
Technische Universität Berlin

Faculty IV Electrical Engineering and Computer Science

Bachelor’s Thesis

Communication between a Plan Based
Scheduler and User Space Processes in

Linux

Max-Georg Debbert

Matriculation Number: 357514

Berlin, September 29, 2021

Supervisor: Barry Linnert (FU Berlin)

First Reviewer: Prof. Dr. Hans-Ulrich Heiß

Second Reviewer: Prof. Dr.-Ing. Jochen Schiller (FU Berlin)

Eidessta�liche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigenhändig sowie ohne

unerlaubte fremde Hilfe und ausschließlich unter Verwendung der aufgeführten Quellen und

Hilfsmittel angefertigt habe.

I hereby declare that the thesis submitted is my own, unaided work, completed without any

unpermitted external help. Only the sources and resources listed were used.

Berlin, den 29. September 2021

Max-Georg Debbert

Zusammenfassung

High-Performance-Computing-Systeme (HPC-Systeme) bestehen aus einer großen Anzahl

kleinerer, vernetzter Rechner (Knoten). Sie werden verwendet, um Anwendungen mit großen

Ressourcenanforderungen parallel auszuführen. Um die Einhaltung von Fristen bei der Aus-

führung zu gewährleisten ist ein plan-basierter Ansatz beim Scheduling nötig. Da auf den

Rechenknoten in der Regel Linux als Betriebssystem zum Einsatz kommt, muss der Linux-

Scheduler mit Scheduling-Plänen umgehen können. In dieser Arbeit wird untersucht, wie

solche Scheduling-Pläne, die ein Benutzerprozess von einem Verwaltungsknoten des HPC-

Systems empfängt, dem Linux-Scheduler zur Verfügung gestellt werden können.

Contents

1 Introduction 1
1.1 High Performance Computing . 1

1.2 Grid Computing . 3

2 Foundations 5
2.1 The Linux Scheduler . 5

2.1.1 Scheduling Classes . 5

2.2 The PB Scheduler . 6

2.3 Requirements . 8

3 Implementation 9
3.1 System Calls in Linux . 9

3.1.1 Passing Data to the Kernel via System Calls 9

3.2 Memory in Linux . 10

3.2.1 Virtual Memory . 10

3.2.2 Kernel Space and User Space . 10

3.2.3 Shared Memory . 11

3.3 Adding a New System Call . 12

3.3.1 System Call Interface . 12

3.3.2 Shared Scheduling Plan Data . 13

3.4 Kernel Memory Allocation . 13

3.4.1 The Page Allocator . 13

3.4.2 The Slab Allocator . 15

3.4.3 Page Allocation for Shared Scheduling Plan Data 15

3.5 Creating a New Mapping in User Space . 16

4 Conclusion and Open �estions 18
4.1 Conclusion . 18

4.2 Open Questions . 18

4.2.1 Dynamic Allocation of Memory . 18

4.2.2 Error Handling . 18

4.2.3 Synchronization . 19

References 20

iv

List of Figures 21

Listings 22

v

1 Introduction

1.1 High Performance Computing
In scienti�c and business contexts, there are applications like weather forecasting and earth-

quake simulation that require huge resources (computing power, memory, etc.) to generate

results in a reasonable amount of time.

Examples of applications with high resource requirements are the Weather Research and

Forecasting Model (WRF) and SeisSol. WRF is a numerical weather prediction system that is

used for both short-term weather forecasting (Fig. 1.1) and long-term climate modeling. SeisSol

is an application for the numerical simulation of seismic wave phenomena and earthquake

dynamics (Fig. 1.2).

21−May 26−May 31−May 05−Jun 10−Jun 15−Jun
5

10

15

20

25

30

35

T
a
ir
,
C

 °

Tair, model

Tair, observation

Figure 1.1: Comparison of measured air temperature with WRF simulated temperature (from [1])

1

1 Introduction

Figure 1.2: Visualization of the 1994 Northridge earthquake simulated with the CVM-H (from https:

//www.seissol.org/node/31, visited on 09/28/2021)

As shown in Fig. 1.3 the run time of WRF jobs can be substantially decreased if more CPU

cores are used. Systems with an enormous amount of resources are called high performance
computing systems (HPC systems). These supercomputers are typically composed of multiple

independent computers called nodes running their own operating system. Nodes are inter-

connected via high bandwidth network technologies. The resources of an HPC system are

assigned to user submitted jobs by the resource manager.

For example, the Cheyenne supercomputer (Fig. 1.4) used at NCAR-Wyoming Supercomputing

Center (NWSC) by the National Center for Atmospheric Research (NCAR) has 4032 dual-

socket compute nodes running 18-core 2.3-GHz Intel Xeon E5-2697v4 processors. Of these

nodes, 3168 have 64 GB RAM each, while 864 are high memory nodes with 128 GB RAM

making more than 313 TB RAM total. The nodes are connected via EDR In�niband with a

hypercube topology with 100-Gbps link bandwidth and 0.5 µs latency. The nodes run SUSE

Linux Enterprise Server 12 SP1, and jobs are scheduled with Altair PBS Pro [2].

Like most resource managers, PBS is a queuing-based batch system [3]. Users submit jobs

specifying resource requirements (number of nodes, memory, etc.). When su�cient resources

are available, jobs are scheduled. A maximum execution time is set for each job to prevent it

from running inde�nitely.

More resources may decrease the execution time of a job but increase the waiting time. For

example, high memory nodes have to be used if a job requests nodes with more memory than

2

https://www.seissol.org/node/31
https://www.seissol.org/node/31

1 Introduction

Figure 1.3: Total run time for WRF jobs with increasing numbers of cores (from https://www2.cisl.

ucar.edu/resources/wrf-scaling-and-timing, visited on 09/28/2021)

the ordinary nodes have. Because there are fewer high memory nodes, the waiting time may

be longer.

1.2 Grid Computing
Grid computing bundles the resources of various HPC systems and provides a common

interface for clients. At a global level, these resources are managed by grid middleware such

as the Virtual Resource Manager (VRM). In contrast to other approaches to grid computing, the

VRM uses service-level agreements (SLAs) to guarantee quality of service (QoS), i.e. that jobs

can be completed by a speci�ed deadline [4]. Particularly in commercial deployments, this is

a signi�cant concern as di�erent parts of a development chain depend on each other.

Keeping deadlines cannot be achieved using queuing-based resource management but requires

a planning-based approach to scheduling. An existing resource management system that

works based on planning is OpenCCS [5]. Instead of allocating resources ad hoc as jobs are

executed, a plan is created beforehand that assigns resources to jobs for �xed time slots, taking

into account the approximate run time of the jobs and the deadline as submitted by the job

owners.

However, in this approach, the inaccuracy of the run time estimates leads to ine�cient use of

resources: job creators often submit estimates that are multiples of the actual run time because

3

https://www2.cisl.ucar.edu/resources/wrf-scaling-and-timing
https://www2.cisl.ucar.edu/resources/wrf-scaling-and-timing

1 Introduction

Figure 1.4: Cheyenne supercomputer at the NCAR-Wyoming Supercomputing Center (from https:

//www.wired.com/2017/03/put-supercomputer-wyoming/, visited on 09/28/2021)

jobs are canceled when their assigned time slot has ended. On the other hand, requests with

longer run times are more expensive.

Better utilization of the resources of HPC systems could be achieved by estimating the resource

consumption of jobs on a more fundamental level, as modeled by a program graph. Splitting

jobs into smaller units with known run times also allows for the shared use of nodes by

di�erent jobs.

In this approach, for each job, an execution plan is created. These plans are integrated into a

global scheduling plan for an HPC system. The HPC-level scheduling plans consist of local

scheduling plans for the compute nodes. These plans are not static but need to be adjusted

when new jobs are submitted. In addition, planning de�ciencies must be accounted for.

Because Linux, the operating system most often used on HPC nodes (see [6]), is geared

towards interactive use to allow for plan-based scheduling, it is necessary to equip Linux

with plan-based scheduling capabilities.

4

https://www.wired.com/2017/03/put-supercomputer-wyoming/
https://www.wired.com/2017/03/put-supercomputer-wyoming/

2 Foundations

In order to integrate the plan-based scheduling approach into the Linux kernel, the Linux

scheduler has to be modi�ed. The scheduler is the component of the operating system that

decides which process gets to use the CPU. The scheduling mechanisms used by current

Linux versions
1

do not make use of plans. This chapter explains how the Linux scheduler

works and then describes how plan-based scheduling functionality was integrated into the

Linux kernel in [7].

2.1 The Linux Scheduler
The Linux scheduler implements di�erent mechanisms for scheduling through scheduling
classes.

2.1.1 Scheduling Classes

Stop Deadline POSIX Realtime CFS Idle

Figure 2.1: The Linux scheduling class hierarchy (adapted from [7])

Scheduling classes are organized hierarchically (see Fig. 2.1). The main scheduling routine

iterates through the scheduling classes and calls the pick_next_task function of the scheduling

class. Tasks with a lower-ranked scheduling class are only scheduled when there are no tasks

with a higher-ranked scheduling class to be run. Tasks with a higher scheduling class always

preempt other tasks. The scheduling policies implemented by the scheduling classes only

apply to the tasks in the scheduling class’s run queue.

Current Linux kernel versions include �ve scheduling classes.

Special Scheduling Classes

The highest and lowest-ranked scheduling classes are special classes that do not implement

scheduling policies or schedule user tasks. The stop class preempts any tasks currently run

1
Because this thesis builds on the work done in [7], the Linux kernel version used throughout is v4.13.

5

2 Foundations

and cannot be preempted by any other task. The idle class runs the idle thread if no other

task is to be run.

Real-Time Scheduling Classes

Linux has two real-time scheduling classes. The deadline class schedules tasks according to a

modi�ed version of the earliest deadline �rst (EDF) algorithm. Each deadline task is assigned

a run time (how long does the task take to run?), a period (how frequently does the task

run?), and a deadline (when should the task be �nished?) when it is created. The scheduler

then checks whether the task requirements can be ful�lled. If not, the task is rejected. The

deadline scheduler always picks the task with the earliest deadline to run.

The POSIX real-time scheduling class implements two scheduling algorithms, FIFO (�rst in,

�rst out) and round-robin.

The CFS Scheduler

The default scheduling class used for non-real-time tasks is the CFS scheduling class (CFS

stands for Completely Fair Scheduler). The CFS scheduling algorithm works as follows: Each

task has a vruntime property that increases the more CPU time the task gets. The task with

the lowest vruntime is chosen for execution.

2.2 The PB Scheduler

Stop PB Deadline POSIX Realtime CFS Idle

Figure 2.2: The scheduling class hierarchy with the PB class (adapted and modi�ed from [7])

None of the existing scheduling classes o�er support for plan-based scheduling. While the

deadline scheduling class assigns deadlines to the tasks scheduled, because of the periodic

nature of the tasks, it is unsuitable for plan-based scheduling. Therefore, a new scheduling

class for this purpose was proposed in [7]. The PB class schedules tasks according to a

scheduling plan. Because tasks scheduled by other scheduling classes should not preempt

the tasks scheduled by the PB class, the PB class is placed at the top of the scheduling class

hierarchy (see Fig. 2.2).

In the prototype, plan entries are represented by instances of struct plan_entry (see List-

ing 2.1). The expected execution time of a task is stored in exec_time. Tasks that are not part

of the scheduling plan still need to be executed, for example, the process that communicates

with the management nodes of the HPC system. Therefore, after executing a planned task,

6

2 Foundations

struct plan_entry {
u64 exec_time;
u64 uall_time;

};

Listing 2.1: struct plan_entry

these tasks are scheduled by the CFS scheduler in the unallocated time speci�ed in the �eld

uall_time.

Default Scheduler

Enable PB Scheduler
Set exec time

Set unallocated time

Execute task

PB
Enabled

&& unallo-
cated time

elapsed

Select next schedul-
ing plan entry

Last
scheduling
plan entry
selected

Exec time
elapsed

Disable PB Scheduler

submit scheduling

plan

init

No

Yes

Yes

Yes

de
te

rm
in

e
ne

xt
ta

sk
||

ti
m

er
in

te
rr

up
t N

o

de
te

rm
in

e
ne

xt
ta

sk
||

ti
m

er
in

te
rr

up
t N

o

Figure 2.3: State transition diagram of the PB scheduler (from [7])

The main scheduling routine checks if there are tasks to be scheduled by the PB class by

comparing the size and c_entry �elds of the PB run queue structure (struct pb_rq, see List-

ing 2.2). The index of the scheduling plan entry last executed is stored in c_entry, while size

represents the total number of entries in the scheduling plan.

The interaction of the PB class and the other scheduling classes (see Fig. 2.3) is controlled

by the modes of the PB scheduler: disabled, execution, and unallocated. The PB scheduler is

7

2 Foundations

struct pb_rq {
struct plan_entry *plan;
unsigned int size;
unsigned int c_entry;
...
int mode;

};

Listing 2.2: struct pb_rq

disabled if there are no tasks in the current scheduling plan or all tasks of the scheduling plan

have already �nished executing (i.e. c_entry == size).

If there are un�nished tasks in the scheduling plan, the PB scheduler switches to execution

mode. The next task in the plan array is executed without interruption. When the task is

�nished, the PB scheduler switches to unallocated mode, and the default scheduler is allowed

to schedule tasks for the amount of time speci�ed in the uall_time �eld of the plan entry.

When that time has elapsed, the PB class switches from unallocated mode to execution mode,

and the next task in the scheduling plan is picked for execution.

This thesis investigates how scheduling plans can be made available to the PB scheduler.

While the PB scheduler is part of the kernel, the scheduling plans are received via the network

by a user process. Therefore, for the scheduler to access scheduling plans, data must be shared

between the user process and the kernel.

2.3 Requirements
The scheduling plan is a dynamic entity that changes when new jobs are submitted to the HPC

system or if the existing plan cannot be complied with due to resource outages or de�ciencies

in the resource consumption estimates of tasks. Changes to the node scheduling plans may

happen frequently. In order to prevent the node from working with outdated scheduling

plans for too long, changes to the node scheduling plan should be made available to the Linux

scheduler as fast as possible. Therefore, the interface between the user process that receives

the node scheduling plan from the HPC system and the Linux kernel should have minimal

overhead, i.e. use few system call invocations and avoid memory copy operations.

Kernel data is isolated from user processes for security reasons. When sharing data between

a user process and the Linux kernel, it must be ensured that no other kernel data is made

accessible to user processes.

8

3 Implementation

In order to make scheduling plans available to the Linux scheduler, the user process has to

communicate with the kernel. This is typically done using system calls.

3.1 System Calls in Linux
System calls are interfaces that allow user processes to interact with the kernel. When a user

process issues a system call, the operating system executes the requested actions in kernel

mode.

3.1.1 Passing Data to the Kernel via System Calls
User processes can pass data to the kernel via system call parameters. System call parameters

are passed in registers. Which registers are used and how many parameters can be passed

is architecture-dependent. For example, in x86 systems, system calls can take up to six

arguments.

Because system call parameters are typically passed in registers, it is not possible to directly

transfer a large amount of data (e.g. a C struct). In order to accomplish this, a user process

can pass a pointer to data in user memory as a system call parameter. The system call can

then copy the data from user memory to kernel memory via kernel internal functions like

copy_from_user.

To transfer scheduling plan data from a user process to the kernel in this fashion would

require a large amount of overhead, i.e. one system call invocation and one memory copy

operation for each change to the scheduling plan. For this reason, a shared memory approach

is more suitable. To understand how to implement this, we �rst look at how the Linux memory

management system works.

9

3 Implementation

Global directory Upper directory Middle directory Page Offset

Page

Page table
Page middle

directory
Page upper

directory
Page global

directory

Virtual
address

Figure 3.1: Four-level paging in Linux (from [8, p. 761])

3.2 Memory in Linux

3.2.1 Virtual Memory
Modern operating systems like Linux use virtual memory instead of directly working with

physical memory addresses. Each process has its own virtual address space. The addresses

used by a process are virtual addresses that are translated into physical addresses on access.

Memory is divided into chunks of a �xed size called pages. When an address is accessed,

the memory management unit (MMU) translates the virtual address to a physical address by

looking up the corresponding page number in the page table. The page table holds references

to the mapped physical page frames. To avoid wasting memory for unused page table entries

multi-level paging is used. Page tables are broken into multiple levels (for example, current

Linux versions support up to �ve levels). Di�erent parts of the virtual address are used to

index the di�erent levels of the page table (see Fig. 3.1).

It is also possible that a virtual page is not resident in RAM, for example, when pages are

swapped to backing storage to free memory. In this case, a page fault is raised, and the fault

handler of the operating system tries to load the page into memory.

3.2.2 Kernel Space and User Space
In Linux, the address space is divided between kernel space and user space (see Fig. 3.2).

While user space virtual memory is di�erent for each process, kernel space virtual memory is

10

3 Implementation

shared between all processes (i.e. there is no change to the kernel space part of the virtual

address space). This reduces the performance cost of system calls compared to approaches

that isolate user virtual memory and kernel virtual memory more thoroughly, for example,

by using di�erent page tables for user processes and the kernel. In any case, user processes

can be denied access to kernel virtual addresses by setting the protection bit of the page table

entries.

0x0000000000000000

0x00007fffffffffff

User Space

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

128 TB

0x0000800000000000

0xffff7fffffffffff

uncanonical

addresses

0xffff800000000000

0xffffffffffffffff

Kernel Space

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

128 TB

Figure 3.2: Kernel space and user space in x86-64 with four-level page tables (see https://www.kernel.

org/doc/Documentation/x86/x86_64/mm.txt)

3.2.3 Shared Memory
The overhead involved in the copy approach explained above can be avoided by mapping the

memory used for the scheduling plan data into both the address space of the user process and

the kernel virtual address space. This requires only one system call invocation to set up the

shared mapping. Subsequently, both the user process and the scheduler can operate on the

same memory copy of the scheduling plan data. In the following sections, we describe how a

new system call for this purpose can be added to the kernel.

11

https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt

3 Implementation

SYSCALL_DEFINE3(sched_plan, unsigned long, length, struct plan_data __user **, plan_data,
size_t, size)

{
...

}

Listing 3.1: System call de�nition

asmlinkage long sys_sched_plan(unsigned long length, struct plan_data __user **plan_data,
size_t, size);

Listing 3.2: System call interface

3.3 Adding a New System Call
How a system call is invoked is architecture-dependent. On x86-64 systems, this is typically

done by using the syscall assembly instruction. Before invoking a system call, the system call

arguments are loaded into the appropriate registers. For x86-64, this means that the system

call number uses the rax register while the other up to six arguments use the rdi, rsi, rdx, r10,

r8, and r9 registers. Linux system calls and system call numbers vary across architectures.

For example, the read system call has the system call number 0 in x86-64 systems, while 63 is

used in arm64 systems.

When a system call is invoked, the appropriate handler function is called. This is done by

looking up the handler function in the system call table using the system call number as an

index. The system call table contains function pointers for all available system calls.

System call handler functions in Linux are de�ned using a SYSCALL_DEFINE macro (see List-

ing 3.1). In addition, a function prototype is added to include/linux/syscalls.h (see List-

ing 3.2).

3.3.1 System Call Interface
The system call makes the scheduling plan data available to the calling process by mapping

the memory pages allocated by the kernel to user space. The user address of the shared

scheduling plan data is written to the address of a pointer passed as the second parameter to

the system call (struct plan_data **plan_data). The additional system call parameters are the

minimum size of the shared scheduling plan data unsigned long length and the size of the

scheduling plan data structure size_t size. The return value of the system call is the size of

the mapped memory in bytes or a negative value in the case of an error. Because there is no

dedicated C library wrapper, the system call is invoked by calling the syscall function with

the appropriate system call number (see Listing 3.3).

12

3 Implementation

long syscall(__NR_sched_plan, unsigned long length,
struct plan_data **plan_data, size_t size);

Listing 3.3: User interface of the system call

struct plan_data {
__u64 c_entry;
__u64 l_entry;
struct plan_entry entries[];

};

Listing 3.4: struct plan_data

3.3.2 Shared Scheduling Plan Data
The shared scheduling plan data is represented by an instance of struct plan_data (see List-

ing 3.4). This includes the plan entries represented by a �exible array of struct plan_entry, the

number of total plan entries (l_entry) and the number of �nished plan entries (c_entry).

The user process can change the entries of the scheduling plan by writing to the struct

plan_entry array, add entries to the scheduling plan by changing the number of total elements

in the array, and reset the plan by setting l_entry and c_entry to zero.

3.4 Kernel Memory Allocation
In the kernel C library functions like malloc cannot be used. Instead, kernel code that al-

locates memory uses functions like kmalloc and __get_free_pages provided by the memory

management subsystem. At the most basic level these functions always use the page allocator
to allocate physical memory pages (for the following see [8, ch. 10]).

3.4.1 The Page Allocator
The page allocator can only allocate a number of pages that is an order of two. This is done

using the buddy algorithm: For example, to ful�ll an allocation for eight pages in a system

with 64 pages (Fig. 3.4a), the memory is �rst split into two partitions of 32 pages (Fig. 3.4b).

Next, one of these pieces is further split (Fig. 3.4c) and so on until the size of the allocation

request is reached (Fig. 3.4d).

While this allows for fast memory allocations, the restriction to 2order pages can lead to a

considerable amount of internal fragmentation, i.e. memory is allocated but not used. In

order to avoid this, the kernel uses the slab allocator on top of the page allocation system (see

Fig. 3.3).

13

3 Implementation

Kernel Allocation

Slab Allocator

Page Allocator

Physical Memory

Figure 3.3: Memory allocation in the Linux kernel

(a)

64

(b)

32

32

(d)

32

8

8

16

(c)

16

16

32

Figure 10-17. Operation of the b
Figure 3.4: Operation of the buddy algorithm (modi�ed from [8, p. 762])

14

3 Implementation

cache

slab

pages

object object

slab

pages

object object

Figure 3.5: Caches, slabs and objects (modi�ed from [9, ch. 8])

3.4.2 The Slab Allocator
The slab allocator allocates pages for frequently used data objects. For example, the virtual

memory system uses the struct vm_area_struct structure to manage virtual address space

ranges of tasks. Instead of directly allocating pages each time a new instance of struct

vm_area_struct is needed, they are taken out of an object cache. Each cache consists of multiple

slabs (see Fig. 3.5), i.e. memory pages that are used exclusively to hold objects of one type.

When the kernel now allocates a new struct vm_area_struct, the slab allocator looks through

the slabs of the struct vm_area_struct cache (vm_area_cachep) and returns an unused slot. If

all slabs are full, the slab allocator allocates a new slab by allocating new pages using the

page allocator. When an object allocated via the slab allocator is no longer needed, the slot in

the slab is marked as free.

For generic allocations the kmalloc function is used. kmalloc is built on top of the slab allocator

by using caches for generic objects of a �xed size. For example, when 14 bytes are allocated,

kmalloc looks through the kmalloc caches for the cache with the next bigger object size (e.g.

16 bytes). The allocation is then treated like other slab allocations.

3.4.3 Page Allocation for Shared Scheduling Plan Data
Because the pages allocated for the scheduling plan data are shared between the kernel and a

user process, they must not hold any other kernel data. This can best be achieved by allocating

pages directly.

15

3 Implementation

void init_pb_rq(struct pb_rq *pb_rq)
{

...
pb_rq->plan = (struct plan_data *) get_zeroed_page(GFP_KERNEL);
...

}

Listing 3.5: init_pb_rq

struct mm_struct {
struct vm_area_struct *mmap; /* list of VMAs */
...
unsigned long (*get_unmapped_area) (struct file *filp, unsigned long addr,

unsigned long len, unsigned long pgoff, unsigned long flags);
...

};

Listing 3.6: struct mm_struct

The prototype allocates a single page in init_pb_rq (see Listing 3.5). This function is called

when the scheduler is initialized by sched_init1
.

3.5 Creating a New Mapping in User Space
In Linux the virtual memory of a user process is represented by an instance of struct mm_struct

(see Listing 3.6). The address space is split into virtual memory areas (vma) represented by

instances of struct vm_area_struct (see Listing 3.7).

The address range of a vma is de�ned by the vm_start and vm_end �elds. The properties of a

virtual address area are de�ned by the vm_flags �eld. For example, if the VM_WRITE �ag is not

set the vma is write protected.

struct vm_area_struct {
unsigned long vm_start;
unsigned long vm_end;
...
struct mm_struct *vm_mm;
pgprot_t vm_page_prot;
unsigned long vm_flags;
...

};

Listing 3.7: struct vm_area_struct

1kernel/sched/core.c

16

3 Implementation

down_write(&mm->mmap_sem);
...
u_addr = get_unmapped_area(NULL, 0, npages * PAGE_SIZE, 0, vm_flags);
...
vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
...
vma->vm_start = u_addr;
vma->vm_end = u_addr + npages * PAGE_SIZE;
...
vm_iomap_memory(vma, virt_to_phys(pb_rq->plan), npages * PAGE_SIZE);
...
insert_vm_struct(mm, vma);
...
up_write(&mm->mmap_sem);

Listing 3.8: Mapping kernel memory to user space

The system call creates a new vma for an unused virtual address range and a new mapping to

scheduling plan data (for the following, see Listing 3.8). When working with virtual memory

areas, the mmap_sem semaphore of the current process’ mm_struct has to be held to protect

against concurrent changes to the address space. To get an unused virtual address range, the

get_unmapped_area function of the mm_struct is called.

To create a new virtual memory are, the system call allocates memory by using

kmem_cache_zalloc. The vma is then initialized with the address range returned by

get_unmapped_area and inserted it into the mm_struct via insert_vm_struct. The scheduling

plan data is mapped to the allocated virtual address area by the function vm_iomap_memory.

This creates the required page table entries in the page table of the mm_struct. In order to

make sure that the mapping is not treated as a copy-on-write mapping, the VM_SHARED �ag is

set.

17

4 Conclusion and Open �estions

4.1 Conclusion
The objective of this thesis was to make scheduling plans in user space available to the Linux

scheduler. The shared memory approach achieves this with minimal overhead by reducing

the amount of system call invocations, resulting in fewer switches between user space and

kernel space, as well as avoiding memory copy operations. By allocating exclusive memory

pages for shared scheduling plan data, it is ensured that no kernel data is exposed to the user

process accidentally.

4.2 Open �estions

4.2.1 Dynamic Allocation of Memory
Currently, only one page is allocated for the scheduling plan. In practice, scheduling plans

will be much bigger, and their size may change with time so that more pages will have to be

allocated dynamically. This could be done by invoking the system call with the current user

address of the scheduling plan data as the second parameter. The system call then allocates a

number of pages required to ful�ll the request and maps them to user space.

4.2.2 Error Handling
As noted in [7], the prototype PB scheduler does not support error handling. Because the

tasks executed by the PB scheduler are simulated using a proxy kernel thread, the execution

times speci�ed in the scheduling plan are always accurate. In practice, the execution times of

scheduling plan entries are based on predictions and will often prove to be �awed. The PB

scheduler will have to decide what to do when a task does not meet its deadline.

In some cases, the PB scheduler will want to report deviations from the scheduling plan to the

HPC system. Currently, the communication works only one way: the user tells the scheduler

that the scheduling plan has changed by adding scheduling plan entries and changing the

scheduling plan size. To report deviations from the scheduling plan, the scheduler could write

the actual execution time of a scheduling plan entry to the shared memory, for example, using

an extra �eld in the scheduling plan entry structure (struct plan_entry) for this purpose.

18

4 Conclusion and Open Questions

4.2.3 Synchronization
The scheduler and the user process work on the same data, so synchronization may be

necessary. Because the scheduler is not preempted, write operations by the scheduler are

always atomic. In contrast, the user may begin writing and be preempted before �nishing. For

example, when the user begins changing a scheduling plan entry by changing the exec_time

but is preempted before the uall_time is changed, the plan entry data is incongruous. If

the scheduler then executes this plan entry before the user process has �nished the write

process, the scheduler works with invalid data. This could be remedied by locking the shared

scheduling plan data at the cost of suspending the execution of the planned tasks.

19

References

[1] R. Ahmadov, C. Gerbig, R. Kretschmer, et al., “Comparing high resolution WRF-VPRM

simulations and two global CO2 transport models with coastal tower measurements of

CO2”, Biogeosciences, vol. 6, no. 5, pp. 807–817, 2009. doi: 10.5194/bg-6-807-2009.

[2] National Center for Atmospheric Research, Cheyenne, https://www2.cisl.ucar.edu/

resources/computational-systems/cheyenne. (visited on 09/28/2021).

[3] M. Hovestadt, O. Kao, A. Keller, et al., “Scheduling in HPC resource management systems:

Queuing vs. planning”, in Job Scheduling Strategies for Parallel Processing, D. Feitelson, L.

Rudolph, and U. Schwiegelshohn, Eds., Springer, 2003, pp. 1–20. doi: 10.1007/10968987_1.

[4] L.-O. Burchard, M. Hovestadt, O. Kao, et al., “The virtual resource manager: An ar-

chitecture for SLA-aware resource management”, in IEEE International Symposium
on Cluster Computing and the Grid, 2004. CCGrid 2004., IEEE, 2004, pp. 126–133. doi:

10.1109/CCGrid.2004.1336558.

[5] Paderborn Center for Parallel Computing, OpenCCS, https://www.openccs.eu/core/.

(visited on 09/28/2021).

[6] E. Strohmaier, J. Dongarra, H. Simon, et al., Top500, https://www.top500.org/. (visited on

09/28/2021).

[7] K. Glaß, “Plan based thread scheduling on HPC nodes”, M.S. thesis, Freie Universität

Berlin, 2018. [Online]. Available: https://www.inf.fu- berlin.de/inst/ag- se/theses/

Glass18_PBscheduling.pdf.

[8] A. S. Tanenbaum and H. Bos, Modern Operating Systems, 4th ed. Pearson, 2015, isbn:

978-0-13-359162-0.

[9] M. Gorman, Understanding the Linux Virtual Memory Manager. 2007. [Online]. Available:

https://www.kernel.org/doc/gorman/html/understand/.

20

https://doi.org/10.5194/bg-6-807-2009
https://www2.cisl.ucar.edu/resources/computational-systems/cheyenne
https://www2.cisl.ucar.edu/resources/computational-systems/cheyenne
https://doi.org/10.1007/10968987_1
https://doi.org/10.1109/CCGrid.2004.1336558
https://www.openccs.eu/core/
https://www.top500.org/
https://www.inf.fu-berlin.de/inst/ag-se/theses/Glass18_PBscheduling.pdf
https://www.inf.fu-berlin.de/inst/ag-se/theses/Glass18_PBscheduling.pdf
https://www.kernel.org/doc/gorman/html/understand/

List of Figures

1.1 WRF simulation . 1

1.2 SeisSol simulation . 2

1.3 WRF scaling . 3

1.4 Cheyenne supercomputer . 4

2.1 Scheduling class hierarchy without the PB class 5

2.2 Scheduling class hierarchy with the PB class 6

2.3 State transition diagram of the PB scheduler 7

3.1 Four-level paging in Linux . 10

3.2 Kernel space and user space . 11

3.3 Kernel memory allocation . 14

3.4 Buddy algorithm . 14

3.5 Caches, slabs and objects . 15

21

Listings

2.1 struct plan_entry . 7

2.2 struct pb_rq . 8

3.1 System call de�nition . 12

3.2 System call interface . 12

3.3 User interface of the system call . 13

3.4 struct plan_data . 13

3.5 init_pb_rq . 16

3.6 struct mm_struct . 16

3.7 struct vm_area_struct . 16

3.8 Mapping kernel memory to user space . 17

22

	Introduction
	High Performance Computing
	Grid Computing

	Foundations
	The Linux Scheduler
	Scheduling Classes

	The PB Scheduler
	Requirements

	Implementation
	System Calls in Linux
	Passing Data to the Kernel via System Calls

	Memory in Linux
	Virtual Memory
	Kernel Space and User Space
	Shared Memory

	Adding a New System Call
	System Call Interface
	Shared Scheduling Plan Data

	Kernel Memory Allocation
	The Page Allocator
	The Slab Allocator
	Page Allocation for Shared Scheduling Plan Data

	Creating a New Mapping in User Space

	Conclusion and Open Questions
	Conclusion
	Open Questions
	Dynamic Allocation of Memory
	Error Handling
	Synchronization

	References
	List of Figures
	Listings

