, all HANAs are checked that
were configured with a profile. For each HANA it is checked if it is configured with
a profile that owns an ID that is not in the list. If that is the case, the HANA should
be rolled back. In the handler, the rollback function can be simply called. For the
Job, created by the CronJob, a new request option must be introduced that requests
the rollback of a HANA or group of HANAs. For both approaches, it is possible
that a situation occurs in which a configuration and rollback request are sent at the
same time. It might happen, that the rollback happens after the configuration request
was executed. This would result in the HANA being in its default configuration
state. Before implementing one of these approaches it should be discussed if such a
situation can be tolerated.

6.5 Concurrency in the Configuration Process

Introducing concurrency into the configuration process is an optional improvement
and might not be very meaningful for the use cases of the handler. The handler is
written in Go. One of the advantages of this programming language is its goroutines.
Goroutines are basically light weight threads that can be easily created. They are
already used in the handler to watch for ConfigMap events and to handle them. The
main use case of the handler is to only configure a single HANA. It is expected that the
handler is not frequently used or by multiple employees at the same time, but rather
in special cases. Still, if a situation occurs in which a bigger group of HANAs should
be configured, it would improve the performance of the handler if the configuration
of the HANAs is not executed successively but in parallel. The question is if this is an
option that would hold great value or if it would only create race conditions or other
complications. For the time being, it is not really necessary to realize this idea. If the
usage of the handler changes to rather configuring multiple HANAs, the idea could
be discussed further.

33

7. Challenges

7 Challenges

The first challenge was to define a strict scope of what the prototype shall realize
and what the written bachelor thesis shall discuss. Implementing a service, such
as the configuration handler, it can be rather tempting to implement concepts and
features that are growing in complexity but not much in value. Therefore, I needed to
repeatedly remind myself to focus on the basic functionalities that the handler should
contain. As this is a thesis written with the cooperation of SAP, I also had to make sure
to not reveal internal details about the infrastructure or similar things. This turned
out to be not as much of a complication as I first expected it to be.

The second major challenge was the integration of the configuration handler into an
existing system. The most time-consuming example is the implementation of the SQL
client. Its purpose is to connect to the SystemDB and send queries. While testing
it, the problem occurred that even though the right SystemDB password, hostname
and port were used no traffic that was generated by the handler was routed to the
SystemDB. The reason was a proxy service, which only allows traffic from pods that
own a specific label to be routed to the SystemDB. Working on a service that is running
in a system that is supported and developed by multiple teams, it is quite hard to
maintain an overview of all specifications, dependencies and necessities. Therefore, it
is important to find the right documentations or find help from colleagues.

34

8. Evaluation

8 Evaluation

The evaluation is divided into three parts. The first part deals with the workflow of
the design and implementation phase. The second part focuses on the prototype, and
the third part rates the concepts that are presented in Section 6.

8.1 Workflow

The beginning of realizing the service was mainly used to identify possible challenges
that would be avoidable. After creating a concept I reviewed it very critically to find
possible flaws as early as possible. Doing this, I tried to make use of the knowledge
that I collected in the last year working in the department of the company that is
engaged in developing microservices in a Kubernetes environment. I believe the early
and critical review of each concept did improve my decision making. Still, it was time
not spent on implementing or researching. It is natural that choices will be changed in
the implementing process as not all challenges can be identified in theory. However,
in my opinion and experience, it was a smart choice to take the time to make the first
and biggest decisions of a project. Therefore, I would not say that the time spent on
the designing of the service was unreasonable.

For the implementation, using an iterative software development process was in this
case efficient. Building a service that is supposed to run in a landscape that can change
much over time, it is important to continuously check if the service is compatible with
its designated environment. It happened a few times that network issues appeared
within the development landscape. Due to the fact that I was able to repeatedly check
that the handler was working, I could estimate if unexpected behaviour was caused
by temporary issues in the landscape, or by the implementation of the handler itself.
Thanks to that, I could continue adding features or functionalities and did not spend
much time trying to solve issues that did not relate to the handler at all.

In summary, I am pleased with the execution of the design and implementation
phase.

8.2 Prototype

The HANA Cloud configuration handler that was designed and implemented in the
context of my bachelor thesis is a prototype. This means this handler is not supposed
to be the final solution, but a tool to educate oneself about how to tackle the task of
automating the reconfiguration of HANAs in a way that was requested. The evalua-
tion will be based on the four quality criteria that are introduced in Section 4.

Usability
An HTTP request has to be sent to use the handler. It is expected from the user
that he/she possesses all the necessary data to send a configuration, create or change
request. The only information that must be separately obtained is the external IP ad-
dress on which the handler is exposed. This process is not very complicated. In the
’how to’ documentation of the handler it explained how the IP address is obtained

35

8. Evaluation

by executing one simple command. As soon as the user possesses all needed data,
he/she is able to send a request to the handler. The data describing the task to the
handler is sent in a JSON21 map. The structure of the map is kept as simple as possi-
ble. The general structure is also explained in the ’how to’ documentation. I showed
the handler to four developers and one software architect at work. Their feedback
concerning the request complexity was very positive. Comparing the usage of the
handler with manually configuring one or multiple HANAs, the handler automates
almost every step that otherwise would have been taken manually. The most common
way to configure a HANA manually is the following. The SystemDB password for the
right landscape must be obtained from the Vault. After that for each parameter that
should be configured a SQL statement is sent and the password is entered each time.
The other solution is to enter the HANA, which means the container. The INI file
that contains the parameter that should be configured must be found in the filesys-
tem. After all requested parameters are adjusted a tool must be used to trigger the
reconfiguration in the SystemDB. This tool is already available in the HANA. Both
ways consists of multiple steps and the execution time grows proportionally with a
growth in the number of parameters that should be configured and also with the size
of the group of HANAs that should be configured. The steps needed to use the han-
dler are constant and only consist of getting the IP address and sending the request.
Therefore, I conclude that with the introduction of the handler the workload for the
developers and operations team will clearly decrease. Furthermore, the handler also
logs meaningful events in the configuration process and for each request, an HTTP
response informs about the configuration process. The response states that the con-
figuration was executed successfully or otherwise that the request is invalid or errors
occurred. Using this information, the user can fix the request or inform the maintainer
of the handler about any issues while providing meaningful information.

Performance
The handler was designed not to execute redundant API calls. This resulted in higher
complexity of the implementation. The purpose of functions is in some cases unclear.
An example of that is a function that checks if a HANAPod with a specific HANA
ID exists. See function Exists in the HANA client code snippet of the Appendix.
This function would usually return a boolean. As the function executes an API call to
retrieve all HANAPods, the function would also return an error object for debugging
purposes. In this implementation, the handler also returns an object containing the
HANAPod data if the HANAPod exists. The function is basically the combination
of a check and a getter function. This programming style reduces the number of the
API calls, however, it does make the programming code harder to understand which
is a disadvantage for other developers who did not participate in the implementa-
tion. Another aspect of the performance of the handler is calculations. The handler
does not execute a lot of calculations, but it does contain many for-loops to search
in arrays for the right object. For an example of that see functions hanaPodList and
foundHanaPodInPodList in the HANA client code snippet of the Appendix. Some of
these loops would be made obsolete, if the API calls would be more detailed. Cur-

21https://www.json.org/json-en.html

36

https://www.json.org/json-en.html

8.2 Prototype

rently, in cases where the handler wants to obtain a specific resource instance it does
not send an API call to get one instance, but executes a list request to obtain a subset
of the resource instances which contains the desired one. This is due to the fact that
the get function that is supposed to return only one specific resource instance does
not work with the data that is available. If this would be solved, multiple for loops
could be removed which would improve the performance and decrease the CPU us-
age of the handler. Nonetheless, the current performance of the handler that it shows
in a development landscape is already acceptable. This opinion was also supported
by developers that I presented the handler to in an online meeting.

Security
Out of the three most important quality criteria, the implemented handler fell short
in the security aspect. Design decisions were made carefully to build a handler that
holds a minimum of critical permissions. An example of that would be the decision
about the HANA configuration mechanism. The decision was made between the pos-
sibility to connect to the SystemDB via SQL or entering the container and adjusting
INI files. For the second option, the handler would have to be granted the permissions
to exec every pod that is running in the same cluster. It is not possible to grant the
handler only permissions to exec only HANA pods due to the nature of the RBAC
method. Granting the handler permissions to exec every pod would have created a
great security risk and also more complexity in the configuration process. Therefore,
the handler was designed to fulfil its purpose while having as little access rights as
possible. However, the real security concern is not the handler itself but the access
to it. Currently, there is no method introduced that restricts the usage of the handler.
Everyone that has knowledge of the external IP address, on which the handler is ex-
posed, can send a request to the handler. It is not checked if the requester actually is
allowed to use the handler in any way. This is a concern that was not solved in the
handler due to the limited time. This means, it is crucial that the usage of the handler
must be restricted in a way, such as explained in Section 6.1, before it is introduced
in a productive system. Another security risk that should be tackled in the future is
that not all parameters are supposed to be changeable by every or any user. Some
parameters result in e.g. more storage usage of a HANA. This is a costly consequence
and should only be executable by the operations team and not every developer. In
conclusion to the security aspect, though the handler is acceptable concerning the
permissions that it holds, the access to it not limited enough.

Scalability
The handler saves the data in its memory that is needed for each HANA to roll back.
This has the consequence, that it is not sufficient to run multiple replicas of the han-
dler to scale up and down with the number of requests that are sent. Furthermore,
the automated HANA configuration update process is based on the functionality of
watching the events of the ConfigurationProfiles. If multiple replicas of the handler
would be running while a profile was deleted or updated, this would result in a sit-
uation were every replica would try to roll back or update the configuration of the
same HANAs. That means redundant and CPU resource-consuming work. However,
the handler is designed to run in every landscape that hosts HANAs. This also means

37

8. Evaluation

that the handler scales up with the numbers of landscapes. A production landscape
runs usually not more than a thousand HANAs at a time. Development landscapes
run way fewer HANAs. For the handler to handle up to thousand entries as a re-
turn of an API call is not much computational power. A use case for this would be
retrieving all HANA pods to find the HANA that shall be configured. Therefore, the
scalability is in my opinion currently sufficient. If the scalability has to be improved
this could be done by executing configurations of HANA groups concurrently.

In summary, the handler is scalable and thus cloud-native developed.

8.3 The Improvements

The improvement approaches would have positive and negative influences on the
handler concerning the quality criteria. One of the most common tension fields is
the relation between comfort and security. In this case, the comfort is equal to the
usability criteria. The introduction of the restricted use of the handler increases the
security in every realization, but can also decrease the usability aspect. The most
comfortable and secure approach that was explained in Section 6.1 is to use the per-
mission management framework that is already used in the company. This adds only
one additional precondition that the user is associated with the right ServiceAccount.
To do so, he/she requests it in the framework. Fortunately, every employee of the
department has already used the framework and has, therefore, knowledge on how
to send permission requests. The usage of the handler afterwards is not influenced
in any obvious way. The approach is ideal as it does not decrease the quality of the
user experience and uses a tool that is already widely used in the company. In most
cases, it is preferable to reuse existing tools instead of introducing more complexity
by using other tools.

The improvement approaches for the rollback feature all have the advantages, that
the default configuration data is saved independently from the handler and also re-
solves one of the two mentioned issues why the handler cannot be duplicated. Each
approach has also its disadvantages. As each approach is based on saving the data
independently from the handler, the handler will have to obtain the data via API calls,
with the exception of persistent volumes. This will increase the mandatory number
of API calls and will influence the performance. Which approach is the most suitable
depends on the work ethic between teams and the memory usage that is defined as
reasonable for this feature. The rollback mechanism for the ConfigurationProfiles is
rather simple. The only big issue is that in the worst case, this method doubles the
memory usage of each profile. Additional work would have to be done in the handler
to add the new request type, rollback. However, the workload is not too high as the
handler is designed to be flexible and extensible. This was done by implementing it in
a modular way by using separate packages as interfaces for different logical sections.
Also, in this case, a lot of code can be reused.

The presented approach to add a safety net to the profile event watcher is simple
and as a similar method is already used for the profile deprecation feature code can
be adjusted and reused for this extension. This seems to be a simple approach, but
might end up being the reason for undesired configurations, as explained in Section

38

8.3 The Improvements

6.4. The last improvement that is discussed is to introduce the concurrent config-
uration mechanism. The evaluation of the prototype also referred to this improve-
ment. If the handler is frequently used to configure HANA groups of great size, the
concurrent configuration process would improve the responsiveness of the handler
efficiently.

39

9. Conclusion

9 Conclusion

Good morning, and in case I don’t
see ya, good afternoon, good
evening, and good night!

Truman from The Truman Show
(1998)

This thesis dealt with the design and implementation of a service that automates the
configuration management of HANAs running in an existing Kubernetes environ-
ment. Yet, the main value does not lie in the implementation or design of the handler,
but in the educational aspect of this project. Viewing the workflow, it can be noted
that the first phase of brainstorming the mandatory functionalities and searching for
possible challenges and issues did result in a positive outcome. Some might argue that
also without the first phase, no bigger issues could have appeared. However, I already
started to exclude some concepts in this phase of critically evaluating concepts that
I created. This avoided situations that might have created some complications. The
fact is that while implementing the handler, no critical issues appeared that blocked
the development massively or risked not meeting the deadline for the bachelor thesis.
Furthermore, to use an iterative development process turned out to be a wise choice
as this made it possible to continuously check if the handler is feasible and allowed
me, after each extension of the handler was fully implemented, to decide if I want to
stop the development of the handler for the thesis. Using another process, such as
a waterfall-based method, could have resulted in a handler that can only function if
every planned feature is implemented. Therefore, I conclude that the workflow used
in this thesis was efficient. Referring to the rest of the thesis, the prototype itself is a
functional realization of its purpose. It does show room for improvement, but has the
potential to be a helpful tool for the developers and operations team of the company.
If desired, this handler could also be extended by other instance type adapters to also
configure other instances besides HANA. Not all concepts are designed in a cloud-
native way, an example is the current issue of not being able to scale the handler up
and down. However, the handler is a prototype that can be further improved to be a
service that can be used in production landscapes. Single features or modules can be
simply replaced, in most cases, thanks to the usage of interfaces.

Finally, the most important piece of knowledge that I could obtain from this thesis
is the following. When designing and implementing a tool or service which will be
integrated into an existing environment, it is efficient to first examine the existing
environment and the services and resources that are available in it. Doing this, it can
be avoided that much effort and time is put in building resources or concepts that are
already available in a slightly different fashion. For example, to create a concept to
restrict the access to the handler even though the company already uses a permission
management framework that has proven its worth and can also be used to realize
the access restriction. The second advantage is that you do not spend much time
on issues that resulted in dependencies within the system like explained in Section
7. In summary, in a big company with a complex environment, it is wise to spend

40

9. Conclusion

the time to analyse the environment, before designing the service that shall run in it,
to know what dependencies to fulfil and to make use of synergies positively, when
possible.

41

Bibliography

Bibliography

[1] What is sre (site reliability engineering)? https://www.redhat.com/en/topics/
devops/what-is-sre. (accessed: 06.10.2020).

[2] Anit Buehrle. Kubernetes FAQ - How can I route traffic for Kubernetes on bare
metal? https://www.weave.works/blog/kubernetes-faq-how-can-i-route-
traffic-for-kubernetes-on-bare-metal. (accessed: 23.06.2020).

[3] Horacio Gonzalez. Getting external traffic into kubernetes – clusterip, nodeport,
loadbalancer, and ingress. https://www.ovh.com/blog/getting-external-
traffic-into-kubernetes-clusterip-nodeport-loadbalancer-and-ingress/.
(accessed: 22.06.2020).

42

https://www.redhat.com/en/topics/devops/what-is-sre
https://www.redhat.com/en/topics/devops/what-is-sre
https://www.weave.works/blog/kubernetes-faq-how-can-i-route-traffic-for-kubernetes-on-bare-metal
https://www.weave.works/blog/kubernetes-faq-how-can-i-route-traffic-for-kubernetes-on-bare-metal
https://www.ovh.com/blog/getting-external-traffic-into-kubernetes-clusterip-nodeport-loadbalancer-and-ingress/
https://www.ovh.com/blog/getting-external-traffic-into-kubernetes-clusterip-nodeport-loadbalancer-and-ingress/

Glossary

Glossary

Cluster is a a collection of virtual and/or physical machines behaving as one system.

Cluster Nodes is a single virtual or physical machine included in the cluster.

ConfigMap (Kubernetes resource type) is basically a map storing string keys and
string values.

Helm is a Kubernetes package manager.

Helm Chart is the package format of Helm.

Kubernetes is a system to orchestrate containers.

Pod (Kubernetes resource type) is a collection of containers that are restricted to run
on the same cluster node.

Rollback is the mechanism to return e.g. a configuration to a previous state.

43

A. Appendix

A Appendix

HANA Configuration Handler ConfigurationsProfile

Con f igMaps

Profile Deprecation Job

HANAPod
HANA

SystemDB

Requester Vault

Cloud Landscape

read credentials

list
update

reconfigure

get
create
update
watch

create
update

delete

Figure 5: HANA Configuration Handler Architecture

Source code snippet of HANA client22:

package hana
...

4 // check s i f HANAPod e x i s t s and r e t u r n s i t
func (hana *HANA) Exists(instanceID s t r i n g) (bool , map[s t r i n g]corev1.

Pod) {
podList , err := hana.hanaPodList ()
i f err != n i l {

r e t u r n f a l s e , map[s t r i n g]corev1.Pod{}
9 }

ok , pod := hana.foundHanaPodInPodList(podList , instanceID)

22from hana.go

44

A. Appendix

i f !ok {
r e t u r n ok , map[s t r i n g]corev1.Pod{}

14 }

r e t u r n ok , map[s t r i n g]corev1.Pod{instanceID: pod}

}
19

// s e a r c h s f o r HANAPod ’ i n s t a n c e ID ’ i n l i s t o f HANAPods and r e t u r n s i t
func (hana *HANA) foundHanaPodInPodList(podList [] corev1.Pod ,

instanceID s t r i n g) (bool , corev1.Pod) {
f o r _, pod := range podList {

i f compareInstanceIDAndPodName(pod.ObjectMeta.Name , instanceID) {
24 hana.logger.Info("Pod for instance ID " + instanceID + " does

exist :D")
r e t u r n true , pod

}
}
hana.logger.Info("Pod for instance ID " + instanceID + " does not

exist :O")
29 // s hou l d t h i s r e a l l y be an e r r o r

r e t u r n f a l s e , corev1.Pod{}
}

// r e t u r n s a l l HANAPods
34 func (hana *HANA) hanaPodList () ([] corev1.Pod , e r r o r) {

label := "HanaInstallation"
pods , err := hana.clientSet.CoreV1 ().Pods("").List(context.

Background (), metav1.ListOptions{LabelSelector: label })
i f err != n i l {

r e t u r n [] corev1.Pod{}, err
39 }

podList := pods.Items
i f len (podList) == 0 {

hana.logger.Info("No pods with label " + label + " were found :(")
r e t u r n [] corev1.Pod{}, errors.New("No pods with label " + label +

" were found")
44 }

r e t u r n podList , n i l
}

// HELPER
49 // che ck s i f HANAPod b e l o n g s to HANA ’ i n s t a n c e i d ’

// pod names i s the comb ina t i on o f the HANAID and a random gen e r a t e d
s u f f i x

func compareInstanceIDAndPodName(podname , instanceid s t r i n g) bool {
r e t u r n strings.HasPrefix(podname , instanceid)

}
54

...

45

	Introduction
	The Initial Architecture
	The Landscape
	The HANA

	Related Work
	Workflow
	Design & Implementation
	Availability from outside the cluster
	Request Handling
	ConfigurationProfiles
	HANA Configuration Process
	Profile Creation/Update Process
	HANA Configuration Update Process
	Profile Deprecation
	Rollback of HANA Configurations
	Artifacts and Documentation

	Future Work
	Restricted Usage of the Handler
	Rollback Feature
	Deprecation and Rollback of ConfigurationProfiles
	Watching Profile Events
	Concurrency in the Configuration Process

	Challenges
	Evaluation
	Workflow
	Prototype
	The Improvements

	Conclusion
	Bibliography
	Glossary
	Appendix

