
1 / 36Lutz Prechelt, prechelt@inf.fu-berlin.de

Pair Programming (PP)

• Characterizations/claims:
• Williams, Beck, others

• What happens in PP?
• base activities
• knowledge transfer episodes

• push, pull, co-produce,
pioneering

Course "Softwareprozesse"

• PP session dynamics
• S vs. G knowledge
• session types

• Good PP: Togetherness
• Other results

• knowledge transfer effects,
motivation, driver/observer

Lutz Prechelt
Freie Universität Berlin, Institut für Informatik

2 / 36Lutz Prechelt, prechelt@inf.fu-berlin.de

Learning objectives

• Understand the nature of and the dominant effects in PP
• and how to do PP well

• Understand why quantitative research on PP is problematic

3 / 36

What is Pair Programming (PP)?

• A practice (in XP): "Write all production programs with two
people sitting at one machine."

• A work mode: Work in pairs iff it appears appropriate.

What are your thoughts on this?
• What could be the benefits?
• What are potential problems?
• Your personal experience

with PP?

Lutz Prechelt, prechelt@inf.fu-berlin.de

Presenter
Presentation Notes
Image: CC-0 (http://startupstockphotos.com/post/123128014991/at-barrel-soho-nyc)

4 / 36

Most well-known characterization

• [WilKesCun00]: "In pair programming, two programmers
jointly produce one artifact (design, algorithm, code).
• The two programmers are like a unified,

intelligent organism working with one mind,
• responsible for every aspect of this artifact.
• One partner, the driver, controls the pencil,

mouse, or keyboard and writes the code.
• The other partner continuously and actively

observes the driver's work, watching for defects,
thinking of alternatives, looking up resources,
and considering strategic implications.

• The partners deliberately switch roles periodically.
• Both are equal, active participants in the process

at all times"

Lutz Prechelt, prechelt@inf.fu-berlin.de

Yes.

Absolutely not.

If all goes well.

Yes.

Recipe for
failure.

Irrelevant.

C M

If all goes well.

Laurie Williams

Presenter
Presentation Notes
Sounds nicely humanist, but some parts are highly misleading.
The roles descriptions in the middle are of classical-view precision.

https://doi.ieeecomputersociety.org/10.1109/52.854064

5 / 36

Kent Beck's definition,
his and others' claimed effects of PP

• Beck: "Pair programming is a dialog between two people
simultaneously programming (and analyzing and designing
and testing) and trying to program better. Pair programmers:
• Keep each other on task.
• Brainstorm refinements to the system.
• Clarify ideas.
• Take initiative when their partner is stuck,

thus lowering frustration. [PP is more motivating]
• Hold each other accountable to the team’s practices."

• Further claims by others:
• Pairs are faster than solo programmers

• or even: reduce effort
• Pairs produce better designs
• Pairs come out with fewer defects
• Pairs learn from each other

Lutz Prechelt, prechelt@inf.fu-berlin.de

C M

Presenter
Presentation Notes
Beck appears uninterested in quantitative "improvement" effects.
The other claims focus on those a lot.

6 / 36

Lecture structure

• There is little research on Beck's PP attributes/claims
• There is a lot of research on the "other" claims

• some of it provides reasonable evidence
• much of it is inconclusive, misleading, or both

• We will first look at research of the PP process as such
• "How does it work?" , "What are pairs doing?"

• and then look at the other research
• to understand the reasonable evidence
• to understand the problems of the rest.

Lutz Prechelt, prechelt@inf.fu-berlin.de

7 / 36

AG SE work on PP

• AG SE researches PP since 2004
• "What are pairs doing?"
• 4 PhD dissertations 2012, 2013, 2018, 2020

• Laura Plonka, Stephan Salinger, Julia Schenk,
Franz Zieris

• book about basic conceptualization
of the PP process 2013

• several articles
• Collection of industrial PP session recordings

Lutz Prechelt, prechelt@inf.fu-berlin.de

Julia Schenk Franz Zieris

8 / 36Lutz Prechelt, prechelt@inf.fu-berlin.de

PP: How does it work?
AG SE research approach

• Basic idea: Look into the process
• Not just at its outcomes: Investigate the PP microprocess

1. First understand the base activities of the programmers
2. Then obtain an understanding of the total PP process

• concentrating on only a few aspects at first
(e.g. knowledge transfer, strategy, role behavior, work modes)

3. and identify helpful/unhelpful patterns of behavior
• PP behavior patterns and anti-patterns

4. Formulate these such as to become a learnable PP skill

• To do this, we need detailed data about PP sessions
•  collected 65+ sessions from 13 different companies, 1-3 hours

(in vivo: professionals, actual problems, own environment)
• Audio + Video (people and screen activity)
• plus: interviews with developers after sessions (reflection)

9 / 36Lutz Prechelt, prechelt@inf.fu-berlin.de

PP: How does it work?
Our research approach (2): The Data

10 / 36Lutz Prechelt, prechelt@inf.fu-berlin.de

PP: How does it work?
AG SE research approach (3)

Data analysis using the Grounded Theory Methodology (GTM):
• GTM: the constant comparative method of qualitative research

• It leads to theories that are fully grounded in data
• Its main prerequisite is theoretical sensitivity
• Its main practices are

Memo Writing, Open Coding, Axial Coding, Selective Coding,
Theoretical Sampling

• Supported by appropriate software (in our case ATLAS.ti)

• Rough research phases (super simplified):
1. Open Coding forms a appropriate vocabulary
2. Axial Coding identifies behavior patterns
3. Selective Coding to describe the most helpful or

problematic patterns to advise practitioners

Presenter
Presentation Notes
GTM dt. "Gegenstandsverankerte Theoriebildung"

https://atlasti.com/

11 / 36

Vocabulary:
Types of verbal actions found

Lutz Prechelt, prechelt@inf.fu-berlin.de The HHI base concepts from Salinger, Prechelt: "Understanding Pair
Programming: The Base Layer", BoD 2013

http://www.inf.fu-berlin.de/inst/ag-se/pubs/SalPre13-baseconbook.pdf

12 / 36

Vocabulary/Patterns:
How much of what is going on?

"Vocabulary":
• Base Activities (previous slide) are the process atoms

• roughly: decision making (process/product) and
knowledge transfer

• our focus so far has been knowledge transfer
• example session (with more-than-usual execution):

Lutz Prechelt, prechelt@inf.fu-berlin.de

gray: interruptions, pauses, external help[Zieris20, Figure 4.1, p.141]

Presenter
Presentation Notes
The figure shows session KA 1: "Company K develops and operates a large real-estate online platform. Junior developers�K1 and K2 come together to work out an API between their respective teams’ subsystems:�K1 is responsible for a mobile app for which K2 writes the endpoint with Java Spring web framework.�Before they can start with their actual task of session KA1, they first need to change the target URL of a single link which takes them more than 45 minutes and the help of two colleagues, because their development environment was not properly set up. �Afterwards, K1 explains the data he needs with some dummy JSON file he prepared and K2 considers which internal microservices are able to provide which kind of data "�

https://refubium.fu-berlin.de/handle/fub188/28968

13 / 36

Patterns: Knowledge transfer
episode structure

Knowledge Transfer: happens in per-topic episodes
• driven by knowledge need, pursued by one of the developers
• different modes:

• Pull: "asking" • Push: "explaining"
• Production: generating new understanding

• together: Co-Production
• or alone: Pioneering Production

• some symptoms of good pairs:
• one topic at a time, finishing topics, splitting complex topics

• [ZiePre14] Zieris, Prechelt: "On Knowledge Transfer Skill in Pair
Programming", ESEM '14

• [ZiePre16] Zieris, Prechelt: "Observations on Knowledge Transfer
of Professional Software Developers during Pair Programming",
ICSE '16

Lutz Prechelt, prechelt@inf.fu-berlin.de

http://www.inf.fu-berlin.de/inst/ag-se/pubs/ZiePre14-ppknowtrans.pdf
http://www.inf.fu-berlin.de/inst/ag-se/pubs/ZiePre16-ppknowtrans2.pdf

14 / 36

Patterns of Session Dynamics:
Two types of task-relevant knowledge

• SW development is knowledge-intensive work
• programming languages, technology stacks, design patterns, …
• coding styles, requirements, system architecture, …

• Two types of task-relevant knowledge [Zieris20]:
• Zieris, Prechelt: "Explaining Pair Programming Session Dynamics

from Knowledge Gaps", ICSE 2020
• S: specific knowledge about the software system
• G: generic knowledge about methods and technology

Lutz Prechelt, prechelt@inf.fu-berlin.de

G

S

G

S

expert-for-this developer,
unfamiliar part of system

experienced-for-this dev.,
well-known

part of system

Presenter
Presentation Notes
Emphasize twice and thrice that the level of S and G is only with respect to the current task!

https://refubium.fu-berlin.de/handle/fub188/28968
http://www.inf.fu-berlin.de/inst/ag-se/pubs/ZiePre20-ppsessiondyn.pdf

15 / 36

PP Session Dynamics:
Pair configurations

• Each developer enters a PP session with a G-S-profile
• depending on what she already knows about the system (S)
• and software development in general (G)
• only as relevant for the task

• Pairs form constellations,
each with distinct challenges
and session dynamics:
1. No Relevant Gaps
2. One-Sided S Gap
3. Collective S Gap
4. Complementary Gaps
5. Too-Big Two-Fold Gap

• (others might be possible, but
are yet to be observed)

Lutz Prechelt, prechelt@inf.fu-berlin.de

G

S 1

3

2

4

5

conceptual (non-quantified)
task-specific,
ordinal (low, mid, high)

16 / 36

PP Session Dynamics:
How to solve a problem as a pair?

• In a session, the pair as a whole needs to reach high S:
• i.e., complete understanding of the task-relevant system parts.
• (otherwise: no systematic solution)

• Reaching high S individually might be desirable
• but not necessary, if the developers are not expected to continue

working on the task alone

• High G is not necessary
• mid-or-high G is required once the system is understood
• too-low G can be a problem (solution becomes too difficult)
• G may also help in building up S

• Two ways of dealing with knowledge gaps:
1. Transfer or acquire knowledge within the session
2. Limit scope of current task (reduce what is "high S and G")

Lutz Prechelt, prechelt@inf.fu-berlin.de

17 / 36

Session Dynamics:
Key success factors [Zieris20]

• Pairs must constantly maintain high Togetherness
• joint system understanding (S)
• joint ideas of how to develop SW (tools, methods)
• joint tactical plan
• no obstacles from workspace awareness or

language barrier

• Pairs must pick appropriate transfer modes
• Push, pull, co-produce, pioneer

• Pairs must pursue One Topic at a Time
• Limit scope
• Explicitly return from subtopics

Lutz Prechelt, prechelt@inf.fu-berlin.de

Presenter
Presentation Notes
Togetherness is the key property of a successful pair, in strong contradiction to William's characterization of PP: Driver/observer is a highly misleading idea.

https://refubium.fu-berlin.de/handle/fub188/28968

18 / 36

Session Dynamics Pair Constellations:
Type 1 - No Relevant Gaps

• Characterization:
• Both developers understand the system

(high S) and possess the required
programming skills for the task (high G).

• Occurrence:
• Rare, only if the pair recently worked on

the same task together to build up high S.

• Benefits (theoretical):
• Modest, each developer could work on the task alone, and the

task provides only few opportunities to learn something.
• PP appears hardly needed.
• May be useful if e.g. correctness is critical.

Lutz Prechelt, prechelt@inf.fu-berlin.de

G

S

19 / 36

Session Dynamics Pair Constellations:
Type 2 - One-Sided S Gap

• Characterization:
• One developer has an S-advantage that

needs to be addressed if the two should
work as a pair.

• Occurrence:
• Common, e.g.: Developer A started

working on a task, B joins later
 A has S-advantage

• Challenges:
• B might not be aware of the gap and

might not understand A's ideas.
• Until the gap is closed, there is an asymmetry. A can help B, but B

might have personal preferences for how to close a knowledge gap.

• Solutions:
• Make sure the S gap becomes visible: Let A explain what she did.
• Try different modes: Push, Pull, reading aloud [ZiePre14]

Lutz Prechelt, prechelt@inf.fu-berlin.de

G

S A

B

20 / 36

Session Dynamics Pair Constellations:
Type 3 - Collective S Gap

• Characterization:
• Both developers lack relevant portions

of S. Pairs needs to build up S to
solve the task.

• Occurrence:
• The pair starts on a new task together:

Both need to find out which parts of
the system are relevant.

• Challenges:
• Many plausible ways for approaching this.
• Often, either of the two will have an insight first:

Need to stay on the same page.

• Solutions:
• Integrate partial understanding often: Co-Production [ZiePre14]
• Let the partner take his time if he lags behind at some points:

let partner think aloud, maybe offer Pushes
Lutz Prechelt, prechelt@inf.fu-berlin.de

G

S

21 / 36

Session Dynamics Pair Constellations
Type 4 - Complementary Gaps

• Characterization:
• Developer A understands the system,

but lacks general SW development skill.
• B doesn't know the system (well)

and has better development skills.

• Occurrence:
• Not so uncommon:

Since S- and G-levels are task-dependent:
Pair may choose a task (or amend its goals)
such that they complement each other.

• Benefits:
• Session can be mutually satisfactory

• B may help A to understand the system faster
• A may pick up some G knowledge along the way

Lutz Prechelt, prechelt@inf.fu-berlin.de

G

S

A

B

22 / 36

Session Dynamics Pair Constellations:
Type 5 - Too-Big Two-Fold Gap

• Characterization:
• Both developers know too little about the

system to make meaningful changes and lack
background knowledge to do much about it.

• Occurrence:
• Happens: New technology (no G knowledge)

and author unavailable (no S knowledge)

• Challenges:
• PP process can break down entirely:
• G knowledge too low to acquire enough S knowledge.
• For unexperienced pairs: having a partner might make it worse

• PP is a skill in itself.

• Solutions:
• For this task: Different pair, or try alone
• For this pair: Different task, or radically limit the scope

Lutz Prechelt, prechelt@inf.fu-berlin.de

G

S

23 / 36

PP Session Dynamics: Summary

• Relative and absolute S gaps dominate PP session dynamics
• Core difficulty: Reach high S as a pair

• Complementary situations is when PP pays off best
• Since relevant knowledge is task-dependent:

can be achieved by choosing the "right task" for a pair

• Real world: System understanding trumps programming skills
• Luckily, PP is great for improving one's system understanding

• Problem with many PP studies: Students and isolated tasks
• i.e., there is no system and hence no relevant S knowledge
• only general problem solving and programming skills G

Lutz Prechelt, prechelt@inf.fu-berlin.de

!

24 / 36

Distributed Pair Programming (DPP)

• The partners are not physically in the same room and use a
separate computer each

• Their interaction is supported by a collaborative editor and
audio conferencing, perhaps also video.
• Saros (Eclipse, IntelliJ)[AG SE], VS Code, other things
• Allows >2 participants (Distributed Party Programming)
• Allows concurrent edits (Distributed-Pair programming)

• Schenk, Prechelt, Salinger: "Distributed-Pair Programming (DPp)
is not just Distributed Pair-Programming (dPP)":
Capable pairs use this judiciously for slightly higher Fluency
without loss of Togetherness.

• Sufficient workspace awareness is critical:

Lutz Prechelt, prechelt@inf.fu-berlin.de

https://www.saros-project.org/
https://code.visualstudio.com/learn/collaboration/live-share
https://wiki.c2.com/?VirtualPairProgramming
http://www.inf.fu-berlin.de/inst/ag-se/pubs/SchPreSal14-dppnotdpp-icse14.pdf

25 / 36

Workspace awareness in Saros

• Saros is an IDE plugin that couples multiple IDEs remotely,
syncs local files, and creates remote workspace awareness:

Lutz Prechelt, prechelt@inf.fu-berlin.de

Session participants

Recently written by
participant 2

Highlight by
participant 2

Viewport of
participant 2

26 / 36

What about other PP research?

Two big secondary studies:
• Industrial-settings view [VanMan13] vs. education view [SalMenGru11]

Lutz Prechelt, prechelt@inf.fu-berlin.de

PP in Education
(n = 74)

PP in Industry
(n = 154)

(we ignore this part)

The questions. Participants are often students!

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.726.1454&rep=rep1&type=pdf
http://doi.ieeecomputersociety.org/10.1109/TSE.2010.59

27 / 36

Research methods used, Quality

• "A Systematic Mapping Study of Empirical Studies on the Use
of Pair Programming in the Industry" [VanMan13]
• Surveyed 154 research articles on PP in industry

• Research approach, exercise vs. project, #subjects, …
• Identified 608 statements about the 18 PP aspects

• ranked by relevance:
1 – fair, 2 – moderate,
3 – good, 4 – excellent

• only 8% had anything excellent,
another 13% had anything good

• based on: rigor of data collection,
comparative data, #subjects,
realism of context, study duration,
length of discussion, …

Lutz Prechelt, prechelt@inf.fu-berlin.de

Measureme
nt
6%

Rigorous
Observation

13%

Interview
12%

Questionnai
re

14%

Informal
Observation

48%

Other
7%

Presenter
Presentation Notes
So generally, the quality of this evidence is not high.
1: Descriptive data from an experience report
2: Lots of descriptive data from a case study
3: Comparative data from a good case study
4: Measured, comparative data from a large experiment

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.726.1454&rep=rep1&type=pdf

28 / 36

"The effectiveness of pair programming:
A meta-analysis" [HanDybAri09]

• Meta-Analysis of all PP experiments with available data
• incl. students as proxies for developers

Lutz Prechelt, prechelt@inf.fu-berlin.de

PP in Education
(n = 74)

PP in Industry
(n = 154)

Effectiveness Meta-Analysis
(n = 18)

Experiments provide
high internal validity.
(generalization unclear,
but we believe the results
as they stand.)

[ V+Ü Empir. Methoden
im SW Eng., SoSe]

https://doi.org/10.1016/j.infsof.2009.02.001

29 / 36

Is PP faster?
Does it produce better quality?

• Quality: "small positive effect" (PP has little effect on quality)
• Effect size: 0.33 CI95: [0.07, 0.60]

• Duration: "medium positive overall effect" (PP is faster)
• Effect size: 0.53 CI95: [0.13, 0.94]

• Effort: "medium negative overall effect" (PP costs more)
• Effect size: -0.52 CI95: [-1.18, 0.13]

• Overall: mixed results
• inter-study variance (heterogeneity):

medium for Quality and Duration; high for Effort
• One-study-removed analysis: considerable changes to effect sizes

Lutz Prechelt, prechelt@inf.fu-berlin.de

Effect Sizes: 2 0.7 0.25

(fabricated data, for illustration only)

Presenter
Presentation Notes
effect size: ratio of means difference to std.dev.

30 / 36

Problems of quantitative black-box
perspectives

• Pair programming as a "black box":
• Some work alone, others "use PP" (independent variable)
• Tasks are finished within some time with a certain quality

(dependent variable)
• Problem 1: Plethora of context variables to control, including

• Experience, Personality
• Task complexity, type of task, system domain
• Roles, degree of collaboration
• Workspace, infrastructure

• Problem 2: Hard-to-measure long-term outcomes, such as
• Avoided architectural flaws and avoided information silos

• Problem 3: No explanation of how outcomes come to be
• No idea how many pairs used PP well

• Conclusion: employ other methods than experiments

Lutz Prechelt, prechelt@inf.fu-berlin.de

?

31 / 36Lutz Prechelt, prechelt@inf.fu-berlin.de

Benefits from more people being
familiar with code?

• Many projects have strong individual code ownership:
For each code module, only one programmer understands
it well and only that person makes all modifications
• and only this person can do so with usually no errors.
• This often hampers project progress when corrections need to be

made by someone who is already overworked ("truck number")

• PP will greatly reduce that problem

How big is this benefit in terms of progress and quality?
• No quantitative results are known,

as this is immensely difficult to measure
• It requires project-level observations

Presenter
Presentation Notes
truck number: How many of the most critical members of your team do you need to lose before your project is doomed due to loss of their project knowledge?

32 / 36Lutz Prechelt, prechelt@inf.fu-berlin.de

Benefits from learning from
one another?

• Only anecdotal evidence is available:
• [Belshee05]: New programmer without OOP knowledge came

into a PP project heavily using C++ template metaprogramming.
• After only four weeks of PP he could train another newcomer alone

on parts of the 600-class code base he had never seen.
• [Belshee05]: Promiscuous PP (changing pairs every 90 minutes)

led to all 11 members of the team learning a neat IDE editing
feature within just 1 day

• the paste stack, which had been discovered only accidentally

• Again, the effect is very difficult to measure quantitatively
• It requires project-level observations

• No quantitative empirical results are known

Presenter
Presentation Notes
anecdote about newbie: Our most difficult new-hire ramp up occurred after we had fully adopted our process. �The new employee had never before programmed in C++, nor had he ever heard of functional programming or performed
OOP. �We performed heavy template metaprogramming throughout our code base and had a system of around 600 classes at the time.
Furthermore, the new hire had a lot of enthusiasm, but wasn’t very technically adept. He wasn’t good at analysis and didn’t really understand data.
We hired him because he had a good knowledge of our customer’s domain and a strong mathematical
background.
The first week after we hired him, our velocity dropped, as expected. The second week, our velocity was back to where it had been before the hire. By the end of the third week we had improved our overall velocity, and the new guy could do any task on the board.
He could sit down with any of the rest of us on a part of the system he hadn’t seen before, figure out how it worked and contribute. He’d pretty much figured out both functional and OO programming and could read a template metaprogram — commonly considered to be one of the most difficult aspects of C++.
In the fourth week, he was pairing with our next new hire during that hire’s first week. He was confident and skilled enough to take any task off the board — even in a part of the code base which he’d never seen — and teach the new guy how it worked.
Furthermore, the rest of the team had sufficient confidence in him to have no qualms about him taking on this challenge. No one even bothered to monitor his pairings with the new guy.
Anecdote about paste stack:
One telling example of rapid pair net happened accidentally to the Silver Platter team. �Around 10 am, I was driving. While doing a bit of copy and paste, I accidentally hit Ctrl + Shift + V instead of Ctrl + V.
In Visual Studio, Ctrl + Shift + V operates a paste stack. It remembers everything that you have copied in the past. Pasting inserts the top of the stack.
Pressing the keys again before doing anything else replaces the just-pasted stuff with the next item in the history. You can continue to press the key combination to go back further in your history. This makes it easy to copy from a couple of sources at
once and paste them all together.
My partner and I noticed this and spent a few minutes figuring out what the weird behavior was. We then went on with our work. �Over the rest of the day, we swapped as normal. Once in a while, the paste stack would be useful, so I’d teach it to my
partner.
Around 4 that afternoon I was again driving. My navigator saw me doing some copy and paste and
took the keyboard to show me a neat trick — the paste stack. I was surprised that he’d seen it, so I stood up and asked the bullpen how many of them knew about the paste stack.
All 11 people had learned about it that day.

http://doi.ieeecomputersociety.org/10.1109/ADC.2005.37
http://doi.ieeecomputersociety.org/10.1109/ADC.2005.37

33 / 36Lutz Prechelt, prechelt@inf.fu-berlin.de

PP influence on motivation?

Studies agree that PP is generally rather motivating

• A survey [WilKesCun00] explains that with a positive form of
"pair pressure":
• Both partners want to show their talent and quality work
• The participants are highly concentrated on their work and keep

each other on task
• no reading emails or surfing the web etc.

• [CaoXu05] on competence-level combinations:
• high+low: less enjoyable for the more competent participant

• while the less competent participant took benefit
• high+high: leads to "deep-level thinking"

• and both participants enjoy the experience

• Some programmers reject PP completely
• usually without even trying it out
• Programmers with longer experience tend to be more skeptical

Presenter
Presentation Notes
Pair pressure is one of the few claims of Beck's characterization.

http://doi.ieeecomputersociety.org/10.1109/52.854064
http://doi.ieeecomputersociety.org/10.1109/HICSS.2005.66

34 / 36Lutz Prechelt, prechelt@inf.fu-berlin.de

What about
Driver and Navigator/Observer?

• Classic "definition" of PP, from [WilKesCun00]:
• One partner: "driver", controls keyboard, is writing code
• The other "actively observes" … "watching for defects, thinking of alternatives,

looking up resources, and considering strategic implications"
• Pair: like a "coherent, intelligent organism working with one mind"

• Empirical: 24 one-hour sessions from 4 companies [BryRomBou08]
• Analyzed: level of abstraction of 14k+ sentences (e.g. syntax, blocks, domain)
• Compared: Expected distribution per definition vs. actual distribution

• Driver and observer do not seem to think on different levels of abstraction.

SY D PR BR RW

Driver Navigatorfine coarse

#utterances at different
abstraction levels

http://doi.ieeecomputersociety.org/10.1109/52.854064
https://doi.org/10.1016/j.ijhcs.2007.03.005

35 / 36Lutz Prechelt, prechelt@inf.fu-berlin.de

Summary

• PP can provide huge learning benefits

• It leads to focused work, spreads knowledge, and tends to
produce better designs and fewer defects
• Raw speed comparisons are therefore misleading

• The process is usually dominated by acquiring the
task-specific system knowledge (S)
• PP is most useful if this is difficult
• or if the pair's knowledge is complementary.
• In the real world, system understanding trumps progr. skills

• Speed comparisons ignoring this are irrelevant

• PP done badly can be inefficient
• There is a PP skill separate from programming skill

• The key success factor is maintaining Togetherness
• joint system understanding, joint approach, good communication

36 / 36Lutz Prechelt, prechelt@inf.fu-berlin.de

Thank you!

https://dilbert.com/strip/2004-10-20

This was too much material to digest.
Please review these slides again!

Presenter
Presentation Notes
See also https://dilbert.com/strip/2000-01-24 and https://dilbert.com/strip/2010-09-25

https://dilbert.com/strip/2004-10-20

	Pair Programming (PP)
	Learning objectives
	What is Pair Programming (PP)?
	Most well-known characterization
	Kent Beck's definition, �his and others' claimed effects of PP
	Lecture structure
	AG SE work on PP
	PP: How does it work?�AG SE research approach
	PP: How does it work?�Our research approach (2): The Data
	PP: How does it work?�AG SE research approach (3)
	Vocabulary:�Types of verbal actions found
	Vocabulary/Patterns:�How much of what is going on?
	Patterns: Knowledge transfer�episode structure
	Patterns of Session Dynamics:�Two types of task-relevant knowledge
	PP Session Dynamics:�Pair configurations
	PP Session Dynamics: �How to solve a problem as a pair?
	Session Dynamics:�Key success factors [Zieris20]
	Session Dynamics Pair Constellations:�Type 1 - No Relevant Gaps
	Session Dynamics Pair Constellations:�Type 2 - One-Sided S Gap
	Session Dynamics Pair Constellations:�Type 3 - Collective S Gap
	Session Dynamics Pair Constellations�Type 4 - Complementary Gaps
	Session Dynamics Pair Constellations:�Type 5 - Too-Big Two-Fold Gap
	PP Session Dynamics: Summary
	Distributed Pair Programming (DPP)
	Workspace awareness in Saros
	What about other PP research?
	Research methods used, Quality
	"The effectiveness of pair programming:�A meta-analysis" [HanDybAri09]
	Is PP faster?�Does it produce better quality?
	Problems of quantitative black-box perspectives
	Benefits from more people being �familiar with code?
	Benefits from learning from �one another?
	PP influence on motivation?
	What about�Driver and Navigator/Observer?
	Summary
	Thank you!

