
Freie Universität Berlin
Bachelorarbeit am Institut für Informatik der Freien Universität Berlin

Arbeitsgruppe Software Engineering

Investigation of Cultural Differences
between Rust and Go Programming

Communities

Leon Martin Busch-George
Matrikelnummer: 4663608

lgeorge@inf.fu-berlin.de

Eingereicht bei: Prof. Dr. Lutz Prechelt
Zweitgutachter/in: Prof. Dr. Claudia Müller-Birn

Berlin, May 2, 2023

Abstract

Background Programmer behavior is not usually thought of as being a cultural
phenomenon. There is little structured knowledge on how behavior might relate
to social identity in a general software context.
Objectives This research aims to both show there is a meaningful relation between
programmer behavior and their communities’ culture and to explore methods for
learning about them by investigating differences between Go and Rust program-
mers.
Methods An iterative approach was used both to find differences and how to learn
about them. Community research and interviews were alternated to generate and
gradually refine hypotheses.
Results Interviews were the most successful for advancing hypotheses. Commu-
nity and platform research was crucial for finding ideas. The most promising
hypotheses regarding differences revolved around the balancing of values.
Conclusions There is inarguably a palpable cultural difference between Rust and
Go programmers. It was possible to find evidence for different traits of program-
mer culture with only a limited understanding of the humanities and limited
time. A collaboration of researchers from software engineering, psychology, and
sociology could yield significant improvements over this research project.

mailto:lgeorge@inf.fu-berlin.de

30.04.2023

3

4

Contents

1 Research Objective and Approach 7
1.1 Introduction . 7
1.2 Goal and Approach . 7
1.3 Related Fields . 8
1.4 Culture in Software Engineering Research 8
1.5 Choice of Communities . 11

2 Reflections on Methodology 14
2.1 More Successful Methods . 14
2.2 Less Successful Methods . 19
2.3 Rejected and Unattempted Methods . 21
2.4 Relevant Considerations . 22

3 Cultural Differences 23
3.1 Safety . 23
3.2 Community . 25
3.3 Simplicity . 28
3.4 Hacker Culture . 31
3.5 Fundamental Values and Pragmatism . 33
3.6 Undeveloped Ideas for Differences . 35

4 Results 36
4.1 Methodology . 36
4.2 Differences . 36
4.3 Outlook . 37

5

6

1. Research Objective and Approach

1 Research Objective and Approach

1.1 Introduction

Software engineering involves solving “wicked” problems 1: The initial situation and
the target solution can have many interdependent variables that change over time
and the requirements might not all be known or even contradict each other. There
could be multiple legitimate solutions of which neither is technically correct - or no
solution at all. Determining which information is relevant can already be a highly
contentious matter. Agreeing on the potential outcomes of a design decision, format-
ting guidelines, or a proposed change is often equally difficult. From understanding
the requirements to deploying the solution, software engineering is far from being
as deterministic as it may be perceived to be. A piece of code or a software design
document also has properties beyond what is relevant to the behavior of the results.
Both can adhere to or deviate from a convential form, inspire confidence in the reader,
or provoke concerns - not much unlike a speech or a letter. With the more universal
instructions for producing high quality results being less specific, there is often room
for different viable methods - much as there are no rules that guarantee the creation
of impactful poems.

On the one hand, having “no definitive formulation, no stopping rule, no right or
wrong, and no immediate or ultimate test of a solution” [47] adds to the complexity
of software engineering. On the other hand, this degree of freedom allows for the
expression of attitudes, beliefs, values, conventions, goals, desires, and aesthetic ap-
peal - traits that can be understood as being ‘cultural’. This research strives towards
a better understanding of the more cultural traits of programming work and how to
compare different groups of programmers in terms of their culture. The goal is to
provide follow-up research with ideas for detecting and reasoning about these traits
in hope of bolstering a notion of culturally diverse groups of programmers rather
than monistic cultures on the base of value-judgements.

1.2 Goal and Approach

This bachelor thesis paper is a report on a small-scale explorative research project
with the aim of finding cultural differences between groups of programmers, deter-
mining the concepts that are meaningful for the differentiation and, ideally, easy to
operationalize in follow-up research, and documenting the means for obtaining them.
Candidate hypotheses were tested to create a preliminary assessment regarding these
criteria. Methods for obtaining and testing hypotheses were decided upon ad-hoc
with the aim of achieving a balance between reasonable effort and sufficiently suit-
able results. An evolution of specific phrasings of research questions was used to
guide the research and make reasoning about potential methods and findings easier.
A central phrasing was determined to be: “Inhowfar are there systematic differences
in the way that Rust programmers and Go programmers approach the solution of
problems - most importantly in those cases where there are few or no guidelines
from the framework itself?” Over the course of the research, the sensibility for cul-

1Selected aspects from different interpretations [45].

7

1. Research Objective and Approach

tural differences was intended to increase. The Rust and Go programming language
communities were chosen for this study. The decision is covered in detail in chapter
1.5.

The main part of the research was intended to repeat the following steps:

1. Acquire data like software development artificats and public communication to
develop hypotheses

2. Revise hypotheses using interviews

3. Reflect on methods and findings

This iterative study approach was inspired by grounded theory (GT). The re-
searches sensibility for cultural differences was to increase over the course of the
research.

1.3 Related Fields

Despite the research objective being rooted in software engineering, there is a strong
focus on behavior and group dynamics which belong to the disciplines psychology
and sociology. In the domain of computer science, it falls under the broad definition
of Behavioral Software Engineering (BSE) proposed in 2015 [30]. There is also a small
overlap with the field of Human-Computer Interaction (HCI) which applies behav-
ioral questions in a software context - but usually to users rather than developers.

1.4 Culture in Software Engineering Research

There are two important underlying assumptions to this research: 1. programming
languages are linked to ways of thinking and 2. software culture correlates with
software community association.

‘Linguistic relativity’ is a theory that describes an effect of natural languages on
cognition with increasing success [46]. This idea is not often applied to programming
languages. Notably, Venkataraman et al. call for research on “how language and
symbols [..] affect emotions of software engineers” - emotions, in turn, influencing
“imagination and creativity” which are seen as being important to the “craft"" of soft-
ware engineering [44] and, in a blog post from 2017, a polyglot programmer reasons
about their behavior being influenced by the programming language 2.

The second assumption (software culture being related to community association)
is trivial on one hand because of the interpersonal aspect of culture 1.4.1. On the other,
an important aspect of software communities should be considered to better appre-
ciate the idea of researching their culture: Software-related communities are usually
open for participation in governance and relatively easy to join and leave (more so
than, for instance, a sports organization). That sets them apart from other culture-
related communities that are, for instance, based on territory, family relationship, or -
to some degree - work environment. With little available external means for binding
members, programming language communities are highly reliant on other means -

2https://blog.chewxy.com/2017/09/20/sapir-whorf-programming-languages/

8

https://blog.chewxy.com/2017/09/20/sapir-whorf-programming-languages/

1.4 Culture in Software Engineering Research

like distinguishing themselves through values. This was believed to facilitate a shift
of research methods: The choice for a community would be a more important expres-
sion of culture and less attention would need to be paid to language rules predeter-
mining the expression of culture through programming behavior. Thus, asking study
participants about their community preferences becomes an additional way to reason
about culture, next to the more established analysis of software development artifacts
or reasoning with participants about programming decisions. At the same time, this
poses a new requirement for choosing participants and, to some extent, the choice
of software community. For example, a software community comprised mostly of
programmers who are paid extra to keep alive old infrastructure would express their
culture through community association to a lesser extent - at least not in a way that
is relevant to software engineering practices. Under these considerations, it was as-
sumed that noticing cultural differences between members of different programming
language communities would be possible. A closer inspection of the mechanisms of
mutual influence between individual and community values and practices was not
considered to be otherwise important at this stage of the research.

1.4.1 Relevant Literature concerning Culture in SE

Culture was found to be a multi-faceted concept even outside the software field. Fazli
et al. named a few common aspects: “Culture is learned, culture is associated with
values and beliefs and behaviors that are shared by a group” [10, p. 2]. In their paper,
they also described how they searched for and filtered papers relating to culture in the
context of software engineering. They have manually inspected and classified over a
thousand papers that were published between 2000 and 2017 and found 20 matches
that covered collaboration and international culture. That approach was not deemed
to be feasible for this research project because of the amount of work required.

Like with Fazli et al., a broad search was conducted on the ACM Digital Library
and the IEEE Computer Society Digital Library for this research because of their key
roles in the field of computer science research. Additionally, the Web of Science was
used to look for papers with a high quantity of citations, hoping they could be rele-
vant in finding an established understanding of culture in software engineering, and
provide hints for research methods. Most notably, Sharp et al. argued that there is
evidence for a ‘culture of software engineering’ and that it is important for the pro-
fession to understand this culture [37]. They did so using methods from ethnography
and psychology, such as performing discourse analysis on conference material, con-
ducting interviews, and surveying the work practices at multiple companies. Another
prominent effort is that of Lenberg et al. aiming to establish the field of ‘Behavioral
Software Engineering’ [30]. They have also performed a more systematic literature
review.

1.4.2 Rejected Categories of Culture in Literature

Most publications in software engineering mentioning the world ‘culture’ fall into one
of these three categories:

• Shaping organizational culture and aligning goals to improve the quality of a

9

1. Research Objective and Approach

software product

• National differences of programmers in international teams adversely affecting
the work

• The impact of personality traits on Computer Science Education

The most visible works fall into the first two categories. Their concern with culture
is embedded in an organization context and tailored towards increasing work quality
or efficiency by ‘controlling’ cultural factors through governance - or education. In
a way, that line of thinking opposes that of this research. Rather than postulating a
central culture for programmers to follow, the intention is to cultivate a pluralistic
understanding. This does not mean that the underlying understanding of culture is
incompatible with this research: In a publication from the first category, the term
‘culture’ is used to describe, among others, “enduring values, norms, attitudes, com-
petencies, and behaviour” in an organisation [11]. The issue with the use of such
work in this research lies within their bias. The aforementioned publication is a book
about security engineering that treats culture as a means - “culture must be continu-
ously fostered”, “awareness must be developed”, and “procedures must be enforced”
[11, p. 334]. Other goals from the first category are the reduction of the need for
knowledge transfer or of friction when re-assigning staff. The results often are rec-
ommendations for laying out codebases in the form of reusable and self-contained
modules, avoiding ‘goto’ statements, or establishing standards for code formatting,
deployment technology, and problem models.

The second category was also understood to be biased towards organizational val-
ues. More and more companies are opening up to the internationalization of their
workflows - not only with software. And so, an increasing effort is being put into es-
tablishing “practices, images, notations, standards and tools that help actors to shape
and align their work, so that it becomes readable and usable by relevant others” [39, p.
71] (i.e. across the cultures of programmers in different countries). The understand-
ing of culture is, again, not entirely inapplicable in the context of this research project.
With the works being prompted by problems that occurred with international col-
laboration, the reports of cultural differences and the methods for testing them were
expected to relate primarily to national culture.

The primary concern with the last category, ‘education’, was that it was seen as
being inherently biased towards traits that the authors or the teachers deem relevant
during teaching and learning. Another concern was that students typically do not yet
know much about programming and are unlikely to have already developed a strong
cultural identity regarding software practices. It was anticipated that there could be
some research in which the authors or the teachers showed awareness of student’s
preferences relating to programming - as there is for preferences regarding learning
methods [32]. No such works were found during the literature research before it was
given up out of time concerns.

All three categories were considered to be only tangential to this research. While
they might apply a compatible concept of culture, their findings and methods were
not believed to be appropriate because of the inherent bias towards external values
or their being based around presupposed cultural differences. Additionally, work

10

1.5 Choice of Communities

and education research often treats culture as a means to end rather than as a phe-
nomenon. Effects related to the desire to stay in an employment relationship or re-
lated to herd behavior were seen as being likely to skew findings towards behavior
and values that individuals would not have exhibited otherwise. To an extent, work
and education settings are also a subject of choice but the effect can vary dramatically
and the degree of choice (or lack thereof) would have to be adjusted for.

1.4.3 Other Considerations

Hacker Culture ‘Hacker culture’ is an established term even outside software-related
research. The customs and values commonly attributed to hacker culture are not spe-
cific to software engineering and they are also practised by people who do not engage
in software development. But they do relate to software engineering and appeared ap-
propriate for basing hypotheses on. Such aspects could be security-awareness, excite-
ment from overcoming boundaries, creativity, cleverness, or the inclination towards
reappropriation.

Data Mining using Development Tools In other research regarding software de-
veloper behavior, measurements are taken from the IDE, for instance using plugins
that collect usage data. This method is not entirely appropriate because workflows
can vary systematically between frameworks. Indeed, workflow-related differences
should be expected when comparing Go and Rust programmers as both platforms
come with their own tooling. Another argument against this kind of testing is that
the study participants would be required to use a specific tool which could affect their
behavior or their willingness to participate. For hypotheses regarding tools or specific
metrics that might be less of a problem but for open-ended questions the skew was
thought to be too difficult to control for at this scale.

1.4.4 Conclusion

There was evidence for the recognition of the importance of research into the human
factors of software engineering in the the papers that were considered more closely
during the exploration of literature. Little evidence was found for an established
open-ended approach on the term ‘culture’. Many papers contain methods or ideas
for methods that were estimated to be useful for this research but many of them also
seem to entail a risk of biased results.

1.5 Choice of Communities

Technology-agnostic Software Communities The biggest and best-known software
communities, like Stack Overflow, GitHub, or ‘r/Coding’ on Reddit could be thought
of as obvious choices for a comparison. They are very big and assumedly diverse, as
they are almost completely agnostic towards problem domains and software frame-
works. Their data is very accessible with some of them also providing special inter-
faces for researchers. Despite the importance of these communities for activities re-
lated to software engineering, potential measurable differences in community-specific
behavior were assumed to depend more on the rules of communication or the trust

11

1. Research Objective and Approach

and reward mechanisms of the platform than to values more closely related to pro-
gramming. Paired with the assumption of language-culture relatedness 1.4, members
of these generic software platforms were expected to exhibit behavior that would be
difficult to compare and interpret regarding the research question.

Go and Rust Go and Rust are, in many ways, very similar phenomena. Both are
openly-developed system languages that were backed by well-known software com-
panies while they gained popularity. Their development was mostly sponsored by
Google and Mozilla A.8 3. Their similarities are not surprising, as both aim to solve
a variety of problems that C++ is prone to 4. Among those problems are error-prone
concurrency and memory management models, unpopular build systems, inconsis-
tent approaches on documentation, limited dependency management, or competing
and incompatible standard library implementations. With their integrated build sys-
tems, tools for formatting, documenting, and deployment, Go and Rust are not only
programming languages but software development platforms - Rust even has a cen-
tral package repository 5. Both languages name safety as important goals: “Simplicity,
safety, and readability are paramount.” (Go) and [16] “Safety in the systems space is
Rust’s raison d’être” (Rust) [21]. They value correctness and deterministic builds and
both link statically by default.

Development on Go started in 2007 and the work on Rust started in 2006 6. Version
1.0 of Go was released in March 2012. Version 1.0 of Rust was released in May 2015.

According to the “Stack Overflow Developer Survey”, Go and Rust programmers
have similar salaries 7 and both languages are represented similarly in work contexts 8

[38]. Interestingly, the data from that survey indicates that people working with Rust
are not interested in using Go and vice-versa which indicates that there is significant
difference between groups.

Despite their similarities, Go and Rust ‘felt’ different enough to base this research
on them. Rust is found to ‘look’ more like C++ and Go more like C. Rust has built-in
metaprogramming macros (that can be used to implement something resembling run-
time reflection), Go has built-in reflection. Rust is commended for having “a panoply
of [language] features with something for everyone!” [29, ch. 19] and has only a
basic standard library. The inventor of Rust said: “If the language is only good at one
thing, it’ll be a failure.” [2]. On the other hand, “Go does not compete on features.”
[34] while having a more ample standard library, most of which is related to network
applications.

3Mozilla dismissed a significant amount of Rust developers in 2020 and the community has set up a
highly-federated foundation. Go is still strongly moderated by Google.

4For Go, Cox et al. name such problems as being related to C++ [8]. Its invention was sparked by
slow compile times with C++ [15]. For Rust, Hoare - the inventor - says in an interview: “Our target
audience is "frustrated C++ developers".” [2] noting in his personal blog that “[he does] not mean to
pick on C++” [21]. Jung et al. associate the problems that Rust solves with C++ (among others) [28]

5The Rust community’s crate registry: https://crates.io
6The earliest commit in the Go repository with a plausible date is from March 2008; though it ap-

pears the early git history of the project was the ground for experiments. For Rust, there is a separate
repository with commits from before 2010 (https://github.com/graydon/rust-prehistory).

789.204$ p.a. for Go and 87.047$ for Rust
812% for Go and 9% - not exclusive

12

https://crates.io
https://github.com/graydon/rust-prehistory

1.5 Choice of Communities

Perl and Python Another language pair that was considered for this research project
is Perl/Python. Both were invented in the late 1980s and are object-oriented and
‘multi-paradigm’ interpreted languages. And both are concerned with human con-
sumers of code, albeit in very difficult ways The language pair was seen as having
a relation that is similar to that of Rust and Go. Python has a “Zen of Python” that
touches upon similar values to that of “Go Proverbs”: Clarity, beauty, readability, and
the ability to reason about code. Perl is more open to adding features and supporting
different usage paradigms.

A key downside of the Python-Perl language pair was seen in the communities’
demographics. The Perl community is significantly smaller than that of Python. Being
a Perl programmer was suspected to be the result of a selective mechanism much more
so than being a Python programmer would. Another concern with this language-pair
was the differences in the ranking mechanisms of PyPI and CPAN (the respective
package repositories) because it was expected before the research project that code
analysis would play a bigger role. Also, Perl’s culture relates strongly to hacker cul-
ture, the reappropriation of existing tools, and artistic and playful expression. Paired
with the small size of its community, this was understood as further increasing the
risk of reducing the expression of culture 1.4. The finding that Perl developers be-
ing paid significantly more than Python programmers [38] can be seen as indicative
of an inherent non-programming-related bias. In combination with the overall high
pay of Perl developers, this could also be evidence for Perl developers being highly
sought-after mainly for maintaining ‘sunsetted’ projects.

The assumed difficulties with comparing Perl and Python could be addressed with
an appropriate study design but it was decided that it would be too laborious for this
type of research. Go and Rust were deemed to be easier to work with for analyzing
and reasoning about software communities.

13

2. Reflections on Methodology

2 Reflections on Methodology

The purpose of this section is to give an overview of the methods that were used
for and/or deemed relevant to finding, deriving, and assessing hypotheses in this
explorative research project. The results were not intended to hold up under scrutiny
or undergo null-hypothesis significance testing, which is typically expected from a
research paper. Rather, the results should provide grounds for reasonable arguments
and ideas for follow-up research.

2.1 More Successful Methods

2.1.1 Publications of Software Development Platforms and Platform Authorities

Publications by platform authors and official handbooks and guidelines had already
been used for orientation in preparation for this research project. There were two
principal concerns about using these resources: 1. Platform authors and maintainers
are not representative members of the community and 2. their assumedly high influ-
ence over community behavior could be seen as governance. Originally, it had been
intended to carry out more interviews. But a failure to procure the expected amount
of interview partners made a change in the approach necessary. Therefore, time that
had become available went into the analysis of platform communication instead. The
principal research question 1.2 highlights the importance of avoiding the interpreta-
tion of behavior that programmers had not engaged in freely. This constraint was
intended to apply to, for instance, effects like Go programs using fewer functional
paradigms than Rust programs - Go does not support functional programming in the
way Rust does. The causal influence of, for instance, the “Zen of Python” over pro-
grammer behavior is different from that of language grammar. The constraint could
also be seen as applying to rules enforced by companies but both the companies’ af-
filiation with the programming platform and the programmer’s affiliation with the
company can be considered expressions of culture themselves and, thus, mediate the
effect - as was argued regarding the programmer’s relation to the platform 1.4. With
this more relaxed interpretation, behavior exhibited by programmers that is in align-
ment with platform authors’ values would still be seen as expressions of culture 1.1
under most circumstances.

The lines of reason provided by platform authors (e.g. official documentation,
conference material from authors) and the importance of values were, in fact, found
to be mostly consistent with those expressed by platform community members in the
interviews. The more strict interpretation of the constraint would likely entail com-
paring Rust and Go programmer behavior regarding writing a different language like
Python to rule out the effect - regardless of where the hypotheses were drawn from.
Other than informal publications from the platforms themselves, personal blogs of
people who have some form of authority over either platform were also found to be
useful 9. With the assumed connectedness of an individual’s culture with that of the
platform 1.4 supported by the interviews, platform values were seen as providing
reasonable grounds for hypotheses. The origin of these hypotheses has to be docu-

9For example: [7] [23] [42]

14

2.1 More Successful Methods

mented so that they can be tested accordingly - for instance by letting Go and Rust
programmers solve related problems using Python.

“Go” and “Rust” are common words that also used extensively in other contexts.
This was a recurring difficulty while searching for research papers or online resources.
A way to address this is using the more specific terms “Rustlang” or “Golang” but
these terms exclude relevant results from search results - more so for Rust than for
Go.

Platform Resources In a way, the previous line of reasoning also applies to platform
documentation. For the most part, handbooks or specification documents on the lan-
guage and the platform itself promote values around their usage. A notable difference
is that the authors of Go have established a set of ‘proverbs’ around the usage of Go -
similar to the ‘Zen of Python’. At times, Go’s specification and language documents
also express disapproval of values. This results in Go being viewed as an ‘opinion-
ated language’. For instance, the specification of the Go memory model reads: “If you
must read the rest of this document to understand the behavior of your program, you
are being too clever. Don’t be clever.” [40]. This played into the considerations for the
‘Fundamentalism and Pragmatism’ 3.5 class of differences.

Apart from this aspect, platform resources were not found to show striking differ-
ences. A systematical analysis was considered to be promising regardless, especially
around the weighting of values (e.g. explaining how Rust’s borrow-checker avoids
dangling pointers while ‘politely’ avoiding any opinion on the matter).

Software Community Resources Public discussions on software community plat-
forms were also considered to be interesting for investigations on ideas and hypothe-
ses. The advisor for this thesis paper had pointed out constraint for discourse on
Stack Overflow (SO). The rules rule out questions that are subjective or unprovable
In an attempt to initiate public discourse for feedback on hypotheses, an open-ended
question about decision-making was asked on SO. The question had been written in
awareness of the rules, giving examples for proof of behavior differences and value
weighting, and was deleted regardless. Hacker News on Y Combinator [18] is not
limited in this regard but is also more closely related to hacker culture. The restric-
tion also does not apply to ‘r/Coding’ on Reddit but that has not been attempted
because the platform is not structured towards systematic answers and was thought
to be more prone to biased results and misleading answers 10.

A type of communication that has not been considered more closely is learning
forums where programmers can ask questions about their code. The people asking
there might be new to programming or learning another language. These channels
are likely mainly useful for posting questions to test hypotheses.

Analysis of Conference and Teaching Material Community conference and teach-
ing material might be less susceptible to the assumed bias in teaching research 1.4.2.
Resources on portals like slideshare.net are difficult to rank because of their small

10Answers can be ranked highly for other reasons than correctness or relevance, like humor. The
ranking depends on the Sub-Reddit’s moderation as well as Reddit’s guidelines.

15

2. Reflections on Methodology

size. Youtube provides an extensive collection of platform resources and offers tran-
scripts of videos than can be seen as being more representative. The analysis of slides,
videos, and transcripts using discourse analysis or GT methods might be viable but
they were not attempted because of a lack of ability and knowledge.

2.1.2 Interviews

Artifact analysis in code and communication had been found to be difficult without
strong guiding hypotheses 2.2.2. Interviews were selected as the primary means for
obtaining qualitative data and directions. An important limitation of interviews is
that interview partners are not always aware of their reasons and, if they are not, the
brain is good at filling in such gaps using anything it deems plausible 11. Field notes
were chosen as the method of documentation for their ease of access 12. The loss of
information and the inherent bias were deemed to be acceptable under the premise
that the sensibility of the researcher is also a subject of the research 1.2. The aim was to
reach average programmers using Go and Rust, preferably in a team. The information
acquired from the prior community research was the foundation for interview topics.
A questionnaire was set up to be used as a guide for a semi-structured approach A.4.
The questions were changed and extended to adjust to new findings on differences
and reflections on methodology. One phase of the interview was used to ask open-
ended questions about their stance on the platform and the community. In the other
phase, participants were asked more directly about particular aspects of community,
values, and the presumed relation to their - or the respective other - platform. This
was intended as a means to test hypotheses and to gather hints for differences in
value and behavior.

Candidate referral Two candidates who went through with the interview were pro-
posed by the advisor of this thesis. A third candidate who had been referred by a
work contact agreed to the interview but then did not respond to the email asking for
an appointment or to the reminder a week later. At a later stage, another candidate
was referred by a former colleague and they agreed to answering questions in a chat,
but they showed a substantial lack of programming knowledge and their entry was
discarded. One researcher offered to refer students as candidates for Rust interviews.
That offer was ignored because of students generally being less likely to have devel-
oped distinguished notions of programming and identity. Also, the researchers’ work
group topic was related to safe programming with Rust which was seen as a problem
since the referred students might have been particularly biased. Ultimately, three re-
ferred candidates were asked to participate and two completed the interview.
Personal and work contacts were found to be very hesitant to ask their peers and
colleagues about participating in the interview. Quality and availability of candidates
depends very much on the source of the referrals.

11Extreme examples of this being split-brain patients confidently providing false explanations for a
behavior using the half of their brain that contains the Broca area despite the other half being solely
responsible for the behavior or healthy patients explaining their alleged motivation for a behavior that
was triggered by an electrode.

12Taking field notes does not require consent and is significantly more reliable than audio recordings.

16

2.1 More Successful Methods

Work contacts At least seven work contacts were asked to participate, of whom two
agreed to the interview. Candidates were selected to not be in an active work relation
with the researcher. The successful interviews were conducted with a contractor and
a consultant.
An advantage of this method is that it is easy to know the programming language
used by candidates. A clear downside is that there is not necessarily much interest to
respond to a work contact for spending time after work hours 13.

Personal contacts Five personal contacts who were assumed to be using Rust or Go
were asked to participate and/or recommend other candidates. Of the personal con-
tacts, one agreed during an informal conversation and the interview was conducted
immediately. Four of them did not see themselves as being Rust or Go programmers.
Two of those made comments about either language via email and in a chat conver-
sation. This mode of recruitment also depends on personal contacts for the quality
of the entries and the ability to find participants. If both parties have already al-
lotted time for a conversation and find the venture to be interesting, it can be very
easy to set up an interview 14. Regardless, even limited success was not anticipated
and is unlikely to reproduce well, so this is not a recommendation. As with work
contacts, those affiliated with the researchers are not appropriate participants for the
production of more rigorous results.

Public Call for Participation While only four interviews had been completed and
two other interviews were still pending (one of which ultimately failed to take place),
requests for participation were posted to various online channels. Requests to pro-
mote the interview in digital meetups were sent to six meetup organizers on meetup.com,
none of whom responded. Emails were sent to four key members who were active in
their respective community and at conferences. They also did not respond. Given the
impression gained from the previous interviews that Rust developers were enthusias-
tic and liked to talk about Rust, it was initially considered to be surprising to get no
responses at all. Later, this was determined to not have any meaning regarding the
hypothesis because of the small sample size and success depending heavily on the
contact request itself.

When these attempts failed, requests were posted publicly to communities on
Discord and Matrix along with the questionnaire containing the base questions for a
possible interview. There was a respondent agreeing to an interview who turned out
to be a recruiter and another response with a filled-in questionnaire was submitted by
a community member with a science and teaching background. This last submission
was not an interview but their response included the desired arguments and they
agreed to contact via email and supplied complementing information.

Public calls for participation were assumed to be slightly more risky than the more
personal approaches - the reason being a supposed stronger selection mechanism for
participants with more vigorous opinions on the research topic.

13.. or with an old colleague ..
14Also, it helps immensly to know which programming languages your friends and family are using.

17

2. Reflections on Methodology

Approaching Random Commnunity Members A handful of community members
were approached on chat platforms (on Discord and Matrix). They were chosen at ran-
dom from public rooms. They turned out to be interested in the topic and responded
to informal questions but none agreed to an interview with voice communication.
This approach was attempted for longer than was probably reasonable without pro-
ducing utilizable data. Even after abandoning the approach, it appeared that it should
be possible to find a way of setting up the conversation that would more likely lead to
an interview. The partners in the conversations appeared to lose interest after being
asked for an interview. Maybe they felt tricked. In hindsight the chat conversations
were a missed opportunity: Chat partners might have given permission for their chat
responses to be used for research - instead, only interviews were asked for. One chat
partner rejected the interview because his spoken English was not good enough - in
hindsight, the added coverage is a benefit of interviews in written communication.
This attempt was believed to have had a beneficial effect regarding the sharpening of
sensibility for community differences.

Evaluation Conducting interviews turned out to be a useful method for investi-
gating possible cultural differences. The more structured first phase of the interviews
confirmed a general alignedness of individual and platform values. The second phase
turned out to be both very fruitful and rather delicate. The suggestive effect of ques-
tions was deemed to have been underestimated during the first interview. Address-
ing the participants’ sensitivity to suggestive questions was attempted by updating
the interview questions for the first phase accordingly 15. For the second phase, a
list of potential questions was added to the questionnaire. Letting participants talk
without any guidance might be a good way to avoid unintentionally provoking an
answer but unguided monologues produced only mixed results and were not pur-
sued further after the second interview. For the second phase, participants should
ideally have expressed their position on a subject before they were given a question
regarding their reasons. It was decided that missing an opportunity to ask a question
was preferable to skewing the feedback because, around that time, it was becoming
evident that interviews were more difficult to obtain than had been anticipated.

Agreeing on dates for interview appointments was laborious which made plan-
ning difficult 16. Interview partners were carefully selected to ensure a diverse pool
of participants. The restrictions on interview acquisition should probably have been
relaxed more quickly to increase the availabilty of interviews for the evaluation of
hypotheses in the earlier stages of the research. At first, work contacts were asked to
recommend colleagues for the study. This was intended to produce a well spread out
body of participants but this early attempt failed to procure candidates in the desired
way. With only two interviews thus far, personal and work contacts were asked to
participate themselves but most of those who answered refused, due to not matching

15E.g. ‘Why do you like X?’ was changed to ‘What do you like about X?’ because it implies X being
liked. ‘Is there anything you like about X?’, while being an even more passive phrasing, slightly implies
the opposite. ‘Why are you using Rust?’ was not considered because ‘why’ can include circumstantial
reasons or a request for justification which might risk triggering ‘filled-in’ answers.

16It took 8 and 9 days (respectively) and 6 emails each to set up the successfull interviews with the
referred contacts. For work contacts, it took 7 and 16 days (respectively) and 7 emails.

18

2.2 Less Successful Methods

the target profile When it became evident that no more interviews would result from
these contacts, participation was requested on community platforms. The early effort
that has gone into representation considerations was likely disproportionate given the
lack of study participants.

The acquisition of demographic background information was not part of the ini-
tial version of the questionnaire and was added afterwards. The information missing
from previous entries was provided on inquiry. All participants were working in
teams with other programmers of their group (Go/Rust). All except two participants
were employed programmers. The other two had founded their own companies cre-
ating Go and Rust products, respectively. Two participants (one in each group) had
less than a year of experience using the respective language. The participant demo-
graphic was considered to be appropriate for a small-scale project like this. Given
the overall difficulty of obtaining interview partners, this was seen as a success. At
the same time, the careful selection of partners turned out to be overwhelmingly
time-consuming. That is likely something that can be addressed by involving more
experienced researchers from the human sciences.

Apart from the shortcomings in the acquisition of interview participants, the in-
terviews presented an oportuniy to ask questions about programming in general -
knowledge that might have proved useful. This was only realized afterwards. The
focus on platform-related hypotheses during the preparation for interviews resulted
in various platform-related ideas but more general questions about preferences and
customs would also have been hugely beneficial to the overall research goal. Chat con-
versations and submissions of questionnaires might complement interview data for
future studies as well for their other qualities - like being more accessible for program-
mers who do not speak a mutual language well enough. Combining these methods
could also help accomodating different preferences for communication. The filled-
out questionnaire sent in via email was deemed sufficiently similar to the interview
responses and was treated like one. Accompanying the interviews with submissions
from publicly spread questionnaires could be useful for testing hypotheses as it is
easier to prepare and requires less effort than setting up and conducting interviews.
In order to deal with preferences for setting up appointments, a suggestion is to both
propose a date for the interview in the initial outreach and to provide a tool for setting
appointments at the same time (and stating that either one is acceptable). A customer
relationship management tool (CRM) might also prove to be useful, especially when
using more than one communication channel or dealing with larger numbers of can-
didates.

2.2 Less Successful Methods

2.2.1 Showing Participants Code of the other Platform

The second Go interview partner agreed to be shown Rust code and, when shown a
code sample using lifetimes and traits A.10, said that they were unable to understand
the code. The code sample was intended to be used for the collection of general
feedback first and then, maybe, for a brief discussion about memory management
and means to interface with it. An attempt was made in explaining the code but
it was aborted because the interview partner was not comfortable with learning the

19

2. Reflections on Methodology

related concepts during the interview 17.
Both the time requirement for explaining the code and the implications for the

interview quality were deemed good reasons not to pursue the approach. Rust pro-
grammers are likely more capable of reading Go code than vice-versa. Go program-
mers who understand Rust in a short-enough time are probably proficient enough
with Rust that it becomes important to find a better distinction of Rust and Go pro-
grammers 2.4.1.

Ideas for Improvement It should be possible to address the issue of Go program-
mers being less likely to be able to understand Rust code: One obvious way might
be the selection of code samples that are easily understandable. That might only be
possible for certain hypotheses as the code samples matching this criterion are likely
already biased towards specific patterns and, thus, likely to produce no or skewed
results. Another way around could be using a third languages that is likely under-
stood by both groups. These ideas were considered late in the research and were left
unattempted. Code samples could also be created using suitable hypotheses in the
language of the platform that the participant is identifying with. The difficulty of this
method lies in the careful crafting of code samples. Again, it can only be used with a
limited number of hypotheses.

2.2.2 Quantitative Measurements on Software Development Artifacts

During the early stages of this research, it was anticipated that code analysis could be
among the more important means for deriving or confirming difference hypotheses.
This assumption was not nullified but, instead, slightly complicated: In order to find
expressions of culture in artifacts of behavior, the cultural traits of which the behavior
could be an expression of must be determined first. For instance, the addition of two
integers ‘a + b’ can be interpreted in a variety of ways: Regarding clarity of the code,
one might find that ‘a’ and ‘b’ are not very descriptive names. Regarding run-time
safety, it could be said that there is no protection against integer overflows. Because
of the openness of the interpretation it was deemed that this approach would be less
feasible for finding hypotheses.

A collection of software projects from comparable problem domains was compiled
for both manual inspection and systematic testing A.2. It was agreed upon that the
approach was feasible despite the sample size effectively being one for each domain.
Indeed, there were differences regarding some metrics for one domain that a second
project was pair added to 18. As a consequence of this finding, more project pairs have
been added. Rust’s and Go’s main language repositories are also included but they
are treated separately. They do not compare well with other software projects in many
regards because of their difference in size and scope. All software projects are FOSS
which can be seen as skewing the results. Follow-up research projects might be able
to obtain source code access from a large enough sample of closed-source projects.

17They reported after the interview that they had learned the purpose of the lifetime annotation.
18For instance, the ‘container’ project pairs behaved differently regarding the ‘far merge’ metric A.5.

20

2.3 Rejected and Unattempted Methods

2.2.3 Asking other Researchers for Help

Two psychologists at Reichman University in Israel and Oregon State University in the
United States were contacted to ask about ideas for testing a hypothesis regarding the
testing for cultural traits and regarding adolescent behavior - they did not respond.
In retrospect, this was likely due to the fact that the requests were rather unusual and
the idea of comparing the behavior of grown-up professionals to that of adolescents
can easily be discarded as being insincere.

A publication in which code recognition timings were measured [25] was sparked
by a bachelor thesis [24]. The author of which proposed two concepts for differences
that were deemed to be promising in the context of this research 3.6.2 3.3.2.

They also proposed FPI-R as being an ‘economic’ method for testing personality
traits. With the test allegedly taking from 20 to 30 minutes and target traits being
only weakly related to programming, this was rejected for the moment but it might
become relevant for future research when better proven methodologies are required.

2.3 Rejected and Unattempted Methods

2.3.1 Survey

Surveys are typically used for collecting quantitative data. A web survey tool could
have been used to get a few quick answers to questions that pop up. Also, it might
have resulted in a larger amount of submissions. A proper mechanism and tool would
have had to be either found or developed. Members of the likely more privacy-
oriented communities might have objected to links to Google Forms or SurveyMon-
key. An attempt was made to create a web survey tool that would allow the distribu-
tion of a survey link to communities while communicating a privacy-friendly use of
the data. This idea was abandoned. While survey methods might have been adapted
to fit this research, they were rejected. Typical considerations going into surveys were
deemed to be misguiding because they tend to revolve around quantitative acquisi-
tion of uniform data. The questionnaire that was used in the study was oriented more
towards interviews and qualitative data.

2.3.2 Noteworthy Ideas from Literature

The research of Sharp et al. involved different kinds of research methods and multiple
companies [37]. Research methods were chosen in such a way that it could accomo-
date for the “nature of the particular collaboration”. This likely relies on having some
form of relation to the company but, at the same time, might be very insightful.

In a CSE context, Tomer et al. used GT to investigate how Indian computer sci-
ence students developed their professional identity in terms of ‘identity morphing’
[41]. They conducted interviews over the course of six months and they were able to
develop and validate hypotheses.

21

2. Reflections on Methodology

2.4 Relevant Considerations

2.4.1 Classification of Participants

Since determining traits of Rust and Go programmers was the object of the research,
no such traits could be used to distinguish Rust from Go programmers. Instead,
participants were simply asked to identify as either. Requests for interview participa-
tion were sent either directly to candidates, some of whom were known beforehand
for their platform-association, or published on community communication platforms,
from which the platform-association can reasonably be inferred. Still, candidates and
participants who lacked experience with the respective platforms were excluded.

2.4.2 Avoiding ‘Contaminated’ Traits

Similarly to the problems when selecting study participants to test hypotheses on,
the selection of hypotheses should take into account the possibility that traits can
have non-software-related origins rather than software-related ones. For instance, a
fairly high portion of Go programmers comes from China and China has significant
scores in three of the six dimensions from Hofstede’s cultural model. Testing for
such traits might produce seemingly positive results that are not causally related to
platform differences. That is, of course, unless the aim of the research is to test the
link between local (national) culture and that of a platform. Zoluorrati et al. were
able to confirm such correlations using data from Stack Overflow [48]. For follow-up
research, it might be possible to either work around such issues or incorporate them,
but it is out-of-scope for this project.

22

3. Cultural Differences

3 Cultural Differences

This section is concerned with the differences between the Go and Rust platform
communities expressed by programmers. For each hypothesis, there is a short, tabular
overview containing a preliminary assessment and ideas that are hoped to be useful
for follow-up research.

3.1 Safety

Safety - the “freedom of accidents” [1, p. 16] - is one of the central drivers behind
Go and Rust 1.5. Interestingly only one participant in each group mentioned ‘safety’
directly as something they liked about using Go/Rust. For Go, this was with the
ability to easily identify safe code; for Rust, it was part of a list of what makes Rust
dependable. Instead, interviewees mentioned ‘stability’, ‘dependability’, ‘ownership
rules’, ‘type system rules’, ‘community mindset [for producing dependable code]’,
‘formal proofs’ (Rust) and ‘frugal design’, ‘static typing’, ‘good error-handling’, ‘clear
and consistent code’, ‘integrated tests’ (Go). They all relate to safety, which is seen as
supporting evidence for the assumed language-community relatedness.

So far, this is a similarity; the differences lie in how safety is achieved. In a way, Go
aims to attain safety by being a simple language and encouraging users to write clear
code. Rust prefers “mechanism not policy” [20] for providing safety while using its
many features. For instance, Rust requires the use of an ‘unsafe’ block for changing
global variables 19 - Go does not and leaves checking for races from simultaneous
data access to the programmer. With Rust, the compiler makes programmers aware
of many types of safety issues. With Go, this is mostly up to the runtime and to
readers of the program code.

Difference Safety
Assessment No indication of a difference in value. Rust programmers are likey

more aware of certain classes of safety.
Follow-up

notes
Evidence for the awareness of different classes of safety might be
expressed in Go code more so than with Rust.

Safety and security are entangled values [1, ch. 28]. It is noteworthy that, while
Rust is closer related to safety, Go has a stronger focus on security 20 and it was only
mentioned by on Go participant.

Difference Security
Assessment Go developers might be more concerned with attacks on their soft-

ware.
Follow-up

notes
Maybe related to ‘harmful software’ 3.4.

19Rust acknowledges that this is not always possible: “People are fallible, and mistakes will happen,
but by requiring these five unsafe operations to be inside blocks annotated with unsafe you’ll know that
any errors related to memory safety must be within an unsafe block.” [29, ch. 19]

20The heading of the website reads: “Build simple, secure, scalable systems with Go” [13]. Go has
built-in tools for fuzzing and a ‘crypto’ package inside the standard library that can be used for TLS
out-of-the-box.

23

3. Cultural Differences

3.1.1 Reliability

According to Anderson, assurance and sustainability are the most difficult topics in
security engineering [1, ch. 28] - they are concerned with “whether the system will
work, and how you’re sure of this” (assurance) and “how long it will keep on work-
ing” (sustainability). ‘Reliability’ was chosen as a combination of these terms in an
attempt to find differences regarding safety values. Rust places reliability prominently
on its website: “A language empowering everyone to build reliable and efficient soft-
ware.” [35].

As with safety, reliability was not mentioned directly during the interviews. Go
aims to be reliable by being easy to maintain and review, which in turn is achieved by
writing programs that are easy to understand 21. This was mentioned by one Go pro-
grammer. The Rust participants mentioned ‘dependability’ (an aspect of assurance),
the idea that Rust programs would “still run in twenty years”, and ‘stability’ (both
classified as ‘sustainability’) as something they liked about Rust. The platform stance
for Rust is ‘mechanism not policy’: The compiler and the language generally prohibit
unsafe behavior. This was also was mentioned only once (‘type/memory/thread
safety’).

Difference Reliability
Assessment No indication for a difference in value.
Follow-up

notes
Try to operationalize the importance ‘correctness’ and ‘understabil-
ity’.

One aspect better highlighted by reliability than by safety is sustainability and
maintainability. As with the other safety aspects, Go is about simplicity and easy-to-
understand code. Rust participants mentioned an alleged longevity of Rust programs
- Rust itself even promises to never remove old editions of the language from the
compiler. This indicates a difference in the means for achieving sustainability goals
that could be tested further.

With further understanding of this difference, it might be possible to come up with
more specific hypotheses and prepare code snippets or similar artifacts to ask devel-
opers about. For example, selections of Rust code could be shown to Go programmers
for asking whether they would merge it.

Difference Sustainability
Assessment No noticable difference in value.
Follow-up

notes
Could Rust developers think that that the context of their programs
wont change?

21“Readable means Reliable” [34]

24

3.2 Community

3.1.2 Example Follow-up Considerations

Various aspects of sustainability could be considered. From the Go perspective, writ-
ing code that is more difficult to maintain might be a detriment to ‘reliability growth’
- the idea that a system’s dependability increases slowly over time while bugs are
fixed [1, ch. 28].

How often do Rust developers intend to revisit their code? How do they treat the
idea that inactivity of a project is often considered a detriment to security rather than
a sign for the absence of bugs?

In April 2023, a renowned security engineer described a bug in the crypto pack-
age of the Go standard library [43] . The bug was a regression from switching to a
constant-time function that did not include a bounds-check. For Rust, there exists a
crate 22 that allows the authors of functions to require preconditions that a caller has to
confirm they are upholding. Would such a solution be interesting for Go developers?

Non-Software Considerations Hofstede et al. define two “dimensions of national
culture” that are related to reliability: “uncertainty avoidance” and “long-term ori-
entation” [26]. The model has been argued to have only limited applicability in a
software context by Fazli et al. [10, p. 8] (among others) and testing for traits like
these requires special attention 2.4.2. Both ‘dimensions’ are defined beyond the com-
mon meaning of the words - some aspects of which might be interesting for follow-up
research. It might be possible to distinguish programming communities using Hofst-
ede’s model but it has to be kept in mind that such differences might be caused by the
geographical distribution of communities more so than by motivations from software
engineering.

3.2 Community

Rust and Go are open-source and openly developed platforms but they depend largely
on their sponsors. The share of commits made by project-associated authors in each
main language repo is at least 40% for both platforms A.8. They care immensely -
but differently - about their communities. Both acknowledge from early on that a
flourishing community is important 23.

For Rust, the community code of conduct was set up specifically to make mem-
bers who are sensitive feel more welcome [22]. Rust should ‘empower’ programmers
by giving them ‘superpowers’. The compiler is meant to be “friendly” and the error
messages it produces “useful” 24. One of the interview partner named the welcoming
nature of the community as being one of the reasons for them joining Rust; another
said they enjoyed the friendliness. The Rust community is notacibly diverse. Through-
out the previous years, Rust has been the most ‘loved’ programming language in the
Stack Overflow Developer Survey [38]. Maybe the strong focus on friendliness could
have an impact on the companies that are adopting Rust?

22https://docs.rs/pre/latest/pre/
23“We look forward to collaborating with the community to make it a successful one.” [12]. The first

two entries on the Rust blog close similarly [36].
24“Rust has [..], a friendly compiler with useful error messages [..]” [35]

25

https://docs.rs/pre/latest/pre/

3. Cultural Differences

Go intends to be welcoming by being easy to learn and to understand. All inter-
viewees mentioned ease of use when talking about what they enjoyed about Go. “We
don’t know where the next great idea will come from. We need all the help we can
get. We need a large, diverse Go community.” [6] While Go is not as ‘loved’ among
Stack Overflow survey participants, it is slightly more used than Rust (12% to 9%). Its
popularity on Github is much more pronounced 25.

Having traced out the role of community for the respective platforms, a possible
hypothesis is the reverse: How important is their platform to programmers? The last
two interview partners were asked why they would not use their platform (Go/Rust)
for a new project. The response for Go was: “use the right tool for the right job”. For
Rust, a set of “constraints” was described that would result in another language being
used. The wording might indicate that Rust is a default choice for Rust developers,
while Go is just an option for Go developers 3.5.

Difference Passion for Platform
Assessment Pre-existing data favors Rust. Confirmed by interviews on small

scale.
Follow-up

notes
Ask about language choice process. Maybe find finer metrics for
‘passion’.

Still, the adoption of Go is much higher than that of Rust. There could be economic
reasons for that. Maybe companies are hesitating because of the higher learning curve
for Rust. That would have been difficult to explore during the interviews because
all participants were professionally active with their language. To better grasp the
possibility of individual differences, it might be helpful to investigate the impact of
company preferences on the higher adoption of Go.

Difference Importance of Platform
Assessment Pre-existing data favors Go. No conclusion.
Follow-up

notes
Different pool of participants required. Maybe decision makers in
companies. Alternatively, ask more developers about how they use
Rust/Go and about their reasons for using other languages.

All interviewees were asked about their thoughts on working with other program-
mers of their respective platform. The first Go respondent said he did not have enough
experience (having worked as a Go team lead for 3 months). The second Go respon-
dent said he did not think the other members on their team considered themselves
Go developers, but they were getting along well. While answering a later question,
they said they did not feel the urge to belong to a community. Their use of the word
‘community’ was arguably different from that in the research question but it points
towards a difference that does not include a sense of belonging which is otherwise
seen as being important to ‘community’. The third Go respondent talked about the
structure of the community and the quality of packages rather than their experience
with other developers 26. This response is indicative of a view on community that

25259k Go repositories, 58k Rust repositories (forks excluded). Search results from 2023-04-28
26Matching more closely the sentiment of “Community on Cargo” in the third Rust blog entry https:

26

https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html

3.2 Community

is not necessarily liked but appreciated for other reasons. All Rust correspondents
responded positively, saying they enjoyed the open-mindedness, the friendliness, or
the diligent work.

Difference Liking of Community
Assessment Rust developers liked their community. Go developers avoided an-

swering the question about what they liked about the community.
Follow-up

notes
Maybe the deviating answers communicate ‘Why is my liking of the
community relevant?’. There are signs for less ‘emotional’ forms of
appreciation.

Both platform have established the importance of community from early on, with
Rust being more focused on friendliness. Another interpretation of the interview an-
swers might be that Go programmers view the community very professionally. A
further investigation of behavior and concepts relating to the importance of commu-
nity was hindered by by a lack of knowledge. As a way around, the ‘professional’
interpretation could be found in other aspects as well. For instance, there is a proverb
concerning the code formatter ‘gofmt’: “I don’t like how it formats, but I really like
that it formats” [33]. ‘gofmt’ also does not have to be liked to be appreciated.

Difference Nature of importance of community
Assessment Slight indication that community, for Rust, is a symbol for belonging

and friendliness and, for Go, more of a tool for sharing code and
ideas.

Follow-up
notes

Other interpretations possible, like ‘Rust developers are more em-
pathic’ or ‘Go programmers view the community as a professional
environment.’

Another way to grasp this difference could be considering the nature of the com-
munity association using the name of members. Go programmers are called ‘Gophers’
and Rust programmers are called ‘Rustacean’ in the respective communities. All Rust
programmers said they were Rustataceans while none of the Go programmers said
they were Gophers. This was originally a filler question in the interviews because it
was not expected to lead to a difference. One Go participant mentioned a possible
reason for their hesitation to call themselves ‘Gopher’: Allegedly, the ‘retarded go-
pher’ was a symbol for the clunkiness of early versions of Go and the later adoption
of the gopher was seen as self-mockery. The other Go participants did not mention
the ‘retarded Gopher’, one of whom confirmed to have not known about it at the time
of the interview.

Difference Identification with Community
Assessment Go developers use the platform-provided identity less.
Follow-up

notes
Larger study necessary. Risk of skew by e.g. asking at meetups or
conferences.

//blog.rust-lang.org/2014/11/20/Cargo.html.

27

https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html
https://blog.rust-lang.org/2014/11/20/Cargo.html

3. Cultural Differences

3.3 Simplicity

Simplicity is a core concept of the Go programming language design. Source code
written in Rust should be simple as well. Rust does not seem to be as worried about
more-difficult-to-read code. ‘Simplicity’ is mentioned only twice in the Rust Book [29]
(excluding choices regarding code examples). One of the occurences hints at the idea
that simplicity generally not more important than performance 27. This is seen as
contrasting with the Go proverb “clear is better than clever”. There are places in the
Rust Book where ease-of-use and readibility are valued more positively: “References
are a complex feature, and one of Rust’s major advantages is how safe and easy it is
to use references.” and “one long line is difficult to read, so it’s best to divide it.” [29,
ch. 2] None of these occurences are very prominent. For Go, “Simplicity, safety, and
readability are paramount.” [16].

Two Go interview partners brought up simplicity of code during the interview.
One Rust interview partner was asked about the perceived complexity of Rust code
and remarked: “Rust has a different form of simplicity”.

Difference Simplicity
Assessment Valued more in Go’s communication.
Follow-up

notes
It might be worth asking more Rust programmers about what makes
Rust simple to use for them.

3.3.1 Complexity

Two measures have been chosen to quickly get a reasonably reliable assessment of
complexity: Indentation of source code 28 and far merges in Git A.5. Of the example
projects, Rust source code is indented farther than Go source code in every categor
except one. The Rust repositories also tend to have a higher proportion of far merges
than their Go counterparts A.5. The Rust repository also has significantly more far
merges than the Go repository.

In attempt to make sense of the difference in nature of the importance of com-
munity for programmers, the codes of conduct were inspected more closely A.3. Not
much has been identified regarding the community but the editing of the text was
seen as confirmation for a more general applicability of this hypothesis regarding
simplicity. It could be that Rust developers are less bothered by complexity in gen-
eral. Interestingly, there exists a Rust crate for quantifying the complexity of code
29.

27“In this circumstance, giving up a little performance to gain simplicity is a worthwhile trade-off.”
[29, ch. 12]

28Using tools/similar_project_file_stats from the project repo A.1. The tools makes other mea-
surements as well.

29https://docs.rs/complexity/latest/complexity/

28

https://docs.rs/complexity/latest/complexity/

3.3 Simplicity

Difference Acceptance of Complexity
Assessment Rust developers could accept/trust complex solutions more than Go

developers.
Follow-up

notes
The Rust compiler itself is much more complex technology than that
of Go.

In regard to cognitive requirements and accessibility, Go is fairly straightforward:
“Don’t be clever” [40]. Rust, on the other hand, is commonly considered to be difficult
to learn and difficult to understand. This was reflected in the interview partipants:
One Go interview participant was a Go team lead just three months after starting to
use Go. One Rust participant pointed out that it took him rather a long time to learn
Rust. Interestingly, the inventor of Rust said that they thought writing Go programs
had a higher cognitive load despite the language itself being less complex 30.

One Rust participant reported that they liked being ‘forced into a relevant pat-
tern of thinking’ and that Rust would allow them to focus ‘purely’ on the problem
at hand. Given that most problem domains are usually not concerned directly with
program internals like memory management and performance, this likely confirms
that a reduction of the experienced difficulty is possible through the internalization of
language concepts. On the other hand, the forcing ‘into patterns of thinking’ implies
that Rust can still have a high cognitive demand even for experienced programmers
who have internalized them to a stronger degree. This remaining demand could indi-
cate a limit to the internalization - or something else entirely. Testing the experienced
cognitive demand will likely require the careful selection (or crafting) of code samples
using concepts that participants are familiar with in order to find possible differences
in levels of cognitive aptitude rather than knowledge.

Difference Cognitive Complexity
Assessment Rust developers could be more willing or able to process large

amounts of information.
Follow-up

notes
At its core, this is a psychological concern. At a later stage, iden-
tifying complexity within source code might become relevant [25].
Hansen et al. offer a different approach [19].

Fun R. Pike implies on a slide that making the language more readable or more com-
plex involves “a key tradeoff: More fun to write, or less work to maintain?” [34]. One
Rust participant said they valued the “freshness” when working with other Rust pro-
grammers. Maybe Rust developers have a conflicted opinion on complexity because
they secretly enjoy the challenge of working with complex code? There is another
relevant interview contribution: “[the compiler is] annoying enough for me to imple-
ment only the most fitting solution”. This could be interpreted as both challenging
and supporting the hypothesis. What being annoyed at the compiler turns out to be

30“Go’s a good language. It’s less complex than Rust, but also less ambitious. [..] Rust statically
differentiates all these cases, divides memory and pointers up into different types, which means we can
control safety and performance much better, but at the cost of the programmer having to think more.”
[2].

29

3. Cultural Differences

depends on the context. In the context of a game, it could be an important contributor
to enjoyment.

Difference Enjoyment of complexity
Assessment Mixed results. Maybe Rust developers view programming as more

of a game.
Follow-up

notes
There might be a difference between actual enjoyment and excite-
ment about writig complex code (also comes up in ‘hacker culture’
3.4).

3.3.2 The Notion of Code

Different notions of code could be the cause for varying requirements in cogni-
tive complexity. This differentiating concept was submitted by Hofmeister who also
prompted the idea: code should be concise and generic (code is math) and code should
be comprehensible, readable, and specific (code is language) 31. The associated properties
(‘concise’, ‘readable’, ..) are highly subjective and dependent on other values. The dif-
ficulties for non-Rust programmers to read Rust code were seen as more likely to be
related to the unfamiliarity of concepts like borrowing, lifetimes, traits, and macros.
Ultimately, it was decided against using the language/math differentiation because it
was not believed to lead to a significant and meaningful differentiation of culture in
a reasonable amount of time (untangling related values etc.).

One interview partner, who was overseeing a software company, noted that there
would be “less TODOs in Rust code” and that Rust projects could be considered
‘done’ at some point - at least more so than with other languages. This was seen as
the reason for a potential hypothesis regarding the human consumer of source code
losing relevancy over time. An evaluation of the example projects did not reveal any
obvious pattern regarding the amount of TODOs. Comparing the standard libraries
of the languages, 0.09% of the lines contained TODOs for Go and, interestingly, Rust
had no TODOs at all. This hypothesis was also abandoned.

‘Code conciseness’ was considered to the most promising idea for a distinction
but generating a preliminary assessment was found to be very difficult because of the
differences of the languages (Rust offering a lot more features to maximize concise-
ness). It was decided to ignore conciseness unless it was brought up by a participant
(which it was not).

3.3.3 Explicitness and Control

Another concept that can be seen as contributing to the complexity of Rust code is that
Rust requires programmers to be very explicit about things like ownership, mutability,

31‘Code’ and ‘language’ should not be interpreted literally in this context. Ivanova et al. have had
programmers read code while conducting neuroimaging and determined that the language system re-
sponded “weakly or not at all” to source code [27]. Instead, the multiple demand system was activated,
but not necessarily in the same way as it is when solving math problems. Also, They found different
activation patterns from reading ScratchJr or Python but there are likely easier methods for reasoning
about different software cultures than brain scans.

30

3.4 Hacker Culture

declarations, lifetimes, or types. In general, the Rust compiler only infers information
if it can do so unambiguously. Go is very similar in that regard - the difference being
that Go does not have as much to be explicit about (limited support for generics, no
lifetimes, no ownership). Few select things are implicit in Go like the default values
for unitialized variables, default types for constants, or interface implementations.

This is seen to come up often during learning where the artifacts of Rust’s explicit
nature confront learners with concepts they are not familiar with. It is also seen as
being related to the control of low-level program behavior.

One Rust participant said they liked the explicitness of Rust, another said they
liked that Rust made them aware of dependencies of objects. No Go participant men-
tioned explicitness and one said they like that Go made them aware of API bound-
aries. Expressiveness was not mentioned at all.

One of the Rust participants also noted that Rust allowed them to focus on the
problem they were solving. That was seen as supporting the idea that Rust developers
indeed want to have control over ownership, lifetimes, and mutability. In Go on
the other hand, many aspects of concurrency or memory management are handled
automatically in the background.

Difference Low-level control
Assessment Mixed results. Rust is more focused on low-level programming.
Follow-up

notes
This might turn out to be selected for by the platform and not the
community per-se.

Other considerations Perhaps there is a difference regarding making programs to
measure by stripping the unnecessary and focussing on the essential. What is essential
and necessary depends much on the context and the individual programmer. Should
it be possible to find these kinds of ‘minimalists’ in both groups, it might be helpful
to ask them about their reasons for being there.

3.4 Hacker Culture

There are different conceptions of hacker culture. Wikipedia names a few common
aspects [17]. This list contains a derived set of values that might be useful to this
research:

• creating and sharing software

• individual freedom

• rationality

• cleverness

• intellectual excellence

• playful approach

31

3. Cultural Differences

In part, these values also relate to those of free and open source software which
will have to be considered when engaging with these communities in order to test
hypotheses. The aspect of cleverness appeared to be particularly interesting in regard
to Go’s inclination towards clarity (rather than cleverness).

Difference Hacker culture
Assessment Slight indication that Golang is preferred by hackers.
Follow-up

notes
Hopefully easy to test using discourse analysis.

Harmful Software One participant who advocated ‘the use of the right tool for the
right job’ named writing security-related software as being a use-case for Go. They
argued it was useful for writing proof of concept for exploits as well as defending
against network attackers. Indeed, searches for related software projects on Github
produced less results for Rust than they did for Go A.11 but that could be caused by
different levels of maturity of related features in the platform. However, that delay in
the features being implemented could reflect a lack of interest in the community.

In order to properly test this hypothesis, a deeper understanding of both the cul-
ture and community of actual hackers would be necessary. Also, it would have to
be considered inhowfar the communities of intrusive hackers and those of practic-
ing security experts and enthusiasts overlap. It might well be that a typical Rust
programmer enjoys finding flaws in programs or systems but refrains from harmful
use of software. The information that has been found and compiled alone does not
suggest that the interest of Rust developers and Go developers on this topic diverges
significantly 32. All interview participants were asked what kind of project they would
use Rust or Go for and no one else mentioned software security.

Interestingly, the description for a book called “Black Hat Go” 33 contains a note-
worthy statement right at the start: “Go [..] revered by hackers for its simplicity,
efficiency, and reliability”. The description for its Rust counterpart “Black Hat Rust”
34 closes like this: “Rust is the long-awaited one-size-fits-all programming language
[..] thanks to its unparalleled guarantees and feature set”. Both relate to the complex-
ity family of hypotheses.

Difference Harmful software
Assessment Inconclusive. Go probably closer related than Rust.
Follow-up

notes
Need additional knowledge.

32At one time, the Golang runtime has found its way into the databases of various signature-based
malware detecion products A.12. Allegedly, that was because many of the malicious sample submissions
included the Go runtime but the researcher does not remember how that conclusion came about and
did not find a suitable source for the claim.

33https://nostarch.com/blackhatgo
34https://kerkour.com/black-hat-rust

32

https://nostarch.com/blackhatgo
https://kerkour.com/black-hat-rust

3.5 Fundamental Values and Pragmatism

3.5 Fundamental Values and Pragmatism

At multiple times throughout the research, there was a desire to capture the strength
of beliefs regarding the platform. The terms ‘fundamental’ and ‘pragmatic’ were
found to revolve around this idea. The common interpretation of the term ‘funda-
mentalism’ relates specifically to religious movements [31]. Here it is applied more
broadly and in a more literal sense (i.e ‘essential’, ‘foundational’). The goal was to
capture how much (-> pragmatic) or little (-> fundamental) a group was willing to
compromise on values.

However, this quickly led to problems. As an example, the match and switch
clauses of Go and Rust are considered: The Go compiler will accept a program with-
out a default clause - a match clause in Rust, on the other hand, must cover all cases
the compiler deems possible in order to compile. Given the desire to reduce unde-
fined behavior at runtime, requiring programmers to define behavior for unexpected
values is a ‘pragmatic’ choice. The same requirement can be seen as being ‘fundamen-
tal’ for letting this decision get in the way of writing simple and readable code. This
differentiation does not work without a fixed frame of reference because otherwise
the balance of values can change arbitrarily (like in the example). When applying the
term ‘fundamental’, the frame of reference is usually implied - as is a supposed qual-
itative inferiority. In effect, this is prone to produce biased statements and unfounded
accusations, which is likely the reason why the Associated Press advises against using
the term for groups 35. An upside of this was found to be that both terms can be used
regardless: As signals for different weighting of values in a specific context. When
such a signal is encountered, it can prompt a related question about the person mak-
ing the statement: Inhowfar is there a difference between the speaker and the subject (of the
term) that the speaker thinks the subject is not able or willing to compromise on X in a situation
Y? The concept ‘fundamentalism’ came up in the contexts safety and platform purity.
The differentiation of Rust and Go programmers based on the general interpretation
was abandoned. The updated understanding leads to the method being very similar
to the overall approach on differences (focusing slightly more on how programmers
make compromises rather than comparing the resulting decisions.).

Safety For instance, neither Rust nor Go regard regard safety as an absolute. Go
allows dereferencing a pointer without a prior check which can lead to segmentation
faults. With Rust, the compiler rejects any code it considers as leading to ‘undefined
behavior’. A resource must be either owned or borrowed for it to be used and no seg-
fault should occur from the language perspective. Still, there are safety compromises
when using Rust. In Go, ‘unsafe’ is the name of a package intended for the circum-
vention of type safety features. In Rust, ‘unsafe’ code blocks allow access to features
that can compromise memory safety. Interestingly, the documentation calls these ‘su-
perpowers’ nonetheless. The inventor of Rust called the idea “pragmatic safety” - a
“device for applying (or ignoring) social pressure.” [20]. Evans et al. found such
compromises when asking Rust programmers about their reasons for using ‘unsafe’

35“[.. has taken on] pejorative connotations [..]. In general, do not use fundamentalist unless a group
applies the word to itself.” Sadly, no copy of ‘The Associated Press Stylebook’ could be acquired. The
quote is taken from a secondary source [3].

33

3. Cultural Differences

blocks: “the Safe Rust alternative is too verbose or complicated (25%) [..] and [it is]
faster to write code with Unsafe Rust (5%)” [9].

Because of the platform difference, programmers of either language make safety
compromises in different places and at different levels which makes a comparison
difficult. The use of the ‘unsafe’ keyword in both languages may be a starting point.
This is seen as also being intrisically coupled to the ‘simplicity and complexity’ family
of hypotheses: Go programmers accept the risk of crashing at runtime as long as they
are allowed to write what they think is a more readable program.

Difference Safety compromises
Assessment No reasonable data.
Follow-up

notes
Go programmers have more room to make safety compromises.
Compare reasons for compromises.

Platform Purity In the context of rewrites, an interview partner confirmed the (as-
sumedly reasonable) assumption, that Rust programmers do not generally think that
all programs should be written in Rust. There is an ongoing effort to remove the
dependency on Python while bootstrapping the Rust compiler 36. This idea might be
considered ‘not very pragmatic’ by Go programmers. A more recent issue is about
‘purging’ Python altogether 37. While general considerations are being voiced, it is
notable that the idea is not dismissed entirely: “I don’t think this is worth spend-
ing contributor time on.”, “I think only once it’s clear what python actually can be
rewritten should we actually discuss whether it should be rewritten.”.

For Go, there has been a similar discussion about moving from bash to POSIX sh
38. The immediate respone being “Would this solve any actual problem? I don’t think
I’ve ever seen anyone complaining about make.bash being a bash script in the past 6
years.” and the issue was automatically closed for inactivity 39.

This might also relate to safety (maybe the inclusion of other languages into the
Rust ecosystem causing worries about safety). There is also a ‘pure Go’ sentiment
that could be related. Rust developers could be asked about using Go Assembly
(a generic, intermediate assembly language) because of its usefulness for supporting
architectures. They could be asked about adding Python build dependencies to their
projectst.

Difference Platform purity compromises
Assessment Go developers are less dismissive of dependencies on software writ-

ten in another language.
Follow-up

notes
Go developers might be less worried by the language of a build de-
pendency but how about linking against Rust code?

36https://github.com/rust-lang/rust/issues/94829
37https://github.com/rust-lang/rust/issues/110479
38https://go.dev/src/bootstrap.bash
39Automatically closing issues could be seen as ‘negligence’ from a Rust perspective.

34

https://github.com/rust-lang/rust/issues/94829
https://github.com/rust-lang/rust/issues/110479
https://go.dev/src/bootstrap.bash

3.6 Undeveloped Ideas for Differences

3.6 Undeveloped Ideas for Differences

Other ideas regarding potential differences were developed until a point where no
more information could be obtained without a reasonable effort. Or they were not
tested because of time constraints. The following ideas were deemed worthy of men-
tion.

3.6.1 Drive To Rewrite Existing Software

‘Rewrite it in Rust’ is name given to the phenomenon of unwelcome issues requesting
a rewrite in Rust [4]. It is unclear inhowfar this happens more with Rust than it does
with Go A.9. ‘r/Rust’ has issued a statement that they would no longer condone
such behavior. A Rust interview partner said that he considered the people who
opened such issues part of the Rust community as well. The ‘enthusiasm’ for Rust had
reached non-programmers who were unable to make reasonable judgements about
the rewrites.

3.6.2 Understanding of Objects

There are different ways to define the entities that are made up by data structures.

• Instruments for formal analysis vs. a means to reflect human perception (hermeneu-
tics).

• An adaption of the rationalist vs. naturalist model might be applicable to pro-
grammers. Rationalism being more concerned with behavior itself and naturalism
more with with background information. Examples for this could be imperative
and functional programming (rationalist) vs. object-oriented and actor model
programming (naturalist).

• composition over inheritance

35

4. Results

4 Results

Conclusion There is reasonable evidence for cultural differences between the Rust
and Go programming communities. The interview responses indicate a strong align-
ment of a platform’s values with those of its community members. Also, there is
slight evidence for a branch of the overall Rust community that is comprised of non-
programmers like users and managers. Other ways of partitioning software devel-
opers into culutural communities might also be possible. Despite methodological
shortcomings and a severe lack of knowledge regarding the humanities, this study is
believed to be a success.

4.1 Methodology

The iterative approach has been useful for quickly finding and adjusting suitable
hypotheses. The alignment of platform values and individual values allowed heavy
use of platform resources to generate hypotheses. The analysis of code was not as
useful for generating hypotheses but had its uses for rough assessments. With a
more developed understanding of cultural differences, this probably becomes less
relevant. The interviews with programmers were highly relevant for developing and
advancing hypotheses because the promising differences revolve around reasons and
the balancing of values. Code is notoriously bad at conveying reasonings and there
was a significant difference in the degree at which Rust and Go documentation and
specification covered them.

The unanticipated difficulties with procuring interviews stretched out the time be-
twen them 1.2. The self-imposed restrictions for the acquisition should probably have
been lifted more quickly. Being able to ask follow-up questions after the interview
turned out to be practical while waiting for new interviews. Structuring this report
also posed an unexpected difficulty: Too many hypotheses had been considered and
the findings were rather heterogeneous.

4.2 Differences

Both communities care deeply about safety and community diversity but go about it
differently. Most of the discovered differences relate to values of the platform in some
way. Rust relies on the language being very explicit about memory management and
on a strict compiler to ensure the generated programs are correct. Go avoids much of
such complexity and focuses instead on guiding programmers towards writing code
that can be understood easily. This ease-of-use is likely a significant contributor to Go
being used in companies. Rust focuses on an inclusive community policy, is strictly
moderated, and enjoys great popularity while having a slightly lower rate of adop-
tion. Go programmers appear to care slightly less about togetherness and more about
pragmatic aspects of community like the availability of usable packages. Software
security (i.e. intrusion and defense) might be more important to Go programmers.

36

4.3 Outlook

4.3 Outlook

A larger-scale study drawing on expertise from the fields of psychology (for behavior-
related matters) and sociology could yield significant improvements, especially when
it comes to examining interactions between programmers. It seems advisable to con-
duct one or two more small-scale studies like this beforehand, to better guide such
a more laborious enterprise because these smaller studies are fairly easy to imple-
ment. This report contains notes for advancing hypotheses regarding differences and
finding more appropriate methods. Hopefully, raising awareness of meaningful dif-
ferences helps to promote cultural pluralism and inspires searches for more ways to
organize teams accordingly. “If the languages all converge, we will all think the same.
But different ways of thinking are good” [34] - if we want to keep solving multifaceted
problems.

References

[1] R. Anderson. Security Engineering: A Guide to Building Dependable Distributed Sys-
tems. Wiley, 2020. isbn: 9781119642787.

[2] A. Avram. Interview on Rust, a Systems Programming Language Developed by Mozilla.
2012. url: https://www.infoq.com/news/2012/08/Interview-Rust/ (visited
on 04/17/2023).

[3] Can anyone define ’fundamentalist’? 2011. url: https://web.archive.org/web/
20120927095413/http://www.vcstar.com/news/2011/may/12/can-anyone-
define-fundamentalist/ (visited on 04/27/2023).

[4] Clear is better than clever. 2016. url: https://transitiontech.ca/random/RIIR
(visited on 04/13/2023).

[5] Code of conduct. url: https://www.rust-lang.org/policies/code-of-conduct
(visited on 03/20/2023).

[6] R. Cox. Go, Open Source, Community. 2015. url: https://tip.golang.org/blog/
open-source#code-of-conduct.

[7] R. Cox. research!rsc - Thoughts and links about programming. url: https://research.
swtch.com/.

[8] R. Cox et al. “The Go programming language and environment”. In: Communi-
cations of the ACM 65.5 (Apr. 2022), pp. 70–78. issn: 0001-0782, 1557-7317. doi:
10.1145/3488716. url: https://dl.acm.org/doi/10.1145/3488716 (visited on
03/14/2023).

[9] A. N. Evans, B. Campbell, and M. L. Soffa. “Is Rust Used Safely by Software
Developers?” In: Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering. ICSE ’20. Seoul, South Korea: Association for Computing
Machinery, 2020, pp. 246–257. isbn: 9781450371216. doi: 10.1145/3377811.
3380413. url: https://doi.org/10.1145/3377811.3380413.

37

https://www.infoq.com/news/2012/08/Interview-Rust/
https://web.archive.org/web/20120927095413/http://www.vcstar.com/news/2011/may/12/can-anyone-define-fundamentalist/
https://web.archive.org/web/20120927095413/http://www.vcstar.com/news/2011/may/12/can-anyone-define-fundamentalist/
https://web.archive.org/web/20120927095413/http://www.vcstar.com/news/2011/may/12/can-anyone-define-fundamentalist/
https://transitiontech.ca/random/RIIR
https://www.rust-lang.org/policies/code-of-conduct
https://tip.golang.org/blog/open-source#code-of-conduct
https://tip.golang.org/blog/open-source#code-of-conduct
https://research.swtch.com/
https://research.swtch.com/
https://doi.org/10.1145/3488716
https://dl.acm.org/doi/10.1145/3488716
https://doi.org/10.1145/3377811.3380413
https://doi.org/10.1145/3377811.3380413
https://doi.org/10.1145/3377811.3380413

References

[10] F. Fazli and E. A .C. Bittner. “Cultural Influences on Collaborative Work in
Software Engineering Teams”. In: Hawaii International Conference on System
Sciences. 2017. isbn: 978-0-9981331-0-2. doi: 10.24251/HICSS.2017.056. url:
http://hdl.handle.net/10125/41205 (visited on 03/18/2023).

[11] F. J. Furrer. Safety and security of cyber-physical systems : engineering dependable
software using principle-based development / Frank J. Furrer. eng. Wiesbaden, 2022.

[12] A. Gerrand. Go: What’s New in March 2010. 2010. url: https://go.dev/blog/
hello-world.

[13] Go. url: https://go.dev/ (visited on 04/29/2023).

[14] Go Community Code of Conduct. Google. url: https://go.dev/conduct (visited
on 03/20/2023).

[15] Go: A Documentary. 2022. url: https://golang.design/history/ (visited on
03/20/2023).

[16] R. Griesemer. The Evolution of Go. 2015. url: https://go.dev/talks/2015/
gophercon-goevolution.slide.

[17] Hacker culture — Wikipedia, The Free Encyclopedia. 2023. url: http://en.wikipedia.
org/w/index.php?title=Hacker%5C%20culture (visited on 04/15/2023).

[18] Hacker News. url: https://news.ycombinator.com/news (visited on 04/18/2023).

[19] M. E. Hansen, A. Lumsdaine, and R. L. Goldstone. “Cognitive architectures: a
way forward for the psychology of programming”. In: Proceedings of the ACM
international symposium on New ideas, new paradigms, and reflections on program-
ming and software. SPLASH ’12: Conference on Systems, Programming, and Ap-
plications: Software for Humanity. Tucson Arizona USA: ACM, Oct. 19, 2012,
pp. 27–38. isbn: 978-1-4503-1562-3. doi: 10.1145/2384592.2384596. url: https:
//dl.acm.org/doi/10.1145/2384592.2384596 (visited on 03/18/2023).

[20] G. Hoare. Project Servo. 2010. url: http://venge.net/graydon/talks/intro-
talk-2.pdf (visited on 04/18/2023).

[21] G. Hoare. Rust is mostly safety. 2016. url: https://graydon2.dreamwidth.org/
247406.html (visited on 04/18/2023).

[22] G. Hoare. Comment on ’Question about Rust’s odd Code of Conduct’. 2017. url:
https://.reddit.com/r/rust/comments/6ewjt5/question_about_rusts_odd_
code_of_conduct/ (visited on 04/23/2023).

[23] G. Hoare. frog hop. url: https://graydon2.dreamwidth.org (visited on 04/18/2023).

[24] J. C. N. Hofmeister. “Influence of identifier length and semantics on the com-
prehensibility of source code”. Bachelor’s Thesis. 2015.

[25] J. C. N. Hofmeister, J. Siegmund, and D. V. Holt. “Shorter identifier names
take longer to comprehend”. In: Empirical Software Engineering 24.1 (Feb. 2019),
pp. 417–443. issn: 1382-3256, 1573-7616. doi: 10.1007/s10664- 018- 9621- x.
url: http://link.springer.com/10.1007/s10664-018-9621-x (visited on
04/08/2023).

38

https://doi.org/10.24251/HICSS.2017.056
http://hdl.handle.net/10125/41205
https://go.dev/blog/hello-world
https://go.dev/blog/hello-world
https://go.dev/
https://go.dev/conduct
https://golang.design/history/
https://go.dev/talks/2015/gophercon-goevolution.slide
https://go.dev/talks/2015/gophercon-goevolution.slide
http://en.wikipedia.org/w/index.php?title=Hacker%5C%20culture
http://en.wikipedia.org/w/index.php?title=Hacker%5C%20culture
https://news.ycombinator.com/news
https://doi.org/10.1145/2384592.2384596
https://dl.acm.org/doi/10.1145/2384592.2384596
https://dl.acm.org/doi/10.1145/2384592.2384596
http://venge.net/graydon/talks/intro-talk-2.pdf
http://venge.net/graydon/talks/intro-talk-2.pdf
https://graydon2.dreamwidth.org/247406.html
https://graydon2.dreamwidth.org/247406.html
https://.reddit.com/r/rust/comments/6ewjt5/question_about_rusts_odd_code_of_conduct/
https://.reddit.com/r/rust/comments/6ewjt5/question_about_rusts_odd_code_of_conduct/
https://graydon2.dreamwidth.org
https://doi.org/10.1007/s10664-018-9621-x
http://link.springer.com/10.1007/s10664-018-9621-x

References

[26] G. Hofstede. Culture’s Consequences: Comparing Values, Behaviors, Institutions and
Organizations Across Nations. SAGE Publications, 2001. isbn: 9780803973244. url:
https://us.sagepub.com/en-us/nam/cultures-consequences/book9710.

[27] A. A. Ivanova et al. “Comprehension of computer code relies primarily on
domain-general executive brain regions”. In: eLife 9 (2020). Ed. by A. E. Mar-
tin et al., e58906. issn: 2050-084X. doi: 10.7554/eLife.58906. url: https:
//doi.org/10.7554/eLife.58906.

[28] R. Jung et al. “Safe systems programming in Rust”. In: Communications of the
ACM 64.4 (Apr. 2021), pp. 144–152. doi: 10.1145/3418295. url: https://doi.
org/10.1145%2F3418295.

[29] S. Klabnik and C. Nichols. The Rust Programming Language. No Starch Press,
2018. isbn: 1593278284. doi: 10.5555/3271463.

[30] P. Lenberg, R. Feldt, and L. G. Wallgren. “Behavioral software engineering: A
definition and systematic literature review”. In: Journal of Systems and Software
107 (Sept. 2015), pp. 15–37. issn: 01641212. doi: 10.1016/j.jss.2015.04.084.
url: https://linkinghub.elsevier.com/retrieve/pii/S0164121215000989
(visited on 03/22/2023).

[31] H. Munson. Fundamentalism. 2019. url: https://www.britannica.com/topic/
fundamentalism (visited on 04/27/2023).

[32] K. Nollenberger. “Comparing Alternative Teaching Modes in a Masters Pro-
gram: Student Preferences and Perceptions”. In: Journal of Public Affairs Educa-
tion 21.1 (Mar. 2015), pp. 101–114. issn: 1523-6803, 2328-9643. doi: 10.1080/
15236803.2015.12001819. url: https://www.tandfonline.com/doi/full/10.
1080/15236803.2015.12001819 (visited on 04/16/2023).

[33] R. Pike. Go Proverbs. Youtube. 2015. url: https://www.youtube.com/watch?v=
PAAkCSZUG1c (visited on 04/17/2023).

[34] R. Pike. Simplicity is Complicated. dotGo. 2015. url: https://go.dev/talks/
2015/simplicity-is-complicated.slide.

[35] Rust. url: https://www.rust-lang.org/ (visited on 04/29/2023).

[36] Rust Blog. url: https://blog.rust-lang.org/ (visited on 03/20/2023).

[37] H. Sharp, H. Robinson, and M. Woodman. “Software engineering: community
and culture”. In: IEEE Software 17.1 (Feb. 2000), pp. 40–47. issn: 07407459. doi:
10.1109/52.819967. url: http://ieeexplore.ieee.org/document/819967/
(visited on 03/14/2023).

[38] Stack Overflow Developer Survey 2022. url: https://survey.stackoverflow.co/
2022 (visited on 04/19/2023).

[39] H. Tellioğlu and I. Wagner. “Software cultures”. In: Communications of the ACM
42.12 (Dec. 1999), pp. 71–77. issn: 0001-0782, 1557-7317. doi: 10.1145/322796.
322811. url: https://dl.acm.org/doi/10.1145/322796.322811 (visited on
03/19/2023).

[40] The Go Memory Model. Google. 2022. url: https://go.dev/ref/mem (visited on
03/20/2023).

39

https://us.sagepub.com/en-us/nam/cultures-consequences/book9710
https://doi.org/10.7554/eLife.58906
https://doi.org/10.7554/eLife.58906
https://doi.org/10.7554/eLife.58906
https://doi.org/10.1145/3418295
https://doi.org/10.1145%2F3418295
https://doi.org/10.1145%2F3418295
https://doi.org/10.5555/3271463
https://doi.org/10.1016/j.jss.2015.04.084
https://linkinghub.elsevier.com/retrieve/pii/S0164121215000989
https://www.britannica.com/topic/fundamentalism
https://www.britannica.com/topic/fundamentalism
https://doi.org/10.1080/15236803.2015.12001819
https://doi.org/10.1080/15236803.2015.12001819
https://www.tandfonline.com/doi/full/10.1080/15236803.2015.12001819
https://www.tandfonline.com/doi/full/10.1080/15236803.2015.12001819
https://www.youtube.com/watch?v=PAAkCSZUG1c
https://www.youtube.com/watch?v=PAAkCSZUG1c
https://go.dev/talks/2015/simplicity-is-complicated.slide
https://go.dev/talks/2015/simplicity-is-complicated.slide
https://www.rust-lang.org/
https://blog.rust-lang.org/
https://doi.org/10.1109/52.819967
http://ieeexplore.ieee.org/document/819967/
https://survey.stackoverflow.co/2022
https://survey.stackoverflow.co/2022
https://doi.org/10.1145/322796.322811
https://doi.org/10.1145/322796.322811
https://dl.acm.org/doi/10.1145/322796.322811
https://go.dev/ref/mem

References

[41] G. Tomer and S. K. Mishra. “Professional identity construction among software
engineering students: A study in India”. In: Information Technology & People 29.1
(Mar. 7, 2016). Ed. by Hasan and Helen Henry Linger, pp. 146–172. issn: 0959-
3845. doi: 10.1108/ITP- 10- 2013- 0181. url: https://www.emerald.com/
insight/content/doi/10.1108/ITP-10-2013-0181/full/html (visited on
03/19/2023).

[42] A. Turon. turon’s web site. url: http://aturon.github.io/tech/2018/02/06/
portability-vision/ (visited on 04/18/2023).

[43] F. Valsorda. A Cryptographic Near Miss. url: https : / / words . filippo . io /
dispatches/near-miss/ (visited on 04/20/2023).

[44] Mahesh Venkataraman and Kishore Durg. “Research Idea on How Language
and Symbols (Semantics and Semiotics) Affect Emotions of Software Engineers”.
In: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineer-
ing Workshops. ICSEW’20. Seoul, Republic of Korea: Association for Computing
Machinery, 2020, pp. 577–580. isbn: 9781450379632. doi: 10.1145/3387940.
3392232. url: https://doi.org/10.1145/3387940.3392232.

[45] Wicked problem — Wikipedia, The Free Encyclopedia. 2023. url: https : / / en .
wikipedia.org/w/index.php?title=Wicked_problem%5C&oldid=1149475301
(visited on 04/30/2023).

[46] P. Wolff and K. J. Holmes. “Linguistic relativity”. In: WIREs Cognitive Science
2.3 (May 2011), pp. 253–265. issn: 1939-5078, 1939-5086. doi: 10.1002/wcs.104.
url: https://onlinelibrary.wiley.com/doi/10.1002/wcs.104 (visited on
04/15/2023).

[47] C. Zannier and F. Maurer. “A qualitative empirical evaluation of design deci-
sions”. In: Proceedings of the 2005 workshop on Human and social factors of software
engineering - HSSE ’05. the 2005 workshop. St. Louis, Missouri: ACM Press,
2005, pp. 1–7. isbn: 978-1-59593-120-7. doi: 10.1145/1083106.1083124. url:
http://portal.acm.org/citation.cfm?doid=1083106.1083124 (visited on
03/16/2023).

[48] E. Zolduoarrati, S. A. Licorish, and N. Stanger. “Impact of individualism and
collectivism cultural profiles on the behaviour of software developers: A study
of stack overflow”. In: Journal of Systems and Software 192 (Oct. 2022), p. 111427.
issn: 01641212. doi: 10.1016/j.jss.2022.111427. url: https://linkinghub.
elsevier.com/retrieve/pii/S0164121222001327 (visited on 03/17/2023).

40

https://doi.org/10.1108/ITP-10-2013-0181
https://www.emerald.com/insight/content/doi/10.1108/ITP-10-2013-0181/full/html
https://www.emerald.com/insight/content/doi/10.1108/ITP-10-2013-0181/full/html
http://aturon.github.io/tech/2018/02/06/portability-vision/
http://aturon.github.io/tech/2018/02/06/portability-vision/
https://words.filippo.io/dispatches/near-miss/
https://words.filippo.io/dispatches/near-miss/
https://doi.org/10.1145/3387940.3392232
https://doi.org/10.1145/3387940.3392232
https://doi.org/10.1145/3387940.3392232
https://en.wikipedia.org/w/index.php?title=Wicked_problem%5C&oldid=1149475301
https://en.wikipedia.org/w/index.php?title=Wicked_problem%5C&oldid=1149475301
https://doi.org/10.1002/wcs.104
https://onlinelibrary.wiley.com/doi/10.1002/wcs.104
https://doi.org/10.1145/1083106.1083124
http://portal.acm.org/citation.cfm?doid=1083106.1083124
https://doi.org/10.1016/j.jss.2022.111427
https://linkinghub.elsevier.com/retrieve/pii/S0164121222001327
https://linkinghub.elsevier.com/retrieve/pii/S0164121222001327

A. Attachments

A Attachments

A.1 Project Repository
The git repository contains the sources for this thesis paper alongside some tools that were used to
analyze projects and notes from the interviews.

https://git.imp.fu-berlin.de/lgeorge/thesis-language-culture

A.2 Example Projects

Container runtimes:
git@github.com:docker/cli.git (Go)
git@github.com:containers/podman.git (Go)
git@github.com:tailhook/vagga.git (Rust)
git@github.com:containers/youki.git (Rust)

DNS:
git@github.com:miekg/dns.git (Go)
git@github.com:bluejekyll/trust -dns.git (Rust)

IPFS:
git@github.com:ipfs/go-ipfs.git (Go)
git@github.com:rs-ipfs/rust -ipfs.git (Rust)

JWT:
git@github.com:dgrijalva/jwt -go.git (Go)
git@github.com:Keats/jsonwebtoken.git (Rust)

MQTT:
git@github.com:mochi -co/mqtt.git (Go)
git@github.com:bytebeamio/rumqtt.git (Rust)

Postgres:
git@github.com:lib/pq.git (Go)
git@github.com:sfackler/rust -postgres.git (Rust)

QR code:
git@github.com:skip2/go-qrcode.git (Go)
git@github.com:kennytm/qrcode -rust.git (Rust)

Readline:
git@github.com:chzyer/readline.git (Go)
git@github.com:kkawakam/rustyline.git (Rust)

Redis:
git@github.com:go-redis/redis.git (Go)
git@github.com:mitsuhiko/redis -rs.git (Rust)

WASM runtime:
git@github.com:wasmerio/wasmer -go.git (Go)
git@github.com:wasmerio/wasmer.git (Rust)

41

https://git.imp.fu-berlin.de/lgeorge/thesis-language-culture

A. Attachments

A.3 Codes of Conduct
A code of conduct was added to Go in 2015 [14]. The earliest reference is for the Rust code of conduct
[5] that was obtainable in a reasonable amount of time is from a commit 40. The referenced link only
appears later in the year on archive.org but that is already good indication that the CoC of Rust is older
than that of Go.

While the code for Go covers roughly the same behavior as the code for Rust does, it appears to
spend more time rationalizing and relativizing choices. It is more structured and has a prominently
placed list of values using bold fonts for readability. The accompanying blog post contains a few inter-
esting statements [6]:

• “I believe this captures the tone we want to set, the message we want to send”.

• “I haven’t mentioned active exclusion based on or disproportionately affecting race, gender, dis-
ability, or other personal characteristics, and I haven’t mentioned harassment. For me, it follows
from what I just said that exclusionary behavior or explicit harassment is absolutely unaccept-
able”.

• “We do not believe that all conflict is bad”.

The code for Rust consists of two rather long lists with long bullet points and three paragraphs of
text. Sadly, no literature accompanying the release of the code was found. Graydon Hoare explains parts
of it on Reddit [22].

A.4 Questionnaire
These are the questions for the latest iteration of the questionnaire:

• What do you like about working with Go/Rust as a language? (what is important to you)

• What do you like about working with other Go/Rust developers? (what is important to you)

• How is working with Go/Rust programmers any different from working with other program-
mers?

• Do you consider yourself a Gopher/Rustacean?

• Where are you using Go/Rust? (work, FOSS, solo projects etc.)

• What would be reasons for you to start a project in a language other than Go/Rust?

A selection of questions for the open phase of the interview:

• What is your experience with [own platform]?

• What do you make of [other platform]?

• What makes Go/Rust particularly, e.g., consistent, pragmatic, foundational, or versatile?

• Have you personally experienced a X programmer trying to convince you of using X?

• How do you decide what to implement inside your own company vs. what to include from
foreign libraries?

• Go has the proverb "a little copying is better than a little dependency" - is that also true for Rust?

• Is X feature of Rust interesting for Go?

• Is programming more creation or more transformation?

• Was the addition of templates appropriate for Go?

• What do you make of Rust allegedly being very expressive?

• What makes X so popular?

• Is Go ‘backward-oriented’?
40https://github.com/rust-lang/rust/commit/f645cad3a1557e26c3245c619a362f6dadd55e1a

42

https://github.com/rust-lang/rust/commit/f645cad3a1557e26c3245c619a362f6dadd55e1a

A.5 Far Merges for Project Pairs

A.5 Far Merges for Project Pairs
There are more project pairs for which the main development branch of the Rust repository has a higher
proportion of far merges to overall merges; far merges being ‘merges into other branches’.

A.6 Github User Counts
This data was generated by searching for users on Github on July 28, 2022. Two searches where con-
ducted and the results combined to circumevent query limitations. One selecting users with more than
one repository and another selecting exactly one.

Users with
language .. at least one public repo no public repo

(percentage of all users)
“Rust” 39026 2247 (~ 5,4%)
“Go” 247680 11640 (~ 4,5%)

A.7 Git Repo Metrics - Commits and merges
This data was extracted from the Rust and Go main language Git repositories using tools/history_stats
from the research project repository A.1.
A complementary manual observation from 2021: Go has few far branches/merges. Merges accross
more than 2 branches were not observed. Rust has a lot of merges. Branch depths of 8 and upwards
were observed accress multiple stretches of commits.

Repository Time
Unique

commiter
emails

Commits Merges
(% of commits)

Far merges
(% of merges,
% of commits)

Mean commit
body line count

Go May 2021 2005 48007 181
(0%)

154
(85%, 0%) 11

May 2023 2356 56106 284
(0%)

252
(88%, 0%) 12

Rust May 2021 4212 142913 40099
(28%)

20811
(51%, 14%) 3

May 2023 6031 221518 66010
(29%)

42178
(63%, 19%) 3

A.8 Git Repo Metrics - Authors
This data was manually compiled in May 2021. ‘PAE’ is ‘project associated email address’, ‘MAC’ is a
‘top ten most active commiter’.

Repository commit authors
with PAEs

commits by
authors with PAE

share of commits
made by MACs

MACs with project
association

Go 244/2033 30518/45981 22738 (~41%) 9
Rust 47/4161 27705/138108 53657 (~39%) 10

43

A. Attachments

More than half of the commits in the Go repository are created by authors with an email address
matching ’@golang.org’ or ’@google.*’. One of Go MACs does not use a Google email address and is
not publicly associated with Google. Two of Rust MACs have emails from Rust or Mozilla but all are
either (former) Rust team members or Mozilla employees.

A.9 Rewrite-related Projects
A quick search on Github (e.g. https://github.com/search?l=Rust&o=desc&q=%22rewrite+in+rust%
22&s=stars&type=Repositories) found no significant differences in rewrite projects (44 for Rust, 41 for
Go). There are about double the amount of issues regarding rewrites for Go (2.3k for Rust, 4.7k for Go).

A Reddit user asked about targets of potential rewrites on the similarly sized ‘r/rust’ and ‘r/golang’
subreddits 41. The engagement was higher for Rust than it was for Go (490 to 111) and the post itself
was upvoted higher on ‘r/rust’ (219 to 41), Counts updated at 2023-04-26. Sadly, the user has blocked
direct communications and could not be contacted by other means.

A manual search using search engines strongly favored projects related to rewrites in Rust. This a
collection of projects that were deemed noteworthy:

Rust
Merged kick-off for in-place rewrite of
fish shell

https://github.com/fish-shell/fish-shell/pull/9512

Active rewrite of GNU coreutils https://github.com/uutils/coreutils
Abandoned port of Emacs https://github.com/remacs/remacs
Active fork of Emacs using Rust with up-
stream compatibility

https://github.com/emacs-ng/emacs-ng

Active rewrite of coreboot https://github.com/oreboot/oreboot
Go
Abondened reimplementation of GNU
coreutils

https://github.com/guonaihong/coreutils

Active in-place rewrite of the Alda back-
end

https://github.com/alda-lang/alda

A.10 Rust Code Sample for Interview
Code sample from RBE https://doc.rust-lang.org/rust-by-example/scope/lifetime/trait.html
from 2023-02-11. The purpose was to discuss memory management with Go programmers and ask what
they thought about an approach like this.

// A s t r u c t w i t h a n n o t a t i o n o f l i f e t i m e s .
#[derive(Debug)]
struct Borrowed <’a> {

x: &’a i32 ,
}

// Anno ta t e l i f e t i m e s to imp l .
impl <’a> Default for Borrowed <’a> {

fn d e f a u l t () -> Self {
Self {

x: &10,
}

}
}

fn main() {
let b: Borrowed = Default :: d e f a u l t ();
println !("b is {:?}", b);

41Rust: https://old.reddit.com/r/rust/comments/11051xl/what_would_you_rewrite_in_rust/
Go: https://old.reddit.com/r/golang/comments/12alic4/what_would_you_rewrite_in_golang/

44

https://github.com/search?l=Rust&o=desc&q=%22rewrite+in+rust%22&s=stars&type=Repositories
https://github.com/search?l=Rust&o=desc&q=%22rewrite+in+rust%22&s=stars&type=Repositories
https://github.com/fish-shell/fish-shell/pull/9512
https://github.com/uutils/coreutils
https://github.com/remacs/remacs
https://github.com/emacs-ng/emacs-ng
https://github.com/oreboot/oreboot
https://github.com/guonaihong/coreutils
https://github.com/alda-lang/alda
https://doc.rust-lang.org/rust-by-example/scope/lifetime/trait.html
https://old.reddit.com/r/rust/comments/11051xl/what_would_you_rewrite_in_rust/
https://old.reddit.com/r/golang/comments/12alic4/what_would_you_rewrite_in_golang/

A.11 Exploit-related Repositories on Github

}

A.11 Exploit-related Repositories on Github
The repos don’t necessarily contain offensive code but instead just reflect interest in the topic. This is
particularly relevant for the term ‘hacking’. Data from 2023-04-15.

Term Go Rust
black hat 79 25
red team 65 7

blue team 9 3
exploit 281 88

shellcode 92 45
pentest 182 34

hacking 1.176 526

A.12 Golang Runtime Being Detected as Malware
Examples for harmless softare being flagged by ‘antivirus’ software:
https://community.bitdefender.com/en/discussion/84185/false-positive-when-running-go-lang-program-edited-in-visual-studio-code
https://github.com/gopasspw/gopass/issues/1807
https://forum.nim-lang.org/t/9850

This blog post includes screenshots of which product detected a ‘Hello World’ program as which
malware: https://betterprogramming.pub/a-big-problem-in-go-that-no-one-talks-about-328cc3e71378

45

https://community.bitdefender.com/en/discussion/84185/false-positive-when-running-go-lang-program-edited-in-visual-studio-code
https://github.com/gopasspw/gopass/issues/1807
https://forum.nim-lang.org/t/9850
https://betterprogramming.pub/a-big-problem-in-go-that-no-one-talks-about-328cc3e71378

