
Master’s thesis at the Institute for Computer Science,

Software Engineering Working Group

Evaluating the Use of a Web Browser to
Unify GUI Development for IDE Plug-ins

Christian Cikryt
Student ID: 4285814

c.cikryt@fu-berlin.de

Berlin, April 15, 2015

Submitted to: Prof. Dr. Lutz Prechelt

and Prof. Dr. Claudia Müller-Birn

Supervisor : Franz Zieris, M.Sc.

mailto:c.cikryt@fu-berlin.de

i

Abstract

Saros, an Eclipse plug-in for distributed collaborative programming, is currently being
ported to the IntelliJ IDEA platform. As both IDEs use different graphical widget
toolkits, SWT and Swing respectively, this results in a duplication of the GUI code.
This thesis investigates whether the integration of a web browser into both plug-ins
and the display of Saros in HTML-based technologies is a viable alternative. It avoids
the redundant implementation of the user interface and maximises the common code
base. After a thorough initial evaluation, a prototype is developed that encloses all
fundamental mechanisms including GUI tests in order to qualitatively assess this
approach. The prototype has been closely integrated into Saros and provides a basis
for further development and evaluation. The choice and integration of the web browser
constitutes a large part of this work. In the process an existing wrapper for the SWT
browser has been further developed into an external library.

ii

Affirmation of independent work

I hereby declare that I wrote this thesis myself without sources other than those
indicated herein. All parts taken from published and unpublished scripts are indicated
as such.

Berlin, April 15, 2015

(Christian Cikryt)

Contents

Affirmation of independent work . ii

1 Introduction 1
1.1 The plug-in of interest: Saros . 1

1.2 Motivation . 2

1.3 Goals . 3

1.4 Terminology . 3

1.5 Introducing GUI toolkits and IDEs . 3

1.6 Related work . 6

1.7 Outline of this thesis . 8

2 Evaluation of the GUI technology 9
2.1 Goals . 9

2.2 Browser-based solution . 9

2.2.1 Browsers for Swing . 10

2.2.2 The SWT browser component 11

2.2.3 Björn Kahlert’s improvements to the SWT browser 15

2.2.4 JxBrowser . 17

2.2.5 JavaFX browser . 18

2.2.6 DJ Native Swing . 18

2.2.7 Summary . 19

2.3 Criteria . 20

2.4 Evaluation of an HTML-GUI vs. Java toolkits 20

2.4.1 Criterion: Initial development effort 21

2.4.2 Criterion: Ongoing development effort 21

2.4.3 Criterion: Presentation problems 22

2.4.4 Criterion: Performance . 23

2.4.5 Criterion: Compatibility and stability 23

2.4.6 Criterion: Testability . 24

2.4.7 Decision for browser . 24

2.4.8 Possible browser components 25

2.4.9 Possible combinations . 26

2.5 Side note: alternatives . 26

2.5.1 Using a browser only for IntelliJ 26

2.5.2 IntelliJ implementation completely in SWT 26

2.5.3 Native JavaFX implementation 26

2.6 Summary . 27

iv

3 Details of the evaluation phase 28
3.1 Using the SWT Browser in IntelliJ . 28

3.1.1 JVM crash when closing the browser 30

3.1.2 Dynamic loading of SWT library classes 32

3.1.3 Getting the IntelliJ version to run on Mac OS 33

3.2 Requirements of JavaFX . 34

3.2.1 Embedding the JavaFX browser into IntelliJ 34

3.2.2 Embedding it into Eclipse . 34

3.2.3 Using JavaFX under Java 6 . 34

3.2.4 Using JavaFX under Java 7 . 35

3.3 Web technologies . 36

3.3.1 AngularJS . 36

3.3.2 Libraries . 38

3.3.3 My assessment . 38

4 Implementation 39
4.1 GUI module . 39

4.1.1 Threading . 41

4.1.2 Passing the result of asynchronous method calls back to Javascript 42

4.1.3 Displaying the application state 45

4.1.4 Validation of Javascript input 45

4.1.5 Changing browser instances . 46

4.2 Extending the browser . 47

4.2.1 The planned course of action 47

4.2.2 Getting it to run on all systems 48

4.2.3 Forming the browser interface 51

4.2.4 Internal Concurrency fixes . 56

4.2.5 Tests and Demos . 57

4.2.6 Restructuring and decoupling functionality 58

4.2.7 Preparing the replacement of the underlying browser 61

4.3 Design of the GUI test framework . 62

4.3.1 The existing test framework for Eclipse 62

4.3.2 Goals . 62

4.3.3 GUI automation for IntelliJ IDEA 63

4.3.4 Opening the browser view in IntelliJ 63

4.3.5 Opening the browser view in Eclipse 64

4.3.6 GUI automation for HTML . 64

4.3.7 Design of the RMI interface for HTML 64

4.4 Accompanying refactorings . 67

4.5 Integration of the HTML GUI into the build process 68

4.5.1 Building inside Eclipse . 68

4.5.2 Building inside IntelliJ . 68

4.5.3 Configuring the Jenkins build 68

v

5 Being part of the Saros team 70
5.1 My contribution . 70

5.1.1 Cooperation with parallel theses 70
5.1.2 Git documentation . 71
5.1.3 Documentation for new developers 71
5.1.4 Release process . 71
5.1.5 Review process . 71

5.2 Suggestions for improvement . 72
5.2.1 Developing Javascript code . 72
5.2.2 Continuous integration . 72
5.2.3 Release testing . 72

5.3 Retrospective thoughts . 73
5.3.1 Was the SWT browser the right choice? 73
5.3.2 What about the decision to use Björn Kahlert’s browser? . . . 74
5.3.3 Change of focus throughout my thesis 74

6 Results of this thesis 75
6.1 Conclusion . 75
6.2 Future work . 76

1 Introduction

In every ongoing software project with a sizeable code base, decreasing future devel-
opment costs will become a central point. One way to achieve this is the reduction
of redundancy in the code with the goal to apply the same change in only one place.
However, let us consider for a moment as an example programs that should run on
multiple platforms using different graphical toolkits. Obviously, this implies duplica-
tion, not necessarily on the code level as they are after all using objects from different
libraries, but the underlying logic remains the same. The standard approach to max-
imising the common code in this scenario is to introduce abstractions and hide all the
differences behind them. However, one will still end up with different implementations
for the same behaviour1.
In this thesis, I evaluate the idea of using a browser and web technologies instead
of different native toolkits for the user interface in order to unify the GUI code.
I examine the concrete example of the Integrated Development Environment (IDE)
plug-in Saros2 that was originally developed for the Eclipse platform and is now ported
to the IntelliJ IDEA environment3. Besides the support for two platforms which use
different graphical toolkits, the plug-in shall be running on Windows, Mac OS, and
GNU/Linux. Even though the plug-in is written in Java, the latter becomes an
issue because the GUI toolkit and the browser may depend strongly on the operating
system.
As we will learn during the evaluation phase, there are only a handful of viable
Java web browsers and each has its limitations for our scenario. Therefore this work
provides, as a byproduct, interesting knowledge about embedding a Java browser into
an IDE and about the choice of Java web browsers in general.
After a thorough evaluation, an HTML-based prototype is created and used to take
a close look at the resulting code structures, especially the communication between
Java and Javascript. This prototype aims to implement all required mechanisms
including GUI tests to detect possible problems with the browser approach and assess
compatibility across operating systems.

1.1 The plug-in of interest: Saros

Saros is an Eclipse plug-in for distributed collaborative programming. It is free soft-
ware and licensed under the GPL 2.04. Distributed means that collaborators may

1Of course, parts of the GUI and the behaviour differ on each platform by choice.
2http://www.saros-project.org/ (retrieved 20 March 2015)
3See subsection 1.5 for the introduction of both IDEs.
4http://www.gnu.org/licenses/gpl-2.0.html (retrieved 20 March 2015)

http://www.saros-project.org/
http://www.gnu.org/licenses/gpl-2.0.html

2 1.2 Motivation

be at different physical locations while working on the same software project. Saros
aims to remove resulting barriers by providing a collaborative real-time editor that
highlights others’ contributions and synchronising shared project files, for example.
It started in 2006 as part of Riad Djemili’s Diploma thesis [Dje06] and is continuously
developed by members, mostly students, of the Software Engineering working group
at Freie Universität Berlin.

Figure 1.1: The main view of Saros in Eclipse

The Saros IntelliJ IDEA plug-in has not been released yet, but can be tested with a
limited set of features consisting of the management of accounts, contacts, and the
sharing of projects.

1.2 Motivation

Since the aforementioned porting to the IntelliJ IDEA platform requires the GUI to
be replicated because Eclipse and IntelliJ use different graphical toolkits, the wish
for a less redundant solution arose. The obvious advantage would be maintainability
as future development could be happening on the same code base and changes would
not have to be ported to another implementation. Furthermore, this could pave the
way for a port to the Netbeans5 platform, which is currently being evaluated with a
prototype by Sabine Bender in her Bachelor’s thesis [Ben15].

Initiated by browser-based widgets which Björn Kahlert, a researcher in the Software
Engineering working group, wrote to display the results of his work inside Eclipse,
the idea arose to use web technologies for the user interface of Saros as well. The
plan is to embed a browser in the Saros plug-in on each platform and write the GUI
in HTML and Javascript. Ideally, only the embedding code will differ for each IDE,
while the HTML part can be re-used. Note that the Eclipse plug-in offers additional

5https://netbeans.org/

https://netbeans.org/

1 Introduction 3

functionality outside the Saros view like highlighting in the editor view and extending
Eclipse’s configuration menu. The implementation of those features will remain IDE-
specific and is outside the scope of this thesis. Figure 1.1 shows the Saros view that
should be replaced by a website; this is the part of the GUI I will concentrate on.
In addition, I will consider wizards, which are used for adding accounts or sharing
projects for example. They are invoked when the corresponding buttons are clicked
in the Saros view and currently implemented as dialogue windows.

1.3 Goals

The primary goal is to decide whether the HTML-based approach is viable and should
be pursued in the future. Therefore, possible browser candidates are to be identified
in a thorough evaluation. One special challenge here is to find a suitable browser for
IntelliJ IDEA as the list of candidates is short. Prior to the actual implementation
of a prototype it remains to be seen if this approach is indeed promising compared to
the traditional one.

A prototype should be implemented to see whether all current elements of the Saros
view can be displayed in the browser. Later on, the prototype is extended to take a
close look at the interface between Java and HTML in order to identify possible imple-
mentation problems. The HTML prototype should also incorporate the elementary
structure for GUI tests.

1.4 Terminology

Throughout this work I will use the following terms. I will use IntelliJ as a synonym
for IntelliJ IDEA, since the other products and variants of the IntelliJ platform do
not need to be distinguished for this thesis.

When I write “free software” I refer to the definition by the Free Software Foundation6

and make no statement about the price. Open source software might be a more
common term for this kind of software, but it has a slightly different focus.

Saros/E denotes the plain old Saros Eclipse plug-in (without HTML), while Saros/I
is its IntelliJ counterpart (again without HTML).

I abbreviate user interface (UI), graphical user interface (GUI), and integrated devel-
opment environment (IDE).

1.5 Introducing GUI toolkits and IDEs

1.5.1 Abstract Window Toolkit (AWT)

AWT is Java’s original GUI toolkit. It provides only a thin abstraction layer around
the native widgets provided by the operating system. Although AWT has been su-

6See https://www.gnu.org/philosophy/free-sw.en.html (retrieved 20 March 2015).

https://www.gnu.org/philosophy/free-sw.en.html

4 1.5 Introducing GUI toolkits and IDEs

perseded by Swing, Swing uses AWT’s interface for the communication with the
operating system regarding the management of windows and events.

1.5.2 Swing

Swing was developed in order to provide a richer set of GUI components than AWT.
From Java 6 Update 12 onward, Swing and AWT widgets can be mixed without AWT
widgets falsely appearing over Swing widgets7.

Swing GUI elements are pure Java with no native code. Instead of wrapping native
GUI components, Swing draws its own components by using the Java 2D API to call
low level operating system drawing routines. “Swing is currently in the process of
being replaced by JavaFX”8.

1.5.3 SWT

The Standard Widget Toolkit (SWT)9 is an alternative to the Java GUI toolkits
provided with Java itself, namely Abstract Window Toolkit (AWT) and its successor
Swing. It is free software licensed under the Eclipse Public License (EPL) and is
developed by the Eclipse Foundation closely linked to the Eclipse IDE. For the dis-
play of GUI elements, SWT calls native GUI libraries of the operating system and,
consequently, the SWT implementations differ for each operating system. However,
code using SWT does not have to be ported to different platforms. This is relevant
for this thesis since Saros will have to deliver the SWT binary with the plug-in (see
subsection 3.1.2).

According to Eclipse’s FAQ10 the motivation for the creation of SWT was to have
the “native look and feel” and the “native performance” for widgets in contrast to
Swing.11

1.5.4 JavaFX

“JavaFX is a set of graphics and media packages”12 for the cross-platform develop-
ment of rich client applications. Whenever I am talking about JavaFX in this thesis
I am referring to JavaFX 2.2 and above. As of Java 7 Update 6 it is part of the
Java runtime environment. It features declarative GUI development using XML and
CSS. It is intended to replace Swing in the future, but for now both technologies

7http://bugs.java.com/bugdatabase/view_bug.do?bug_id=2169701 (retrieved 20
March 2015)

8Taken from http://en.wikipedia.org/w/index.php?title=Swing_(Java)&oldid=
653577049 (retrieved 10 April 2015)

9https://www.eclipse.org/swt/ (retrieved 20 March 2015)
10http://wiki.eclipse.org/FAQ_Why_does_Eclipse_use_SWT%3F (retrieved 11 April

2015)
11According to Klemen Žagar (http://public.cosylab.com/CSS/DOC-SWT_Vs._Swing_

Performance_Comparison.pdf, retrieved 11 April 2015) the actual performance of SWT is
not necessarily better than the one of Swing depending on the environment.

12http://docs.oracle.com/javase/8/javafx/get-started-tutorial/jfx-
overview.htm#BABEDDGH (retrieved 20 March 2015)

http://bugs.java.com/bugdatabase/view_bug.do?bug_id=2169701
http://en.wikipedia.org/w/index.php?title=Swing_(Java)&oldid=653577049
http://en.wikipedia.org/w/index.php?title=Swing_(Java)&oldid=653577049
https://www.eclipse.org/swt/
http://wiki.eclipse.org/FAQ_Why_does_Eclipse_use_SWT%3F
http://public.cosylab.com/CSS/DOC-SWT_Vs._Swing_Performance_Comparison.pdf
http://public.cosylab.com/CSS/DOC-SWT_Vs._Swing_Performance_Comparison.pdf
http://docs.oracle.com/javase/8/javafx/get-started-tutorial/jfx-overview.htm#BABEDDGH
http://docs.oracle.com/javase/8/javafx/get-started-tutorial/jfx-overview.htm#BABEDDGH

1 Introduction 5

coexist and JavaFX applications can be integrated smoothly into existing Swing and
SWT applications. This and the fact that it features a native, full-featured Java web
browser make JavaFX relevant for Saros.

1.5.5 Event-dispatch thread (EDT)

All previous graphical toolkits are single-threaded, i. e. all manipulations of GUI
objects have to take place on the so called event dispatch thread (EDT)13. Each
toolkit has its own mechanisms for managing the EDT and letting clients execute
methods on the EDT. For the rest of this work I will use EDT and UI thread (or
SWT thread in SWT context) as synonyms.

1.5.6 Mixing of different toolkits

For the course of this work it is important to know that there are different Java
GUI toolkits that can be embedded into one another. Figure 1.2 visualises the usage
of SWT in Swing applications, whereas Figure 1.3 shows the usage JavaFX. The
embedding of SWT in Swing (and vice versa) requires the so-called SWT-AWT bridge,
which is included in SWT and not part of Java itself. For the technical details of the
embedding, see section 3.1. In contrast, the embedding of JavaFX in SWT or Swing
is an integral part of Java.

Figure 1.2: Embedding SWT in Swing and using it for both IntelliJ and Eclipse

Figure 1.3: Using JavaFX embedded into Swing and SWT in IntelliJ and Eclipse

13The reason for this is that multithreaded GUI frameworks are extremely difficult to implement
because of inherent problems with race conditions and deadlocks ([GBB+06] chapter 9.1).

6 1.6 Related work

1.5.7 Eclipse IDE

Eclipse14 is an extensible IDE that can be used for software development in a large
variety of programming languages. It is mainly written in Java and uses SWT. It
features a workbench and a plug-in infrastructure as well as an OSGI15 runtime
environment. This is relevant as I developed a new OSGI bundle in my thesis. It is
free software released and maintained by the Eclipse Foundation under the Eclipse
Public License.

1.5.8 IntelliJ IDEA

IntelliJ IDEA is a cross-platform Java IDE developed by JetBrains16 and available
in a free and a commercial variant. The free Community Edition is licensed under
the Apache 2.0 License17, whereas the Ultimate Edition uses the same code base and,
among others, adds support for Java EE or the Spring framework. IntelliJ IDEA is
written in Java and uses Swing as its GUI toolkit.

The IntelliJ platform constitutes a generic foundation for IDEs targeting different
programming languages. For this thesis, only IntelliJ IDEA is relevant.

1.6 Related work

Regarding the browser

The use of browser technologies for traditional desktop applications is not new.
Google Docs and Firefox OS are just two prominent examples. With the rising pop-
ularity of smartphones and their mainly web-based services the idea to use websites
instead of different native implementations for each platform became more and more
relevant (even if it is mostly more of an addition than a replacement). The main
difference compared to my work is that most of these web applications run headlessly
and can be accessed with any web browser as opposed to a browser embedded into
an application. As of now, Saros only runs embedded in the IDE so that it has to
make calls into the enclosed browser to display content. In addition, the embedding
scenario also requires calls from Javascript into Java to execute business methods and
thus results in a bidirectional communication between Java and Javascript.

As already mentioned in section 1.2, Björn Kahlert’s browser widgets18 for Eclipse
originally triggered the idea for the Saros HTML prototype. He developed those
widgets to display the results of his API usability analyser19 which is part of his PhD
thesis [Kah15] in the field of qualitative data analysis. His motivation was the need
for individual widgets that are easier to develop in the web context than in Java and

14https://eclipse.org/ (retrieved 20 March 2015)
15A modular service platform for Java, see http://www.osgi.org/Specifications/HomePage

(retrieved 20 March 2015) for more information.
16https://www.jetbrains.com/ (retrieved 20 March 2015)
17Its source code can be found here: https://github.com/JetBrains/intellij-community

(retrieved 20 March 2015).
18The browser’s source code has been published alongside many other widgets on https://github.

com/bkahlert/com.bkahlert.nebula (retrieved 20 March 2015).
19https://github.com/bkahlert/api-usability-analyzer (retrieved 20 March 2015)

https://eclipse.org/
http://www.osgi.org/Specifications/HomePage
https://www.jetbrains.com/
https://github.com/JetBrains/intellij-community
https://github.com/bkahlert/com.bkahlert.nebula
https://github.com/bkahlert/com.bkahlert.nebula
https://github.com/bkahlert/api-usability-analyzer

1 Introduction 7

exceed the performance of SWT. Section 2.2.3 describes the improvements compared
to the SWT browser and explains the considerations as to how it should be used for
Saros, while section 4.2 presents my modifications to it.

Damla Durmaz developed an activity log for Saros and implemented it twice, once
in SWT and once in HTML, using Björn Kahlert’s browser widget. Her work was
a first test for the use of HTML for Saros. However, it did not include any analysis
of the existing Saros GUI for an HTML re-write and did not address other IDEs or
operating systems. This is where my thesis continues her work. Her experience with
the HTML implementation was positive: most prominent the ease of changes to the
appearance. Further details can be read in [Dur14].

The Vaadin20 Eclipse plug-in features a UI Designer that is displayed inside a browser
frame. In contrast to our use-case the Designer web application runs standalone on
a remote server and there is no communication between Java and Javascript apart
from initially setting the URL. The Vaadin plug-in uses the SWT browser.

There is an unofficial, outdated IntelliJ IDEA plug-in21 of this UI Designer. This
plug-in wraps the SWT Browser using Native Swing (see subsection 2.2.6), but as
in the Eclipse equivalent there are no additional calls between Java and the browser,
which are required for Saros if embedded into a browser. Since I was unable to find
the source code of the IntelliJ plug-in, I had to take a look at the plug-in’s decompiled
classes for this information22. It is interesting to see that the Vaadin IntelliJ plug-in
uses the same approach (see section 3.1): embedding the SWT browser in Swing and
bundling the SWT library files in the plug-in. However, it has the same compatibility
issues, e. g. with Mac OS (see section 2.2.2). Since it does not need to make calls
into the browser, it does not have the need for a browser component like the one
described in section 4.2. For Saros I will embed the browser directly in the IDE and
make rendering calls to the browser.

Regarding the test framework

Saros Eclipse features a GUI test framework, called STF, that emulates user input
via the Swing automation library SWTBot23. The calls to SWTBot are transmitted
through Java’s Remote Method Invocation (RMI) interface. STF was originally devel-
oped by Sandor Szücs in his Diploma thesis [Szü10] and enhanced by Lin Chen [Che11]
and Stefan Rossbach [Ros11]. Section 4.3 describes its current structure and the adap-
tation for HTML GUI tests. The aim for the new HTML GUI is to make equivalent
tests possible for both IDEs. Saros/I has no GUI test framework.

20https://vaadin.com/home (retrieved 20 March 2015)
21https://plugins.jetbrains.com/plugin/6727?pr (retrieved 20 March 2015)
22I only found out about Vaadin using the SWT browser because I explicitly (following a hint from

Björn Kahlert) and repeatedly searched for it. There is no article or documentation about the
embedding of a browser, I also had to explicitly look for the source code of the UI Designer
which is separately developed from the rest of the Eclipse plug-in and not included in the official
repositories.

23http://eclipse.org/swtbot/ (retrieved 20 March 2015)

https://vaadin.com/home
https://plugins.jetbrains.com/plugin/6727?pr
http://eclipse.org/swtbot/

8 1.7 Outline of this thesis

Parallel theses

Currently, there are three parallel theses in the Saros project that are of relevance to
mine. Matthias Bohnstedt’s Master’s thesis [Boh15] evaluates the use of the HTML
GUI further. He was also involved in some parts of Saros’ current HTML implemen-
tation. Arndt Lasarzik is moving identified duplicated IntelliJ code into the common
core module as part of his Bachelor’s thesis [Las15]. The actual HTML implementa-
tion will be done by Bastian Sieker in his Master’s thesis [Sie15]. Figure 1.4 illustrates
how these areas depend on each other and relate to my work, which focuses on the
UI module and the embedding part.

Figure 1.4: Connections between parallel theses

1.7 Outline of this thesis

Chapter 2 presents the evaluation process and results, while chapter 3 describes in
detail the challenges of embedding a browser. In chapter 4, the implementation of the
new HTML UI is illuminated including the development of the browser component
and a draft of a graphical test framework. Before chapter 6 sums up the current state
chapter 5 describes additional work I did and shares my constructive thoughts about
Saros’ processes.

2 Evaluation of the GUI technology

As my thesis may be seen as one part of the entire GUI evaluation process for Saros,
allow me to clarify that this chapter describes the decision for the technology to
concentrate on for the prototype implementation. In particular, I will explain the
reasons for favouring an HTML-based solution in place of Java GUI toolkits. The
working prototype serves for a more detailed examination and lays the foundation for
future work.

2.1 Goals

The goals for Saros’ future GUI are listed here in order to have a reference for the
focus of this evaluation. They are derived from the expectations of the Saros team.

• Reduction of duplicate code / Maximisation of the common code base of both
IDEs.

• Better maintainability and easier ongoing development. This is partially a result
of the elimination of duplicate code, but factors like complexity and readability
of the code are also playing a role here.

• Platform-independent GUI tests: the maximisation of common code should
include the tests as well.

The next two items are optional goals, but should be considered in the course of this
evaluation.

• Porting to further IDEs, namely Netbeans.
• Better performance than SWT or Swing: For example Damla Durmaz [Dur14]

had performance problems rendering a huge number of lines in Saros’ activity
log using SWT1.

2.2 Browser-based solution

As established in section 1.2, the focus of this evaluation lies on browser-based solu-
tions since those promise less redundant code by enabling the use of the same GUI
in all environments. In this section viable browser components are identified and
in section 2.4 those concrete implementations are compared to native, non-browser
alternatives to decide whether they are indeed favourable.

The main challenge here is to find a suitable browser for both Eclipse and IntelliJ,
since each IDE uses a different graphical widget toolkit: SWT and Swing respectively

1This does not mean that it is impossible to render those data with acceptable response times in
SWT, but it requires at least some special thoughts.

10 2.2 Browser-based solution

(see section 1.5). Only SWT features a browser in the toolkit itself, whereas Swing
lacks an equivalent component.

2.2.1 Browsers for Swing

Before I began working on my thesis, the following four possible candidates for a
Swing web browser have been listed on the Saros mailing list2:

1. The SWT browser embedded into Swing.
2. The commercial JxBrowser3 written in Swing and using Chromium internally.
3. The JavaFX browser.
4. Native Swing4.

The JavaFX browser was instantly discarded (“but it seems JavaFX is not fully
supported in IDEA”5) with a reference to the IntelliJ plug-in developer forum. Native
Swing was discarded as well because it was thought to be unmaintained (“but it is
not developed since 2011 and probably lacks functionality”5).

I conducted additional research to make sure we did not miss any viable browser
implementation. I used the two questions on the Stack Overflow website “Embed
browser in Java based desktop application”6 and “Is there a way to embed a browser
in Java?”7 mentioned on the Saros mailing list as a basis to browse related discussions
on this platform. Furthermore, I asked Google for “swing browser”, “embed SWT
browser in swing”, “java web browser” and similar queries. The results made me
re-evaluate JavaFX as the quote on the mailing list did not capture the essence of
the forum post. IntelliJ IDEA supports JavaFX “but the current version of IntelliJ
supports running on JDK versions that don’t support JavaFX, so this won’t work for
all users”8. A more detailed description of the JavaFX evaluation and its advantages
can be found in subsection 2.2.5.

I also had a closer look at Native Swing aka. the DJ Project as it is in fact not un-
maintained and may prove to be a helpful addition to the SWT browser. A release has
not been provided since 2011 but the sole main developer is still active in discussions
in the bug tracker and forum.

All other browser components I found could indeed be discarded and are listed below
for reference.

2https://lists.sourceforge.net/lists/listinfo/dpp-devel (retrieved 20 March
2015)

3http://www.teamdev.com/jxbrowser (retrieved 20 March 2015)
4Project homepage: http://djproject.sourceforge.net/ns/index.html (retrieved 20

March 2015) and on GitHub: https://github.com/Chrriis/DJ-Native-Swing (retrieved
20 March 2015)

5http://sourceforge.net/p/dpp/mailman/message/32789958/ (retrieved 20 March
2015)

6http://stackoverflow.com/q/1454652 (retrieved 20 March 2015)
7http://stackoverflow.com/q/48249 (retrieved 20 March 2015)
8https://devnet.jetbrains.com/message/5507484#5507484 (retrieved 20 March 2015)

https://lists.sourceforge.net/lists/listinfo/dpp-devel
http://www.teamdev.com/jxbrowser
http://djproject.sourceforge.net/ns/index.html
https://github.com/Chrriis/DJ-Native-Swing
http://sourceforge.net/p/dpp/mailman/message/32789958/
http://stackoverflow.com/q/1454652
http://stackoverflow.com/q/48249
https://devnet.jetbrains.com/message/5507484#5507484

2 Evaluation of the GUI technology 11

Discarded browsers

The Lobo-Project is currently not being developed and the project’s homepage has
been removed9. In addition, its supported standards are outdated (HTML 4, CSS 2).
It is available on SourceForge10.

Lobo Evolution Lobo Evolution11 is a fork of the inactive Lobo-Project. The initial
commit had just been made when I was conducting this research (18 October, 2014).
As it has just one developer I do not expect a reliable implementation any time soon.
At the end of my thesis (20 March 2014) I looked at the repository and homepage
again. It had its first release (0.98.6) in the meantime, but still lacks any documen-
tation and signs of users (no bug entries or discussions).

Java Chromium Embedded makes Chromium available in Java applications12. In
contrast to the JxBrowser it is free software, but it faces the same problem of having
to make sure that the Chromium binaries are present on the target system (see
subsection 2.2.4). It exists since 2008 and has an active community, but it states on
its homepage that it “is still very much a work in progress”. Its not fully developed
state was the main reason for discarding it. Furthermore, it requires Java 7 and has
no 32 bit builds, whereas Saros supports Java 6 and 64 bit environments.

Webrenderer “is a pure Swing embedded Java browser component built upon Mozilla
technology” (taken from its homepage)13. However, it is not free of charge.

JBrowser clearly states on its homepage that “JBrowser is an outdated project, I
recommends to use SWT browser if possible”14.

Summary: Possible browser components

In the next section these four remaining candidates are investigated in detail:
• SWT browser.
• JxBrowser.
• JavaFX browser.
• Native Swing.

2.2.2 The SWT browser component

The SWT browser is part of the SWT GUI toolkit, which is used by the Eclipse
IDE. It is free software and exists since 2004. It is actively maintained and is, for

9http://lobobrowser.org/index.jsp (retrieved 20 March 2015)
10http://sourceforge.net/projects/xamj/ (retrieved 20 March 2015)
11http://sourceforge.net/projects/loboevolution/ (retrieved 20 March 2015)
12https://bitbucket.org/chromiumembedded/java-cef (retrieved 20 March 2015)
13http://www.webrenderer.com/products/swing/product/ (retrieved 20 March 2015)
14https://code.google.com/p/jbrowser/ (retrieved 19 February 2015)

http://lobobrowser.org/index.jsp
http://sourceforge.net/projects/xamj/
http://sourceforge.net/projects/loboevolution/
https://bitbucket.org/chromiumembedded/java-cef
http://www.webrenderer.com/products/swing/product/
https://code.google.com/p/jbrowser/

12 2.2 Browser-based solution

example, wrapped in Björn Kahlert’s browser component (see the end of this section
on page 15). It is platform-independent but may use a different browser on each
operating system because it does not ship its own rendering engine, instead accessing
an installed one.

The SWT browser will run out of the box inside Eclipse, provided it can access the
installed browser15. However, it is challenging to get it running inside IntelliJ IDEA.
These challenges are described in section 3.1. Tests of the SWT browser embedded
in IntelliJ on Mac OS X and GNU/Linux revealed further limitations which are
presented in the next paragraphs.

Mac OS compatibility Mac OS X’s graphical framework Cocoa requires the SWT
event-dispatch thread to be on the application’s main thread16, otherwise leading to
the immediate termination of the embedded browser. More detailed information and
my solution can be found in subsection 3.1.3.

I confirmed that the embedding of SWT in Swing is broken for Java 7 and 8 on Mac
OS, even when not embedded in an IntelliJ plug-in, and that Native Swing has no
solution for this. The reason for the incompatibility are changes introduced with Java
7 on Mac OS17 which affect the SWT-AWT bridge. It is undecided whether this bug
should be fixed in SWT or in the Java implementation. At least for Java 7 it will not
be fixed18. Even half a year later I could find no concrete hint that it will be fixed
for Java 8.

Java version IntelliJ SWT

Java 6 supported works

Java 7 unsupported broken (will not be fixed)

Java 8 upcoming support broken (might be fixed)

Figure 2.1: Compatibility of Java versions with IntelliJ and SWT on Mac OS

However, all of this is only relevant for the future. Currently IntelliJ IDEA requires
Java 6 as runtime environment on Mac OS as “JDK 1.7 from Oracle is not officially
supported yet and has known problems”19. Figure 2.1 summarises the compatibility
of Java version with IntelliJ and SWT on Mac OS.

The first evaluation was done in October 2014, when IntelliJ 14 had just been released.

15I only experienced problems of this kind on GNU/Linux, see section “GNU/Linux compatibility”
for more information.

16See https://developer.apple.com/library/mac/documentation/Cocoa/
Conceptual/Multithreading/ThreadSafetySummary/ThreadSafetySummary.html
(retrieved 12 April 2015) for more information about multithreaded programming with Cocoa.

17Java 6 is the last Java release maintained by Apple, all subsequent versions are provided by Oracle.
18https://bugs.eclipse.org/bugs/show_bug.cgi?id=418245#c8 (retrieved 20 March

2015)
19https://intellij-support.jetbrains.com/entries/23455956-Selecting-the-

JDK-version-the-IDE-will-run-under (retrieved 20 March 2015)

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/Multithreading/ThreadSafetySummary/ThreadSafetySummary.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/Multithreading/ThreadSafetySummary/ThreadSafetySummary.html
https://bugs.eclipse.org/bugs/show_bug.cgi?id=418245#c8
https://intellij-support.jetbrains.com/entries/23455956-Selecting-the-JDK-version-the-IDE-will-run-under
https://intellij-support.jetbrains.com/entries/23455956-Selecting-the-JDK-version-the-IDE-will-run-under

2 Evaluation of the GUI technology 13

I re-evaluated the current state at the beginning of March 2015. Java 6 is still the
only officially supported JRE version, but in the meantime Java 7 Update 40 has
been released, which fixes some of the bugs. According to the bug tracker, JetBrains
developers are testing support for a custom-build Java 1.8 in the minor Version 14.120

released on 24 March 2015, but I could find no official roadmap explaining further
plans or when they plan to support Oracle’s JRE version.

GNU/Linux compatibility On a freshly installed Ubuntu 14.10 the SWT browser
will not work out of the box, not even in Eclipse. The reason for this is that the SWT
browser currently does not work with the GTK-321 version of the WebKit library,
which is installed by default22. Consequently, the additional installation of the old
GTK-2 version, contained in the package libwebkitgtk, fixes the problem23.

Furthermore, I reliably experienced crashes while using OpenJDK after closing dia-
logue windows in the browser prototype. The official Oracle JDK does not exhibit
these problems. There are also known problems with the SWT browser in Eclipse 3.7
and 3.8 (they are fixed in version 4.0)24.

The important thing to note here is that the support for the SWT browser is not given,
not even for Eclipse. In most cases this should be fixable by installing one distribution
package or by an upgrade of Eclipse. Nevertheless, it cannot be guaranteed that all
current Saros users will be able to use the SWT browser.

Thus, a decision had to be made whether this was acceptable or not. On Monday 17
November 2014 Franz Zieris, Holger Schmeisky, Matthias Bohnstedt, and I decided
that it was and the web-based approach could be pursued further.

Cross browser

As the SWT browser will use a different browser on every major operating system
by default – Internet Explorer under Windows, Chromium under GNU/Linux, and
Safari under Mac OS X – the application has to deal with rendering issues and
differences between these browsers. The biggest downside is that the use of old
Internet Explorer versions (prior to 9 or 10), which lack support of standards25, cannot
really be prevented because Saros still supports Eclipse 3.6 and the SWT version
determines the version of the Internet Explorer to be used. However, the Javascript
community has years of experience with such issues and libraries like JQuery26 can
help, too.

20https://confluence.jetbrains.com/display/IDEADEV/IDEA+14.1+EAP (retrieved 20
March 2015)

21SWT beginning with the current version 4.4 uses GTK-3 by default.
22There is also the remote possibility to try and use the Mozilla browser if WebKit does not work.

Native Swing (see subsection 2.2.6) may be of help here.
23See http://www.eclipse.org/swt/faq.php#browserlinux (retrieved 20 March 2015) for

detailed information about SWT browser compatibility under GNU/Linux.
24https://bugs.eclipse.org/bugs/show_bug.cgi?id=404776 (retrieved 20 March 2015)
25I describe concrete problems of this kind in section 4.2.2
26https://jquery.com/ (retrieved 20 March 2015)

https://confluence.jetbrains.com/display/IDEADEV/IDEA+14.1+EAP
http://www.eclipse.org/swt/faq.php#browserlinux
https://bugs.eclipse.org/bugs/show_bug.cgi?id=404776
https://jquery.com/

14 2.2 Browser-based solution

License problematic

As the license of SWT (EPL) is incompatible with the GPL license of Saros, we will
split the IntelliJ IDEA part into two plug-ins – one containing the SWT libraries,
which will be licensed under Apache 2.0, and the other containing Saros/I, which
remains under GPL.

I will now summarise the pros and cons of the use of the SWT browser for Saros.

Advantages

• Identical browser technology on the code level in IntelliJ IDEA and Eclipse.
• Possibility to use Björn Kahlert’s improvement of the SWT browser.
• Embedding SWT into Swing produces interesting knowledge as it is generally

discarded and discouraged without giving fundamental reasons27. There are
numerous examples on how to embed the SWT browser in a Swing frame28, but
to the best of my knowledge there are no available implementations of doing
this in an integrated fashion in a plug-in inside an application29.

Figure 2.2: The technology stack for using the SWT browser

27The incorrect rendering when mixing Swing and AWT is gone with Java 6 Update 10 (see sec-
tion 1.5)

28In fact, this is one of the most prominent examples why people do so in the first place as Swing
does not include its own browser.

29The unofficial Vaadin UI Designer uses Native Swing (see section 1.6).

2 Evaluation of the GUI technology 15

Disadvantages

• Compatibility and stability:
– Requires a compatible browser to be installed and configured in the oper-

ating system (see Figure 2.2 for an overview of the technologies that have
to play together and the supported range of versions.).

– Further depends on the SWT version (SWT-AWT bridge implementation)
and the Java version.

– Known problems under Mac OS X and Linux.
• Uses Java Native Interface (JNI) which makes debugging difficult30.
• Cross-platform issues inside the browser.

2.2.3 Björn Kahlert’s improvements to the SWT browser

As mentioned in section 1.6, Björn Kahlert wrote a wrapper for the SWT browser.
Part of my evaluation was to learn more about this wrapper and what services it can
provide for the Saros plug-in.

Björn Kahlert presented his motivation for extending the SWT browser in an email
to the Saros mailing list31. I will sum up the reasons that are relevant in this context
here. The SWT browser:

• does not correctly detect when a website is loaded.
• does not calculate its own size correctly.
• might encounter security restrictions on some native browsers, e. g. Chrome

when executing external Javascript code.
• provides no information about mouse coordinates, focused or hovered elements.
• does not synchronise the website’s background colour with the default one for

SWT widgets.

Björn Kahlert’s component circumvents all of the issues above and furthermore

• allows methods to be executed from any thread by returning Future objects.
• provides converter methods for Javascript return values.
• improves the notification about Javascript exceptions significantly.
• can delay the execution of Javascript until the website is loaded.
• can inject Javascript libraries like JQuery so that they can be used indepen-

dently of the website.

Features needed by Saros

A considerable amount of the component’s methods and functionality does not seem
to be needed by Saros (at least at the moment), such as the listening for Javascript
events or managing scrolling positions. Others, like the thread-independent execu-
tion or Javascript exception notification, may be convenient for development but are

30During my thesis I myself experienced reproducible JVM crashes (segmentation faults) in two
different situations (section 3.1 and section 4.2.2).

31http://sourceforge.net/p/dpp/mailman/message/32780848/ (retrieved 20 March
2015)

http://sourceforge.net/p/dpp/mailman/message/32780848/

16 2.2 Browser-based solution

not essential for a prototype. The prototype implementation revealed that the only
functionality definitely needed by Saros is the ability to detect when the site is fully
loaded, i. e. Javascript objects and methods are present, and delay Javascript com-
mands up to this point. Without this functionality, Javascript functions might be
executed before the corresponding objects have been initialised and would therefore
be unreliable.

New development vs. extension

Due to extensive asynchronous method calls, which in turn might cause further asyn-
chronous execution, the control flow inside the browser wrapper is hard to comprehend
at first, so that it is not obvious how the changes needed to get it running on Win-
dows and GNU/Linux should be applied (see subsection 4.2.2). Since the delayed
Javascript execution is the only required feature, the alternative of implementing a
new wrapper and copying functionality as needed has to be considered.

I made a sketch of a minimal re-implementation, which basically meant to delay the
execution of methods until a condition is met. As the event dispatch thread must
not be blocked while waiting, this results in asynchronous calls and dealing with
the result. Section 4.2.3 explains the enclosed difficulties. My minimal sketch soon
resembled the structure of Björn Kahlert’s browser as this is exactly the problem it
was trying to solve. Since a new implementation is expected to have a similar level of
complexity and the unused methods should not hurt the functionality, the preferred
choice is to adapt the browser. This also avoids re-inventing the wheel because even
if the browser is used as a guideline, it is likely that some of the already existing
functionality is implemented again.

How to use and extend it

The first choice would be to use Björn Kahlert’s wrapper as it is. Unfortunately,
it only works on Mac OS without modifications and contains Eclipse-specific code,
which has to be deactivated for Saros.

Because of the necessary removal of Eclipse-specific code not all modifications can be
included in the original repository. The next best option would be to fork the project
(on GitHub) and try to include as many of the adaptations in the upstream repository
as possible. However, the original project has a different aim. It provides a rich set
of Eclipse widgets and utility classes – the browser component is only one of them –
whereas the browser for Saros has to be independent of concrete GUI technologies.

To keep the browser fork simple, the browser widget is extracted and all other unused
widgets and unneeded utility classes are removed. This results in a considerably differ-
ent package structure such that changes cannot be integrated easily into the original.
However, I tried to make each modification reproducible by using dedicated commits
(see subsection 4.2.1). Since both projects have different aims and requirements, the
focus lies on an unhindered adaptation for Saros. The hope was that over time, a
general-purpose browser library would emerge, which in turn could theoretically be

2 Evaluation of the GUI technology 17

used by Björn Kahlert’s widgets.

The decision described above was made, after repeated conversation with Björn
Kahlert, in the research seminar of the Software Engineering working group. The
browser component is being developed separately from Saros but closely connected
and driven by its needs. The main reason for the separate development is that the
component may be re-used by other projects and that this prevents Saros’ business
logic from melding into the component.

For the evaluation decision I will not consider the browser wrapper separately from
the SWT browser because at least some of its functionality is required. If the SWT
browser is chosen, this functionality will be used as well – in one form or another. If
the decision favours another browser than the SWT one, Björn Kahlert’s browser must
be either re-written to wrap another internal browser or the required functionality
must be added to the other browser separately.

2.2.4 JxBrowser

The JxBrowser32 (developed by TeamDev) is written in Swing and uses Chromium
binaries for rendering. Although it is a commercial product, Saros as a free software
project may use it free of charge, which Holger Schmeisky could confirm via direct
email communication. If the license.jar is loaded in the classpath it takes no
special steps to get it running inside IntelliJ IDEA. In theory, it is possible to embed
it inside Eclipse via the SWT-AWT bridge, but it is not officially supported33.

The JxBrowser has more features than Saros could possibly need, such as support
for Flash or Silverlight. In addition, it provides some of the functionality of Björn
Kahlert’s browser, for example mouse listeners, but has no support for the required
delayed Javascript execution. Interface-wise it is very similar to the SWT browser,
so they might be interchangeable with reasonable effort (see section 4.2.7).

Advantages

• Same browser engine on every platform, i. e. no cross-browser issues and no
Internet Explorer.

• Swing browser and thus no reliance on the SWT-AWT bridge for IntelliJ.
• No known compatibility issues.

Disadvantages

• Big footprint, about 200 MB, as it ships with Chromium binaries.
• Proprietary, the source code is unavailable.
• IntelliJ-only solution (or again use the SWT-AWT bridge).
• Special effort required to implement the delayed Javascript execution.

32http://www.teamdev.com/jxbrowser
33See this post by a TeamDev employee https://groups.google.com/a/teamdev.com/

forum/#!topic/jxbrowser-forum/twlTghkf1AA (retrieved 20 March 2015).

http://www.teamdev.com/jxbrowser
https://groups.google.com/a/teamdev.com/forum/#!topic/jxbrowser-forum/twlTghkf1AA
https://groups.google.com/a/teamdev.com/forum/#!topic/jxbrowser-forum/twlTghkf1AA

18 2.2 Browser-based solution

2.2.5 JavaFX browser

JavaFX34 is part of the Java platform as of Java 7 Update 6. It contains a full-
featured, modern browser engine based on WebKit35 and offers support for new stan-
dards such as HTML5.

As it requires no native browser and does not rely on a seldom-used third-party library
like the SWT-AWT bridge, it is expected to run stably across all platforms. In this
context, stable refers not only to runtime stability, but also includes compatibility
across version updates. JavaFX reduces the number of key components affected by
updates by two because neither the installed browser nor the SWT version matter,
only the Java version.

The main drawback is that it requires at least Java 7. In section 3.2 I describe my
unsuccessful effort to get it running under Java 6.

As IntelliJ IDEA on Mac OS X (see section 2.2.2) and Saros itself still require Java
6, the JavaFX browser has to be dismissed for now36.

Advantages

• Same browser engine on every platform, no cross-browser issues.
• Advanced and much more comfortable data transfer between Java and Javascript

(see section 4.2.7).
• Exclusive reliance on Java core functionality (as opposed to the SWT-AWT

bridge).
• Has Oracle’s support in the future and might replace Swing and possibly SWT.

Disadvantages

• Requires at least Java 7 (Java 6 and additional software under Windows), sen-
sible to require Java 8.

• Relatively new and therefore few experience in contrast to SWT or Swing.
• At least the delayed Javascript execution has to be added.

2.2.6 DJ Native Swing

The Native Swing project37 aims to provide an easy integration of some native com-
ponents into Swing applications. It features a browser component that wraps the
SWT browser and makes it available for Swing. It has been developed by a single
developer who is still active but there have been no commits since July 2014.

34See subsection 1.5 for more information.
35A mature and free web browser engine used by Safari for example (https://www.webkit.org/,

retrieved 20 March 2015).
36I wrote an email to the Saros mailing list about an upgrade to Java 7 for JavaFX but got neither

support nor rejection at the time (https://www.mail-archive.com/dpp-devel%40lists.
sourceforge.net/msg01125.html, retrieved 20 March 2015).

37http://djproject.sourceforge.net/ns (retrieved 20 March 2015)

https://www.webkit.org/
https://www.mail-archive.com/dpp-devel%40lists.sourceforge.net/msg01125.html
https://www.mail-archive.com/dpp-devel%40lists.sourceforge.net/msg01125.html
http://djproject.sourceforge.net/ns

2 Evaluation of the GUI technology 19

It does much more than simply establish the connection between AWT and SWT. For
example, it fixes the “illegal thread exception” under Mac OS (see subsection 3.1.3)
and enables the use of Firefox under GNU/Linux, which is not trivial as SWT will
probably not find the installed version on most distributions38.

Unfortunately, the improvements around the browser are not isolated but integrated
in a whole native interface, which must be initialised before the browser can be used.
For example, Javascript commands are translated into general-purpose messages that
are sent to the native interface and subsequently dispatched to the browser. The
browser interface is slightly extended compared to the SWT browser, e. g. it provides
more useful information about occurred exceptions, just like Björn Kahlert’s wrapper.
However, it lacks the ability to delay the execution of methods until a defined state
is reached.

Due to the complexity of the source code and the required orientation I estimate
the work effort of immediately combining this wrapper with the features from Björn
Kahlert’s components to be too high, since I already need to familiarise myself with
Björn Kahlert’s code. Furthermore, I am currently not aware of other problems that
Native Swing can solve for Saros.

Since it is also a wrapper for the SWT browser, I will not view it as a separate option
but as a pool of knowledge which might be useful if further compatibility issues arise.

Advantages

• Contains a lot of knowledge about the SWT-AWT connection.
• LGPL-License.

Disadvantages

• Fairly complex source code.
• Browser not isolated.
• No delayed method execution.

2.2.7 Summary

Since the JavaFX browser has to be dismissed for now, there are two main candidates,
the SWT browser and the JxBrowser. Both introduced wrappers of the SWT browser
are not viewed as a separate option for the next section. If the choice falls on the
SWT browser, the features of the wrappers can be added when they are needed. Such
a gradual process eases the learning curve for both Native Swing and the browser
wrapper.

38See also https://www.eclipse.org/swt/faq.php#howdetectmozilla (retrieved 20 March
2015)

https://www.eclipse.org/swt/faq.php#howdetectmozilla

20 2.4 Evaluation of an HTML-GUI vs. Java toolkits

2.3 Criteria

I have devised the following criteria to evaluate the GUI technology used. Not all of
these will be extensively covered in my thesis as I have just written the first prototype.
However, I will consider them to detect possible problems and make a first assessment.

Criteria:

• Initial development effort denotes the required effort to implement the Saros
GUI for IntelliJ. This includes evaluation and initial orientation.

• Ongoing development effort and maintenance: The reduction of duplicate
code and the complexity of the code base are the main issues I will look at.
Where can duplication be avoided, where is this not possible, and where might
there even arise new redundancy?

• Presentation issues: I will mainly check whether all of the current design
elements can be displayed in the browser.

• Response times and performance: Are there any risks or opportunities
regarding the user experience?

• Stability, especially support on the different operating systems and across Java
versions

• Ease of developing GUI tests: the avoidance of platform-specific test code
and the availability of frameworks are relevant here.

• License: Since all of the candidates can be used by Saros (even the propri-
etary JxBrowser), I will not elaborate further on this topic but it has been an
important criterion during the evaluation.

2.4 Evaluation of an HTML-GUI vs. Java toolkits

In this section I will compare the browser-based approach with the conventional one
based on the previously listed criteria using the properties of the browser components
learned so far. In the following, each subsection is dedicated to one criterion.

Size of Eclipse’s UI package First, I will give a few numbers to show that it makes
sense to talk about the reduction of the code base.

I measured the size of the ui package of Saros/E using IntelliJ’s statistic plug-in39.
All numbers refer only to the Java code on Saros’ master branch on 25 October 2014.

Saros Eclipse’s package de.fu_berlin.inf.dpp.ui contains 189 classes, 17,774 lines
of real code and 5,578 lines of comments. It therefore comprises almost half of the
entire Saros/E project which has 36,319 and 13,269 lines, respectively. By comparison,
the common core package contains 20,905 and 10,470 lines. The current IntelliJ GUI
implementation is not used as reference because it is incomplete and in large parts a
copy of the Eclipse code.

The only thing important those numbers tell us is that the current GUI implemen-
tation is so big that it makes sense to think about reducing its size. Of course, this

39https://plugins.jetbrains.com/plugin/?idea&id=4509 (retrieved 20 March 2015)

https://plugins.jetbrains.com/plugin/?idea&id=4509

2 Evaluation of the GUI technology 21

does not mean that an IntelliJ implementation will result in about 28000 redundant
lines of code as most of the logic is IDE-independent. It is just wrapped inside SWT
classes, e. g. classes that extend Composite or Action. The current code is so large
because it mixes presentation logic, presentation and domain data, and framework
specific classes.

2.4.1 Criterion: Initial development effort

The browser-based GUI code is expected to be leaner since the GUI is described
declaratively via HTML and the design is done separately via CSS. This declarative
GUI will eliminate the need for SWT’s nested containers or hierarchical GUI classes.
Looking at the current Eclipse implementation, there are a number of GUI model
classes like RosterContentProvider that encapsulate domain values and their cor-
responding presentation. In HTML, there will still be GUI model classes, but those
classes can be implemented agnostic of how their content gets displayed.

Parts of the Eclipse GUI code can be abstracted – mainly because they contain
business logic – and be re-used for IntelliJ so that the size of the duplicated GUI
code is reduced. However, this introduces overhead as a result of the additional
abstractions and requires an effort which may be comparable to writing a new GUI.

Browser

+ Modern web technologies are available.
+ Declarative GUI results in less and more readable code.
– Unknown terrain: missing knowledge especially for the browser integration and

the connection between Java and Javascript.
– Additional effort required to integrate the browser.

Swing and SWT

+ Linear development, analogous to Saros/E.
+ No additional browser layer.
– A new GUI for Saros/I has to be implemented anyway.
– Refactoring of Saros/E required to remove unnecessary coupling of logic in GUI

classes.

Both alternatives require the creation of a sizeable GUI as well as a refactoring of the
Eclipse GUI code. Due to the additional browser layer, the HTML-based approach
will probably require more effort and familiarisation. However, in the process inter-
esting knowledge will be gained about this new approach to writing IDE plug-ins and
the embedding of a browser component.

2.4.2 Criterion: Ongoing development effort

I will characterise this mainly by the amount of redundant code and the size of the
code base in general. Another essential factor is the complexity and readability of the

22 2.4 Evaluation of an HTML-GUI vs. Java toolkits

code. As pointed out in the previous section, the HTML GUI is expected to reflect
the visible structure more clearly in the code and to separate styling and logic. The
lack of Java class hierarchies for GUI elements reduces complexity.
Real GUI code that has to be duplicated in the traditional approach regardless of how
many abstractions are introduced and could be unified in the HTML version includes
the Saros view with roster, chat, and menu bar as well as about ten wizards with one
to four pages. Even though this is a manageable amount, the lines of code required
to express this in Java are unproportionally many.

Browser

+ Less duplication and less code altogether.
+ Plain, structure revealing GUI code and no need for Java GUI classes.
+ Easier to apply changes to the style.
– Mix of technologies (Java and Javascript).
– Boilerplate code for communication and data exchange between Java and Java-

script.

SWT and Swing

– Duplication of the GUI views and elements.
– Old technologies and verbose Java GUI toolkits.
– Code will probably contain more redundancy than necessary as there is no clear

separation between logic and presentation.
The main potential of the HTML-based solution lies in the reduced code size and
complexity. The reduced maintenance effort might soon amortise the higher initial
development costs.

2.4.3 Criterion: Presentation problems

During the evaluation I wrote HTML sample code for all different types of existing
Saros GUI elements:

• The contact list and the session tree: both are (nested) lists with similar struc-
ture, so I implemented only the contact list, but considered that the list may
contain differently styled text parts and images.

• The context menu: the default right-click menu of the browser had to be deac-
tivated and replaced with a context sensitive one.

• The drop-down menu and menu bar: I focused on the drop-down menu as it is
the most complicated element of the menu bar.

• The dialogue wizards: again I implemented a scenario that is probably more
complicated than necessary. There may be multiple simultaneous dialogues that
are implemented as external dialogue windows displaying a separate browser.
In practice it might suffice to use one pop-up window or display the wizards
inside the Saros view altogether. It may also be sufficient to allow just one
dialogue at a time.

• A progress bar for long-running tasks.

2 Evaluation of the GUI technology 23

I noticed the following limitations. In the Eclipse version the menu bar is part of the
view’s frame, i. e. it is outside of the actual display area of the browser. This would
have to change, but is a minor cosmetic issue and should barely be noticed by the
users. Alternatively, the menu-bar could be implemented in an IDE-specific fashion.
Resizing the browser’s content when the size of the view changes requires additional
effort, but I was able to solve it even without the help of Björn Kahlert’s wrapper.
The following two minor problems are fixable as well. First, the context menu has to
be rendered upwards when activated on the bottom of the screen40.
Second, I noticed that the HTML component did not gain focus every time the mouse
pointer entered the component. As a consequence, buttons had to be double-clicked
because the first click only gave the focus to the component.

Browser

+ Huge range of options, whole palette of browser capabilities.
+ Every individual pixel can easily be changed.
– Limited to the browser area.
– Integration into the look-and-feel requires additional steps.

SWT and Swing

+ Excellent IDE integration.
– Limited set of widgets.

2.4.4 Criterion: Performance

I did not notice any performance problems, but this is to be expected in the current
prototype of the user interface with next to no elements.
A performance critical situation might arise when opening the view as the browser
is initialised and the entire website is loaded. However, this is currently only a
theoretical problem.
The rendering performance of SWT is expected to be inferior to that of web browsers.
Björn Kahlert experienced this when he was adding many images to his widgets, which
was not practical in SWT. Performance might also be an issue for Saros as the activity
log currently has significant performance problems when adding hundreds of lines (see
[Dur14]).

2.4.5 Criterion: Compatibility and stability

This is the biggest problem of the browser approach. While the native SWT and
Swing solutions bear no risks, depending on the browser technology I could identify
considerable limits. JavaFX requires a Java version greater than 6 and the SWT
browser has known issues on GNU/Linux and is incompatible with Java 7 and 8 in

40In the current Saros version the context menu will only appear on the bottom if the view is very
small.

24 2.4 Evaluation of an HTML-GUI vs. Java toolkits

IntelliJ on Mac OS (see section 2.2.2). The JxBrowser also depends on the SWT-
AWT bridge when used inside Eclipse and therefore is affected by the Java 7 and 8
issues on Mac OS.
Although this seems manageable with small limitations, the real impacts remain to
be seen as the prototype matures.

2.4.6 Criterion: Testability

Unfortunately, an HTML page in an embedded browser cannot be tested using stan-
dard web testing and automation frameworks like Selenium (webdriver)41, Watir42 or
Sahi43 as those need to render the website themselves (see subsection 4.3.6). How-
ever, identifying elements and triggering events for them is easy in HTML, so that
the needed functionality can be implemented in Javascript even without a framework.
The IntelliJ platform lacks a GUI test framework or a GUI automation tool. There
are two automation tools available for Swing UIs, but I only managed to implement
a basic task, like opening a Tool Window in one of them; even this required extensive
trial-and-error programming (see section 4.3)

Browser

+ Much easier to implement.
– No frameworks.
– Cross-browser problematic.

SWT and Swing

+ Eclipse side is already implemented.
– Swing automation frameworks are difficult to use and do not work properly in

all circumstances.

2.4.7 Decision for browser

Figure 2.3 sums up the comparison for each criterion. The Criteria, performance, and
presentation issues are left out as they don’t currently favour one side or the other.
The greater initial development cost can be justified by the expected return of in-
vestment in terms of lower future development costs. Compatibility is a problem but
should be manageable. For example, the browser component could be changed after
support for Java 6 has been dropped or it is even possible to use different browsers
for different constellations.
To summarise, I think it is quite possible to display the Saros plug-in in a web browser
in both IntelliJ and Eclipse with two caveats. There is a small percentage of users
(especially on GNU/Linux) that will have to execute manual steps (install packages

41http://www.seleniumhq.org/ (retrieved 20 March 2015)
42http://watir.com/ (retrieved 20 March 2015)
43http://sahipro.com/ (retrieved 20 March 2015)

http://www.seleniumhq.org/
http://watir.com/
http://sahipro.com/

2 Evaluation of the GUI technology 25

Criterion Browser SWT and Swing

Initial development effort – 0

Ongoing development effort ++ –

Code duplication ++ –

Stability – ++

GUI tests + –

Figure 2.3: Tabular summary of the comparison

or upgrade their Eclipse installation) to get the plug-in running. The choice of the
used browser component may change over time, as JavaFX is not yet an option and
the SWT browser may lose runtime support in the future. This will be elaborated
upon in the next section, when the choice is actually made.

2.4.8 Possible browser components

The following two browser candidates remain:

• SWT browser (Eclipse and IntelliJ).
• JxBrowser (IntelliJ and possibly Eclipse).

There are different possible constellations for running a web-based Saros plug-in be-
cause Eclipse and IntelliJ may use different browser components. Using different
browsers has the decisive disadvantage that the code for adding the required func-
tionality to the browser is duplicated.

I compared JxBrowser and SWT Browser for usage inside IntelliJ, which is illustrated
in Figure 2.4.

Criterion SWT browser JxBrowser

Development effort manageable but at least some-
what hacky

minimal effort for integration,
special effort for extension of
browser

Code duplication same browser code duplicated code

Stability best effort, may be sufficient expected to be stable

Cross-browser requires special effort only one browser on all sys-
tems

Size ca. 20 MB ca. 200 MB

License free free of charge, proprietary

Figure 2.4: Tabular comparison of SWT browser and JxBrowser

The footprint of the JxBrowser is difficult to justify and the duplicate code around
the browser makes it just a fallback option for Mac OS, for example.

26 2.5 Side note: alternatives

2.4.9 Possible combinations

• SWT browser in both IDEs: same browser code but IntelliJ side less robust
• SWT browser in Eclipse and JxBrowser in IntelliJ: duplicate browser code but

more robust
• JxBrowser on both sides: discarded because in a one-on-one comparison the

SWT browser wins

On the IntelliJ side there are basically two alternatives: the embedding of either the
SWT browser or the JxBrowser.

Since the JxBrowser has considerable disadvantages and the SWT browser is the only
sensible option for Eclipse anyway, it is the first logical step to try the same set-up
for IntelliJ as well. If severe problems occur, the usage of an extra browser for IntelliJ
can be the second step.

2.5 Side note: alternatives

2.5.1 Using a browser only for IntelliJ

This would keep the Eclipse side untouched because the browser is used for the new
IntelliJ implementation only. It might be sensible to gradually introduce the new
technology. However, one of the positive side effects of integrating the browser in
both IDEs is that the Eclipse GUI code gets refactored along the way. Furthermore,
it might be hard to include Eclipse later on as its specific requirements have not been
taken into consideration from the beginning.

2.5.2 IntelliJ implementation completely in SWT

There are two problems with re-using the current Eclipse GUI, mostly as it is, for
IntelliJ.

First, implementing the IntelliJ GUI entirely in SWT would have been worth a try if
the current Saros/E implementation was not so tightly coupled to Eclipse. It not only
uses SWT code but also heavily relies on the JFace library and the Eclipse platform,
e. g. the menu bar is an Eclipse element. The introduction of abstractions would be
too invasive to have the benefit of not having to write new code.

The second problem is posed by the compatibility issues of the SWT-AWT bridge on
Mac OS X with Java 7 and 8 (see section 2.2.2).

2.5.3 Native JavaFX implementation

If JavaFX runtime support was not an issue, this alternative would have to be seri-
ously considered because this technology has the potential to replace SWT and Swing
and features a declarative GUI as well as seamless embedding of web technologies.
Integrating it in SWT and Swing applications seems to be no problem.

2 Evaluation of the GUI technology 27

2.6 Summary

The decision was made to further pursue the browser-based GUI as the evaluation
so far has identified a promising browser candidate and has illustrated the possible
advantages compared to a separate SWT and Swing development. However, it is
important to emphasise that this is only the first part of the evaluation. The next
step is to develop the prototype further and have a look at the resulting code to see
whether the estimates for development effort and code duplication are correct.
Furthermore, the decision for the use of SWT browser implementation is not final.
The main problem is that JavaFX would be the clear choice in maybe a year from now
but currently does not meet the runtime requirements for Saros. The SWT browser’s
support in the future is uncertain, at least for Mac OS. Therefore, I will keep in mind
that the browser might change while I am implementing the prototype.

3 Details of the evaluation phase

This chapter describes the implementation necessary to embed the SWT browser in
IntelliJ on the different operating systems (section 3.1). It further contains research
about the requirements of JavaFX (section 3.2) and my assessment of the usage of
AngularJS for Saros’ HTML part (section 3.3).

3.1 Using the SWT Browser in IntelliJ

Embedding the SWT browser in IntelliJ consists of two parts.

Firstly, the SWT browser is made available in Swing via the SWT_AWT class that is
included in SWT for the purpose of using SWT and Swing (or AWT) components in
each other’s toolkit. Although Swing’s widgets are independent of AWT, they still
need to be endorsed in native AWT containers1. Secondly, the SWT browser has
to be integrated in a plug-in and in the user interface of the IntelliJ. For the first
part there are a few examples to be found on the internet. Gordon Hirsch’s article2

provides a detailed overview on that topic along with useful background information.
However, there are no examples for doing this inside a plug-in, which poses additional
challenges that I will explain now.

Figure 3.1: A Tool Window in IntelliJ

1Compare http://stackoverflow.com/a/408830 (retrieved 20 March 2015)
2http://www.eclipse.org/articles/article.php?file=Article-Swing-SWT-
Integration/index.html (retrieved 11 April 2015). As the article is from 2007, some
of the details may be outdated, e. g. the compatibility issues section. See the SWT FAQ under
http://www.eclipse.org/swt/faq.php (retrieved 20 March 2015) for updated information.

http://stackoverflow.com/a/408830
http://www.eclipse.org/articles/article.php?file=Article-Swing-SWT-Integration/index.html
http://www.eclipse.org/articles/article.php?file=Article-Swing-SWT-Integration/index.html
http://www.eclipse.org/swt/faq.php

3 Details of the evaluation phase 29

IntelliJ plug-ins use so-called Tool Windows to display their user interface3. These
Tool Windows are integrated into the IntelliJ main window and look like the one in
Figure 3.1, which displays an early HTML prototype of Saros. Their main feature is
that they can be hidden and shown again.

Displaying the browser in IntelliJ for the first time

On the code level, the Tool Windows display an instance of Swing’s JPanel; Saros’
derived class for the browser is called SwtBrowserPanel. This class contains the
SwtBrowserCanvas, an AWT component, which is used as a parent for the subse-
quently created SWT Shell. The creation process that is started when the user
opens the Tool Window is illustrated in Figure 3.2.

One limitation of the SWT_AWT class is that the AWT Canvas object must be visible
before the SWT Shell can be created. The reason for this is that when creating the
SWT Shell, a native getHandle() call is made to get a representation of the AWT
Canvas in which the Shell should be embedded. This call fails unless the component
is visible. In a standalone Swing application it is sufficient to place the new_Shell()
call after frame.setVisible(true). Inside IntelliJ the equivalent call that makes
the Canvas visible is contentManager.addContent(content) which is called in the
factory method createToolWindowContent(). As a result, the embedding code had
to be split into the creation of an empty panel and the initialisation of the browser
that is triggered afterwards. The example code from Caprica4 which I used as basis
for the SWT embedding had to be transformed to work inside a JPanel instead of
a JFrame and extended by a call to shell.setSize(int width, int height) in
order to actually display the browser. Otherwise the Tool Window silently stays grey.

Figure 3.2: Sequence diagram of the establishment of the SWT AWT bridge

3The Vaadin UI Designer (see section 1.6) uses an editor window to display its browser because it
provides an editor instead of a control panel.

4https://gist.github.com/caprica/6890618 (retrieved 20 March 2015)

https://gist.github.com/caprica/6890618

30 3.1 Using the SWT Browser in IntelliJ

3.1.1 JVM crash when closing the browser

The browser is now displayed inside the Tool Window. Here lies the difference to
the single frame application Caprica’s example was written for; the Tool Window
constantly gets hidden and re-shown. In the example code, when the frame is closed,
all SWT components are disposed of and the JVM terminates, whereas inside the
Tool Window the JVM does not exit and the SWT components may have to be re-
created. The example code therefore calls Display.dispose() after its SWT event
dispatch loop ends. Making this call inside the IntelliJ plug-in crashes the JVM
under Windows. As it does not crash on GNU/Linux, this may point to a bug in the
Windows implementation of SWT.
I proposed two approaches for dealing with this problem:

1. Finding a way to dispose the Display cleanly when the window is hidden and
create a new one when the window is visible again. This basically requires
the debugging and fixing of the JVM crash or applying a work-around that
does not trigger it. Matthias Bohnstedt and I did not manage to do this in
our self-imposed timeframe of three working days. Additionally, I found the
requirement to display two browsers simultaneously if dialogue wizards should
be used. This approach does not work properly with multiple browsers as the
number of existing displays is very limited. According to the Javadoc of the
Display class, “some platforms which SWT supports will not allow more than
one active display”5.

2. Not disposing the display but keeping it fully operational after the Tool Window
is closed. Based on this idea I extended the event dispatch method so that it
does not end but holds on to the Display. This works, but the resulting code
in Listing 3.1 is rather complex as it contains nested loops and duplicates the
event dispatch logic. The SWT Shell, which is more or less a sub element of
the Display (there can be multiple Shells per Display), and the associated
browser get disposed automatically when the Tool Window is closed. I found
no way to circumvent this, but it is not a problem as new instances in the same
Display can be created as long as the Display is in a consistent state and not
disposed.

public void run() {
Display display = new Display();
while (!display.isDisposed()) {

[...]
Shell shell = SWT_AWT.new_Shell(display,

SwtBrowserReuseDisplayCanvas.this);
f ina l Browser browser = new Browser(shell, SWT.NONE);
[...]
shell.open();

5I wrote a small class which tests how many displays can be created before a “no more handles”
SWTException is thrown. On my Windows machine this number was 32.

3 Details of the evaluation phase 31

// Execute the SWT even t d i s p a t c h l oop . . .
while (!isInterrupted() && !shell.isDisposed()) {

i f (!display.readAndDispatch()) {
display.sleep();

}
}
reopened = new AtomicBoolean(fa l se);

// second even t d i s p a t c h l oop : not i d e a l
while (!reopened.get()) {

i f (!display.readAndDispatch()) {
display.sleep();

}
}

}
}

Listing 3.1: Naive implementation of the persistent display

Furthermore, this code cannot be reused to create a second shell and browser for
dialogue windows because the creation logic is intertwined with the event dispatch
loop. After I carried out multiple refactorings and separated thread management
and browser creation concerns, I ended up with the simple code of Listing 3.2. I
also replaced new Display() with the preferable Display.getDefault() that only
creates a new Display if it cannot find an existing one.

class SwtThread extends Thread {
[...]
public void run() {

Display display = Display.getDefault();
// Execute the SWT even t d i s p a t c h l oop . . .
while (!display.isDisposed()) {

i f (!display.readAndDispatch()) {
display.sleep();

}
}

}
}

Listing 3.2: The SWT event dispatch thread

In hindsight, it would probably have been easier to rewrite this part from scratch
instead of extending the example as the coupling of the Shell creation to the event
dispatch thread (EDT) made me think in too complex a fashion. As I learned later,
the SwtThread above contains the standard EDT loop.

Since the Shell and the SWT browser get disposed every time the Tool Window is
closed, they have to be reactivated when the window becomes visible again. Finding
the right listener which gets notified in this event proved to be difficult as the IntelliJ

32 3.1 Using the SWT Browser in IntelliJ

plug-in documentation contained no information6. Adding a StateChangeListener

to the ToolWindow does not work properly as the listener does not contain the
previous state and is triggered too often with the status “visible”.
After browsing the source code of a number of other Tool Windows, I found an
appropriate listener. AncestorListeners are informed when changes occur to one
of the ancestors of a Swing component in the component hierarchy, for example when
a component is added or made visible. The resulting call is shown in Listing 3.3.

addAncestorListener(new AncestorAdapter() {
@Override
public void ancestorAdded(AncestorEvent event) {

createWebBrowser();
}

});

Listing 3.3: Listening for the opening of the Tool Window

3.1.2 Dynamic loading of SWT library classes

As SWT’s implementation is platform dependent, every operating system requires a
different binary version. For that reason, the SWT library has to be loaded dynami-
cally depending on the processor architecture and the operating system.
Matthias Bohnstedt wrote a first version of the SwtLibLoader based on this ex-
ample7, which only works outside of IntelliJ. To get it working inside IntelliJ, I had to
adapt the code in two places. First, the ClassLoader has to be the
PluginClassLoader of the Saros plug-in, which can be obtained as shown in List-
ing 3.4. Previously, the system class loader had been used.

ClassLoader classLoader = SwtLibLoader.class.getClassLoader();
i f (!(classLoader instanceof PluginClassLoader)) {

throw new RuntimeException("Unable to get hold of the plugin
classloader");

}
PluginClassLoader pluginClassLoader = (PluginClassLoader)

classLoader;

Listing 3.4: Usage of the appropriate class loader

Second, the plug-in directory containing the SWT library has to be found even if
it differs from the default. Consequently, I had to get rid of the guessing of the
path to the IntelliJ runtime folder. The IntelliJ plug-in API provides the method
PathManager.getPluginsPath() which accomplishes this.
Furthermore, IntelliJ IDEA has to be prevented from automatically loading the li-
brary files because this would result in class name conflicts as the majority of classes

6As a side note, the IntelliJ source code is very sparsely documented, even public API methods
needed for plug-in development.

7https://www.chrisnewland.com/select-correct-swt-jar-for-your-os-and-jvm-
at-runtime-191 (retrieved 20 March 2015)

https://www.chrisnewland.com/select-correct-swt-jar-for-your-os-and-jvm-at-runtime-191
https://www.chrisnewland.com/select-correct-swt-jar-for-your-os-and-jvm-at-runtime-191

3 Details of the evaluation phase 33

are contained in each of the six bundled binaries. It is sufficient to not declare the
folder as source folder or library and give it a name other than lib or classes. How-
ever, one small drawback is that the extra SWT library plug-in has to be deployed
via a copy of the containing folder now because the run button in IntelliJ does not
work for that anymore, due to the missing source and library folder definitions.

3.1.3 Getting the IntelliJ version to run on Mac OS

The implementation of the SWT event dispatch thread in Listing 3.2 throws an
SWTException on Mac OS because the “Display must be created on main thread due
to Cocoa restrictions”.

The standard workaround is to pass -XstartOnFirstThread as JVM parameter at
start-up. The Eclipse IDE does this for example. Due to the lack of alternatives I
tried starting IntelliJ with this parameter but the error persisted – never mind that
Saros is not able to do this in production anyway.

As Matthias Bohnstedt and I could find no other solutions on the Internet, I looked
for alternative browsers. In this context I re-examined the browser from Native Swing
(see subsection 2.2.6) which, in the end, is also a wrapper for the SWT browser and
supports Mac OS X.

It was not obvious at first what it does to fix the problem, since it uses a lot of
additional code around the browser and initialises a whole so-called native interface,
in which the browser and other SWT components8 are later created.

When I found out that the code in Listing 3.5 accomplishes the task, I searched for
more information about the method used and this forum post9 as well as the related
bug tracker entry10 confirmed the solution. It uses reflection to get the Mac-specific
MainQueueExecutor, which runs on the main thread.

public stat ic void runWithMacExecutor(f ina l Runnable runnable) {
[...]
Object dispatch = Class.forName("com.apple.concurrent.

Dispatch").getMethod("getInstance").invoke(null);
Executor mainQueueExecutor = (Executor) dispatch.

getClass().getMethod("getNonBlockingMainQueueExecutor
").invoke(dispatch);

[...]
mainQueueExecutor.execute(runnable);

}

Listing 3.5: Starting the SWT thread on Mac OS X (adapted from
SWTNativeInterface’s runWithMacExecutor method)

I successfully tested my fix as described above under Mac OS 10.6 and 10.9.

8Native Swing also offers an HTML Editor, a Multimedia Player and a Syntax Highlighter (see
http://djproject.sourceforge.net/ns/, retrieved 20 March 2015).

9https://www.eclipse.org/forums/index.php/t/414910/ (retrieved 20 March 2015)
10https://bugs.eclipse.org/bugs/show_bug.cgi?id=303869 (retrieved 20 March 2015)

http://djproject.sourceforge.net/ns/
https://www.eclipse.org/forums/index.php/t/414910/
https://bugs.eclipse.org/bugs/show_bug.cgi?id=303869

34 3.2 Requirements of JavaFX

After seeing the complexity and the amount of code Native Swing added around the
SWT-AWT connection, I think it might be useful for other problems as well and
should be considered a pool of knowledge for this topic (its forum and bug tracker as
well).

3.2 Requirements of JavaFX

As Saros in general and IntelliJ IDEA on Mac OS must support running under Java
6 (section 2.2.2), I investigated whether it was possible to use JavaFX with Java 6.
First, however, I will describe the general integration process on both IDEs (using
Java 8).

3.2.1 Embedding the JavaFX browser into IntelliJ

JavaFX can easily be integrated into Swing applications11 (and vice versa) and after
minor adaptations of the standalone example12 the browser is displayed inside the
Tool Window.

The closing and re-opening of the Tool Window causes some problems (as it does
with the SWT browser). After it has been closed, the browser does not start again
because the JavaFX toolkit recognises that it is idle and shuts the JavaFX platform
down. Unfortunately, the platform cannot be re-initialised in the same JVM. Set-
ting Platform.setImplicitExit(false) prevents the platform from exiting in idle
situations and solves the problem.

3.2.2 Embedding it into Eclipse

JavaFX can also be easily integrated into SWT applications13. Integrating it into
Eclipse poses no additional difficulties as long as the required library bundles are
found (see the next section).

3.2.3 Using JavaFX under Java 6

As the JavaFX runtime can be installed separately for Java 6 on Windows 32 and 64
bit (but only on Windows), I thought it might also be possible to distribute JavaFX
with Saros if it is not installed.

11http://docs.oracle.com/javafx/2/swing/swing-fx-interoperability.htm (re-
trieved 20 March 2015)

12http://docs.oracle.com/javafx/2/webview/jfxpub-webview.htm (retrieved 20 March
2015)

13http://docs.oracle.com/javafx/2/swt_interoperability/jfxpub-swt_
interoperability.htm (retrieved 20 March 2015)

http://docs.oracle.com/javafx/2/swing/swing-fx-interoperability.htm
http://docs.oracle.com/javafx/2/webview/jfxpub-webview.htm
http://docs.oracle.com/javafx/2/swt_interoperability/jfxpub-swt_interoperability.htm
http://docs.oracle.com/javafx/2/swt_interoperability/jfxpub-swt_interoperability.htm

3 Details of the evaluation phase 35

JavaFX in Eclipse with Java 6

Eclipse loads used libraries from OSGI bundles. Unfortunately, I did not find a
JavaFX bundle for Java 6. Efxclipse14 which provides runtime support for JavaFX
in an OSGI environment requires Java 8. I tried the older release 0.1.1 of Efxclipse
which should enable running under Java 615 if compiled with Java 6 compliance level,
but had no success.

Only when I included the JavaFX JAR file directly in the Saros plug-in could it be
loaded inside Eclipse. However, if JavaFX is not installed on the machine it will
still throw a runtime exception because it cannot locate the necessary DLL files. I
tried the packaging tips from this Stack Overflow thread16 and the JavaFX packager
following the official documentation17 with no success.

If the required DLL files are copied from a suitable Java 7 installation into the plug-in,
JavaFX will start under Java 6 in Eclipse.

As IntelliJ uses no OSGI environment, including the JavaFX JAR is already the
default procedure and with the additional DLL files it will run in IntelliJ with Java 6
under Windows, too. Out of curiosity I tried the same on GNU/Linux and it works
if provided with the corresponding .so files (the GNU/Linux equivalent of DLL).

Nevertheless, it is not practical to copy compiled libraries from a different installation,
distribute them with the plug-in and hope for the best because the files are specific to
one operating system and architecture and this approach basically means distributing
a part of the JRE and managing updates to it. Therefore, I had to discard the idea
of using JavaFX with Java 6.

In the next section I investigate whether it is sufficient to require Java 7.

3.2.4 Using JavaFX under Java 7

As of Java 7 Update 6 JavaFX is part of the Java installation. Since Java 7 excludes
the JavaFX JAR file from the classpath by default, it still has to be distributed. This
is manageable, though, because the JAR file itself is independent of the operating
system.

There are two catches:

• As already explained in the previous section, I did not find an OSGI bundle for
Java version below 8 (though it is possible that I missed something) but the
JAR file could still be included directly.

• OpenJDK does not include JavaFX. There is a separate OpenJFX project18

that had no GNU/Linux installation packages at the beginning of my thesis (it

14http://www.eclipse.org/efxclipse/index.html (retrieved 20 March 2015)
15According to http://tomsondev.bestsolution.at/2012/09/27/efxclipse-0-1-1-

released/ (retrieved 20 March 2015)
16http://stackoverflow.com/q/11349303 (retrieved 20 March 2015)
17http://docs.oracle.com/javafx/2/deployment/packaging.htm (retrieved 20 March

2015)
18http://openjdk.java.net/projects/openjfx/ (retrieved 20 March 2015)

http://www.eclipse.org/efxclipse/index.html
http://tomsondev.bestsolution.at/2012/09/27/efxclipse-0-1-1-released/
http://tomsondev.bestsolution.at/2012/09/27/efxclipse-0-1-1-released/
http://stackoverflow.com/q/11349303
http://docs.oracle.com/javafx/2/deployment/packaging.htm
http://openjdk.java.net/projects/openjfx/

36 3.3 Web technologies

does now). The current OpenJFX version targets Java 8, but there is also a
back-port for Java 7.

All in all, my impression is that Java 7 would be sufficient if one required the official
Oracle version. Otherwise, it makes sense for Saros to skip Java 7 and switch to Java
8 straightaway, which many JavaFX related projects like Efxclipse do.

3.3 Web technologies

In this section I will shortly describe my thoughts and experiences on current web
technologies. As this is not the main focus of my work, I only gathered information
by implementing the necessary components for the HTML prototype. I made no
decision about which Javascript frameworks should be used for future development.

3.3.1 AngularJS

First of all, I decided to write my prototype using AngularJS19 for the following
reasons.

AngularJS incorporates an MVC20 architecture which leads to descriptive, intention-
revealing HTML-code. Listing 3.6 shows exactly how the contacts are rendered.

<ul id="contact-list">
<li ng-repeat="contact in contacts">
{{contact.name}}, {{contact.status}}

Listing 3.6: A contact list in AngularJS

As opposed to a typical JQuery solution shown in Listing 3.7.

<ul id="contact-list">

Listing 3.7: A contact list for JQuery

where the HTML code gets added dynamically via Javascript in Listing 3.8.

addContact = function(contact) {
$(’#contact-list’).append("" + contact.name + ", "

+ contact.status + "");
}

Listing 3.8: Dynamically adding the contact using JQuery

19https://angularjs.org/ (retrieved 20 March 2015)
20Model-view-control see https://en.wikipedia.org/w/index.php?title=Model%E2%80%

93view%E2%80%93controller&oldid=653645961 (retrieved 31 March 2015)

https://angularjs.org/
https://en.wikipedia.org/w/index.php?title=Model%E2%80%93view%E2%80%93controller&oldid=653645961
https://en.wikipedia.org/w/index.php?title=Model%E2%80%93view%E2%80%93controller&oldid=653645961

3 Details of the evaluation phase 37

Here, domain code and presentation logic get intermixed in the controller, which
reduces readability and can make changes harder because of the mix of different
concerns.

I know that there are template engines which enable similarly descriptive presentation
code but they complicate the prototype unnecessarily. Furthermore, I have used
JQuery on multiple projects before and Björn Kahlert’s browser component uses it
extensively so I have a pretty good understanding of what the solution would look
like in JQuery. On the other hand, I cannot say the same for AngularJS, so I wanted
to see how easily AngularJS could be integrated and what its drawbacks are.

The drawbacks of AngularJS

AngularJS was written with typical websites in mind, where the application mostly
reacts to users’ requests made in the frontend. In Saros, a considerable amount of
input comes from the network via the Saros core and nearly all of the user’s input
has to be processed by the Saros core. Consequently, the automatic synchronisa-
tion between the Javascript model and the rendered website in AngularJS is of little
use to us. This feature is particularly convenient for user inputs which have direct
implications for other elements on the same website. Additionally, Saros does not
have a backend service interface from which AngularJS could require data via AJAX
requests for example to fill its model. Even if this is added, some information still
has to be pushed to the frontend, e. g. the appearance of a contact or an incoming
message. Nevertheless, it is still possible to code the Saros GUI using AngularJS, but
the main advantage we get from doing so is the nice and descriptive HTML code.

AngularJS’ strict implementation of the MVC pattern hides the content of the model
from the outside. As a result, additional JavaScript wrapper code has to be written
for every method that should be callable from Java.

app.controller(’ContactListCtrl’, function ($scope) {
$scope.contacts = [];

$scope.add = function (contact) {
$scope.contacts.push({name: contact, status: ’online’,

special: ’connecting’})
};

});

__angular_addChatUser = function (username) {
var exposedScope = angular.element(document.getElementById(’

contact-list’)).scope();
exposedScope.$apply(exposedScope.add(username));

};

Listing 3.9: Calling AngularJs methods from Java

This looks something like Listing 3.9. The first block defines the AngularJS controller
with the model element contacts and an add function. The second block defines the

38 3.3 Web technologies

wrapper function which is callable from Java and has to acquire the scope variable.
Bastian Sieker later used the event bus from the Backbone Javascript framework
(http://backbonejs.org/, retrieved 20 March 2015) to execute methods inside
the scope. The resulting code is much cleaner, but the complexity has increased due
to the new event mechanism.

3.3.2 Libraries

I wanted to see whether more complex GUI elements like drop-down menus or a con-
text menu pose any general implementation or presentation difficulties in Javascript.
Therefore, I searched and found libraries to quickly develop proof-of-concept imple-
mentations.

UI Bootstrap

UI Bootstrap21 by the AngularUI team is a collection of reusable and already styled
AngularJS widgets. It is very easy to embed these in an existing AngularJS appli-
cation as it has minimal dependencies. I used it to implement the connect button’s
drop-down menu.

Context menu

I used a very small angular context menu library22 to replace the context menu. This
library is easy to use and should meet our requirements; only the placement of the
menu when activated on the bottom of the page might require small modifications.
There are equivalent solutions for JQuery.

3.3.3 My assessment

The descriptive HTML is the main advantage of AngularJS compared to JQuery.
The additional Javascript overhead of AngularJS might not be a concern as it can be
abstracted. However, with my current knowledge I would suggest to prefer JQuery or
another framework over AngularJS because Saros does not match the primary target
group.

21https://angular-ui.github.io/bootstrap/ (retrieved 20 March 2015)
22https://github.com/ianwalter/ng-context-menu (retrieved 20 March 2015)

http://backbonejs.org/
https://angular-ui.github.io/bootstrap/
https://github.com/ianwalter/ng-context-menu

4 Implementation

This chapter describes the implementation of the HTML GUI. It is partitioned into
the implementation of the newly created ui module (section 4.1), which contains
the actual GUI, the implementation of the used browser library, formerly known as
Björn Kahlert’s browser wrapper (section 4.2), and the implementation of the GUI
test framework (section 4.3). In the last sections I will present refactorings I made
along the way outside of the GUI (section 4.4) as well as the integration into the build
process (section 4.5).

4.1 GUI module

For the implementation of the new HTML GUI a new module was created that
can be seen as an extension of the core module. Both modules (core and ui) are
bundles in Eclipse’s OSGI context. Outside of an OSGI environment this additional
configuration is ignored and causes no harm.

Figure 4.1: Dependencies between the individual Saros modules

The resulting dependencies between the Saros modules are displayed in Figure 4.1.
Saros/E and Saros/I contain the code for the SWT and Swing implementations of
Saros respectively. In addition, they now include the IDE-specific code for the HTML
GUI. The ui module contains the IDE-independent part of the new HTML GUI. Only
the embedding of the browser into the IDE (see chapter 3) and the creation of dialogue
windows are IDE-specific. As the development progresses, the IDE-specific part will

40 4.1 GUI module

also address further aspects, such as the different abstractions for workspaces and
projects.

In addition, the ui module contains a resource folder with the HTML, CSS, and
Javascript files that describe the actual design and structure of the user interface.
The purpose of the accompanying Java classes is the data transfer between the Saros
core and the GUI. Since the data transfer must work in both directions, there are
Java methods, in the following called browser functions1, that can be invoked from
Javascript, and methods that can execute commands in the browser (see Figure 4.3).
The Java code is structured as shown in Figure 4.2.

Figure 4.2: Package structure of the ui module

The core_facades package contains convenient interfaces, facade classes [GHJV95],
for core functionality. For example, ContactListFacade encapsulates the four core
classes, ConnectionHandler, XMPPConnectionService, SubscriptionHandler,
XMPPAccountStore so that the browser function only has to deal with one depen-
dency. When more functionality is included in the core module and the code of
HTML prototype has become relatively stable, these methods could either move into
the core classes, or into the browser_functions package if the facade turns out to
be nothing more than a simple delegation.

The model package consists of GUI model classes, i. e. representations of the ap-
plication state as it is rendered in the GUI. These classes can be converted into
JSON strings and back into Java objects2 for the exchange of data between Java and
Javascript.

The classes in the renderer package are responsible for calling the adequate Javascript
functions with the converted Java objects to display the application state in the
browser. These rendering calls have to be made explicitly if the application state
changes (see subsection 4.1.3).

The manager currently contains the ContactListManager, which listens for changes
to the contact list. The ide_embedding contains the IDE-independent code to create

1In SWT they are instances of the BrowserFunction class.
2For this, the GSON library https://code.google.com/p/google-gson/ (retrieved 20 March

2015) is used

https://code.google.com/p/google-gson/

4 Implementation 41

Figure 4.3: Bidirectional communication with the browser

the browser and dialogue. The browser_functions package contains the Java API
which is callable from Javascript.

The webpages package contains abstractions for the different webpages, one for each
dialogue page and one for the main view of Saros. Each class encapsulates the location
of the corresponding HTML, the necessary browser functions as well as the renderers
to be used.

Ideally the Java part of this UI layer is very small since it is just concerned with data
conversion and the delegation of method calls which are implemented in the core

module. Since the core module is independent of the availability of a user interface,
it should contain as much functionality as possible.

In practice there are some problems that make the implementation of this small layer
somewhat challenging:

• The management of two event dispatch threads.
• Returning the results of asynchronous calls back to Javascript.
• Reflecting the application state in the browser.
• The constant change of the browser instance.
• Validating user input.

4.1.1 Threading

There are two event dispatch threads to be managed, one for SWT and one for Swing
– at least inside IntelliJ IDEA – and because the ui module must work in both IDEs,
it has to deal with the fact that there might be multiple EDTs. As a result, the
developer has to be conscious of which GUI toolkit the called methods and objects
belong to. From my experience implementing the current code, this should not be a
problem after a short period of orientation.

For all calls to IDE-specific GUI methods inside the ui module Saros’ UISynchronizer
class should be used, which abstracts the EDT of each IDE. Long running calls should
be made asynchronously on a non-UI thread, so that the threading is similar to that
of regular GUI development for Eclipse or IntelliJ plug-ins. The main change is that

42 4.1 GUI module

all browser use must be done on the EDT.
In the adaptation of the browser component (see section 4.2) I implemented all
browser methods in such a way that they can be called from any thread. They
switch the thread internally if they are not already on the correct one. I had two mo-
tivations for this. Firstly, the calling code becomes shorter since potential UI thread
calls are lengthy in Java. Secondly, the caller becomes independent of the used GUI
toolkit so that the browser could be switched transparently. A negative effect is that
this could make the developer unaware that a thread switch might happen and they
still have to be careful about this.
In this context, it is also important to know that every Java code called from Javascript
is executed in the SWT thread as illustrated in Listing 4.1.

new BrowserFunction() {
@Override
public Object function(Object[] arguments) {
// t h i s w i l l be execu t ed on the SWT th r ead

}
}

Listing 4.1: UI thread context in browser functions

After parameter checks and possible conversions, in most cases a backend call is made.
Here the programmer has to decide whether the call is short enough to be made in the
UI thread or if the thread context should be switched. It is possible to enhance the
BrowserFunction class to automatically execute the callback on a non-UI thread.
The reason why I have not done this yet is that, for example, in the case of invalid
input the browser functions will immediately report back to Javascript, so there would
be an unnecessary back and forth thread switch. This might not be a noticeable
problem but it is questionable to do this on an obligatory basis in the browser library.
The easy solution would be to introduce two different BrowserFunction classes with
only one switching to a non-UI thread, so that the programmer still has to make a
conscious decision but the resulting code is shorter. This could be implemented when
more people are developing the prototype and its actual requirements become clear.
In conclusion, the occurrence of two EDTs is manageable with a little thinking on the
developer’s side. As the HTML plug-in already uses a browser library that is under
control of the Saros team (see section 4.2), common behaviour can be moved into the
library so that the browser code in Saros becomes more comfortable.

4.1.2 Passing the result of asynchronous method calls back to Javascript

As explained in the previous section, Java method calls from Javascript might be exe-
cuted asynchronously in a different thread. The question is how to inform Javascript
about the result.

4 Implementation 43

new BrowserFunction("function_name") {
@Override
public Object function(Object[] arguments) {

new Thread(new Runnable() {
@Override
public void run() {

try {
longRunningCall();

} catch (RuntimeException e) {
LOG.error(e);
browser.run("alert(’An error occurred.’)

;");
}

}
}).start();

return null;
}

}

Listing 4.2: Asynchronous execution in a browser function

In Listing 4.2 the content of the function method is invoked when the function_name
method is called in Javascript. The execution happens on the SWT thread. There-

fore, depending on the duration of the call, it might be desirable to make the call on
a different thread in order to keep the application responsive. The problem is that by
the time the browser function returns, the result of the longRunningCall method
might not be available yet. Therefore, the success or failure cannot be signalled via
the return value. The example always returns null.

new BrowserFunction() {
@Override
public Object function(Object[] arguments) {

try {
return shortRunningBackendCall();

} catch (RuntimeException e) {
LOG.error(e);
browser.run("alert(’An error occurred while...’);");

}
}

};

Listing 4.3: Blocking of the UI thread

There are two different ways of dealing with this problem. First, one could decide to
block the UI thread regardless. This is the easiest solution with fairly readable code
and might not cause any noticeable delay in most cases. However, the developer has
to be aware that the code in Listing 4.3 is executed on the UI thread and make the
conscious decision that this is acceptable for the concrete call. Note that the return
value is converted into a corresponding Javascript object but occurring exceptions are

44 4.1 GUI module

not re-thrown in Javascript3. If an unhandled exception occurs, the value returned
to Javascript is a string describing the error, which is useful for debugging at best
but not for providing helpful feedback to the user. Thus, occurring exceptions are
caught in the Java code and passed appropriately to Javascript. In Listing 4.3, an
alert message is displayed.

Second, a more general approach is to define some sort of callback function in Java-
script, which should be called as soon as the result of the operation is present. The
obvious disadvantage – besides the verbose asynchronous call – is that the Java code
calls a Javascript API beyond any compile time checks or IDE support. As a result,
in course of the maturation of the HTML prototype an easy interface has to be
agreed upon and well documented for such callbacks. In most practical cases, the
solution will be as simple as calling alert or a similar method with an error message
as parameter. I looked at a representative amount of the equivalent Saros/E code
segments and all of them did this: validate the input, make the call (thereby mostly
ignoring the return value), log occurring exceptions, and display a message to the
user indicating whether something went wrong.

Example: Implementing a progress bar

I will now give the example of implementing a progress bar to illustrate the close
connection between Java and Javascript beyond simple alert calls:

Javascript starts, for example, a file transfer by calling the appropriate Java method
__java_startFileTransfer(’progressbarObject’) passing a reference to the
Javascript object progressbarObject, which should be informed about updates on
the progress. In reaction, Java will start a new task passing along the reference
identifying the Javascript progress bar, e. g. the Javascript name as string. The
executing Java code will eventually call

browser.run(progressObject.getJavascriptName()+".setProgress(val)")

This example illustrates that Javascript objects might have to be wrapped or con-
verted into Java objects and passed between Java methods before converting them
back and doing the actual callback. It further shows that Javascript objects like
progressbarObject and method calls are just meaningless strings from a Java per-
spective.

This close connection between both languages is not a bad thing per se, nor is it
unexpected because in order to make a rendering call you have to know the name
of the responsible method regardless of the GUI toolkit. However, there are Java
developers4 who refrain from Javascript code and vice versa and that will not work
well with the new GUI since Java and Javascript cannot be effectively separated.
The missing look-up for Javascript method names in Java IDEs does not improve the
situation. Generating Javascript code with identifiers known to Java might help here

3This is undocumented in the source code but is the currently implemented behaviour.
4To give a concrete example, in the code reviews in Saros a few people expressed a lack of experience

for reviewing Javascript code.

4 Implementation 45

but would add a considerable amount of complexity and thus should be postponed
until the Java-to-Javascript interface has become more stable.

We have now had a close look at calls originating from the user interface (Javascript
side). In the next section, we will examine the other direction: the display of appli-
cation state in the user interface.

4.1.3 Displaying the application state

There are two different ways of getting the application state from the Saros core
in order to display it in the browser; both are implemented in the current minimal
prototype. There was no decision on how to implement which method; instead, the
different approaches are a direct result of the core implementations and the way they
provide data.

1. Query the core on each render call (it is possible to cache certain results).
The AccountRenderer uses this approach. The state of the account list is
managed by the XMPPAccountStore in the core. No events are fired when the
state changes; instead, it can be queried via methods like getAllAccounts().

2. Register a listener, reflect and store the state in the GUI classes.
The ContactListRenderer uses this approach. For the contact list the query-
ing approach does not work as changes do not originate at the front-end but at
the other side of the network. Therefore, the Roster class supports listeners
and informs them about updates.

Both approaches are viable. The first one has the decisive disadvantage that the
programmer must recognise when the state has changed and explicitly query it. As
Saros’ current implementation allows the simultaneous use of the HTML and the
traditional GUI, it is not possible to reflect an account change done in one view
in a timely manner in the other one. So in this concrete case (and if the use of
two simultaneous views is more than a temporary implementation) the introduction
of an AccountChangeEvent – following the observer pattern [GHJV95] – has to
be considered. Additionally, in the first scenario the browser functions for account
creation have to know the rendering classes because they must trigger the re-rendering
of the account list.

Because of the two different approaches, the implementation of the ui module is not
uniform at the moment. While there is not enough core functionality available yet to
make a general decision, I think that the GUI code might benefit from the consequent
use of the observer pattern as it allows to completely decouple browser functions and
rendering code and can support multiple simultaneous views.

4.1.4 Validation of Javascript input

In order to provide helpful information to the user, it is generally easier to validate
the input beforehand instead of catching and translating thrown exceptions.

There are two locations where the validation can take place, in Javascript or in Java.
For this decision, two competing goals have to be considered.

46 4.1 GUI module

1. The validation code should be as close to the actual business logic as possi-
ble. Ideally, this implementation uses the same validation code for throwing
exceptions.

2. The validation code should be as close to the user’s input as possible in order
to provide feedback more easily.

If the first item is neglected and the validation code is duplicated, it might diverge over
time and fail to provide accurate feedback. Should this duplication stretch beyond the
language border between Java and Javascript, it is even harder to keep both locations
coherent as an IDE will not recognise the link.
For the second item, consider the small pseudocode example in Listing 4.4. The
input consists of two fields and we want to highlight the one that does not pass the
validation. This example shows that the validation can be done in Java without
compromising the quality of the feedback.

<script>
i f (!validateJID($("#jid").val())) {

// h i g h l i g h t JID f i e l d
}
i f (!validateAlias($("#alias").val())) {

// h i g h t l i g h t a l i a s f i e l d
}
</script>

<input id="jid" type="text" />
<input id="alias" type="text" />

Listing 4.4: Validation of input fields in Javascript

The validateJID and validateAlias can also be implemented in Java as long
as they execute synchronously. In a real scenario the result of the validation would
probably be an object transmitted as a JSON string and encapsulating the success flag
and the accompanying reason. If the validation method is asynchronous for whatever
reasons, Javascript has to provide a callback method (see subsection 4.1.2).
I exemplarily validated the createAccount method in the prototype. Through this,
I noticed that the greatest difficulty is to re-write the createAccount method in the
core to use the same validation because it should return a ValidationResult (value
object [Eva03]) for the HTML code and at the same time still throw RuntimeException

s for the existing implementation.

4.1.5 Changing browser instances

As explained in chapter 3, the closing of the Tool Window in IntelliJ IDEA disposes
of the browser instance. This, however, does not change the application state of Saros
and so the state of the GUI model has to persist as well. Therefore, it is undesirable
to re-create the Renderer classes, which hold the current state. On the other hand,
the rendering methods need to know the current browser instance and all browser
functions need to be re-created after a change of the browser instance.

4 Implementation 47

In the following I will outline the current implementation as well as some of the steps
that got me there.
In Saros, nearly all of the core classes such as the ConnectionHandler or the
XMPPAccountStore are created and managed by PicoContainer, a Dependency In-
jection container. As the UI classes require these components, the easiest solution is
to let the UI classes be managed by the PicoContainer as well, so that their depen-
dencies are automatically injected. As a result, the rendering classes are managed
by PicoContainer and are effectively singletons, with their state persisting when the
browser is re-created. Unfortunately, PicoContainer is unable to create and replace
the constantly changing browser instances.
The next question is how the rendering classes acquire the current instance of the
browser. The method making the rendering call does not know about the browser as
I consequently separated the concerns of each class. Thus, only the BrowserCreator
itself and the Renderer know about the browser. I introduced an abstraction for
webpages, BrowserPage of Listing 4.5, and each instance knows its corresponding
rendering classes and browser functions.

public interface BrowserPage {
String getWebPage();

List<JavascriptFunction> getJavascriptFunctions();

List<Renderer> getRenderer();
}

Listing 4.5: Abstraction for webpages

This way the BrowserCreator can set the current browser instance in the Renderer
and create the browser functions when it is loading a BrowserPage. The removal
happens in the DisposeListener of the browser.

4.2 Extending the browser

As stated in subsection 2.2.3, Björn Kahlert’s browser extension should be extracted
into its own project and developed in close connection to Saros. This section describes
my efforts to improve the browser component and make it usable as an external
library.

4.2.1 The planned course of action

Initial state

The browser wrapper is bundled inside a set of widgets together with diverse util-
ity functions for those widgets. It was developed to run under Eclipse on Mac OS
and currently displays no browser on GNU/Linux and Windows. Because of many
(nested) asynchronous calls and the multiple wrapping of Runnables and return val-
ues, the control flow is not easy to follow. I had no good overview as to which of

48 4.2 Extending the browser

its features are working in an embedded environment on multiple operating systems
yet or which are useful for Saros. Apart from this, the code looks well-written; it
contains informative comments in the needed locations and features a few tests and
demo applications, which can only be started in Eclipse.

My goals

My main objective is to extract the browser into its own repository5 and make it an
environment-independent library. For that, I will redefine and document the existing
browser API with a focus on usability and currently required functions so that the de-
tails of the implementation can be changed later behind this interface6. Even though
this API is meant to be relatively stable, it can be adapted when new requirements
or different use cases emerge.
In addition, the functionality should be tested to get an overview of what is working
already. Only currently required functionality must work initially but it is already
certain that the necessary adjustments have to be made for Windows and GNU/Linux
in order to get the browser running at all.

General Guidelines

As the browser wrapper contains a lot of knowledge that may be of use later, I will
not delete (unused) functionality except when I fully understand its purpose and can
think of no situation where it might be useful to us7. However, I will exclude unused
or not-working methods from the public interface.
I will use small reversible commits targeting one issue. Especially, when removing
any code, I use the [REMOVAL] tag in the commit message and do nothing else in the
same commit.

Challenges

Since the browser must run under Mac OS, GNU/Linux, and Windows and some of
its functionality is platform-specific, e. g. file handling, it should be tested (ideally
continuously) on each operating system. As I have no constant access to Mac OS and
the manual testing is time-consuming, I have to compromise. I will develop mainly
under Windows and write tests and demos to run on the other systems at certain
development stages.

4.2.2 Getting it to run on all systems

Removal of Java 8 features

Saros has the requirement to run under Java 6 and higher and therefore the browser
library has to be compiled for Java 6. Thus Java 7 or 8 features must be removed

5On Github https://github.com/ag-se/swt-browser-improved (retrieved 20 March 2015)
6Due to time constraints I am only able to change certain parts of the code in this thesis.
7The code contained experimental parts and Eclipse-specific functionality.

https://github.com/ag-se/swt-browser-improved

4 Implementation 49

again. For example, I converted all Java 8 lambda expressions, which Björn Kahlert
had recently introduced, back into conventional anonymous classes.

Required fixes

For two reasons, there is no browser visible under Windows and GNU/Linux. First,
the implementation makes the browser visible only after it has reported the page to
be successfully loaded. As it tries to inject custom Javascript files and fails because
of invalid URLs, loading fails, too. As soon as the Saros IntelliJ plug-in supported
custom logging configurations, the browser produced error output and it was fairly
easy to identify the problem. Before that, the browser remained silently invisible.
The more obvious approach to debug it inside Eclipse remained fruitless as it would
not start because of missing OSGI bundles which I could not fix even with Björn
Kahlert’s installation instructions8.
Second, the way the browser is embedded into the Swing frame in IntelliJ it misses
size or other layout information so that it is not rendered.
After I applied the fixes, I found a few places with similar file URL handling. So I
went to make the classpath and file operations system-independent to prevent future
problems.
For that, I replaced custom string manipulation like new URI("file://"+ file.

getAbsolutePath()) with standard Java API operations like file.toURI();.
I could eliminate all manual string manipulation in the other direction as well.

i f (uri.startsWith("file://")) {
return new File(uri.substring("file://".length()));

}

Listing 4.6: Manipulation of file URLs

The code in Listing 4.6 can be replaced by new File(URI uri).
I had to re-write the affected method signatures to keep them consistent and eliminate
unnecessary conversions back and forth. For that, I preferred meaningful classes like
URI or File to simple String objects because they provide standard methods for
the conversion.

Race condition causes JVM crash

When I was testing the Saros prototype under GNU/Linux, I noticed that the intro-
duction of this browser library might cause the JVM to crash with a segmentation
fault. This happens when a dialogue window is closed via the cancel button. How-
ever, it can take up to ten or more cancellations and re-openings of the windows until
the error occurs.
It affects both Saros Eclipse and IntelliJ but only under GNU/Linux. As the segmen-
tation fault happens inside C code, it is difficult to debug from Java. Fortunately,

8During my work I minimised the dependencies to external libraries and included the remaining
ones in the deployable archive.

50 4.2 Extending the browser

one of the SWT design principles is that there is one Java function for each native
function9, so that I could locate the calling Java code. The Java debugger, however,
did not allow stepping up to this point but ended about two method calls away.

Since the error could not be reproduced reliably and debugging did not provide useful
insights, I resorted to changing code and looking at the effects in the debugger. My
best guess was to try and find differences in our code compared to the plain SWT
browser, which does not exhibit this error. After I had unsuccessfully reworked the
embedding procedure itself (the browser library uses an additional SWT Composite

around the browser), I deactivated the Javascript event listeners.

While I am not one hundred percent sure what happens in detail, I confirmed that
the __focus_gained and __focus_lost browser functions triggered the crash even
though they are implemented as a no-operation if no listener is registered. Before
clicking the “Cancel” button on the website, these Javascript event listeners call back
into Java several times. Thus, when the browser is about to be disposed, there are
some simultaneous calls to the browser. To dispatch the calls to it, the native function
_gtk_widget_get_parent is called to find the browser. Apparently, this call is made
without verifying that the corresponding location in memory has not been freed yet.

I am unable to point to a concrete location where a fix could be applied but I think
this is a bug in the GTK implementation of SWT. The currently applied workaround
is to deactivate the focus browser functions as they are not being used yet.

Internet Explorer fixes

Even if the latest Internet Explorer (IE) version is installed, it may display the site
in compatibility mode depending on the <!DOCTYPE> directive10. IE prior to Version
9 has issues with standard Javascript.

In the browser library, the affected IE versions fail to load the Javascript files for ad-
ditional functionality (so-called event-catch functionality) such as listening for hover
events and the management of the browser size11. I removed the errors so that the
remaining parts of the injected Javascript files could be loaded, but I only back-ported
functionality where it was easy to do so for those outdated IE versions. Because this
functionality is not needed for Saros at the moment, I moved the event-catch func-
tionality into a separate extension later on so that it can be deactivated easily (see
section 4.2.6) if not needed.

In Saros we can code the HTML in such a way that new IE versions will not fall
back, but users with old IE versions that are unsupported by Microsoft may still have
compatibility issues. Whether they may experience concrete problems depends on
Saros’ actual Javascript implementation.

9https://www.eclipse.org/articles/Article-SWT-Design-1/SWT-Design-1.html
(retrieved 31 March 2015)

10https://msdn.microsoft.com/en-us/library/cc288325(v=vs.85).aspx (retrieved 20
March 2015)

11Since I have the latest version of Internet Explorer installed, this is only noticeable on sites that
trigger the compatibility mode.

https://www.eclipse.org/articles/Article-SWT-Design-1/SWT-Design-1.html
https://msdn.microsoft.com/en-us/library/cc288325(v=vs.85).aspx

4 Implementation 51

Resource loading from JAR files

The browser’s binary is distributed as a JAR file to be included in applications. As
a result, the bundled HTML and Javascript resources are located inside an archive.
These resources are loaded via file URLs, which does not work for files inside archives12.
Therefore, I extended the resource loading methods to extract the content of the files
into a temporary folder as an immediate solution. In a next step this could be im-
proved to extract the files only once per application.

4.2.3 Forming the browser interface

I formed the public interface of the browser wrapper IBrowser. It contains mainly
the following functionality in different variants:

• Loading a URL.
• Checking the loading state or waiting for a specific Javascript condition to be

true.
• Injecting and executing Javascript and CSS code; the difference between injec-

tion and execution is that injected code persists and may be called from the
website itself.

• Some utility methods for querying and setting parts of the HTML’s DOM.
• Methods concerning the display and management of the wrapped browser, like
setSize(), runOnDisposal(Runnable), or setFocus().

While consolidating the interface I was confronted with three major design decisions:

• How to handle the result of asynchronous calls.
• How to handle calls to blocking methods as they might happen on the UI thread.
• How to improve the exception handling, as the throwing and catching of the

generic java.util.Exception class is ubiquitous.

Handling delayed execution

The main reason for the use of the browser component is its ability to delay method
execution until a defined state is reached, in most cases this is the complete loading
of the page. There are two different approaches to get the result of those delayed
calls.

Blocking methods First, the calls can block until the execution has finished. This
is the easiest solution as there is no extra code required to get the result or to be
informed about exceptions13. However, there is one limitation: those blocking calls
must not be made from the UI thread (EDT) as this reliably leads to a deadlock
because the browser component needs the UI thread to complete the loading.

12Eclipse’s bundleresource: URLs also have been considered.
13Even blocking methods might not give full success notification as Javascript might call other

methods asynchronously.

52 4.2 Extending the browser

Asynchronous methods The alternative is to make the methods execute asyn-
chronously resulting in the question of how to get the result. The existing imple-
mentation returns instances of Future, which require the code in Listing 4.7 on the
caller’s side.

try {
Future<Object> res = browser.asynchronousCall();
res.get();

} catch (InterruptedException e) {
// do someth ing and c a l l Thread . cu r r en tTh read () . i n t e r r u p t ()

} catch (ExecutionException e) {
// a l l o c c u r r i n g e x c e p t i o n s a r e wrapped i n s i d e an

Exe cu t i onExc ep t i on
}

Listing 4.7: Using Java’s Future class

This is tedious and requires the caller of the library to deal with the
InterruptionException which is a common source for subtle errors14. Even ex-
plicitly dealing with the ExecutionException is an additional overhead because the
browser only throws unchecked exceptions (see section 4.2.3).
Furthermore, this code only moves the blocking call. Future#get() is blocking
and must again not be called on the UI thread. Björn Kahlert implemented an own
Future class that throws an exception when its get method is called on the UI thread.
Otherwise the code would silently deadlock. While this is definitely an improvement,
the real problem remains. Calling these methods is uncomfortable; imagine the extra
code required to make the res.get() call in Listing 4.7 in a new thread.

Callback functions One way around this is the use of callback methods. Generally
speaking, the blocking call is done in another thread and calls a method after it has
finished.
I introduced the parametrised interface of Listing 4.8 where T is the type of the return
value of the callback function and V is the return value of the asynchronous method.

public interface CallbackFunction<V, T> {
T apply(V input, Exception e);

}

Listing 4.8: Parametrised callback function interface

If the method throws an exception, it is passed to the apply function via the second
parameter.
As one of the major applications for the callback will probably be error logging, I
already predefined the static error logging callback function shown in Listing 4.9.

14The browser wrapper implementation in most parts violated the contract and consumed the
InterruptionExceptions (see [GBB+06] for more information).

4 Implementation 53

public stat ic f ina l CallbackFunction ERROR_LOGGING_CALLBACK =
new CallbackFunction() {
@Override
public Void apply(Object input, Exception e) {

i f (e != null) {
LOG.error("Error in async call: ", e);

}
return null;

}
};

Listing 4.9: Callback function to log errors

Why mostly error logging? One of the problems with asynchronous method execution
is that exceptions can easily get swallowed because, if the caller is not explicitly inter-
ested in the return value, they might neglect to call Future#get() just to check for
exceptions15. Now, by just adding ERROR_LOGGING_CALLBACK as second parameter,
at least errors get logged. Since nearly all of the exceptions reported back to the
user are not meant to be handled (they mostly indicate programming errors), logging
(and informing the user) is the reasonable thing to do in most cases. Other callback
methods can be added for different behaviour16.

Resulting interface Depending on the concrete situation, either of the three variants
blocking call, asynchronous call with Future and with callback can be the most
suitable one. Therefore, I added all three variants for all the different method types
to the interface.
Furthermore, to reduce the number of asynchronous calls to a minimum, the user
may now even call potentially blocking methods on the UI thread if they make sure
that the condition is already met. I changed all blocking methods to check whether
they can be executed immediately because they do not have to wait for the condition.
However, if they would block the UI thread, they throw an IllegalStateException

as documented in their contract. In practice this may avert the previously described
problems altogether because, for example, once the loading is completed, no future
calls will block and most Javascript calls will be made long past the loading process.

Busy waiting on the UI thread In theory it is possible to busy wait on the UI
thread. For example, Björn Kahlert implemented the method of Listing 4.10, which
is unused. I adapted it slightly to make the mechanism more explicit.

15I explained how uncomfortable this call is.
16If an application shutdown should be attempted on certain errors, the developer can also do so

inside a callback method.

54 4.2 Extending the browser

public stat ic Object busyWait(f ina l Callable<Boolean> whileTrue)
{
new Thread(new Runnable() {

@Override
public void run() {

try {
while (whileTrue.call()) {

Thread.sleep(20);
}

} catch (Exception e) {
LOGGER.error(e);

}
conditionIsMet.set(true);
ExecUtils.asyncExec(new Runnable() {

@Override
public void run() {

// Should t h e r e be no more e v en t s on the
queue , the l oop

// below w i l l n eve r s top . Let ’ s make i t work
aga in w i th

// t h i s Runnable .
}

});
}

}).start();
Display display = Display.getCurrent();
while (!display.isDisposed()) {

i f (conditionIsMet.get()) {
return result;

}
i f (!display.readAndDispatch()) {

display.sleep();
}

}
}

Listing 4.10: Busy waiting on the UI thread

This implements the event dispatch functionality again while it is checking the com-
pletion in defined time intervals. Replacing the event dispatch loop at runtime is a
little ugly but has no real negative impacts besides code duplication. Whether the
overhead of the constant busy waiting calls has noticeable impacts on performance
would have to be tested. Doug Lea ([Lea00] chapter 3.2.6) discourages own busy
waiting implementations. Again having this workaround in the framework does not
seem to reasonable just for relieving the programmer of the need to think about UI
threads. I listed this alternative here because it may be of interest some day.

4 Implementation 55

Side note about the callback in the API The guava17 library, which contains all
kinds of useful functionality and which I originally added for the uniform checking of
parameter passed to the public browser API, defines a ListenableFuture interface.
Classes implementing this interface allow to listen for the completion of events and
to register callback functions. Basically the return of ListenableFutures in the
browser API would make the additional methods with callback function parameters
obsolete and thus the browser API more concise. However, this interface has the
@Beta annotation and the developers discourage the use of such classes in public API
as they might change completely. Looking at the current development and the fact
that the interface has been around for years, I find this unlikely. Nevertheless, the
current solution lacks no features, it simply has more methods.

Summarising the point of this side note, if the @Beta annotation is removed in the
future, the re-use of functionality and the concise interface have to be weighed against
the exposure and consequently heavy dependence on a third-party library.

Exception handling and throwing

The existing implementation makes heavy use of the generic Exception class which
is inconvenient for the user. The cause for this is probably that the call method in
Java’s Callable interface throws a generic exception18.

Therefore, I had to remove at least those generic exceptions from the public API
and replace them by specific exception types. The main decision was which types of
exceptions to throw.

Checked vs. unchecked exceptions The bottom line guideline for the use of checked
vs. unchecked exceptions is the following: “If a client can reasonably be expected to
recover from an exception, make it a checked exception. If a client cannot do anything
to recover from the exception, make it an unchecked exception”19. As exceptions
inside browser are most likely the result of a programming error either in the browser
library or in the Javascript code supplied by the user, the choice was to use unchecked
exceptions.

The browser loads content from streams and files so the checked IOException can
be thrown. IOExceptions occurring while loading browser-internal files are wrapped
inside unchecked exceptions because there is nothing the caller can do about them
(besides filing a bug report)20. For IOExceptions that are the result of a wrong
external file URL, the decision is the same and deviates from Java’s decision to make

17https://code.google.com/p/guava-libraries/ (retrieved 20 March 2015)
18I introduced a derived interface which overrides the call method to remove the throws clause

in order to get rid of the constant need for dealing with exceptions inside the library code that
are never thrown anyway.

19http://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
(retrieved 20 March 2015)

20They might be the result of a wrong usage of the browser library but even then they cannot be
handled at runtime.

https://code.google.com/p/guava-libraries/
http://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html

56 4.2 Extending the browser

the IOException a checked exception21. In the concrete case of loading a URL, the
success or failure is indicated via the return value and not via an exception.

Concrete implementation The browser API encapsulates the multitude of internal
exceptions by returning the unchecked JavascriptExecutionException which is at
the appropriate level of abstraction ([Blo08] item 61: “ Throw exceptions appropriate
to the abstraction”).

All plainly wrong usage of the browser API, such as null values are immediately
answered with the corresponding unchecked exceptions ([Blo08] item 60 “ Favor the
use of standard exceptions”).

All possibly occurring exceptions are documented in the public browser interface and
provide their full stack traces. Consequently, the client of the browser can fulfil its
responsibility to hide them from or show exceptions to the end-user.

4.2.4 Internal Concurrency fixes

Thread Executor

The browser uses the generic ExecUtils class containing static methods for the
synchronous and asynchronous execution on both the UI thread and non-UI thread.
Furthermore, this class features variants of these base methods to support timed
execution and thread labelling.

I initially planned to view the class as a complex black box and keep the redun-
dancy between the individual methods. However, it contains a static instance of
ThreadPoolExecutor that is started during class loading but is never explicitly
shutdown. Registering a JVM shutdown hook does not work inside a plug-in because
the browser might close long before the whole IDE exits. The problem became ap-
parent while running the demo applications (see subsection 4.2.5) as the JVM did
not stop after closing the browser.

Another issue is that the UI thread execution is global and cannot be replaced at
runtime when a different browser should be wrapped which is a likely scenario in the
future.

Fortunately, both problems can be addressed simultaneously. First, I separated UI
and non-UI execution methods and made the individual variations of the same method
type call each other to remove redundancy. To eliminate this redundancy it helped to
hide the thread labelling code behind new abstractions, specialised implementations
of the Callable class.

In the end, I could make ExecUtils an instance of ThreadPoolExecutor because the
formerly method static methods basically just decorated calls to the
ThreadPoolExecutor. Therefore I extended the ScheduledThreadPoolExecutor

class, which conveniently provides extension points to wrap input and output of
the execute methods, and had to include just two new methods signatures for the

21This does not mean that it was wrong to make IOException checked, but in our concrete use
case an unchecked exception is more appropriate.

4 Implementation 57

thread labels. The use of the ScheduledThreadPoolExecutor got rid of the re-
implementation, calling sleep, of its delayed execution functionality.

With the elimination of the static state both non-UI thread executor and UI thread
executor can become properties of the browser. As a result, the browser is respon-
sible for creating and terminating the ThreadPoolExecutor, which is done in the
browser’s dispose listener.

In addition, the browser can decide which instance of the UIThreadExecutor it cre-
ates. The SWT browser implementation creates an SWTUIThreadExecutor whereas
the JavaFX browser instantiates a JavaFXUIThreadExecutor.

Even though the use of the ScheduledThreadPoolExecutor seems logical, it has
one decisive disadvantage: it is a fixed size thread pool. Since the browser executes
tasks that depend on each other, it might deadlock if the pool size is too small22.
Basically there is one task waiting for the completion of the page load while some
tasks are loading the page. Apart from the overhead of having idle threads in a fixed-
size thread pool the number of executing tasks is theoretically unbound23 as the user
may supply custom tasks that are executed before the loading is complete.

I did two things to remove this issue. First, I removed the timeout task for the page
loading from the ScheduledThreadPoolExecutor and used Java’s Timer class in-
stead, which offers the same functionality outside of a thread pool. As this was the
only task using the schedule function, I could switch back to a regular
ThreadPoolExecutor, which Java also provides with variable size. Second, the wait-
ing task is now executed outside the thread pool. As it is relatively long-running and
mostly executed once, this is sensible even from a performance perspective.

Additional concurrency fixes

During the implementation I introduced and extended the synchronisation of shared
mutual state, e. g. for the management of the browser state and the management of
listeners. I documented places that I deemed thread-safe but I am also pretty sure
that there are still locations with unguarded state (due to time constraints).

In addition, I began implementing a cancellation policy. This mainly means that I
fixed the swallowing of InterruptedExceptions so that all methods follow the basic
principles for responsive applications.

4.2.5 Tests and Demos

I made the existing demo classes startable outside of Eclipse. These demos contain a
few buttons to execute functionality such as the injection of Javascript or provoking
Javascript syntax errors. They can be used to easily test fundamental features of
the browser on multiple platforms. They are a good replacement for considerably
more expensive (regarding development costs) automatic GUI tests. As there is no

22[LMS+12] “TPS01-J: Do not execute interdependent tasks in a bounded thread pool”
23Before this design flaw has been addressed, five should have been sufficient in practice.

58 4.2 Extending the browser

infrastructure to support GUI tests on multiple operating systems yet, they would
have to be installed and started manually on each system anyway.

I also wrote automatic unit tests for the loading of websites and for the Javascript
execution methods. Thereby, I noticed that the runImmediately methods reliably
failed when called directly after loading a URL because those methods do not wait
for any condition, they just fire the Javascript code. As they provide no guarantees
about the result of their execution I removed them from the public interface. The
newly introduced syncRun methods (see subsection 4.2.3) can be used as replacement.
However, these methods may block if the browser is not initialised.

4.2.6 Restructuring and decoupling functionality

Browser and BrowserScriptRunner class

The browser contains the state machine shown in Figure 4.4. It does not support the
sequential loading of different sites in the browser, which Saros might need to display
multiple-page wizards.

Figure 4.4: The browser states

Although the addition of an extra state transition is not too complicated, it has
subtle consequences for the management of the queue for delayed tasks, which is the
responsibility of the so called OffWorker class (see the next section).

While reading and getting to know the browser code, I moved responsibilities between
classes to provide a clearer structure and make classes smaller.

4 Implementation 59

For example, I extracted the browser state flag and the related (scattered) code from
the BrowserScriptRunner into an own class, BrowserStateManager, that is now
a property of the browser.

The existing separation in Browser and BrowserScriptRunner seems artificial be-
cause on the one hand Browser wraps BrowserScriptRunner and delegates some
methods directly to it but on the other hand the BrowserScriptRunner also holds
a reference of the Browser. Furthermore, it looked a little inconsistent as to which
methods were implemented in which class. Thus I removed the separation in a first
step to introduce a different one in the following step. This time I separated accord-
ing to the following idea: there is an InternalBrowserWrapper which just adds the
fundamental functionality to the SWT browser, being:

• Support for reliable detection of page loading and delayed method execution.
• Decoration of executed Javascript string with meaningful exception handling.

The Browser class in turn wraps this InternalBrowserWrapper and provides a
rich interface – implementing the external browser API – consisting of methods with
different parameter types, which use the few base methods. The connection between
Browser and InternalBrowserWrapper is now unidirectional.

Simplified OffWorker

The OffWorker possesses different states as well. They are illustrated in Figure 4.5.

Figure 4.5: The states of the OffWorker class

Before my extension of the browser’s state machine to support multiple loading cycles,
the OffWorker was just a one-way train. It was initialised, started, and shut down.
The pause functionality was not used for the browser and so I removed it to keep the
class simple. This lifecycle can also be emulated by starting an internal thread without
differentiating any explicit state, which simplifies the logic. When an OffWorker

instance is no longer needed, the thread is simply terminated. This also got rid

60 4.2 Extending the browser

of problems like “Cannot switch state from RUNNING to RUNNING”, which were
probably caused by insufficient synchronisation.
After my extension, the OffWorker could either manage an explicit state again or
just be recreated for each loading process, which is the solution I preferred as this
keeps the code concise. There is no need to manage a state explicitly as each thread
(or object) can be started and disposed of.
However, there is still one minor problem concerning the clearing of the task queue
when loading a different webpage. Before the new document starts loading, the cur-
rently executed task has to be either cancelled or has to finish (not yet started tasks
can easily be deleted) in order to prevent an old Javascript command from being sent
to the new HTML document. A correct implementation is a little tricky (regardless
of how the OffWorker is actually implemented) due to a possibly asynchronous task
execution and because Java only supports cooperative cancellation. As this prob-
lem can only occur if the website is switched before it has finished loading, I have
postponed the realisation.

Extracted Event-catch functionality

The browser features the registration of listeners for Javascript events, like hover-
ing of anchor tags or elements gaining and losing focus. As already explained, this
functionality is not yet needed by Saros and may have compatibility issues with old
versions of Internet Explorer (see section 4.2.2).
For this reason, I encapsulated this functionality into a separate browser extension
so that it can be easily deactivated. The browser already contained an extension
mechanism; for example, there is a JQueryExtension that makes the JQuery library
available. I bundled the separate browser extensions into one enum class, with the
properties shown in Listing 4.11. An extension basically describes a list of files that
have to be loaded and a Javascript expression that is used to check if the extension
has already been loaded.

public enum BrowserExtension {
[...]
private f ina l String name;
private f ina l String verificationScript;
private f ina l List<File> jsExtensions;
private f ina l List<File> cssExtensions;
private f ina l List<BrowserExtension> dependencies;

}

Listing 4.11: Browser extension

With the help of the defined extensions, specialised versions of the browser interface
can be created, like the new one for the event catch functionality in Listing 4.12.

4 Implementation 61

public interface IEventCatchBrowser extends IBrowser {
void addAnchorListener(IAnchorListener anchorListener);
void addMouseListener(IMouseListener mouseListener);
void addFocusListener(IFocusListener focusListener);
[...]

}

Listing 4.12: Interface of the event catch browser

4.2.7 Preparing the replacement of the underlying browser

JavaFX

Since it is currently uncertain whether the SWT browser will run inside IntelliJ IDEA
on Mac OS with Java 8, its use might have to be re-evaluated in the near future.

As I already explained in subsection 2.2.5, the JavaFX browser seems to be a vi-
able alternative because it is fully supported from Java 8 onwards on all platforms.
Therefore, while doing the necessary changes, I already encapsulated all SWT related
functionality in separate classes, which form a parallel class hierarchy, and experi-
mentally included the JavaFX browser.

The long term goal is to provide multiple browser implementations behind the same
public browser API so that the change of the browser is in theory as easy as calling
a different factory method.

In practice there may be cross-browser issues and the JavaFX browser provides a
more sophisticated Java-to-Javascript connection so that it might be cumbersome to
wrap it behind the SWT browser-oriented API. However, for a first step it should be
practical and the code can evolve once it works.

One example for the more sophisticated communication are the browser functions.
While SWT only allows defining Javascript functions in the global namespace, JavaFX
requires the definition of Java classes that are mapped to Javascript objects with a
corresponding function defined for each Java method. Thus, JavaFX cannot define
Javascript functions in the global namespace. I wrote a work-around to enable the
definition of top-level Javascript functions in JavaFX, so that the client’s Javascript
code does not have to change. The cleaner solution, however, would be to convert the
client’s Javascript calls as the use of the global namespace is discouraged in Javascript.
The conversion can be done automatically with a script or a simple search and replace.

All in all, I introduced three interfaces that have to be implemented when a new
browser is introduced:

• JavascriptFunction to abstract from SWT’s BrowserFunction class.
• UIThreadExecutor (see subsection 4.2.6) for the different UI threads.
• IWrappedBrowser for the actual browser implementation.

62 4.3 Design of the GUI test framework

JxBrowser

As soon as I had formed the IWrappedBrowser interface, I used it to let the browser
library use the JxBrowser internally. As the APIs of JxBrowser and SWT browser are
very similar, this was straightforward. The only thing to add were conversion methods
because the JxBrowser returns instances of JSObject from Javascript commands and
provides no conversion to basic classes like Double or String.

4.3 Design of the GUI test framework

This section is concerned with IDE-independent GUI tests. First, I describe the ex-
isting STF implementation and then explain the considerations for an HTML adap-
tation.

4.3.1 The existing test framework for Eclipse

Saros has a GUI test framework named STF (Saros Test Framework), which is for
Eclipse only. I will now shortly summarise its current mechanics and functionality.
More detailed information can be found in the three theses [Szü10], [Che11], and
[Ros11] (see section 1.6).

STF is basically a wrapper for the SWTBot and provides its methods via a Java RMI
interface. SWTBot is a GUI automation library for the SWT toolkit and also features
methods specifically for the Eclipse IDE. STF is divided into three so called Bots:
ControlBot, RemoteWorkbenchBot, SuperBot. Each one is suitable for a different
situation:

• ControlBot does not use the GUI, but rather accesses the business classes
directly to quickly provide a defined state for testing. It can create accounts,
for example.

• RemoteWorkbenchBot and its subset RemoteBot simply wrap their SWTBot
counterparts and provide access to each individual GUI widget, e. g. a button.

• SuperBot provides a higher-level abstraction for RemoteBot and is more use-
case oriented; for example, it allows adding a contact with just one method call,
which translates into multiple RemoteBot calls.

If configured accordingly, Saros runs an RMI server at start-up and provides access
to those Bots. The GUI tests connect to the RMI server, acquire instances of the
exported objects and can call the desired methods to emulate user interaction.

4.3.2 Goals

My goal is to provide a similar framework for the new HTML GUI for both IntelliJ
and Eclipse. It is to be decided whether the same interface as in STF will be used.

4 Implementation 63

4.3.3 GUI automation for IntelliJ IDEA

Currently Saros/I offers no GUI test functionality whatsoever. The IntelliJ plug-in
development API only offers headless integration tests24.
Since IntelliJ uses Swing for its GUI elements, an equivalent to the SWTBot for Swing
would be useful.
Internet research turned up two candidates UISpec4J25 and Fest26. QFS27 is a com-
mercial alternative that will, for that reason, not be mentioned further. Neither of
the first two candidates are actively developed but they seem mature enough to be
an option. The major shortcoming of both is that they are aimed at regular Swing
applications and have no equivalent to the WorkbenchBot, which knows the Eclipse
workbench elements. As a result, it is quite complicated to automate even simple
clicks in the IntelliJ GUI, for example opening a Tool Window.
However, at the current stage of development, we just have to be able to open the
Saros Tool Window such that the browser becomes visible. All further GUI test
commands can take place inside the browser. For the complete implementation of
the GUI test framework other IDE-specific elements like the editor view, the project
tree, and the settings menu might become relevant. Then we have to look at the
concrete use-cases to decide whether the application of one of those GUI automation
libraries is possible or whether it is more practical to obtain the desired information
below the UI layer.

4.3.4 Opening the browser view in IntelliJ

As the only currently needed functionality is the opening of the Tool Window, I will
concentrate my efforts on implementing it in both frameworks. This is exemplary for
the implementation of further IntelliJ-specific functionality. Since it involves clicking
nested pop-up menus, it is probably one of the harder automation tasks.
To open the Tool Window the easiest (not the only) way is to open the “View” menu,
click “Tool Windows” and select “Saros browser”. I did not manage to do this using
UISpec4J within a timeframe of two days. I can only speculate about the reasons:
UISpec4J normally requires to be started before the Swing application to be able
to intercept frames or pop-up windows. This is not possible in our scenario as it
is launched inside a plug-in. The documentation is sparse and all further inquiries
would require deeper debugging of the source code.
Using fest-swing I succeeded with limitations. If started in a multi-display set-up, the
controlling and the controlled IntelliJ instances have to be on the same screen and
the movement of the mouse occasionally disturbs the robot.
I further implemented a method to check whether the Tool Window was open both
by looking at the Swing component tree and by accessing the IntelliJ API to obtain

24This functionality cannot be used by Saros/I because of a version clash of two PicoContainer
versions.

25http://www.uispec4j.org/ (retrieved 20 March 2015)
26https://code.google.com/p/fest/ (retrieved 20 March 2015)
27http://www.qfs.de/en/qftest/index.html (retrieved 20 March 2015)

http://www.uispec4j.org/
https://code.google.com/p/fest/
http://www.qfs.de/en/qftest/index.html

64 4.3 Design of the GUI test framework

the information below the UI layer.

4.3.5 Opening the browser view in Eclipse

On the Eclipse side, the existing methods of the WorkbenchBot are simply re-used
in order to open the browser view.
Once the view is open, we can focus on the actual testing of the Saros HTML UI;
this is described in the following section.

4.3.6 GUI automation for HTML

First of all, standard web automation frameworks like Selenium webdriver28 or Watir29

cannot be used as they need to render the webpage themselves. Even if Saros could
run standalone and listen on a port, the GUI would be tested outside the IDE which
leaves out the entire browser integration and would not be a real GUI test. Currently
this integration is a hot spot for stability issues.
Fortunately, automation inside a website is fairly easy as Javascript can be executed
to emulate user input. To find individual elements, it is useful to give id and class
attributes to the HTML tags. Then, the actual call is as simple as executing $(’#id

’).click() or return $(’#id’).text() in JQuery syntax.
The integration in Saros and the design of the RMI interface pose more questions and
are discussed in the next section.

4.3.7 Design of the RMI interface for HTML

The first option to evaluate is the re-use the current STF interfaces. I therefore gave
them a close inspection.

STF’s current interfaces

RemoteWorkbenchBot and RemoteBot are one-to-one wrappers of the SWTBot with
some widgets excluded, such as the browser. Consequently, RemoteBot provides
about eleven to twenty look-up methods for each of the sixteen supported SWT wid-
gets. This look-up can happen according to ID, label, index, group or a combination
of these, for example. Listing 4.13 shows just a very small section of this interface to
give an impression. RemoteWorkbenchBot extends the list of widgets by offering ac-
cess to Eclipse workbench elements like perspectives, views, editor. Both the bots use
the page object pattern30 and provide an additional interface for each of the widgets.

public interface IRemoteBot {
[...]

IRemoteBotButton buttonWithLabel(String label);
IRemoteBotButton button(String mnemonicText, int index);

28http://www.seleniumhq.org/ (retrieved 20 March 2015)
29http://watir.com/ (retrieved 20 March 2015)
30https://code.google.com/p/selenium/wiki/PageObjects (retrieved 20 March 2015)

http://www.seleniumhq.org/
http://watir.com/
https://code.google.com/p/selenium/wiki/PageObjects

4 Implementation 65

IRemoteBotButton buttonWithTooltip(String tooltip);
IRemoteBotButton buttonWithId(String value);
IRemoteBotButton buttonWithLabelInGroup(String label, String

inGroup);
[...]
}

Listing 4.13: Extract from RemoteBot’s interface

Adaptation for HTML

How does this fit to HTML? At least for some widgets, e. g. Button, StyledText,
and List, corresponding HTML tags can be found. Even though for the mapping of
HTML tags to Java objects a framework like selenium would have been of help, it is
quite possible to manually convert Java method calls to Javascript strings representing
the according operations in the browser.
So only a subset of widgets can be re-used in the HTML context. What about the
accessor methods? Except for the by-group selector, all of them could be implemented
in HTML, but only selecting by ID and visible text are really needed. The index is
an unreliable way to find an element, especially in the face of the alternatives. The
variety of CSS selectors is big but, for example, selecting according to attribute values
or parent elements requires detailed knowledge about the implementation.
As a result, the concrete interfaces should be changed to reflect the different HTML
widgets and the number of selectors should be reduced to selection by ID and text in
the first draft.

Mapping between Java and HTML There are two ways to acquire the HTML state.
The first parses parts of the HTML DOM and stores the state in Java objects. This
might be more efficient than the second approach below as more information is trans-
ferred with one call. Instead of the three calls $(object).getAttrX(), $(object)
.getAttrY(), and $(object).getAttrZ(), one parse($(object)) call could suf-
fice to transfer the information to a Java object. However, even with libraries like
jsoup31 it is cumbersome because HTML attributes may be added and changed dy-
namically via Javascript. The main problem is that the state might be stale at the
time the information is queried from the Java object.
Therefore, I will resort to the second approach and only build the Javascript strings
and execute them directly when the call is made.

Representing structured widgets That was the easy part: simple, self-containing
HTML elements like a button can be identified via ID. But what about lists? There
is a list widget in SWT and there are lists in HTML. However, the concrete structures
of what looks like the same list in the browser might be considerably different. To
begin with, formatting in HTML makes heavy use of introducing extra tags just for

31http://jsoup.org/ (retrieved 20 March 2015)

http://jsoup.org/

66 4.3 Design of the GUI test framework

positioning or styling. Listing 4.14 shows an example of an HTML list as it can be
found in a textbook, while Listing 4.15 shows the same list structure with additional
HTML tags.

item
item two

Listing 4.14: A standard HTML list

item
item two

Listing 4.15: A alternative representation of a list in HTML

An HTML list may not be built with at all, like the one in Listing 4.16.

<div>
item
item two
</div>

Listing 4.16: A list structure in HTML with explicit list elements

Especially when using web frameworks we might not even have control over how the
list is implemented. So what is the way around? I would propose the use of the same
CSS class attribute for all elements of a list. Listing 4.17 shows an example for this.

<div>
item
item two
</div>

Listing 4.17: Identifying list element via the class attribute

This at least somewhat abstracts from the concrete implementation. However, the
problem of individual structured list elements still persists. Now, changes to the
general list structure with a multitude of completely different approaches have no
effect on the Java-to-HTML mapping, only changes on the list element level still do.
Listing 4.18 shows an example for a possible contact list. The class attribute
identifies the individual contacts representing one list element each.

Contact list:
<div>
Alice <emph>online</emph>
Bob
</div>

Listing 4.18: A more complex list example

4 Implementation 67

As the styling can be done via CSS independent of the structure, this is somewhat
immune to changes. However, at least when a new element like the subscription
status is added or when parentheses are added around the status, the code of the test
framework will still have to change.

Of course, now a list is not a general widget with a uniform structure anymore, instead
there is a contact list widget with a certain structure and probably an account list
widget with a different structure. It makes complete sense for a Saros-specific test
framework, though, to know Saros-specific presentation structures.

Looking at the current Saros/E implementation, there are only a few structures of
interest:

• The contact list.
• The account list (in the drop-down menu).
• The session tree (may be split into sub-structures).
• The chat, which contains a few elements and a list of structured lines.

Therefore, having general-purpose interfaces would add unnecessary complexity and
is less direct to use. For example, now we can say getContactList() instead
of getList("contactListId"), saving one layer of abstraction and more impor-
tantly getting exactly the specific elements needed, like name or status instead of a
StyledText widget.

For self-contained widgets such as buttons or texts the current approach is fine as
there are many more of them and they all have the same structure.

Summary In conclusion, for the first implementation I will use a new interface in-
stead of the RemoteBot. For simple widgets it is inspired by the existing one but
much leaner containing only the necessary selector methods, for complex widgets like
lists I will define content-sensitive classes to reflect the Saros GUI.

The ControlBot interface can be used as-is because it is independent of the GUI.

The SuperBot interface aggregates multiple RemoteBot functions into use-case ori-
ented method calls, which makes sense in HTML, too. However, the concrete interface
is very selective, containing functions as they were needed at the time by the existing
tests. So the current form is not very suitable for the limited HTML GUI, but can
be expanded organically.

4.4 Accompanying refactorings

Before PicoContainer could be used in the ui module (see subsection 4.1.5), I had to
move the SarosPluginContext class into the core and introduce a new factory class
that creates the PicoContainer components for the UI classes. SarosPluginContext
is necessary to inject dependencies into instances that initially cannot be created by
the PicoContainer. While I was moving the SarosPluginContext class into the core
module, I decided to remove further redundancy and moved the SarosContext class
and the SarosCoreContextFactory class there as well. As the existing constructor
of SarosContext expected nested ISarosContextFactory classes, which does not

68 4.5 Integration of the HTML GUI into the build process

reflect the non-hierarchical structure, I changed it to accept a list of factories instead.
This also eliminated the need for the same logic in every factory to load nested
contexts.

To avoid introducing new redundancy during the implementation of the HTML GUI,
I extracted the account look-up method and two connection establishment methods
out of the IntelliJ GUI classes (they clearly do not belong there). I then moved the
account look-up method into the core class XmppAccountStore together with new
test methods.

The connection methods were temporarily located in the ui module until Arndt
Lasarzik moved the ConnectionHandler into the core so that those temporary meth-
ods could be removed.

4.5 Integration of the HTML GUI into the build process

The new ui module with the HTML GUI had to be integrated into Saros’ build
process in three places: in both IDEs and in the Jenkins build.

4.5.1 Building inside Eclipse

For the HTML GUI to be compiled in Eclipse, not only does the module itself require
the appropriate .project, .classpath, and MANIFEST.MF configuration files, but
the dependent module eclipse (compare section 4.1) also needs to be adapted to find
and use the ui module. These modules need the correct OSGI bundle configurations,
e. g. exporting the appropriate packages, to work together at runtime.

4.5.2 Building inside IntelliJ

I created the IntelliJ module configuration for the ui module, which mainly consists
of the build paths and the required libraries, so that it gets built in IntelliJ as part
of the Saros project.

A special challenge was to require as few manual steps as possible to get the Saros
project running in IntelliJ after an initial checkout from the git repository. Due
to license conflicts, Saros does not provide the required SWT library, so that each
developer has to download it themselves (see section 2.2.2). Now, the library is already
configured in the IntelliJ project, so that they just have to copy the downloaded
JAR file into the lib folder. This way, each developer can use the same IntelliJ
configuration files and those can be shared in git without having local changes.

4.5.3 Configuring the Jenkins build

ANT build files The continuous integration server Jenkins builds Saros using the
Ant build tool. Therefore, I had to adapt the build.xml files for the core, eclipse,
and ui modules. The IntelliJ one was especially cumbersome because it had been
automatically generated resulting in the overly extensive declaration of Ant properties

4 Implementation 69

and then adapted by hand. The one for the ui module had to be done twice as the
Eclipse implementation was completed about two months after the IntelliJ one and it
turned out that the resolution of Eclipse dependencies is not practical without using
a specialised Ant-task (ant4eclipse).

Jenkins configuration The special challenge here was that Saros has two differently
structured Jenkins jobs for Gerrit and for the master branch. As the job for the
master branch uses a downstream job for the IntelliJ part, the artefacts from the
Eclipse job, which builds the core and ui module, have to be copied. However, now
the IntelliJ job would need to extract these archives inside the Ant code in order to
load the required classes or – the current pragmatic solution – build ui and core

again and use the copied artefacts just for the included third-party libraries.

5 Being part of the Saros team

This chapter describes the work I did apart from the main topic of my thesis as part
of the Saros team. It further contains retrospective thoughts on my major design
decisions and suggestions for an improvement of Saros’ processes.

5.1 My contribution

5.1.1 Cooperation with parallel theses

Since the Master’s theses of Matthias Bohnstedt and Bastian Sieker both build on
my results, I explained my implementation and the ideas behind it to them. We
often exchanged our thoughts and gave valuable input to each other in and outside of
the review system. For example, I could profit from Bastian Sieker’s experience with
Javascript technologies.

GitHub set-up for the evaluation phase

During the first phase of the evaluation, in which Matthias and I tried to embed many
different browsers into both IDEs, I set up a GitHub project for this cooperation. It
required a somewhat complicated configuration, because we wanted to integrate it
with the existing Saros plug-in early and the IntelliJ implementation had not been
fully merged into the master branch. Therefore, our project could not simply fork
Saros on GitHub but had to integrate the raimondas2 branch from Gerrit, which
was still actively developed at the time. As I also wanted to get a first assessment
of Björn Kahlert’s browser, I included it with minor modifications in our repository,
too.

Now we had to test and – as it turned out – debug our integrated prototype under
Windows, GNU/Linux, and Mac OS. Since we had no constant access to Mac OS,
I extended our repository configuration by adding two branches easy_testing and
mac_testing to ease the debugging by enabling the quick deployment of the current
version on every operating system. These branches used compiled JAR files of Saros
and the browser widget instead of the source code in order to eliminate the need to
configure, update, and manage the integrated Git repositories on each test system.
This accelerated the set-up immensely because most of our test systems were relatively
slow virtual machines. Mac_testing additionally contained the special adjustments
for Mac OS, which also had to be tested under Windows and GNU/Linux so that
they would not break anything. The nice thing about this whole set-up was that the
branches and therefore the entire project configuration could be switched seamlessly

5 Being part of the Saros team 71

by checking out another branch. No additional changes were required as all relevant
IDE files were managed by Git. The master branch with the editable source code of
Saros and Björn Kahlert’s browser was required whenever the integration itself had
to be adapted. After the appropriate changes had been made, the JAR files were
recompiled and added to the branches so that the other systems could be tested.

5.1.2 Git documentation

As I noticed lacking knowledge of Git amongst new Saros members I documented
the things I learned concerning Git and Gerrit in form of some recipes on the Saros
homepage1. The covered topics were inspired by the questions I had been asked (more
than once).

5.1.3 Documentation for new developers

Triggered by a developer test executed by Matthias Bohnstedt that found that new
developers needed some orientation when extending the new HTML GUI, I wrote a
detailed developer guide. This guide gives a template for adding new functionality to
the UI layer and highlights the key Java classes. I published this both on the Saros
homepage2 and in source code to be accessed via the JTourbus3.

Since the browser library might be adapted in the future, I highlighted the places to
start, for example when switching the underlying browser4.

5.1.4 Release process

I volunteered as test manager for the release process5. This basically meant that
Arndt Lasarzik, the assistant test manager, and I verified the changelog that consisted
of the fixes, features, and other changes in the span of more than one year.

5.1.5 Review process

As I repeatedly noticed that Saros members shied from submitting their patches to
the review system, I co-initiated a discussion in the Saros team about problems and
concrete proposals to improve the review process. This discussion was very productive
and, thanks to the initiative of Franz Zieris, an update to the review process has been
decided on and published.

1https://www.saros-project.org/git-recipes (retrieved 12 April 2015)
2https://www.saros-project.org/html-gui (retrieved 12 April 2015)
3https://github.com/ag-se/jtourbus (retrieved 31 March 2015)
4https://github.com/ag-se/swt-browser-improved/wiki (retrieved 12 April 2015)
5http://www.saros-project.org/ReleaseProcess (retrieved 20 March 2015)

https://www.saros-project.org/git-recipes
https://www.saros-project.org/html-gui
https://github.com/ag-se/jtourbus
https://github.com/ag-se/swt-browser-improved/wiki
http://www.saros-project.org/ReleaseProcess

72 5.2 Suggestions for improvement

5.2 Suggestions for improvement

5.2.1 Developing Javascript code

I will shortly illustrate a general bump in the workflow when developing Javascript to
be executed from Java. The Javascript expressions are often one-liners. The problem
is that the embedded browser has no debugging support for Javascript. A primitive
alternative would be to use alert statements or other forms of logging, which is
rather cumbersome. Furthermore, there is no IDE support such as syntax checks for
Javascript inside Java Strings.

I do not have a perfect solution for this, but the way to go seems to be to develop
the website in a way such that it can be opened outside of Saros in a browser. If
necessary, state can be faked by static content. Then one can develop the Javascript
using standard Javascript tools and debugging facilities. As soon as the code works,
it may be copied into Java strings or included as methods in external Javascript files.

5.2.2 Continuous integration

The Jenkins job building a Gerrit patchset and the job building the Saros master

branch should be the same or at least use the same configuration so that a successful
build in Gerrit will not break when submitted into the master. This happened twice
during my thesis when the Jenkins configurations were adapted. Since both jobs are
structurally different, it is not only difficult to keep the configurations synchronised
but also hard to use the same Ant scripts; currently, the core and ui module are
built twice (see subsection 4.5.3).

Ideally, the Ant build (at least the compile tasks) should also be executable in the
local development environment, especially for adapting the build scripts. Currently,
this only works after manually rebuilding the Jenkins environment, i. e. installing all
the used tools and libraries and setting the corresponding parameters. Even then, the
classpaths constructed inside the Ant files are too long to be executed on Windows.

Lastly, the release process6 requires a lot of manual steps and since the actual build
is done on a local machine, it is difficult to reproduce. It depends on the installed
bundles of all dependent libraries7 in the local Eclipse installation, for example8. After
I changed the instructions to use git clean in addition to git reset --hard, at
least the local Git state should have no effect on the outcome anymore.

5.2.3 Release testing

Testing the new features and fixes for the Saros release 14.10.31 took a considerable
amount of time. The reason for this was the long list of changes as the last release

6Described at http://www.saros-project.org/ReleaseProcess#How_to_create_a_
new_release (retrieved 1 April 2015)

7One can define exact version numbers for these dependencies but that is laborious and currently
not done.

8Out of interest I tried it on my machine and was unable to create a release following the guide.

http://www.saros-project.org/ReleaseProcess#How_to_create_a_new_release
http://www.saros-project.org/ReleaseProcess#How_to_create_a_new_release

5 Being part of the Saros team 73

had been more than a year ago. Furthermore, all the changes had been done before
I became a part of the Saros team, so I was missing the necessary context. Many of
the people who were involved in those changes had either left Saros or did not have
the time for the release testing.

Even though the commit messages and bug tracker entries (if they existed) were not
badly written, they did not contain enough information for newcomers to verify the
changes. I would suggest the consequent creation of (GUI) tests for all fixes and
features which are relevant for the changelog. For changes that are difficult to test
automatically such as changes to the layout, bug tracker entries containing pictures
and detailed steps should be written.

As it also has to be verified that the previous release exhibits a different behaviour,
automatic tests are particularly convenient. Of course, they cannot replace all manual
tests and the user acceptance tests will still be an integral part of the release process.
The hope is that they can drastically reduce the two full days Arndt Lasarzik and I
spent gathering the necessary information and then testing very mechanically.

5.3 Retrospective thoughts

I (in agreement with other Saros members) have made two major decisions in my
thesis:

• To use the SWT browser and make it work.
• To develop Björn Kahlert’s browser as a standalone library as opposed to cre-

ating a new wrapper and only copying the needed parts.

I will now give my thoughts about theses decisions in hindsight.

5.3.1 Was the SWT browser the right choice?

The potential risks of the SWT browser were apparent from the beginning, but it was
unclear how well they could be eliminated or whether they would become concrete
problems. After the initial embedding problems into IntelliJ had been solved, the
SWT browser presented a promising candidate on most systems. Even though it
seemed like an uphill battle at times, I think the considerable initial effort paid off.

The SWT browser was the first logical step to gather more information about a
web-based GUI and especially the resulting source code because – in spite of all the
challenges – it was still the only browser that could be directly integrated into Saros.
The JxBrowser might have been an alternative but I consider it to be unlikely that
users will accept a 200 MB library and it has similar problems when embedded into
Eclipse. For JavaFX, Saros would first have to drop Java 6 support and thus exclude
IntelliJ on Mac OS.

In conclusion, I am positive that starting with the SWT browser was the right choice.
After having learnt more about the use of a browser for IDE plug-ins, Saros can still
decide to switch to another one.

74 5.3 Retrospective thoughts

5.3.2 What about the decision to use Björn Kahlert’s browser?

There were two options: First, writing an own browser extension and copying just the
needed parts from Björn Kahlert’s implementation and, second, using his browser as
a whole and making the necessary adaptations. I have chosen the second alternative
(for the reasons see section 2.2.3). Even though my modifications were considerably
larger than originally thought, I still think that this decision was valid. The main
reasons for the higher effort were, on the one hand, that some required internal
changes only became apparent after a close look and, on the other hand, that the
target environment had special needs and was not as stable as initially assumed (see
section 4.2.2). The second category would also have affected a fresh implementation,
possibly at different locations in the code.
I am still convinced that the fundamental complexity of a re-implementation would
be similar to that of Björn Kahlert’s solution (see section 2.2.3). However, as it is
not certain how many of the optional features of the browser wrapper will be used,
it is too soon to make a final assessment.

5.3.3 Change of focus throughout my thesis

Just before I registered my Master’s thesis, the implementation of the HTML-GUI
became relevant (again), as Damla Durmaz had successfully implemented her activity
log inside a browser on the second try. Up to this point, my focus was to implement
STF or an equivalent test framework for IntelliJ such that the same tests could be
used for both IDEs.
In the end, I started out with the objective to develop a GUI test framework for
whatever GUI technology would be favoured after the evaluation. Because no eval-
uation of HTML-based approach had been done yet, I was asked to join forces with
Matthias Bohnstedt for this.
Due to personal time conflicts he had to postpone the start of his thesis, so the
evaluation became a big part of my work. In addition, the evaluation itself turned
out to be much more time-intensive than originally thought since more and more
technical problems arose that had to be fixed9.
Even after the general approach, using HTML, was decided on, the GUI first had to
be implemented as a prototype before any GUI tests would make sense. Therefore, I
did this part too and even integrated Björn Kahlert’s browser component to provide
a convenient and reliable browser API for Saros. Finally, I found time to concern
myself with the original aim, creating GUI tests. Since the HTML-GUI still only
features a few functions, I merely sketched what the interface of a test framework
might look like and implemented the first actual GUI tests for both IDEs.

9If I had not been able to fix them, the evaluation result would have been a lot clearer a lot sooner.

6 Results of this thesis

6.1 Conclusion

My thesis has laid the necessary groundwork for a complete implementation of Saros
using the HTML-based approach. After I had evaluated this approach to be a promis-
ing way to eliminate redundant GUI code, I identified the SWT browser as the first
(temporal) choice for a complete implementation (section 2.4). I have given an ex-
tensive overview on Java web browsers including their weaknesses and investigated
their applicability for Saros (section 2.2).

The objective of the prototype implementation is to cover all the different facets of
a browser-based IDE plug-in implementation (section 4.1). This includes embedding
the browser into Eclipse and IntelliJ on GNU/Linux, Windows, and Mac OS X (sec-
tion 3.1), creating an HTML sketch of all the relevant GUI elements, and connecting
the HTML-GUI to the Saros business logic. Connecting it to the Saros logic means
both displaying the application state in the browser (subsection 4.1.3) and sending
the user input to the Saros backend(subsection 4.1.1 and subsection 4.1.2). The me-
chanics of GUI tests have also been covered and are based on the existing Eclipse
GUI test framework (STF) with sensible adaptations for HTML (section 4.3). The
resulting prototype is already integrated into the complete Saros build and develop-
ment infrastructure (section 4.5) such that each developer can easily activate it via a
feature toggle and contribute to it.

During this implementation, I had a close look at the communication between Java
and Javascript with regard to general inconveniences that are caused by the mix
of those two languages, e. g. missing IDE support and compile-time checks (subsec-
tion 4.1.2 and subsection 5.2.1). Simplifying the development for future developers,
especially in terms of threading and asynchronous execution, was my focus while I
was extending the browser (section 4.2). This extension was originally created by
Björn Kahlert and I subsequently developed it into a generic, standalone library. The
original motivation to extend the browser in the first place was to make Javascript
commands reliable by possibly delaying the execution until a defined state is reached.

Since the SWT browser has compatibility problems under GNU/Linux and Mac OS
X (section 2.2.2), the library has been prepared for a switch of the underlying browser
(section 4.2.7). The most promising alternative for the future is supposed to be the
JavaFX browser which, however, requires at least Java 7. The JxBrowser could also
be an immediate alternative for IntelliJ on certain operating systems.

76 6.2 Future work

6.2 Future work

Although the foundation for a future HTML-GUI has been laid, there are still many
steps to go. The technologies used on the HTML and Javascript side have not
been evaluated and therefore all of my HTML code is only temporary. Bastian
Sieker [Sie15] will work on that topic in his Master’s thesis.
I have only conducted a basic evaluation of the resulting code and the accompany-
ing development process. As soon as the code has grown and more GUI elements
have been implemented, a more detailed comparison between the traditional SWT
development and the new HTML one makes sense; currently the choice of Javascript
framework has not been made. Matthias Bohnstedt’s Master’s thesis [Boh15] is going
in this direction.
The scope of the current HTML GUI being minimal is, among others, a result of the
lack of business functionality in the Saros core module. Large parts of the business
logic are still in the Eclipse and IntelliJ specific modules.
As already mentioned, the choice of the used browser is not final. Currently, IntelliJ
started with Java 7 or 8 is unsupported on Mac OS X. A good time to re-evaluate the
choice of browser would be when Saros drops support for Java 61. In this context a
more complete compatibility matrix should be created with special focus on different
SWT and Eclipse versions. I have mainly concentrated on the basic support on all
operating systems across Java versions. The related decision of which SWT version
to use for compilation and which to ship for each operating system has not been made
(currently it is 3.6).
While the problems of the SWT browser have been identified and it has been thor-
oughly tested, the same cannot be said for the alternative, the JavaFX browser.
Although it wins on paper, only its real application inside an IDE plugin is able to
reveal its quirks, especially since it is a relatively new technology.
Further points for future development are an expansion of the GUI test set, the
handling of GUI elements outside of the Saros view in both IDEs, and changing
Saros’ automatic test systems to include more different operating systems.

1I have documented the places where the changes have to be made in https://github.com/ag-
se/swt-browser-improved/wiki (retrieved 12 April 2015).

https://github.com/ag-se/swt-browser-improved/wiki
https://github.com/ag-se/swt-browser-improved/wiki

Bibliography

[Ben15] Sabine Bender. Working title: Evaluation einer Portierung von Saros auf
Netbeans. Bachelor’s thesis, Freie Universität Berlin, 2015.

[Blo08] Joshua Bloch. Effective Java Second Edition. Addison Wesley, Boston,
MA, USA, 2008.

[Boh15] Matthias Bohnstedt. Working title: Cross-Platform-GUI Entwicklung in
Saros. Master’s thesis, Freie Universität Berlin, 2015.

[Che11] Lin Chen. Einführung eines Testprozesses. Diploma thesis, Freie Univer-
sität Berlin, 2011.

[Dje06] Riad Djemili. Entwicklung einer Eclipse-Erweiterung zur Realisierung
und Protokollierung verteilter Paarprogrammierung. Diploma thesis, Freie
Universität Berlin, 2006.

[Dur14] Damla Durmaz. Verbesserung der Action Awareness im Open Source
Plug-in Saros. Master’s thesis, Freie Universität Berlin, 2014.

[Eva03] Eric Evans. Domain-Driven Design: Tacking Complexity in the Heart of
Software. Addison-Wesley, Boston, MA, USA, 2003.

[GBB+06] Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, David Holmes,
and Tim Peierls. Java Concurrency in Practice. Addison-Wesley Long-
man, Amsterdam, 2006.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns. Addison-Wesley, Boston, MA, 1995.

[Kah15] Björn Kahlert. Usability der auf Templatemetaprogrammierung basieren-
den Softwarebibliothek ”SeqAn”. PhD thesis, Freie Universität Berlin,
2015.

[Las15] Arndt Lasarzik. Working title: Refaktorisierung des Eclipse Plugins Saros
für die Portierung auf andere IDEs. Bachelor’s thesis, Freie Universität
Berlin, 2015.

[Lea00] Douglas Lea. Concurrent programming in Java: design principles and
patterns. Addison-Wesley Professional, 2000.

78 6.2 Future work

[LMS+12] Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F. Sutherland, and
David Svoboda. The CERT Oracle secure coding standard for Java. The
SEI series in software engineering. Addison-Wesley, Upper Saddle River,
NJ, 2012.

[Ros11] Stefan Rossbach. Einführung einer kontinuierlichen Integrationsumgebung
und Verbeserung des Test-Frameworks. Bachelor’s thesis, Freie Universität
Berlin, 2011.

[Sie15] Bastian Sieker. Working title: User-Centered Development of a JavaScript
and HTML-based GUI for Saros. Master’s thesis, Universität Paderborn,
2015.

[Szü10] Sandor Szücs. Behandlung von Netzwerk- und Sicherheitsaspekten in
einem Werkzeug zur verteilten Paarprogrammierung. Diploma thesis,
Freie Universität Berlin, 2010.

	Affirmation of independent work
	Introduction
	The plug-in of interest: Saros
	Motivation
	Goals
	Terminology
	Introducing GUI toolkits and IDEs
	Related work
	Outline of this thesis

	Evaluation of the GUI technology
	Goals
	Browser-based solution
	Browsers for Swing
	The SWT browser component
	Björn Kahlert's improvements to the SWT browser
	JxBrowser
	JavaFX browser
	DJ Native Swing
	Summary

	Criteria
	Evaluation of an HTML-GUI vs. Java toolkits
	Criterion: Initial development effort
	Criterion: Ongoing development effort
	Criterion: Presentation problems
	Criterion: Performance
	Criterion: Compatibility and stability
	Criterion: Testability
	Decision for browser
	Possible browser components
	Possible combinations

	Side note: alternatives
	Using a browser only for IntelliJ
	IntelliJ implementation completely in SWT
	Native JavaFX implementation

	Summary

	Details of the evaluation phase
	Using the SWT Browser in IntelliJ
	JVM crash when closing the browser
	Dynamic loading of SWT library classes
	Getting the IntelliJ version to run on Mac OS

	Requirements of JavaFX
	Embedding the JavaFX browser into IntelliJ
	Embedding it into Eclipse
	Using JavaFX under Java 6
	Using JavaFX under Java 7

	Web technologies
	AngularJS
	Libraries
	My assessment

	Implementation
	GUI module
	Threading
	Passing the result of asynchronous method calls back to Javascript
	Displaying the application state
	Validation of Javascript input
	Changing browser instances

	Extending the browser
	The planned course of action
	Getting it to run on all systems
	Forming the browser interface
	Internal Concurrency fixes
	Tests and Demos
	Restructuring and decoupling functionality
	Preparing the replacement of the underlying browser

	Design of the GUI test framework
	The existing test framework for Eclipse
	Goals
	GUI automation for IntelliJ IDEA
	Opening the browser view in IntelliJ
	Opening the browser view in Eclipse
	GUI automation for HTML
	Design of the RMI interface for HTML

	Accompanying refactorings
	Integration of the HTML GUI into the build process
	Building inside Eclipse
	Building inside IntelliJ
	Configuring the Jenkins build

	Being part of the Saros team
	My contribution
	Cooperation with parallel theses
	Git documentation
	Documentation for new developers
	Release process
	Review process

	Suggestions for improvement
	Developing Javascript code
	Continuous integration
	Release testing

	Retrospective thoughts
	Was the SWT browser the right choice?
	What about the decision to use Björn Kahlert's browser?
	Change of focus throughout my thesis

	Results of this thesis
	Conclusion
	Future work

