
Freie Universität Berlin
Bachelorarbeit Faculty of Computer Science at the Freie Universität Berlin

Research Group Software Engineering

Public Cloud Based Infrastructure for
Telecommunication Cloud Control Panel in an

Enterprise Environment

Dor Cohen
Student Number: 5138283
dcohen92@inf.fu-berlin.de

Advisor: Mr. Samu Toimela
First Examiner: Mr. Barry Linnert

Second Examiner: Prof. Dr.-Ing. Jochen Schiller

Berlin, July 29, 2020

mailto:dcohen92@inf.fu-berlin.de

Statement of Originality

I hereby confirm that I have written the accompanying thesis by myself, without con-
tributions from any sources other than those cited in the text and acknowledgments.
This applies also to all graphics, drawings, maps and images included in the thesis.

July 29, 2020

Dor Cohen

Statement of Gratitude

I would like to thank the people at Nokia that were involved in the process, Mr.
Samu Toimela and Mr. Markku Niiranen - Nokia, Espoo Finland, for making the time
at Nokia exceptionally pleasant. The support and mentoring were truly extraordinary.

I would also like to thank Mr. Barry Linnert - Freie Universitaet, Berlin Germany,
for his continuous help and support in these complex times.

Contents

1 Introduction 5

2 Fundamentals 6
2.1 Cloud Computing . 6

2.1.1 Infrastructure as a Service - IaaS 6
2.1.2 Platform as a Service - PaaS . 6
2.1.3 Software as a Service - SaaS . 7

2.2 Containers . 7
2.2.1 Container Internals . 8
2.2.2 Container Runtime - Docker . 9

2.3 Cluster Management - Kubernetes . 10
2.3.1 Control Plane Components . 10
2.3.2 Worker Node Components . 11
2.3.3 Kubernetes Objects . 12
2.3.4 Kubernetes Networking . 12

2.4 Load balancing . 14

3 Motivation 14
3.1 Security and Privacy . 14
3.2 Authentication and Authorization . 15
3.3 Scalability and Latency . 15
3.4 Infrastructural Flexibility . 15

4 Migration to the Public Cloud 15
4.1 Account Permissions and Cluster Setup 15
4.2 Routing and Load Balancing . 17

4.2.1 First Layer - AWS Elastic Load Balancer 17
4.2.2 Second layer - Service Object . 18
4.2.3 Third layer - Kong API Gatway . 18

4.3 Access Management . 19
4.3.1 Integration with Kong API . 19

4.4 Cloud Storage Backend . 19
4.4.1 A Naive Approach - hostPath . 21
4.4.2 A Sustainable Approach - Storage Backend and Dynamic Provi-

sioning . 21

5 Conclusion and Evaluation 23

Bibliography 25

1. Introduction

1 Introduction

Public cloud infrastructure has become an ubiquity in the field of web-services and
web-applications. It offers increased flexibility by delegating hardware and low-level
capabilities to professional vendors. It allows companies to focus on business crucial
tasks instead of maintaining complex infrastructures. Notable cloud vendors such as
Amazon Web Services[2] (AWS), Google Cloud Platform[7] (GCP) and Microsoft Azure[18]
made a great leap in making setup of cloud environments easier, and more accessible.

Transition of applications from a traditional infrastructure to a cloud environment
is a complex task which involves many supporting applications and deep knowledge
of computer networks. Popular tools and concepts today such as Serverless Architec-
ture 1 overlap with cloud architecture and are aimed to make such a transition easier
and more intuitive. However, this change of architecture in an enterprise grade ap-
plication demands a careful planning by professionals such as System Engineers and
Cloud Architects.

This work describes the migration process of an application used to monitor the op-
eration of Edge Cloud 2 applications as a part of a recent trend related to 5 Generation
(5G) mobile networks and edge facing devices. The application serves as a central op-
eration and management panel, therefore increasing the observability and improving
the ease of maintenance of edge cloud applications. The monitoring application was
migrated from Nokia’s on-premise data-center to a cloud vendor. Description of the
technical details of the application itself are out of the scope of this work, and the em-
phasis is purely on computer networks and infrastructure related topics rather than
mobile telecommunication. However, the field of mobile telecommunication has its
requirements regarding aspects such as scalability, portability, reliability and high per-
formance. We would like to show that the migration process and the used tools such
as Kubernetes for Container Orchestration [11], Kong for Public Facing API Gatway [9],
Keycloak for Access Management [8] and others, indeed satisfy these requirements, at
least on the conceptual level, as this is not an empirical study, but rather an imple-
mentation of a Proof of Concept (PoC).

The aim on a scientific level is to provide another perspective on the migration process
of complex systems in the mobile communication realm. This will hopefully assist in
the standardization and unification of similar flows, as these are not part of enterprise
grade processes at the moment.

We would like to prevent sensitive information about the application from being ex-
posed. Therefore, throughout this work, generic terms such as application, monitoring
application, operation and management application will be used to refer to the concrete
application that was developed by Nokia.

1A subclass of cloud architecture where server applications being deployed as a standalone unit
without worrying about the hosting environment [22]

2Cloud architecture which is placed closer to the consumer, considering it’s geographical location
and by that reducing latency and spreads wide area networks’ load

5

2. Fundamentals

2 Fundamentals

The following high-level overview provides an exposure to relevant concepts of cloud
computing. It is important to stress that the field and its terminology are relatively
new and dynamic, therefore, some of the basic terms are not well defined, as these
mostly arise from the private enterprise sector. However, the underlying technical
background of the driving technology is indeed sound and backed by an active aca-
demic research. Best effort is being made to provide a consistent and clear terminol-
ogy.

2.1 Cloud Computing

The Cloud might appear as an ambiguous term. This concept is however well de-
fined and describes the offering of computing resources as an internet service. [28]
Cloud computing tries to abstract different parts of the computer infrastructure such
as hardware, networking and operating system. This allows the service consumer
such as an individual or a company to focus on the business logic implementation
rather than the entire supporting infrastructure.
A precursor to the field and associated concepts (somewhat in their primitive form)
were coined by Turing Award laureate John McCarthy’s work in the field of Time Shar-
ing Systems, where application may run on resources that seem independent but share
the same underlying real-estate.[23]. Public cloud is a high level abstraction over pub-
lic internet servers. These are provided by vendors for public use and are often split
into different tiers, creating the typical cloud computing suite. [26]

2.1.1 Infrastructure as a Service - IaaS

IaaS is a cloud model described by the ability of the end-user to receive control over
processing power, memory and storage, while abstracting hardware and low-level
features such as networking and physical storage. Typically, the computing units are
virutalized. This is usually the first level of cloud-abstraction for applications which
were originally hosted on traditional servers in on-premise data-centers.[28]
From the user point of view, highly available computing resources are obtained, and
guarantees such as availability and scalability are not of the user’s concern. These are
rather declared by every cloud vendor as part of its contract with the users. Usually,
cloud orchestration solutions such as Kubernetes and OpenStack are used to man-
age and control the application and virtual machine provisioning, persistence storage
layer and other resources.

2.1.2 Platform as a Service - PaaS

In some cases the end-user is lacking the need or ability to maintain and configure the
underlying software-infrastructure such as operating systems and related softwares.
PaaS offers an application-specific, pre-configured hosting platform.
The deployment of applications is being done with a relative disregard to the actual
infrastructure in use by the vendor, as each application is to be observed as a self

6

2.2 Containers

sufficient entity and not as a process in an operating system. The platform might be
responsible for storage, caching, logging and other utilities as separate applications
running on arbitrary hosts in the network. [28]

Notable PaaS providers are Salesforce’s Heroku, DigitalOcean. While general cloud
providers such as Amazon Web Services, Microsoft Azure and Google Cloud offer
specific services corresponding to Paas.

2.1.3 Software as a Service - SaaS

The typical definition for such a model is a public facing internet based application.
Frequently it is characterized by a well defined purpose, subscription based usage and
communication via strict set of API such as graphical, HTTP and other web protocols.
[28]

Source: https://www.redhat.com/de/topics/cloud-computing/what-is-iaas

Figure 1: On-site, IaaS, PaaS, SaaS

Figure 1 shows the different cloud models by features. Each model is distin-
guished from the other by the services it offers to the end user. A clear distinction
between the models might be challenging, as they can overlap in functionalities, e.g
the popular web service Kubernetes as a Service is placed between IaaS and PaaS.

2.2 Containers

Historically, Virtual Machines were the primary method to achieve multi-environment
virtualization on a single host. Containers allow simulation of an independent en-

7

https://www.redhat.com/de/topics/cloud-computing/what-is-iaas

2. Fundamentals

vironment similarly to virtual machines, while reducing the overhead substantially,
down to a mild performance drop compared to a native running application. This is
possible due to the fact that hosts’ resources such as the kernel and operating system
libraries can be shared among containers. Although containerization features may be
found in various operating systems such as Solaris and BSD, we will focus on these
that are found in Linux[32]

Despite the fact that container technologies are considered to be cross-platform, and
support most commercially available operating systems, the actual container run-
time is bound to run using the linux kernel. Other operating systems cannot utilize
the containerization engine without a mediator, and require an additional layer of
virtualization called a Hypervisor, on which the containers can run. The additional
virtualization layer might cause a performance impact, however, the deployment of
applications in production environments is often being done on hosts running either
Windows or specific Linux distributions, both are able to run containers directly[15, 24]
and prevent major performance drawbacks.
Different efforts such as Linux Container[16] (LXC) and the Open Container Initiative
(OCI) [19] are responsible for creating industry standards of containerization tech-
nologies.

Containers have become exceptionally valuable in the cloud environment as they offer
the needed abstraction for applications orchestration.

2.2.1 Container Internals

The backbone of Linux containers technologies are namespaces and cgroups, which are
rooted in the kernel.

Namespaces describe different aspects in which running processes can be isolated from
each other, namely

• Mount (mnt) - Selected mount points are copied from the current namespace to
the newly created one.

• Process ID (pid) - Process ID table is completely separate from other names-
paces.

• Network (net) - A complete and separate network stack.

• Interprocess Communication (ipc) - Prevention of interprocess-communication
between namespaces.

• UTS (host and domain-name) - A UTS namespace has a different host and
domain-name.

• User ID (user) - Separation of the user-id and group-id spaces between names-
paces.

• Control Groups (cgroups) - Separation of different control groups.

8

2.2 Containers

• Time Namespace - Separation of system time between namespaces.

Control groups (Cgroups) allow resource allocation (CPU, memory, network band-
width, disk) to predefined group of processes. The model is hierarchical, as each
child-Cgroup inherits attributes from the parent-Cgroup. The control of Cgroups
over different systems’ resources is divided into subsystem, where each one represents
a certain resource. [20]

2.2.2 Container Runtime - Docker

Docker [24] is a popular linux container application suite. It creates, manages and
runs self-sufficient artifacts called Images which contain an application and its depen-
dencies. Images are defined by a manifest called Dockerfile, which dictates important
traits and actions like base image, container environment, initialization commands,
mount points to host, file copy from host and initialization scripts.

Figure 2: Dockerfile and Docker image composition

Docker allows composition of containerized application by expansion of existing
ones using a layering pattern. This prevents redundancy, as existing images are to be
shared across others, and require exactly one replica of each, thus saving on storage
and at times also on network load. In figure 2 an image is created by explicitly in-
stalling CentOS while using a scratch base image (the default empty image). Later this
image is being used as a base image for the Nginx web server resulting in another
image which lastly will create the final image, satisfying the application’s dependen-
cies. Composition of Docker images makes the run-time environments script-able and
reproducible.
A running instance of a Docker image is called Docker Container. Communication
with the container is possible via a command line interface, allowing monitoring and

9

2. Fundamentals

dynamic modification of the running instance. [24]

The Docker Hub is an integral part of Docker as a Service and offers a centralized reg-
istry3 for docker images, where all the configurations and dependencies are already
set. This allows quick containerization of well known environments. Often the images
are official, i.e released by the same entity that the created the software.

2.3 Cluster Management - Kubernetes

Modern web services are expected to be highly available and fail resistant, while
providing responsiveness and low latency. [29] Software management and system
management are traditionally mundane, repetitive and possibly manual tasks. Au-
tomation of these tasks has been a crucial point in the last decades, especially in large
companies.

Kubernetes is a cluster management system developed by Google. It allows a com-
plete description of the behavior of complex clustered applications as human-readable
files called manifests. [17]. These describe application configurations, secrets manage-
ment, replication and scaling strategies, monitoring, failure handling strategies and
persistent storage patterns.
More specifically, Kubernetes can be described as container orchestration software,
as it assumes an underlying registry of ready-made images as containerized applica-
tions, and is un-opinionated towards the specific containerization technology.
A Kubenetes cluster consists of Worker Nodes and a Control Plane (Master Nodes), which
in turn consist lower-level applications called Kubernetes Components that are strictly
split in order to satisfy different Kubernetes features. In general, they run, schedule,
store and interact with internal and external interfaces.

In the following sub-section we will review these components.

2.3.1 Control Plane Components

• kube-apiserver (API Server) - The apiserver exposes the Kubernetes API, al-
lowing admin communication to the cluster in order to validate and configure
various Kubernetes workloads. This is the main gateway for both external and
internal configuration, and changes during run-time.

• etcd (Cluster Data Database) - A distributed database responsible for storing
cluster related data such as cluster health and state, name and other metadata
related to the nodes and running application.

• kube-scheduler (Application Scheduler) - As the name suggests, it assigns newly
created workloads to available computing resource (Worker Nodes) while taking
into account constraints and requirements.

3hosting platform for artifacts, in this case Docker images

10

2.3 Cluster Management - Kubernetes

• kube-controller-manager (Cluster Controller) - The controller is the brain of the
cluster. It watches the cluster’s behavior, manages Pods replication, API access
tokens and accounts for kubernetes namespaces.

• cloud-controller-manager (Cloud Provider Driver) - The controller manages the
cloud vendor integration.

[30]

2.3.2 Worker Node Components

Each of the following components exists and operates inside every single worker node
in the cluster.

• kubelet - A deamon which watches and manages individual containers accord-
ing to the Pod’s manifest.

• kube-proxy - The proxy component manages network rules and network ses-
sions to the worker node from inside and outside of the cluster

• Container Runtime - A software responsible for running containers. Kubernetes
supports a multitude of runtimes, such as Docker, containerd and CRI-O

[30]

Source: https://kubernetes.io/docs/concepts/overview/components

Figure 3: Overview of Kubernetes components

Figure 3 shows a high level overview of the interaction and inter-operation of
different Kubernetes components. These are grouped by the type of the node to
which they belong (Master or Worker).

11

https://kubernetes.io/docs/concepts/overview/components

2. Fundamentals

2.3.3 Kubernetes Objects

Kubernetes defines certain abstractions in order to represent the state of the cluster.
Each one is expressively describing a concrete need of any cluster-based application.

• Pod - A Pod is the most basic deployable unit of a Kubernetes application. It
encapsulates a set of one or more highly coupled containers, ensuring that these
will run on the same remote host. A Pod would usually posses a unique, cluster-
internal IP address and is analogous to a virtual host.

• Service - An abstraction which defines Pod access over a network, either internal
or external.

• Volume - The persistence layer of a Pod. Pods are ephemeral, and the informa-
tion held during run-time is volatile by default. The Volume object provides the
Pods various persistence options.

• Namespace - Supporting separation of different bounded contexts4 on the same
cluster.

• Deployment - A Kubernetes object representing a single real-life deployment by
providing declarative updates for Pods and ReplicaSets. The properties describe
the desired state of an application, e.g number of replicas.

• ReplicaSet - A ReplicaSet is a Kubernetes controller object which maintains the
desired state of the application.

• StatefulSet - While Deployments and ReplicaSets declaratively define behavior
of stateless Pods, StatefulSet defines the behavior of stateful Pods set, where
each Pod is unique and not an arbitrary replica. These are utilized for instance
in session-aware applications.

• Job - A Job describes an ad-hoc Pod that is maintained until task completion.

• DaemonSet - In a Kubernetes environment Pods are being scheduled to worker
nodes by the kube-scheduler. By default there is no control over the scheduling
pattern of a Pod to a worker node. A DaemonSet defines the degree of affinity
of Pods to worker nodes.

[31]

2.3.4 Kubernetes Networking

Kubernetes internal networking mechanism is not supplied as part of the core fea-
tures, but rather only defines an interface and guidelines for users to create their own
networking solutions. In the past, these requirements were specific to the Kubernetes
realm, but the convergence of needs from other container- and container orchestration
solutions led to a well defined standard to be formed, the Container Network Interface
(CNI), which demands the following.[4]

4Bounded Context is a term describing the separation of applications’ business-domains into cohesive
groups

12

2.3 Cluster Management - Kubernetes

• Pods can communicate with every other pod, either on the same physical ma-
chine or a different one without Network Address Translation (NAT). This means
that each pod sees itself with the same cluster-internal IP address as every other
Pod in the cluster, e.g when Pod 1 sends a packet to Pod 2, the source address
that Pod 2 sees should be the same as Pod 1 sees in his local network.

• Any Kubernetes object (agent) on the node can communicate to all Pods on that
node

By following these requirements, every networking solution for Kubernetes will
abstract any physical or virtual machine in the network, so the cluster can be seen as
a single computing resource, or alternatively, multiple ones connected in such away
which does not require address-to-address mapping such as NAT. A wide selection
of Kubernetes networking solutions exists today, and each one puts an emphasis on
a specific aspect, such as ease of use, customizability and interoperability with other
networks. Notable network plugins are Calico, Flannel, Weave and AWS CNI.

Understanding the inter-pod networking will assist clarifying more complex features,
such as load-balancing and dynamic routing.
As described earlier, the Kubernetes service object is a Kubernetes component which
dictates the internal and external access to pods inside the cluster. Each exposed
pod has an attached service object. By default the cluster is completely isolated from
external networks and allowing communication only between internal applications,
effectively, a private network.
Kubernetes supplies different Service Types in order to allow external communication:

ClusterIP
This is the simplest service type attached to a Pod. Normally this is an indication
that the Pod of the running applications is only accessible from within the cluster.
Kubernetes allows to proxy external requests to it by using the proxy command.

NodePort
Exposes a specific port on each Node leading to a single Pod. This allows "routing"
of external requests to internal applications by exposing each Node’s IP address. Any
node in the cluster will forward the incoming request to another node in the cluster
whenever it does not posses a replica of the application’s Pod.[13]

LoadBalancer
This service type generates a creation of a load balancer with a unique IP by most
cloud providers. This allows any request to be directed to the correct node port, while
the load balancer spreads the traffic across the Pods on different working nodes. A
significant caveat of this service type is the unique IP assignment to each service, thus
increasing costs and complexity. The LoadBalancer service type uses the Node Port
service type in order to communicate to the node directly.

Ingress
The Ingress object provides a scalable and reliable solution for external exposure of

13

3. Motivation

clusters’ pods. It allows a server gateway to act as a reverse proxy, while abstracting
multiple Kubernetes services under the same IP (and not different IPs like the Load-
Balancer Service Type) and providing routing functionalities for external requests to
multiplex to the correct service. Usually it is being done by HTTP host and/or URL
path routing, so that each path represents a different service. [12]
Notable Ingress solutions are usually HTTP servers such as Nginx, Caddy or cloud
provider specific such as AWS Elastic Load Balancer. In order for these to work in a
Kubernetes environment, an Integrator must be implemented according to Kubernetes
specifications. This is called an Ingress-Controller.

2.4 Load balancing

Load balancing describes the distribution of tasks and jobs across a pool of comput-
ing resources. It allows modern server infrastructures to respond properly to the
amount of network load at a given moment. Load-balancers can be either hardware-
or software-defined, with layer 4 (transport) or layer 7 (application) balancing capa-
bilities and various distribution algorithms support.[27]
We will discuss specific in-depth features and behavior of the selected solution as part
of the main project in chapters 3 and 4. Detailed load-balancers information exceeds
the scope of this work.

3 Motivation

Mobile operators often deploy and maintain a high number of edge servers. The
highly distributed, available and security critical nature often forces them to create in-
house solutions. The adoption of software in traditional hardware realms allows great
flexibility in network design and operation, e.g Software Defined Network (SDN). High
observability and thorough monitoring are key in providing maintenance of highly
available systems. Unfortunately, operation and management panels are primarily
static and are not well suited to track on and act upon modern mobile communication
infrastructures.
Nokia has developed a unified control panel for operation and management of mobile
operators applications and infrastructures. In this chapter the general requirements
from such an application will be listed, and in chapter 4 and 5 we will show how
these are met by our work.

3.1 Security and Privacy

Mobile operators enterprises comply to the highest level of network security and pri-
vacy. They are responsible for reliable, secure and fail resistant transmission of data.
Computer networks are convoluted, require constant maintenance and must be ob-
served and watched constantly. Monitoring solutions such as the control panel belong
to the private domain of operations, as the information should not be publicly acces-
sible at any given moment unless explicitly stated. On premise data-centers might
save costs and offer full control over all aspects, let alone security and confidentiality,

14

3.2 Authentication and Authorization

but at the same time they force the mobile operator to upkeep the application and
infrastructure, which is not a part of the business model of the enterprise.

3.2 Authentication and Authorization

While partially related to network security and privacy, authorization in large com-
panies is a considerable concern and usually treated separately. The monitoring ap-
plication is split to different functional modules. Kong API Gatway and Keycloak pair
together to provide strong, industry standard access management mechanisms such
as OAuth2.0 and Open Identity Connect.
The clear separation of concerns, and the usage of well defined standards allow re-
placement of this service in case the need arises, which is an important feature of the
mobile telecommunication field. Security standards are being developed and depre-
cated rapidly, therefore, an affinity towards a single solution prevents an easy swap
between security workflows.

3.3 Scalability and Latency

Enterprises are expected to maintain highly available and time-crucial systems, and
deliver near real-time communication. Migration of applications to cloud providers
enable massive scalability, this is made possible by allocation of highly dynamic vir-
tual computing resources. Kubernetes along with Docker empower cloud service
users and abstract the application over the underlying hardware and computing units.

3.4 Infrastructural Flexibility

Cloud infrastructure is expected to abstract underlying systems such as physical and
virtual hosts along with storage mediums. It is recommended for applications to
tolerate infrastructural changes and prevent vendor lock-in5, due the fact that one can-
not assume that a single server- or cloud-provider will satisfy the application’s re-
quirements for its entire lifetime, as the these might change constantly. This specific
application is being distributed to different mobile operators by Nokia. Thus, it is
preferable to allow the customers to select the cloud provider.

4 Migration to the Public Cloud

This chapter will describe the migration process of the application in question from
an on-premise data-center to a public cloud. It will also justify the different tools
selection being made in order to satisfy the requirements listed in chapter 3.

4.1 Account Permissions and Cluster Setup

Amazon Web Services was the selected cloud provider. It provides a large number
of generic services, therefore creating a comprehensive solution suite with little to no

5The result of designing a system which is tightly coupled and dependent on a specific vendor

15

4. Migration to the Public Cloud

need for external ones. Some of these tools are an inherent part of AWS such as Iden-
tity and Access Management (IAM), along with various networking related ones such as
Virtual Private Cloud (VPC) and subnets configurations. These are mentioned in order
to show that network isolation from the public internet is a priority when using AWS.
Elastic Kubernetes Service (EKS) [1] was selected to set-up and configure the Kubernetes
cluster on the cloud. Identity and Access Management (AWS IAM) [3] allows enterprizes
to enforce their permission and boundaries for user and application access. Proper
access permissions must be carefully defined in order to provide the application with
the minimal set of services allowed without hindering any. Precise User Roles, Policy
and Role permissions must be set in order to allow users and applications to use a
certain service such as storage mediums, computing units and networking related
services on AWS.

Most cloud vendors allow the user to choose between privately managed and a ven-
dor managed Kubernetes clusters. In a privately managed cluster the customer is re-
sponsible for computing resource creation, operating system installations and con-
figurations, Kubernetes runtime installation and management, Kubernetes related
dependencies installation such as etcd for cluster data storage or Flannel as cluster
networking overlay. All of these tasks require deep knowledge and experience. In a
vendor managed Kubernetes cluster, the complex configuration of worker nodes and
cluster is being done by the cloud vendor. In the usual case, the setup will be done
against a simple and pre-defined graphical interface which hides the actual complex-
ity of Kubernetes cluster creation and management.
In this exercise the vendor managed cluster was selected. The process of a properly
configured cluster creation can be a venture, while vendor-manged clusters provide a
certain degree of configuration resilience. A transition between the two is possible in
the future in case the need arises, e.g cost-reduction and finer control over the cluster.

The vendor-managed cluster can be made either by command line interface direc-
tives or by the AWS web console graphical interface. Although both methods are
viable, the web interface prompts the entire initial configuration options such as VPC
and subnets selection, along with firewall and access mode (public or private). In
a later stage, further cluster creation and management can be automated using the
command line interface.
This action will result in creation of the Kubernetes Control Panel (Master Nodes) which
is managed by AWS and is out of the user’s reach. The internal components and re-
sponsibilities of the Kubernetes Control Panel are described in chapter 2.

Master nodes perform solely cluster management tasks, and unlike worker nodes,
they are provisioned implicitly by AWS EKS. Worker nodes’ creation process resem-
bles the cluster creation, as computing resources can be created using the web in-
terface or command line interface. Both ways will result in properly configured and
cluster-attached Elastic Cloud Computing resources (EC2), which are essentially vir-
tual computers allocated by AWS. Other alternatives for EC2 such as Fargate 6 were
considered, but Fargate support for our current use-case was not supported at the

6Fargate is a server-less system which decouples the application from any underlying dependencies
and allows to treat the application without maintaining any surrounding environment

16

4.2 Routing and Load Balancing

Figure 4: Examplary Cluster Pods

time of writing this this work.
Figure 4 shows exemplary output after cluster creation. Each row represents a Pod in
the system with additional information such as the namespace it belongs to, and in-
ternal IP address in the cluster. Pods under the kube-system namespace are managed
by AWS and are running on master nodes, while Pods under other namespaces are
in the control of the user. In this case we can observe Nginx Pods which function as a
gateway to any application in the cluster.

4.2 Routing and Load Balancing

The application requires dynamic adaption to a changing network load. Kubernetes
networking model was described in chapter 2 in order to understand its support of
load balancing and robust routing. Complex cloud infrastructure promotes the ap-
proach of horizontal scaling, where machines and application-replicas can be created
arbitrarily in order to provide seamless operation under heavy load. Kubernetes is
capable of scaling the application as needed. It is however not responsible to spread
the network traffic across the worker nodes of the cluster without an external dedi-
cated element. This is the duty of the load-balancer.
AWS Elastic Load Balancer was selected as the network load balancer of choice, as it
offers easy integration, and quick deployment and modification. Each request sent to
the cluster is being piped to the application in the following manner.

4.2.1 First Layer - AWS Elastic Load Balancer

The creation of a load balancer is being triggered by specifying proper annotations
in the Kubernetes configuration manifests. This network load balancer is a typical
reverse proxy and operates on layer 4 of the OSI model, i.e transport layer. It will
forward any network packets (TCP, UDP) to the next routing layer, while distributing
the load across the available worker nodes purely by the network load threshold (raw
amount of packets) and not by any other metadata the packets might carry. The
Elastic Load Balancer is aware of every node in the cluster, offers high availability and
periodical health checks of each one. This means that any change in the network e.g
a crash fault or a new node spawn will be reacted accordingly.[6]

17

4. Migration to the Public Cloud

Figure 5: Simplified Request Flow with Load Balancing

4.2.2 Second layer - Service Object

The Kubernetes service object grants internal and external network capeabilites to
the pod. In this application the service object is of type LoadBalancer, which is a
requirement for interoperability with AWS Elastic Load Balancer. Therefore, it binds
the external load balancing to an internal one, and bridges the abstraction between
nodes and pods. It utilizes a plain round-robin load-balancing by default.

4.2.3 Third layer - Kong API Gatway

The API Gatway provides a robust entry-point to our application. It is responsible
for operations which are out of the scope of the application itself such as rate lim-
iting, TLS termination and most importantly proper routing of each request to the
corresponding application in the cluster. The Kong gateway is being integrated into
the Kubernetes cluster by the kong-kubernetes-controller, allowing Kong to route by the
configurations found in the Ingress objects. The ingress objects will define the entire
routing scheme for the gateway to execute, usually by forwarding based on the path
value in the URL, i.e level 7 routing and load balancing. Kong will perform load
balancing between the replicas of each Pod, attempting to maintain an even load to
each instance.

Figure 5 presents the flow of each request into the cluster. Each request reaches
the AWS load-balancer, then being forwarded into the cluster. In the cluster the re-
quest will be forwarded by the Kubernetes internal load balancer service to the pod
containing an instance of Kong API gateway. Lastly it will be forwarded to the pod of

18

4.3 Access Management

the monitoring application itself. The routing flow might appear complex. However,
it is an essential trade-off in such systems, as we gain scalability, robustness, and easy
deployment of service-oriented systems at the cost of internal network simplicity.

4.3 Access Management

Access management systems control the flow of information and validate the iden-
tity of the client 7, but also ensure that this client will be exposed only to allowed
resources 8 [25]. Despite the fact that this topic is highly coupled with web- and
browser-security, it will be assumed that these are given, and we will only discuss the
authentication and authorization flow in this specific implementation.

The generic nature of access management flows caused an industry standardization
resulting in creation of protocols such as OAuth/OAuth2, JSON Web Token, SAML,
FIDO and more complex ones such as Open ID [21]. Keycloak by Red Hat was uti-
lized as an access management service in this project, running as a separate server
in the same cluster, so it is completely isolated from the business logic in the core
application server.

Keycloak supports Single Sign On (SSO), allowing centralized access management over
a multitude of internal services of an enterprize. It also allows Lightweight Directory
Access Protocol (LDAP) and Active Directory for integration with existing user manage-
ment services and databases. Other features such as Social Login and custom login
pages themes can be relevant for future uses.

4.3.1 Integration with Kong API

In the last section it was carefully described, how Kong API integrates and inter-
operates with the cluster network. Keycloak must be integrated in this process in
order to allow consistent access management flow and to prevent security pitfalls. The
highly extensible format of Kong allows Open ID Connect clients such as Keycloak
to be integrated in the usual flow by dedicated plug-ins. Nokia maintains its own
open-source Kong plug-in, making its usage and support easy and native [10]. The
flow diagram at Figure 6 describes the authentication and authorization protocol, and
messages flow between the client and the "Upstream API" i.e our core application.

4.4 Cloud Storage Backend

Traditional web applications are predictable and simple in terms of permanent storage
management. In most cases the internal data-flow consists solely of a direct connec-
tion between the server-application and the (possibly remote) database-server. This
results in a static and simple behavior of the system.

In a Kubernetes based applications, the topology and behavior of the system changes

7Authentication
8Authorization

19

4. Migration to the Public Cloud

Source: https://github.com/nokia/kong-oidc

Figure 6: Message exchange in Kong-Open ID Connect environment

20

https://github.com/nokia/kong-oidc

4.4 Cloud Storage Backend

drastically. Every operable entity in the system is being abstracted in order to provide
portability, fault tolerance and scalability. This affects the persistence options of the
entire system, since trivial approaches such as a single database server for each service
in the cluster would not suffice. In this chapter, we will describe the problem arising
from a naive implementation, and a more suitable storage scheme will be reviewed
and described.

4.4.1 A Naive Approach - hostPath

Kubernetes supports a wide variety of persistence options, from volatile to permanent[14].
The application was initially using a persistence option called hostPath, where a mount
point inside the containers was pointing to an actual storage space on the hosting
worker node. This option, despite being discouraged by the Kubernetes community
did satisfy the requirements in a simple infrastructure, such as a single replica or a
single node environments.
When running a multi-node and multi-replicas application, one cannot guarantee that
information available on a node in a certain moment will be available later, as the ser-
vice might already be re-scheduled to a different node. This can happen whenever a
container, a pod or a node crashes and the container must be rescheduled. Or when
the cluster is operating on a multi-replica mode, scheduling identical replicas of a
service to worker nodes, arbitrarily.
Figure 7 illustrates the problem with such permanent storage solution. Pod2 or Node2
crashes, resulting in the kube-controller-manager noticing that the number of wanted
replicas - one, does not match the number of current replicas - zero, and will allow
the kube-scheduler to re-schedule Pod2 to Node1. This leads to a situation where all
the information that was persisted on Node2 is not longer accessible from Pod2

4.4.2 A Sustainable Approach - Storage Backend and Dynamic Provisioning

Kubernetes is responsible for application management but not for its persisted data.
Yet, it allows integration with external block- or file storage solutions via compliance
with Cluster Storage Interface (CSI), so the data persistence layer can be managed in
a separate system which is independent of the application’s lifetime. From version
1.13 on Kubernetes officially supports CSI [5]. Cloud providers often implement this
interface, allowing a seamless connection between any Kubernetes cluster and their
cloud storage backends. Despite the variety of CSI compliant storage mediums, Elas-
tic Block Store, a native AWS service was selected. It offers an easy deployment and
configuration for EC2 based applications such as this one.

Kubernetes defines special objects to allow integration with storage solutions (regard-
less of cloud based or others), namely StorageClass, PersistentVolume and PersistentVol-
umeClaim[14]. In a trivial Kubernetes cluster, the storage options will be defined by a
PersistentVolume object, describing requirements such as capacity and medium type
(e.g hard-drive or solid-state-drive). These storage mediums can be later "claimed" by
the application via the PersistentVolumeClaim object. The issue arises from such a
flow is the lack of flexibility whenever the storage requirements change. The solution

21

4. Migration to the Public Cloud

Figure 7: Rescheduling a Pod with containers in a multi-node environment

22

5. Conclusion and Evaluation

Figure 8: Dynamic provisioning of AWS Elastic Block Storage

to this problem is to allow the application to require the suitable storage whenever
needed. The system administrator can set up a StorageClass which defines an entire
pool of storage mediums, and by doing so allowing Dynamic Provisioning i.e storage
allocation as needed.

Figure 8 illustrates the components involved in the dynamic provisioning of per-
sistent volumes on AWS EBS. The server admin defines a StorageClass type object
which triggers a provision of an AWS Elastic Block Storage volume by the AWS EBS
Plugin and a PersistentVolume. Later, the application developer requests storage re-
sources by defining PersistentVolumeClaims that refer to the auto-generated Persis-
tentVolume.

5 Conclusion and Evaluation

Research and development in large enterprises might be a challenging task. The
amount of employees, divisions and stakeholders is immense and dictates its ways
of operation. From a technical perspective, such environment affects the tools, soft-
ware, access permissions and general development procedures, which allow to raise
the overall professionalism at the cost of agility and speed.

In chapter 3 we described the requirements expected from the application, and in
chapter 4 the detailed implementation and considerations made. These provide suffi-
cient information for a proper reflection.

23

5. Conclusion and Evaluation

The application is deployed on AWS in a Virtual Private Cloud, providing a complete
network isolation. Every virtual host in the private network is explicitly exposed
when needed via an integrated firewall. AWS IAM is the AWS integrated Access Man-
agement service, which allows to enforce access rules to the network. Keycloak, the
application access management service was entirely migrated. As mentioned, it offers
an enterprise grade authorization and authentication, complying to standard such as
OAuth2.0 and Open ID Connect. Keycloak is built with cloud compatibility in mind,
which promoted its initial selection. The application is containerized and runs on a
Kubernetes cluster managed by EKS. This provides a large scalability potential, as
there are no hard limitations on the amount of worker nodes that can be run. Ku-
betnetes orchestrates these nodes, scaling out and in, while restarting resources when
required. This allows to maintain acceptable latency and connections threshold under
significant load. Kubernetes cluster is portable, as its entire structure is defined by
configuration files. A migration to a similar cloud provider should be a relatively
simple task. This happens because the architecture is in fact "layered" and each un-
derlying layer is agnostic (to some degree) to the wrapping one, and is in principle
independent.
We can see that the requirements stated earlier regarding Secutiry and Privacy, Au-
thentication and Authorization, Scalability and Latency and Infrastructural Flexibility are
considered as part of the solution and are indeed met to a certain degree.

Considering the scope and requirements of the project, some aspects are left to be
desired and should be researched in the future.

The network and message flow scheme is complex (see section 4.3), and involves
a fair number of operating parts. These flows might be simplified with more pow-
erful network overlays, which might reduce the steps of message passing inside the
private network.
Kubernetes integration with other AWS services such as storage and load-balancing
is seemingly streamline. This premise might be correct for the larger cloud providers
(AWS, Google Cloud Platform, Microsoft Azure). A flexible and vendor indepen-
dent solutions to the load balancing and storage backend components might improve
portability between cloud vendors and allow better adoption by companies interested
in the product but rely on novelty cloud solutions.
The application is designed to be deployed and operated with an arbitrary number of
worker nodes and services replicas. However, it was not properly tested beyond two
worker nodes and a single replica of each internal service (Kong, Keycloak and core
application). This raises a concern regarding the horizontal scalability potential of the
application.
A proper method to test the application infrastructure should be proposed and re-
searched, as large migrations involve changes in many infrastructure components. It
is desirable to assure that it functions as expected. In this work the testing was man-
ual and not at all automated, which puts the reliability aspect in question. This can be
introduced by a Continuous Integration and Continuous Delivery pipelines which will
set up real testing environments for both the application and the infrastructure. For

24

Bibliography

obvious reasons, this part was as well omitted from the work as it requires specific
knowledge and intensive resources.

Overall, we were able to migrate a large software from on-premise data-center to
a public cloud provider in a desirable manner which fulfills the initial requirements,
and allows integration with other cloud providers in the future. Moreover, the infras-
tructural tools that were used for the on-premise revision such as Kubernetes, Kong
and Keycloak were not compromised. These were adopted fully to the cloud and kept
the same predictable application-flow as before.

Bibliography

[1] Amazon elastic kubernetes service. https://aws.amazon.com/eks/ visited on
28/06/2020.

[2] Amazon web services. https://aws.amazon.com/ visited on 31/05/2020.

[3] Aws identity and access management (iam). https://aws.amazon.com/iam/ vis-
ited on 28/06/2020.

[4] Cluster networking. https://kubernetes.io/docs/concepts/
cluster-administration/networking visited on 31/05/2020.

[5] Container storage interface (csi) for kubernetes ga. https://kubernetes.io/
blog/2019/01/15/container-storage-interface-ga visited on 31/05/2020.

[6] Elastic load balancing features. https://aws.amazon.com/
elasticloadbalancing/features/ visited on 31/05/2020.

[7] Google cloud platform. https://cloud.google.com/ visited on 31/05/2020.

[8] Keycloak. https://www.keycloak.org/ visited on 31/05/2020.

[9] Kong. https://konghq.com/ visited on 31/05/2020.

[10] Kong oidc plugin. https://github.com/nokia/kong-oidc visited on
20/06/2020.

[11] Kubernetes. https://kubernetes.io/ visited on 31/05/2020.

[12] Kubernetes ingress. https://kubernetes.io/docs/concepts/
services-networking/ingress-controllers visited on 31/05/2020.

[13] Kubernetes service - nodeport. https://kubernetes.io/docs/concepts/
services-networking/service/#nodeport visited on 31/05/2020.

[14] Kubernetes storage. https://kubernetes.io/docs/concepts/storage/ visited
on 28/06/2020.

[15] Linux kernel in wsl 2. https://docs.microsoft.com/en-us/windows/wsl/
wsl2-about#linux-kernel-in-wsl-2 visited on 22/06/2020.

25

https://aws.amazon.com/eks/
https://aws.amazon.com/
https://aws.amazon.com/iam/
https://kubernetes.io/docs/concepts/cluster-administration/networking
https://kubernetes.io/docs/concepts/cluster-administration/networking
https://kubernetes.io/blog/2019/01/15/container-storage-interface-ga
https://kubernetes.io/blog/2019/01/15/container-storage-interface-ga
https://aws.amazon.com/elasticloadbalancing/features/
https://aws.amazon.com/elasticloadbalancing/features/
https://cloud.google.com/
https://www.keycloak.org/
https://konghq.com/
https://github.com/nokia/kong-oidc
https://kubernetes.io/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers
https://kubernetes.io/docs/concepts/services-networking/service/#nodeport
https://kubernetes.io/docs/concepts/services-networking/service/#nodeport
https://kubernetes.io/docs/concepts/storage/
https://docs.microsoft.com/en-us/windows/wsl/wsl2-about#linux-kernel-in-wsl-2
https://docs.microsoft.com/en-us/windows/wsl/wsl2-about#linux-kernel-in-wsl-2

Bibliography

[16] Lxc. https://linuxcontainers.org/#LXC visited on 31/05/2020.

[17] Managing resources. https://kubernetes.io/docs/concepts/
cluster-administration/manage-deployment visited on 22/07/2020.

[18] Microsoft azure. https://azure.microsoft.com visited on 31/05/2020.

[19] Open container initiative. https://opencontainers.org/ visited on 31/05/2020.

[20] Overview of containers in red hat systems. https://access.redhat.com/
documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/
overview_of_containers_in_red_hat_systems/introduction_to_linux_
containers#linux_containers_architecture visited on 22/04/2020.

[21] Owasp authentication cheat sheet. https://cheatsheetseries.owasp.org/
cheatsheets/Authentication_Cheat_Sheet.html visited on 10/06/2020.

[22] Serverless architecture. https://martinfowler.com/articles/serverless.html
visited on 31/05/2020.

[23] Reminiscences on the theory of time-sharing, March 1989. http://aiweb.
techfak.uni-bielefeld.de/content/bworld-robot-control-software/.

[24] Docker documentation, 04 2020. https://docs.docker.com/engine/.

[25] David J. Wetherall Andrew S. Tanenbaum. Computer Networks 5th Edition, chap-
ter 8, page 827. Pearson Prentice Hall, 1 edition, 2006.

[26] Ed. C. Yang, Ed. SY. Pan. The standards on a cloud service frame-
work and protocol for construction, migration, deployment,and publish-
ing of internet-oriented scalable web software systems in non-programming
mode. Internet-Draft 4180, RFC Editor, 10 2005. https://tools.ietf.org/id/
draft-yangcan-core-web-software-built-in-cloud-02.html/.

[27] Shahbaz Afzal G. Kavitha. An updated performance comparison of virtual ma-
chines and linux containers. Journal of Cloud Computing, 2019.

[28] Justin Garrison and Kris Nova. Cloud Native Infrastructure, chapter 1, page 22.
O’reilly Media, Inc., 1 edition, 07 2018.

[29] Justin Garrison and Kris Nova. Cloud Native Infrastructure, chapter 1, page 26.
O’reilly Media, Inc., 1 edition, 07 2018.

[30] Marko Luksa. Kubernetes in Action, chapter 1, pages 18–19. Hanning, 1 edition,
2018.

[31] Marko Luksa. Kubernetes in Action, chapter 1, pages 55–309. Hanning, 1 edition,
2018.

[32] Ram Rajamony Juan Rubio Wes Felter, Alexandre Ferreira. An updated perfor-
mance comparison of virtual machines and linux containers. 2015 IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software (ISPASS), pages
171–172, 2015.

26

https://linuxcontainers.org/#LXC
https://kubernetes.io/docs/concepts/cluster-administration/manage-deployment
https://kubernetes.io/docs/concepts/cluster-administration/manage-deployment
https://azure.microsoft.com
https://opencontainers.org/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/overview_of_containers_in_red_hat_systems/introduction_to_linux_containers#linux_containers_architecture
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/overview_of_containers_in_red_hat_systems/introduction_to_linux_containers#linux_containers_architecture
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/overview_of_containers_in_red_hat_systems/introduction_to_linux_containers#linux_containers_architecture
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/overview_of_containers_in_red_hat_systems/introduction_to_linux_containers#linux_containers_architecture
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://martinfowler.com/articles/serverless.html
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/
https://docs.docker.com/engine/
https://tools.ietf.org/id/draft-yangcan-core-web-software-built-in-cloud-02.html/
https://tools.ietf.org/id/draft-yangcan-core-web-software-built-in-cloud-02.html/

	Introduction
	Fundamentals
	Cloud Computing
	Infrastructure as a Service - IaaS
	Platform as a Service - PaaS
	Software as a Service - SaaS

	Containers
	Container Internals
	Container Runtime - Docker

	Cluster Management - Kubernetes
	Control Plane Components
	Worker Node Components
	Kubernetes Objects
	Kubernetes Networking

	Load balancing

	Motivation
	Security and Privacy
	Authentication and Authorization
	Scalability and Latency
	Infrastructural Flexibility

	Migration to the Public Cloud
	Account Permissions and Cluster Setup
	Routing and Load Balancing
	First Layer - AWS Elastic Load Balancer
	Second layer - Service Object
	Third layer - Kong API Gatway

	Access Management
	Integration with Kong API

	Cloud Storage Backend
	A Naive Approach - hostPath
	A Sustainable Approach - Storage Backend and Dynamic Provisioning

	Conclusion and Evaluation
	Bibliography

