
1 / 38Lutz Prechelt, prechelt@inf.fu-berlin.de

Open Source SW (OSS) Development Basics

Part 1:
• What is OSS?

• Licenses
• Who builds it?

• "True" OSS
• Commercial OSS

• Value

Course "Softwareprozesse"

Parts 2 & 3:
• Self-organization
• Quality assurance
• Comparison to agile
• Inner Source

Lutz Prechelt
Freie Universität Berlin, Institut für Informatik

Presenter
Presentation Notes
"~" heißt ungefähr, "~~" heißt uuuuungefähr
Aktivierung der Studierenden: Überall, wo ein oder mehrere Projektbeispiele angegeben sind, nach weiteren fragen.

2 / 38

Questions

• What is Open Source SW?
• How important is it?
• Who builds it? Why?
• What is 'value'?

Who is the 'customer'?
• How does self-organization

work?
• Basic infrastructure
• Typical process
• Leadership
• Process innovation patterns

• How does quality assurance
work?

• Is this agile?
Is it modern view?

• Is an open process useful
within companies?
• Inner Source

Lutz Prechelt, prechelt@inf.fu-berlin.de

QAt Bloom levels 3 or 4, the ability to
discuss these is also the learning objective

Part 1, today

Presenter
Presentation Notes
The large Q identifies this questions slide, which will reappear throughout all three OSS lecture units

3 / 38Lutz Prechelt, prechelt@inf.fu-berlin.de

Definition "Free Software"

Richard Stallman, Free SW Foundation FSF:
http://www.gnu.org/philosophy/free-sw.html

• The freedom to run the program, for any
purpose (freedom 0)

• The freedom to study how the program works,
and adapt it to your needs (freedom 1).
• This requires access to the source code.

• The freedom to redistribute copies so you can
help your neighbor (freedom 2).

• The freedom to modify the program, and
release your improvements to the public,
so that the whole community benefits (freedom 3).

On Richard Stallman, see
• https://en.wikipedia.org/wiki/Richard_Stallman and

http://www.catb.org/~esr/writings/rms-bio.html

Richard Stallman

http://www.gnu.org/philosophy/free-sw.html
https://en.wikipedia.org/wiki/Richard_Stallman
http://www.catb.org/%7Eesr/writings/rms-bio.html
http://en.wikipedia.org/wiki/Image:FSF-Logo.png

4 / 38Lutz Prechelt, prechelt@inf.fu-berlin.de

Definition "Open Source Software"

• Stallman calls such software "Free Software"
• he promotes it actively since 1985
• http://www.fsf.org/ Free SW Foundation

• Today, the more common term is
"Open Source Software" (OSS)
• This move was initiated in 1998

by Eric Raymond:
• because the term free

"makes a lot of corporate types nervous"

• Academically, sometimes also termed
"Free/Libre and Open Source Software (F/LOSS)"
• abbreviated FLOSS or shortened to FOSS or F/OSS

• Free SW now has two "home organizations":
FSF and OSI, the Open Source Initiative
• http://opensource.org/

Er
ic

 R
ay

m
on

d

Presenter
Presentation Notes
Raymond: "the term makes a lot of corporate types nervous. While this does not intrinsically bother me in the least, we now have a pragmatic interest in converting these people rather than thumbing our noses at them. There's now a chance we can make serious gains in the mainstream business world without compromising our ideals and commitment to technical excellence -- so it's time to reposition. We need a new and better label."

http://www.fsf.org/
http://www.catb.org/%7Eesr/open-source.html
http://flossproject.merit.unu.edu/report/index.htm
https://www.gnu.org/philosophy/floss-and-foss.en.html
http://opensource.org/

5 / 38

The OSS turning point

• [Fitzgerald06] The introduction of the "OSS" term marks a
dramatic mainstreaming of F/LOSS development and use:
• many more OSS developers

• in particular many more paid OSS developers
• more pragmatic, less ideological attitude
• many new business models

• proliferation of licenses
• enormous uptake by users
• enormous uptake by developers as component users
• appearance of vertical OSS applications
• some larger-scale OSS projects
• more explicit, more structured development processes

• Fitzgerald (but nobody else) calls this "OSS 2.0"

Lutz Prechelt, prechelt@inf.fu-berlin.de

Presenter
Presentation Notes
This is a correlation, not necessarily a causation. It is impossible to measure how much influence the "OSS" term had in that development.

https://doi.org/10.2307/25148740

6 / 38

Note:
What is an Open Source project?

• The so-called Open Source project is in fact an organization
• projects are "temporary efforts" (pmi.org)

• Open source organizations are not typical organizations:
• ad-hoc ("for this"; unlike most companies or associations)
• mostly without a legal shell, unless large

• prominent exceptions exist (e.g. Apache SW Foundation)
• with fuzzy membership

Lutz Prechelt, prechelt@inf.fu-berlin.de

https://www.pmi.org/about/learn-about-pmi/what-is-project-management

7 / 38Lutz Prechelt, prechelt@inf.fu-berlin.de

Contrasts: proprietary,
shared source, closed source

• Most company software is proprietary ("eigen", "geschützt"):
The copyright holder reserves the right to use the software
• either to himself (custom SW)

• this is the default case in most country's copyright laws
• or to people who accept restrictions regarding the use of the SW

and usually pay a license fee (commercial SW products)

• Usually (but not always) proprietary SW is closed-source
• meaning even the allowed users only get to see a binary version

• If not, this is sometimes called "shared source"
• e.g. from Microsoft (main purpose: create trust)

https://www.microsoft.com/en-us/sharedsource/default.aspx

8 / 38Lutz Prechelt, prechelt@inf.fu-berlin.de

OSS licenses: Overview

• There is a rather large number of OSS licenses that define the
rights of the public with respect to the software

• e.g. (as of 2006-10) Academic Free License ● Adaptive Public License ● Apache Software License ●
Apache License, 2.0 ● Apple Public Source License ● Artistic license ● Attribution Assurance
Licenses ● New BSD license ● Computer Associates Trusted Open Source License 1.1 ● Common
Development and Distribution License ● Common Public License 1.0 ● CUA Office Public License
Version 1.0 ● EU DataGrid Software License ● Eclipse Public License ● Educational Community
License ● Eiffel Forum License ● Eiffel Forum License V2.0 ● Entessa Public License ● Fair License ●
Frameworx License ● GNU General Public License (GPL) ● GNU Library or "Lesser" General Public
License (LGPL) ● Historical Permission Notice and Disclaimer ● IBM Public License ● Intel Open
Source License ● Jabber Open Source License ● Lucent Public License (Plan9) ● Lucent Public
License Version 1.02 ● MIT license ● MITRE Collaborative Virtual Workspace License (CVW
License) ● Motosoto License ● Mozilla Public License 1.0 (MPL) ● Mozilla Public License 1.1 (MPL) ●
NASA Open Source Agreement 1.3 ● Naumen Public License ● Nethack General Public License ●
Nokia Open Source License ● OCLC Research Public License 2.0 ● Open Group Test Suite License
● Open Software License ● PHP License ● Python license (CNRI Python License) ● Python Software
Foundation License ● Qt Public License (QPL) ● RealNetworks Public Source License V1.0 ●
Reciprocal Public License ● Ricoh Source Code Public License ● Sleepycat License ● Sun Industry
Standards Source License (SISSL) ● Sun Public License ● Sybase Open Watcom Public License 1.0
● University of Illinois/NCSA Open Source License ● Vovida Software License v. 1.0 ● W3C License
● wxWindows Library License ● X.Net License ● Zope Public License ● zlib/libpng license

• for details see http://www.opensource.org/licenses/
• some concise summaries: http://choosealicense.com/licenses/

• but they all derive from only 2 basic types:

http://www.opensource.org/licenses/
http://choosealicense.com/licenses/

9 / 38Lutz Prechelt, prechelt@inf.fu-berlin.de

OSS licenses: Essentials

• We have seen Stallman's definition of Free Software
• which may appear somewhat vague, at least untechnical

• According to the OpenSource Initiative (opensource.org),
the defining characteristics are the following:
1. Right of free redistribution
2. Source code availability
3. Derived works (and their distribution) are allowed
4. Undue restrictions must not be present:

• no discrimination against persons or groups
(e.g. "valid for IBM employees only"),

• no discrimination against fields of endeavor
(e.g. "no military use"),

• no further steps required
(e.g. signing a non-disclosure agreement, making a registration),
etc.

• For our purposes, both definitions are equivalent.

Presenter
Presentation Notes
In particular point 4 is more explicit than Stallman's description.
Without point 4, companies are reluctant picking up OSS. The libertarian Raymond got this right, many Free SW zealots would love some discrimination terms.

https://opensource.org/docs/definition.php
http://www.opensource.org/index.php

10 / 38Lutz Prechelt, prechelt@inf.fu-berlin.de

OSS licenses:
2 basic types (GPL, BSD)

The most crucial difference between licenses is their
requirements for derived works:

• The "copyleft" licenses require that derived works,
if distributed, are also distributed under the same license
• Prototype representatives: GNU General Public License (GPL),

GNU Affero General Public License (AGPL),
GNU Lesser General Public License (LGPL)

• Different definition of derived work (strong/verystrong/weak copyleft)
• Private (undistributed) derived works are allowed

• But even running a web app publicly is distribution for AGPL.

• The liberal licenses allow that derived works can be
published under a different license
• often including closed source licenses
• Important representatives: MIT, BSD 2-cl, BSD 3-cl, Apache

http://www.gnu.org/copyleft/copyleft.html
http://www.gnu.org/licenses/gpl-3.0.html
http://www.gnu.org/licenses/agpl.html
http://www.gnu.org/licenses/lgpl.html
https://opensource.org/licenses/MIT
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/Apache-2.0

11 / 38

Note: Is copyleft "viral"?

• Some people claim, GPL code will "infect" other code
with which it is combined
• any GPL component will make the entire system fall under GPL

• This is incorrect:
• Copyleft pertains to "modified works" (GPL version 3).

• The GPL says:
• "To “modify” a work means to copy from or adapt all or part of

the work in a fashion requiring copyright permission,
other than the making of an exact copy."

• So only modifications to the GPL'd code fall under copyleft
• not the remainder of a system in which that GPL'd code is used:
• Modify the GPL'd work, GPL the result, copy it,

combine the "exact copy" with your own code.
• (Where object code is involved, the license wording is complex,

but the effect is still the same.)

• Still, the GPL "makes corporate types nervous" to this day.

Lutz Prechelt, prechelt@inf.fu-berlin.de

12 / 38Lutz Prechelt, prechelt@inf.fu-berlin.de

OSS licenses:
Other types (MPL, variants)

• A few licenses can be considered "in between"
the copyleft and the liberal licenses

• Sort of a middle ground is defined by the
Mozilla Public License (MPL):
• it discriminates deriving from existing parts

(which must keep their previous license) from
deriving by adding new parts
(for which one can choose a license freely)

• This means that, say, a company can still build proprietary
extensions of a work, but has to publish changes in existing parts
back to the community.

• Most licenses differ from these 3 types only by minor addi-
tional restrictions/permissions (patents, commercialization)
• (1) perhaps only wording differs, (2) many licenses have multiple

versions or variants, (3) small differences can be highly relevant!

https://opensource.org/licenses/MPL-2.

13 / 38

Contrast: proprietary licenses

• Most closed-source licences not only
• require paying a license fee and
• do not offer seeing the source code

• but also
• usually prohibit modifying the product

• often even for fixing bugs!
• usually prohibit reverse-engineering
• sometimes prohibit public benchmarking (e.g. Oracle DB)

Lutz Prechelt, prechelt@inf.fu-berlin.de

14 / 38Lutz Prechelt, prechelt@inf.fu-berlin.de

OSS licenses: Consequences

• When creating derived works from multiple OSS products at
once, make sure the respective licenses are compatible
• You will sometimes need a lawyer to answer that question
• Example problem: The original Apache Software License was not

compatible with the GPL since it contains a patent retaliation
clause. (Apache Version 2 has resolved that)

• https://www.gnu.org/licenses/license-list.html

See also: https://opensource.guide/legal/

Presenter
Presentation Notes
http://www.apache.org/licenses/LICENSE-2.0, item 3, heavily paraphrased:
Each contributor grants you a patent licence to make and use the work.
If you institute patent litigation against anybody alleging the work infringes your patent, any patent license granted to you under this license shall become void.

https://www.gnu.org/licenses/license-list.html
https://opensource.guide/legal/

15 / 38Lutz Prechelt, prechelt@inf.fu-berlin.de

OSS licenses:
Commercial Implications

• OSS licenses don't forbid selling the software
• But in case of copyleft you still have to provide the source code
• Liberal licenses are flexible for commercial applications.

• If the copyright is held by a single entity, a possible move is
dual licensing:
• Companies can either use the free version and have to share

their development or they pay and can derive proprietary
products.

• Examples (at some time): MySQL, Qt, Asterisk, Berkeley DB

16 / 38

So Open Source is not a process?

(Abb. Dirk Riehle, FOSS course)
Lutz Prechelt, prechelt@inf.fu-berlin.de

"sort of"
Open Source "real" Open Source

https://github.com/dirkriehle/foss-course

17 / 38

Warning: Processes vary enormously.
No binary thinking!

Lutz Prechelt, prechelt@inf.fu-berlin.de

Presenter
Presentation Notes
OSS is a complex phenomenon and a large space, so almost everywhere many very different things exist at once, such as F/LOSS and OSS 2.0 attitudes, such as large and small projects, such as professionals and hobbyists (and other types of participants) and so on.

18 / 38

Questions

• What is Open Source SW?
• How important is it?
• Who builds it? Why?
• What is 'value'?

Who is the 'customer'?
• How does self-organization

work?
• Basic infrastructure
• Typical process
• Leadership
• Process innovation patterns

• How does quality assurance
work?

• Is this agile?
Is it modern view?

• Is an open process useful
within companies?
• Inner Source

Lutz Prechelt, prechelt@inf.fu-berlin.de

Q

19 / 38

How important is it?:
Which software is open source?

• OSS dominant:
Infrastructure software
• Operating systems

• Android, *Linux, *BSD,
FreeRTOS, etc. etc.
(usage statistics)

• Programming language
implementations:

• C/C++, Java, JavaScript,
PHP, Python, R, Ruby, etc.

• DBMS:
• MySQL/MariaDB,

PostgreSQL, SQlite,
most noSQL DBMSs

• Web servers:
• Apache httpd, nginx

• Web browsers:
• Chrome, Firefox

• Thousands of libraries and
frameworks

• OSS relevant:
Vertical application software

• https://www.getapp.com
• CRM systems
• ERP systems

• iDempiere, OFBiz,
Openbravo, Odoo

• Finance/accounting
• Health information systems
• HR systems

Lutz Prechelt, prechelt@inf.fu-berlin.de

etc.

etc.

see also usage of: CMS, browsers, languages, …

LOTS!

Presenter
Presentation Notes
For infrastructure SW, OSS has long been the leading category, compared to proprietary SW. This is sometimes problematic, see the Heartbleed bug in Open SSL introduced in 2012 and discovered to the public in 2014.

https://source.android.com/
http://www.freertos.org/
https://en.wikipedia.org/wiki/Comparison_of_real-time_operating_systems
https://en.m.wikipedia.org/wiki/Usage_share_of_operating_systems
https://gcc.gnu.org/
http://openjdk.java.net/
https://en.wikipedia.org/wiki/JavaScript_engine#JavaScript_engines
http://php.net/
https://www.python.org/
https://www.r-project.org/
https://www.ruby-lang.org/
https://www.mysql.com/
https://mariadb.org/
http://postgresql.org/
http://sqlite.org/
http://httpd.apache.org/
https://www.nginx.com/
https://www.google.com/chrome/browser
https://www.mozilla.org/en-US/firefox/
https://www.getapp.com/
https://www.getapp.com/customer-management-software/p/open-source/
https://www.getapp.com/s/erp
http://www.idempiere.org/
http://ofbiz.apache.org/
http://www.openbravo.com/
https://www.odoo.com/
https://www.getapp.com/finance-accounting-software/p/open-source/
https://en.wikipedia.org/wiki/List_of_open-source_health_software
https://www.getapp.com/hr-employee-management-software/p/open-source/
http://w3techs.com/technologies/history_overview/content_management/ms/y
https://en.m.wikipedia.org/wiki/Usage_share_of_web_browsers
https://www.tiobe.com/tiobe-index/

20 / 38

Questions

• What is Open Source SW?
• How important is it?
• Who builds it? Why?
• What is 'value'?

Who is the 'customer'?
• How does self-organization

work?
• Basic infrastructure
• Typical process
• Leadership
• Process innovation patterns

• How does quality assurance
work?

• Is this agile?
Is it modern view?

• Is an open process useful
within companies?
• Inner Source

Lutz Prechelt, prechelt@inf.fu-berlin.de

Q

21 / 38

OSS economical-view success factors:
Value of participating in OSS projects

• Value for individuals:
• Joy, zealotry

• [Raymond_HNoo]
• Solving one's own problem

• [Raymond_CathBazaar]
• Increasing one's reputation

• in hacker's gift culture
[Raymond_HNoo]

• in an exchange culture
[CroWeiHow12]

• in particular freelancers
• Strong public OSS

contributions are "the
ultimate referral"

• Earning money
• Many/most OSS

participants are paid by a
company [CroWeiHow12]

Lutz Prechelt, prechelt@inf.fu-berlin.de

• A heterogeneous
set of motivations

• Consequence for self-
organization?
• Difficult!

•  part 2
• Lacking the

joint-goal background of
a single company

Presenter
Presentation Notes
Eric Raymond: "Homesteading the Noosphere", 2000:
The OSS community has a "gift culture": You are �respected for making valuable gifts to the community
The culture has varying degrees of underlying �OSS zealotism and anti-commercialism
Individual participants are motivated by �striving for reputation
Hence many people tend to work�("homestead") where they expect �the most reputation to be gained
In Linux, about 85% of contributions come from people paid for them. Similar in many OSS projects that companies have a deep interest in or enough general interest in. Less true for other projects. Some projects are driven by a particular company, e.g. Firefox by the Mozilla Corporation.

http://www.catb.org/esr/writings/cathedral-bazaar/homesteading/
http://www.catb.org/esr/writings/cathedral-bazaar/cathedral-bazaar
http://www.catb.org/esr/writings/cathedral-bazaar/homesteading/
https://dl.acm.org/doi/pdf/10.1145/2089125.2089127
https://dl.acm.org/doi/pdf/10.1145/2089125.2089127

22 / 38

• Value for companies:
• Many sponsor a project

almost completely
• How is this even possible??

• Where is the catch?
• [Raymond_MagicCauldron]

explains several possible
reasons

• see next few slides:

OSS economical-view success factors:
Value of participating in OSS projects

Lutz Prechelt, prechelt@inf.fu-berlin.de

Is there a catch like this?:

Presenter
Presentation Notes
Eric Raymond: "Homesteading the Noosphere", 2000:
The OSS community has a "gift culture": You are respected for making valuable gifts to the community.�The culture has varying degrees of underlying OSS zealotism and anti-commercialism.
Individual participants are motivated by striving for reputation.
Hence many people tend to work ("homestead") where they expect the most reputation to be gained.

http://www.catb.org/esr/writings/cathedral-bazaar/magic-cauldron/
http://therealrevo.com/blog/?p=112828

23 / 38Lutz Prechelt, prechelt@inf.fu-berlin.de

OSS economical-view success factors:
Free Riding

• A physical good, when available for free, can easily be
overused and hence damaged or destroyed ("free riding")
• "Tragedy of the Commons" (Lloyd 1833, Hardin 1968)

• However, an intellectual good such as software may even gain
from being available for free [HipKro03] :
• Software/ideas are not damaged when used by more people
• Market share increases and thus quality improvements become

more likely: It is sufficient that any one person sees making an
improvement as rewarding (for himself/herself)

• That all others get the same improvement for free is irrelevant
• It is impossible to realize the potential market value of small

improvements (if that exists at all)
• Rivals are unlikely to profit from the revealing
• There are things that the free-rider cannot get without participating

(fun of writing code, community, learning)
• To not openly submit might actually cost something:

work for re-integrating the improvement with future versions

https://en.wikipedia.org/wiki/Tragedy_of_the_commons

24 / 38Lutz Prechelt, prechelt@inf.fu-berlin.de

OSS economical-view success factors:
Sales value vs. use value

• Economic reasons for closing source:
• Protecting sales value
• Denying others the knowledge embedded in the SW

•  Candidates for opening source:
• All SW that has no sale value (for you!)

and that does not contain crucial knowledge

• Ego-centric benefits from opening source:
1. Get free help from others for maintaining the SW
2. Possibly get improvements to the SW you would

never make yourself
3. Reputation

• Opening source reduces sale value, but increases use value
• There are multiple situations when this is economically advisable:

[Raymond_MagicCauldron]

http://www.catb.org/esr/writings/cathedral-bazaar/magic-cauldron/

25 / 38Lutz Prechelt, prechelt@inf.fu-berlin.de

OSS economical-view success factors:
Cost sharing scenario

Commercial OSS justification 1:
Cost sharing (The Apache case)

• Assume you need a flexible, reliable, high-performance web
server with certain specific features
• You have three choices:

1. Buy one (and have vendor risk),
2. Build your own (and spend a lot of money) or
3. Join the Apache Group

• Investing into Apache development is actually
your cheapest route and hence economically sensible
• There are now thousands of OSS projects of this type all across

the various infrastructure SW domains

(by today, we have almost forgotten
that options 1 and 2 even exist!)

Presenter
Presentation Notes
"Vendor risk" is the problem that you have to rely on somebody who may stop delivering in the future (going out of business or stopping development of this product).

https://en.wikipedia.org/wiki/Comparison_of_web_server_software

26 / 38Lutz Prechelt, prechelt@inf.fu-berlin.de

OSS economical-view success factors:
Maintenance risk reduction scenario

Commercial OSS justification 2:
Risk reduction (The Cisco Print Spooler case)

• Assume you have created some useful in-house solution for a
problem that is not business-critical
• e.g. Cisco built a modification of the Unix print spooling service

that could re-route "low on toner" print jobs to nearby printers in
a global company network, notify administrators, etc.

• You would like to assure you can maintain the solution even if
its (few) developers leave your company
• 2 in Cisco's case

• Your best route is opening source and getting other
companies to start using the same solution
• You may even get further improvements for free
• Applies to very many projects that

once started in just one company
(by today, these typically start
as OSS right away!)

27 / 38Lutz Prechelt, prechelt@inf.fu-berlin.de

OSS economical-view success factors:
Market positioning scenario

Commercial OSS justification 3:
Loss Leader/Market Positioner (The Mozilla case)
• Loss leader = Lockvogelangebot

• Opening source does not only deny you sale value,
but also your competitors (for similar products)
• This can also help keeping a competitor

from achieving quasi-monopoly status
• or from entering a market in the first place
• When Netscape opened source of their Mozilla browser it was to

deny Microsoft a monopoly with Internet Explorer
• which would have cut into Netscape's Web Server business

via the de-facto control of HTML and HTTP by Microsoft

• A common move for vertical applications
• "If you are not the #1 app of a type, open-source it."
• Creates chain reactions  several OSS offers appear quickly

28 / 38Lutz Prechelt, prechelt@inf.fu-berlin.de

OSS economical-view success factors:
Widget frosting scenario

Commercial OSS justification 4:
Widget frosting (The Darwin case)

• If you are building hardware, you need accompanying
software but that software does not have sales value itself
• e.g. device drivers for network/graphics/sound cards, printers

• Opening source brings you the benefits of free help at no loss
• It is usually impossible anyway to deny your competitors access

to any valuable secret in the code
• Example: In 2000, Apple Computers opened the Darwin

operating system kernel (the heart of Mac OS X)
• (Note that OpenDarwin was not successful; later shut down)

• Appears not to be a mainstream behavior

widget = Dingsbums, frosting = Zuckerguss

Presenter
Presentation Notes
Note: The OpenDarwin project was shut down after a few years (2002-2006) because of lack of success.

29 / 38Lutz Prechelt, prechelt@inf.fu-berlin.de

OSS economical-view success factors:
Service reputation scenario

Commercial OSS justification 5:
Give away a product to advertise a service

• Service companies can immensely increase their
name recognition and reputation by
opening source on internal products

• Examples:
• Cygnus Solutions support for GNU tools (1989!)
• Red Hat, SUSE Linux support and services
• Zope Corp. (formerly Digital Creations) web development
• Openbravo ERP software services

• Now a very common model
• in particular for vertical applications

Presenter
Presentation Notes
Cygnus Solutions verschmolz 1999 mit Red Hat.
Raymond postulated "Free the SW, sell the brand" for Java ~8 years before Sun finally did so (although their motivation is also part widget frosting and part recipe/restaurant).

https://en.wikipedia.org/wiki/Cygnus_Solutions
https://en.wikipedia.org/wiki/Red_Hat
https://en.wikipedia.org/wiki/SUSE
https://en.wikipedia.org/wiki/Zope
https://en.wikipedia.org/wiki/Openbravo

30 / 38Lutz Prechelt, prechelt@inf.fu-berlin.de

OSS economical-view success factors:
Freemium scenario

Commercial OSS justification 6:
Give away a product to
advertise a better product

• Product companies can immensely increase their
name recognition and customer trust by
opening source on large parts of proprietary products

• Examples:
• Compiere ERP software
• Openbravo ERP software
• Most e-commerce platforms

• Now a common model
• in particular for vertical applications

https://en.wikipedia.org/wiki/Compiere
https://en.wikipedia.org/wiki/Openbravo

31 / 38

OSS sweet spot

High-payoff situations for OSS is SW…
1. …where reliability/stability/scalability are critical

•  makes a large OSS community particularly helpful
2. …that establishes or enables a common computing

infrastructure
•  highest use of network effects

3. …whose key methods are part of common engineering
knowledge
•  less reason for going closed source; little sales value to be lost

4. or where we want to deny competitors their sales value
or simply want to become known as capable people.

In all these cases, OSS is now very common.

Lutz Prechelt, prechelt@inf.fu-berlin.de

32 / 38Lutz Prechelt, prechelt@inf.fu-berlin.de

OSS economical-view success factors:
User risk reduction effects

Bonus:

OSS has benefits for the users that reflect back on the supplier:
• Reduced vendor lock-in
• Reduced risk if vendor goes out of business
• Improved transparency of product (quality, security)
• Improved visibility of future developments

So being open source is itself an important feature.

33 / 38

Open-sourcing proprietary SW:
How to do it

We may want to open-source our software.

• How to decide whether and what?
• Linåker, Munir, Wnuk, Mols:

"Motivating the contributions: An Open Innovation perspective on
what to share as Open Source Software".
Journal of Systems and Software, 2018

• See also http://linaker.se/2017/11/23/what-to-share-as-open-
source/

• How to carry it out?
• https://opensource.guide/starting-a-project/
• https://opensource.guide/building-community/

Lutz Prechelt, prechelt@inf.fu-berlin.de

https://doi.org/10.1016/j.jss.2017.09.032
http://linaker.se/2017/11/23/what-to-share-as-open-source/
https://opensource.guide/starting-a-project/
https://opensource.guide/building-community/

34 / 38

Questions

• What is Open Source SW?
• How important is it?
• Who builds it? Why?
• What is 'value'?

Who is the 'customer'?
• How does self-organization

work?
• Basic infrastructure
• Typical process
• Leadership
• Process innovation patterns

• How does quality assurance
work?

• Is this agile?
Is it modern view?

• Is an open process useful
within companies?
• Inner Source

Lutz Prechelt, prechelt@inf.fu-berlin.de

Q

35 / 38

What is 'value'?:
1. "Real" Open Source

• There are no customers,
only users.

• [Raymond_CathBazaar]
postulates:
• "1. Every good work of

software starts by
scratching a developer's
personal itch."

• One reason why OSS is
so far strongest in
infrastructure SW

• "2. Good programmers
know what to write."

• "5. When you lose interest
in a program, your last duty
to it is to hand it off to a
competent successor."

• But the itches differ
• let alone in larger projects:
• "the Linux community

seemed to resemble a great
babbling bazaar of differing
agendas and approaches
[…] out of which a coherent
and stable system could
seemingly emerge only by a
succession of miracles."

•  self-organization?

• Conclusion:
• An OSS project may not

have consensus on 'value'
• and may somehow

also not need it

Lutz Prechelt, prechelt@inf.fu-berlin.de

?

Presenter
Presentation Notes
1./2.: OSS creators understand value well enough, whatever it may be.
5.: Make sure the value does not get lost!

http://www.catb.org/esr/writings/cathedral-bazaar/cathedral-bazaar

36 / 38

What is 'value'?:
2. Commercial Open Source

There are ordinary customers.

Two sources of contributions:
• The company's own:

• Service-driven company:
Much the same as for
normal agile development

• Product-driven company:
Watch out to keep the base
product healthy

• most investment will be in
the for-pay parts of the
product

• From external participants:
• usually only bugfixes

• supplied "as needed"
• each a slight increase in

value

Lutz Prechelt, prechelt@inf.fu-berlin.de

37 / 38Lutz Prechelt, prechelt@inf.fu-berlin.de

Summary

• Open Source Software is software licensed under an
OSS license
• can be developed openly ("true" OSS)
• or by (or even only in) a single company (commercial OSS)

• or "single-vendor OSS"

• OSS is now dominant in many SW domains
• in particular infrastructure SW

• Individual developers have a range of motivations

• "Value" is often not obvious in true OSS
• no customers (only users), no product owner

• clearer for single-vendor OSS
• leading to the "bazaar" style of development

38 / 38Lutz Prechelt, prechelt@inf.fu-berlin.de

Thank you!

https://www.explainxkcd.com/wiki/index.php/225:_Open_Source

https://www.explainxkcd.com/wiki/index.php/225:_Open_Source

	Open Source SW (OSS) Development Basics
	Questions
	Definition "Free Software"
	Definition "Open Source Software"
	The OSS turning point
	Note:�What is an Open Source project?
	Contrasts: proprietary,�shared source, closed source
	OSS licenses: Overview
	OSS licenses: Essentials
	OSS licenses: �2 basic types (GPL, BSD)
	Note: Is copyleft "viral"?
	OSS licenses: �Other types (MPL, variants)
	Contrast: proprietary licenses
	OSS licenses: Consequences
	OSS licenses: �Commercial Implications
	So Open Source is not a process?
	Warning: Processes vary enormously.�No binary thinking!
	Questions
	How important is it?:�Which software is open source?
	Questions
	OSS economical-view success factors:�Value of participating in OSS projects
	OSS economical-view success factors:�Value of participating in OSS projects
	OSS economical-view success factors:�Free Riding
	OSS economical-view success factors:�Sales value vs. use value
	OSS economical-view success factors:�Cost sharing scenario
	OSS economical-view success factors:�Maintenance risk reduction scenario
	OSS economical-view success factors:�Market positioning scenario
	OSS economical-view success factors:�Widget frosting scenario
	OSS economical-view success factors:�Service reputation scenario
	OSS economical-view success factors:�Freemium scenario
	OSS sweet spot
	OSS economical-view success factors:�User risk reduction effects
	Open-sourcing proprietary SW:�How to do it
	Questions
	What is 'value'?:�1. "Real" Open Source
	What is 'value'?:�2. Commercial Open Source
	Summary
	Thank you!

