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Abstract

The Grid is a distributed computing infrastructure with the focus on resource
sharing. The Virtual Resource Manager (VRM) is a new approach of a Grid
middleware that can be used to share resources with a guaranteed Quality of
Service (QoS). The QoS is negotiated and specified in a Service Level Agree-
ment (SLA) for each request which is sent to the Grid. This thesis focuses on
resources of High Performance Computing Systems (HPC Systems). During
the SLA negotiation process a program execution model (termed plan) of
the application that should be executed is created in the HPC System. This
plan is used by the HPC System in order to determine whether it is able to
execute the application as specified in the SLA. The plan is a graph that
represents the application as multiple task nodes that potentially interact
with each other. Each task has a certain start and end deadline. These
deadlines indicate when the computation of a task has to start and when the
computation should be completed. A plan can be subdivided into schedules
(termed scheduling plans) for each node in an HPC System. A node of an
HPC System has to use this scheduling plan as a thread schedule that specifies
which HPC application dependent thread has to be executed at a certain
time. Therefore, the tasks of a scheduling plan have to be mapped to threads
on the corresponding node.

Current HPC Systems are using Linux as Operating System (OS) on their
computing nodes. The Linux default scheduler, the Completely Fair Scheduler
(CFS), is designed to be as fair as possible, in order to avoid the starvation of
threads. Furthermore, the scheduler allows the user to have a multitasking
experience even on a single CPU system. The requirements of a scheduler
that processes a scheduling plan are different, because the predetermined
schedule has to be processed as precise as possible and therefore always has
to comply with the deadlines of the tasks. Moreover administration and
monitoring threads have to be executed that are not part of the scheduling
plan. The requirements of both scheduling policies are disparate, because
the primacy of the plan related threads disagrees with the requirement of
fairness and the requirement to avoid the starvation of threads. During
the execution of task threads other threads that are not included in the
scheduling plan are blocked. The execution time of task threads can be much
higher than the execution time of other threads. Therefore the scheduling
of all threads is not fair. Furthermore, it is possible that threads that are
not included in the scheduling plan are starving during the plan processing,
because the unallocated times in the plan are not sufficient to execute all
waiting threads. Therefore the harmonization of both policies depends on
the amount of threads that are not related to the plan and depends on the
structure of the plan. Therefore, it is necessary to create a scheduler that
processes the scheduling plan and fairly assigns the time slots that are not
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allocated by the scheduling plan to threads which are not related to a plan
task. The challenge of creating such a scheduler is to harmonize the contrary
requirements of the CFS and the Plan Based Scheduler (PB Scheduler). The
challenge of this task is to switch between both schedulers as defined in the
scheduling plan by the deadlines. Furthermore, it is necessary to analyze
whether such a scheduling handling restricts the structure of the scheduling
plan.

Zusammenfassung

Das Grid stellt eine Infrastruktur fiir Verteilte Systeme dar. Diese setzt ihren
Fokus auf die gemeinsame Nutzung von Ressourcen. Ein neuer Ansatz fiir eine
Grid Middleware ist der Virtual Resource Manager (VRM). Dieser ermdglicht
es, Ressourcen mit einer definierten Quality of Service (QoS) zu teilen. In
dieser Arbeit stehen Ressourcen von High Performance Computing Systemen
(HPC-Systemen) im Vordergrund. Die QoS wird in einem Service Level
Agreement (SLA) spezifiziert. Dariiber hinaus werden in dem SLA potentielle
Strafbetrige definiert, welche im Falle einer Nichteinhaltung der QoS zu
zahlen sind. Bei der Nutzung des VRM, im Bereich der HPC-Systeme, wird
im wesentlichen Rechenkapazitét fiir die gemeinsame Nutzung bereitgestellt.
In diesem Kontext ist es das Ziel eines ressourcennutzenden Clients, eine
Applikation moglichst schnell auf einem HPC-System auszufithren. Wenn
ein Client eine entsprechende Anfrage an den VRM sendet, beginnt der
Prozess, welcher die SLA zwischen dem VRM und dem Client aushandelt.
Wihrend dieses Prozesses wird auf jedem HPC-System im VRM ein Program-
mausfithrungsmodell (genannt Plan) entsprechend der Applikation erstellt.
Anhand dieses Modells wird ermittelt, ob die Applikation entsprechend der
SLA auf dem System ausgefiihrt werden kann. Die Applikation wird dabei
durch einen Graphen modelliert. Dabei stellen die Knoten des Graphen Tasks
dar. Die Kanten zwischen den Knoten reprasentieren dabei die Interaktion
zwischen den Tasks. Jeder Task besitzt eine definierte Start- und End-Frist.
Diese Start-Frist (bzw. End-Frist) gibt an, wann die Ausfithrung des Tasks
beginnen (bzw. spétestens abgeschlossen seien) muss. Solch ein Plan kann
in Teilpléne (genannt Scheduling Pline) unterteilt werden. Diese Scheduling
Pline werden spezifisch fiir die Knoten eines HPC-Systems erstellt. Ziel ist
es, dass ein Scheduling Plan als Vorlage fiir die Ausfiihrungsreihenfolge der
Threads auf einem HPC-Knoten dient. Dabei werden nur Threads betrachtet,
die Teil der entsprechenden HPC-Applikation sind. Damit die Applikation
anhand des Plans ausgefiihrt werden kann, miissen die Tasks des Scheduling
Plans auf Threads des entsprechenden HPC-Knotens abgebildet werden.

Aktuelle HPC-Systeme verwenden fiir ihre Knoten Linux als Betriebssystem.
Der Completely Fair Scheduler (CFS), welcher Linux als Standardscheduler
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dient, verfolgt das Ziel, die Threads bei der Zuweisung von Rechenressourcen
moglichst gerecht zu behandeln. Diese Strategie wird verwendet, um das
Verhungern von Threads zu vermeiden und dem Nutzer das Gefiihl einer
parallelen Ausfithrung von Threads zu ermoglichen (selbst wenn das ver-
wendete System nur einen Prozessor besitzt). Die Anforderungen an einen
Scheduler, der den Scheduling Plan als Vorlage verwendet, unterscheiden sich
deutlich von den Anforderungen des CFS’s. Dies leitet sich daraus ab, dass
der vorberechnete Scheduling Plan so genau wie moglich abzuarbeiten ist.
Dementsprechend ist es wesentlich, dass alle Fristen der Tasks eingehalten wer-
den. Dariiber hinaus miissen Administrations- und Uberwachungs-Threads
ausgefiihrt werden, welche nicht Teil des Plans sind. Daher ist es notwendig,
einen Scheduler zu entwickeln, welcher sowohl den Scheduling Plan korrekt
abarbeitet, als auch die nicht im Plan allokierten Zeiten moglichst gerecht
auf die Threads, die nicht im Scheduling Plan eingeplant sind, zu verteilen.
Die Herausforderung bei der Erstellung eines solchen Schedulers ist es, die
gegensétzlichen Anforderungen zu harmonisieren. Daher muss entsprechend
der im Plan definierten Fristen, die Threadausfithrung entweder auf Basis des
Scheduling Plans oder des CFS’s durchgefiihrt werden. Dariiber hinaus ist es
notwendig, zu analysieren ob solch ein Scheduler die Struktur des Scheduling
Plans einschriankt.
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1 Introduction

In the last years High Performance Computing Systems (HPC Systems)
became popular in medium-sized and large companies. The HPC applications
became an integral part of a development cycle. One example of use is the
calculation of simulations in the automotive industry. Instead of performing
multiple real world tests, the HPC calculates multiple simulations that con-
siders relevant physical factors in an appropriate degree of detail. The models
that are used in a simulation are created by a department that considers the
visual and technical design. The results of the simulation can be used by
this department to optimize the model. Therefore, it takes time until the
modification derived from the former simulation results are applied to the
next model version. Thus, it is likely that a delay between two simulations
exists.

Often each department of a company (as in the example the design de-
partment) has its own HPC System in order to guarantee exclusive access.
This is done, because each department needs the guarantee that its jobs
are calculated until a certain deadline, because a delay of the calculation
would cause a delay in the whole development cycle and could block other
departments that are part of it. If the HPC System is shared it is possible
that the deadline expires before the job is calculated, because other queued
jobs are blocking the HPC System.

However, the purchase as well as the maintenance are costly and requires
trained personnel. Furthermore, it is likely that the exclusive handling leads
to multiple systems with low utilization, because each department has to
process the results of the previous HPC application run or simply has to
process tasks that are not dependent on an HPC System. The economic
objective of each company is to minimize their costs and maximize their
benefits. The same holds for their HPC Systems. Therefore, the companies
have to maximize the utilization of the systems and minimize the cost. The
sharing of the systems would maximize the utilization and the need of HPC
Systems would shrink and also the cost, but the departments still need the
guarantee that each job will hold its deadline. Furthermore, it would be
useful to compensate peak demands with external resources that are dynam-
ically reservable. A solution that fulfills these requirements has to share
internal resources (the company’s HPC System) as well as external resources
(systems that can be used to compensate peak demands). Therefore, a Grid
Computing solution could be applied.

The concept of Grid Computing is proposed by Ian Foster and Carl Kessel-
man in [1]. The Grid is a distributed computing infrastructure with focus
on resource sharing. Therefore, the objective of a Grid is to provide access
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to resources for multiple different clients. Furthermore, a resource has not
to be a physical resource. As described in [2]|, other kinds of resources are
for example informational resources (e.g. databases) or individual resources
(e.g. people and their expertise). Current Grid Computing systems do not
support such a guaranteed deadline handling as described before. However,
the Virtual Resource Manager (VRM) of [3]| introduces such a concept with
its Service Level Agreements (SLA) that are negotiated between the VRM
and a client.

During the SLA negotiation process a plan is created based on different
prediction models and historical data which are part of the client’s request.
This plan is a model that represents how the application of the job could be
executed on the HPC System. Therefore, it is used to analyze whether the
system can fulfill the corresponding SLA. This plan is divided into multiple
tasks where each task has its own absolute start and end time. If the SLA is
accepted by the system and the client, this plan will be used as a specification
how the application has to be executed in order to fulfill the SLA. This plan
will be divided into HPC node specific scheduling plans. A scheduling plan
and its corresponding threads have to be executed by the node Operating
System (OS). The thread scheduler that uses the scheduling plan as a schedule
is termed Plan Based Scheduler (PB Scheduler). Besides the plan related
threads, the OS has also to execute other threads as administration and
monitoring threads that are vital in order to monitor the HPC nodes. The
common requirement of a scheduler that schedules arbitrary threads is fairness
and therefore the avoidance of the starvation of threads. The requirements of
the PB Scheduler are to execute the scheduling plan as precisely as possible
and to avoid exceeded deadlines. Therefore, a scheduling plan thread which
has to be executed should preempt any other thread. This leads to contrary
requirements, because the primacy of the task threads disagrees with the
requirement of fairness. Futhermore, the execution of a task thread blocks
the execution of other threads. Therefore, it is possible that other threads
are starving.

The main topic of this thesis is to design a scheduler that harmonizes the
contrary requirements of the scheduling plan processing and the scheduling of
arbitrary threads. It is possible that system dependent constraints of the PB
Scheduler restrict the structure of the scheduling plan, because the scheduler
is probably not able to execute arbitrary scheduling plans. Therefore, it is
necessary to identify such constraints and derive the structure of a feasible
scheduling plan.

This thesis focuses on OS specific components as the scheduler, but is located
in the domain of Grid Computing. The remainder of this thesis is organized
as follows: In order to illustrate where the main topic of this thesis is located,
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the subsequent sections explain the basic architecture of the VRM as well
as the HPC specific plan and the node specific scheduling plan. The sub-
sequent Sec. 2 identifies possible sources of constraints that could restrict
the scheduling plan and uses an analytical approach to verify whether they
restrict the scheduling plan in a real system. In Sec. 3 the architecture and
implementation of the base OS scheduler is described and analyzed. Based
on this result the design of the PB Scheduler is introduced and it is explained
how the design could be implemented. The following Sec. 4 uses a prototype
implementation based on the knowledge of the former section to augment
the analytical results of Sec. 2 with empirical data. The last Sec. 5 and 6
summarize the results of the previous sections and highlight open research
aspects.

1.1 Virtual Resource Manager

The VRM is a Grid middleware that orientates on the requirements of [2] and
therefore introduces SLAs in order to guarantee a certain Quality of Service
(QoS). An SLA is a definite contract that contains inter alia information
about the service the client expects as well as penalty fees that have to be
paid if the rendered service diverges from the agreed service. This can also
comprise the definition of a deadline of a computational job. The VRM does
not substitute the software that is currently used on HPC Systems, but has
to abstract from their Resource Management Systems (RMS). A RMS is
a software that has the task to manage the resources of an HPC System.
This means that the system reserves resources (as e.g. CPUs or Storage) for
anew job of a client and also releases these resource when the job is completed.

The VRM counsists of Administrative Domains (AD) which are used by
the negotiation process that is responsible to negotiate an SLA that complies

with the requirements of the client and fits with the offered services of an
HPC System.

1.1.1 Architecture

The AD is a central component of the VRM. An AD comprises the resources
for which a certain set of policies is applicable. These policies specify the
visibility and access rights of the resources. As depicted in Fig. 1 an AD is
modeled by an Administrative Domain Controller (ADC) that is connected to
multiple Active Interfaces (AI). Each interface is also connected to a Resource
Management System.

1.1.1.1 Administrative Domain Controller
The ADC has the main task to publish information about its associated
resources (according to the specified policies) and receive and process requests
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Administrative Domain Controller

i

Active Interfaces

i

Resource Management System

Figure 1: Architecture of an AD.

from the outside. Furthermore, ADs can be nested (an AD is used as resource
by another AD) so that the VRM consists of a hierarchical AD structure.
The hierarchical structure can be used to aggregate and manage systems that
are part of the same organizational unit (e.g. systems of the same company).
Moreover the ADC is responsible to manage the negotiation process for
its underlying resources and sub-ADs. The information published by the
ADC can be used by the negotiation process to determine whether an AD
could fulfill an SLA. Furthermore, it is possible that resources in an AD are
composed in order to create virtual resources (e.g. to create a big virtual
32 bit system of a 32 bit system and a 64 bit system) which fulfills more
complex SLAs.

1.1.1.2 Active Interface

The Al has the purpose to abstract from different RMS and provide a unified
interface. This interface is implemented through the functionality of the RMS
of the corresponding resource. Current RMSs use an advanced reservation
policy with a precise request structure [3]. In contrast, features as diffuse
requests or dynamic resource allocation [4] would allow more complex SLAs. A
diffuse request is a request that allows a scope of possible results (e.g. request
32-64 CPUs). A dynamical handling would allow to assign new resources to
a job during its execution. The features of the RMSs are different, hence it is
not always possible to implement the interface through an RMS. Therefore,
the systems are classified into systems that already provide the functionality
of the interface, systems that provide enough information to implement the
AT and systems that do not provide enough information to implement the
interface. The last kind of systems are also integrable into the VRM but they
are not usable to fulfill a request of a client that requires a certain QoS.

1.1.1.3 Negotiation Process

The negotiation process is always triggered if a client sends a request to
the Grid. This request is forwarded to the VRM and its root ADC. The
ADC starts the initial check that verifies which resources have the potential
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to fulfill the request. This comprises the basic check whether the resource
requirements fit with the corresponding resource (e.g. the check fails if a 64
bit system is requested but the resource is a 32 bit system). The negotiation
process is triggered in the ADCs of the resources that passed the first check
(this causes a recursive negotiation process). The results of these processes
are aggregated and returned to the Grid. Depending on the returned result
the client can adjust requirements and retrigger the process or accept the SLA.

After the first check is passed each ADC has to create a job specific plan in
order to estimate whether it can fulfill the SLA. This plan is created based
on the application that has to be executed as well as application specific
historical data. Both pieces of information have to be provided by the client
that sent the currently negotiated request to the Grid. If an ADC accepts an
SLA, the formerly created plan is used as a specification how the application
has to be executed in order to comply with the SLA. This plan is divided
into multiple scheduling plans which are executed on the nodes of the corre-
sponding HPC System.

The main topic of this thesis is to verify whether such a predetermined
schedule can be executed in the OS of an HPC node. Therefore, it is neces-
sary to determine which constraints are implied by a scheduler that executes
the scheduling plan as precisely as possible. The following section describes
in more detail how the plan is modeled and created.

1.1.2 Plan Creation

For each job the Grid receives, a plan is created. This plan results from the
negotiation process of the VRM and can be modeled as a program graph.
Common models of a program are the Task Interaction Graph (TIG) and the
Task Precedence Graph (TPG). Both are directed graphs where each node
represents a task and each directed edge points from a task t; to another task
tj. In a TPG an edge indicates that ¢; has to be executed before ¢;. In a TIG
an edge indicates that a communication flow exists from ¢; to ¢;. The used
graph is a combination of TPG and TIG, because the TPG information is
necessary to determine a scheduling order and the communication information
of the TIG is necessary to determine whether network resources has to be
reserved for the job. Each node has at least four additional fields with values
for an ID that identifies the HPC node that should be used for execution, a
thread identifier, an absolute task execution start and end time. The time
values are absolute therefore the graph has to be acyclic otherwise the task
that should be executed a second time would not be executed because the
start time as well as the end time would have already exceeded.
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The alternative unit to measure the length of a computation phase is the
number of instructions that can be executed in the phase. In the following the
unit time is used, because the implementation of a counter that measures the
number of executed instructions is more complex than the implementation of
a timer. Moreover, the time is independent of a system, while the number
of instructions is always determined based on a specific CPU architecture.
Therefore, a mapping is necessary in order to convert instruction numbers
between CPU architectures. The decision to use time does not restrict the
results that are based on the plan, because instructions can be converted to
time and vice versa.

Such a plan is created based on the instructions of the HPC application that
should be executed. The plan starts with an initial task and this task ends
(the end time of the task has to be set to the corresponding time) if a system
call should take place. The next task is created if this system call execution
is ended (the start time of the task has to be set to the corresponding time).
This handling is used to create all tasks. The main idea behind this handling
is that a system call implies that an external action is triggered which has to
be completed before the application execution can proceed. While the action
takes place other threads can be executed.

The VRM has the purpose to allow the processing of multiple jobs in one HPC
System without reserving nodes exclusively. Therefore, a newly created plan
has to be combined with an existing plan that is already processed by the
system. This results in a plan that is not necessarily a static construct that
is predetermined once and never changed. In fact the plan will be extended
if an additional job is accepted by the system. Furthermore, the plan has to
be adjusted in the case of a prediction error.

This plan which is created specifically for one HPC System is divided into mul-
tiple scheduling plans that are node specific. In the following the scheduling
plan is always assumed to be given and static, since the analysis of the schedul-
ing plan creation would go beyond the scope of this thesis. Furthermore, for
simplification the scheduling plan is always modeled with relative time values.
The time span between the start and the end of a task is termed ezecution
time (used as node weight in the TPG), because this time is allocated for
the purpose of executing the corresponding task. The time between the end
of a task and the start of the next task is termed unallocated time (used as
edge weight in the TPG). The term unallocated time is chosen because the
time is not allocated in order to execute scheduling plan tasks. Therefore,
the time can be used to execute arbitrary scheduling plan independent threads.

As described at the beginning of this section, the plan generation depends
on the instructions of the application that should be executed. Furthermore,
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the environment that should execute the scheduling plan could have its own
constraints that restrict properties of the scheduling plan. This is likely be-
cause most of the systems are designed to avoid the starvation of threads and
the execution of a long task could be interpreted as a stuck thread. In order
to identify such constraints it is necessary to analyze the thread scheduler
which has to process the scheduling plan.
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2 Assessment Criteria on Scheduling Plans

Current Operating Systems (OS) that are used on High Performance Comput-
ing (HPC) nodes are using the common scheduling policies that are designed
to be as fair as possible in order to maximize the usability for desktop users.
The advantage is that users can execute multiple threads (as e.g. X-Server
and an office application) at the same time and no thread starves. The
requirements of HPC Systems are totally different, because the objective
is to minimize the execution time of the HPC applications. Therefore, it
is necessary to implement a new scheduler that executes a node specific
scheduling plan.

Beneath the precise execution of the scheduling plan it is necessary to har-
monize the PB Scheduler that executes the scheduling plan and the default
scheduler of the underlying OS. This is necessary, because the OS still has to
execute system threads with the default scheduler in the unallocated times
of the scheduling plan. The implementation in the following sections has to
show whether the switching between the default scheduler and PB Scheduler
is always possible.

The harmonization of the PB Scheduler and the default scheduler depends on
the degree of filling of its corresponding runqueues. In the following the struc-
ture, that contains threads that are in a state that allows the corresponding
scheduler to run it, is called runqueue even if the underlying structure is not
a queue. First of all the filling of a queue is considered to be binary, either
filled or empty. If the PB Scheduler runqueue is empty a further analysis
of the filling of the default scheduler runqueue is not needed, because the
system runs as without the PB Scheduler and no harmonization is necessary.
The same holds for the case where the PB Scheduler runqueue is filled, but
the default scheduler runqueue is empty, because the default scheduler has
no threads to execute there is no conflict of interest between both schedulers.

The only case where the harmonization is necessary is if the default scheduler
runqueue is filled as well as the PB Scheduler runqueue. The PB Scheduler
has to process the scheduling plan as precisely as possible in order to comply
with the deadlines. Therefore, the harmonization has to start within the
creation of the scheduling plan. Hence the stability of the OS depends on
the length of the execution times and the unallocated times, because the
unallocated time is the time that can be used by the default scheduler and
the length of the execution time specifies how long the default scheduler is
blocked by the PB Scheduler.

Therefore, the task execution times and unallocated times have to be set
to a value that guarantees the stability of the system, which executes the
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scheduling plan. In the following a scheduling plan with such a guarantee is
termed a safe plan. The most important criterion is that the scheduling plan
is created so that it is possible that the scheduler can comply with all dead-
lines. Furthermore, it is useful to minimize the makespan' of the scheduling
plan in order to execute the job as fast as possible. Therefore, an optimal
scheduling plan is a safe plan with a minimal makespan where decrementing
any unallocated time would lead to an unsafe plan. Such a scheduling plan is
termed mazximal plan. In order to verify whether a scheduling plan is safe,
corresponding criteria are required. Furthermore, it is necessary to define the
properties of a stable or an unstable system.

2.1 Criteria of a Stable System

A fundamental assumption is that the OS without the PB Scheduler and a
common system load would always run stable. A possible source that could
cause an unstable system could be a not executed system thread.

Depending on the OS there are drivers that are not called as a kernel
method, but executed by a separate worker thread. As described in Sec. 1.1.2
a new task in the graph is created if the action triggered by a system call
is executed. When the scheduling plan is processed, it is possible that the
corresponding system call spawns a separate driver kernel thread that has to
be executed in order to provide the system state that is expected by the next
task. Therefore, the unallocated time between these both tasks has to be at
least the estimated time to execute the driver thread. Otherwise these kernel
threads could starve which should be avoided in a stable system. In order to
avoid the starvation of user threads it is necessary to analyze the common
system load of an HPC node.

2.2 Analytical Approach of Criteria Definition

In order to define the constraints of a safe plan it is necessary to define an
allowed domain of scheduling plan parameters. Plans can be restricted by the
parameters: maximal/minimal ezecution time, maximal/minimal unallocated
time.

2.2.1 Minimal Task Execution Time

There is no minimal task execution time. Even if it is possible that the
ezecution time is zero it is more useful to remove such a task from the
scheduling plan. Nevertheless there are technical constraints that avoid an
arbitrary small execution time, because a switch to or from the execution
phase is not always possible and detectable. Therefore, the execution time

!The total length of the scheduling plan.
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should be either zero or greater than the delay that is necessary to detect
such a switch.

2.2.2 Maximal Task Execution Time

In order to verify whether the OS itself has limitations of the execution time,
an empirical analysis of this aspect is necessary. As described in Sec.1.1.2, a
task starts and ends with a system call. Therefore a task represents a section
of the corresponding application where only computational instructions are
executed. In fact an HPC application comprises communication between the
node in order to exchange results which are necessary for further computations.
Therefore it is not realistic that an HPC application has tasks with arbitrary
long execution times. Furthermore, the user threads can limit the execution
time of a task. On a common HPC node setup there are a few administration
and monitoring threads which are not part of the predetermined scheduling
plan. There are multiple different monitoring tools, but most of them spawn
a monitoring thread that has to be executed periodically in order to collect
system data and send them to a central server. Based on these data the
server decides whether the observed system entered an undesirable state. If
these data are not sent, the node will be marked as not responding and the
administrator will be informed. Beneath the formerly mentioned passive
tools that aggregate and send system data, there are also active tools that try
to recover the system from an undesirable state. Such a tool is a watchdog
that also requires that its thread is executed periodically and if this does not
happen a restart of the system is triggered. In order to classify the system
as stable such threads have to be executed. The period is configured for
each tool by an administrator. Therefore, the maximal task execution time
(denoted as t;q,) is the minimum period of these tools can be assumed to be
given.

2.2.3 Minimal Unallocated Time

The minimal unallocated time depends on the time that is needed to execute
all formerly mentioned periodical monitoring threads. Additionally there are
potential kernel threads that are started at the end of a scheduling plan task
execution. These threads are needed to fulfill I/O-tasks which are required
to execute the next scheduling plan task properly. Therefore, the unallocated
time has to be long enough to execute these threads. The ezecution time of
the administration threads should be nearly constant (denoted with f.) in
each period, because the administration threads always have the same task.
The time that is necessary to execute the driver kernel threads (denoted as
fi) depends on the task of the thread. Therefore, the analytical approach is
not sufficient to determine the minimal unallocated time and an empirical
estimation is vital.

10



2.2 Analytical Approach of Criteria Definition Kelvin Glaf

2.2.4 Maximal Unallocated Time

The unallocated time is the time, where the default scheduling mechanism
of the OS is used. The usage of the default scheduler should not have a
temporal limitation otherwise the OS without the PB Scheduler modification
would not run stable and one of the fundamental assumptions would not hold.
Therefore, there is no maximal unallocated time limitation of the system.
However, choosing arbitrary long unallocated times would violate the criterion
of a minimal makespan. Therefore, the minimal unallocated time should
always be chosen.

2.2.5 Criterion of a Safe Plan

If the empirical analysis can find a valid value for f; and the OS limitation
of the task execution time, the following limitations of a scheduling plan (as
shown in Fig. 2) can be defined:

(V 1t < tmaa) A (7\91 fi>fe+ f)

1 j=

I'<Cs

J

a f a fo < ) f3 fn72< >.er1@

Figure 2: Scheduling plan with n tasks (t;) and n — 1 unallocated times (f;).

Furthermore, the unallocated time depends on the precision of the PB Sched-
uler implementation. If the switch to the execution phase has a delay it is
necessary to increase all unallocated times by an appropriate offset.

It is useful to augment the results of the analytical approach by results
of an additional empirical analysis in order to determine the remaining vari-
able values of the maximal execution time and the minimal unallocated time.
Therefore, a minimal implementation of a PB Scheduler is needed to collect
significant data.

2.2.6 Criterion of a Maximal Plan

A mazimal plan is a safe plan with minimal unallocated time values. Therefore,
the criterion of such a scheduling plan can be formalized based on the definition
of a safe plan:

n

(V th < tmaw)/\(rfglfj = fe+fi)
j=1 j=1
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In the following the definition of a mazimal plan is used less restrictive than
defined before, because the scheduling plan is based on different prediction
models and is processed by an OS which is a highly variable and complex
system. Therefore, it is not useful to apply such a strict mathematical
definition. Thus, a scheduling plan that has nearly minimal unallocated time
values is treated as maximal.

12
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3 Plan Based Scheduler

The previous section introduced the concept of a plan and how such the plan
can be divided into multiple node specific scheduling plans. These scheduling
plans should be used as precomputed schedules by an High Performance Com-
puting (HPC) node. The purpose of this section is to verify the feasability
of the PB Scheduler that uses the scheduling plan as schedule for plan tasks
and also executes arbitrary threads in the unallocated time of the scheduling
plan while complying with the deadlines of the plan tasks.

Therefore, the following subsection introduces the requirements of a PB
Scheduler. Based on these requirements the subsequent subsection determines
the ideal base Operating System (OS). The remaining subsections explain the
scheduler of the OS and the necessary adjustments to create a PB Scheduler.

3.1 Requirements

The PB Scheduler has to schedule the threads as predefined in a scheduling
plan. The major difference between the PB Scheduling approach and other
schedulers is that the schedules are precomputed. This leads to the advantage
that the scheduler has a basic decision logic. The disadvantage of this
approach is that the schedule cannot be adjusted dynamically by the OS.
Therefore, it is crucial that the scheduling plan is executed as accurate as
possible in order to avoid exceeded deadlines. Besides the execution of
scheduling plan threads it is also required to execute arbitrary system threads
(as described in Sec. 2.2.2, e.g. administrative applications), which leads to
the requirement to harmonize the default scheduler of the base OS and the
PB Scheduler. Furthermore, it is important that the scheduled threads and
the actions of the PB Scheduler are not preempted by another scheduler or
thread. This scheduler has to be implemented into an existing OS that is
representative for an OS used on HPC system nodes.

3.2 Choice of the Base Operating System

The scheduler should be implemented in an OS which is widely used on
HPC Systems so that the OS specific effects are the same as on real HPC
Systems. Otherwise the analysis of system specific properties in combination
with the scheduler would be inconclusive. The TOP500 list of [5] ranks the
fastest supercomputers?. The analysis of the current list showed that all
listed systems use a Linux distribution as their node OS3. Even if different
distributions are used* all of them are based on a version of the same kernel.

2This list contains only supercomputers that are registered by voluntaries. Therefore,
this list is not necessarily complete.

3See App. A.1 for detailed information about the Operating Systems in the TOP500.

4See App. A.1 for a list of popular distributions.
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In order to generate the most general analysis results, which are applicable to
most of the distributions, the scheduler should be implemented in the current
code of the main repository of the Linux kernel.

3.3 Architecture of the Linux Scheduler

The Linux scheduler (v4.13) has a basic and clear abstract design. This
design does not become immediately evident by studying the kernel code,
because the implementation of the design is distributed over multiple files and
contains optimizations which complicate the basic understanding. Therefore,
this section describes the abstract design of the scheduler.

The design of the Linux scheduler is different from the classical idea of
a scheduler that has one policy (as e.g. Round-Robin or FIFO) for all threads.
The Linux scheduler is designed to administrate multiple policies. Each
policy is implemented in a submodule and has its own runqueue® and corre-
sponding managing functions to organize the structure of the runqueue. The
submodules are ordered by descending priority in a simply linked list. The
scheduler iterates over the list of submodules and calls a submodule function
which determines whether the currently selected module has a thread in its
runqueue that should be executed. This function can also return a value that
causes a restart of the scheduler loop over all submodules. This value should
be returned if a lower prioritised module determined that a higher prioritized
module has already a thread in its runqueue. If the function returns a thread,
the iteration over the list terminates and the thread will be executed. The
return value NULL indicates that the runqueue of the current module is empty.

The duration of a thread execution depends on the submodules with higher
priority and the submodule managing this thread. If a rescheduling is trig-
gered and the currently used submodule wants to execute the current thread
longer, it is only possible if no higher prioritised submodule has a thread in its
runqueue. If a submodule wants to stop the execution of its current thread it
is possible that the module contains a definition of a function which is called
always if the clock interrupt arises. This function can trigger a rescheduling
that stops the execution of the current thread.

The list of available modules used by the the Linux kernel with disabled
Symmetric Multiprocessing (SMP) mode® is shown in Fig. 3. The list starts
with the Deadline module which is a modified implementation of the Earliest

5According to the Linux documentation the structure that contains runnable threads
is called runqueue even if another structure than a queue is used.

5The SMP module list starts with the additional Stop module that schedules a CPU
specific stop task. This task has the highest priority in the whole system and therefore it
cannot be preempted.

14
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Deadline First (EDF) policy. The subsequent Realtime module implements
the First-In, First-Out (FIFO) as well as the Round-Robin (RR) policy. The
most famous module is the Completely Fair Scheduler (CFS) module which
is used as the default policy for each thread in Linux and has the goal to
be as fair as possible. The last entry in the list is the Idle-Scheduler. This
scheduler always guarantees a runnable thread in its runqueue’. Therefore,
the scheduler loop described above will always terminate with a valid thread
as a result.

[Deadiine|——— Realtnne}—— Compleely Foi

Figure 3: Order of scheduler submodules in the Linux kernel v4.13 with SMP
disabled.

3.4 Implementation of the Linux Scheduler

This section first explains how threads are implemented in Linux, the subse-
quent section describes how the design described in the previous section is
implemented in the kernel.

3.4.1 Representation of Threads in Linux

The most important object during scheduling is the thread. In order to
understand the way Linux schedules threads it is useful to understand how
threads are represented. A thread is represented by a pointer to a valid
instance of the structure task struct. This structure contains all data that
are necessary to describe a thread. Contrary to other operating systems
Linux represent threads with a private memory space (often termed process)
and a shared memory space (often termed thread) with the same structure.
Therefore, this is transparent for the scheduler.

The structure task struct contains multiple fields that are not necessary to
understand the general approach how the Linux scheduling implementation
works. Therefore, this structure is not explained in depth and only the most
important fields (in the context of scheduling) are explained.

The structure contains inter alia the thread identifier (pid) as well as multiple
flags and priorities that are used by different scheduling modules. The most
important field is the pointer sched_ class that points to the scheduler module
that is assigned to the specific thread. Furthermore, there is an integer policy
that indicates which scheduling policy is selected for the thread. This is

"The returned thread does either housekeeping tasks or simply executes an assembly
halt (hlt) instruction.
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necessary because one module can provide multiple policies (as e.g. the RT
module that provides the policies Round-Robin and FIFO). Therefore, the
policy has to match with the scheduling module.

3.4.2 Implementation of the Architecture

The abstract scheduling functionality that loops through the submodules®
is implemented in the procedure  schedule which is called by the main
scheduling procedure schedule. As shown in Fig. 4 the implementation of
the main logic is straightforward. The macro for each class loops through
all submodules. Each submodule is represented by an implementation of
the structure sched_ class. Therefore, the iteration variable class contains a
pointer to the currently selected sched class implementation. Each iteration
consists of a call of the function pick mnext task which receives the current
runqueue (argument rq), the representation of the thread that was executed
before the schedule process was triggered (argument prev) and some flags
(argument 7f). This is the function which determines whether the runqueue of
the module contains a thread to run. If no thread is available the return value
is NULL and if the module wants to restart the module loop the return value
is the predefined pointer RETRY TASK. The macro unlikely is just a branch
prediction optimization and indicates to the compiler that the case is unlikely.

again:
for_each_class(class) {
p = class->pick_next_task(rq, prev, rf);
if (p) {
if (unlikely(p == RETRY_TASK))
goto again;
return p;

}

Figure 4: Main logic of the procedure _ schedule.

One purpose of the structure sched_class is to work as an interface in
the meaning of object-oriented programming and therefore provides a set

8Even if the abstract architecture suggests that the submodules are totally independent
of each other and perfectly encapsulated, in fact even the general scheduling code contains
submodule specific optimizations (e.g. the method pick next task contains module specific
optimizations).
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of functions that has to be implemented by a module. Furthermore, the
structure models the simply linked list. A significantly shortened version of
the structure is shown in Fig. 5. The pointer next points to the sched class
with the next lower priority and represents the link to the next list entry.
The first entry of the list is defined via the macro sched class_highest. The
vast majority of the functions in sched class are responsible to manage the
runqueue. The function task_tick is always called by the clock interrupt
handler. This function can be used to update time dependent priorities and
to check whether the current thread has to be preempted. The procedure
enqueue (or dequeue) should add a specific thread to (or remove it from)
the runqueue. The procedure put prev_task is crucial to ensure the correct
scheduler state if a thread is preempted by a thread of another scheduler. If a
scheduler preempts a thread of another scheduler, the method put prev_task
of the formerly used module is called with the preempted thread representation
as an argument. Otherwise the thread representation would be lost and the
runqueue of the formerly used module would enter an unexpected state”.

struct sched_class {
const struct sched_class *next;

void (*enqueue_task) (struct rq *rq, struct task_struct *p,
int flags);

void (*dequeue_task) (struct rq *rq, struct task_struct *p,
int flags);

struct task_struct * (*pick_next_task) (struct rq *rq,
struct task_struct *prev, struct rq_flags *rf);
void (*put_prev_task) (struct rq *rq, struct task_struct *p);

void (*task_tick) (struct rq *rq, struct task_struct *p,
int queued);

};

Figure 5: Significantly shortened definition of the struct sched_class that
represents the main interface of the implementation of a submodule. This
extract shows only the definitions necessary to explain the implementation of
the abstract design.

9First implementation attempts showed that if the method is not implemented, sporadic
kernel panics are likely, because the former scheduler module is not correctly administrated.
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sched_ class_highest NULL
*next

* t * t — *next
ner ’ Completely Fair }ﬂ>

Figure 6: Technical representation of the scheduler submodule list with SMP
disabled.

3.5 Architecture of the Plan Based Scheduler

In order to harmonize the PB Scheduler and the CFS (and Idle-Scheduler)
the approach of scheduling different scheduling policies is chosen, because
this approach is already implemented with the modular priority based design
of the Linux scheduler which is designed via the module list. The scheduling
policy as depicted in Fig. 7 of the PB Scheduler is as follows: The scheduler
has to iterate over the scheduling plan list and executes the tasks exactly as
long as specified in the scheduling plan. After the execution of a task the
scheduler has to use the CFS (or Idle-Scheduler) in order to schedule threads
which are not included in the plan. The default scheduler should only be
used as long as specified in the unallocated time between two tasks. As soon
as the unallocated time elapsed, the PB Scheduler should be used again.

These switches between the task execution mode and the unallocated mode
of the PB Scheduler are termed mode switches. In order to execute the
scheduling plan accurately it is crucial to detect necessary switches as soon as
possible and to minimize the delay between the detection and the execution
of a switch. This switch handling is only necessary as long as non-executed
tasks are in the scheduling plan. If all entries are executed the system should
use the default scheduler until a new scheduling plan is submitted. While
no new scheduling plan is submitted the PB Scheduler is called disabled and
submitting a scheduling plan would enable the scheduler.

The modular scheduler design of Linux is a great foundation in order to
implement the formerly introduced handling, because the priority based
scheduling of different scheduling policies is already implemented and can be
adjusted so that the PB Scheduler and the already existing Linux scheduling
policies are harmonized.

In order to ensure that the threads are not preempted the PB Scheduler has
to be the module with the highest priority. Therefore, the PB Scheduler is
the first module that is checked in the loop (described in Sec. 3.3) that deter-
mines the thread which will be executed next. If the PB Scheduler threads
a scheduling plan and the current time slot is unallocated, another policy
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Figure 7: State Transition Diagram of the PB Scheduling approach on top
of the scheduler (denoted as "Default Scheduler”) of an arbitrary operating
system.

can execute arbitrary threads. This switch can be implemented through the
formerly mentioned loop. If the PB Scheduler module returns a thread, the
remaining scheduling policies are ignored and the thread is executed, but if
the module does not return a thread, the remaining modules (most important
the CFS) are checked corresponding to its priority. Therefore, the first switch
from the PB Scheduler to the CFS (or Idle-Scheduler) is just implemented
through the existing architecture without adjusting other modules.

The switch from the CFS (or Idle-Scheduler) is necessary in the case that the
unallocated time exceeded and an execution of a scheduling plan task has to
start. This logic needs modifications in all modules'® that are used beneath
the PB Scheduler. If a module other than the PB Scheduler is used, it has to
check cyclically during a thread execution whether the unallocated time is
exceeded. If this happens the rescheduling process has to be triggered. The
rescheduling leads to the execution of the thread selection loop. Therefore,
the requirements of the PB Scheduler are implementable in the Linux archi-

107t is assumed that only the default scheduler CFS and the Idle Scheduler are used.
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tecture without changing existing logic and the scheduler works as before if
the PB Scheduler has no scheduling plan to process.

3.6 Implementation of the Plan Based Scheduler

The following sections describe an implementation approach in order to im-
plement a PB Scheduler. For simplification it is assumed that the threads
that have to be executed by the PB Scheduler are always runnable. This
leads to a minimal thread management, but the implementation of a full
handling would be similar to handling of other scheduling modules, because
the Linux waiting queue implementation is generic and independent of the
modules.

Therefore, the Sec. 3.6.1 introduces only data structures that represent
the scheduling plan and corresponding administrative information.

The subsequent Sec. 3.6.2 describes how a method can be implemented that
determines whether the PB Scheduler should be active or not. This method
has to be used by all scheduler modules in order to determine whether they
have to stop their execution and switch to the PB Scheduler.

The main logic of each scheduler is located in its module implementation.
Therefore, the last Sec. 3.6.3 describes the implementation of a PB Scheduler
module.

3.6.1 Enhancement of the Linux Runqueue

The common way to enhance the runqueue structure rq by new submodule
specific information is to add a module specific struct instance. Therefore,
an instance of the new structure pb rg is added. As shown in Fig. 8 the
plan based runqueue structure contains the scheduling plan and additional
administrative information. The first four fields have to be set dynamically to
initialize the scheduler, while the remaining fields are used internally by the
PB Scheduler to persist its state. The array plan represents the scheduling
plan that has to be executed. Each array entry is an instance of the structure
plan__entry (also shown in Fig. 8) which consists of a time that indicates
how long a task should be executed (ezec_time) and the subsequent unallo-
cated time (uall_time) which can be used by other less prioritized schedulers.
According to the Linux scheduler time handling, the default time unit of the
PB Scheduler is also a nanosecond.

The size of the current scheduling plan is specified via the variable size.
The following definition of a runqueue has a maximal size defined via the
macro PB. MAX PLAN LENGTH for simplification, but it is also possible
to implement a dynamical runqueue. The variable ¢ entry is the iteration
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variable that is used to loop over the scheduling plan and select the next task.

While the scheduling plan entries contain relative time information, the
variable exec_ until (or uall _until) contains the absolute time information un-
til which timestamp the task should be executed (or the CFS/Idle-Scheduler
can be used). The variable mode contains the value of one of three macros
that indicate one scheduler mode!!. The disabled mode indicates that the PB
Scheduler already executed the current scheduling plan or that no scheduling
plan is set. The remaining modes indicate whether the scheduler currently
executes a scheduling plan task (execution mode) or the other scheduler
modules are allowed to choose the thread which will be executed (unallocated
mode).

struct plan_entry
{
pid_t task_pid;
u64 exec_time;
u64 uall_time;

};

struct pb_rq
{
struct plan_entry plan[PB_MAX_PLAN_LENGTH] ;
unsigned int size;
unsigned int current_entry;

u64 uall_until;
u64 exec_until;
int mode;

Figure 8: Run queue implementation.

The PB Scheduler runqueue structure is initialized with the default values
via the method init pb rq. This method is called by the main runqueue
initialization method that initializes the main runqueue before the scheduler is
used the first time. This initialization does not set a scheduling plan. In order
to use the PB Scheduler it is necessary that a system call is implemented

"The macro PB_DISABLED MODE indicates the diabled mode. The macro
PB_EXEC MODE indicates the execution mode and the macro PB_UALL_MODE
indicates the unallocated mode.
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that can be used to submit a new scheduling plan. This system call sets the
new plan, the size variable and resets the other variables to its initial value.

3.6.2 Determination of the Current Scheduling Mode

The verification whether a mode switch should take place is needed multiple
times. The PB Scheduler has to check whether a scheduling plan task still
has to be executed and the CFS (and also the Idle-Scheduler) has to check
whether its thread has to be preempted by a scheduling plan task. In order
to avoid code duplication and to decouple the PB Scheduler logic from the
CFS and Idle-Scheduler, the mode switch detection is moved into a separate
method determine next mode pb. This method determines the next PB
Scheduler mode. This decision is made based on the current time and the
data of the PB Scheduler runqueue. Therefore, this method is a vital part of
the PB Scheduler business logic.

As shown in Fig. 9 the scheduler should be disabled if the scheduling plan size
is exceeded. The values of execuntil and wall until are only set by the code
that implements the mode switch. The mode switch detection only reads
these variables. If the scheduler is currently in the ezecution mode and the
execution time is elapsed then a switch to the unallocated mode should take
place. The logic of the switch from the unallocated mode to the execution
mode is similar.

3.6.3 Implementation of the Plan Based Scheduler Module

Based on the assumption that all scheduling plan related threads are runnable
when they should be executed, only a minimal thread handling is necessary.
Therefore, the module implementation of sched class contains multiple stub
implementations in order to fulfill the interface. The implemented methods
that contain business logic are pick next task and task tick.

3.6.3.1 Implementation of pick next task

During the scheduling process the elementary method of the module is
the pick next task method. In the PB Scheduler the main goal of this
function (termed pick next task pb) is to set the next mode and the cor-
responding variables according to the current mode and the result of deter-
mine_ next _mode_pb. As shown in Fig. 10 the behavior of the scheduler
should be unchanged if the determined mode is equal to the current mode.
Therefore, NULL is returned if the unallocated mode or the disabled mode
is set and the thread representation corresponding to the current task is
returned if the execution mode is set.

If the mode changes from the disabled mode or unallocated mode to the
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static inline int determine_next_mode_pb(u64 time,
struct rq *rq)

{
int mode = PB_DISABLED_MODE;
struct pb_rq *pb = &(rq->pb);

if (pb->c_entry < pb->size)

{
if (pb->mode == PB_EXEC_MODE)
{
mode = (pb->exec_until < time)
? PB_UALL_MODE
: PB_EXEC_MODE;
}
else if (pb->mode == PB_UALL_MODE)
{
mode = (pb->uall_until < time)
? PB_EXEC_MODE
: PB_UALL_MODE;
}
}

return mode;

}

Figure 9: Method that determines the next mode.

ezecution mode, the variable wall wuntil is reset to zero. Subsequently the
absolute ezecution time deadline exec until is calculated from the sum of the
relative execution time of the current scheduling plan entry and the current
time. Since the execution of the task thread should start immediately, the
corresponding thread representation has to be returned. The logic that is
used if the mode switches from the execution mode to the unallocated mode is
similar and the new unallocated time is calculated analogously. Additionally
the iteration variable ¢ entry has to be incremented and checked whether
the scheduling plan size is exceeded. If this happens the scheduler needs to
be disabled, because the whole scheduling plan is processed. If a mode switch
is executed the generic method put_prev_task'? has to be executed in order
to enqueue the potentially preempted thread of another scheduling module in
its runqueue. This method calls the procedure put_prev_task of the formerly
used scheduler module.

12The method has the same name as the module specific method, but is a generic
module independent method.
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3.6.3.2 Implementation of task tick

If the task thread is running, it is necessary to check cyclically whether
the execution time is elapsed. This is implemented through the method
task_tick _pb which is the PB Scheduler implementation of the sched_ class
method task tick. This function simply checks whether a mode switch is re-
quired and triggers the reschedule process by calling the method resched curr.
This method sets the flag TIF NEED RESCHED on the currently executed
thread which causes a rescheduling as soon as possible. The same handling is
added to the task tick method of the CFS and the Idle-Scheduler. Therefore,
the main schedule method will be called and the mode switch takes place in
the method pick next task pb.

A similar handling as in the task tick method is implemented in the pick -
next_task method of the CFS (and the Idle-Scheduler) with the difference
that instead of calling resched curr the macro RETRY TASK is directly
returned as the result of the method. This causes a restart of the scheduling
loop and the pick mnext task method of the PB Scheduler is executed and
the mode switch takes place. The main goal of this implementation is to
minimize the delay between the mode switch detection and the execution of
the switch.

In order to implement the PB Scheduler as the module with the highest
priority it is necessary to set the corresponding module as the first element of
the scheduler module list. The first element of the list is defined by the macro
sched_class_highest that points to the static instance of pb_sched class.
Furthermore, the next pointer has to point to the next lower module, which
is the module implementation of the Deadline-Scheduler that previously had
the highest priority.
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static struct task_struct * pick_next_task_pb(struct rq *rq,
struct task_struct *prev, struct rq_flags *rf)
{
struct task_struct *picked = NULL;
u64 now;
int current_mode, next_mode;
struct pb_rq *pb = &(rq->pb);

now = sched_clock();

current_mode = pb->mode;
next_mode = determine_next_mode_pb(now, rq);

if (current_mode == next_mode) {
if (current_mode == PB_EXEC_MODE)
picked = find_task_by_vpid(pb->plan[c_entry].task_pid);

}
else {
if ((current_mode == PB_DISABLED_MODE ||
current_mode == PB_UALL_MODE)
&& next_mode == PB_EXEC_MODE) {
pb->mode = next_mode;
pb->uall_until = O;
pb->exec_until = pb->plan[pb->c_entry].exec_time + now;
picked = find_task_by_vpid(pb->plan[c_entry].task_pid);
}
else if (current_mode == PB_EXEC_MODE &&
next_mode == PB_UALL_MODE){
pb->mode = next_mode;
pb->uall_until = pb->plan[pb->c_entry].uall_time + now;
pb->exec_until = 0;
pb->c_entry++;
if (pb->c_entry >= pb->size) {
pb->mode = PB_DISABLED_MODE;
}
}
put_prev_task(rq, prev);
}

return picked;

}

Figure 10: Method pick mnext task pb.

25



3.7 Implementation of a Plan Based Scheduler Prototype Kelvin Glafs

3.7 Implementation of a Plan Based Scheduler Prototype

In order to prove the concept of a PB Scheduler it is not necessary to
implement all aspects mentioned in the former section. Therefore, in the
following the differences between the full featured PB Scheduler and the
minimal prototype scheduler are highlighted. This prototype is used to
prove the feasibility of the PB Scheduler concept and the formerly proposed
implementation approach.

3.7.1 Simplified Thread Handling

As proposed as a naive approach to implement a scheduling plan structure,
the prototype implementation models a scheduling plan as an array with a
maximal length that is predefined in the macro PB. MAX PLAN LENGTH
but the actual size is stored in the variable size. This definition is used in-
stead of a static scheduling plan definition because setting the scheduling plan
dynamically simplifies the testing of the PB Scheduler prototype.

The prototype needs no real thread handling, only a single proxy thread
is required, because in order to verify the feasibility of the PB Scheduler con-
cept it is not significant which task the scheduling plan threads are executing.
This prozy thread is represented by the pointer prozy task. This pointer has
to be set dynamically to a thread representation, because the pointer is not
set during the initialization process of the scheduler'®. Therefore, the entries
of the scheduling plan array do not own a thread identifier as proposed in
the former section.

In Sec. 3.6.2 the method determine next mode_pb is proposed in order
to determine the current mode of the scheduler. The same logic is used
in the prototype, but in the case that the scheduler is still disabled but a
proxy task is set, the execution of a new scheduling plan has to be started
with setting the PB Scheduler to the ezecution mode. Therefore, the deter-
mine_next mode pb function of the prototype also handles this case, which
is not necessary in a full featured PB Scheduler.

3.7.2 Dynamical Plan Initialization

During the accomplishment of empirical analysis multiple scheduling plans
have to be processed by the prototype. In order to test these scheduling
plans as fast as possible it is necessary to avoid a recompilation process of
the kernel for each scheduling plan. Therefore, the whole scheduling plan
structure is designed to be dynamical (until an upper scheduling plan size of

131t is not possible to set the proxy task pointer during the initialization, because the
corresponding thread has to be created. During the creation of the thread, the scheduler
code is used which is not completely initialized.
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PB MAX PLAN LENGTH is reached). Additionally there are methods to
set the size of a new scheduling plan and to set a new entry of the scheduling
plan. Contrary to the fully featured PB Scheduler the prototype does not use
a system call to set a scheduling plan. The main idea to make the scheduling
plan configurable is to use the Linux module to submit a new scheduling plan.
The standard kernel implementation does not allow that a module executes
any arbitrary kernel method. Therefore, the required methods and symbols
are exported!.

The implementation of a Linux module can contain an init and an exit
method. The init method is executed when the module is added to the kernel
(e.g. via the shell command insmod) and the exit method is executed when
the module is removed from the kernel (e.g via the shell command rmmod).
Therefore, a module that sets a scheduling plan, also has to set the proxy
task in its init method and to reset all values to the default value in its exit
method. This handling allows to test different scheduling plans one after
another. This is done by adding a module, waiting until the PB Scheduler
prints the debug message "PLAN DONE”, removing the module and doing
the same with the next module.

Furthermore, the module can be generated automatically for each scheduling
plan definition, because only the scheduling plan definition part differs from
module to module. See App. A.3.1 for a full example module and App. A.3
for the explanation, how the modules can be generated. The disadvantage of
this approach is that the module has the requirement that the header files of
the current kernel version are installed. Therefore, it is necessary to build
them and install them in the test environment which is a time-consuming
task.

3.7.3 Kernel Thread Execution Time Measurement

The previous kernel changes were made to demonstrate the feasibility of
implementing a PB Scheduler and to determine a maximal task execution
time. Furthermore, it is necessary to determine a minimal unallocated time
value that consists of the execution time of threads that depend on user
specific configurations and the execution time of kernel threads that have to
be executed to prepare the execution of the next task. In order to measure
the kernel thread execution the kernel has to be extended.

The main idea of the following extension is to check what kind of thread is
picked to be executed next (called next) and what kind of thread is currently
executed (called prev). Therefore, each thread can be either a kernel or

“The macro EXPORT _SYMBOL can be used in the kernel in order to make a symbol
accessible for modules.
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non-kernel thread. If both threads are non-kernel threads, then no behavior
change is needed. If the previous thread is a non kernel thread and the next
is a kernel thread then the measurement of the kernel thread time should
start because the kernel thread will be executed immediately. If both threads
are kernel threads then no behavior change is needed because it is assumed
that a previous case already started the measurement. If the previous thread
is a kernel thread and next thread is a non-kernel thread, the measurement
has to stop. Subsequently the time of the previous measurement has to be
added to the whole measurement result. It is not necessary to embed this
logic in the PB Scheduler, but since this code base is well known, extending
its structures is easy. Therefore, the PB runqueue is extended as shown in
Fig. 11 by one integer measure k which is treated as a boolean and indicates
whether the kernel thread execution time measurement is enabled or disabled.
The remaining variables are needed to save times. The variable start saves
the time the measurement is started. ktime contains the accumulated kernel
thread execution time while kstart saves the time at which a kernel thread
starts to execute.

struct pb_rq {

int measure_k;
u64 kstart;
u64 ktime;
u64 start;

};

Figure 11: Extended PB runqueue structure.

The measurement functionality is implemented in the main scheduling method
__schedule, because this method is always called to execute the scheduler
and therefore has up-to-date information about the formerly executed thread
as well as the next thread. The pointer prev points to the task struct that
represents the formerly executed thread and next points to the task  struct
that represents the thread that will be executed. At the end of  schedule
the next thread will be executed immediately. In order to check whether a
thread is a kernel thread it is necessary to check whether the thread has the
flag PF KTHREAD. The idle thread is also a kernel thread and it would
be necessary to remove the idle time from the kernel thread execution time.
Therefore, the method is_ kthread also checks that the thread is no idle thread
(via checking the flag PF IDLFE). A new measurement phase starts with
setting the variable kstart to the current time if the execution of a kernel
thread starts and the previous thread was a non-kernel thread. If the next
thread is a non-kernel thread, but the previous thread was a kernel thread, the
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difference between kstart and the current time is added to the measurement
result in the variable ktime and kstart is reset.

next = pick_next_task(rq, prev, &rf);

if (prev != next &&
rq->pb.measure_k == PB_MEASURE_K_ON &&
is_kthread(prev->flags) != is_kthread(next->flags))
{
if (is_kthread(prev->flags) &&
rq->pb.kstart > 0)

{
rq->pb.ktime += sched_clock() - rq->pb.kstart;
rq->pb.kstart = 0;

}

else if (is_kthread(next->flags))

{
rq->pb.kstart = sched_clock();

}

}

Figure 12: Small extract of the  schedule method that contains the kernel
thread execution time measurement logic.

3.7.4 Results

The first small tests showed that the prototype implementation of the PB
Scheduler as described before works as expected, on hardware as well as
in a virtual environment!'®. The integration of the adjusted kernel into a
Lubuntu distribution is easy. As required the whole system works as before
if no scheduling plan is submitted. If a plan is submitted and the execution
time begins only the corresponding thread is executed. Therefore, the whole
Window Manager'6 (in the case of QEMU the terminal) freezes during the
scheduling plan execution times and is only available during the unallocated
times and if the scheduling plan is processed.

In order to verify whether the switches from the ezxecution mode to the
unallocated mode work precisely a test series is executed. During the test

158ee App. A.2 for more information.
Further tests are executed with a deactivated X environment.
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a scheduling plan is submitted that consists of 100 tasks with an execution
time and an unallocated time of 3s. The first test series runs in a system with
a low system load and the second series runs in a system with high load!”.
As depicted in Fig. 13 the test series with a low system load has a higher
mean deviation of the unallocated time than the test results with a high
system load. This difference suggests that the switch from the Idle-Schedulder
to the PB Scheduler has to be improved in order to reduce the deviation.
The deviation is in the positive value range therefore the switch from the
unallocated mode to the execution mode takes place after the start deadline
of the next task already has exceeded. This has to be avoided, because
executing the task one millisecond shorter than defined could cause serious
issues because the system call that should complete the task execution is
not called. Otherwise executing a task thread longer than defined should
not cause problems, because the execution of the system call changes the
corresponding thread state and the thread waits for an event and the thread
is not runnable. Therefore, a reschedule and a switch would take place in a
fully featured scheduler.

In order to move the values from the positive range to the negative range
it is useful to subtract an offset'® from the start deadline in order to move
the deviation into the negative area. As shown in Fig. 13 this optimization
in combination with a high system load leads to the desired result. The
deviation of the execution time is negligible, but the value will be higher
in practice, because the proxy thread is a kernel thread that has nearly no
business logic. Therefore, the thread always triggers a rescheduling and the
scheduler can verify whether a switch is necessary. In practice a user thread
will be interrupted and the timer interrupt method task_tick has to verify
whether a switch is necessary. Therefore, the handling will be similar to the
handling of the switch from the unallocated mode to the execution mode.

This test series showed that the PB Scheduler prototype is able to comply
with the execution time deadline and also with the unallocated time deadline,
even if optimizations are still necessary. Therefore, the most important
assessment criterion defined in Sec. 2 is met. The scheduler is able to comply
with all deadlines if the execution time and unallocated time values are as
specified by the plan constraints.

" Triggered by the stress testing tool stress.

181 order to reduce deviations the kernel is compiled with the 1000 Hz option. Therefore,
in the period of 1000000ns timer interrupts should occur. It is useful to choose a multiple
of the period. Therefore, 2500000 is used as offset.
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Figure 13: Measurement of the deviations of the execution time and un-
allocated time value. The red graph represents the deviation that occurs
during the switch from the unallocated mode to the execution mode. The
blue graph represents the deviation that occurs during the switch from the
execution mode to the unallocated mode. Negative values indicate that the
switch takes place before the corresponding deadline is exceeded and positive
values indicate that the switch takes place after the corresponding deadline

is exceeded.
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4 Empirical Analysis

The previous section proved the feasibility of the PB Scheduler concept.
Based on this knowledge and the prototype implementation described in Sec.
3.7 this section analyses Operating System (OS) dependent constraints of the
scheduling plan and therefore completes the results of Sec. 2.2.

4.1 Analysis of the Maximal Task Execution Time

The analytical approach of Sec. 2.2.2 is not sufficient to determine OS
specific limitations of the task execution time. However, it determines an
administrator defined upper boundary which is the minimum of the periods
of user threads in which these threads have to be executed. Therefore, the
purpose of this analysis is to clarify whether an OS dependent limitation ex-
ists that decreases the formerly found upper boundary of task execution times.

The first test with a task that should be executed for one minute failed,
because the proxy thread is a kernel thread and the internal Linux watchdog
(not to be confused with the software watchdog daemon) softlockup detector
causes a kernel panic. This handling is made to detect hanging and defective
driver or kernel code. Therefore, a non-prototype scheduler would not have
this problem. After disabling the watchdog softlockup handling'® a task
with an ezecution time of one minute executed successfully and the system
behaved after the execution as before.

In order to create a more realistic test scenario a stress test tool runs before,
during and after the execution of the task. The system works as before the
execution and does not cause an unstable state in the OS. The same test
results were reproducible with the same test setting for tasks executing twenty
minutes and sixty minutes®’.

The results of the tests showed that even if the execution time is restricted
by the OS, the upper boundary of the execution time is greater than sixty
minutes, which is assumed to be an unrealistic long time for a task. Therefore,
it is assumed that the OS has no limitations concerning the execution time
of a task.

4.2 Analysis of the Minimal Unallocated Time

An unallocated time slot in a plan is always created if the corresponding
High Performance Computing (HPC) application wants to communicate via
a system call (as described in Sec. 1.1.2), because the start of a system call is

¥Disabled during runtime via the shell command sysctl kernel.soft _watchdog=0
20 A1l tests are repeated four times.

32



4.3 Results Kelvin Glaf3

the end of a task execution and the end of the system call action is the start of
the next task execution. In order to make sure that the corresponding kernel
thread that realizes the communication already ran if the next task started,
it is necessary to determine the required execution time of the kernel thread.
This value can be estimated by analyzing the needed kernel thread execution
time of a common representative HPC application. In order to determine
the time used by a kernel thread, the kernel is extended as described in Sec.
3.7.3. Another approach is to determine the execution time of an application
and the time executed in user mode. The difference between these values is
also the used kernel time.

The measured applications are a distributed version of a prime number
generator that determines all prime numbers until an upper boundary and a
distributed matrix multiplication. Both applications use MPI for message
passing. Each application ran with two or four threads and four different input
values. The input value of the prime number generation is the upper boundary
of the greatest prime number that has to be generated. The matrix multi-
plication receives the size of the quadratic matrices that have to be multiplied.

The Fig. 14 shows the measurement results of the prime number gener-
ation application. The results of the matrix multiplication application are
depicted in Fig. 15. The great outlier values that lead to the great error are
not produced by the HPC application which is executed, but by other threads
(e.g. a cron job)2!. Therefore, the most interesting value is the mean value
which should be smaller than the plotted value because the outlier leads to a
higher mean. Even with this higher mean value an upper boundary of the
percentage is always 0.5% and if it is assumable that high input values are
used a percentage of 0.2% would lead to a safe plan. Therefore, an unallocated
time that consists of 0.5% (or 0.2%) of the whole runtime plus the time that
is required by the administrative threads should lead to a safe plan and
therefore a stable system.

4.3 Results

Based on the results of the former analysis as well as the results of Sec. 2.2
it is possible to construct a mazimal plan. For this purpose the variables of
the mazimal plan definition have to be analyzed:

(

II'<C3

n—1
it <tmaz) AV fi=fe+ fi)
7=1 Jj=1

As shown by the analytical approach the only Linux specific thread execution
time restriction is that the time should be greater than the period between

21This analysis is discussed in detail in App. A.4.3.
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Figure 14: Results of measuring the kernel thread time of the prime number
application. The x axis shows the input and the y axis the percentage of
kernel thread time in the whole runtime. Since each measurement ran 100
times the error is also shown as a bar.

two timer interrupts that determine whether a mode switch should take place.
Furthermore, the execution time is restricted by the period of execution of
administration and monitoring tools. Thus, the maximal task execution time
tmaz Of the scheduling plan depends on the configuration of the system that
is assumed to be given.

The kernel thread time of the wunallocated time analyzed by former test
is approximately 0.2% of the whole execution time but the test also showed
that this value is variable. Therefore, there is no general purpose formula
and the percentage that affects f; has to be determined by the administrator
who also determines f,, because the unallocated times depends on the config-
uration of the system.

Furthermore, it is very likely that the kernel execution time f; is much
smaller than the execution time of administrative threads f.. It is assumed
that the administrative threads are executed in each unallocated time, there-
fore the kernel execution time becomes insignificant compared to the execution
time, because the kernel execution times are very small and f. consists of the
execution time of multiple threads which aggregate results and send them
via the network, which is a costly task. If this assumption holds the only
constraints of a scheduling plan is based on configurations of the administra-
tor. Therefore, it would be possible to create a mazimal plan by choosing
the maximal ezecution time as upper boundary of the ezxecution time and
choosing the execution time of all tools in a period as unallocated time.
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Figure 15: Results of measuring the kernel thread time of the matrix multipli-
cation application. The x axis shows the input and the y axis the percentage
of kernel thread time in the whole runtime. Since each measurement ran 100
times the error is also shown as a bar.

35



5 Conclusion Kelvin Glaf3

5 Conclusion

The main objective of this thesis is to analyze the feasibility of a PB Scheduler
in the de facto standard High Performance Computing (HPC) node operating
system Linux. Therefore, it is necessary to create a scheduler that fulfills the
contrary requirements of the PB Scheduler and the CFS. Instead of creating
one scheduler policy that fulfills these requirements, the developed scheduler
(introduced in Sec. 3.5) switches between the PB Scheduler and the CFS.
This can be considered to be a scheduler of scheduler policies. Therefore,
the concept of PB Scheduling is proven to be applicable in a real Operating
System (OS). At the beginning of this work it was not clear whether OS
depending limitation would make it impossible to implement a scheduler that
fulfills the requirements of the PB Scheduler as well as the requirements of
the CFS. The prototype implementation of the scheduler also showed that
the modular Linux scheduler architecture is very suitable for a PB Scheduler
implementation.

The second objective of this thesis is to analyze whether OS and system
dependent constraints exist which restrict the structure of scheduling plans
that can be executed with the PB Scheduler. At the beginning of this work
the extreme values of the execution time and unallocated time value were
identified as parameters that could be restrictive factors. The analytical
approach already showed that neither the minimal ezecution time nor the
maximal unallocated time are limited. The later empirical analysis showed
that the maximal ezecution time is only limited by the periodical administra-
tion threads which have to be executed in a predefined interval. The period
of this interval is the upper boundary of the execution time.

The minimal unallocated time is also restricted by a lower boundary which
depends on the execution time of the administration and monitoring threads
which are configured by the administrator. There are also other kernel threads
which have to be executed but the execution time is assumed to be negligible
because it is likely that this time is much smaller than the execution time of
the monitoring threads.

Therefore, the structure of the scheduling plan is hardly restricted and
even the only restrictions of the scheduling plan are configurable by the
administrator. Thus, it is possible to create a maximal plan that guarantees
the stability of the system during its processing and has a minimal makespan.
Furthermore, the Sec. 3.7.4 showed that it is possible that a PB Scheduler
complies with all deadlines. Therefore, all assessment criteria that are defined
in 2 are fulfilled.
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6 Future Work

This thesis is a basic analysis of the PB Scheduler approach and its impact
on the scheduling plan that has to be executed. This forms a foundation
for many possible research topics and implementations. In the following a
non-exhaustive list of possible enhancements and topics is presented.

6.1 Design of a Scheduler for SMP Systems

One assumption that simplifies the whole thesis is that the used node has only
one core. In fact in a modern High Performance Computing System (HPC
System) each node has multiple cores. In order to maximize the performance
of each node it is necessary to be able to use all cores. Therefore, it can be
useful to analyze whether the harmonization of the CFS and PB Scheduler
can be adjusted on an Symmetric Multiprocessing (SMP) node.

A naive approach is to reserve one core for threads with the policy CFS and
the other cores are reserved for threads that are part of the scheduling plan.
Such an approach could minimize restrictions of the unallocated times, but it
would be necessary to analyze whether other resources have to be taken into
account, because of multiple instances which could access them. Furthermore,
the approach to reserve a whole core for the CFS could be too restrictive.

6.2 Implementation of a Fully Featured Scheduler

The implementation of Sec. 3.6 only proves that the concept of a PB Scheduler
works, but it is not a complete scheduler, because several features are not
implemented. If the implementation of the PB Scheduler should become a
part of the Linux kernel it is necessary that the code complies with the Linux
community standards as the coding style guide.

6.2.1 Enhancement of the Scheduling Functionality

In order to use the PB Scheduler a fully featured version has to be implemented
as described in Sec. 3.5. Thus, it is also necessary to implement a thread
handling that allows to organize and execute arbitrary scheduling plan threads.
Furthermore, the scheduler has to handle all possible thread states in an
appropriate way. In practice it is possible that the task that has to be
executed still waits for an event. The prototype implementation simply
ignores these thread states.

6.2.2 Implementation of the User Interface

In Sec. 3.7 the kernel is adjusted so that a new scheduling plan can be
submitted via a Linux kernel module. This solution is not usable in a
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productive scenario, because important scheduling structures are exported for
that solution and this would empower Linux modules to modify the scheduling
process which is not intended. Therefore, this solution is not recommended
and would not be accepted by the Linux community. Furthermore, the
common user interface to scheduling modules are system calls. Therefore, it
is useful to implement a system call for that purpose.

6.2.3 Design and Implementation of an Error Handling

This thesis always considers that the scheduling plan will be executed correctly
and all deadlines will be met, but the scheduling plan is based on different
prediction models that can create inaccurate deadlines. Therefore, it is vital
to design and implement an error handling that defines how the system reacts
if a deadline is exceeded. If one deadline is exceeded it is reasonable to ensure
that the subsequent deadlines are still met and the deadline of the whole job
will be met.

Depending on the severity of the problem there are multiple possible so-
lutions. The easiest solution is to ignore the problem, proceed with the
execution and assume that the deviation from the expected deadline to the
actual execution time is so small that another prediction deviation will coun-
terbalance the other deviation. Depending on the solution of Sec. 6.1 and on
whether the subsequent task is a task of another thread it is possible that an
idle CPU can be used to execute the next task, but this could lead to a greater
delay, because switching threads from one CPU to another is expensive since
the cache of the target CPU has to be filled with the required data which is
costly. If the deviation of the deadline is high it can be necessary to escalate
the problem to the next higher instance which is the RMS. The RMS can
try to solve the problem or it escalates to the next higher instance which is
the ADC. It is possible that the best possible result is that a delay has to
be accepted by the VRM while other jobs that run on the same system are
still in time. The worst case would be that the delay in one job would cause
delays in other job executions. This domain is complex and therefore still
requires much research.
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A Appendix

A.1 TOPS500 Statistics

Operating System Family | Count | System Share (%) | Cores
Linux 500 100 69,004,640

Table 1: Statistic of the Operating System Families in the TOP500 (see [5]).

Operating System Count | System Share (%) Cores
Linux 267 53.4 | 17,942,148
CentOS 109 21.8 | 26,702,802
Cray Linux Environment 46 9.2 5,976,520
SUSE Linux Enterprise Server 11 16 3.2 1,166,516
bullx SCS 11 2.2 749,752
TOSS 10 2.0 496,584
RHEL 7.2 5 1.0 196,580
RHEL 7.3 5 1.0 92,448
Scientific Linux 4 0.8 123,128
Bullx Linux 3 0.6 204,000
Ubuntu Linux 3 0.6 142,344
Redhat Enterprise Linux 6.5 2 0.4 105,216
Ubuntu 14.04 2 0.4 72,224
SLES12 SP2 2 0.4 89,856
SUSE Linux Enterprise Server 12 SP1 2 0.4 280,728
Kylin Linux 2 0.4 3,294,720
RHEL 6.8 2 0.4 46,336
Redhat Enterprise Linux 6.4 2 0.4 68,906
Redhat Enterprise Linux 6 2 0.4 295,656
SUSE Linux 1 0.2 153,216
Sunway RaiseOS 2.0.5 1 0.2 | 10,649,600
Redhat Enterprise Linux 7.2 1 0.2 31,968
RHEL 6.2 1 0.2 46,208
bullx SUperCOmputer Suite A.E.2.1 1 0.2 77,184

Table 2: Statistic of the Operating Systems in the TOP500 ordered by the
number of usages in HPC systems ( generated by the TOP500 statistics tool,
see [5]).

A.2 Development and Test Infrastructure

The development of OS kernel features is less suitable for unit tests. Therefore,
a development environment that allows to test the features as fast as possible
is necessary. During the main development phase a virtual solution is used.
In the later testing process a real Linux distribution is used in order to use
an environment that is similar to a real HPC node.
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A.2.1 Virtualization

In order to minimize the time of a development cycle the virtualization
tool QEMU is used in combination with an image containing a Debian root
file system??. Therefore, the only variable input of QEMU is the compiled
kernel. Contrary to the realistic setting with a common Linux distribution
the system load of the QEMU system is very low, because the system con-
figuration is minimal and has no X environment or cron jobs. In order to
execute the tests in a steady system state, the stress testing tool stress is
used before the tests to have a more realistic state of the runqueue of the CFS.

The QEMU environment runs on the following hardware:

Component Name | Component Description

Processor 4 x Intel(R) Core(TM) i5-2520M CPU @ 2.5 GHz
Memory 4GB DDR3 @ 1600 MHz

oS Lubuntu 16.10

Table 3: Hardware that is used to execute QEMU.

A.2.2 Hardware

In order to test in a more realistic setting the modified kernel is built into
debian package files. These files are used to install the modified kernel into a
Lubuntu. The installation and testing is much more time-consuming than
the virtual solution, but the test results are more representative. During the
real test executions the whole X environment is disabled.

Lubuntu runs on the following hardware:

Component Name | Component Description

Processor 4 x AMD A8-6500 APU with Radeon(tm) HD Graphics @ 3.5 GHz
Memory 4GB DDR3 @ 1333 MHz

oS Lubuntu 16.10

Table 4: Hardware that is used to execute the adjusted kernel.

A.3 Linux Module Generation

As mentioned in 3.7.2 linux modules are used to trigger the execution of a
certain scheduling plan. In order to avoid the copy and paste task to create a
module for each scheduling plan, a scheduling plan is modeled as a CSV file
with maximal 100 rows where each line contains two values. The first value

22The root file system is created with the tool debootstrap and has Debian version 8
(Jessie).
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indicates the task execution time and the seconds one the unallocated time
after the execution.

After the kernel is compiled, a perl script converts all scheduling plans in
a certain directory to Linux modules and creates one Makefile to build all
module. After all modules are compiled, all corresponding modules files
(with the extension .ko) and the scheduling plan modules are copied into the
Debian image. If the image booted with the current kernel, all modules can
be tested with a perl script, that also aggregates and evaluates all results
using the module files.

A.3.1 Linux Module to set a Scheduling Plan

#include <linuz/module.h>

#include <linuxz/kernel.h>

#include <linuz/init.h>

#include <linuz/kthread.h>
#include <../kernel/sched/sched.h>

MODULE_LICENSE("GPL");

static int proxy_thread_func(void *data)

{
unsigned int ¢ = 0;
while (!'kthread_should_stop()) {
int a = 0;
set_current_state (TASK_INTERRUPTIBLE) ;
for (;a < 200000; a++){}
schedule();
ct+;
}
return 0;
}
static void init_rq(struct pb_rq *pb_rq)
{
set_pb_plan_size(pb_rq, 2);
// execute time of 20min, unallocated time of 2s
set_pb_plan_entry(pb_rq, 0, 1200000000000, 2000000000);
// execute time of 1s, no unallocated time (last entry)
set_pb_plan_entry(pb_rq, 1, 1000000000, 0);
}

static int __init pb_client_init(void)
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{
struct task_struct *proxy_task;
struct rq *rq;
proxy_task = kthread_create(proxy_thread_func, NULL,
"PB proxy thread");
proxy_task->sched_class = &pb_sched_class;
rq = this_rqQ;
init_rq(&rqg->pb);
rq->pb.proxy_task = proxy_task;
return O;
¥
static void __exit pb_client_cleanup(void)
{
struct rq *rq;
rq = this_rqQ;
// set pb_rq back to initial values
init_pb_rq(&rq->pb);
printk (KERN_DEBUG "Cleaning up module.\n");
¥

module_init(pb_client_init);
module_exit (pb_client_cleanup);
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A.4.1 Matrix Multiplication Results
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A.4.2 Prime Number Generation Results
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A.4.3 Result Analysis

The measurement results contain huge error values. A great example of
a dataset containing such outliers are the results of the measurement of
the prime number generator with the input value of 100000. The maximal
percentage is 10.158 while the mean is 0.425 which is near to the minimum
of 0.220. Therefore, it was necessary to analyze the reason for those outlier
values. The following analysis has the focus on the dataset of the matrix
multiplication with a matrix size of 1000 and two threads. The plot of the
non-aggregated 100 measurement results in Fig. 16 already shows a suspicious
development of the kernel runtime over the whole measurement process. The
measurement, executions are triggered by a script and therefore the time that
elapsed between two executions should be nearly constant. The plot shows
that the kernel runtime value always elevates after a fixed time period elapsed.
Since the single executions of the measurement are independent of each other
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the time dependent behavior has to be rooted in the test system. The analysis
of the raw measurement results containing the system timestamps shows
that time that elapsed between two extremly elevated values is on average
120.676 seconds. This suggests that at least one cron job with a period of two
minutes exists that is also executed on the test system. The other datasets
have similar outlier values that can be reduced to other threads that are
executed periodically on the test system.

The results of this analysis are also applicable to the other results because
the same periodical behavior of the runtime values appeared in them even if
they are not as distinct as in the analyzed result set.
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Figure 16: Results of the matrix multiplication with input 1000 and two
threads.
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