Freie Universitat " w Berlin

Master’s Thesis at the Institute for Computer Science of the Freie Universitit Berlin

Research Group Software Engineering

Designing and Implementing IDE
Cross-Compatibility for Saros

Tobias Bouschen
Student ID: 4676966
tobias.bouschen@fu-berlin.de

Advisor: Kelvin Glaf

First Examiner: Prof. Dr. Lutz Prechelt
Second Examiner: Prof. Dr. Claudia Miiller-Birn

Berlin, November 6, 2020

mailto:tobias.bouschen@fu-berlin.de

Abstract

Saros is a plugin for integrated development environments (IDEs) designed
for distributed pair programming. Its goal is to provide the technical infras-
tructure necessary for developers to concurrently collaborate on shared resources
without being co-located. Furthermore, it provides the benefit of allowing the
users to stay in their usual workspace using their own configurations, thereby
avoiding the potential loss of productivity due to different workspace setups.

Saros was initially only designed for Eclipse but was later on extended to
support other IDEs, currently mainly Intelli] IDEA. The introduction of Saros
implementations for other IDEs broadened the usability and potential user base
but also led to new difficulties: The Saros implementations for different IDEs were
not compatible with each other. Providing such IDE cross-compatibility would
bridge the gap between the users of different IDEs, allowing them to still use
their preferred IDE during distributed pair programming sessions independent
of the IDEs used by other participants. This would further broaden the potential
user base and use cases for Saros.

The goal of this thesis is to provide such an IDE cross-compatibility for Saros
in general and the current Saros implementations for Eclipse and Intelli] IDEA in
particular.

To reach this goal, I analyzed the current state of the Saros plugin, identified
a list of roadblocks that need to be resolved to reach IDE cross-compatibility, and
worked on resolving the major roadblocks.

With this thesis, I achieved basic IDE cross-compatibility between Saros for
Eclipse and for Intelli] IDEA. Furthermore, I laid out a plan on how to improve
this basic IDE cross-compatibility, mainly concerning improvements to the usabil-
ity of Saros in cross-IDE setups.

While there are still some remaining restrictions and issues regarding IDE
cross-compatibility that were not resolved due to time restrictions, I nevertheless
identified and resolved the major roadblocks and provided a clear path on how
to expand and improve IDE cross-compatibility in the future.

iii

Eidesstattliche Erkldarung

Ich versichere hiermit an Eides Statt, dass diese Arbeit von niemand anderem als
meiner Person verfasst worden ist. Alle verwendeten Hilfsmittel wie Berichte, Biicher,
Internetseiten oder dhnliches sind im Literaturverzeichnis angegeben, Zitate aus frem-
den Arbeiten sind als solche kenntlich gemacht. Die Arbeit wurde bisher in gleicher
oder dhnlicher Form keiner anderen Priifungskommission vorgelegt und auch nicht
veroffentlicht.

November 6, 2020

Tobias Bouschen

Contents

I Introduction
1 Goal of This Thesis

2 Structure of This Thesis

II Fundamentals

3 Saros
3.1 History of the Developmentof Saros

4 Jupiter Algorithm

5 Related Work
51 SarosinGeneral
5.2 Saros Core Extraction
5.3 Saros for Intelli] IDEA
54 Saros Filesystem Rework

III Implementation

6 General Approach

7 Preparation

8 Requirement Analysis

9 Found Roadblocks
9.1 Issues with the Handling of Line Endings
9.2 Issues with the Current Filesystem Implementation
9.3 Issues with Determining Which Resources Not to Share

10 Implementing Line Ending Normalization
10.1 Solution Approach
10.2 Reworking the Text Positioning Scheme
10.3 Adjusting the Jupiter Algorithm Implementation
10.4 Adding Line Ending Normalization

11 Preparing for the Filesystem Rework
11.1 Removing the Partial Sharing Logic
11.2 Reworking the Resource Transport Logic
11.3 Simplifying the Existing Filesystem Interfaces

12 Implementing an IDE-Independent Filesystem Model

vii

10

11
11
12
13

13
14
15
16
18

19
19
20

25

13

12.1 Solution Approach
12.2 Reworking the Filesystem Implementation for Saros/I
12.3 Cleaning up the Saros Core
12.4 Reworking the Filesystem Implementation for Saros/E
12.5 Adjusting the STF after the Saros/E Migration
12.6 Preventing Nested Reference Points
12.7 Moving the Checksum Cache into the Session Context

Other Resolved Issues

13.1 Implementing a Unified Handling of Non-text Editors
13.2 Fixing an Undiscovered Fault in the Operational Transformation Logic
13.3 Implementing a Unified Handling for File Moves
13.4 Implementing a Unified Handling for File Character Encodings
13.5 Introducing Improved Local Resource Mapping Suggestions

IV Conclusion

14

15

16

Open Topics and Issues

14.1 Implementing a New System to Determine What Not to Share
14.2 Eclipse UI Improvements following the Filesystem Rework
14.3 Extending the Existing Character Encoding Handling
14.4 Introducing a Unified BOM Handling

Evaluation

Future Work

Bibliography

\"

A

B

Appendix
Pull Requests

Figures
B.1 UML Diagram before and after the Filesystem Cleanup

viii

39

39
39
41
42
42

43

44

45

47

47

51

I Introduction

Pair programming (PP) is a practice most commonly associated with agile develop-
ment and extreme programming. It consists of two developers working cooperatively
on the same task. This cooperation can help reduce the number of faults in the de-
veloped software and improve the general design and quality of the created software
while only causing a small to moderate overhead in development time and cost. Due
to the cooperative work, it can improve the relationship between the developers, ac-
commodate knowledge transfer, and lead to a broader sense of general shared code
ownership. [1]

The exact type of cooperation can have many forms, but, most commonly, one de-
veloper takes the role of the “driver” and the other the role of the “navigator”. The
“driver” has control of the keyboard and works on the specific problem or task at
hand. The “navigator” reviews the created code on-the-go and keeps an overview of
the larger issues or tasks and the next steps to take. [2]

With the growth of the IT sector and the rise in globalization and outsourcing, de-
velopers are commonly spread across different locations, making traditional pair pro-
gramming unfeasible. To resolve the issue of co-location, distributed pair program-
ming (DPP) tries to replace the local cooperation through technical means. It does
so by allowing shared access to the worked-on resources and, more importantly, by
providing the necessary awareness information that would otherwise be provided by
the shared workspace. As an added benefit, it allows the users to work collaboratively
while still remaining in their familiar development environment, thereby avoiding the
potential loss of productivity due to different workspace setups between developers
(e.g. different keyboards, keyboard layouts, operating systems, software, etc.). [3]

Saros! is a plugin for integrated development environments (IDEs) providing the
technical infrastructure for distributed pair programming. It allows sharing source
code with other users and concurrently working on the shared code. Additionally,
Saros provides the workspace awareness information? necessary for tight collabora-
tion, showing what other users currently are doing in the shared workspace. [3]

Saros was initially created for the Eclipse IDE® but was later expanded to support
other IDEs, currently Intelli] IDEA* and other JetBrains IDEs. This made the plugin
usable by a wider range of developers but introduced a new issue: The different
implementations of the Saros plugin were not compatible with each other. This was
mainly due to design issues in the logic shared by the IDE implementations and

Ihttps://www.saros-project.org/
Zhttps://www.saros-project.org/documentation/avareness-information.html
Shttps://www.eclipse.org/

4https://www.jetbrains.com/idea/

https://www.saros-project.org/
https://www.saros-project.org/documentation/awareness-information.html
https://www.eclipse.org/
https://www.jetbrains.com/idea/

1. Goal of This Thesis

difficulties bridging the gap created by technical differences in the underlying models
for the different IDEs.

Providing such IDE cross-compatibility would further increase the benefit of allowing
the users to work in their usual environment by bridging the gap between differ-
ent IDE users, thereby further broadening the potential user base and use cases for
Saros. Furthermore, with the range of other plugins supporting distributed pair pro-
gramming out there [3] and some IDEs even providing their own, native solutions
for distributed collaboration — examples being Visual Studio’s Live Share® and the
in-development CodeWithMe plugin for JetBrains IDEs® — supporting IDE cross-
compatibility would offer a unique selling point to attract new potential users and
differentiate Saros from its competitors.

1 Goal of This Thesis

The main goal of this thesis is providing IDE cross-compatibility capabilities for the
Saros plugin. To make it more approachable, I split it up into the following sub-goals:

1. Analyze the current state of the Saros plugin and its IDE implementations.
2. Identify potential roadblocks on the way to supporting IDE cross-compatibility.

3. Resolve the necessary roadblocks.

2 Structure of This Thesis

This thesis is split into five parts:

I Introduction gives a short introduction of the thesis topic and presents the goal of
the thesis. (You are currently reading this part.)

II Fundamentals provides context for the thesis by giving some fundamental infor-
mation related to the thesis topic as well as references to related work.

III Implementation gives an overview of the work done as part of the thesis, describ-
ing the process and the implementation results.

IV Conclusion lists the topics and issues not resolved as part of the thesis, evaluates
the thesis results, and provides suggestions for future work.

V Appendix contains a list of all pull requests created as part of this thesis as well as
some additional figures.

A more detailed description of the structure is given at the start of each of the follow-
ing parts.

Shttps://code.visualstudio.com/blogs/2017/11/15/1ive-share
https://plugins. jetbrains.com/plugin/14896-code-with-me

2

https://code.visualstudio.com/blogs/2017/11/15/live-share
https://plugins.jetbrains.com/plugin/14896-code-with-me

II Fundamentals

This part offers some fundamentals to provide context for the rest of the thesis. Sec-
tion 3 gives a short overview of Saros, its functionalities, and its development history
in order to provide some information on the current state of Saros and how it got
there. Afterwards, section 4 describes the algorithm used for consistency manage-
ment in Saros to provide the necessary context to understand the work done on these
components. Lastly, section 5 gives an overview of related work, mainly focusing on
the theses that laid the groundwork for this thesis.

3 Saros

Saros is an IDE plugin written in Java aimed at supporting distributed pair program-
ming. It is developed as an open source project’ with large parts of the work be-
ing contributed by the working group Software Engineering® at the Freie Universitt
Berlin, either through (student) research assistants or student theses. It is currently
available for Eclipse (named Saros/E) and Intelli] IDEA (named Saros/I). Further-
more, a stand-alone server component named Saros Server is in development which
can be used to independently host Saros sessions.

Saros provides the capabilities to collaboratively work on source code by synchro-
nizing the workspaces of all participants, allowing for concurrent edits of the shared
source code. It also provides the workspace awareness information necessary for tight
collaboration’. It shows which participants are part of the current session and which
editor they have currently active. In each shared editor, it also shows a range of
annotations providing additional awareness information:

Contribution Annotations highlighting the most recent changes made by each other
participant.

Cursor Annotations highlighting the current cursor position of each other partici-
pant.

Selection Annotations highlighting the current selection of each other participant.

Viewport Annotations highlighting the currently visible part of the editor for each
other participant.

Furthermore, Saros offers a follow mode meant to support the standard pair pro-
gramming setup of a driver and a navigator. When in follow mode, the local IDE
view will automatically be adjusted to match the view of the followed participant. If

"https://github.com/saros-project/saros
8https://www.mi.fu-berlin.de/inf/groups/ag-se/index.html
https://www.saros-project.org/documentation/awareness-information.html

3

https://github.com/saros-project/saros
https://www.mi.fu-berlin.de/inf/groups/ag-se/index.html
https://www.saros-project.org/documentation/awareness-information.html

3. Saros

the followed participant, for example, scrolls or changes the editor, the local state of
the following participants will be adjusted accordingly.

3.1 History of the Development of Saros

The initial version of Saros was created in 2006 by R. Djemili as part of his diploma
thesis [4]. It was first designed with a much smaller feature set, allowing only two
participants and enforcing a strict separation between the driver and navigator role.
This scope was later extended by many other features (like an increased number of
participants, concurrent text modification, etc.) through different theses and other
work in the working group Software Engineering (see section 5.1).

While the development through student theses ensured continual development of
the Saros plugin, the need to provide topics for new theses led to constant feature
creep and the high fluctuation of developers — many only working on the plugin
for their thesis — took its toll on the code quality. Furthermore, most developers
were relatively inexperienced — Saros being the first major software project they were
working on — and the tight schedule of a thesis often did not allow for the necessary
time to get properly familiarized with the vast and complex code base. The impact
of this high developer fluctuation was somewhat reduced by introducing continuous
integration and an improved testing suite [5] as well as static code and architecture
analysis [6] in combination with requiring code reviews, but the code quality was still
subpar and the error density still quite high. The code quality has increased recently
due to the reduction of student theses, the removal of unnecessary or unmaintainable
features, and the continued work of a relatively stable core team.

In its initial stages, the plugin was only designed for Eclipse. To make its development
as fast and easy as possible, the plugin was tightly integrated with the Eclipse API,
leading to many designs and interfaces mirroring the Eclipse counterparts. Later on,
the decision was made to extend Saros to support other IDEs as well. Intelli] IDEA
was chosen as the best candidate due to its rising popularity among Java developers.
First, an initial Saros version for Intelli] IDEA was created by copying a lot of the
Eclipse-specific code and adjusting it for the integration with Intelli] IDEA. This code
duplication led to issues with the maintainability of Saros. Saros for Eclipse was
still the main focus of the development efforts, leading to many changes not being
applied to the code duplicates in the Intelli] IDEA implementation. As a result, the
code duplicates drifted apart in content, making it harder to unify them later on.

To avoid such duplication and slim down the code base, the core business logic of the
plugin was extracted into a separate component, the Saros Core! (see section 5.2).
This process mainly concerned moving logic that was deemed IDE-independent but
did not evaluate the architecture itself. As a result, many of the classes and interfaces
created in the Saros Core as part of this refactoring were still heavily influenced by the
Eclipse API they were initially designed for, often offering almost identical signatures.

10The Saros Core component was actually created before the work on the initial Saros version for
Intelli] IDEA started. But, in its initial stages, the Saros Core project remained largely empty, offering
only a very limited feature set. The actual extraction of significant business logic only took place after
the initial Saros/I prototype had already been created.

4

4. Jupiter Algorithm

This proved to be very cumbersome when trying to cleanly implement Saros for other
IDEs (including Intelli] IDEA) as the central design concepts used by the Eclipse IDE
do not always apply to other IDEs [7].

4 Jupiter Algorithm

As mentioned in the previous section, Saros supports the concurrent editing of shared
documents. To do so, it needs to ensure that the contents of the shared documents
stay synchronized for all participants. This is done using the Jupiter algorithm, named
after the Jupiter System it was modeled after, which was proposed in High-Latency,
Low-Bandwidth Windowing in the Jupiter Collaboration System by Nichols, Curtis, Dixon,
and Lumping in 1995 [8].

The algorithm uses a centralized coordinator architecture, meaning all clients report
their local changes to a central host which then dispatches them to all other clients.
As a result, the host is used as a centralized synchronization point. This allows for
the network to be modeled as a set of independent host-client-connections.

To ensure that all participants are working on the same document contents, syn-
chronous changes that influence each other have to be applied correctly on all sides.
The Jupiter algorithm uses optimistic concurrency control, meaning all changes are
directly applied locally and then sent to the other participants. As other participants
might have made conflicting changes in the meantime, received changes must be
transformed first before they can be applied locally. This is done through the oper-
ational transformation algorithm proposed in Achieving Convergence, Causality Preser-
vation, and Intention Preservation in Real-Time Cooperative Editing Systems by Sun, Jia,
Zhang, Yang, and Chen in 1998 [9].

The goal of the algorithm is to guarantee that the following three properties are always
maintained:

Convergence After all activities were applied on all sides, the document contents
match for all participants. In particular, this means that temporary differences
in the document contents are acceptable as long as not all activities have been
applied locally.

Intention Preservation The execution of an activity has the same effect as though it
were applied to the state that it was created with. In particular, this means that
received changes which modify content that was also modified locally in the
meantime have to be adjusted accordingly.

Causality Preservation For each participant, an activity is only applied after all other
activities it is dependent on have been applied. An activity A; is dependent on
another activity A, if and only if A; was created based on a local state that had
already applied A,, either because A, was created locally or had been received
and applied previously.

This property is not as important for Saros as, with the centralized host archi-
tecture, it can be guaranteed simply by ensuring that all activities are delivered

5

5. Related Work

and applied in the order they were sent.

In general, the operational transformation algorithm deals with adjusting received
activities for concurrent local changes by modifying the offset or content of the activity
accordingly. The need to adjust activities can be shown with this simple example:
With the initial state of “Hello world”, participant P1 inserts “my ” at offset 5 and
participant P2 concurrently inserts “!” at offset 11. The intended result is “Hello my
world!”.

For P2, this already works out by default as the local change is located behind the
remote change:

Initial state: “Hello world”
P2: ins(“!”, 11) = “Hello world!”
P1: ins(“my ”, 5) = “Hello my world!”

For P1, however, an adjustment of the received activity is necessary. Otherwise, the in-
tention of the received activity is not preserved and the document contents no longer
converge:

Initial state: “Hello world”
P1: ins(“my ”,5) = “Hello my world”
P2:ins(”“!”, 11) = “Hello my wo!rld”

To correct the received activity of P2, the index must be shifted back by the length of
the local insertion done by P1. This results in the adjusted activity of P2 inserting “!”
at position 14. Applying this adjusted activity instead causes the document contents
to converge again.

Initial state: “Hello world”
P1: ins(“my ”,5) = “Hello my world”
P2:ins(”“!”, 14) = “Hello my world!”

These transformations get much more complex when the state of the different partic-
ipants diverges by more than one change. In such cases, the received changes have
to be transformed in relation to all local changes not yet applied to the sender side,
requiring a separate transformation for each such local change.

5 Related Work

5.1 Saros in General

Saros was initially designed and created as part of the diploma thesis Entwicklung einer
Eclipse-Erweiterung zur Realisierung und Protokollierung verteilter Paarprogrammierung (R.
Djemili, 2006) [4] (roughly translates to Developing an Eclipse-Extension to Realize and
Record Distributed Pair Programming). It was extended and improved as part of many
follow-up theses.

5.2. Saros Core Extraction

A general overview of the field of agile development and pair programming as well as
Saros, its development history, how it compares to other, related tools, and a detailed
analysis of the design of Saros measured under the viewpoint of usability in an indus-
trial setting is given in the dissertation Industrially Usable Distributed Pair Programming
(J. Schenk, 2018) [3].

5.2 Saros Core Extraction

The groundwork to make Saros IDE-independent was laid by previous theses extract-
ing the IDE-independent logic into what is now called the Saros Core. This process
was started with the bachelor’s thesis Refaktorisierung des Eclipse-Plugins Saros fiir die
Portierung auf andere IDEs (A. Lasarzik, 2015) [10] (roughly translates to Refactoring
of the Eclipse Plugin Saros to Facilitate Porting to Other IDEs) and continued with the
master’s thesis Entwicklung und Evaluation eines unabhingigen Sitzungsservers fiir das
Saros-Projekt (D. Washington, 2016) [11] (roughly translates to Development and Eval-
uation of an Standalone Session Server for the Saros Project) and the bachelor’s thesis
Verbesserung und Erweiterung der Core-Bestandteile von Saros (D. Sungaila, 2016) [12]
(roughly translates to Improvement and Extension of Parts of the Saros Core).

While these theses did not complete the extraction of the shared logic, their work was
essential for the further development of the Saros plugin and its porting to other IDEs.

5.3 Saros for Intelli] IDEA

Saros for Intelli] IDEA was started through the work of an independent contractor
working together with the Saros project. This work was continued with the bachelor’s
thesis Bestandsaufnahme und Arbeit an einer Alpha-Version des Saros-Plugins fiir die Intelli]-
Plattform (T. Bouschen, 2017) [7] (roughly translates to Surveying and Working on an
Alpha-Version of the Saros Plugin for the Intelli] Platform). With the continued work that
followed after the thesis, the Saros plugin for Intelli] IDEA was finally in a state where
early alpha versions could be released.

The plugin being in a usable state, even with just a minimal set of functionalities,
was almost a necessity for this thesis as it allowed for a better analysis of potential
problems with IDE cross-compatibility.

5.4 Saros Filesystem Rework

Prior to this thesis, the master’s thesis Saros: Refactoring the Filesystem (O. HanfSen,
2019) [13] already looked at improving the filesystem abstraction used in the Saros
Core. The main goal of these changes was making the logic more IDE-independent,
thereby making it easier to adapt Saros for IDEs with different workspace models.
While the concrete approach or implementation of the thesis was not used, it provided
a general jumping-off point for the rework of the filesystem implementations done as
part of this thesis.

III Implementation

This part describes the process and results of the thesis. It starts with section 6 giving
an overview of my general approach. This general approach is then expanded upon in
the following sections, with section 7 describing my preparations, section 8 describing
the analysis of the requirements necessary to reach the defined goal, and section 9
describing the roadblocks identified as part of this requirement analysis. Afterwards,
it describes the actual implementation work done as part of the thesis, starting with
section 10 describing the implementation of line ending normalization, followed by
section 11 describing the preparations for the filesystem rework as well as section
12 describing the implementation of the filesystem rework, and ending with section
13 describing various other issues regarding IDE cross-compatibility that were also
resolved as part of this thesis.

In general, when describing implementation work done as part of this thesis, some of
the more technical details are skipped for the sake of brevity. Many of such details
require deeper technical knowledge of Saros and its IDE implementations to be help-
ful. Explaining them and the background knowledge they rely on would substantially
increase the scope of this thesis while contributing little to the understanding of the
main issues. If such details are still of interest, the pull requests created as part of
this thesis are always referenced in the corresponding sections. These pull requests
contain the exact code changes that were made and the discussions that had been
had during the development process. Furthermore, a list of all pull requests created
as part of this thesis, including some minor changes not explicitly mentioned in this
part, is given in appendix A.

6 General Approach

To approach the topic, I started by reading up on Saros literature in order to gain a bet-
ter understanding of the base design concepts behind Saros. Furthermore, I wanted
to check whether the current feature set of Saros still matches the requirements for a
distributed collaboration tool.

Afterwards, I analyzed the existing Saros code to identify possible roadblocks that
stand in the way of IDE cross-compatibility.

Then, for each of the identified roadblocks, I gauged the severity, suggested possible
solution approaches, and discussed the benefits and drawbacks of each suggested ap-
proach. Furthermore, I created a list of preliminary steps that most likely would have
to be taken to resolve the roadblock, allowing me to better plan the implementation
process. When proposing adjustments for existing interfaces in the Saros Core or new
models for some of the general Saros functionality as part of these approaches, I had

8

7. Preparation

to make sure that my knowledge of the Saros/I implementation as well as the IntelliJ
IDEA IDE architecture did not influence the suggested designs. Otherwise, the result-
ing architecture could suffer from the same issues as the previous one, namely being
too closely modeled after a specific IDE model.

After this list of steps was finalized, I started implementing the necessary steps to
reach a base level of IDE cross-compatibility. During this process, I again had to make
sure that the created Core logic was not influenced by models specific to the Eclipse
or Intelli] IDEA architecture.

As it was unlikely that I was going to be able to implement all steps to begin with,
I chose the steps to implement based on their necessity and on their difficulty. This
led to an agile process where the next goals were decided ad hoc and some steps
were pushed back or completely dropped from the scope of the thesis as they were
found to be less crucial than they first appeared. During this implementation process,
I regularly discussed the current work as well as how best to proceed with other
members of the Saros team as part of the twice-weekly stand-ups.

All patches created as part of this thesis were submitted as GitHub pull requests and
peer-reviewed by other members of the Saros project. To make the review process as
easy as possible, I broke down my patches into multiple commits wherever possible,
grouping the changes by topic. Especially for larger patches, this makes the changes
more approachable and allows for a more structured review process. It enables the
reviewer to do the code review in chunks, distributing the effort required for the
lengthy review process.

When creating patches, I paid special attention to providing detailed documentation
for my code and descriptive messages for my commits. I also tried to follow the
boy scout rule!! wherever possible, including incremental code cleanups with my
changes, thereby improving the general code quality during the process. This should
make the code easier to maintain and work with in the future, hopefully resulting in a
lower rate of code decay than seen in other parts of the Saros codebase. Furthermore,
during the development process, I tried to make the thoughts behind my work and
the next steps I was going to take very clear to make interactions with other members
of the Saros team as easy as possible.

7 Preparation

To get a better understanding of the Saros features, their purpose, and the design de-
cisions behind them, I read the base literature on the Saros design and history ([3, 14—
17]). This base knowledge is essential when having to make the decision whether
or not to cut a feature to allow for (easier) IDE cross-compatibility, as reducing the
usability of Saros should largely be avoided. A short analysis of the Saros feature
set in order to determine whether it still matches the requirements of a distributed
collaboration tool did not reveal any obvious shortcomings. Saros offers the main
functionality needed for collaborative editing of documents as well as providing ade-

Hhttps://clean-code-developer.com/grades/grade-1-red/#Boy_Scout_Rule

9

https://clean-code-developer.com/grades/grade-1-red/#Boy_Scout_Rule

8. Requirement Analysis

quate workspace awareness [3]. While it still provides additional features that might
be seen as superfluous, e.g. the direct transfer of arbitrary files between participants,
none of them provided issues for IDE cross-compatibility.

Afterwards, to get a better understanding of the previous efforts to make Saros more
IDE-independent, I read past theses on the topic of the Core extraction ([10-12]) and
previous work on the filesystem abstraction rework ([13]).

On the technical side, not very much familiarization with the code base was neces-
sary. I had already been working in the Saros project as part of my bachelor’s thesis
([7]) and continued this work as part of my subsequent employment as a student re-
searcher in the working group Software Engineering at the Freie Universitdt Berlin.
Due to this work, I was very familiar with the Intelli] IDEA implementation of Saros
and also had a good understanding of the other Saros components.

8 Requirement Analysis

To gain a general understanding of the challenges that would face me as part of
this thesis, I started by analyzing the current Saros implementation by reading the
old architecture documentation!?. Even though it is somewhat out of date, it still
provided a good overview.

Afterwards, I tried gaining a more complete understanding by skimming the Saros
code base, paying closer attention to the central classes of the Saros Core and the
non-Ul-related parts of the Eclipse and Intelli] IDEA implementations. During this
process, I was specifically looking for (implicit) technical assumptions that were made
to match the design of a specific IDE but might not apply to other IDEs.

I also had a look at other currently popular Java IDEs (mainly Visual Studio Code!?)
to look for further general architectures and restrictions to keep in mind. This, how-
ever, proved to be difficult as it quickly became apparent that most issues with IDE
cross-compatibility are due to subtle differences in the technical implementations of
the IDEs. Finding such differences takes a lot of time and knowledge of said imple-
mentations, making it unfeasible as part of this thesis.

I then created a list of potential roadblocks that had to be resolved on the way to
providing IDE cross-compatibility. This list was in no way exhaustive as many issues
in the context of cross-compatibility are based on very specific technical details that
are hard to identify. Furthermore, not all of the roadblocks were of the same severity.
Some had to be resolved for basic IDE cross-compatibility while others only had to be
resolved to offer the optimal user experience.

For each of the found roadblocks, I proposed, compared, and evaluated different
solution approaches.

Phttps://saros-project.github.io/legacy_docs/architectureDocumentation.html
Bhttps://code.visualstudio.com/

10

https://saros-project.github.io/legacy_docs/architectureDocumentation.html
https://code.visualstudio.com/

9. Found Roadblocks

9 Found Roadblocks

I identified the following roadblocks:
1. Issues with the Handling of Line Endings
2. Issues with the Current Filesystem Implementation
3. Issues with Determining Which Resources Not to Share

Some of these roadblocks were found as part of the explicit requirement analysis,
some had already presented themselves during my previous work on Saros/I, and
some were discovered during the planning and development process of the thesis due
to new insights into potential problems and newfound restrictions of the proposed
solution approaches.

The initial list of roadblocks also contained an issue regarding the handling of binary
files. To work around differences in the handling of binary files in Eclipse and Intelli]
IDEA, I suggested introducing a strict separation between binary and non-binary con-
tent for Saros. As the Eclipse API did not provide an adequate method to differentiate
between binary and non-binary (i.e. text) files, I needed a different way to check for
binary files. But I was neither able to find a good metric for deciding whether a file
is binary nor could I find a library providing such a functionality. Ultimately, when
reevaluating the roadblock in the context of IDE cross-compatibility at the start of the
implementation phase, it no longer appeared as pressing as first thought. As a result,
I decided to drop the roadblock, only keeping a couple of key issues related to IDE
cross-compatibility around as miscellaneous tasks. I resolved these important aspects
of the dropped roadblock as described in section 13.1.

As part of this thesis, I only managed to resolve roadblocks 1 and 2 due to time
constraints. I still proposed and evaluated solution approaches for the unresolved
roadblock. They can be found in section 14.1.

9.1 Issues with the Handling of Line Endings

With the current operating systems, there are two different ways of signaling the
ending of a line in a text file: “\n” for UNIX-based operating systems and “\r\n” for
the Windows operating system.

In Eclipse, like in most IDEs and editors, the line endings written in the file are also
used when processing it internally or representing it in the editor. In Intelli] IDEA,
however, line endings are normalized to UNIX line endings internally!*. All line
endings in the file are substituted with the UNIX line ending when it is read from
disk and the original line endings are then re-substituted when the content is written
back to disk.

This poses a big issue for IDE cross-compatibility as, even when working on the same
content on disk, the document content available in the IDE does not have to match.
In particular, when trying to maintain a session between an Intelli] IDEA instance

14nttps://jetbrains.org/intellij/sdk/docs/basics/architectural _overview/documents.html

11

https://jetbrains.org/intellij/sdk/docs/basics/architectural_overview/documents.html

9. Found Roadblocks

and an Eclipse instance while sharing files containing Windows line endings, Saros
will always detect an inconsistency in the shared files as the line endings will not
match. Furthermore, as the two line separators are not of equal length, the UNIX
line separator consisting of one character and the Windows line separator consisting
of two characters, the character-based offsets will be different in the two files. This
poses another challenge for Saros, which relies heavily on such offsets to apply remote
changes correctly and display awareness information such as remote cursor locations
and selections.

9.2 Issues with the Current Filesystem Implementation

Different IDEs use different models to represent the structure of the aggregates of files
representing a piece of software. As Saros wants to interact with these files, it needs
to be able to interface with this logic.

Since Saros was first only designed for Eclipse, the interface to interact with the
filesystem logic matches the Eclipse counterpart, going so far as to simply refer to
the Eclipse documentation if no other explicit documentation was given for a method
or class. The design was also not amended when extracting the logic to the Saros Core,
meaning it was still very much based on the Eclipse counterpart. This makes the im-
plementation of Saros for other IDEs more cumbersome as the IDE-specific filesystem
interface has to be somehow mapped onto the Saros (or rather Eclipse) filesystem in-
terface. Even when such a mapping is possible, the underlying implementation still
has to be IDE specific to match the IDE filesystem model. This can lead to a confusing
mix of names and concepts in the implementation, especially when naming schemes
clash in the different IDE concepts, an example being the usage of the term “project”
in the Eclipse and Intelli] IDEA model®.

Though this issue with mapping new IDE implementations onto the Core interface is
cumbersome when implementing Saros for new IDEs, it does not provide as much of
an issue for IDE cross-compatibility. A more pressing issue is that the current sharing
logic uses IDE-specific concepts to determine the files to share with other participants.
Saros for Eclipse allows the user to share projects'® while Saros for Intelli] IDEA
allows the user to share modules!”. While these concepts are generally comparable
in scope, it is not always possible to create a clean mapping between Eclipse projects
and Intelli] IDEA modules for the same piece of software as the filesystem models
of Eclipse and Intelli] IDEA are far too different. This especially becomes an issue
when trying to create a project/module as part of a cross-IDE Saros session, as the
other IDE models won’t necessarily provide all the information needed to correctly
represent it in the local model. These complications grow with the complexity of the
shared project/module setup.

As an example, even with a relatively normal setup, like the Saros project itself, a map-

Bhttps://www. jetbrains.com/help/idea/migrating-from-eclipse-to-intellij-idea.html#
term

ohttps://help.eclipse.org/2019-12/index. jsp?topic=Y2Forg.eclipse.platform.doc.user
2Fconceptsy2Fconcepts-12.htm

https://www.jetbrains.com/help/idea/creating-and-managing-modules.html

12

https://www.jetbrains.com/help/idea/migrating-from-eclipse-to-intellij-idea.html#term
https://www.jetbrains.com/help/idea/migrating-from-eclipse-to-intellij-idea.html#term
https://help.eclipse.org/2019-12/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Fconcepts%2Fconcepts-12.htm
https://help.eclipse.org/2019-12/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Fconcepts%2Fconcepts-12.htm
https://www.jetbrains.com/help/idea/creating-and-managing-modules.html

9.3. Issues with Determining Which Resources Not to Share

ping between Eclipse projects and Intelli] IDEA modules is far from trivial: Eclipse
sees each Saros component (e.g. Core, Eclipse, Intelli]) as one project. Intelli] IDEA,
on the other hand, imports every Saros component through Gradle!® as three mod-
ules, each containing different parts of the tree: a base module containing the general
resource tree, a “main” sub-module containing only the main sources and resources,
and a “test” sub-module containing only the test sources and resources. As a re-
sult, there is no clean mapping between the Eclipse and Intelli] IDEA model as the
same resources that are represented by one project in Eclipse are spread across three
modules in Intelli] IDEA. Furthermore, some of these Intelli] IDEA modules can’t be
represented as a unified tree (without including parents outside the module) as they
are the combination of different resource trees. There is no way of representing such
a collection of resources as a single project in Eclipse.

9.3 Issues with Determining Which Resources Not to Share

Generally, projects/modules may contain some resources that should not be shared
through Saros, examples being automatically generated artifacts or files containing
user specific data. A good definition for most of these files would be “files that
should not be kept under versioning”, i.e. that should be ignored by the used version
control system (e.g. Git, Subversion, etc.).

The current approach of Saros is to use local IDE mechanisms to determine which
resources not to share. Most IDEs offer the option to ignore resources like build
artifacts in the local workspace in order to exclude them from functionalities like
inspections, searches, and refactoring tools. Eclipse offers the concept of derived
resources'? and Intelli] IDEA the concept of excluded resources® for this purpose.

The issue with this approach is that, in both cases, these concepts are generally only
used to mark resources that are generated as part of the compilation process. How-
ever, there also are other automatically generated resources and resources that contain
user specific data that should not be shared between Saros instances. When imple-
menting Saros to only work for one specific IDE, it is quite simple to cover most of
these special cases with dedicated logic to exclude such resources as most of them
can be queried from the IDE. But this only works if the set of non-shared resources
determined through the IDE specification is the same for all participants. If partici-
pants use different IDEs, the set of such additional non-shared resources might vary
between the participants, leading to a perceived desynchronization as Saros detects
files for some participants while they are ignored for others.

10 Implementing Line Ending Normalization

The first roadblock I decided to address was the handling of line endings described
in section 9.1. I made this decision as resolving the issue seemed essential to allow-

Bhttps://gradle.org/

Phttps://help.eclipse.org/2019-12/index. jsp?topic=Y2Forg.eclipse.platform.doc.isvY,
2Fguide’2FresAdv_derived.htm

Ohttps://www. jetbrains.com/help/idea/content-roots.html#folder-categories

13

https://gradle.org/
https://help.eclipse.org/2019-12/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Fguide%2FresAdv_derived.htm
https://help.eclipse.org/2019-12/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Fguide%2FresAdv_derived.htm
https://www.jetbrains.com/help/idea/content-roots.html#folder-categories

10. Implementing Line Ending Normalization

ing IDE cross-compatibility. Furthermore, the issue was already well-defined and
confined to a specific section of the code, meaning it was easier to approach.

As an alternative, I also considered resolving the issue with the filesystem imple-
mentation described in section 9.2 first since resolving it promised a potentially larger
gain in compatible functionality. Furthermore, resolving this roadblock would remove
a more substantial issue with the Saros design, also providing a large benefit for the
general Saros development in the future. But I was hesitant to start with the roadblock
as I was not certain how much effort it would require. The filesystem implementa-
tion interacts with many other Saros components, meaning reworking it would also
require reworking or at least adjusting many related components. This especially ap-
plies to the IDE-specific Ul implementations, whose adjustment and/or redesign can
take up an almost unlimited amount of time depending on how much attention is
paid to usability. So, as the resolution of either of the roadblocks seemed essential to
enabling IDE cross-compatibility, I decided resolving the line ending issue first was
the better approach to ensure that I could resolve as many important roadblocks as
possible in the time I had.

10.1 Solution Approach

The most straightforward solution for this problem would have been requiring the us-
age of the UNIX line ending for all shared files. This is, however, not always realistic
as some files might require a specific line ending. Furthermore, this would go against
the default Git workflow, in which the local line endings are substituted when check-
ing out a project and the UNIX line endings are re-substituted when checking in new
code?!, meaning it could substantially reduce the ease of use of Saros by requiring the
user to change the setup of their local development environment.

As a more general solution approach, I decided to introduce line ending normaliza-
tion for Saros. This means that Saros substitutes all line endings when reading content
from an editor and re-substitutes the initial line endings when writing changes to the
editor. Normalizing the content ensures that all participants are working on exactly
the same content, independently of the line ending handling of the local system or
IDE. Ensuring a unified content handling is crucial for Saros to function, as it is oth-
erwise much harder to correctly apply remote actions to the local workspace and
to correctly validate that the workspace state of all participants is still in sync. Files
containing mixed line endings are explicitly not supported by the normalization logic.

But, even when normalizing the line endings internally, the issue of the differing
offsets still remains. The offsets are obtained through IDE-specific APIs. They are
read from the potentially non-normalized content and would therefore still have to
be adjusted. Such corrections could be done by counting the line separators from
the start of the file up to the given offset and then adjusting the value accordingly
depending on the line ending substitution. While this approach does work, it does
have the drawback of requiring Saros to go through the entire file content up to the
offset every time, causing a non-negligible overhead. As the offset is required for

2lhttps://git-scm. com/book/en/v2/Customizing-Git-Git-Configuration#_core_autocrlf

14

https://git-scm.com/book/en/v2/Customizing-Git-Git-Configuration#_core_autocrlf

10.2. Reworking the Text Positioning Scheme

basically every action transferred by Saros, this overhead could be quite substantial,
potentially making Saros unusable. This overhead could be reduced by introducing a
caching mechanism for quicker offset corrections, but this cache would be difficult to
implement and would have to be accurately updated for every document change.

To avoid having to calculate the offset correction, I instead decided to replace the
current position handling with a line-ending agnostic one. More specifically, I decided
to implement a positioning system that uses the line number and in-line offset to
specify a position in a document. With such a positioning scheme, it is possible
to specify a position in a document independently of the contained line endings as
the character-based offset is only used to specify the position inside a specific line.
Choosing this approach also meant that I had to adjust the Jupiter algorithm since it
uses the text position as part of the operational transformation.

This approach still requires Saros to calculate the line number and in-line offset. While
the in-line offset is a simple calculation given the offset of the line start, calculating
the corresponding line number for a specific offset is more complex. In the worst case
scenario, this requires the same computational effort as correcting the character-based
offset, having to count the line endings up to the given offset. But, while the caching
logic to speed up the offset correction logic would have to be implemented from
scratch, most IDEs, including Eclipse and Intelli] IDEA, already offer an optimized
API that can convert between offsets and line numbers. This makes this approach
much more favorable compared to correcting the character-based offsets, even though
it requires a larger rework of the Saros logic.

To resolve the roadblock, I started by reworking the text positioning scheme used by
Saros. Introducing line ending normalization first did not seem sensible. Much of
the Saros logic relies on correct text position handling. The previous, character-based
offset handling breaks when operating on normalized content as the used offsets are
obtained through the IDE API. This IDE API calculates such offsets using the internal,
non-normalized content. As a result, the offsets can’t be used for normalized content
as they might not point to the correct text position. This would make testing the im-
plemented changes almost impossible until a stable state had been reached, effectively
making testing unfeasible until after the text positioning scheme had been reworked
as well. Starting with the text positioning logic, then moving on to the Jupiter algo-
rithm, and only then introducing the actual line ending normalization allowed me to
work in incremental steps that were still testable throughout the process.

10.2 Reworking the Text Positioning Scheme

I reworked the text positioning scheme in pull request #862 and #872. As already
mentioned in the section covering the chosen solution approach, the main point of this
rework was to introduce a line-ending agnostic logic to point to a specific location in a
document. I chose to implement a new TextPosition class for this purpose using the
line number and in-line offset to specify a location in a document. Subsequently, I also
added a new TextSelection class representing a range of text as two TextPosition
objects.

15

https://github.com/saros-project/saros/pull/862
https://github.com/saros-project/saros/pull/872

10. Implementing Line Ending Normalization

To support this logic, I also added multiple utility methods to convert between a
normal text-based offset and the new positioning scheme. For the Eclipse and IntelliJ
IDEA specific part of Saros, I added conversion logic supported by the corresponding
IDE API to speed up the conversion process. Next to the IDE specific conversion
logic, I also added a general conversion utility located in the Saros Core which can be
used by implementations that operate without IDE support, mainly the Saros Server.
This general utility is also very helpful for unit testing to mock the logic that would
otherwise be handled by the IDE. To ensure that the logic functioned as intended, I
also added unit tests for each conversion utility implementation.

After adding the base logic necessary for the new positioning scheme, I integrated it
with the current Saros actions. I started by first adjusting the handling of selection
annotations as they are not synchronized using the Jupiter algorithm, meaning they
could be adjusted without having to touch the operational transformation logic. This
again allowed me to proceed in as small steps as possible while maintaining a testable
state for Saros.

I then proceeded with integrating the new text positioning scheme into the logic han-
dling local text edits. As part of these changes, I also had to adjust the activities used
to send such text edits to other participants. With the previous logic, the activities con-
tained the starting offset and length of the text edit. These parameters were needed to
correctly apply the text edit on the remote side and to correctly transform it using the
operational transformation algorithm. With the new logic, using the character-count-
based length of the text edit is no longer an option as it is not line-ending agnostic.
Instead, I decided to replace it with the line delta and in-line offset delta of the text
edit. These values describe the delta caused by the text edit, i.e. how many lines were
removed or added and how the in-line offset of the last line of the text edit changed.
This approach seemed preferable to sending the end position directly, as these deltas
can be adjusted much more easily during the operational transformation. If the end
position would be sent instead, it would have to be recalculated every time the opera-
tion is transformed, requiring to calculate the deltas anyway. Furthermore, with these
deltas, the end position can still easily be calculated when needed.

To make the calculation of these deltas easier, I added a utility class to the Saros Core.
I also added unit tests to ensure the conversion logic functioned as intended and also
worked correctly for different line endings. Even though the logic will only have to
work on UNIX line endings due to the line ending normalization, ensuring that it
is still compatible with Windows line endings is still useful. This prevents poten-
tial issues in case the logic gets used in a different context or our base assumptions
change at some point in the future and the content is no longer normalized or the
normalization default changes.

10.3 Adjusting the Jupiter Algorithm Implementation

As a result of modifying the positioning scheme used for text edit activities in Saros, I
also had to adjust the operational transformation logic used in the Jupiter algorithm.
I adjusted the Jupiter algorithm logic in pull request #872.

16

https://github.com/saros-project/saros/pull/872

10.3. Adjusting the Jupiter Algorithm Implementation

The adjustment of the operational transformation algorithm proved to be more time-
consuming than I first thought. As the new positioning logic uses multiple values
to specify a position, the transformation has to handle a lot more cases. With the
previous logic, all transformations were solely reliant on the offsets. With the new
logic, it makes a difference whether the two operations to transform are located in
the same line or not or whether they have a line delta or not. To make the logic
easier to understand, I made sure to simplify it as much as possible by extracting
repeated logic into separate methods. I also extended the comments explaining which
transformation case a specific part of the logic handles and what the expected outcome
is, making it easier to get an overview of the logic. Furthermore, I extended the
general documentation of the Jupiter algorithm logic to make it easier to understand,
maintain, and change in the future.

After adjusting the Jupiter algorithm, I spent considerable time adjusting, updating,
and substantially extending the unit tests covering the logic. As this logic is responsi-
ble for the core functionality of Saros and is therefore essential for its usability, making
sure that it runs correctly had a very high priority for me. Furthermore, faults in this
logic create the worst possible category of failures for the Saros plugin as they poten-
tially cause the destruction of content for the user. To make this outcome as unlikely
as possible, I invested a lot of time into ensuring that I did not introduce any faults
while adjusting the transformation logic. I did so by first updating the existing test
cases and then systematically introducing new test cases to cover all transformations
that are now possible. I also made sure to document the setup and expected result
for each test case to make it as easy as possible to debug test failures and identify
missing test cases. During this process, I also simplified and cleaned up the existing
testing frameworks by extracting shared logic, introducing helper and utility classes,
and extending the documentation.

To further ensure that the changes to the operational transformation logic did not
introduce any subtle issues with longer, more complex chains of transformations, I
also added a random test for the operational transformation logic with pull request
#874. The test creates a set number of random operations which are randomly dis-
tributed among two participants. Initially, these operations are only applied locally
for the chosen participant, ensuring that a long chain of operations is queued for both
participants. As the locally queued operations have to be taken into account when
transforming a remote operation to apply to the local state, this creates very complex
transformation setups. After a set number of operations has been created, the queued
operations for each participant are transformed and applied to the state of the other
participant, thereby synchronizing the document states. After each synchronization,
the test checks whether the document states actually converged. The number of op-
erations to create and the number of synchronization rounds can be adjusted at will.

In its current form, this test is only meant to be run manually. As it generates random
operations, it is not deterministic, which is why I decided to disable it by default. But,
even though the test in its base form is non-deterministic, specific test runs are still
reproducible. When the test starts, it prints the used seed for the random function.
This seed can be set manually, allowing the test to become deterministic in order to

17

https://github.com/saros-project/saros/pull/874

10. Implementing Line Ending Normalization

recreate specific test runs and better debug found issues.

10.4 Adding Line Ending Normalization

After I finished the positioning scheme rework and the associated Jupiter algorithm
adjustment, I started to implement the actual line ending normalization logic with
pull request #877. For the normalization, I chose the UNIX line separator (“\n”) as
the default to use internally. I tried to make this decision based on the most likely use
cases to minimize the overhead produced by the conversion. Even though a majority
of developers still use Windows as their operating system, which is most likely even
more prevalent in bigger companies, UNIX based operating systems still also hold
a considerable market share?>. Furthermore, as Intelli] IDEA already normalizes to
UNIX line endings internally, it made sense to match this format.

As normalization is not always necessary depending on the IDE, I decided to normal-
ize the content in the IDE-specific part of Saros to avoid additional overhead created
by unnecessary normalization. Even so, the utility to perform the actual normaliza-
tion is still located in the Saros Core to avoid code duplication. For Saros/E and the
Saros Server, I added logic to normalize all content before processing it for Saros pur-
poses and then revert the normalization before applying content changes locally. For
Saros/I an explicit normalization was not necessary as the IDE already normalizes the
content to begin with. This is also explicitly mentioned in the code to avoid erroneous
additions of the normalization logic in the future.

With these changes, I also introduced the implicit assumption that all content handled
in the Core is normalized. As the normalization is handled by the IDE-specific logic
and not the Saros Core itself, I extended the documentation of the corresponding
Core components to explicitly state this assumption, requesting all passed content to
be normalized. Furthermore, I added assertions checking for Windows line endings
in central Core classes. This should make it easier to notice when an implementation
does not normalize its content before passing it to the Core.

After introducing the assumption of working on normalized content in the Core, I
simplified some of the logic added for the new positioning logic. Previously, the logic
sometimes had to check which line ending was used in the given content to correctly
calculate the position or the deltas produced by a specific change. This was done by
looking for occurrences of Windows or UNIX line endings in the code. Such a check is
now no longer necessary as the content handled by the Core now always uses UNIX
line endings.

To finish the line ending normalization, I adjusted the consistency check in #878. This
consistency check is run as part of the Saros watchdog component, ensuring that the
shared workspace state is still synchronized for all participants. As the check uses the
checksum and length of the shared content, it had to be adjusted to run on normalized
content as well to avoid differing line endings being detected as an inconsistency.

2https://insights.stackoverflow.com/survey/2020#technology-developers-primary-
operating-systems

18

https://github.com/saros-project/saros/pull/877
https://github.com/saros-project/saros/pull/878
https://insights.stackoverflow.com/survey/2020#technology-developers-primary-operating-systems
https://insights.stackoverflow.com/survey/2020#technology-developers-primary-operating-systems

11. Preparing for the Filesystem Rework

With this final change, I had resolved all issues regarding the line ending handling
described in section 9.1.

11 Preparing for the Filesystem Rework

After finishing my work on the line ending normalization implementation, I decided
to work on resolving the issues with the current file system implementation described
in section 9.2. The decision to resolve this roadblock next is discussed in section 12
covering the actual filesystem rework.

As the necessary refactoring of the filesystem handling was quite complex, I started
by first cleaning up the surrounding logic, removing features that were made unnec-
essary with the filesystem rework, and simplifying the current filesystem interfaces.
This made the actual refactoring of the filesystem logic substantially easier. Fur-
thermore, working through the existing logic gave me a much better overview and
understanding of the current filesystem implementation and its usage as well as its
shortcomings. This made designing the new filesystem model easier.

11.1 Removing the Partial Sharing Logic

Saros supported a feature called “partial sharing”. This feature allowed the user to
select an arbitrary subset of resources from the current workspace to share instead of
sharing a complete project/module. It was initially added to allow the user to select
a minimal set of resources to share or to exclude specific resources from the session.

This feature was only supported by Saros/E and even there the implementation had
multiple issues when used with anything but the most basic setups®®. The general
issue with this feature was that it allowed the user to choose arbitrary subsets of
resources. As a result, it was possible to choose resources in a way that could not be
represented in a single tree, i.e. by excluding a folder but including its child resources.
Handling such arbitrary subsets is quite complicated as is shown by the existing faults
in the logic.

With the rework of the filesystem implementation allowing the user to share arbitrary
complete resource trees, the main feature of partial sharing — allowing the user to
share a number of complete (sub-)trees of the workspace — is already available. This
made the partial sharing feature almost completely obsolete. After discussing the
issue with the rest of the Saros team, I decided to remove the feature. The removal
of the partial sharing logic allowed me to simplify the existing resource sharing logic,
making the following rework less complex.

To start the process of removing the partial sharing feature, I first just removed the Ul
capabilities to access it in pull request #880. This was done as, after the discussion on
whether to remove partial sharing, it was decided that the feature should be removed
before the Saros/E release 16.0.0 which was being prepared at that time. To not
delay the release or add the need for further testing, the easiest and quickest option

23Gee issues #31, #36, #44, and #256.

19

https://github.com/saros-project/saros/pull/880
https://github.com/saros-project/saros/issues/31
https://github.com/saros-project/saros/issues/36
https://github.com/saros-project/saros/issues/44
https://github.com/saros-project/saros/issues/256

11. Preparing for the Filesystem Rework

was to only remove access to the feature instead of completely removing its logic from
the code base.

I removed the complete partial sharing logic later on with the pull request #882. This
allowed me to simplify the logic handling the resource negotiation and resource scope
of a running session. Previously, the logic had to be able to handle specific sets of
resources that were shared. Removing partial sharing meant that the handling could
instead be restricted to only sharing entire projects/modules.

11.2 Reworking the Resource Transport Logic

To correctly synchronize the state of the shared workspace for all participants, Saros
needs to be able to identify and access specific resources in the workspace. When
only working in the local context, this can easily be accomplished by representing a
resource as a composite of a project/module and a relative path.

This way of identifying resources cannot be directly applied when transferring ac-
tions to remote participants, as their local representation of the project/module might
differ. Instead, Saros replaces the reference to the project/module with a unique ID
representing it. The local mapping of the IDs is set up as part of the resource negoti-
ation. This way of representing a resource in a client-agnostic way was done through
the class SPath.

While this class was initially only meant to be used in the transport logic, over the
years, it was also used in many other parts of the implementation of the Saros Core
and the IDE-specific components to represent resources for non-transport-related
logic. This made the general Saros filesystem concept and transport logic, as well
as logic containing incorrect usages of SPath, harder to understand and maintain.
Furthermore, the usage of SPath introduced issues that could have been avoided by
instead using the Saros filesystem implementation directly. The process of resolving
the resource described by an SPath object was not guaranteed to succeed, adding an-
other point of failure that had to be handled. Furthermore, SPath did not provide a
way of specifying the exact type of the resource that was referenced, leading to poten-
tial ambiguity if the referenced resource existed locally but was not of the expected
type. Additionally, this ambiguity meant that SPath needed a way of resolving a local
resource without knowing its type. As the Saros filesystem implementation does not
offer a resource object of indeterminate type, the logic had to check for the type of the
resource in the local workspace. Thus the conversion could only succeed if a matching
resource existed in the workspace. This goes against the general design approach of
the Saros filesystem implementation where all resource references are seen as handles
for resources that do not have to necessarily exist in the workspace.

To resolve these issues, I decided to rework the resource transport logic. I started
with pull request #934 by introducing the new class ResourceTransportWrapper to
replace SPath in its intended usage. ResourceTransportWrapper uses generics to
specify which resource type is contained. This allowed the logic to avoid the resource
type ambiguity and removed unnecessary resource conversions. I also adjusted the
classes using the ResourceTransportWrapper to only make the resource objects rep-

20

https://github.com/saros-project/saros/pull/882
https://github.com/saros-project/saros/pull/934

11.3. Simplifying the Existing Filesystem Interfaces

resented by the wrapper available to callers instead of the wrapper itself. This should
hopefully avoid the transport class erroneously being used for non-transport-related
logic.

Afterwards, with pull request #938, I replaced all other usages of SPath for unin-
tended purposes, i.e. to identify resources outside of the transport context, with di-
rect usages of the corresponding resource objects. This had been made much easier
through the prior adjustment of the transport logic, as it now provides the correct
resources objects directly. Subsequently, I deleted SPath as well as its related classes
as its usage had been completely replaced. Furthermore, I adjusted the remaining
references to the SPath concept to reflect the new logic.

11.3 Simplifying the Existing Filesystem Interfaces

As mentioned in section 3.1, the Saros filesystem implementation grew over the years,
originating from the Eclipse filesystem interfaces. These interfaces were not adjusted
during the extraction of the Saros Core logic. As a result, they still contained a lot
of Eclipse-specific methods and method parameters. To make reworking the Saros
filesystem implementation easier, I decided to first improve and simplify the existing
Saros filesystem interfaces.

This process can be grouped into two categories:
e Removing no longer needed or unfitting classes, interfaces, and methods
e Simplifying existing methods and improving documentation

The following pull requests removed logic that was no longer needed or did not match
the design of the filesystem logic:

#906 removed IResource.move(...), a method used to move resources in the local
filesystem. Moving files is a somewhat complex process that is handled differ-
ently by different IDEs. Creating an abstraction for this process complicated
the implementation. As the method was never used in the Saros Core, such an
abstraction seemed unnecessary. Delegating the logic to the IDE-specific parts
of the implementation without the need for an abstraction instead allows for a
tighter integration into the IDE filesystem logic.

#915 removed IContainer.getDefaultCharset (), a method that allowed requesting
the default character encoding for a particular folder or project/module. The
method was only used to request the default character encoding of the shared
project/module for a compatibility check during the session negotiation. But, as
the logic also does this for every shared file, it is very unlikely that the default
project/module encoding is not already included in this check. Furthermore,
this method assumes that every folder and project/module has a default charac-
ter encoding. While this is true for Eclipse, this assumption does not necessarily
hold for other IDEs. Implying such a granularity where it does not exist might
lead to faults in the character encoding handling.

#916 removed IResource.adaptTo(...), a method that could be used to safely trans-

21

https://github.com/saros-project/saros/pull/938
https://github.com/saros-project/saros/pull/906
https://github.com/saros-project/saros/pull/915
https://github.com/saros-project/saros/pull/916

11. Preparing for the Filesystem Rework

#918

#943

#950

#953

form a resource object into a different resource type if possible. This method
was a remnant of the initial implementation modeled after the Eclipse filesys-
tem API. While such a method can be useful when the type conversion requires
additional logic, it proved unnecessary for Saros, where it just checked if casting
the object was possible. Wrapping this logic just made it harder to understand
what the logic was doing and added unnecessary calls to the logic. Instead of
wrapping this cast in the method, it is better to instead directly cast the object
and only check for type compatibility if necessary.

removed FolderMoveActivity, a class that could be used to signal the move of
a folder to other participants. Packaging the move of a folder as a single activity
had been a previous approach that was abandoned along the way. Instead, Saros
now sends a creation activity for the new location of the folder and a deletion
activity for the old location of the folder. This class was a remnant of the old
approach that was never cleaned up.

removed IProject.findMember(...), a method that could be used to look up
a resource object in the local workspace for a given path. The method was no
longer being used after the removal of SPath. Furthermore, as explained in
section 11.2, this method did not match the intended design of the filesystem.
Instead of treating resource objects as handles, meaning the object can exist even
if the resource it describes does not exist, the method could only ever return
resource objects for existing resources.

removed IWorkspaceRoot, the counterpart of an interface in the Eclipse filesys-
tem API that describes the root resource of the local workspace. This concept
does not match the design of the local workspace for other IDEs. For Intelli]
IDEA, for example, the workspace is a collection of modules, each operating on
its own sets of paths. As a result, there is no single root that can be used to de-
scribe the entire workspace. Furthermore, the interface and its implementations
were only ever used in the Eclipse-specific part of Saros, meaning it did not have
to be available to the Core or other IDE implementations.

consolidated the path handling in IResource by removing getLocation() and
getFullPath(). In the previous setup, the Saros resource interface had three
methods to access the path of a resource: getLocation(), providing the absolute
path in the local filesystem; getFullPath(), providing the project name concate-
nated with the project-relative path; and getProjectRelativePath(), providing
the project-relative path. These three methods were remnants of the Eclipse-
based filesystem design and exactly match their Eclipse counterpart.

I removed getLocation() as it went against the design of the filesystem ab-
straction. The Saros filesystem interface is supposed to be an abstraction of the
IDE-specific filesystem implementation that can be used by the Core. As such,
it should have no need for absolute paths as they are not usable in the context
of the Core. Logic that needs to operate on absolute paths most likely belongs
into the IDE-specific parts of Saros, in which case it should use the IDE-specific
filesystem API directly instead of relying on the Saros filesystem abstraction.

22

https://github.com/saros-project/saros/pull/918
https://github.com/saros-project/saros/pull/943
https://github.com/saros-project/saros/pull/950
https://github.com/saros-project/saros/pull/953

#976

11.3. Simplifying the Existing Filesystem Interfaces

Still providing access to absolute paths led to hacks using them to replicate
some IDE-specific behavior in the context of the Core as a workaround. To
avoid this, restricting the access to absolute paths seemed sensible to me. For
the one exception in the Core that still relied on absolute paths to uniquely
identify resources in the local context — a cache for checksums of the content
of shared files, used to speed up the resource negotiation — I added a separate
utility class allowing the resolution of absolute paths for resources.

I removed getFullPath() as it worked based on the assumption that all re-
sources are directly located below a project/module and that combining the
project/module name and the project-/module-relative path of a resource will
lead to a valid path for that resource. This is, however, not the case for other
IDEs. In Intelli] IDEA, a module just represents a collection of so called content
roots. Each content root is a pointer into the local filesystem. In particular, this
means that a module can contain a forest of resource trees. As a result, con-
catenating the module name and the module-relative path is not guaranteed to
result in a unique path. Furthermore, the resulting path also does not have to
be valid as the base folder of the content root does not have to have the same
name as the module.

The usage of getFullPath() was replaced by using getProjectRelativePath().
This does not resolve the issue of module-relative paths not necessarily being
unique, but this issue is related to much broader issues of the current filesystem
implementation and the clash of the IDE-specific filesystem models that has
been resolved with the rework of the Saros filesystem described in section 12.

removed the IWorkspace methods getLocation() and getProject(). These
methods were no longer being used. Furthermore, the assumption that the
workspace can be represented by a single root resource does not hold for IntelliJ
IDEA, making it impossible to implement the method in this case.

The following pull requests simplified the remaining filesystem interface methods
and improved the documentation:

#907

#908

removed unnecessary parameters from methods in different Saros filesystem in-
terfaces and their implementations. These parameters were kept as a remnant of
the initial, Eclipse-based design of the filesystem. As such, the parameters were
highly Eclipse specific and therefore not supported by other IDEs. Furthermore,
the parameters were not even used by the Eclipse implementation of the meth-
ods most of the time, meaning they were completely unnecessary. And, in the
few cases where the parameters were actually being used, the given values were
always the same. Such values were replaced by constants in the Eclipse-specific
implementation of the method.

introduced an enumerated type (i.e. enum) for the different resource types han-
dled by Saros. Previously, as a remnant of the initial Eclipse-based implemen-
tation, these values were defined as static bit masks. As they were never used
as bit masks in Saros, replacing them with an enum simplified the logic dealing
with resource types.

23

https://github.com/saros-project/saros/pull/976
https://github.com/saros-project/saros/pull/907
https://github.com/saros-project/saros/pull/908

11. Preparing for the Filesystem Rework

#952 moved the methods getFile(...) and getFolder(...) from IProject to its
parent interface IContainer. As the methods provide generic filesystem func-
tionality that is not specific to projects/modules, they should be located in the
more general interface to also apply for the other container implementations.

During this process, I also explicitly defined the expected behavior of the moved
methods and adjusted the implementations to match this behavior. This was
necessary as the behavior of the implementations for Eclipse and Intelli] IDEA
differed.

#977 added documentation to all filesystem interfaces and their methods, explicitly
defining the provided functionality and expected behavior of the implementing
classes. Having an IDE-independent documentation instead of just referring to
the Eclipse API documentation is very important to create an interface that is
actually implementable for different IDEs. Furthermore, having an explicitly
defined expected behavior makes it a lot easier to create compatible filesystem
implementations as part of the rework.

#978 added default implementations for methods with constant return values. This
made the implementations of the interfaces cleaner by avoiding boilerplate logic
that is always the same.

#1005 adjusted IContainer.members() to return a list instead of an array. This was
done to simplify the current usage of the method which always creates a list
from the array. Furthermore, the implementations already operated on a list in-
ternally, only converting it to an array for the return value. By directly returning
the list, these two conversions can be avoided.

A UML diagram of the filesystem interfaces before and after the cleanup can be found
in appendix B.1.

During these improvements of the Saros filesystem interfaces, I repeatedly encoun-
tered issues where the Saros Server implementation contained the last and only usage
of a method that I wanted to remove. This was caused by the general design of the
Saros Server filesystem implementation. While the implementations for Eclipse and
Intelli] IDEA both follow the project-/module-based model, meaning all resources
are defined relative to a project/module, the implementation of the Server is centered
around the workspace concept. All resources are defined in relation to the workspace.
The so called “projects” in the context of the Server are just the direct child folders of
the workspace root. As a result, the implementation heavily relies on the workspace
concept, which was almost entirely removed as part of this cleanup. The problem
with the Saros Server filesystem design is also described in the issue #980. Further-
more, as the Saros Server does not have a backing filesystem implementation, most of
the Server-specific logic still uses the filesystem abstraction meant for the Core.

After discussing the issue with the rest of the Saros team, I decided to keep my work
on the Saros Server filesystem implementation to a minimum. The Saros Server is still
in an alpha state, has never been officially released, and did not have any developers
actively working on it as of the time of writing. Investing a lot of time into adjusting

24

https://github.com/saros-project/saros/pull/952
https://github.com/saros-project/saros/pull/977
https://github.com/saros-project/saros/pull/978
https://github.com/saros-project/saros/pull/1005
https://github.com/saros-project/saros/issues/980

12. Implementing an IDE-Independent Filesystem Model

its filesystem implementation did not seem sensible to me. To keep the rework to a
minimum, instead of reworking the Saros Server filesystem implementation, I kept
the necessary methods that were removed from the interfaces around and accessed
them directly instead of through the interfaces. This created additional technical debt
in the Server implementation, but this was an acceptable tradeoff in my opinion.

12 Implementing an IDE-Independent Filesystem Model

The second roadblock I decided to address regarded the issues with the filesystem
implementation described in section 9.2. This seemed to be the natural progression as
resolving the roadblock seemed essential to providing IDE cross-compatibility. Before
making this decision, I also looked into resolving the roadblock regarding the sharing
scope described in section 9.3. I ultimately decided against working on it at that point
in time as resolving the issue is not necessary for basic IDE cross-compatibility but
rather improves the usability and user experience in cross-IDE setups. Furthermore,
the logic deciding what not to share needs to integrate with the filesystem imple-
mentation, thus an improved filesystem logic would be beneficial. This is further
discussed in section 14.1.

12.1 Solution Approach

The simplest solution approach would have been to keep the current filesystem im-
plementation and exclude/forbid all cases that would lead to issues in cross-IDE
sessions. While this approach would theoretically work, it would substantially limit
the usable project/module setups, thereby severely reducing the usability of Saros.
Furthermore, these restrictions would be very hard to convey to the user in an easily
understandable fashion as they are the result of technical restrictions of the different
IDEs. As a compromise, different sharing modes could be implemented for Saros,
meaning that such restrictions would only apply for cross-IDE sessions. But this ap-
proach would only further complicate the existing sharing logic and introduce new
complicated corner cases that would have to be dealt with.

In my opinion, using sharing logic that is tightly integrated with the IDE filesystem
model is only an option when solely connecting to Saros implementations for the
same IDE. Using concepts of the IDE filesystem model like projects or modules for
the Saros sharing logic only functions well when both sides implement logic specific to
that model. This is exactly what was done while implementing Saros/E and Saros/I
in the past. The existing sharing logic heavily relies on assumptions of how the
filesystem on the other side behaves and what model it uses. Otherwise, it is just
too complicated to correctly map differing filesystem models in a way that allows for
compatibility.

To avoid such issues, I suggest dropping the integration with the IDE filesystem model
and instead make the sharing logic completely IDE-independent. As a consequence,
this would also mean dropping the capabilities to create or adjust projects/modules
as part of the Saros resource negotiation, requiring the user to do so instead. But
this is a sacrifice that has to be made in my opinion. This comes down to what

25

12. Implementing an IDE-Independent Filesystem Model

functionality Saros aspires to provide. For me, it is providing developers with the
means to collaboratively work on source code. Providing integration with the IDE
workspace model is more the job of a build tool from my point of view. It falls
outside of the scope of Saros’ core capabilities and is too complicated to do well
without requiring massive development efforts. And even then, it will be hard to
cover even just the most basic setups, as the plugin would have to be able to work
with other build tools (like Gradle or Maven?!) which would usually provide the
correct setup for the IDE-specific model.

To implement such an IDE-independent filesystem approach, I decided to follow the
general concept described in the thesis by O. Hanflen (see section 5.4). The concept of
sharing projects/modules is replaced by the concept of sharing so called “reference
points”. A reference point in this context is just a pointer into the local workspace.
So, instead of choosing a project/module to share, the user would instead pick an
arbitrary folder in the workspace to use as a reference point. All child resources of
the chosen reference points would then be shared as part of the session. When joining
a session, the user could simply choose which folder in the local workspace should
represent which shared reference point. As each user has a mapping for the shared
reference points, the path relative to the reference point for a resource can still be used
to identify a specific resource for all clients.

In Hanfsen’s proposal, he also suggested separating the responsibilities of reference
points. In the old filesystem model, the IProject class representing a project/ module
in the workspace had two different responsibilities:

e It provided access to all resources contained in the project/module represented
by the specific IProject object. More specifically, it provided the capabilities of
listing all resources contained in the project/module.

e It provided a reference point which could be used to create and resolve IDE-
independent resource representations. More specifically, it provided a reference
object with which specific relative paths could be created and resolved.

The proposed reference point concept instead should only provide the functionality to
create and resolve IDE-independent resource representations. A result of this design
choice would be that logic located in the Saros Core would no longer be able to request
which resources are contained in a given reference point. As some of the Core logic
still relies on these capabilities, such logic would have to be adjusted. To replace the
split-off capabilities, Hanfen suggested adding an additional mapper that can convert
between reference points and their resource representation.

I decided against following this design as I do not think that this split provides enough
merit. While it makes the concept of a reference point cleaner, it would increase the
effort necessary to adjust the existing logic to the new filesystem model. Not splitting
these responsibilities allowed me to keep the existing filesystem interface and their
usages. As a result, the Saros Core logic only needed very minor adjustments during
the rework.

Zhttp://maven.apache.org/

26

http://maven.apache.org/

12.2. Reworking the Filesystem Implementation for Saros/I

While designing the reference-point-based filesystem model, I encountered corner
cases that I explicitly decided to exclude with this implementation. Nested reference
points, meaning reference points that are contained in the resources of a different
reference point, are not supported. In particular, this means that each reference point
must represent a resource tree that is completely distinct from every other reference
point resource tree. This restriction is necessary as nested reference points are very
hard to handle. Two reference points that are nested in the local workspace could
theoretically represent two completely distinct resource trees in a different workspace.
This makes it very hard to correctly apply changes to such setups as some resources
might belong to multiple reference points in some, but not all workspaces. This
restriction is enforced by the Saros logic.

Not allowing nested reference points also makes it much harder to support expanding
the sharing scope upwards. While the logic allows adding new reference points,
expanding the scope by adding distinct resource trees, it does not allow expanding
the scope by sharing parent resources of currently shared reference points. This logic
would be necessary for the common use case scenario of first starting to work on a
reduced set of files but then later deciding to expand the pair programming session
to include a wider range of resources or even the entire workspace. Technically, this
functionality could be added later on by dropping the reference points that would be
included in the newly added reference point, but this falls outside of the scope of this
thesis. Supporting this case would require a lot of complicated logic as all resources
that were previously defined relative to the dropped reference points would have to be
updated to be relative to the new parent reference point. As there is no central place
handling and storing resource references, the logic would also have to ensure that the
resource update is applied to every currently held resource reference. Furthermore,
this would have to be applied retroactively to all activities in transit at that point,
creating a possible race condition as it has to be made sure that no activities are
processed locally before the reference point mapping has been completely updated.

For the rework of the filesystem implementations, I again kept the rework of the
Saros Server to a minimum as it is still in the early alpha stages and is not in active
development at the time of writing. As the Server filesystem implementation was
IDE-independent to begin with, the existing logic should work relatively well with the
other reference-point-based filesystem implementations. I have, however, not tested
this, so this is only a guess on my part.

12.2 Reworking the Filesystem Implementation for Saros/I

I decided to start migrating the Intelli] IDEA implementation of Saros first. Due to
my work on Saros/I as part of my bachelor’s thesis and my employment as a student
researcher, I am very familiar with the existing logic, the Intelli] IDEA APIs that were
used, and the Intelli] IDEA filesystem model. Starting with Saros/I allowed me to
gain experience and discover issues to look out for while still in a familiar context,
making the following reworks easier.

To start, I introduced the new reference-point-based filesystem implementation as
well as a utility class to convert between the new implementation and the Intelli]

27

12. Implementing an IDE-Independent Filesystem Model

IDEA filesystem representation with pull request #997. As the previous filesystem
design already defined all resources relative to IProject, i.e. the Saros wrapper of
a module, I could model the new implementation after it by simply replacing the
concept of wrapping a module with wrapping the resource representing a reference
point. This also allowed me to reuse parts of the existing code, further reducing the
effort required to create the new implementation. Afterwards, I proceeded migrating
the different components of the Intelli] IDEA implementation to the new filesystem
implementation.

I started with migrating most of the internal components with pull request #998,
mainly replacing usages of the old filesystem implementation. Additionally, I re-
moved some module-specific logic that was no longer necessary with the new filesys-
tem model. This process continued with pull request #1001, adjusting the logic han-
dling local and remote resource changes. I removed the logic handling specific corner
cases related to modules and adjusted some of the special case logic to apply to refer-
ence points instead.

Next, I migrated the Ul logic to support the reference-point-based sharing model with
pull request #999. This proved easier than expected as the feature set of Saros/I is still
restricted. It only allows sharing a single reference point and does not allow adding
new reference points during the session. As a result, most of the Ul elements could
remain unchanged. Furthermore, no longer supporting the creation or adjustment of
modules as part of the negotiation allowed me to drop a lot of the more complicated
Ul-related logic. The wording used in the UI was also adjusted with pull request
#1008.

Lastly, I cleaned up the remnants of the old filesystem logic with pull request #1000.
This included removing the old implementation and updating all references to it or
the project-based filesystem model in documentation as well as class, method, and
variable names.

As the Intelli] IDEA implementation of Saros is not covered by the Saros Testing
Framework, I instead had to rely on manual testing to ensure that the rework did not
break any functionality. For these tests, I proceeded just like when preparing for a
release, testing all available features, paying special attention to potential issues with
the consistency of the shared workspaces.

12.3 Cleaning up the Saros Core

After finishing the migration of Saros/I, I continued with migrating the Saros Core.
As the filesystem interfaces remained unchanged, I had to adjust very little of the
actual Core logic. Instead, with pull request #1012, I cleaned up the Core by replacing
references to the old filesystem implementation in documentation as well as class,
method, and variable names.

The only exception was a small part of the sharing logic that contained a specific
handling for sharing Eclipse project configuration files. As the logic was no longer
needed and did not belong in the Core to begin with, I removed it.

28

https://github.com/saros-project/saros/pull/997
https://github.com/saros-project/saros/pull/998
https://github.com/saros-project/saros/pull/1001
https://github.com/saros-project/saros/pull/999
https://github.com/saros-project/saros/pull/1008
https://github.com/saros-project/saros/pull/1000
https://github.com/saros-project/saros/pull/1012

12.4. Reworking the Filesystem Implementation for Saros/E

12.4 Reworking the Filesystem Implementation for Saros/E

Migrating the Eclipse implementation proved to be a lot more tricky than the Intel-
li] IDEA implementation. This was partly due to me not being as familiar with the
implementation of the Eclipse filesystem model and partly due to Saros/E being in
development for longer. It provides a much wider range of features which have grown
over the years through the work of many different developers. As a result, it carries
technical debt caused by workarounds introduced to accommodate the rapid feature
growth. Furthermore, to provide better usability, many of the additional features
provided a better integration with the IDE, specifically the workspace model. While
this was most likely the right decision at that time to provide the best user experi-
ence possible, it also made migrating the implementation to a more IDE-independent
filesystem model much more difficult.

I again started the migration by introducing a new, reference-point-based filesystem
implementation with pull request #1023. This required more effort than the previ-
ous migration of the Intelli] IDEA implementation as the existing filesystem logic
had to be completely rewritten. The previous implementation was largely a wrapper
for the Eclipse filesystem API. As such, it matched the resource hierarchy structure
provided by Eclipse. This was not an issue with the project-based sharing model
as the Eclipse filesystem model also defined all its resources relative to the project
they belonged to. But, with this new sharing model, resources are defined relative
to an arbitrary folder in the workspace. This cannot be easily represented by solely
relying on Eclipse resource objects. The difference in abstraction level between the
previous implementations for Intelli] IDEA and Eclipse made a big difference in this
case. While the previous implementation for Intelli] IDEA defined all its resources
relative to the Saros wrapper of a project/module, the implementation for Eclipse
defined them relative to the Eclipse representation of a project/module itself. As a
result, for the Intelli] IDEA implementation, I was able to just replace the concept of
wrapping a project/module with the concept of wrapping a reference point. In the
Eclipse implementation, on the other hand, I had to completely redesign and rewrite
the logic to define resources relative to the Saros wrapper for a reference point in-
stead of relying on Eclipse resource abstraction. I largely based the new design on the
one used for the Intelli] IDEA migration. As an added benefit, this also resulted in
the implementations for Eclipse and Intelli] IDEA being similar, making them easier
to maintain in the future. A utility class to convert between a Saros resource object
and the corresponding Eclipse filesystem representation was also added to make the
usage and integration of the new filesystem implementation easier.

I started adjusting the existing logic to use the new filesystem implementation by first
migrating various internal classes with #1032. These changes mostly boiled down to
replacing the usage of the old filesystem implementation with the new one. Subse-
quently, I migrated the logic handling local changes in the filesystem with #1033. As
part of this migration, I also optimized the logic to only check for changes of shared
resources instead of looking at all changed resources and then checking for each of
them whether it is actually shared. This should reduce overhead, especially for the
handling of bulk operations like refactorings affecting multiple files.

29

https://github.com/saros-project/saros/pull/1023
https://github.com/saros-project/saros/pull/1032
https://github.com/saros-project/saros/pull/1033

12. Implementing an IDE-Independent Filesystem Model

After migrating the general internals, I moved on to migrating the Ul This required
considerably more effort than the rest of the migration process. I started by migrating
the Ul internals with pull requests #1034, #1036, and #1039. Again, most of the
changes were just replacing the usage of the old filesystem implementation with the
new one. But I also spent some time introducing some small optimizations. With the
new filesystem implementation, the conversion of Eclipse resource objects to Saros
resource objects got significantly more expensive. While the old logic could run this
conversion in O(1) time as the old filesystem implementation was just a wrapper
for Eclipse filesystem objects, the new conversion logic requires O(n) time where n
is the number of shared reference points. This is due to the conversion logic now
having to check which, if any, of the shared reference points the resource belongs
to. Most of the time, this is not an issue as the number of shared reference points
is generally quite low. Furthermore, such conversions are usually only done for a
small number of resources at a time. But there are specific cases in which a large
number of resources is converted at once where this increase in runtime complexity
might have a negative impact on performance. An example of such a case is adding
shared resources to the session, e.g. during the session start. During a session, all
shared resources are marked with a special icon in the project view to indicate that
they are shared through Saros. When shared resources are added, these icons have
to be updated. To accomplish this, the logic iterates through all resources in the
workspace. For each resource, it has to apply the resource conversion as it needs the
Saros resource representation to check whether it is shared. Even though this process
happens in a background thread, it could still put substantial strain on the system
performance. To alleviate this issue, I introduced a caching mechanism holding the
last used reference point in the corresponding UI logic. This reduces the conversion
time to O(1) in most cases as the resource trees are processed in depth-first order,
meaning all resources of a reference point will be processed before proceeding to the
next reference point. Therefore, an actual reference point lookup requiring O(n) time
is only necessary for the first resource processed for each reference point.

Next, I migrated the wizard used when starting a session or adding resources to a
running session with #1035. The wizard allows the user to select the resources to
share from a checkbox-tree showing the resources in the workspace. The migration
of the wizard proved difficult for multiple reasons. Over the years, a lot of additional
features, most notably saving and restoring specific selections as well as undoing and
redoing changes, had been added to the wizard. A lot of these features were not
integrated very well into the core selection logic, meaning they had to be rewritten
as part of the migration. Furthermore, as the handling of the selected resources was
still a remnant of the partial sharing feature, it had to be rewritten as well. The
most pressing issue, however, was the checkbox-tree implementation provided by the
Eclipse API, as it did not offer some of the needed functionalities. With the new
reference-point-based sharing model, users can only share complete resource trees.
To match this restriction, they should not be able to deselect a resource located below
a selected reference point. Additionally, they should not be able to select resources in
a way that would lead to the creation of nested reference points. These restrictions
should be enforced by the wizard, not allowing the user to make illegal changes.

30

https://github.com/saros-project/saros/pull/1034
https://github.com/saros-project/saros/pull/1036
https://github.com/saros-project/saros/pull/1039
https://github.com/saros-project/saros/pull/1035

12.5. Adjusting the STF after the Saros/E Migration

But the used checkbox-tree implementation does not provide a way of disabling tree
elements, making it very hard to enforce these restrictions. As I did not want to
write a complete new checkbox-tree implementation, I decided to instead revert illegal
changes made by the user. This happens transparently to the user, meaning to them
it just looks like the change never happened. While this does not provide the best
usability, I did not see any other way around this issue in the given time frame. This
issue is also expanded upon in section 14.2.

As the last UI component, I migrated the wizard to select how to map the shared
reference points in the local workspace when joining a session with #1037. The same
issues as before also applied here. The wizard contained a lot of logic specific to the
previous resource model, meaning it had to be rewritten almost entirely. Furthermore,
during the rework, I discovered a general problem with the Eclipse workspace model.
For a resource to be recognized by the workspace, it has to be loaded as part of
a project. Even if the resource is present in the filesystem, it won’t be accessible
in the workspace unless it is part of a project. As a result, the wizard still has to
support creating a project and using it to represent a shared reference point to cover
cases where there are no projects in the workspace. While it would have also been
possible to halt the negotiation and request the user create a project before continuing,
this would have provided poor usability. Even though this technically provides the
option to create a project as part of the resource negotiation, which is what I wanted
to avoid with the new sharing model, it is in no ways comparable to the previous
project integration which aimed to correctly set up the shared project in the local
workspace. Instead, the new logic just creates the most basic project setup possible
to meet the minimum requirements to map resources into the workspace. The actual
configuration of the project still has to be done by the user after the negotiation if
they want to use IDE features like specific language support. As a side effect of this
new handling, when creating a new project to represent a project completely shared
through Saros, the project configuration that is transferred as part of the resource
synchronization will be automatically picked up by Eclipse. In such cases, no further
configuration by the user would be necessary, providing almost the same usability as
fully supporting setting up the project.

After migrating the Ul, I proceeded with cleaning up the Eclipse implementation
with pull requests #1038 and #1049. I removed the old resource implementations and
replaced all references to the old sharing model in documentation as well as class,
method, and variable names, completing the migration of the Saros/E source code.
With these changes, I had resolved all issues regarding the filesystem implementation
described in section 9.2.

12.5 Adjusting the STF after the Saros/E Migration

To complete the migration process to the new filesystem model for Saros/E and en-
sure that it did not introduce any new faults, I adjusted the Saros Testing Framework
(STF) to work with the changed Ul components with pull request #1040. As the STF
identifies UI components by their names and displayed content, I had to adjust the
test logic to match the new wording. Furthermore, I had to adjust the interaction with

31

https://github.com/saros-project/saros/pull/1037
https://github.com/saros-project/saros/pull/1038
https://github.com/saros-project/saros/pull/1049
https://github.com/saros-project/saros/pull/1040

12. Implementing an IDE-Independent Filesystem Model

UI components whose fields had changed as part of the rework.

While this migration process seemed quite simple in the beginning, with the tests
passing locally after only some minor adjustments, getting them to run successfully
as part of the Saros project continuous integration (CI) setup presented more of an
issue. When running the test suite through Docker? containers as part of the CI
setup, multiple tests failed with a timeout while trying to open an editor for a shared
resource for some of the non-host participants. This was due to the project no longer
being correctly registered as a Java project for some of the invited participants. While
the project configuration was correctly set up as part of the resource negotiation with
the previous sharing model, the new sharing model only creates a very basic project
without any language support. Some of the STF APIs used to access the shared files
through the Eclipse Ul differentiate between files and classes. As a result, when the
test looks for a class in a project that is set up without Java language support, it won't
find the file, even if it exists in the workspace. I resolved this issue by adjusting the
logic used to set up the test sessions in cases where the projects require Java language
support. Whenever a new project should be created as part of the test setup, instead
of solely relying on the Saros resource negotiation to create the project on the invitee’s
side, a stub project with the correct language support is created on the invitee’s side
which is then used for the resource negotiation. This approach mimics the behavior
of creating a new project as part of the session setup while still guaranteeing that
the project is configured correctly on the invitee’s side. To make using this new setup
process as easy as possible, I added utility methods that can be used to set up a session
with Java language support. Furthermore, I adjusted the documentation of the STF
methods allowing test setups that create a project as part of the resource negotiation
to mention that they should only be used in cases where the project language support
is not of interest.

Analyzing and resolving this issue required a lot of work as the testing conditions
were quite unfavorable:

Firstly, as the problem lay with the STF API, neither the log files nor the screenshots
of the failure state provided by the CI environment showed any obvious issues. Even
though the screenshots showed that the project did not support any Java language
features, this was quite hard to notice without explicitly looking for it. The fact that
the project did not provide Java language support was only indicated by the absence
of a small “]” above the project icon.

Secondly, every test run took around 40 minutes. This meant that it was very cum-
bersome running the tests multiple times to analyze the issues. Running the tests
separately was not an option as some of the test failures could not be observed in
such a setup. Furthermore, the test order was not predetermined. So, even though
the desktop environment of the Docker container for the test workers could be ac-
cessed through VNC?%, it was difficult to figure out when to actually observe the test
workers without having to sit through the entire test run.

Phttps://www.docker. com/
2ohttps://en.wikipedia.org/wiki/Virtual _Network_Computing

32

https://www.docker.com/
https://en.wikipedia.org/wiki/Virtual_Network_Computing

12.6. Preventing Nested Reference Points

Thirdly, the test failures were very inconsistent. The set of failed tests often changed
by quite a lot, making it hard to analyze the issue across subsequent test runs. This
was due to intricacies with how Eclipse handles resource refreshes. As part of the
session setup, the .project file defining the language support was transferred to the
invitee’s workspace. Reloading this file would result in the project correctly providing
Java language support, thereby fixing the test issues. While Eclipse should automat-
ically pick up on such changes to the .project file, this does not always seem to
happen immediately. Rather, from what I can tell, Eclipse seems to periodically check
and refresh these files if necessary. As a result, some of the tests would succeed if, by
happenstance, the .project file was reloaded at the correct time. This also explains
why the tests repeatably ran with a higher success rate when executing them sepa-
rately in the docker container. As the tests were run directly after the container was
set up in such cases, the timing was always the same, making it more likely that a
successful test run was reproducible.

Fourthly and finally, I was not able to properly reproduce the issues locally. All tests
passed when running them directly through local Eclipse instances. This was due to
Eclipse always directly picking up the changed .project file, meaning the Java lan-
guage support was always loaded in time. I am not quite sure as to why this was the
case when running the test locally, but from what I can tell, the reload seems to get
triggered directly through user interactions. As the tests run in an encapsulated en-
vironment for the CI setup, there never is any user interaction to trigger such a direct
reload. This would also explain why the CI tests ran with a higher success rate when-
ever [was observing them directly through VCN. Observing the test workspace again
created the possibility of user interaction triggering a .project file reload, thereby
allowing the test to run correctly.

As resolving this issue required far more time than I initially expected, I subsequently
did not have the time to extend the existing STF tests to cover the new cases intro-
duced through the reference-point-based sharing model. The new cases to cover are
described in issue #1045.

12.6 Preventing Nested Reference Points

After completing the migration to the reference-point-based filesystem model, I also
decided to add a check to the Saros Core ensuring that no nested reference points are
shared. This check was added with pull request #1058.

Even though this check should not strictly be necessary as nested reference points
should be prevented by the UI of the different Saros implementations, it is still nice
to have a sanity check in the Core. This ensures that, even if a Saros implementation
handles reference points incorrectly, the faulty behavior will still be caught, making it
easier to discover and debug the issue.

As the Core does not have the capabilities needed to compare two reference points as
it can’t access the underlying resource represented by a reference point, this function-
ality had to be provided through the IReferencePoint interface. For this purpose, I
added the method IReferencePoint.isNested (IReferencePoint), checking whether

33

https://github.com/saros-project/saros/issues/1045
https://github.com/saros-project/saros/pull/1058

12. Implementing an IDE-Independent Filesystem Model

the given reference point would create a nested configuration with the called-on ref-
erence point. The method is used in SharedReferencePointMapper, the central class
managing the shared reference points, checking that the addition of a new reference
point would not create nested reference points.

12.7 Moving the Checksum Cache into the Session Context

During the resource negotiation, Saros creates a checksum for every shared file on
the sender and receiver side to easily compare the file content. As this process is
somewhat computationally intensive, a checksum cache was implemented to speed it
up by reusing previously computed checksums. This substantially speeds up parallel
or subsequent negotiations.

As this logic is located in the Saros Core, it relies on the Saros filesystem implementa-
tion to identify the different cached resources. This became a problem with the new
reference-point-based filesystem model, as resource objects are now defined relative
to reference points. Since reference points only exist during a session, resource objects
can only be created during a session. Furthermore, for subsequent sessions, differ-
ent reference points could be chosen, making the existing resource representations
unusable even if some of the same resources were shared again. As a result, it was
no longer possible to maintain the cache between sessions, meaning it could not be
correctly adjusted for local changes in such cases.

I found two possible solutions for this issue:

e Making the caching logic generic, allowing the usage of IDE-specific resource
objects instead of Saros resource objects.

e Moving the caching logic into the session scope, meaning it only exists during a
running session.

After a long discussion with other Saros team members, I decided against making the
caching logic generic. While this would enable the checksum cache to still cover all
use cases, it would also make the existing logic more complicated and harder to use.
Furthermore, I don’t think that the gained speedup for subsequent session starts is
as important. In my opinion, the main use cases are parallel resource negotiations
and additional resource negotiations during a session. The case of parallel resource
negotiations is important, as separately computing the checksums for all shared files
for each negotiation could put substantial strain on the system, especially with larger
session scopes and/or a higher number of session participants. The case of additional
resource negotiations during a running session is important, since Saros is already
quite resource intensive. Adding additional load might slow down the system. This
could disrupt the workflow of the user or at least lead to a degraded user experience.
The case of subsequent session starts, on the other hand, does not gain as much from
the speedup in my opinion. As the user has to manually start or join a new session,
their normal workflow is halted anyway, meaning the additional time needed to re-
populate the checksum cache should not matter that much. Additionally, I did not
like the idea of Saros using up system resources without providing any actual benefit
or functionality by having a component running in the background even though there

34

13. Other Resolved Issues

is no active session.

Instead, I decided to move the caching logic into the session scope, adjusting the logic
with pull request #1072. This preserved the main benefits of the cache, speeding up
parallel resource negotiations and additional resource negotiations during a session,
while minimizing the overhead created while there is no running session. In addition
to resolving the checksum cache issue, moving the cache to the session scope also
allowed me to clean up the logic surrounding it. This simplified the setup for the
checksum cache for Eclipse and removed a long-standing workaround introduced to
avoid circular dependency issues related to the cache.

13 Other Resolved Issues

Besides resolving the identified roadblocks, I also resolved multiple smaller issues
related to IDE cross-compatibility and the general reliability of Saros as part of this
thesis.

13.1 Implementing a Unified Handling of Non-text Editors

The main purpose of Saros is to allow developers to collaboratively work on shared
documents. This still leaves the question of how non-text editors should be handled.
This handling did not match for Saros/E and Saros/I. While Saros/E completely
ignored non-text editors, Saros/I tried to handle them like normal editors, leading to
some issues.

To unify the behavior, I chose ignoring non-text editors as the default behavior for
Saros, adjusting the Intelli] IDEA implementation to match it with #842. This some-
what reduces the usability of the follow mode as it now no longer applies to non-text
editors like images. But, while it might be useful for such resources to be visible for
other participants during pair programming, this is a rather limited use case. Fur-
thermore, if this use case were to present itself as important in the future, the logic of
both implementations could still be adjusted. Creating a unified behavior to allow for
IDE cross-compatibility was the more important goal for now.

13.2 Fixing an Undiscovered Fault in the Operational Transformation Logic

During my work implementing line ending normalization, I discovered a fault in the
operational transformation logic that had gone unnoticed for about 12 years. An
optimization to combine two insertions that can be expressed as a single insertion
operation was implemented incorrectly, combining actions that cannot be correctly
represented by a single insertion. The same error that had been made implementing
this optimization was also made when implementing the corresponding tests, mean-
ing the fault remained undiscovered.

The logic incorrectly tried to combine insertions where the start of the first insertion
equals the end of the second insertion by simply appending the first insertion to the
second one. But since the second insertion shifts everything after it to the right, this

35

https://github.com/saros-project/saros/pull/1072
https://github.com/saros-project/saros/pull/842

13. Other Resolved Issues

case leads to a situation where the two insertions are separated by preexisting content,
meaning they cannot be represented by a single insertion operations.

The correct handling is to check that the start of the first insertion is the same as the
start of the second insertion. This ensures that the insertions are not separated by any
other characters, meaning they can be combined into a single insertion operation. This
combined insertion has the same start as the second insertion and contains the content
of the first insertion appended to the end of the content of the second insertion.

An example of both of these cases is shown in figure 13.1. It shows first inserting the
text “cd” and then the text “ab” into the initial text content “01234567”, (a) depicting
the case that should be combinable according to the old logic and (b) depicting the
case that should be combinable according to the new logic. This example makes it
very clear that the insertions covered by the old logic can’t be combined. As the
insertion of the content “ab” shifts the content currently at that position to the right
instead of replacing it, the insertions of “ab” and “cd” are separated by the initial
content “12”. Such a non-continuous insertion cannot be represented by a single
insertion operation. The case covered by the new logic, on the other hand, leads to
a continuous insertion that can be represented by a single insertion operation. The
corresponding combined representation would be inserting “abcd” at position 3.

01 2 3 4 5 6 7 01 2 3 4 5 6 7
Initial | O 1 2 3 4 5 6 7 Initial | O 1 2 3 4 5 6 7
Ins1|0 1 2 ¢ d 3 4 5 Ins1 |0 1 2 ¢ d 3 4 5
Ins2 |0 a b 1 2 ¢ d 3 Ins2 |0 1 2 a b ¢ d 3
(a) Insertions that can’t be combined. (b) Insertions that can be combined.
Ins1 inserts “cd” at position 3. Ins1 inserts “cd” at position 3.
Ins2 inserts “ab” at position 1. Ins2 inserts “ab” at position 3.

Figure 13.1: Cases covered by the (a) old and (b) new optimization logic.

I corrected the logic and adjusted the corresponding test to reflect the corrected be-
havior with pull request #868.

13.3 Implementing a Unified Handling for File Moves

Eclipse and Intelli] IDEA handle the move of files differently. In Intelli] IDEA, the
move of a resource only consists of changing its path. But in Eclipse, it may also
contain a change of its content in addition to changing its path. As a result, resource
move activities created by Saros for Eclipse may also transfer the adjusted content for
the moved resource.

This adjusted content was not honored by the Saros/I implementation, instead always
only moving the resource. With #905, I changed the logic to also adjust the content
accordingly if the received move activity transfers the adjusted file content.

36

https://github.com/saros-project/saros/pull/868
https://github.com/saros-project/saros/pull/905

13.4. Implementing a Unified Handling for File Character Encodings

13.4 Implementing a Unified Handling for File Character Encodings

When sending an activity representing the creation or move of a file, Saros also pro-
vides the option of sending the binary content of the file. Along with this binary
content, the character encoding used for the content can be sent as well. This char-
acter encoding parameter was optional. While Saros/I and the Saros Server always
included the used encoding, Saros/E did not. Instead of explicitly sending the char-
acter encoding for every file, it instead relied on the character encoding configuration
that was set up along with the project configuration at the session start. Since adjust-
ing the project configuration as part of the session start is now no longer supported,
this behavior is no longer an option for Saros/E. Instead, it should also rely on the
character encoding passed as part of the corresponding activities.

I unified the character encoding handling with #913. With it, I introduced a central
method to set the character encoding for a file as part of the Saros file interface. Sub-
sequently, I adjusted all Saros implementations to always use the received character
encoding when applying received activities containing binary content. Furthermore,
I adjusted the Saros Server implementation to use the held character encoding when
reading content from disk. Previously, the logic relied on the Java virtual machine de-
fault encoding in such cases, which only worked in cases where the default encoding
matched the encoding used by the other participants.

Additionally, I added a check requiring activities containing binary content to also
contain the character encoding to use with #914. This ensures that the encoding is
always available when necessary. Subsequently, I also adjusted the Eclipse implemen-
tation to comply with these restrictions, always sending the used character encoding
alongside binary content.

13.5 Introducing Improved Local Resource Mapping Suggestions

With the previous, project-based sharing model, an incoming resource negotiation
asked the user which local projects/modules they would like to use to represent the
shared remote projects/modules. As project/module names were usually unique in
the workspace and easily recognizable, it was relatively easy for the user to determine
the correct local mapping for the shared resources.

With the new, reference-point-based sharing mode, however, the incoming resource
negotiation asks the user which local folders they would like to use to represent
the shared remote folders. As these folders can be chosen arbitrarily, the names
in no way have to be unique or meaningful in the context of the local workspace,
meaning the user often has no real indication which local folders to use for a correct
mapping. A worst case example for this issue would be sharing a folder with an
ambiguous name like “src”. Such a folder can easily exist multiple times in the local
workspace, providing no hint which source folder was actually shared by the sender
of the negotiation. This is a big shortcoming in the new sharing logic.

To somewhat alleviate this issue, I introduced logic to provide a better default sug-
gestion on how to map each shared resource in the local workspace with pull request
#1051. To do so, the logic calculates the relative path between the shared reference

37

https://github.com/saros-project/saros/pull/913
https://github.com/saros-project/saros/pull/914
https://github.com/saros-project/saros/pull/1051

13. Other Resolved Issues

point resource and each relevant reference object in the local workspace. For Eclipse,
such relevant reference objects would be the loaded projects. For Intelli] IDEA, such
relevant reference objects would be the modules in which the reference point is con-
tained. As Intelli] IDEA supports nested modules, it is important to include the rel-
ative path to all parent modules and not just of the closest one. With certain setups,
the equivalent to the Eclipse project for a resource might not be the closest module
but one of its parent modules. An example of this is an Intelli] IDEA module set up
through Gradle, which creates dedicated nested modules for the source and the test
folder.

These possible mappings are then transferred as part of the resource negotiation data,
meaning the receiving side can use them as suggested default mappings. As the
names of important reference objects such as projects or modules often match across
IDEs, this allows for an accurate default mapping, even if the name of the reference
point resource is ambiguous, by resolving the given relative path against the reference
object in the local workspace.

38

IV Conclusion

This part presents the conclusion of the thesis. It starts with section 14 giving an
overview of open topics and issues left unresolved as part of this thesis. Afterwards,
section 15 gives an evaluation of the thesis, its process, and its results. Lastly, section
16 proposes possible next steps as well as long-term goals building on this thesis.

14 Open Topics and Issues

At the end of the thesis, there still were some open topics and unresolved issues re-
lated to IDE cross-compatibility. These topics and issues are discussed in this section.

14.1 Implementing a New System to Determine What Not to Share

As part of this thesis, I did not have the time to resolve the roadblock concerning
the resource exclusion logic described in section 9.3. While I started implementing
a prototype for a possible solution, I quickly decided to switch to reworking the
filesystem handling instead. As the scope of the thesis along with the necessary
effort kept increasing, it became clear to me that resolving all roadblocks had become
unlikely. Since resolving this roadblock was not essential to providing IDE cross-
compatibility but instead just increases the usability of Saros in cross-IDE sessions, I
decided to shift my focus to more important issues. Furthermore, while designing
the prototype, it became apparent that the exclusion logic would also benefit from an
improved filesystem implementation.

Nevertheless, I still proposed and discussed different solution approaches for the
roadblock. The general issue of defining the exact session scope can be split into two
parts:

1. How should Saros determine which resources should be excluded from the ses-
sion scope?

2. How should Saros ensure that the set of ignored/excluded resources matches
for all participants?

The simplest solution approach for both issues would be to avoid restricting the ses-
sion scope at all, forcing the user to always share all files contained in the chosen
reference point. But, as mentioned in the description of the roadblock, there are good
reasons not to share particular files, e.g. because they are build artifacts or contain
user-specific data.

Regarding the question of how Saros should determine the set of ignored resources,
keeping the current implementation would be an option. This would avoid having
to implement a new system. But, as a drawback, it would force Saros to completely

39

14. Open Topics and Issues

rely on the IDE-specific concepts to ignore resources. Furthermore, it would force
users to add files to the IDE-specific model to ignore resources only for the purpose
of Saros, potentially inhibiting IDE functionality. With Intelli] IDEA, for example,
excluded resources are not indexed by the IDE, meaning they can’t be found through
the different workspace searches and are ignored by the IDE refactoring tools.

An alternative to relying on the IDE-specific logic determining what is not supposed
to be shared would be implementing a completely independent system for this pur-
pose instead. This system could be designed using a general interface that can accept
multiple replaceable implementations, making it possible to offer different ways of
specifying which resources to ignore. A simple approach would be offering a dedi-
cated .sarosignore file modeled after the git-ignore logic, specifying which resources
to ignore. Prime candidates for additional implementations would be integrations
with version control systems as they already provide information on what not to
keep under versioning, i.e. what not to share in the context of versioning. Most of the
time, the files not under versioning will align with the files that should be excluded
from a Saros session. As Git is currently probably the most prevalent version control
system, it would make sense to start by offering a Git integration.

Regarding the question of how to ensure that all participants have the same set of
ignored resources, there are two approaches: either negotiate a shared set of ignored
resources between all participants, or have the session host dictate which resources
are ignored.

Negotiating the shared set of ignored resources would offer the best usability, as all
local user preferences are honored. But it also would make the already-complicated
Saros negotiation logic even more complicated since it would have to rely on a sep-
arate negotiation taking place before the shared workspaces are synchronized. Fur-
thermore, this approach would require the adjustment of the shared set of ignored
resources whenever a new participant joins the session. This would create the possi-
bility of reducing the shared scope during a session, which is generally not supported
by Saros.

Having the set of ignored resources dictated by the host would somewhat reduce the
usability, as the local preferences would no longer be honored for the other partici-
pants, but this issue could be avoided by the participants reaching an agreement on
which resources to ignore before the session. While this approach would still require
the transfer of the set of ignored resources, the set would be determined by the host,
meaning no negotiation would be needed. As a result, this additional information
could simply be piggybacked onto existing resource negotiation data. Furthermore,
having the host dictate which resources are ignored makes it much easier for the users
to determine the exact scope of the session. When honoring the exclusion options of
all participants, the resulting session scope might be unexpected for some participants
as there might be different preferences/opinions in this regard.

Integrating this new resource exclusion system into the existing Saros logic should
be relatively easy by just replacing the existing calls to IResource.isIgnored(). This
method is the central way of determining which resources to exclude from the ses-

40

14.2. Eclipse Ul Improvements following the Filesystem Rework

sion scope in the current implementation, so just replacing its usage should cover all
necessary logic.

14.2 Eclipse UI Improvements following the Filesystem Rework

The rework of the Eclipse filesystem implementation described in section 12.4 led
to usability issues for both the wizard used to send and the wizard used to accept
resource negotiations.

For the wizard used to send resource negotiations, i.e. allowing the user to choose
which resources to share as part of a Saros session, the checkbox-tree component
used to display the resources in the workspace needs to be replaced. The current
implementation provided by the Eclipse API does not allow disabling tree elements.
As a result, I had to introduce many workarounds to prevent the user from selecting
invalid resource setups. These workarounds led to the tree behaving in somewhat
unexpected ways while also providing very poor user feedback. A better solution
would be replacing the checkbox-tree implementation with one that allows disabling
elements. As far as I can tell, no such implementation is provided by the Eclipse API,
so it would have to be implemented from scratch. Since the component is tightly inte-
grated into the Eclipse UI logic, creating new implementations might prove difficult.
This issue and the given solution approach is described in more detail in issue #1041.

An additional issue with the current checkbox-tree implementation is that it does
not function correctly with older Eclipse versions. In cases where resources are pre-
selected by default when the wizard starts, the tree should auto-expand to show all
selected resources. While this is implemented through the appropriate API, it does
not seem to function with older Eclipse versions, so it is most likely an upstream issue
with the Eclipse APL This issue is described in more detail in issue #1055.

For the wizard used to accept incoming resource negotiations, i.e. allowing the user
to choose how to represent the shared resources in the local workspace, a better way
of differentiating between the shared reference points has to be provided. The wizard
contains a separate tab for each reference point that is part of the negotiation. Those
tabs are identified through the name of the shared reference point root on the sender
side. As already stated before, the names of reference point roots don’t have to be
unique in the context of the workspace or even the resource negotiation. This could
make it very difficult differentiating the different tabs and choosing an appropriate
local representation for each shared reference point. While this issue has already
been somewhat alleviated through the introduction of the improved default mapping
suggestions described in section 13.5, it should still be properly addressed as the pro-
posed mappings might not always be usable. My proposal to provide better usability
would be to also display the workspace-relative path of the reference point root on
the sender side. This would help the local user to identify the correct reference point
resource in the local workspace. Additionally, displaying a preview of the resource
tree represented by the reference point on the sender side would also be helpful. This
would give the user a better understanding of what will actually be shared as part
of the Saros session. This issue and the suggested solution approach is described in
more detail in issue #1042.

41

https://github.com/saros-project/saros/issues/1041
https://github.com/saros-project/saros/issues/1055
https://github.com/saros-project/saros/issues/1042

14. Open Topics and Issues

An additional issue with the wizard is that it does not scale correctly for some high-
DPI setups. High-DPI setups use displays with a high pixel density (i.e. a high res-
olution paired with a small screen size), requiring the OS to scale up the displayed
components to make them legible. With such setups, the height of the wizard is not
set correctly, leading to the trailing options not being visible with the default size. The
wizard also does not display any indicators that there is content that is not currently
visible. As a result, a user could potentially be left unaware of some of the options
to represent a reference point in the local workspace. Since every option represents a
common use case, this would severely reduce the usability of the wizard. Most likely,
this is caused by an upstream issue with the Eclipse API used to size the wizard. This
is described in more detail in issue #1043.

14.3 Extending the Existing Character Encoding Handling

Even though the character encoding handling has already been improved as part of
this thesis (as described in section 13.4), it is still incomplete.

With the current implementation, only the character encoding for binary content that
is transferred during a session, i.e. when creating a new shared file, is set. When
transferring binary content during the resource negotiation, i.e. to create files on the
receiving side to synchronize the initial workspace state, the character encoding is not
included. Instead, the encoding configuration of the local workspace is used. Since
Saros no longer adjusts the workspace settings as part of the session setup, it is not
guaranteed that the character encoding used as the workspace default is usable for
the sent content. To avoid the issue, the character encoding for each transferred file
should be included in the negotiation. This ensures that the content of the files created
as part of the negotiation will be read correctly by the IDE. This problem as well as
the suggested solution approach is described in more detail in issue #912.

While this would cover the last case where Saros transfers new content, it does not
cover changes to the character encoding of existing files. In most IDEs, the user
has the option to change the character encoding of a file. Most often, this results in
the current content of the editor for the file to be re-written to disk using the new
character encoding. Such changes are currently not explicitly supported by Saros.
There is no specific activity that is documented to handle this case. While the Eclipse
implementation uses the file creation activity to cover this case, it would be nicer to
have a separate activity type for it. Or, even if the usage of the file creation activity
remains for this case, it should at least be included in the activity documentation.
This problem is described in the issues #940 and #941.

14.4 Introducing a Unified BOM Handling

For some Unicode encodings, a byte order marker (BOM) can be included at the start
of the file to provide meta information like the used endianness. When accessing the
binary content of a file on disk through the Intelli] IDEA API, the BOM is skipped. It
has to be requested separately through the usage of a specific method. For Eclipse,
on the other hand, the BOM is included in the normal binary content. This problem

42

https://github.com/saros-project/saros/issues/1043
https://github.com/saros-project/saros/issues/912
https://github.com/saros-project/saros/issues/940
https://github.com/saros-project/saros/issues/941

15. Evaluation

is discussed as part of issue #707.

To avoid potentially dropping the BOM, a unified handling should be implemented
for Saros. It has to be decided whether the BOM should be included in the binary
content by default or whether it should be sent as a separate value. Subsequently, the
filesystem implementations need to be adjusted accordingly.

15 Evaluation

The main goal of this thesis was to provide IDE cross-compatibility for Saros, allowing
users to create Saros sessions between Eclipse and Intelli] IDEA instances. As part
of this thesis, I identified key roadblocks regarding supporting cross-compatibility
and proposed solution approaches for them. Furthermore, I resolved the essential
roadblocks and other issues regarding base Saros functionality, enabling basic Saros
IDE cross-compatibility. All created patches were peer-reviewed by other members
of the Saros project and successfully merged back into the central codebase. While
there are still open issues regarding cross-compatibility not resolved by this thesis
due to time restrictions, I assert that the overall goal has been reached. With the
implemented changes, Saros can create sessions between instances running on Eclipse
and Intelli] IDEA, allowing the user to work collaboratively on all shared resources.
The remaining roadblock and issues mainly relate to improvements in the usability
of cross-IDE sessions, covering a wider range of features, and resolving outstanding
bugs. Additionally, I discovered and documented possible solution approaches for
issues not resolved as part of this thesis, making it easier to resolve them in the
future.

The UI rework done as part of the introduction of the reference-point-based sharing
model was also restricted by time. Even though I expected that the change of such a
central concept would require Ul adjustments, I underestimated the extent to which
the UI had to be adjusted or completely rewritten. As a result, while the UI is still
very much usable, its usability was reduced by more than I would have liked. To
actually provide good usability, a complete rework of the UI would be necessary. But
this fell outside of the scope of the thesis.

In addition to the identified remaining issues, there might well be further, undiscov-
ered issues related to IDE cross-compatibility. Since many such issues are caused by
slight technical differences in the implementations of the different IDEs, they are very
hard to discover purely through code analysis. But, even if such issues should present
themselves in the future, they will most likely be of a smaller scale, requiring far less
work than the issues resolved as part of this thesis.

In addition to resolving issues related to IDE cross-compatibility, I simplified and
improved many Saros interfaces along with their implementations and documentation
related to the Saros filesystem and sharing model. This significantly lowers the hurdle
for adding Saros implementations for other IDEs, making it easier to further extend
the reach of the Saros plugin. As a result of supporting more IDEs, the benefit of
supporting IDE cross-compatibility would increase as well.

43

https://github.com/saros-project/saros/issues/707

16. Future Work

16 Future Work

Following this thesis, the obvious next step would be extending the STF to cover the
new cases introduced through the new sharing model as described in issue #1045.

For near-future improvements, I would suggest resolving the remaining roadblock
and the other issues described in section 14. Furthermore, I would suggest doing more
in-depth IDE cross-compatibility testing to look for additional, more subtle issues.

For longer-term goals, I would suggest working on a complete rewrite of the current
UI for the different Saros implementations to better support the new, reference-point-
based sharing model. During this rework, the issues described in section 14.2 should
be kept in mind. Additionally, I would suggest completing the Saros implementation
for Intelli] IDEA as well as providing Saros implementations for a broader range of
IDEs to maximize the potential user base and range of use cases.

44

https://github.com/saros-project/saros/issues/1045

Bibliography

Bibliography

[1] A. Cockburn and L. Williams, “The Costs and Benefits of Pair Programming,”
in eXtreme Programming and Flexible Processes in Software Engineering XP2000,
pp- 223-247, Addison-Wesley, 2000.

[2] B. Bockeler and N. Siessegger, “On pair programming.” https://martinfowler.
com/articles/on-pair-programming.html, Jan. 2020.

[3] J. Schenk, Industrially Usable Distributed Pair Programming. PhD thesis, Freie Uni-
versitat Berlin, Inst. fiir Informatik, 2018.

[4] R. Djemili, “Entwicklung einer Eclipse-Erweiterung zur Realisierung und Pro-
tokollierung verteilter Paarprogrammierung,” diploma thesis, Freie Universitat
Berlin, Inst. fiir Informatik, 2006.

[5] S. Rossbach, “Einfithrung einer kontinuierlichen Integrationsumgebung und
Verbesserung des Test-Frameworks,” bachelor’s thesis, Freie Universitdt Berlin,
Inst. fiir Informatik, 2011.

[6] A.E. Solovjev, “Operationalizing the Architecture of an Agile Software Project,”
master’s thesis, Freie Universitit Berlin, Inst. fiir Informatik, 2014.

[7] T. Bouschen, “Bestandsaufnahme und Arbeit an einer Alpha-Version des Saros-
Plugins fiir die Intelli]-Plattform,” bachelor’s thesis, Freie Universitdt Berlin, Inst.
fiir Informatik, 2017.

[8] D. A. Nichols, P. Curtis, M. Dixon, and]. Lamping, “High-latency, low-
bandwidth windowing in the jupiter collaboration system,” in Proceedings of the
8th Annual ACM Symposium on User Interface and Software Technology, UIST "95,
(New York, NY, USA), p. 111-120, Association for Computing Machinery, 1995.

[9] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen, “Achieving convergence, causal-
ity preservation, and intention preservation in real-time cooperative editing sys-
tems,” ACM Trans. Comput.-Hum. Interact., vol. 5, p. 63108, Mar. 1998.

[10] A. Lasarzik, “Refaktorisierung des Eclipse-Plugins Saros fiir die Portierung auf
andere IDEs,” bachelor’s thesis, Freie Universitit Berlin, Inst. fiir Informatik,
2015.

[11] D. Washington, “Entwicklung und Evaluation eines unabhdngigen Sitzungsser-
vers fiir das Saros-Projekt,” master’s thesis, Freie Universitat Berlin, Inst. fiir
Informatik, 2016.

[12] D. Sungaila, “Verbesserung und Erweiterung der Core-Bestandteile von Saros,”
bachelor’s thesis, Freie Universitiat Berlin, Inst. fiir Informatik, 2016.

[13] O.Hanfsen, “Saros: Refactoring the Filesystem,” master’s thesis, Freie Universitat
Berlin, Inst. fiir Informatik, 2019.

[14] L. Prechelt, “Some non-usage data for a distributed editor: The saros outreach,”
in Proceedings of the 4th International Workshop on Cooperative and Human Aspects

45

https://martinfowler.com/articles/on-pair-programming.html
https://martinfowler.com/articles/on-pair-programming.html

Bibliography

[15]

[16]

[17]

of Software Engineering, CHASE "11, (New York, NY, USA), p. 48, Association for
Computing Machinery, 2011.

L. Prechelt and K. Beecher, “Four generic issues for tools-as-plugins illustrated by
the distributed editor saros,” in Proceedings of the 1st Workshop on Developing Tools
as Plug-Ins, TOPI 11, (New York, NY, USA), p. 9-11, Association for Computing
Machinery, 2011.

E. Rosen, S. Salinger, and C. Oezbek, “Project kick-off with distributed pair pro-
gramming,” in PPIG, 2010.

S. Salinger, C. Oezbek, K. Beecher, and]J. Schenk, “Saros: An eclipse plug-in
for distributed party programming,” in Proceedings of the 2010 ICSE Workshop on
Cooperative and Human Aspects of Software Engineering, CHASE 10, (New York,
NY, USA), p. 48-55, Association for Computing Machinery, 2010.

46

V Appendix

A Pull Requests

#842 Fix handling of non-text editors
https://github.com/saros-project/saros/pull/842

#860 [INTERNALJ[CORE] Remove text edit listener from FollowModeManager
https://github.com/saros-project/saros/pull/860

#862 Refactor selection handling
https://github.com/saros-project/saros/pull/862

#868 [FIX][CORE] Fix wrong split operation combination
https://github.com/saros-project/saros/pull/868

#872 Refactor text activity position handling
https://github.com/saros-project/saros/pull/872

#874 Add inclusion transformation fuzzer
https://github.com/saros-project/saros/pull/874

#877 Introduce text edit content normalization
https://github.com/saros-project/saros/pull/877

#878 Adjust consistency watchdog to work with normalized content
https://github.com/saros-project/saros/pull/878

#880 [UII[E] Remove access to partial sharing feature
https://github.com/saros-project/saros/pull/880

#882 Remove partial sharing logic
https://github.com/saros-project/saros/pull/882

#886 Ignore unknown SuppressWarnings arguments in Eclipse
https://github.com/saros-project/saros/pull/886

#889 Fix minor issue with resource activity filter logic
https://github.com/saros-project/saros/pull/889

#898 Clean up file list factory
https://github.com/saros-project/saros/pull/898

#900 Fix text activity offset handling
https://github.com/saros-project/saros/pull/900

47

https://github.com/saros-project/saros/pull/842
https://github.com/saros-project/saros/pull/860
https://github.com/saros-project/saros/pull/862
https://github.com/saros-project/saros/pull/868
https://github.com/saros-project/saros/pull/872
https://github.com/saros-project/saros/pull/874
https://github.com/saros-project/saros/pull/877
https://github.com/saros-project/saros/pull/878
https://github.com/saros-project/saros/pull/880
https://github.com/saros-project/saros/pull/882
https://github.com/saros-project/saros/pull/886
https://github.com/saros-project/saros/pull/889
https://github.com/saros-project/saros/pull/898
https://github.com/saros-project/saros/pull/900

A. Pull Requests

#905 [INTERNALI[I] Use content for file move activities
https://github.com/saros-project/saros/pull/905

#906 Remove IResource.movel...) method
https://github.com/saros-project/saros/pull/906

#907 Clean up resource interface
https://github.com/saros-project/saros/pull/907

#908 Replace resource type list with enum
https://github.com/saros-project/saros/pull/908

#913 Improve charset handling
https://github.com/saros-project/saros/pull/913

#914 Require charset for file activity containing binary content
https://github.com/saros-project/saros/pull/914

#915 Remove IContainer.getDefaultCharset()
https://github.com/saros-project/saros/pull/915

#916 Remove IResource.adaptTo(Class)
https://github.com/saros-project/saros/pull/916

#918 [NOP] Remove FolderMoveActivity
https://github.com/saros-project/saros/pull/918

#930 [FIX][1] #924 React after document modification to avoid cache issues
https://github.com/saros-project/saros/pull/930

#934 Improve IResourceActivity resource abstraction
https://github.com/saros-project/saros/pull/934

#938 Remove SPath
https://github.com/saros-project/saros/pull/938

#943 Remove IProject.findMember(IPath)
https://github.com/saros-project/saros/pull/943

#950 [INTERNAL] Remove IWorkspaceRoot
https://github.com/saros-project/saros/pull/950

#952 Move remaining methods from IProject to IContainer
https://github.com/saros-project/saros/pull/952

#953 Consolidate IResource path handling
https://github.com/saros-project/saros/pull/953

#970 [BUILD][E] Export package 'saros.filesystem.checksum’ from core
https://github.com/saros-project/saros/pull/970

#976 Clean up IWorkspace
https://github.com/saros-project/saros/pull/976

48

https://github.com/saros-project/saros/pull/905
https://github.com/saros-project/saros/pull/906
https://github.com/saros-project/saros/pull/907
https://github.com/saros-project/saros/pull/908
https://github.com/saros-project/saros/pull/913
https://github.com/saros-project/saros/pull/914
https://github.com/saros-project/saros/pull/915
https://github.com/saros-project/saros/pull/916
https://github.com/saros-project/saros/pull/918
https://github.com/saros-project/saros/pull/930
https://github.com/saros-project/saros/pull/934
https://github.com/saros-project/saros/pull/938
https://github.com/saros-project/saros/pull/943
https://github.com/saros-project/saros/pull/950
https://github.com/saros-project/saros/pull/952
https://github.com/saros-project/saros/pull/953
https://github.com/saros-project/saros/pull/970
https://github.com/saros-project/saros/pull/976

A. Pull Requests

#977 Add javadoc to resource interfaces
https://github.com/saros-project/saros/pull/977

#978 Add default resource methods
https://github.com/saros-project/saros/pull/978

#981 [FIX][CORE] Fix handling of empty selection in text selection activity
https://github.com/saros-project/saros/pull/981

#995 [APIJ[CORE] Adjust I1Container.getFolder(...) to not allow empty paths
https://github.com/saros-project/saros/pull/995

#997 Introduce reference point resources (ref-point migration 1/5)
https://github.com/saros-project/saros/pull/997

#998 Migrate inner classes to reference points (ref-point migration 2/5)
https://github.com/saros-project/saros/pull/998

#999 Migrate Ul classes to reference points (ref-point migration 3/5)
https://github.com/saros-project/saros/pull/999

#1000 Clean up after migration to reference points (ref-point migration 4/5)
https://github.com/saros-project/saros/pull/1000

#1001 Migrate local resource handler to reference points (ref-point migration 5/5)
https://github.com/saros-project/saros/pull/1001

#1005 [APIJ[CORE] Return list for IContainer.members()
https://github.com/saros-project/saros/pull/1005

#1008 Remove reference point mentions in Ul
https://github.com/saros-project/saros/pull/1008

#1012 Clean up for core after reference point migration
https://github.com/saros-project/saros/pull/1012

#1023 [INTERNALI[E] Introduce reference point based resource implementation
https://github.com/saros-project/saros/pull/1023

#1026 Set up Saros/E remote debugging for Intelli] IDEA
https://github.com/saros-project/saros/pull/1026

#1032 Migrate internal classes to use new resource implementation (ref-point migration 1/10)
https://github.com/saros-project/saros/pull/1032

#1033 Migrate filesystem handlers to use new resource implementation (ref-point migration
2/10)
https://github.com/saros-project/saros/pull/1033

#1034 Migrating ui internals to new resource implementation 1/3 (ref-point migration 3/10)
https://github.com/saros-project/saros/pull/1034

49

https://github.com/saros-project/saros/pull/977
https://github.com/saros-project/saros/pull/978
https://github.com/saros-project/saros/pull/981
https://github.com/saros-project/saros/pull/995
https://github.com/saros-project/saros/pull/997
https://github.com/saros-project/saros/pull/998
https://github.com/saros-project/saros/pull/999
https://github.com/saros-project/saros/pull/1000
https://github.com/saros-project/saros/pull/1001
https://github.com/saros-project/saros/pull/1005
https://github.com/saros-project/saros/pull/1008
https://github.com/saros-project/saros/pull/1012
https://github.com/saros-project/saros/pull/1023
https://github.com/saros-project/saros/pull/1026
https://github.com/saros-project/saros/pull/1032
https://github.com/saros-project/saros/pull/1033
https://github.com/saros-project/saros/pull/1034

A. Pull Requests

#1035 Migrate sender resource selection logic to use new resource implementation (ref-point
migration 4/10)
https://github.com/saros-project/saros/pull/1035

#1036 Migrating ui internals to new resource implementation 2/3 (ref-point migration 5/10)
https://github.com/saros-project/saros/pull/1036

#1037 Migrate receiver resource selection logic to use new resource implementation (ref-point
migration 6/10)
https://github.com/saros-project/saros/pull/1037

#1038 Clean up after resource implementation migration 1/2 (ref-point migration 7/10)
https://github.com/saros-project/saros/pull/1038

#1039 Migrating ui internals to new resource implementation 3/3 (ref-point migration 8/10)
https://github.com/saros-project/saros/pull/1039

#1040 Fix STF after migration to new resource implementation (ref-point migration 9/10)
https://github.com/saros-project/saros/pull/1040

#1049 Clean up after resource implementation migration 2/2 (ref-point migration 10/10)
https://github.com/saros-project/saros/pull/1049

#1051 Improve local reference point mapping suggestion
https://github.com/saros-project/saros/pull/1051

#1058 Add sanity check to prevent nested reference points
https://github.com/saros-project/saros/pull/1058

#1061 [INTERNAL][CORE] Pass JID of local user to session CTOR
https://github.com/saros-project/saros/pull/1061

#1072 Mowe checksum cache into session context
https://github.com/saros-project/saros/pull/1072

#1085 [DOC] Remove migration to reference point system as an open topic
https://github.com/saros-project/saros/pull/1085

#1097 [NOP][CORE] Remove the ROOT resource type
https://github.com/saros-project/saros/pull/1097

50

https://github.com/saros-project/saros/pull/1035
https://github.com/saros-project/saros/pull/1036
https://github.com/saros-project/saros/pull/1037
https://github.com/saros-project/saros/pull/1038
https://github.com/saros-project/saros/pull/1039
https://github.com/saros-project/saros/pull/1040
https://github.com/saros-project/saros/pull/1049
https://github.com/saros-project/saros/pull/1051
https://github.com/saros-project/saros/pull/1058
https://github.com/saros-project/saros/pull/1061
https://github.com/saros-project/saros/pull/1072
https://github.com/saros-project/saros/pull/1085
https://github.com/saros-project/saros/pull/1097

B. Figures

B Figures

B.1 UML Diagram before and after the Filesystem Cleanup

<interface>> <interface>>
IResource IFile
+ FILE: int + getCharset(): String

+ FOLDER: int

+ PROJECT: int

+ ROOT: int

+ FORCE: int

+ KEEP_HISTORY: int

+ getContents(): InputStream

+ setContents(InputStream, boolean, boolean): void
+ create(InputStream, boolean): void

+ getSize(): long

+ exists(): boolean

+ getFullPath(): IPath

+ getName(): String

+ getParent(): IContainer

+ getProject(): IProject

+ getProjectRelativePath(): [Path
+ getType(): int

+ isIgnored(): boolean

+ delete(): void

+ move(IPath, boolean): void
+ getLocation(): IPath

+ adaptTo(Class<T>): T

i

<interface>>
IContainer

+ exists(IPath): boolean

+ members(): IResource|[]

+ members(int): IResource[]
+ getDefaultCharset(): String

<Linterface>>
IProject

+ findMember(IPath): IResource
+ getFile(String): IFile

+ getFile(IPath): IFile

+ getFolder(String): IFolder

+ getFolder(IPath): IFolder

<interface>>
IFolder

+ create(int, boolean): void

— + create(boolean, boolean): void
<interface>>
IWorkspaceRoot
+ getProjects(): IProject[]
<interface>>
IWorkspace

+ run(IWorkspaceRunnable): void

+ run(IWorkspaceRunnable, IResource[]): void
+ getProject(String): IProject

+ getLocation(): IPath

(a) Filesystem interfaces before the cleanup.

51

B. Figures

<interface>>
IResource

+ exists(): boolean
+ getName(): String

< enumeration>>
Type

+ getParent(): IContainer

+ getProject(): IProject

+ getProjectRelativePath(): [Path
+ getType(): Type

+ isIgnored(): boolean

+ delete(): void

i

FILE
FOLDER
PROJECT

<interface>>
IFile

<interface>>
IContainer

+ getCharset(): String

+ setCharset(String): void

+ getContents(): InputStream

+ setContents(InputStream): void
+ create(InputStream): void

+ getSize(): long

+ getType(): Type

+ exists(IPath): boolean

+ members(): List<IResource>

+ getFile(String): IFile
+ getFile(IPath): IFile

+ getFolder(String): IFolder
+ getFolder(IPath): IFolder

i

<interface>>
IProject

+ getProjectRelativePath(): IPath
+ delete(): void

+ getParent(): void

+ getType(): Type

+ isIgnored(): boolean

<interface>>
IFolder

+ create(): void
+ getType(): Type

<interface>>
IWorkspace

+ run(IWorkspaceRunnable): void

+ run(IWorkspaceRunnable, IResource[]): void

(b) Filesystem interfaces after the cleanup.

Figure B.1: The filesystem interfaces (a) before and (b) after the cleanup.

52

	I Introduction
	Goal of This Thesis
	Structure of This Thesis

	II Fundamentals
	Saros
	History of the Development of Saros

	Jupiter Algorithm
	Related Work
	Saros in General
	Saros Core Extraction
	Saros for IntelliJ IDEA
	Saros Filesystem Rework

	III Implementation
	General Approach
	Preparation
	Requirement Analysis
	Found Roadblocks
	Issues with the Handling of Line Endings
	Issues with the Current Filesystem Implementation
	Issues with Determining Which Resources Not to Share

	Implementing Line Ending Normalization
	Solution Approach
	Reworking the Text Positioning Scheme
	Adjusting the Jupiter Algorithm Implementation
	Adding Line Ending Normalization

	Preparing for the Filesystem Rework
	Removing the Partial Sharing Logic
	Reworking the Resource Transport Logic
	Simplifying the Existing Filesystem Interfaces

	Implementing an IDE-Independent Filesystem Model
	Solution Approach
	Reworking the Filesystem Implementation for Saros/I
	Cleaning up the Saros Core
	Reworking the Filesystem Implementation for Saros/E
	Adjusting the STF after the Saros/E Migration
	Preventing Nested Reference Points
	Moving the Checksum Cache into the Session Context

	Other Resolved Issues
	Implementing a Unified Handling of Non-text Editors
	Fixing an Undiscovered Fault in the Operational Transformation Logic
	Implementing a Unified Handling for File Moves
	Implementing a Unified Handling for File Character Encodings
	Introducing Improved Local Resource Mapping Suggestions

	IV Conclusion
	Open Topics and Issues
	Implementing a New System to Determine What Not to Share
	Eclipse UI Improvements following the Filesystem Rework
	Extending the Existing Character Encoding Handling
	Introducing a Unified BOM Handling

	Evaluation
	Future Work
	Bibliography

	V Appendix
	Pull Requests
	Figures
	UML Diagram before and after the Filesystem Cleanup

