
Freie Universität Berlin
Bachelor thesis at the Institute for Computer Science of the Freie Universität Berlin

Developing a Portable Wind Monitoring System for
Sailing Events

Finn Böger
Matriculation Number: 5014827
finn.boeger@fu-berlin.de

First Assessor: Prof. Dr. Lutz Prechelt
Second Assessor: Prof. Dr. Jochen Schiller

December 20, 2022
Berlin

Background In sailing the wind is essential for propulsion and racecourses need to be
laid out perpendicular to it to create a fair racing environment.

Objective Development of a portable wind monitoring system for the mark layer to
easily and accurately measure and transmit wind data to the race committee
officials.

Methods A requirement analysis was performed, the general design was thought out
and the different iterations of the implementation were tested to evaluate
the system.

Results The system is capable of accurately measuring and transmitting wind data at
rest and during constant motion but struggles during periods of acceleration.

Conclusions The system successfully helped the race committee and reduced the workload
placed on the mark layer, allowing less experienced people to assist in that
position.

finn.boeger@fu-berlin.de

Contents

Contents
1 Introduction 7

1.1 Goals . 9
1.2 State of the Art . 9

2 Requirements Analysis 12
2.1 Existing Hardware . 13

3 Architecture and Hardware Choices 14
3.1 Selecting the appropriate platform . 14
3.2 Hardware selection . 15
3.3 Hardware Testing . 17

4 Development of the First Prototype 21
4.1 First Live Test . 22

5 Development of the Second Prototype 27
5.1 IMU Experimentation . 27
5.2 Hardware Upgrade . 28
5.3 3D-Printed Enclosure . 28
5.4 NMEA2000 Library . 29
5.5 Code refactoring . 30
5.6 Continued Testing . 30

6 Result 32
6.1 Library contributions . 32

6.1.1 ICM20948 . 32
6.1.2 NMEA2000 . 32

6.2 Wind monitoring system prototype . 32

7 Conclusion 33
7.1 Evaluation . 33

7.1.1 Usefulness . 33
7.1.2 Process . 33

7.2 Outlook . 33

8 Appendix 35
8.1 Possible itemizations of homebrew alternative 35

8.1.1 Components of solution seen in Kiel 35
8.1.2 Cheapest possible option . 35

References 36

5

1 Introduction

1 Introduction

Sailing is a sport that has numerous expressions, from relaxed cruising along on a lake
after work to sailing competitively around the world on 60ft long carbon fiber racing
machines. Whichever form your personal relationship with sailing takes, one thing is
unavoidable. You are always reliant on the wind and use it to propel yourself forward.

For this thesis, we are taking a look at how regatta organizers use wind measurement
data and how we can help them with an automated solution. First, we will have to define
what a sailing regatta is:

A sailing regatta is a competition made up of one or more races, where a predefined
course is sailed. The length and duration of a race can vary from globe-spanning and
a year at sea[14] to short races that take only a quarter of an hour[17]. The course
is always laid out using marks, however, these can take different shapes. For offshore
races, geographic landmarks are typically used, whereas, for inshore races, the course is
normally marked using buoys[40, p. J4]. This second category is what we are focussing
on.

The courses used for an inshore race are laid out in such a way that there is one leg
that is directly against the wind and one that is with the wind 1. This is done by the
mark layer who is typically on a smaller motorboat, either with a rigid hull or a rigid
inflatable boat (RIB). While there are many variations on this theme, the general layout
always holds[40, p. J6 ff.].

Because sailboats can’t sail straight into the wind, they always have to sail at an angle
to the wind, to make their way to the windward mark, tacking between starboard and
port tack as needed. This makes the upwind leg the leg where the field is most spread
out until they coalesce again at the windward mark. The race committee (RC) aims to
ensure that sailors spend roughly equal amounts of time on both tacks and that neither
tack nor course-side offers an advantage or disadvantage, to allow for fair sailing and
tactical freedom[40, p. L 13]. If one were to spend significantly more time on one tack
than on the other or possibly even be able to reach the windward mark without having to
tack at all, the tactical possibilities on the upwind leg and also the following downwind
leg would be severely diminished.

To create a fair course, the RC not only needs to account for the direction but also
the race distance to achieve the targeted duration. Accordingly, the committee needs
to know the wind speed, the wind direction, and how quickly the class of boats can sail
in these conditions. If the speed or direction changes significantly, the committee might
have to act by changing the course or, in the worst case, abandoning the race entirely[40,
p. L12 ff.]. Additionally, for some classes, depending on the wind speed, specific rules
come into play and need to be signaled to the sailors[2, C1.1(a)(1)].

While the RC can measure the wind down at the starting vessel very easily, they can’t
see how the wind is at the top of the course. Instead, to get the full picture of how
the wind behaves across the course, they need the mark layer to position themselves to
windward and regularly update the principal race officer (PRO) who ultimately makes
these calls.

7

1 Introduction

Startmarke–Backbord Startmarke–Steuerbord

Zielmarke–Backbord

Zielmarke–Steuerbord

Anlage 1

 Kurs 2, 3 und 4

Kurs 2 Start–1–1a–4s/4p–1–1a–4p–Finish

Kurs 3 Start–1–1a–4s/4p–1–1a–4s/4p–1–1a–4p–Finish

Kurs 4 Start–1–1a–4s/4p–1–1a–4s/4p–1–1a–4s/4p–1–1a–4p–Finish

Wind

1a
1

4s 4p FP

SP

Finish

Start
SS
FS

Figure 1: A typical windward-leeward course. ©VSaW [23]

8

1 Introduction

1.1 Goals

My aim is to assist race committees with the laying of the course by giving them a tool
to better and more easily monitor the wind and communicate the data.

To this end, I attempt to create an affordable solution that can be used to automatically
measure the wind on the mark-laying vessel and transmit it to the starting vessel so that
the PRO can react to wind shifts before they make their way down over the course.

The proposed solution should be capable of measuring the true wind while in motion.
The true wind differs from the apparent wind, which can be directly measured, in that it
does not contain the motion component of the measuring platform, thus describing the
wind you would measure if you were to stand still at that position.

The automatic transmission of wind data to the starting vessel will reduce the need
for radio communication and free up radio channels for other purposes. This could be
e.g. communication with the secondary mark layer who is responsible for the leeward
gate and the starting line pin end (opposite the starting vessel). This is relevant because
most communication takes place when the course is initially laid out. Additionally,
automating the data transmission and moving it to a cellular connection allows for clearer
transmission in windy conditions as well as over distances longer than a nautical mile,
as long as a cell carrier signal exists. While both of these conditions don’t make radio
communication impossible, they add a significant amount of noise, making relaying a
larger amount of precise data very difficult.

A secondary goal is to make the final solution useful for coaching purposes as well,
where more immediate wind measurements are required and the boat that the device is
stationed on is in motion more often and also changing its speed and heading way more
frequently.

1.2 State of the Art

Even without fancy automatic measurement systems the job still needs to get done which
means that most race committees resort to manually measuring the wind, typically using
a piece of string on a stick together with a hand bearing compass as a wind vane that
works even in light (low wind) conditions and a handheld anemometer to get the wind
speed. These tools cost around 75€ for a good anemometer and 60€ for the compass,
making this the cheapest way to get wind data at a cost of around 135€. Unfortunately,
this setup has the downside of only working when the boat is not in motion and requiring
constant manual work to catch the trends of the wind shifts.

If one has the money to spend there are at least two commercially available options in
the ≥ 10.000€ range, specifically

• the YachtBot WindBot by Igtimi costing around 15.000€[9, p. 6] with the
exact price only available on request 2,

• and the WeatherFile OWS-5 Monitoring System costing around 11.800€[35],
depending on the GBP(£) exchange rate 3,

9

1 Introduction

Figure 2: Yachtbot Windbot installed on
a VSR RIB in Kiel.

Figure 3: WeatherFile OWS-5 installed on
another boat.

which are both capable of calculating the true wind even while in motion and recording
the data over time. The WindBot is completely self-contained and battery powered
whereas the OWS-5 requires external power. Nevertheless, both can be quickly installed
on a motorboat. Both of these solutions make use of the Gill WindSonic 1 ultrasonic
anemometer, itself available for around 1.400€. Another trait they share is that they
send the data over the cellular network to the cloud service provided by their respective
manufacturer and allow users to access that data using various integrations.

Another group of solutions that I’ve observed was the use of off-the-shelf marine
hardware meant for much larger boats on RIBs. This took the form of a GPS Compass,
wind sensor, and Chartplotter connected together to form an NMEA2000 network. The
price for this solution can vary by a large margin and the systems I’ve seen would be in
the 5.000€ neighborhood 4.

The cheapest option using this approach would cost around 1700€ to be broadly
comparable and 2100€ using the same sensor. However, these systems would not have
the transmission capability that the commercial solutions boast and are also missing the
capability to counteract the swaying/rolling of the boat.

10

1 Introduction

Figure 4: Homebrew solution spotted in Kiel.

11

2 Requirements Analysis

2 Requirements Analysis

Now knowing the general goal it is time to check in with the potential future users.
The stakeholders I’ve identified are the race committee, with a focus on the principal

race officer and the (windward) mark layer, the coaches in the end users role, the sailors
as beneficiaries, and myself as the sole developer. For large events that hold e.g. World
Cup status or are relevant for Olympic qualification, the supervising associations can
also be considered to be stakeholders.

The PRO needs to be able to get the true wind speed and true wind direction on
demand, preferably not only as it is right now but as it was on average over the last few
minutes and with a 5° accuracy. Preferably the changes over time can be seen as well.

The mark layer can’t constantly measure the wind manually and thus needs the
measurement to be done automatically. They also don’t want to have to stop the boat
each time they take a measurement, thus the true wind needs to be computed from the
measured apparent wind. The data transfer should be performed automatically as well.
As a backup, the data should also be visible locally, preferably including any averaging
and filtering. They are volunteers and can’t be expected to be specially trained on the
equipment, thus it should not be more complicated than plugging the device in.

The coaches have two distinct use cases. When coaching sailors at a regatta the
interaction with them is limited to the breaks between the individual races. During the
races themselves, they can only observe which means they typically follow the fleet to
the windward mark. After making their way upwind on the side of the course, they
wait there to note the mark rounding maneuver and then travel back down the course
alongside the sailors.

While observing the fleet they need to gather data about the environment (e.g. wind
shifts and where the gusts start) which they can then impart to the sailors for the next
race. Therefore, the coaches need the true wind to be calculated while in motion and the
data stored to be analyzed after the race or during waiting periods.

However, when they are instead coaching a single boat or a small group, it is common
to act as a chase boat and follow the sailboat, keeping an eye on their actions and settings.
In this scenario, instead of the wind over time, the current wind and the angle that is
being sailed to the wind are of interest. As it is difficult to match the speed of a sailboat
exactly the motorboat will also frequently accelerate or decelerate which can throw off
the true wind calculation if only the GPS is used for movement data.

The sailors want a fair racing environment which is achieved by the race committee
having accurate data and acting on it in accordance with the rules and regulations. The
same is the case for the supervising associations.

My own requirement as the developer is to keep the scope to something that I can
reasonably develop in 3 months without the result suffering quality-wise. I should also
be able to gracefully reduce the scope without compromising on the core requirements if
some parts turn out to not be possible in the given timeframe. Additionally, I wanted to

12

2 Requirements Analysis

Figure 5: Existing wind transducer and
mast (and buoys) on “Lottchen”.

Transducer

Blackbox Display

BatteryPower

Nexus

N2K

Figure 6: Simplified wiring diagram.

take advantage of the existing hardware and develop a solution that could be attached to
arbitrary wind sensors, as long as they used the same protocol.

2.1 Existing Hardware
Garmin had supplied the club with a wind transducer package and a display that are
mounted to a 2.8-meter tall carbon fiber mast. The transducer is the Garmin gWind[13]
which was originally manufactured by Silva and thus uses the proprietary Nexus NX2
network. To facilitate communication with modern devices it comes in a package with
the Garmin GND™ 10 Blackbox[12], which translates to NMEA2000. The display is the
Garmin GMI™ 20 multi-function display[11] which also uses NMEA2000 but supports
the older NMEA0183 as well. The wiring to connect the components and provide power
was done by soldering each channel together, attaching a 120 Ω resistor to the data lines,
and then encapsulating the solder joints in a non-permeable compound. The power line
was simply open-ended and needed to be connected to a 12v power supply.

The mast can be mounted to either the coaching RIB “Wannsee I” or the mark-laying
boat “Lottchen” 5 using two different mechanisms. On the RIB, a metal plug is attached
to the floor, that the mast can be positioned over, while on Lottchen the mast was simply
tied down using ropes. The ability to use the mast on at least both of these boats should
be maintained and ideally improved by removing the cumbersome process of connecting
the bare wires to the onboard power.

13

3 Architecture and Hardware Choices

3 Architecture and Hardware Choices

Looking at the requirements, I decided that the best way to have the data available on
the starting vessel was by transmitting it to a server where it can be accessed in the
shape of graphs and formatted current values. The server is also responsible for storing
the data needed to create the graphs in the first place.

To transfer the data to the server, I selected wanted a protocol that added as little
overhead as possible to my payloads while still being reliable, which made me take a
page out of the IoT book and choose MQTT. MQTT is a machine-to-machine protocol
that needs a broker to act as an in-between for the clients, which can act as subscribers
or publishers[25].

Last but not least, I had a look at the part that has to perform the actual work. The
client device has to collect the data from the NMEA2000 network, process this data,
and send it to the server while also feeding the processed data back into the NMEA2000
network.

3.1 Selecting the appropriate platform

Approaching the work, my requirements for the platform I would build my solution
on were as follows. I required a cellular data connection, a way to know my current
speed and heading, my current bearing, and a way to talk to the existing wind sensor.
Additionally, to improve the movement data, an Inertial Measurement Unit (IMU) was
desirable. Taking these requirements leads me in two directions, either build my own
bespoke solution using a microcontroller or a single-board-computer or take advantage of
a common device which already fulfills nearly all my requirements: A smartphone. The
only part of my requirements that was not built in was the ability to communicate with
the existing sensor, however this could be taken care of by using a NMEA2000 to USB
adapter, available for roughly 180€[47].

Unfortunately, upon closer examinations, a few unresolvable issues cropped up. The
workload of the phone would be very similar if not even more demanding compared to
using a smartphone for position tracking. In both cases the device will constantly monitor
its position via GPS and transmit it using the cellular network. This is a use case that
I gained some experience with in the context of the Sailing Champions League, where
smartphones were used as trackers for boats and marks on the water. The primary issue
encountered there was the devices overheating, shutting down as a protective measure
and only restarting after the temperature dropped well below the threshold, which could
take the device out of circulation until the rest of the day.

Investigating the viability of smartphones as a platform revealed further requirements
to me that I assumed implicitly before. The platform should be stable and capable of
easily running for a full 12 hours. It should start automatically when power is supplied
and turn off when external power is removed. The second set of requirements would be
difficult to achieve on a smartphone as well, as not all of them support fastboot oem
off-mode-charge 0 and if they do, this option can soft-brick the phone if the battery
is fully discharged because the phone would try to boot as soon as power is connected,

14

3 Architecture and Hardware Choices

however the trickle charge current would not be enough to actually power the phone,
trapping it in a boot loop[6].

Having eliminated the smartphone option, I was left with the choice between a micro-
controller like the Arduino platform or a single-board computer (SBC) like the Raspberry
Pi, ultimately opting for the Raspberry Pi due to familiarity with the device. It also
helped that I would be able to use Python on the Pi as I’ve found myself to work quicker
with this language compared to the likes of C.

3.2 Hardware selection

The Raspberry Pi family has several options for SBCs that contain the iconic 40-pin GPIO
header and have a broad ecosystem of add-on boards. I narrowed down my selection by
focusing on the relatively small computational requirements and the fact that a small
form factor would be advantageous. While, with a regular Pi the whole the device could
still be mounted on the carbon mast, it would protrude a fair bit further, which I wanted
to avoid. Thus, the smaller Pi Zero products were of particular interest to me. Due to
the general chip shortages Pi Foundation products were hard to come by, so I purchased
both a Pi Zero WH and a Pi Zero2 W ahead of time, taking advantage of them being in
stock at that moment.

Having selected a platform to develop on I needed to extend it to satisfy our require-
ments. The Raspberry Pi by itself can’t do any of the things I need, thus necessitating
the purchase of additional hardware. The ecosystem of the Pi is large enough, that there
were solutions available for all my problems in the pHAT form factor. HAT stands for
“Hardware Attached on Top” and is the official specification for extension boards for
Raspberry Pi family computers. They have the same dimensions as a Raspberry Pi B
and can be easily stacked atop each other. pHAT conversely is not officially specified but
is taken to mean the same for computers of the Raspberry Pi Zero family. This includes
the stacking concept and dimensions that are adjusted to be the same as the Zero. While
physical stacking is easily possible as long as the HAT passes the GPIO pins through,
this does not hold for the electrical connections where one needs to take care that pins
are not used by multiple boards at the same time, or if they are that it is in a fashion
that supports such use, e.g. in an I2C interconnect.

Looking at the requirements I needed a GPS to get my movement vector. I had two
options here, either purchase a marine GPS that would then directly integrate with the
NMEA2000 network or get a GPS receiver that I could connect to the Pi. In the interest
of keeping costs down, I went with the Pi-attached option as there was a larger range of
cheaper solutions. Since I was satisfied with the positioning capabilities of my phone I
thought that a GPS in the same capability class would suffice. I also wanted to use an
IMU to improve the movement data and was not particularly interested in the location
data. This distinction is relevant because modern GPS receivers use the Doppler effect
to get velocity and heading instead of calculating the difference between two consecutive
position fixes. Thus, the accuracy of the position data does not directly correlate with
the accuracy of the movement data [36].

Desiring to minimize the depth of the assembly and thereby the distance it would

15

3 Architecture and Hardware Choices

Figure 7: Soldered and overmoulded connection point.

protrude from the mast I opted to focus on modules that were available as pHATs and
excluded USB modules from my search. A few expansion boards combined network
connectivity with a GPS receiver on a single PCB. This was an attractive option to
me, both for saving space and being generally less expensive. I had to ignore a few
options as they only had 2G or 3G connectivity on board which is in the process of
being decommissioned in Germany. This narrowed my search to multiple offerings by
Waveshare and two modules caught my eye in particular. The “SIM7600G-H 4G HAT
(B)” and the “SIM7000E NB-IoT / Cat-M / EDGE / GPRS HAT”. The SIM7600G
version features full-fat 4G[42] whereas the other, as the name implies, only comes with
NB-IoT and LTE Cat-M[41]. However since all carriers in Germany claim to support
these standards[27][28][46], the module was significantly cheaper and the slower speed
did not matter for my application, I went with the SIM7000E HAT.

Having already satisfied the cellular networking portion of the requirements the next
step is to be able to determine the orientation. For this, there weren’t any alternatives in
the pHAT form factor making my choice a simple one, so I bought the “Waveshare Sense
HAT (B)” to get access to its Accelerometer, Gyroscope, and Magnetometer assembly.

Next, I needed to handle the communication with the sensor. NMEA2000 is based on
SAE J1939 and thus uses the CAN-Bus. This meant that instead of having to purchase
an expensive NMEA2000 to USB adapter I could go with a regular CAN adapter, which
is an order of magnitude cheaper. The chosen form factor again limited my choices and I
purchased the “Waveshare RS485 CAN HAT” which also included an RS485 adapter.

The existing wiring could not accommodate an easy expansion to connect the Raspberry
Pi. This was due to the electrical connections being made by soldering the different wires
together and then sealing them in an isolating hardened compound 7.

To add new devices I elected to use a proper NMEA2000 backbone. While more
expensive than simply soldering the different leads together it also allowed for easier
debugging and development. If I had gone with the soldering option the addition of new
devices would’ve been significantly more difficult, and I would have another part that
would need to be manually waterproofed. Knowing that I needed to connect at least
three devices (wind sensor, display, Raspberry Pi) plus power to the network I formulated

16

3 Architecture and Hardware Choices

the requirements.

• Male and female end resistor

• 4x T splitter

• Power cable

• 3x short data cable

Several manufacturers had enticing options in the form of starter kits but all of them
fell short, primarily in the amount of included cables, while some simply had too few
connection points. To minimize the cost while still having a proper backbone I went with
a non-certified option and bought the pieces from China. The electrical connection is
made using a “DeviceNet Micro-C” connector, also known as “M12 5-Pin A-coded”.

Because the coaching RIB had an automobile auxiliary power outlet, also commonly
known as a 12v cigarette lighter socket, I added a corresponding plug to the designated
power cable and made a note to purchase another socket for installation on the mark-laying
boat.

This powered the network with 12V which the Raspberry Pi could not use directly, so
I included a simple step-down converter from 12V to 5V to supply the Pi with usable
power.

3.3 Hardware Testing

After the equipment arrived I began testing the various components. Starting with the
GPS I encountered the first problem. The Raspberry Pi has one serial port (UART)
available over the GPIO pins. While the GPS worked over this integrated UART, the
cell modem could not be used at the same time. To have both working at the same
time required a USB connection between the Raspberry Pi and the HAT. This made my
choice to forgo the USB-attached solutions meaningless, but now I was stuck with this
hardware.

Testing the cellular connection was not possible at this moment as I didn’t have an
NB-IoT specific SIM card and planned on equipping the device with an IoT cell contract
granting 500MB of data volume over 10 years of use for 10€ plus tax.

Moving on to the Sense HAT, I was again glad for the example code provided by the
manufacturer. Running it I could see that the Magnetometer experienced the same issues
as the compass in your phone does. I am of course speaking of drift and the need to
be frequently recalibrated by spinning the device in a figure-of-eight motion. This is
predictably difficult if it is installed on a 3-meter-long mast. Knowing which direction we
are facing is paramount when measuring the wind direction, otherwise, we can only tell
which way the wind is coming from relative to ourselves. One option for solving this is
using the heading provided by our GPS. This comes with the issue that it only works
while in motion; turning on the spot would not update our GPS-determined heading
while still changing it. Another problem is that this would require the assembly to be

17

3 Architecture and Hardware Choices

Figure 8: TacTic Micro Compass without its enclosure.

always mounted facing straight ahead which is difficult to enforce, especially given the
different mounting positions on different types of boats.

When sailing myself I use an electronic compass that does not need to be recalibrated
and does not even allow for user calibration, so I knew that there had to be a semi-
affordable option. The compass I’m used to using is the “TacTik T060 Micro Compass”
by Raymarine, with an RSP of 370€. Because I couldn’t find out online what kind of
technical solution was used inside, I decided to disassemble the compass.

Removing the gray outer shell revealed a clear acrylic housing. Prying away the
retaining tabs of the housing allowed me to extract the internal assembly. Now I could
bend the screens to the side and take a glance inside 8. Unfortunately, I could not
immediately identify the used components. Luckily I had a friend who was able to tell
me that I was looking at a fluxgate compass.

Armed with this new knowledge I went shopping again and found out that the installed
component was manufactured by Autonnic. Autonnic is a British company producing both
OEM components but also end-user devices using their own components. The compass is
available in four variants, either gyro stabilized or not and either outputting as NMEA0183
or NMEA2000, and costs between 156£ and 215£ plus tax and shipping(15£) turning
it into 230€ to 295€[3]. While searching, I also found a compass from NASA Marine
which has an RSP of 108£ [29] and was available for 132€ at that time. The creatively
named “NASA Marine - NMEA Compass Sensor” uses NMEA0183 for communication.
This is the predecessor to NMEA2000 but designed in a completely different way. Instead
of facilitating communication using a bus it is used for point-to-point communication
but could be daisy-chained. Electrically it uses either RS422 (v2.x+) or RS232 (v1.x)
depending on the revision.

18

3 Architecture and Hardware Choices

Being cheap I purchased the NASA compass and upon arrival noted that the NASA
compass used the older version, which I determined by it having only one data wire in
addition to power and ground. While the HAT only claims to support RS485 the used
transceiver is the SP3485 which also supports RS422[24]. This was fortunate for me
because this meant that it tolerated higher voltages and could handle the output of the
compass.

The compass worked as advertised and matched the readings that I took with the
TacTik Micro Compass.

Next up was the communication with the NMEA2000 devices. While still waiting
for the cables to arrive I replicated the previous wiring solution using WAGO clamps,
although without the resistor. The data was transmitted and received properly and could
be read using the candump utility from the can-utils package

Having tested all parts individually I tried to perform an integration test and attach
all HATs to the Raspberry Pi at the same time. This was not immediately possible due
to the Sense HAT not repeating the GPIO header, instead letting the pins of the board
below pass through itself. Because the pins of none of the boards were long enough to
pass through and then connect with the next board, I needed to order some GPIO header
risers.

After the risers arrived I could continue with the integration test. This immediately
revealed a problem where the can0 interface could not be opened. At the same time,
the serial connection provided by the CAN HAT was not affected. To investigate this
issue I removed the GPS HAT and noticed that the problem persisted. However, when I
removed the Sense HAT and left the GPS HAT connected I could bring the can0 interface
online. Thus concluding that the Sense HAT was in some way interfering I attempted to
narrow down which pin was causing the issue 9.

It turned out that the GPIO Pin 25 (BCM) was used by both the CAN interface and
the air pressure sensor for interrupts. This was a fact that I missed when I checked the
spec sheets before purchasing. As I didn’t need the interrupt feature of the air pressure
sensor I simply positioned the Sense HAT above the CAN HAT and removed the electrical
connection by snipping that pin off at the GPIO riser that I used to connect both boards.

Another issue occurred with the serial console which was getting used by both the
GPS and the compass. This was easily resolved by moving the GPS over to the USB
connection which needed to be added anyway to use the cellular connection in the future.

The result was that the Sense HAT was connected using an I2C connection via pins 2
and 3, as well as pins 5 and 6 in use for interrupts. The RS485 CAN HAT used the serial
connection on pins 15 and 16 for the RS485 transceiver and the SPI0 connection on pins
7 through 11 for the CAN transceiver. Finally, the assembly was capped off with the
GPS and NB-IoT HAT which did not connect to the GPIO pins and instead had a USB
cable leading to it.

19

3 Architecture and Hardware Choices

Figure 9: Debugging the pin collision by testing individual pins.

20

4 Development of the First Prototype

4 Development of the First Prototype
Now that the hardware was confirmed as working, I had a lot of data inputs that I needed
to transform into readable data and then a sensible output. Given that NMEA2000 is a
binary protocol I needed some help to parse the messages from the wind sensor. This
came in the form of the canboat[4] set of utilities, in addition to the already installed
can-utils[43]. The provided utilities include candump2analyzer, analyzer and n2kd,
which are used in true Unix fashion by piping the output of one to the input of the
next. The full pipeline then looked like this: candump can0 | candump2analyzer |
analyzer -json | n2kd. While candump read the raw binary data from the interface
and echoed it to stdout, encoded as hexadecimal 10.

can0 1DEFFF01 [8] 80 0E E5 98 05 05 02 02
can0 1DEFFF01 [8] 81 FF 00 00 1F DF FA FF
can0 1DEFFF01 [8] 82 FF FF FF FF FF FF FF
can0 09FD0201 [8] FF FF FF FF FF FC FF FF
can0 09F11201 [8] FF FF FF FF 7F FF 7F FD
can0 09F11202 [8] 5B 94 EA 00 00 00 00 01

Figure 10: Output of candump

In the next step candump2analyzer added timestamps to the messages and decoded
the message ID into priority, Parameter Group Number (PGN), source, and destination,
while also changing the format to be comma separated 11.

2022-12-16-23:56:38.675,7,126720,1,255,8,80,0e,e5,98,05,05,02,02
2022-12-16-23:56:38.675,7,126720,1,255,8,81,ff,00,00,1f,df,fa,ff
2022-12-16-23:56:38.675,7,126720,1,255,8,82,ff,ff,ff,ff,ff,ff,ff
2022-12-16-23:56:38.676,2,130306,1,255,8,ff,ff,ff,ff,ff,fc,ff,ff
2022-12-16-23:56:38.676,2,127250,1,255,8,ff,ff,ff,ff,7f,ff,7f,fd
2022-12-16-23:56:38.676,2,127250,2,255,8,5b,94,ea,00,00,00,00,01

Figure 11: Output of candump2analyzer

This is still not exactly readable, which is where the analyzer comes in and turns it
into human-readable JSON 12.

The n2kd daemon then creates several TCP servers, one of which streams the JSON
data and another that translates the PGNs to the old NMEA0183 format if possible, and
serves these as an ASCII stream. This is not strictly necessary but is convenient because
it allows me to treat it the same as the serial consoles that are streaming their data at
me, also in NMEA0183 format[26]. The parsing of all the incoming NMEA0183 messages
was then offloaded to the pynmea2[37] library.

When connecting power the Pi boots and immediately executes our code. First, we
wait for the GPS receiver to determine its position, then we establish a connection with
the MQTT server. Afterward, the main loop is entered where we read from the sensors
and perform some basic vector addition to get the true wind. This is then transferred to
the server via MQTT 13.

21

4 Development of the First Prototype

{
"timestamp": "2022-12-17-00:01:24.880",
"prio": 2,
"src": 2,
"dst": 255,
"pgn": 127250,
"description": "Vessel Heading",
"fields": {

"SID": 91,
"Heading": 344.1,
"Deviation": 0,
"Variation": 0,
"Reference": "Magnetic"

}
}

Figure 12: Output of analyzer -json -empty (formatted with jq and truncated to only
show the last message)

init_gps()
connect_mqtt()
while True:

gps, heading, wind = read_sensors()
true_wind = combine_forces(wind.direction , wind.speed, gps.heading, -gps.speed)
true_wind.direction += gps.magnetic_declination
mqtt.publish("true-wind", format(true_wind))

Figure 13: A very simplified version of the code I used

Having pieced the code together, I had to figure out a way to mount the system on
the mast and waterproof it for its first live test at Kiel Week. While I had searched for
enclosures previously, I didn’t find anything that exactly matched my desires. However,
as this was still only an early prototype, looks weren’t important, so I bought an oversized
cable junction box from my local hardware store 14. Mounting this on the mast directly
was not possible, leading to me 3D printing some small brackets that would allow me to
use cable ties for mounting.

Having transferred the data to the server I still needed to make it understandable at a
glance for the end user, while still including data that allowed me to verify the results. To
do this I used the justpy framework for the server which allowed me to quickly provide
automatically updating data and created a very simple layout that is supposed to be
easily readable on a tablet 15.

4.1 First Live Test

When rigging the boats for the event and mounting the mast to the RIB that we were
using, it became apparent that the case could not be fastened as tightly as I wanted.
This threw a spanner in my plans to log some IMU data and determine how much the
boat (and especially the mast) sways during operation. Another thing that I could not
test was the cell reception as I did not have a SIM card yet and had to fall back on a

22

4 Development of the First Prototype

Figure 14: Raspberry Pi with HATs mounted inside a waterproof junction box.

mobile hotspot.
The first day revealed some bugs that are already fixed in [Figure 13] such as a missing

sign in front of gps.speed, thus leading to incorrect true wind or typos in the MQTT
topic. Much more problematic was, that the serial consoles provided by the GPS &
NB-IoT HAT sometimes did not appear. To get it to reappear at least one and sometimes
multiple restarts were necessary. However, once the connection with the console was
successfully established, it stayed accessible. I could not solve this issue by replacing
the cables, so I had to live with it for the time being. A problem that compounded to
make this worse was that the power connector would not stay in its socket. Because the
socket on our RIB was a smooth bore and the spring on the top of the connector was too
powerful, each shock had the connector move further away until power was intermittent,
and the device was frequently restarting. To mitigate the problem the solution was
again to use tape to fix the connector in place. While this worked to an extent it only
extended the amount of time that the device stayed powered on, and it still sometimes
lost power. After increasing the uptime of the device it quickly became apparent that the
data transmission cut out after a short while even though the code kept chugging along
without any errors. I pinpointed the source as a rate limit imposed on the free public
MQTT of HiveMQ[16] that I was using even though I couldn’t find any mention of it on
their website. Switching this to a free private instance provided by HiveMQ resolved this
issue.

23

4 Development of the First Prototype

Figure 15: Raw data and graph view (for true wind) provided by the server.

Figure 16: Nautical map of the racing areas in Kiel. ©NV Charts[22]

24

4 Development of the First Prototype

Figure 17: NASA Marine Compass opened to expose the gimbaled section.

Because we were working on the water for the whole day and beat afterward, I had
to wait for the break between the two halves of Kiel Week to find some time to fix the
software bugs. The second part of Kiel Week saw us offshore on race area Charlie 16

which presented an unexpected issue in the form of lacking cellular data coverage. At
this point, the only way to read the calculated true wind was by connecting to the device
using ssh and printing the values to the console instead of attempting to send the data
via MQTT. Being further out to sea also meant a higher sea state in windy conditions.
This exposed an issue with the gimbaling that the compass employed 17. Because it only
used a small weight at the bottom of a PCB that was itself mounted with 2 axes of
(limited) rotation it could start swinging. This then resulted in heading values that were
off and oscillating, even when keeping course.

When debugging the issues in Kiel I noticed that the connection to the compass was
suboptimal for easy disassembly. Because NMEA0183 does not come with standardized
connectors, the cable was routed through a cable gland into the enclosure and then
connected via some WAGO clamps. This and the fact that I would have to redo the
cable ties meant that I could not easily remove the case from the mast and had to work
on the boat. While the cable ties were only ever meant to be a temporary arrangement,
I hadn’t originally planned on attaching the compass differently. Unfortunately, I crossed
the data and power lines when attaching the plug and thereby bricked the compass. As I
already had the gimbaling issues in Kiel I decided to replace it with the alternative from
Autonnic and went with the NMEA2000 version to have it all using one connection. The

25

4 Development of the First Prototype

Autonnic compass uses a dampening system and is also gimbaled to 45° instead of 30°.

26

5 Development of the Second Prototype

5 Development of the Second Prototype

5.1 IMU Experimentation

The first test exposed a lot of issues but was still promising. I turned my attention to
improving the GPS data next to make it more responsive to changes. My idea was to
use a simple Kalman filter to synthesize measurements using the IMU. What I had at
this moment could not be called an IMU yet, instead, I only had separate measurements
by the accelerometer, gyroscope, and magnetometer, as well as the compass that could
be used to compensate for yaw drift. To turn this into useful data I needed to feed the
data into an inertial navigation system algorithm. But for that to happen I first had to
get the data from the sensor.

Waveshare provided some demo code in python[44] which demonstrated how to get
individual measurements but didn’t provide a library. A third party had created an
open-source library[19] for their breakout board using the same sensor with roughly the
same scope as the demo code which was a good basis but still limited. Fortunately, the
used sensor (icm20948) had several other libraries, one of which was by Wolfgang Ewald
and included support for the FIFO functionality[20]. Unfortunately, it only supported
getting the accelerometer and gyroscope values this way. Using the C++ code as a
base I added FIFO functionality to the python library I had found. The direct port I
started out with only read a single set from the queue at a time which was barely an
improvement over querying the sensor for a fresh sample. This way it took 0.4 seconds to
collect 100 samples. I improved the code by reading the maximum amount of bytes at a
time over the I2C bus which was 32 bytes for this device. This dropped the time it took
to transfer the same amount of data all the way down to 0.022 seconds. This meant that
we could stop the queue, get the amount of waiting samples, restart the queue, and then
extract the data without risking the queue overflowing in the meantime. The reduction
in transfer time allows a theoretical maximum sample rate of 4.5kHz. Of course, adding
the magnetometer to the queue in the future would increase the amount of data that
needs to be transferred and thus decrease the sample rate, but it should still exceed the
maximum of 1.125kHz that the sensors are capable of. The minimum amount of time
the sensor needed to rest between complete reads of the FIFO seemed to be roughly 0.01
seconds as determined by testing. This meant that the queue would be populated by
roughly 144 bytes of data before it could be emptied again which would be well under
the maximum capacity of 4 kB. Again values with magnetometer data would differ but
should still not exceed the maximum.

To test the feasibility of running an inertial navigation system (INS) algorithm on the
Raspberry Pi Zero I ran an attitude and heading reference system (AHRS) algorithm
that was already implemented in a python library, fittingly named ahrs[18]. I choose the
Madgwick algorithm as it seemed to be the closest in terms of workload. The library
makes no claims to be an efficient implementation and even claims the opposite, being
in pure python, but still makes use of NumPy for many of its calculations. Running
the algorithm while only sampling accelerometer and gyroscope data at a rate of 100Hz
already kept the CPU load pegged at 100%. This convinced me to upgrade the platform

27

5 Development of the Second Prototype

to the more powerful Raspberry Pi Zero2.

5.2 Hardware Upgrade

Making use of the increased computational power also necessitated a rewrite of the code
to take advantage of the now 4 available processor cores. At the same time, I needed
to tackle displaying the generated data on the display. The current solution of using
canboat[4] worked well for reading, but it did not provide sufficient support for writing
data. While it did have a utility to write to socketcan interfaces the input format was
the same as what candump2analyzer generated 11. As this included raw binary data
it would always require some effort on my side to encode my data in this proprietary
format. Simultaneously, sending data to the network elicited messages from nearly all
other devices, inquiring who I am, and depending on chosen source address, requesting
that I move to a different address.

Seeing the issues with using canboat for sending I made up my mind to create an
NMEA2000 library that would take care of all the automated messages and let me send
my e.g. wind data without having to do any manual encoding.

Moving on to the hardware side of things I replaced the generic 12v plug on the power
cable with a marine-specific version that includes a locking mechanism.

I also still needed to figure out a more permanent solution for the enclosure. Because I
couldn’t find appropriate options for sale I opted to design an enclosure myself and 3D
print it.

5.3 3D-Printed Enclosure

One of the most used raw materials for 3D prints is PLA, which is neither suitable for
outdoor use nor completely waterproof, but very easy to work with. There are however
methods and materials that can yield a waterproof and weather-resistant 3D print[15].

For the first prototype of the enclosure, the drawbacks of PLA didn’t matter as much
because it was not intended to be permanent. The print would protect the internals
against water spray and a simple layer of tape over the top of it protected against
rainwater accumulating there and seeping in overnight.

The parts that needed to be designed were not only the enclosure but also the mounting
brackets for the various pieces of hardware. To allow for easy changes in the dimensions
I opted for a parametric design approach. My first attempt was using FreeCAD, but I
quickly noticed that it was easy to use for parts that extrude from a single plane it fell
apart when anchoring more planes to an object and then resizing the base object. Instead
of spending more time learning to use the FreeCAD GUI, I pivoted to a code-driven
approach and switched to OpenSCAD[34].

Using OpenSCAD allowed me to perform a dry fit of all my designed components to
verify that they could be assembled before committing to the print and prevented me
from printing at least one faulty part.

Seeking to minimize the depth of the enclosure I tried to find a micro USB to micro USB
OTG cable with right-angle connectors on both ends but ended up having to manually

28

5 Development of the Second Prototype

Figure 18: 3D model of enclosure body. Figure 19: Enclosure filled with all compo-
nents and sealant around the
edges.

solder the cable. Interestingly this new cable stopped the issues I had been experiencing
with the GPS console from happening.

5.4 NMEA2000 Library

NMEA2000 is based on SAE J1939 and both are Higher Level Protocols that use the
CAN bus to provide the data link and physical layer[39][45]. Whereas the CAN messages
only include message IDs with a length of either 11bit or 29bit and up to 8 bytes of
data, NMEA2000 includes additional information by encoding it in the message ID[21].
Specifically, NMEA2000 uses only the extended CAN message with the 29bit ID and
encodes the message priority, Parameter Group Number (PGN), source, and destination
in it [5][30]. The PGN determines how the binary data is interpreted and is where the
proprietary nature of the standard is very noticeable. The official documentation can be
purchased but costs several thousand dollars and would not allow open-source software
to be developed with that knowledge[31]. This means that all knowledge has to come
from reverse engineering purchased devices. Luckily there are already two libraries that
have performed this work. The first was already introduced as we used it for the first
prototype and is canboat. The second is ttlappalainens NMEA2000 library[32] which on
the surface looked exactly like what I needed, but it came with the issue of being written
in C++ and didn’t have any python bindings available. As I had never before worked
with C++ I couldn’t even get it to compile and didn’t want to be stuck with maintaining
a library using an unfamiliar language. Being an otherwise good match for my needs I
decided to port the library to python.

The library supported several modes which impacted how it behaved on the bus, from

29

5 Development of the Second Prototype

passive listening to sending without announcing itself on the bus and finally a complete
node that can listen and send and properly announces itself. The library implemented a
listener that handled the system messages and then called user-provided listeners. If the
forwarding flag had been set, the data was then also sent to a user-specified stream.

To make my work easier and because I disagreed with some design decisions I modified
the architecture. First I dropped the code that manually handled the CAN connection
and replaced it with the python-can library. Next, I dropped support for emulating
multiple devices with a single instance and removed the Arduino-specific code that sought
to reduce memory usage. Another victim of my cuts was the whole message forwarding
code, as it could be easily implemented using a custom message listener if one needed it.
Some things I only skipped for the first implementation, such as support for Transport
Protocol (TP) messages, that enabled payloads up to 1785 bytes[38].

5.5 Code refactoring

The refactored client code splits the tasks across 3 processes. While the start stays largely
the same, as soon as a GPS fix has been achieved the separate processes are started.
Process 1 is supposed to deal with refining the GPS-determined movement using the
inertial data but does nothing at this time. Process 2 handles communication with the
MQTT broker instance. And most importantly the initial process 0 listens to the GPS
serial console and runs the NMEA2000 node. The correction of the measured wind data
is performed in a message handler that is registered with the node and performs the
vector addition using the latest available data.

The corrected data is then sent back to the NMEA2000 network and labeled as
“Theoretical Wind (ground referenced, referenced to True North)”. For hardware-specific
reasons, the apparent wind is also transmitted again, as the Garmin display can only
choose one wind source and thus otherwise wouldn’t be able to display both apparent
and true wind at once.

The communication between the process is handled via multiprocessing.Queues
which handle thread and process safety for me.

5.6 Continued Testing

While I was porting the NMEA2000 library I had some more opportunities to test the
current iteration. To recap, at this point I had mostly ironed out the bugs of the very
basic implementation using only the GPS, and the corrected data should successfully
arrive at the server. I had however not yet been able to confirm it working from end to
end in real-world conditions as the lack of cellular coverage in the second part of Kiel
Week thwarted any testing there.

The tests in Berlin were ill-fated and plagued with hardware issues in the parts of the
sensor assembly that I didn’t modify. First, the field-installable connector on the cable
connecting the wind transducer to the GND10 Blackbox suffered from water ingress.
Removing the connector, drying the insides, and reattaching it seemed to solve this issue,
but as I didn’t bring the relevant tools, I wasn’t able to identify the issue until the second

30

5 Development of the Second Prototype

Figure 20: Bare wires extruding out of the bottom of the transducer, replaced with a M8
4-pin socket in the same spot.

day and could only solve it after the day’s sailing had finished. The problem persisted
at the next testing opportunity even though I had attempted to waterproof the plug
with sealing tape however, armed with the knowledge of the water ingress I applied the
same fix and got a connection while still in the harbor. Moving out to the racecourse
the connection was lost again, and it appeared, that the inner cable had developed a
breakage or short circuit.

Because I had to desolder the data cable from the transducer anyway I took up another
member of the race committee on their offer to help me add a socket to the transducer
assembly 20. This would act as both a strain relief for the delicate cables coming out of
the transducer, and let the whole mast be transported more easily, as the sensor could
be disconnected and protected during transport.

The aluminum plate prevented water from draining away through to the bottom of the
mast forcing me to seal the top of the mast with marine sealant, thus creating another
unexpected issue. Because the mast is black, water vapor would rise inside it in the
morning and get into the solder connections. As they were isolated from each other this
did not lead to any shorts just yet but needs to be addressed in the future by sealing the
complete transducer assembly.

The issue of the broken cable was still not solved, and I had to wait for a new cable with
a molded plug to arrive, which would also solve the water ingress issue of the connector
permanently.

Another issue that I encountered was that the cellular modem failed to connect to the
internet. While it claimed to have a network connection and did have an IP address, even
ICMP packages did not make it back and timed out instead. Due to time constraints
this issue was sidestep and is not solved.

31

6 Result

6 Result
The artifacts I’ve created as part of this thesis can be classified into two categories. First
are contributions to libraries and second are all the components that combined make up
the prototype wind monitoring system.

6.1 Library contributions
6.1.1 ICM20948

This is a library to communicate with the ICM20948 9DoF motion sensor that is used on
the Sense HAT (B). My contribution to it consists of some code that allows the user to
take advantage of the onboard FIFO queue to store sample data and read it back later
instead of querying each sample individually. The pull request is open but not yet merged
and can be viewed at https://github.com/pimoroni/icm20948-python/pull/21 [10].

6.1.2 NMEA2000

This is a library that aims to enable easy communication with other NMEA2000 devices.
It is a port of https://github.com/ttlappalainen/NMEA2000 with a slightly reduced
feature set. It can be found at https://github.com/finnboeger/NMEA2000 [33].

As it is, the library can be used for most sensor interactions but has not been tested
for anything other than wind data. It is also not yet available for installation via the
Python Package Index.

6.2 Wind monitoring system prototype
The primary result of the thesis is the working prototype and instructions to recreate
it. The capabilities of the system include accurately measuring the true wind speed and
direction, and displaying them on the display and a website. To this end, it consists of

• the client code [7],

• the server code [8],

• the 3d design files [1],

• the bill of materials [7],

• and instructions to set up the system [7].

32

https://github.com/pimoroni/icm20948-python/pull/21
https://github.com/ttlappalainen/NMEA2000
https://github.com/finnboeger/NMEA2000

7 Conclusion

7 Conclusion

7.1 Evaluation

The last regatta of the year finally allowed me to test a working prototype without any
unexpected issues. I was on the windward mark-laying boat with the measurement device
again and could make some final observations.

7.1.1 Usefulness

The goal of reducing radio chatter has been achieved as the radio traffic asking for
wind measurements dropped to almost, but not quite, nothing. The automated wind
measurement has been very helpful to have a better basis for decisions than just occasional
manual measurements and a general gut feeling. It also allowed for a more confident
reading of the wind direction as the boat often rotates (or swings if anchored) making
the reading of the wind bearing often a bit of guesswork. With the latest prototype,
the corrected measurements were instead shown on the display and the values over time
could be graphed as well.

The testing with the working prototype could only be performed on a lake which didn’t
make it possible to use the measurement at the windward mark as an early warning
system. Instead, the wind was simply different due to the influence of the forested
shoreline and the general shape of the lake.

The feedback from the PRO has been positive, and he could see and use the wind data
to assist in making his decisions. Accordingly, the system will be especially helpful when
less experienced people are on the mark-laying boat, who would not actively monitor the
wind and communicate any changes themselves. Although the data could be understood
on the website a more simplified interface was desired that would remove the apparent
wind from being shown. Further data processing that showed trend lines for both the
direction and speed graphs was also noted as potentially helpful. The short spikes
occurring whenever the boat started moving were noticeable and should be removed to
avoid confusion.

7.1.2 Process

A lot of time was lost to hardware problems. As I do not know how these could have
been either avoided or resolved faster, I can’t add too much to this.

7.2 Outlook

This thesis got the prototype to a working state but still left room for several improvements
due to time constraints. As such some initially planned features had to be cut or are not
yet working as intended.

This includes working on the inertial sensors and managing to extract the magnetometer
data to create a working inertial navigation system. The INS can then be combined with
the GPS as planned and improve the responsiveness of the calculation.

33

7 Conclusion

While the NMEA200 library is in a state that works for the prototype it is not yet
feature-complete. Some of this is related to missing support for specific parts of the
protocol, but mostly it is missing a lot of PGNs that still need to be implemented. My
goal is to expand this library to a comprehensive framework that supports all known
messages by leveraging the work of the canboat project and auto-generate the message
code. Another aspect that is still missing is proper automated testing. While complete
integration tests are only possible if one has access to equipment that understands those
messages, it can at least be ensured that the library is consistent and can read its own
messages.

The server code also holds room for improvement. Specifically, the layout can be
updated to focus on the important information and the amount of data that is sent to
visitors can be reduced by only sending the latest data point instead of re-sending the
whole graph.

Lastly, the client can be enhanced by solving its connection issues with the cellular
network. This most likely requires a hardware change to a different chipset series or at
least to the global version of the same chipset. When cellular connectivity cannot be
achieved, and the client is installed in a system without the benefit of a display, it would
also be advantageous to have a local server running that could be accessed via Wi-Fi and
provides the same data processing as the remote server. Another minor issue that could
be fixed is the resilience against voltage drops. Currently, starting the motor causes a
voltage drop below the necessary threshold of the step-down converter and the device
loses power. When the user wants to turn off the device the only option is to turn off the
power as well. While I want to keep the device as simple as possible and not introduce a
power switch, adding a small battery would allow it to survive short power outages and
otherwise a graceful shutdown.

34

8 Appendix

8 Appendix
8.1 Possible itemizations of homebrew alternative
8.1.1 Components of solution seen in Kiel

• Simrad HS70 GPS Compass: 1500€ (or comparable)

• Gill WindSonic 1: 1400€

• Simrad NSS7 evo3 COMBO: 1700€ (or comparable)

• NMEA2000 Backbone: 130€

• Aluminum Spar: 60€

8.1.2 Cheapest possible option

• Compass & GPS Combination sensor: Garmin GPS24xd (290€)

• Wind sensor: NASA Marine Windsystem (300€)

• Offbrand NMEA2000 Backbone: 120€

• Aluminum spar, 3mx50mm, 3mm wall thickness: 60€

• Display: 600€

35

References

[1] 3D Print files for the enclosure and mounting brackets. URL: https://github.com/
finnboeger/mobile-wind-sensor-3d-parts/tree/c9e4d5a94cd3ed1cd90fbb
7bd556dadb20d0657c.

[2] 470 Class Rules. 2023-01. URL: https://web.archive.org/web/20221220133304/
https://d7qh6ksdplczd.cloudfront.net/sailing/wp-content/uploads/
2022/03/02082109/470_CR_2023-01Jan-01.pdf.

[3] Autonnic Compas Sensor 2000. URL: https://web.archive.org/web/20220523180447/
https://www.autonnic.com/product-page/compass-sensor-nmea2000.

[4] CANBOAT. URL: https://web.archive.org/web/20220820004632/https:
//github.com/canboat/canboat.

[5] Canboat getISO11783BitsFromCanId. URL: https://web.archive.org/web/
20221220152936/https://github.com/canboat/canboat/blob/master/commo
n/common.c#L643.

[6] cauchypotato.com. Set your Android Phone to Automatically Power on when USB
Charger is plugged in. 2016-01. URL: https://www.youtube.com/watch?v=
Zp9G6A6EFlA.

[7] Code for prototype mobile wind monitoring system. URL: https://github.com/
finnboeger/mobile-wind-sensor-client/tree/147987f229c6f17d4d72357d
5a7a4e14872a424d.

[8] Code for server to process and display wind data gathered by client. URL: https:
//github.com/finnboeger/mobile-wind-sensor-server/tree/7c3b6b5f9f
838f699c28d274cfed28e295e6c789.

[9] Donation requests denied by PubCharity. 2018-06. URL: https://web.archive.
org/web/20220707170431/https://www.pubcharitylimited.org.nz/assets/
Documents/PublishedDeclined-PubCharity-Jun-2018.pdf.

[10] Feature branch for FIFO addition to IMU library. URL: https://github.com/finnb
oeger/icm20948-python/tree/1cd5e94a1e2f23c4c7106bc2cf70a1132b4163b0.

[11] Garmin GMI20 Display. URL: https://web.archive.org/web/20221220135439/
https://www.garmin.com/de-DE/p/126694.

[12] Garmin GND10 Blackbox. URL: https://web.archive.org/web/20221220135435/
https://www.garmin.com/de-DE/p/144123.

[13] Garmin gWind Transducer. URL: https://web.archive.org/web/20221220135420/
https://www.garmin.com/de-DE/p/144124.

[14] Golden Globe Race. 2022-09. URL: https://web.archive.org/web/20221003163853/
https://goldengloberace.com/the-race/.

36

https://github.com/finnboeger/mobile-wind-sensor-3d-parts/tree/c9e4d5a94cd3ed1cd90fbb7bd556dadb20d0657c
https://github.com/finnboeger/mobile-wind-sensor-3d-parts/tree/c9e4d5a94cd3ed1cd90fbb7bd556dadb20d0657c
https://github.com/finnboeger/mobile-wind-sensor-3d-parts/tree/c9e4d5a94cd3ed1cd90fbb7bd556dadb20d0657c
https://web.archive.org/web/20221220133304/https://d7qh6ksdplczd.cloudfront.net/sailing/wp-content/uploads/2022/03/02082109/470_CR_2023-01Jan-01.pdf
https://web.archive.org/web/20221220133304/https://d7qh6ksdplczd.cloudfront.net/sailing/wp-content/uploads/2022/03/02082109/470_CR_2023-01Jan-01.pdf
https://web.archive.org/web/20221220133304/https://d7qh6ksdplczd.cloudfront.net/sailing/wp-content/uploads/2022/03/02082109/470_CR_2023-01Jan-01.pdf
https://web.archive.org/web/20220523180447/https://www.autonnic.com/product-page/compass-sensor-nmea2000
https://web.archive.org/web/20220523180447/https://www.autonnic.com/product-page/compass-sensor-nmea2000
https://web.archive.org/web/20220820004632/https://github.com/canboat/canboat
https://web.archive.org/web/20220820004632/https://github.com/canboat/canboat
https://web.archive.org/web/20221220152936/https://github.com/canboat/canboat/blob/master/common/common.c#L643
https://web.archive.org/web/20221220152936/https://github.com/canboat/canboat/blob/master/common/common.c#L643
https://web.archive.org/web/20221220152936/https://github.com/canboat/canboat/blob/master/common/common.c#L643
https://www.youtube.com/watch?v=Zp9G6A6EFlA
https://www.youtube.com/watch?v=Zp9G6A6EFlA
https://github.com/finnboeger/mobile-wind-sensor-client/tree/147987f229c6f17d4d72357d5a7a4e14872a424d
https://github.com/finnboeger/mobile-wind-sensor-client/tree/147987f229c6f17d4d72357d5a7a4e14872a424d
https://github.com/finnboeger/mobile-wind-sensor-client/tree/147987f229c6f17d4d72357d5a7a4e14872a424d
https://github.com/finnboeger/mobile-wind-sensor-server/tree/7c3b6b5f9f838f699c28d274cfed28e295e6c789
https://github.com/finnboeger/mobile-wind-sensor-server/tree/7c3b6b5f9f838f699c28d274cfed28e295e6c789
https://github.com/finnboeger/mobile-wind-sensor-server/tree/7c3b6b5f9f838f699c28d274cfed28e295e6c789
https://web.archive.org/web/20220707170431/https://www.pubcharitylimited.org.nz/assets/Documents/PublishedDeclined-PubCharity-Jun-2018.pdf
https://web.archive.org/web/20220707170431/https://www.pubcharitylimited.org.nz/assets/Documents/PublishedDeclined-PubCharity-Jun-2018.pdf
https://web.archive.org/web/20220707170431/https://www.pubcharitylimited.org.nz/assets/Documents/PublishedDeclined-PubCharity-Jun-2018.pdf
https://github.com/finnboeger/icm20948-python/tree/1cd5e94a1e2f23c4c7106bc2cf70a1132b4163b0
https://github.com/finnboeger/icm20948-python/tree/1cd5e94a1e2f23c4c7106bc2cf70a1132b4163b0
https://web.archive.org/web/20221220135439/https://www.garmin.com/de-DE/p/126694
https://web.archive.org/web/20221220135439/https://www.garmin.com/de-DE/p/126694
https://web.archive.org/web/20221220135435/https://www.garmin.com/de-DE/p/144123
https://web.archive.org/web/20221220135435/https://www.garmin.com/de-DE/p/144123
https://web.archive.org/web/20221220135420/https://www.garmin.com/de-DE/p/144124
https://web.archive.org/web/20221220135420/https://www.garmin.com/de-DE/p/144124
https://web.archive.org/web/20221003163853/https://goldengloberace.com/the-race/
https://web.archive.org/web/20221003163853/https://goldengloberace.com/the-race/

[15] Guide to 3D Printing Materials: Types, Applications, and Properties. URL: https:
//web.archive.org/web/20220807134415/https://formlabs.com/blog/3d-
printing-materials/.

[16] HiveMQ Public Broker. URL: https://web.archive.org/web/20221123013352/
https://www.mqtt-dashboard.com/.

[17] How Events Work - SailGP. URL: https://web.archive.org/web/20220922090755/
https://sailgp.com/general/sailgp-how-events-work/.

[18] https://github.com/Mayitzin/ahrs. URL: https://web.archive.org/web/20221108080125/
https://github.com/Mayitzin/ahrs.

[19] ICM20948 9-DOF Accelerometer, Magnetometer and Gyroscope. URL: http://web.
archive.org/web/20200914072924/https://github.com/pimoroni/icm20948-
python.

[20] ICM20948_WE. URL: https://web.archive.org/web/20221220150051/https:
//github.com/wollewald/ICM20948_WE.

[21] Introduction to the Controller Area Network (CAN). URL: https://web.archive.
org/web/20221220152732/https://www.ti.com/lit/an/sloa101b/sloa101b.
pdf?ts=1671343590536.

[22] Kieler Woche Bahnkarte. URL: https://www.facebook.com/nvcharts.nvverlag/
photos/die-kieler-woche-bahnkarte-kann-auf-unserer-seite-wwwnv-
verlagde-f%C3%BCr-den-chart-n/892440287449283/.

[23] Manage2sail digital notice board. 2022-10. URL: https://www.manage2sail.com/
ch/event/jhgp22#!/onb?tab=documents&classId=1beae80c-5b30-40db-8750-
09f1f9235c45.

[24] MaxLinear. SP3485 3.3V Low Power Half-Duplex RS-485 Transceiver with 10Mbps
Data Rate. Rev 2.0.2. URL: https://web.archive.org/web/20221124170435/
https://assets.maxlinear.com/web/documents/sp3485.pdf.

[25] MQTT: The Standard for IoT Messaging. URL: https://web.archive.org/web/
20221218203126/https://mqtt.org/.

[26] n2kd - canboat. URL: http://web.archive.org/web/20201101152652/https:
//github.com/canboat/canboat/wiki/N2kd.

[27] NarrowBand IoT / LTE-M: Die Maschinen- und Sensorennetze. URL: https://
web.archive.org/web/20220813161916/https://iot.telekom.com/de/netze-
tarife/narrowband-iot-lte-m.

[28] Narrowband IoT & LTE-M: Ideal für Maschinen und Sensorennetze. URL: https://
web.archive.org/web/20221213112355/https://www.vodafone.de/business/
loesungen/narrowband-iot/.

[29] NASA Marine NEMA Compass Sensor. URL: https://web.archive.org/web/
20220701134837 / https : / / www . nasamarine . com / product / nmea - compass -
sensor/.

37

https://web.archive.org/web/20220807134415/https://formlabs.com/blog/3d-printing-materials/
https://web.archive.org/web/20220807134415/https://formlabs.com/blog/3d-printing-materials/
https://web.archive.org/web/20220807134415/https://formlabs.com/blog/3d-printing-materials/
https://web.archive.org/web/20221123013352/https://www.mqtt-dashboard.com/
https://web.archive.org/web/20221123013352/https://www.mqtt-dashboard.com/
https://web.archive.org/web/20220922090755/https://sailgp.com/general/sailgp-how-events-work/
https://web.archive.org/web/20220922090755/https://sailgp.com/general/sailgp-how-events-work/
https://web.archive.org/web/20221108080125/https://github.com/Mayitzin/ahrs
https://web.archive.org/web/20221108080125/https://github.com/Mayitzin/ahrs
http://web.archive.org/web/20200914072924/https://github.com/pimoroni/icm20948-python
http://web.archive.org/web/20200914072924/https://github.com/pimoroni/icm20948-python
http://web.archive.org/web/20200914072924/https://github.com/pimoroni/icm20948-python
https://web.archive.org/web/20221220150051/https://github.com/wollewald/ICM20948_WE
https://web.archive.org/web/20221220150051/https://github.com/wollewald/ICM20948_WE
https://web.archive.org/web/20221220152732/https://www.ti.com/lit/an/sloa101b/sloa101b.pdf?ts=1671343590536
https://web.archive.org/web/20221220152732/https://www.ti.com/lit/an/sloa101b/sloa101b.pdf?ts=1671343590536
https://web.archive.org/web/20221220152732/https://www.ti.com/lit/an/sloa101b/sloa101b.pdf?ts=1671343590536
https://www.facebook.com/nvcharts.nvverlag/photos/die-kieler-woche-bahnkarte-kann-auf-unserer-seite-wwwnv-verlagde-f%C3%BCr-den-chart-n/892440287449283/
https://www.facebook.com/nvcharts.nvverlag/photos/die-kieler-woche-bahnkarte-kann-auf-unserer-seite-wwwnv-verlagde-f%C3%BCr-den-chart-n/892440287449283/
https://www.facebook.com/nvcharts.nvverlag/photos/die-kieler-woche-bahnkarte-kann-auf-unserer-seite-wwwnv-verlagde-f%C3%BCr-den-chart-n/892440287449283/
https://www.manage2sail.com/ch/event/jhgp22#!/onb?tab=documents&classId=1beae80c-5b30-40db-8750-09f1f9235c45
https://www.manage2sail.com/ch/event/jhgp22#!/onb?tab=documents&classId=1beae80c-5b30-40db-8750-09f1f9235c45
https://www.manage2sail.com/ch/event/jhgp22#!/onb?tab=documents&classId=1beae80c-5b30-40db-8750-09f1f9235c45
https://web.archive.org/web/20221124170435/https://assets.maxlinear.com/web/documents/sp3485.pdf
https://web.archive.org/web/20221124170435/https://assets.maxlinear.com/web/documents/sp3485.pdf
https://web.archive.org/web/20221218203126/https://mqtt.org/
https://web.archive.org/web/20221218203126/https://mqtt.org/
http://web.archive.org/web/20201101152652/https://github.com/canboat/canboat/wiki/N2kd
http://web.archive.org/web/20201101152652/https://github.com/canboat/canboat/wiki/N2kd
https://web.archive.org/web/20220813161916/https://iot.telekom.com/de/netze-tarife/narrowband-iot-lte-m
https://web.archive.org/web/20220813161916/https://iot.telekom.com/de/netze-tarife/narrowband-iot-lte-m
https://web.archive.org/web/20220813161916/https://iot.telekom.com/de/netze-tarife/narrowband-iot-lte-m
https://web.archive.org/web/20221213112355/https://www.vodafone.de/business/loesungen/narrowband-iot/
https://web.archive.org/web/20221213112355/https://www.vodafone.de/business/loesungen/narrowband-iot/
https://web.archive.org/web/20221213112355/https://www.vodafone.de/business/loesungen/narrowband-iot/
https://web.archive.org/web/20220701134837/https://www.nasamarine.com/product/nmea-compass-sensor/
https://web.archive.org/web/20220701134837/https://www.nasamarine.com/product/nmea-compass-sensor/
https://web.archive.org/web/20220701134837/https://www.nasamarine.com/product/nmea-compass-sensor/

[30] NMEA 2000 PGN’s deciphered. URL: https://web.archive.org/web/20220524235728/
https://endige.com/2050/nmea-2000-pgns-deciphered/.

[31] NMEA 2000 Standards. URL: https://web.archive.org/web/20221220153056/
https://www.nmea.org/nmea-2000.html.

[32] NMEA2000 library for C++. URL: https://web.archive.org/web/20220510132536/
https://github.com/ttlappalainen/NMEA2000.

[33] NMEA2000 python library. URL: https://github.com/finnboeger/NMEA2000/
tree/b37f1a09b0a00ae05eccbfcd3ea33b4a6abf5fef.

[34] OpenSCAD - The Programmers Solid 3D CAD Modeller. URL: https://web.
archive.org/web/20221218180809/http://openscad.org/.

[35] OWS-5 Monitoring System Shop Page. 2022-12. URL: https://web.archive.org/
web/20221220134551/https://r-p-r.co.uk/weatherfile/ows-5.php.

[36] Mark Petovello and Salvatore Gaglione. “How does a GNSS receiver estimate
velocity?” In: InsideGNSS (2015-03). URL: https://web.archive.org/web/
20221127002139/https://insidegnss.com/wp-content/uploads/2018/01/
marapr15-SOLUTIONS.pdf.

[37] pynmea2. URL: https://web.archive.org/web/20221219204100/https://
github.com/Knio/pynmea2.

[38] SAE J1939 Transport Protocol (TP) Functions. URL: https://web.archive.
org/web/20210512020812/https://copperhilltech.com/blog/sae-j1939-
transport-protocol-tp-functions/.

[39] SAE J1939 vs. CAN Bus - What’s the Difference? URL: https://web.archive.
org/web/20210921163113/https://copperhilltech.com/blog/sae-j1939-vs-
can-bus-whats-the-difference/.

[40] World Sailing. Race Management Manual. 2022-05. URL: https://web.archive.
org/web/20221214093509/https://d7qh6ksdplczd.cloudfront.net/sailing/
wp-content/uploads/2022/05/18102900/RM-Manual-Draft-17May2022-Para-
Sailing-Section-added-MR-Section-updated-Bookmarks-added.pdf.

[41] SIM7000E NB-IoT / Cat-M / EDGE / GPRS / GNSS HAT. URL: https://web.
archive.org/web/20220520184941/https://www.waveshare.com/SIM7000E-
NB-IoT-HAT.htm.

[42] SIM7600G-H 4G HAT (B). URL: https://web.archive.org/web/20220702110040/
https://www.waveshare.com/product/sim7600g-h-4g-hat-b.htm.

[43] SocketCAN userspace utilities and tools. URL: https://web.archive.org/web/
20221202120150/https://github.com/linux-can/can-utils/.

[44] Waveshare Sense HAT (B) Demo Code. URL: https://www.waveshare.com/w/
upload/6/6c/Sense-HAT-B-Demo.7z.

[45] What is the Difference Between SAE J1939 and NMEA 2000? URL: https://web.
archive.org/web/20210624034848/https://copperhilltech.com/blog/what-
is-the-difference-between-sae-j1939-and-nmea-2000/.

38

https://web.archive.org/web/20220524235728/https://endige.com/2050/nmea-2000-pgns-deciphered/
https://web.archive.org/web/20220524235728/https://endige.com/2050/nmea-2000-pgns-deciphered/
https://web.archive.org/web/20221220153056/https://www.nmea.org/nmea-2000.html
https://web.archive.org/web/20221220153056/https://www.nmea.org/nmea-2000.html
https://web.archive.org/web/20220510132536/https://github.com/ttlappalainen/NMEA2000
https://web.archive.org/web/20220510132536/https://github.com/ttlappalainen/NMEA2000
https://github.com/finnboeger/NMEA2000/tree/b37f1a09b0a00ae05eccbfcd3ea33b4a6abf5fef
https://github.com/finnboeger/NMEA2000/tree/b37f1a09b0a00ae05eccbfcd3ea33b4a6abf5fef
https://web.archive.org/web/20221218180809/http://openscad.org/
https://web.archive.org/web/20221218180809/http://openscad.org/
https://web.archive.org/web/20221220134551/https://r-p-r.co.uk/weatherfile/ows-5.php
https://web.archive.org/web/20221220134551/https://r-p-r.co.uk/weatherfile/ows-5.php
https://web.archive.org/web/20221127002139/https://insidegnss.com/wp-content/uploads/2018/01/marapr15-SOLUTIONS.pdf
https://web.archive.org/web/20221127002139/https://insidegnss.com/wp-content/uploads/2018/01/marapr15-SOLUTIONS.pdf
https://web.archive.org/web/20221127002139/https://insidegnss.com/wp-content/uploads/2018/01/marapr15-SOLUTIONS.pdf
https://web.archive.org/web/20221219204100/https://github.com/Knio/pynmea2
https://web.archive.org/web/20221219204100/https://github.com/Knio/pynmea2
https://web.archive.org/web/20210512020812/https://copperhilltech.com/blog/sae-j1939-transport-protocol-tp-functions/
https://web.archive.org/web/20210512020812/https://copperhilltech.com/blog/sae-j1939-transport-protocol-tp-functions/
https://web.archive.org/web/20210512020812/https://copperhilltech.com/blog/sae-j1939-transport-protocol-tp-functions/
https://web.archive.org/web/20210921163113/https://copperhilltech.com/blog/sae-j1939-vs-can-bus-whats-the-difference/
https://web.archive.org/web/20210921163113/https://copperhilltech.com/blog/sae-j1939-vs-can-bus-whats-the-difference/
https://web.archive.org/web/20210921163113/https://copperhilltech.com/blog/sae-j1939-vs-can-bus-whats-the-difference/
https://web.archive.org/web/20221214093509/https://d7qh6ksdplczd.cloudfront.net/sailing/wp-content/uploads/2022/05/18102900/RM-Manual-Draft-17May2022-Para-Sailing-Section-added-MR-Section-updated-Bookmarks-added.pdf
https://web.archive.org/web/20221214093509/https://d7qh6ksdplczd.cloudfront.net/sailing/wp-content/uploads/2022/05/18102900/RM-Manual-Draft-17May2022-Para-Sailing-Section-added-MR-Section-updated-Bookmarks-added.pdf
https://web.archive.org/web/20221214093509/https://d7qh6ksdplczd.cloudfront.net/sailing/wp-content/uploads/2022/05/18102900/RM-Manual-Draft-17May2022-Para-Sailing-Section-added-MR-Section-updated-Bookmarks-added.pdf
https://web.archive.org/web/20221214093509/https://d7qh6ksdplczd.cloudfront.net/sailing/wp-content/uploads/2022/05/18102900/RM-Manual-Draft-17May2022-Para-Sailing-Section-added-MR-Section-updated-Bookmarks-added.pdf
https://web.archive.org/web/20220520184941/https://www.waveshare.com/SIM7000E-NB-IoT-HAT.htm
https://web.archive.org/web/20220520184941/https://www.waveshare.com/SIM7000E-NB-IoT-HAT.htm
https://web.archive.org/web/20220520184941/https://www.waveshare.com/SIM7000E-NB-IoT-HAT.htm
https://web.archive.org/web/20220702110040/https://www.waveshare.com/product/sim7600g-h-4g-hat-b.htm
https://web.archive.org/web/20220702110040/https://www.waveshare.com/product/sim7600g-h-4g-hat-b.htm
https://web.archive.org/web/20221202120150/https://github.com/linux-can/can-utils/
https://web.archive.org/web/20221202120150/https://github.com/linux-can/can-utils/
https://www.waveshare.com/w/upload/6/6c/Sense-HAT-B-Demo.7z
https://www.waveshare.com/w/upload/6/6c/Sense-HAT-B-Demo.7z
https://web.archive.org/web/20210624034848/https://copperhilltech.com/blog/what-is-the-difference-between-sae-j1939-and-nmea-2000/
https://web.archive.org/web/20210624034848/https://copperhilltech.com/blog/what-is-the-difference-between-sae-j1939-and-nmea-2000/
https://web.archive.org/web/20210624034848/https://copperhilltech.com/blog/what-is-the-difference-between-sae-j1939-and-nmea-2000/

[46] Wir vernetzen das Internet der Dinge. URL: https://web.archive.org/web/
20220810150335/https://iot.telefonica.de/iot-m2m-produkte/.

[47] Yacht Devices NMEA2000 to USB Gateway. URL: https://web.archive.org/web/
20220926041837/https://busse-yachtshop.de/s/Yacht-Devices-NMEA2000-
zu-USB-Gateway-YDNU-02NM.

39

https://web.archive.org/web/20220810150335/https://iot.telefonica.de/iot-m2m-produkte/
https://web.archive.org/web/20220810150335/https://iot.telefonica.de/iot-m2m-produkte/
https://web.archive.org/web/20220926041837/https://busse-yachtshop.de/s/Yacht-Devices-NMEA2000-zu-USB-Gateway-YDNU-02NM
https://web.archive.org/web/20220926041837/https://busse-yachtshop.de/s/Yacht-Devices-NMEA2000-zu-USB-Gateway-YDNU-02NM
https://web.archive.org/web/20220926041837/https://busse-yachtshop.de/s/Yacht-Devices-NMEA2000-zu-USB-Gateway-YDNU-02NM

	Introduction
	Goals
	State of the Art

	Requirements Analysis
	Existing Hardware

	Architecture and Hardware Choices
	Selecting the appropriate platform
	Hardware selection
	Hardware Testing

	Development of the First Prototype
	First Live Test

	Development of the Second Prototype
	IMU Experimentation
	Hardware Upgrade
	3D-Printed Enclosure
	NMEA2000 Library
	Code refactoring
	Continued Testing

	Result
	Library contributions
	ICM20948
	NMEA2000

	Wind monitoring system prototype

	Conclusion
	Evaluation
	Usefulness
	Process

	Outlook

	Appendix
	Possible itemizations of homebrew alternative
	Components of solution seen in Kiel
	Cheapest possible option

	References

