
1 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

OSS and Self-Organization

Part 1:
• What is OSS?
• Who builds it?
• Value
Part 2:
• Self-organization

• Basic infrastructure
• Typical process

Course "Softwareprozesse"

• Leadership
• Process innovation patterns

Part 3:
• Quality assurance
• Comparison to agile
• Inner Source

Lutz Prechelt
Freie Universität Berlin, Institut für Informatik

Presenter
Presentation Notes
"~" heißt ungefähr, "~~" heißt uuuuungefähr

2 / 42

Questions

• What is Open Source SW?
• How important is it?
• Who builds it? Why?
• What is 'value'?

Who is the 'customer'?
• How does self-

organization work?
• Basic infrastructure
• Typical process
• Leadership
• Process innovation patterns

• How does quality assurance
work?

• Is this agile?
Is it modern view?

• Is an open process useful
within companies?
• Inner Source

Lutz Prechelt, prechelt@inf.fu-berlin.de

Q

3 / 42

Self-organization: Basic infrastructure
DVCS, issue tracker, build, web pages

• Most OSS projects live on a
forge, usually github.com

Key infrastructure:
• Distributed version control

• usually git
• allows enormously loose

coordination to work well
• pull requests

• Issue tracker
• product backlog,

bug tracker
• provides a bit more

coordination where needed
• assignee, state, target

release
• all dialog in one place

• CI: automated build
• just like for XP

• Web pages
• e.g. GitHub pages

• often absent for small
projects

• presenting work to public
• advertising to future

contributors
• display policies

• High variety of processes
on top of this infrastructure
• but many typical features:

Lutz Prechelt, prechelt@inf.fu-berlin.de

https://pages.github.com/

4 / 42

Self-organization:
OSS process: What's typical?

[Johnsson01],
[CroWeiHow12],
Driving forces:
• Prototyping is closed

• Most projects start as
closed-source or by an
individual

• Joint prototyping has too
many possibilities.

• Motivations too heteroge-
neous for self-organization
to work

• User-driven requirements,
developers are often users
• For infrastructure SW;

less so for vertical
applications

Organization view:
• Collaboration is

decentralized
• not much hierarchical

communication
• Planning is informal

• less so in large projects
with heavy company
involvement

Lutz Prechelt, prechelt@inf.fu-berlin.de

Why?

https://dl.acm.org/doi/pdf/10.1145/2089125.2089127

5 / 42

Self-organization:
OSS process: What's typical? (2)

Development style:
• Requirements elicitation:

• From semi-formal to
implicit (by reacting to user
requests)

• Iterative process
• Maintenance is basically

bug fixing plus arbitrary re-
invention

• Communication is
asynchronous, written:
• too little joint work time

• Strong reliance on technical
infrastructure
• version archive,

issue tracker

• Architectures are designed
for modularity:
• To minimize coupling and

hence coordination effort
• e.g. modules in Apache,

plugins in Eclipse etc. etc.

• Release:
• Wide variety, from

"release early, release
often" to fixed intervals
with explicit stabilization
phases

Lutz Prechelt, prechelt@inf.fu-berlin.de

Presenter
Presentation Notes
Technical infrastructure needs to be used for coordination more than in local teams.

6 / 42

Self-organization:
OSS process: What's typical? (3)

Social processes:
• New-member socialization:

• mostly driven by would-be
member

• acts as a people filter
• sometimes: entry scripts

• Decision-making/leadership:
• centralized or decentralized

styles (see later)
• a project trends towards

decentralized over time
• leadership is often implicit

and often shared

• Coordination, collaboration:
• task self-assignment

• "do-ocracy"
• collaboration mostly implicit

(see next slide)
• Knowledge management:

• difficult (distribution!)
• community of practice

• people as institutional
memory

• media: ad-hoc (mailing list)
or permanent (e.g. wiki) or
in-between (issue tracker)

• Each type has its own
downsides

Lutz Prechelt, prechelt@inf.fu-berlin.de

7 / 42

Self-organization:
Collaboration and coordination

[HowCro14]:
• OSS projects work such that

individual tasks are solved
by individuals, not teams
• almost always,
• greatly reducing

coordination effort.
• Consequence for

large tasks:
• They often get deferred for

a long time,
• which would hardly be

acceptable for a commercial
organization.

• But eventually a work
breakdown is usually found
that makes them possible,
• namely after enough

enabling work has been
finished.

• Strong SW modularity helps
this process
• but is not strictly a

prerequisite,
• so the process may or may

not produce highly modular
designs.

Lutz Prechelt, prechelt@inf.fu-berlin.de

8 / 42

Questions

• What is Open Source SW?
• How important is it?
• Who builds it? Why?
• What is 'value'?

Who is the 'customer'?
• How does self-organization

work?
• Basic infrastructure
• Typical process
• Leadership
• Process innovation patterns

• How does quality assurance
work?

• Is this agile?
Is it modern view?

• Is an open process useful
within companies?
• Inner Source

Lutz Prechelt, prechelt@inf.fu-berlin.de

Q

9 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Self-organization: Leadership

Source:
• Eric Raymond: "The Cathedral and the Bazaar", 1997-2000
Describes two styles of software development:
• Cathedral style: (=classical-view commercial world)

• (now less strongly so with agile processes)
• integrated groups of skilled individuals plan thoroughly

and implement with care and no haste
• "built like cathedrals, carefully crafted by individual

wizards or small bands of mages working in splendid
isolation, with no beta to be released before its time" Q

• Bazaar style: (=most of the open source world)
• (now often less strongly so with more and larger companies involved)

• open for participation by everyone, hardly any central planning,
no competence guarantee, quickly evolving

• "resemble a great babbling bazaar of differing
agendas and approaches" Q

Presenter
Presentation Notes
The Cathedral vs. Bazaar difference is much less strong today than it was when Raymond wrote the essay in 1997

http://www.catb.org/%7Eesr/writings/cathedral-bazaar/cathedral-bazaar/

10 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Self-organization:
OSS leadership and decision-making

• By and large, OSS projects tend to have a meritocratic
leadership model
• Influence is won by making valuable contributions to the project
• and by exhibiting technical and judgmental competence

• (exceptions possible when corporate sponsoring is present)

This statement raises two questions:
1. What is the process (in terms of milestones) of gaining

influence for an individual?
• Put differently: Are there clearly different degrees of influence

that can be easily observed? (An "OSS career")
2. How does actual decision-making work?

• Given that influence cannot easily be quantified

11 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Self-organization: The OSS career

The typical career of an active OSS project participant:
1. Knows product

• User
2. Knows process/project

• Mailing list member: 2.1. Follows and
2.2. participates in the discussions in the project

3. Contributes suggestions to product
• 3.1. Sends in defect reports or helps clarifying issues
• 3.2. Sends in defect corrections ("bug fixes", "patches")

to be checked and accepted by the developers
4. Has write-access to product

• Developer status: can modify the source code version archive
5. Has meta-write-access to product

• Can grant others write-access. Called differently in different
projects (core developer, maintainer, leader)

Perhaps more
stages here

Presenter
Presentation Notes
Additional career stages between 3.2 and 4 (or 3.1 and 3.2) may consist of contributions to documentation, configuration, and other non-code artifacts; perhaps with direct write-access.

12 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Self-organization: The OSS career (2)

• In small projects there is often a single person with meta-
write access who makes the decision at his/her own discretion

• Some large projects define various roles and behavior
explicitly and may have formalized decision-making rules and
even bodies for granting write-access (join-scripts), e.g.
• http://httpd.apache.org/dev/guidelines.html ,

http://docs.python.org/devguide/ ,
https://wiki.documentfoundation.org/Development/GetInvolved

• Some large projects also discriminate many different kinds of
contributions (and corresponding roles) more clearly

• e.g. Development, QA, Localization, Marketing,
Documentation, Website Dev.

• See also https://opensource.guide/how-to-contribute/
• general, project-agnostic advice

Presenter
Presentation Notes
documentfoundation.org is related to LibreOffice

http://httpd.apache.org/dev/guidelines.html
http://docs.python.org/devguide/
https://wiki.documentfoundation.org/Development/GetInvolved
https://opensource.guide/how-to-contribute/

13 / 42also: https://opensource.guide/leadership-and-governance/

Self-organization:
OSS decision-making (1)

The leadership structure (formation of opinion) of OSS projects
is spread over a spectrum with the following poles:

• Egalitarian:
• In any issue, the influence of an individual

depends mostly on convincing argumentation.

• Leadership group:
• The influence depends mostly on the individual's

general reputation
• which may be formalized or not

• Note: A leadership group without merits
could not persist or would lead to forking (next slide).
Thus, the difference between the poles is not huge.

Presenter
Presentation Notes
Figure 2: http://www.iiaf.net/archive/personnel/Personnel2/images/Rohani%20Gen%20Uniform%201354_jpg.jpgForking is the process of setting up a new project based on existing open source code, usually under a different name.

https://opensource.guide/leadership-and-governance/
http://www.schwarzaufweiss.de/england/images/speakerscorner.jpg

14 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Self-organization: Forking

• Forking: Founding a separate project based on the same code Q
• Happens when too-large parts of an OSS community are too

unhappy with the way the community progresses.
• Possible as a consequence of OSS licencing ("free software")

• Example: Compiere ERP

Oracle
ERP

closed source

Compiere
ADempiere

Openbravo

metasfresh

iDempiere

most strongly commercial most active OSS

Presenter
Presentation Notes
http://www.chuckboecking.com/compare-adempiere-idempiere-adempiere-vs-idempiere/https://en.wikipedia.org/wiki/CompiereThe first fork happened because the community felt Compiere was driven too much by commercial goals of Compiere, Inc.'s venture shareholders than the community participants.There are many other interesting examples of forks; even Richard Stallman had to endure one: MySQL/MariaDB; GNU Emacs/XEmacs; TWiki/Foswiki; etc.

https://en.wikipedia.org/wiki/Compiere

15 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Self-organization:
OSS leadership type case studies

Most larger projects fall into one of the following categories:

1. Democratic model

2. Benevolent dictator model

3. Industry-based

4. OSS foundation projects

see subsequent slides

Presenter
Presentation Notes
Number 4 will usually combine with one of the upper three (or even 1 and 3 at once).

16 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

OSS leadership types 1:
Democratic model

• A group of people use explicit democratic decision processes
and drive the project like a society drives a democratic state

• Example: Apache software foundation
• Quotes from http://www.apache.org/foundation/how-it-

works.html#management (as of 2024-01)
• "Projects are normally auto governing and driven by the people

who volunteer for the job. […] "do-ocracy" -- power of those
who do. This functions well for most cases.

• When coordination is required, projects make
decisions with a lazy consensus approach: a few
positive votes with no negative vote is enough to get going. […]

• […] a PMC member registering a negative vote must include an
alternative proposal or a detailed explanation […].

• […] In the great majority of cases, the concerns leading to the
negative vote can be addressed.

• This process is called "consensus gathering" and we
consider it a very important indication of a healthy community."

http://www.apache.org/foundation/how-it-works.html#management
http://reconomy.org/do-ocracy-handbook/

17 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

OSS leadership types 2:
Benevolent dictator model

• A single highly respected person makes all
important decisions

• Examples: Linux, Python

• In 1991, the Finnish student Linus Torvalds
started writing an operating system kernel
• His message on comp.os.minix in August 1991:

http://groups.google.com/group/comp.os.minix/
msg/b813d52cbc5a044b

• "I'm doing a (free) operating system (just a hobby, won't be big
and professional like gnu) for 386(486) AT clones. […] It is NOT
portable (uses 386 task switching etc), and it probably never will
support anything other than AT-harddisks"

• Linux (kernel/arch/drivers) now consists of 15 MLOC
• Yet Torvalds' few deputies still have to accept

every change to this code to make it official

Linus Torvalds

Presenter
Presentation Notes
Today, Linux is perhaps the world's most portable OS and supports a _huge_ spectrum of devices.

http://groups.google.com/group/comp.os.minix/msg/b813d52cbc5a044b

18 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

OSS leadership types 2:
Benevolent dictator model (2)

• Guido van Rossum started developing the programming
language Python in 1990
• In 1996, he wrote (in the introduction of Mark Lutz' book

"Programming Python"): "[…] in December 1989, I was looking
for a 'hobby' programming project that would keep me occupied
during the week around Christmas."

• Today, Python is one of the most popular languages
• for web, scripting, scientific programming, teaching, …

• The Python development community
calls van Rossum the
"Benevolent Dictator For Life" (BDFL)

• (he stepped down from that role in 2018 because
he found being a Dictator too burdensome)

Guido van Rossum

https://www.tiobe.com/tiobe-index/
https://mail.python.org/archives/list/python-committers@python.org/message/GQONAGWBBFRHVRUPU7RNBM75MHKGUFJN/

19 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

OSS leadership types 3:
Industry-based

• Most project members come from one industrial employer
• they often work full-time for the project
• and are being paid for it

• Examples: Mozilla Firefox, JBoss/WildFly

Where does the money come from?
• Firefox: Mozilla Foundation (Google search box fee)
• WildFly: Red Hat Inc. (professional services)

• formerly JBoss Inc., sold for US$ 420 mio after 7 years

Presenter
Presentation Notes
WildFly was formerly JBoss application server, built by JBoss, Inc.

https://en.wikipedia.org/wiki/Mozilla_Foundation
https://en.wikipedia.org/wiki/WildFly

20 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

OSS leadership types 4:
OSS foundation projects

• A formal organization (often called a foundation) is build in
order to host a significant group of related projects that have
something important in common
• such as technology, leadership/governance principles, or

philosophical principles
• May or may not have a main sponsor

Example:
• Apache Software Foundation (ASF)

• is a non-profit corporation with 501(c)(3) U.S. charity status
• members are individuals, new ones accepted by current member vote

• Goals: Support OSS projects , create a reputable receiver for
donations , provide legal shelter to project participants ,
protect the "Apache" brand

• Runs >350 projects, including many highly regarded ones
• Runs an "incubator" for systematically integrating further

projects into the foundation

Presenter
Presentation Notes
KDE is not a foundation. There is only the KDE Free Qt Foundation that was formed in the process of making the Qt library (a base technology of KDE) available as free software.

http://www.apache.org/

21 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Apache Incubator

• As of 2024-01, has 19 candidates
• Has a detailed formalized process for

how a project can become an ASF project:
• 1. To become a candidate, a project must write a proposal

and must have the support of
• a Champion: An ASF member

• http://www.apache.org/foundation/members.html
• as of 2024-01, at least 679 individuals were members

• a Sponsor: Either the ASF Board or an Apache Top-Level Project
or the Incubator Project Management Committee

• 2. To become an ASF project, the candidate must
• put all code under Apache license, resolve trademark issues
• work in "the Apache way" (large community, voting, meritocracy,

conflict handling, release planning, etc.)
• create synergy with other Apache projects

http://incubator.apache.org/incubation/Incubation_Policy.html
http://www.apache.org/foundation/members.html
http://incubator.apache.org/

22 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

OSS leadership types 4:
OSS foundation projects (2)

• The Free Software Foundation (FSF, home of GNU)
• Original goal was a completely free Unix OS

• GNU built system utilities, shell, compilers, C library etc.
• Main Principle is that of Free Software (GPL license)
• Now mostly rallying free software, not developing it

• Eclipse Foundation
• Initially an industrial consortium around IBM

• Borland, MERANT, QNX, Rational, Red Hat,
SuSE, TogetherSoft, Webgain

• now a foundation with many members in
different membership types

• Others: OpenStack, Linux, Gnome

Apache, FSF,
and Eclipse are
super-different!

Presenter
Presentation Notes
Apache and FSF are very different: Apache extremely active and pragmatic, FSF now(!) mostly ideological, not much active SW development left.2017: A few other foundations also have a clearly professional orientation (Linux, OpenStack) while for others it is less obvious (Gnome).

http://www.fsf.org/
https://www.eclipse.org/
http://www.eclipse.org/membership/exploreMembership.php
http://www.eclipse.org/membership/become_a_member/membershipTypes.php
https://www.openstack.org/
https://www.linuxfoundation.org/
https://www.gnome.org/foundation/
http://en.wikipedia.org/wiki/Image:Heckert_GNU_white.svg
http://en.wikipedia.org/wiki/Image:FSF-Logo.png

23 / 42

Self-organization:
Leadership type suitability

• Could Linux or Python be led in Apache style? Q
• The extreme quality requirements of an OS core or a

clean programming language are easier in a BDFL model

• Could Torvalds or van Rossum lead the whole ASF? Q
• The extreme scale (volume and diversity) of the ASF projects

can only be handled by a larger set of leaders.

Lutz Prechelt, prechelt@inf.fu-berlin.de

24 / 42

Questions

• What is Open Source SW?
• How important is it?
• Who builds it? Why?
• What is 'value'?

Who is the 'customer'?
• How does self-

organization work?
• Basic infrastructure
• Typical process
• Leadership
• Process innovation

patterns

• How does quality assurance
work?

• Is this agile?
Is it modern view?

• Is an open process useful
within companies?
• Inner Source

Lutz Prechelt, prechelt@inf.fu-berlin.de

Q

25 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Self-organization:
Process Improvements and OSS

This part is concerned with research performed in
AG Software Engineering

• Assume we want to perform process improvement
• important part of self-organization

• We know that this requires a lot of effort and time
• In a company, a decision will be based on

hierarchy (classical view) or joint company interest (agile)
• Neither exists in "real" OSS projects

• How does the equivalent process work in an OSS context? Q
• No central authority over project members, different interests
 decisions are more complicated

• Members are distributed asynchronous discussion
• Some improvements that are useful conventionally may not be

useful here

Christopher Özbek

Presenter
Presentation Notes
Entscheidungsweisen: * Authority Decisions - Ein Maintainer entscheidet * Representatory Collective - Eine Untergruppe von Teilnehmern bestimmt durch einen Mechanismus in dem sie sich als Vertretung des Projekts in einer bestimmten Situation einschätzen und dann auch häufig gegen eine Minderheit entscheiden. Also kein Konsens. * Vote und Just Do It (sind seltener). Ich würde sagen: Hierarchie existiert sehr wohl, aber sie beschränkt sich auf Macht/Kontrolle bzgl. der Einbeziehung von Beiträgen anderer in das offizielle Projekt. Im Gegensatz zu Unternehmen, kann durch Hierachie das Verhalten der einzelnen nur indirekt gesteuert werden.

26 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Definition "innovation"

• Definition:
Innovation means that a group adopts a new practice
• Conforms to the usage by important authors,

e.g. Everett Rogers, Peter Drucker, Harold Evans
• This definition is operational: observable, executable

• "Practice" refers to
• habits, routines, and other forms of

embodied recurrent actions
• that are chosen and performed without

conscious thought.

• In this sense, software process improvement
is innovation

Rogers

Drucker

27 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Innovation vs. invention

• Invention is different from innovation.
• Invention means to create something new,
• but does not require that anyone accept or adopt it.

1. Most inventions never become (or lead to) innovations
2. Many innovations are not brought about by the inventor
3. The same invention can lead to many innovations

• one per group adopting it
4. Innovation need not be unusual, widespread, or radical

• and can happen slow or fast

28 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Invention vs. innovation

• Carl Benz's first car was an invention
• but only Henry Ford's Model T brought the innovation

• it was sufficiently cheap, reliable, available

Benz Patent-Motorwagen
1886

29 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Invention vs. innovation

• Johann Philipp Reis invented the telephone 1860
• others followed: Antonio Meucci, later Elisha Gray

• Alexander Graham Bell did it again 1876,
but then founded the Bell Telephone Company

30 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Innovation as an active social process

[DenDun06]
• Successful innovation is performed by following certain

practices

• These practices can be trained and learned
• presented in the form of a generative framework
• (Relevant for OSS participants who want to improve projects)

• Technical capabilities are not
at the heart of these practices

31 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

[DenDun06] The generative framework:
"Personal Foundational Practices"

• 1 to 2:
invention
• 3,4: transition

• 5 to 6:
adoption

• Not sequential
steps!
• more like parallel

processes

• Each practice has
both verbal and
non-verbal aspects

32 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Application to OSS process
improvements

• How do process innovations proceed in OSS?
• And what can we learn from that? In particular:

• What does a would-be innovator need to do in order to
maximize the chance of successful adoption?
• How to identify candidate pairs of invention and project?
• How to identify key people in the project?
• How to communicate with the project?

33 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Case study: The Moderator role

Participant observation study:
• Communication and coordination are difficult in OSS projects
• We 1_sensed that it might be helpful to actively and

explicitly promote coordination-related information in such
projects

• We 2_envisioned a new role in OSS projects, the Moderator,
whose task is information management:
• explicitly collecting and organizing information that speeds up

information access for many participants
(in particular new ones) and avoids
redundant questions or searches

• We 3_offered this "invention" to a
project (GNU classpath)
• We offered to set up a wiki
• There we could collect and structure

information regarding e.g. design decisions

https://www.gnu.org/software/classpath/

34 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Case study: The Moderator role (2)

• The offer was accepted. We 4_executed
• by actually setting up the Wiki
• by actually compiling initial information found in the mailing list

archive and putting it there regarding (a) design decisions,
(b) newbie instructions, (c) current development topics

• We continued maintaining this information, adding more from
time to time and announcing it via email, thus triggering
5_adopting the new practice
• After some time, a few other project

members started using the platform, too
• Also for new purposes, such as arranging

physical meetings
• Specific actions for 6_sustaining the

practice did not appear to be necessary
• The Moderator role has apparently been

distributed and filled since

Presenter
Presentation Notes
Classpath had its last release in 2012, because since 2007, OpenJDK was available as a (superior) alternative.https://en.wikipedia.org/wiki/GNU_Classpath https://www.gnu.org/software/classpath/https://en.wikipedia.org/wiki/OpenJDK

http://developer.classpath.org/mediation/
http://developer.classpath.org/mediation/ClasspathDecisionsPage
http://developer.classpath.org/mediation/ClasspathFirstSteps
http://developer.classpath.org/mediation/ClasspathCurrentTopics
http://developer.classpath.org/mediation/RecentChanges

35 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Case study: The Moderator role (3)

• The details of our 7_leading that made the effort successful
still need to be understood
• analyzing who did

what when why
• or not

• In order to understand the
causation in the process,
we need more examples
of it

36 / 42

Process Improvements and OSS:
Research method

• We performed participant observation once
• but that is far too time-consuming

• We switched to searching for process
innovation episodes on project mailing lists
• chose medium-sized projects (10 to 50 members)
• scanned the mailing lists of several hundred projects

• and picked 12 projects for analysis
• scanned thousands of emails for innovation episodes
• extracted the messages for about 100 such episodes
• analyzed them in detail using GTM to find innovation patterns

• Innovation episodes:
• variable size (#messages, #participants, #days)
• very different topics, some types of them recurring
• often unsuccessful

Lutz Prechelt, prechelt@inf.fu-berlin.de

Presenter
Presentation Notes
Figure: Christopher Özbek, the PhD researcher who did this work.

https://en.wikipedia.org/wiki/Grounded_theory

37 / 42

Process innovation pattern 1:
Partial migration

• Context:
• A process change was

proposed
• Many find it reasonable

• Forces
• The change involves a lot of

work for one person
• and some work for

everybody
• It is risky or

some members do not like
it yet (are change-averse)

• Example:
• Switch the version mgmt.

from CVS to Subversion or
from Subversion to a
decentral system (e.g. git)

• Solution:
• The change is made only

for a fraction of the project
at first

• e.g. new repository created
for one subsystem only

• then tried out and adapted
gradually

• in order to distribute the
workload and allow
members to adapt slowly

Lutz Prechelt, prechelt@inf.fu-berlin.de

38 / 42

Process innovation pattern 2:
Adapter innovations

• Context: A sensible process change was proposed

• Forces: Some members cannot or do not want to accomodate
the future situation.
• Resistance.

• Example: ditto, change of version management software

• Solution: Create an adapter that allows those members to
more or less stay in the previous mode
• at least for a while

Lutz Prechelt, prechelt@inf.fu-berlin.de

39 / 42

Process innovation pattern 3:
Reduce enactment scope

• Context: A sensible process change is proposed

• Forces: It involves a lot of work compared to its importance
(or at least many members perceive it that way),
or the benefits are unclear

• Example: Clean up bug tracker database after a release.

• Solution: Frame the suggestion as a one-time activity only.
Wait and see how it worked out.
Only then introduce it as a process change

(We found a few more such patterns, also smaller tactical ones.)

Lutz Prechelt, prechelt@inf.fu-berlin.de

40 / 42

Common theme of the patterns?

• Partial migrations, Adapters, Reduced enactment scopes

• Reduce amount of resistance
• by reducing the attack surface
• "leading without coercion" (Raymond)

• Why is that needed?
• Isn't the proposed process indeed better? Q

• Because process change is cultural change
("community-specific ideas about what is
true, good, beautiful, and efficient.")
• culture sticks!

Lutz Prechelt, prechelt@inf.fu-berlin.de

41 / 42

Summary

• OSS projects strongly rely on typical technical infrastructure

• Processes vary a lot
• but have a core of typical elements

• Leadership is typically meritocratic
• with sometimes huge influence of admired top people

• Process innovation is difficult
• because of heterogeneity of players and
• because process change often means culture change
• but behavior patterns for reducing change resistance exist

Lutz Prechelt, prechelt@inf.fu-berlin.de

42 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Thank you!

https://xkcd.com/1077/

https://xkcd.com/1077/

	OSS and Self-Organization
	Questions
	Self-organization: Basic infrastructure�DVCS, issue tracker, build, web pages
	Self-organization:�OSS process: What's typical?
	Self-organization: �OSS process: What's typical? (2)
	Self-organization: �OSS process: What's typical? (3)
	Self-organization: �Collaboration and coordination
	Questions
	Self-organization: Leadership
	Self-organization:�OSS leadership and decision-making
	Self-organization: The OSS career
	Self-organization: The OSS career (2)
	Self-organization: �OSS decision-making (1)
	Self-organization: Forking
	Self-organization: �OSS leadership type case studies
	OSS leadership types 1: �Democratic model
	OSS leadership types 2:�Benevolent dictator model
	OSS leadership types 2:�Benevolent dictator model (2)
	OSS leadership types 3:�Industry-based
	OSS leadership types 4:�OSS foundation projects
	Apache Incubator
	OSS leadership types 4:�OSS foundation projects (2)
	Self-organization:�Leadership type suitability
	Questions
	Self-organization: �Process Improvements and OSS
	Definition "innovation"
	Innovation vs. invention
	Invention vs. innovation
	Invention vs. innovation
	Innovation as an active social process
	[DenDun06] The generative framework:�"Personal Foundational Practices"
	Application to OSS process �improvements
	Case study: The Moderator role
	Case study: The Moderator role (2)
	Case study: The Moderator role (3)
	Process Improvements and OSS:�Research method
	Process innovation pattern 1:�Partial migration
	Process innovation pattern 2:�Adapter innovations
	Process innovation pattern 3:�Reduce enactment scope
	Common theme of the patterns?
	Summary
	Thank you!

