Freie Universitat (.S

Course "Softwareprozesse”

Pair Programming (PP)

Lutz Prechelt
Freie Universitat Berlin, Institut fir Informatik

® Characterizations/claims: ® PP session dynamics
o Williams, Beck, others e Svs. G knowledge
e What happens in PP? ° session types
e base activities ® Good PP: Togetherness
e knowledge transfer episodes ® Other results
push, pull, co-produce, e knowledge transfer effects,
pioneering motivation, driver/observer

Lutz Prechelt, prechelt@inf.fu-berlin.de 1 / 36

Freie Universitat (™

Learning objectives

e Understand the nature of and the dominant effects in PP
e and how to do PP well

e Understand why quantitative research on PP is problematic

Lutz Prechelt, prechelt@inf.fu-berlin.de 2 / 36

1 f £3)
Freie Universitat g\ 5%):
A

What is Pair Programming (PP)?

e A practice (in XP): "Write all production programs with two
people sitting at one machine.”

e A work mode: Work in pairs iff it appears appropriate.
Tp— What are your thoughts on this?

e \What could be the benefits?

| | N s e What are potential problems?

® Your personal experience
with PP?

Lutz Prechelt, prechelt@inf.fu-berlin.de 3 / 36

Presenter
Presentation Notes
Image: CC-0 (http://startupstockphotos.com/post/123128014991/at-barrel-soho-nyc)

Freie Universitat (.S

Most well-known characterization

e [WilKesCun00]: “In pair programming, two programmers

jointly produce one artifact (design, algorithm, code). Yes.

e The two programmers are like a unified, Absolutely not.
intelligent organism working with one mind,

e responsible for every aspect of this artifact. If all goes well.

e One partner, the driver, controls the pencil,
mouse, or keyboard and writes the code. Irrelevant.

e The other partner continuously and actively Recipe for
observes the driver's work, watching for defects, failure.
thinking of alternatives, looking up resources,
and considering strategic implications.

e The partners deliberately switch roles periodically. Yes.

o sfgf;/i;; :g'fjal, active participants in the f'r;ce%s If all goes well.

:
3 !
o

Lutz Prechelt, prechelt@inf.fu-berlin.de Laurie WI“IamS w ™

Presenter
Presentation Notes
Sounds nicely humanist, but some parts are highly misleading.
The roles descriptions in the middle are of classical-view precision.

https://doi.ieeecomputersociety.org/10.1109/52.854064

Kent Beck's definition,
his and others' claimed effects of PP

Freie Universitat (L5

e Beck: "Pair programming is a dialog between two people
simultaneously programming (and analyzing and designing
and testing) and trying to program better. Pair programmers:

e Keep each other on task.
e Brainstorm refinements to the system.
o Clarify ideas.

e Take initiative when their partner is stuck,
thus lowering frustration. [PP is more motivating]

e Hold each other accountable to the team’s practices."

e Further claims by others:

e Pairs are faster than solo programmers
or even: reduce effort

e Pairs produce better designs
e Pairs come out with fewer defects
e Pairs learn from each other

Lutz Prechelt, prechelt@inf.fu-berlin.de 5 / 36

Presenter
Presentation Notes
Beck appears uninterested in quantitative "improvement" effects.
The other claims focus on those a lot.

Freie Universitat (.S

Lecture structure

® There is little research on Beck's PP attributes/claims

® There is a lot of research on the "other" claims
e some of it provides reasonable evidence
e much of it is inconclusive, misleading, or both

e We will first look at research of the PP process as such
e "How does it work?" , "What are pairs doing?"

® and then look at the other research
e to understand the reasonable evidence
e to understand the problems of the rest.

Lutz Prechelt, prechelt@inf.fu-berlin.de 6 / 36

AG SE work on PP

Freie Universitat

Berlin

e AG SE researches PP since 2004
e "What are pairs doing?"

e 4 PhD dissertations 2012, 2013, 2018, 2020

» Laura Plonka, Stephan Salinger, Julia Schenk,
Franz Zieris

e book about basic conceptualization
of the PP process 2013

e several articles
e Collection of industrial PP session recordings

Julia Schenk Franz Zieris

Lutz Prechelt, prechelt@inf.fu-berlin.de

arXiv:2002.03121v5 [cs.SE] 15 Feb 2021

PP-ind: Description of a Repository
of Industrial Pair Programming Research Data

Franz Ficris

ieris @ inffu

fr-beriin.de
Freie Universiiaat Berlin
Berlin, Germany

Lutz Prechelt

precheliinffi-berlin.de

Freie Universiisai Beriin
Berlin, Germany

L. Introduction

. .
in which two developers work elosely together 0n 3 tech-
mical task on the same computer. It was popularized by

an

cture
4.1 Pair Programming Modcs
42 Structured De

33 Per Company Differences
Terminology

formation
43 Structured Sessson Information -
Sessions.

Overview of
The Repasitary .

62
63
64
65
66
67
68
6
6.10 Company M . _
6,11 Company N . .
6,12 Company O , .
613 r.ammy?
Discussion. .

73 Effccts of hc-Eumng Notions .
74 Sty of Dot Quatty.

Kenl Beck who secs il s the central practice of Xireme

Programming and describes it as “a dialog between to

people irying 10 simuliancously program (and analyze and
xign and test) and understand together how o program

Controlled experiments on pair_ programming have
shown mere tendencies in tems of effeets on quality an
effort with much variation left to be cxplaincd [3]. In the
wards of the authors of a limge cxperimcat with almost
300 hired consultants: “we are sull far from: being abie
0 explain why we observe the given effects” 111.

Our rescarch group has been collccting industrial pair
programniing sessions since 2007. We secord paie pro-
pramming 3 it happens “in the wiki” in order w un
derstand how it mw.uy works and what really matiers
in everyday pairs’
et hes Scrch, soment, and o webcom o

“thi kind of data data 1 smendsbic (o dillerent (yps
o analyscs. We describe our qualitative appmoach in [11],

1o collecting imd processing, tat data, and we want 1o give
it The: Faw data fiscif cannot be: eleascd (o the public
because of non-disclosure aproements with the respoctive
companics. As 2 proxy, we characterize the companics,
the developers, and thesr PP sessions.

This report s stricured as follows: We discuss our
fundamental approach to collecting cmpirical data on pair

programming (Section 2) and describe our gencric dsta.
collection pratocel (Scetion 3). We intraduce some temi-
mologry and describe the structure of our data (Seetion 4).
W ghve im overview of our repository (Seetion 3) and then
discuss the individual contexts and cases (Section 6). We
close with a discussion of the propertics and limitations
of our data collection (Section 7y and an overview of
which data has been used in which publicaions so far
(Section %), In Appendix A, we cxplain the lechnical
details of how we record and proccss PP sossions.

We provide sepasitory meta-data, partial transeripts,
questionnaires, and additional maserial 2 3 public dats
st 1201,

PP: How does it work?
AG SE research approach

Freie Universitat (i

® Basic idea: Look into the process
e Not just at its outcomes: Investigate the PP microprocess

=

First understand the base activities of the programmers

2. Then obtain an understanding of the total PP process

e concentrating on only a few aspects at first
(e.g. knowledge transfer, strategy, role behavior, work modes)

3. and identify helpful/unhelpful patterns of behavior
e PP behavior patterns and anti-patterns
4. Formulate these such as to become a learnable PP skill

® To do this, we need detailed data about PP sessions
e = collected 65+ sessions from 13 different companies, 1-3 hours
(in vivo: professionals, actual problems, own environment)
Audio + Video (people and screen activity)
plus: interviews with developers after sessions (reflection)

Lutz Prechelt, prechelt@inf.fu-berlin.de 8 / 36

Jl'j‘lsﬁ]h'l]i?ﬁ?]ﬂﬂﬂf'&‘n'ﬁu

= turelayer/ atty | passau
mmmwmmmmmrmxmnwmmb

b4 2] x|

- k-A-A-$-0-%%-Q- |8]Bq-ltﬁi_él [roeri-m

|J] IFesturenttributeCanfiguration. java [[Dmmucahm.m |'jwmmmm

= O || B outine | 47 search 52 | = al

{£ Package Explorer 51 | =Ry

a m—— T 3337
- pro 53337
= ﬂau:rbwqmdﬁ:m“% 7
[£ demo 52186
3-8 table 52180

B[] wirtuslColumnFactory. j
1 |1 UserDefinedColumnattribut
51 [1} UserDefinedCohmnittribut
® l'ﬂ authorization 52316
3 [1 dataaccess 51
& {8 dbadapter 52
- f# dblegend 51302
—H dbservices 40284

B §H sttribukes 53337

[[} EdtColumnattribute
#-§8 test 50873
#1117 ArtributebiameSorter je

-2 ArtributeTabledctionFa
[(1) AttributeTableSslection
[[1} attributeTableViewTool
[} eirkMouseLstener.javi
- [J) CopyattributeTableActi
@[5} DisplayhameFesturePro
[} FestureAttributaTableh
[#-[J} FestureLayerattributel
#-[F) FestureLayerAttributel
[[f] FeatursLayerttributel,
[[F} FeatureLayerattributel
- [1] FeatureLayer Tableview
L} FeatureLayerTableView
[[F} FesturePro:iesTsbleMc
[[J} FestureProxyTableMod
(8- [7) “im ViewMapSelactionCo
(1) 1attributeTablenctionF:
[(7} 1AttributeTableActionF
[[J} 1AttributeTableictionF:
-1} IatributeviewConfigur.
-1 IFeatureLayerAtiribute
] [JJ o TermiaktribubeT sble
[[J} IToSelectionFiterable.j.
- [4) MullatributeTableActica

s

import de.esm lib.gui.resources.BasichctionlconResources:

import net. ® G cosmons.core,util Arragltilities:

import net,m s comwons,core,util, 1Transformers

import net, § . commonz, swing, action, SmartAction:

import net,m = cosmons.swing,dialog.userdialog,UserDialog:

/¢ NOT_PUBLISHED
public class EditColumnfttributesfction extends Smarthction {

private final IFeaturelaverfindThemelaysrld festurelayerfndThemelayerld:

public EditColumnfittributesfction{final IFeaturelayerfindThenelayerld featurel auerfindThemelayerid} £
super{"Spalteneigenschaften bearbeiten,,.”, BasichctionlconResources PROPERTIES_ICON) ;
this,FeaturelayerfindThenel ayer Id = FeaturelayerfndThenslayer [d:

: setTool TipTextd "Spalteraigenschaften hearbeiten,, ")

verride
protected void execute{final Comporent parentComponent) {
final [Festurelayer featureLayer = featurelayerfindThemeLayer Id.getFesturelayer():
final List<Columnfttributelodificationfiow attributeRows = new Arraulist<ColumnfttributeModificationfow>{};
final IFeaturefttributeConfiguration attributeConfiguration = featurelager
JgethttributeConfigurationtl;
attributelonf iguration. setVirtusl Colunns{inul 1}
for (Final IColumnittribute attribute : attributeConfiguration.getAllColumnittributes(}} {
attributeRows , sdd{ColumnAttr ibutetodi f icat ionRow,createfor{attribute, Featurelauer
i JgetliserfittributetodiFications ()

final ColuwnfttributelodificationRoul] rowfirray = attributeRous
tofrrayinew ColumniittributebodificationRowlattributeRows, size()1):
final IVirtualColumnl] virtualColumns = attributeConfiguration,get¥irtualColumns{};
final Virtualfttributal] virtualfttributes = getVirtualfttributestvirtusllolusns):
final UserDefinedColumnfttributetiodificationlialogPage dialogPage = new UserlefinedColumnfittr ibuteodificationDialogPaget
new UserDef inedColumnAttributeodif icationSetup(
featurel ayer . getBasebeonetryTupel),
O

B,
wirtualdttributes)):
final UserDialog userDialog = new UserDialogiparentComponent, dialogPaged:
userDialog, show() s
if {userDialog.isCanceled(}} {
sttributelonfiguration. set¥irtuslColumns (virtualColusnz):
return:

attributelonfiguration, setVirtual Columns (Virtual ColuwnFactary, createVirtual Columns(dialogPage
JaetSelectedVirtual Attributes(), attributeConfiguration.getil IColumnifttributesid)):
for {(final ColumnfttributeModificationRouw row @ attributeRous) {
row, sppluChangesTo{ featurelayer .getiserfittributetodi Fications{}):

¥
featuralayer getFeatureProxySet(). fireTableStructurelhanged():
¥

private Virtualfttributel] getVirtualAttributes(Final [VirtualColumnl] wirtualColumns) {
return Arragltilities transfornd
virtualColuans,
VirtualAttribute.class,
new [Transformer<IVirtualColusn, Virtualdttribute>() {

@verride
public ¥irtualfittribute transform{final [VirtualColumn input} {
return {({VirtualColusnfittribute) input,getColusnfittributet)}, getVirtuslAttr ibute{):

}

ICRY del= B . pro.attributemodiication 53337
{3 UserDefinedCobumnattributeModificationDislogPage 52150
i o addPanels(ISmartDialogPanelsBullder) (3 matches)
@ getSelectedvVirualattributes()
a F salectiontodh
| B © UserDefinedColumnitiributeModificationDislogPage(Liser
- @ UserDefinedCobamnattributeModiicationSetup 52185
@ getvirtuslattributes()
@ © UserDefinedColumnattributeModificationSetup{BaseGeon
o F virtualattributes
B g de B MR pro.attrbutemodfication. demo 52155
B [y dedlles celmw pro, sttributemodfication. virtusl 5
B ffhy de e g pro.sttributemodification virkual best 52183

=By de i a0 pro.featurelayer. attributes edit 53337
a3, EdkColumnAktribukesaction 53337

'&mnm|('_‘p-w|

) 'F.;| ShowttributeT abledct 'I
3

exe (07.05,2008 10:53:01)

v Integratedirezources mappings v s

Total time: 297 milliseconds

PP: How does it work?
AG SE research approach (3)

)1 12
Freie Universitat ()
o IJ R é?'

Data analysis using the Grounded Theory Methodology (GTM):

e GTM: the constant comparative method of qualitative research
e It leads to theories that are fully grounded in data
e Its main prerequisite is theoretical sensitivity

e Its main practices are
Memo Writing, Open Coding, Axial Coding, Selective Coding,
Theoretical Sampling

e Supported by appropriate software (in our case ATLAS.ti)

® Rough research phases (super simplified):
1. Open Coding forms a appropriate vocabulary
2. Axial Coding identifies behavior patterns

3. Selective Coding to describe the most helpful or
problematic patterns to advise practitioners

Lutz Prechelt, prechelt@inf.fu-berlin.de 10 / 36

Presenter
Presentation Notes
GTM dt. "Gegenstandsverankerte Theoriebildung"

https://atlasti.com/

Vocabulary:

Types of verbal actions founc

Freie Universitat

product-oriented concepts

process-oriented concepts

amend_design

ask_design

amend_step

ask_step

explain_
completion

Extend a given proposal
regarding the sbructure
and content of the
program without rejecting
the proposal.

Ask for a concrete
proposal regarding the
structure and content of
the program.

Extend a given proposal
regarding the next tactical
work step without
rejecting the propasal.

Ask for a concrete
proposal regarding the
next tactical work step,

Make a statement
regarding the degree of
completion of the current
tactical work step.

universal concepts

explain_gap in

agree_gap in

explain_standard

aslk_standard of

challenge_design

agree_design

challenge_step

agree_step

agree_completion

knowledge knowledge of knowledge knowledge
Verbalize that. certain) .) E:-:plraln or recapitulate e e pe e e T
knowledge is not| |Signal agreement with a| |one’s own level of level of knowledge with
possessad by either | |given gap in knowledge. knowledge with respect to g

member of the pair.

a certain topic.

respect to a certain topic.

FEJeCt @ given proposal
regarding the structure
and content of the
program and make an
alternative proposal
instead.

Signal agreement with a

given proposal regarding
the structure and content
of the program.

Reject a given proposal
regarding the next tactical
work step and make an
alternative proposal
instead.

Signal agreement with a
given proposal regarding
the next tactical work
step.

Signal agreement with a
statement regarding the
degres of complation of
the current tactical work
step.

decide_design

propose_design

decide_step

propose_step

Selact one from among
several alternative

proposals regarding the
structure and content of

the program.

Mzke one or several
altermnative proposals
regarding the structure
and content of the
program.

Select one from among
several alternative

proposals regarding the
next tactical work step,

Make one or several
alternative proposals
regarding the next tactical
work step.

challenge_
camg.‘eﬁon
Eject a statemen
regarding the degres of
completion of the current
tactical work step and
make an alternative

Remind the pair of a given
(pre-spedified) functional
or non-functional require-
ment of the program.

statement.
disagree_design disagree_step explain_state

Reject a given proposal T] Make a statement
|'e?jar'dmtg t:\ifsilr"ucture e e e rer?a:‘dér‘g the degretet:o
::ogi:nme:ithaut ?naking ST 3 LGS Y :r :ork :I;:T\ig bse:: =
an alternative proposal. T EnE i ek worked through.

[remember

o = amend_strategy ask_strategy agree_state
| requirement |

Extend a proposed
strategy or work plan
without rejecting it.

Ask for a concrete
proposal regarding the
strategy or work plan to
be chaosen.

Signal agreement with a
statement regarding the
degree to which the
current strategy or work
plan has been worked
through.

Reject a given or
proposed requirement and
propose an altemative

Signal agreement with a
given or proposed

challenge agree_
. t 78 ¢ challenge_strategy agree_strategy challenge_state

Reject a given proposal
regarding the strategy or
work plan and make an

Signal agreement with a
given proposal regarding

[Reject a statement
regarding the degres to
which the current strategy
or work plan has been

ask_knowledge stop_activity
Ask the partner for| |Suggest to stop or abort
information of type| [the current HCI or HEI
'declarative knowledge'. activity.
explain_finding hpl nptn[seeﬂ__s explain_knowledge tm: ct] : ?m]?tﬁa_

Verbalize a new insight;
thiz incudes interpreting
an observed avent.

Formulate a hypothesis or
conjecture, e.g. regarding
a property of the
program, or the
environment.

Transfer information to
the partner that is
assumed to be correct

declarative knowledge.

Verbalize aspects of one's
own current HCI or HEI
activity.

agree_finding

agree_hypothesis

agree_knowledge

agree_activity

- .
Signal agreement with a| [Signal agrzement with = ‘f:anzl ag;iemen'éo”g;:]' Signal agreement with all
verbalizad insight or| |given hypothesis or| 1499 or part of the current HCI
. N . - knowledge stated by the X L
interpretation. conjecture. T or HEI activity.
challenge_findin, P chatienge_ challenge_activi
ge_ g hypothesis knowledge ge_ v
Reject the content of a| [Reject a given hypothesic ::;edcglzll:sﬁ'luglr:fi:iialﬁr;m;; Reject all or part of the
verbalizad insight or| |or conjecture and N " Ee " current HCI or HEI activity
interpretation and suggest| [formulate an alternative potent.lalhf .T,':Iong. by and suggest an alternative
lternative one, one TETTENT [UL ITES T activity,
ana ' ' knowledge. .
- 5 disag disag E —
disagree_findin = — disagree_activi
gree_ g hypothesis knowledge gree_ 7

Propose one or several
altemative program char-
acteristics that should be
considered to be a
requirement.

one instead. requirement. _3|t9| native proposal the strategy or work plan. e Il P T
instead.)
an alternative statement.
propose_ -
5 ¢ decide_strategy propose_strategy propose_todo

Select one from ameng
several alternative
proposed strategies or
waork plans.

Propose one or several
alternative strategies or
work plans.

Suggest that a certain
work item will need to be
taken care of later in the
process.

Dedare transfered finding
as fully, partially, or
potentially wrong without
explaining why.

Reject a given hypothesis
or conjecture.

Declare transfered know-
ledge as fully, partially, or
potentially wrong without
explaining why.

Reject all or part of the
current HCI or HEI
activity.

mumble_sth

say_off topic

disagree_strategy

Mzke an incomprehensible
utterance (highly
fragmentary or acustically
unclear).

Make an utterance that
has nothing to do with
solving the programming
task.

Reject a given proposal
regarding the strategy or
work plan without making
an alternative proposal.

miscellaneous

agree_todo

Signal agreement with a
statement saying that a
certain work item will
need to be taken care of
later in the process.

amend_finding

amend_hypothesis

Extend a verbalized
insight or interpretation
without rejecting it.

Extend a given hypothesis
or conjecture without
rajecting it.

amend_activity

Propose an extension to
the current HCI or HEI
activity.

siydasuod apeoey

The HHI base concepts from Salinger, Prechelt: "Understanding Pair
Programming: The Base Layer", BoD 2013

11/ 36

http://www.inf.fu-berlin.de/inst/ag-se/pubs/SalPre13-baseconbook.pdf

Vocabulary/Patterns:
How much of what is going on?

Freie Universitat (™)

"Vocabulary":

® Base Activities (previous slide) are the process atoms

e roughly: decision making (process/product) and
knowledge transfer

our focus so far has been knowledge transfer
e example session (with more-than-usual execution):

Execution
(HCI)

Knowledge Transfer
(Universal Concepts)

Decision Making
(P&P Concepts)
00:00 30:00 1:00:00 1:30:00 1:59:44
[Zieris20, Figure 4.1, p.141] . interruptions, pauses, external help

Lutz Prechelt, prechelt@inf.fu-berlin.de 12 / 36

Presenter
Presentation Notes
The figure shows session KA 1: "Company K develops and operates a large real-estate online platform. Junior developers�K1 and K2 come together to work out an API between their respective teams’ subsystems:�K1 is responsible for a mobile app for which K2 writes the endpoint with Java Spring web framework.�Before they can start with their actual task of session KA1, they first need to change the target URL of a single link which takes them more than 45 minutes and the help of two colleagues, because their development environment was not properly set up. �Afterwards, K1 explains the data he needs with some dummy JSON file he prepared and K2 considers which internal microservices are able to provide which kind of data "�

https://refubium.fu-berlin.de/handle/fub188/28968

Patterns: Knowledge transfer
episode structure

Freie Universitat S)

Knowledge Transfer: happens in per-topic episodes
e driven by knowledge need, pursued by one of the developers

o different modes:
Pull: "asking" Push: "explaining"
Production: generating new understanding
together: Co-Production
or alone: Pioneering Production

e some symptoms of good pairs:
one topic at a time, finishing topics, splitting complex topics

o [ZiePrel4] Zieris, Prechelt: "On Knowledge Transfer Skill in Pair
Programming", ESEM '14

e [ZiePrel6] Zieris, Prechelt: "Observations on Knowledge Transfer
of Professional Software Developers during Pair Programming",
ICSE '16

Lutz Prechelt, prechelt@inf.fu-berlin.de 13 / 36

http://www.inf.fu-berlin.de/inst/ag-se/pubs/ZiePre14-ppknowtrans.pdf
http://www.inf.fu-berlin.de/inst/ag-se/pubs/ZiePre16-ppknowtrans2.pdf

Patterns of Session Dynamics:
Two types of task-relevant knowledge

Freie Universitat (.S)

e SW development is knowledge-intensive work
e programming languages, technology stacks, design patterns, ...
e coding styles, requirements, system architecture, ...

® Two types of task-relevant knowledge [Zieris20]:

Zieris, Prechelt: "Explaining Pair Programming Session Dynamics
from Knowledge Gaps", ICSE 2020

e S: specific knowledge about the software system
e G: generic knowledge about methods and technology

S A Sf
-

experienced-for-this dev.,
well-known
part of system

expert-for-this developer,
unfamiliar part of system

@V

=
G

Lutz Prechelt, prechelt@inf.fu-berlin.de 14 / 36

Presenter
Presentation Notes
Emphasize twice and thrice that the level of S and G is only with respect to the current task!

https://refubium.fu-berlin.de/handle/fub188/28968
http://www.inf.fu-berlin.de/inst/ag-se/pubs/ZiePre20-ppsessiondyn.pdf

PP Session Dynamics:
Pair configurations

277)
S e
Freie Universitat G- S

® Each developer enters a PP session with a G-S-profile

e depending on what she already knows about the system (S)
e and software development in general (G)

e only as relevant for the task

e Pairs form constellations,

each with distinct challenges
and session dynamics:

1. No Relevant Gaps
2. One-Sided S Gap
3. Collective S Gap
4. Complementary Gaps
5. Too-Big Two-Fold Gap

® (others might be possible, but
are yet to be observed)

Lutz Prechelt, prechelt@inf.fu-berlin.de

conceptual (non-quantified)
task-specific,

ordinal (low, mid, high)

PP Session Dynamics:
How to solve a problem as a pair?

)0)
Freie Universitat |

® In a session, the pair as a whole needs to reach high S.:
e i.e., complete understanding of the task-relevant system parts.
e (otherwise: no systematic solution)

e Reaching high S individually might be desirable

e but not necessary, if the developers are not expected to continue
working on the task alone

e High G is not necessary
e mid-or-high G is required once the system is understood
e too-low G can be a problem (solution becomes too difficult)
e G may also help in building up S

e Two ways of dealing with knowledge gaps:
1. Transfer or acquire knowledge within the session
2. Limit scope of current task (reduce what is "high S and G")

Lutz Prechelt, prechelt@inf.fu-berlin.de 16 / 36

Session Dynamics:

.. Freie Universitit ¥ Berti

Key success factors [Zieris20] e
® Pairs must constantly maintain high Togetherness

joint system understanding (S) g\(\\’i\oi‘

joint ideas of how to develop SW (tools, methods) S ee(\,a o

. . W T 305 (xef

joint tactical plan W x| ©, Qa‘

no obstacles from workspace awareness or { a0 2

language barrier \S

® Pairs must pick appropriate transfer modes

Push, pull, co-produce, pioneer

Lutz Prechelt, prechelt@inf.fu-berlin.de 17 / 36

Presenter
Presentation Notes
Togetherness is the key property of a successful pair, in strong contradiction to William's characterization of PP: Driver/observer is a highly misleading idea.

https://refubium.fu-berlin.de/handle/fub188/28968

Session Dynamics Pair Constellations:
Type 1 - No Relevant Gaps

e (Characterization:

e Both developers understand the system S
(high S) and possess the required ®e
programming skills for the task (high G).

A

® (Qccurrence:

e Rare, only if the pair recently worked on
the same task together to build up high S.

e Benefits (theoretical):
e Modest, each developer could work on the task alone, and the
task provides only few opportunities to learn something.
PP appears hardly needed.
May be useful if e.g. correctness is critical.

oV

Lutz Prechelt, prechelt@inf.fu-berlin.de 18 / 36

Session Dynamics Pair Constellations:
Type 2 - One-Sided S Gap

® (Characterization:
e One developer has an S-advantage that g,

needs to be addressed if the two should A
work as a pair.
e (Qccurrence: 3

e Common, e.qg.: Developer A started
working on a task, B joins later
- A has S-advantage

® (Challenges:

e B might not be aware of the gap and
might not understand A's ideas.

e Until the gap is closed, there is an asymmetry. A can help B, but B
might have personal preferences for how to close a knowledge gap.

® Solutions:
e Make sure the S gap becomes visible: Let A explain what she did.
e Try different modes: Push, Pull, reading aloud [ZiePrel14]

Lutz Prechelt, prechelt@inf.fu-berlin.de 19 / 36

Session Dynamics Pair Constellations:
Type 3 - Collective S Gap

® Characterization: S

e Both developers lack relevant portions
of S. Pairs needs to build up S to
solve the task.

® (Qccurrence:

e The pair starts on a new task together:
Both need to find out which parts of
the system are relevant.

o)\

® (Challenges:
e Many plausible ways for approaching this.
e Often, either of the two will have an insight first:
Need to stay on the same page.
® Solutions:
e Integrate partial understanding often: Co-Production [ZiePrel14]

o Let the partner take his time if he lags behind at some points:
let partner think aloud, maybe offer Pushes

Lutz Prechelt, prechelt@inf.fu-berlin.de 20 / 36

Session Dynamics Pair Constellations
Type 4 - Complementary Gaps

: : SA at;
e Characterization: tiop
e Developer A understands the system, ‘

but lacks general SW development skill. -

e B doesn't know the system (well) A
and has better development skills. ‘

e (Qccurrence:

e Not so uncommon: B
Since S- and G-levels are task-dependent: >
Pair may choose a task (or amend its goals)
such that they complement each other.

® Benefits:

e Session can be mutually satisfactory
B may help A to understand the system faster
A may pick up some G knowledge along the way

Lutz Prechelt, prechelt@inf.fu-berlin.de 21 / 36

Session Dynamics Pair Constellations:
Type 5 - Too-Big Two-Fold Gap

S]
Freie Universitat ‘“

e (Characterization: SA

e Both developers know too little about the
system to make meaningful changes and lack
background knowledge to do much about it.

e (Qccurrence:
e Happens: New technology (no G knowledge)

and author unavailable (no S knowledge) 1111
e Challenges: o
e PP process can break down entirely: G

e G knowledge too low to acquire enough S knowledge.
e For unexperienced pairs: having a partner might make it worse
PP is a skill in itself.
® Solutions:
e For this task: Different pair, or try alone
e For this pair: Different task, or radically limit the scope

Lutz Prechelt, prechelt@inf.fu-berlin.de 22 / 36

S 1
Freie Universitat ‘“

PP Session Dynamics: Summary

e Relative and absolute S gaps dominate PP session dynamics
e Core difficulty: Reach high S as a pair

e Complementary situations is when PP pays off best

e Since relevant knowledge is task-dependent:
can be achieved by choosing the "right task"” for a pair

® Real world: System understanding trumps programming skKills
e Luckily, PP is great for improving one's system understanding

® Problem with many PP studies: Students and isolated tasks I
e i.e., there is no system and hence no relevant S knowledge

e only general problem solving and programming skills G "

Lutz Prechelt, prechelt@inf.fu-berlin.de 23 / 36

L : : Freie Universitat
Distributed Pair Programming (DPP) ~= -2t

® The partners are not physically in the same room and use a
separate computer each

® Their interaction is supported by a collaborative editor and
audio conferencing, perhaps also video.

e Saros (Eclipse, IntelliJ)[AG SE], VS Code, other things
e Allows >2 participants (Distributed Party Programming)

e Allows concurrent edits (Distributed-Pair programming)

Schenk, Prechelt, Salinger: "Distributed-Pair Programming (DPp)
is not just Distributed Pair-Programming (dPP)":

Capable pairs use this judiciously for slightly higher Fluency
without loss of Togetherness.

o Sufficient workspace awareness is critical:

Lutz Prechelt, prechelt@inf.fu-berlin.de 24 / 36

https://www.saros-project.org/
https://code.visualstudio.com/learn/collaboration/live-share
https://wiki.c2.com/?VirtualPairProgramming
http://www.inf.fu-berlin.de/inst/ag-se/pubs/SchPreSal14-dppnotdpp-icse14.pdf

Freie Universitat &

Workspace awareness in Saros

e Saros is an IDE plugin that couples multiple IDEs remotely,
syncs local files, and creates remote workspace awareness:

-

= Java - Saros/sre/de/fu_berlin/inf/dpp/FileListDiff java - Eclipse Platform =RESN X
File Edit Source Refactor Mavigate Search Project Run Saros Window Help
-EH & E-H-0-Q- HE @SS F ~El vt ooy i [ava | (75 Resourc >
[# Package Explorer &3 =0 m *FileListDiff java &2 =8
H SR ' i
Recently written by —-—-f—ammmcmaaoco -
e o e
. = =i, Referenced Libraries -----_-----———-_—--— -
. . e = The sorted list of paths that were Eemoved.
pa rt' C| pa nt 2 =i, IRE System Library [125E-1.5] .
;‘“ Plug-in Dependencies - public List<IPath> getRemovedPath {
’% sre == return sorted(this.removed);
i defu_berlin.inf.dpp ="
. . %;@nﬂwr@emen ‘
H Ig h I Ig ht by ——r | == T activities - public List<IPath> getUnalteredPaths(} { _F
. . - 3 annotations return sorted(this.unaltered): ___————
participant 2 S
3 concurrent j.-‘ __———__
2 editor ,f’ = public L:Lst(IPatﬂ}gq;Mded!a‘Eﬂs(] {
H gcapﬁr; jmuqﬂfd(tms added) ;
=TT feedback -
. ‘f - __— B
Viewport of o e
- - = public List<IPath> getAlteredPaths() {
‘_:-_ -
. . 2 - EB observables return sorted(this.altered): =
pa rtl CI pa n t EB optional.jdt
H preferences \
Ea praject = private boolean issorted(List<IPFath> paths) { -
7 propertyTesters ¢ = L
2 serviceProviders ® Saros i1 &~ C]Eh| = | =
2 synchronize = e =
R ui karl@saros-con.imp.fu-berlin.de Karl2 (icarl imp.fu-berlin.de) 04/04/11 14:34
. . . 3 il “F Session » || hikarl
Session participants -==tr----fue_oo______ ‘v vou ouror1s 1434
E% videosharing 0 Karl2 (karl2@saros-con.imp.fu-berlin.de) hey karl2!
[/} FileListjava 3 22.(' Buddies
- 04/04/11 14:35
43 FileListDiff,j 594 i i i 3 =
H. FileL stDiff java alicel_fu@saros-con.imp.fu-berlin.de can you please fill in the meth etRemovedPaths?
D, SafeConnectionLister ;
carll_fu@jabber.org
[1 sarosjava 334_" 02.04 donut87 @sares-conimp.fu-berlin.de L
(7} SarosContext,java 321 haferburg@saros-con.imp.fu-berlin.de | T
!;a SarosPIuglnContextJ julia_fu@saros-con.imp.fu-berlin.de -
. . =Sy Karl (LM.) = || & Chatreom1
] I b .
Lutz Prechelt, prechelt@inf.fu-berlin.de
= =

What about other PP research?

Two big secondary studies:
e Industrial-settings view [VanMan13] vs. education view [SalMenGrull]

PP in Industry The questions. Participants are often students!
(n = 154)
OO0O0OO00O (we ignore this part)
O0000O0000O0 P
OOOOO OOOOO PP in EducationT
OO0O0OO0O0OOO0O0OOO =7
OOO0OO0OOOOOOOO OJO10)0]0I0]0,

000000000000 olelelelelelelele
0000000000000 O0O0OOOOO00
0000000 00000000000 000000
oooooooooooocwz0888888888
O00000000000
Q00000000000 COO000000O0
00000000000 COO000O
olelelelelelelele
eleJeJelele

Lutz Prechelt, prechelt@inf.fu-berlin.de 26 / 36

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.726.1454&rep=rep1&type=pdf
http://doi.ieeecomputersociety.org/10.1109/TSE.2010.59

Freie Universitat ;s)¢

Research methods used, Quality

e "A Systematic Mapping Study of Empirical Studies on the Use
of Pair Programming in the Industry” [VanMan13]
e Surveyed 154 research articles on PP in industry
» Research approach, exercise vs. project, #subjects, ...
e Identified 608 statements about the 18 PP aspects

» ranked by relevance:
1 - fair, 2 - moderate, Other Measureme
3 - good, 4 - excellent 7% nt Rigorous

only 8% had anything excellent, 6% Observation

another 13% had anything good 13%
» based on: rigor of data collection,
comparative data, #subjects,
realism of context, study duration, _
length of discussion, ... Interview
12%
Informal
Observation
48%])
Questionnai
re
14%

Lutz Prechelt, prechelt@inf.fu-berlin.de 27 / 36

Presenter
Presentation Notes
So generally, the quality of this evidence is not high.
1: Descriptive data from an experience report
2: Lots of descriptive data from a case study
3: Comparative data from a good case study
4: Measured, comparative data from a large experiment

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.726.1454&rep=rep1&type=pdf

"The effectiveness of pair proqrammin% S % |
A meta-analysis" [HanDybAri09] e &y

® Meta-Analysis of all PP experiments with available data

e incl. students as proxies for developers Experiments provide
high internal validity.
(generalization unclear,

_ but we believe the results
as they stand.)

[©> V+U Empir. Methoden

PPin Fdueation | im SW Eng., SoSe]

OO0O0000O
QO0O0OOOOOO
Q000000000
@0 O0O00OOOOOO
Q00O OOOOOO
@OOO0O0O0OOO
@OOO00O0O0OO
OOO0O00O0OO0O

PP in Industry
(n = 154)

O0O0O000O
O000000000
0000000000 000
O0000000O00O00
O000000O00000
Q00000000000
O00000000000O®
O00000000000O
O00000000000O®
O0000000000®
O00000000000
O0000000000
Q00000000
O00000

Lutz Prechelt, prechelt@inf.fu-berlin.de 28 / 36

https://doi.org/10.1016/j.infsof.2009.02.001

Is PP faster?
Does it produce better quality?

Freie Universitat (L=):

e Quality: "small positive effect" (PP has little effect on quality)
o Effect size: 0.33 Clgs: [0.07, 0.60]

e Duration: "medium positive overall effect" (PP is faster)
o Effect size: 0.53 Clgs: [0.13, 0.94]

e Effort: "medium negative overall effect" (PP costs more)
o Effect size: -0.52 Clgs: [-1.18, 0.13]

® QOverall: mixed results

e inter-study variance (heterogeneity):
medium for Quality and Duration; high for Effort

e One-study-removed analysis: considerable changes to effect sizes

Effect Sizes: 2 0.7

0.25

(fabricated data, for illustration only)

Lutz Prechelt, prechelt@inf.fu-berlin.de 29 / 36

Presenter
Presentation Notes
effect size: ratio of means difference to std.dev.

Problems of quantitative black-box
perspectives

Freie Universitat (|

® Pair programming as a jslEld sl)y :
e Some work alone, others "use PP" (independent variable)

e Tasks are finished within some time with a certain quality
(dependent variable)

e Problem 1: Plethora of context variables to control, including
e Experience, Personality
e Task complexity, type of task, system domain ?
e Roles, degree of collaboration

e Workspace, infrastructure

e Problem 2: Hard-to-measure long-term outcomes, such as
e Avoided architectural flaws and avoided information silos

e Problem 3: No explanation of how outcomes come to be
e No idea how many pairs used PP well

e Conclusion: employ other methods than experiments

Lutz Prechelt, prechelt@inf.fu-berlin.de 30 / 36

Benefits from more people being
familiar with code?

)0)
Freie Universitat g

® Many projects have strong individual code ownership:
For each code module, only one programmer understands
it well and only that person makes all modifications

e and only this person can do so with usually no errors.

e This often hampers project progress when corrections need to be
made by someone who is already overworked ("truck number™)

e PP will greatly reduce that problem

How big is this benefit in terms of progress and quality?

® No quantitative results are known,
as this is immensely difficult to measure

e It requires project-level observations

Lutz Prechelt, prechelt@inf.fu-berlin.de 3 1 / 36

Presenter
Presentation Notes
truck number: How many of the most critical members of your team do you need to lose before your project is doomed due to loss of their project knowledge?

Benefits from learning from
one another?

Freie Universitat Gi(l.S

® Only anecdotal evidence is available:

e [Belshee05]: New programmer without OOP knowledge came

into a PP project heavily using C++ template metaprogramming.
After only four weeks of PP he could train another newcomer alone
on parts of the 600-class code base he had never seen.

e [BelsheeO5]: Promiscuous PP (changing pairs every 90 minutes)
led to all 11 members of the team learning a neat IDE editing
feature within just 1 day

the paste stack, which had been discovered only accidentally

® Again, the effect is very difficult to measure quantitatively
e It requires project-level observations

® No quantitative empirical results are known

Lutz Prechelt, prechelt@inf.fu-berlin.de 32 / 36

Presenter
Presentation Notes
anecdote about newbie: Our most difficult new-hire ramp up occurred after we had fully adopted our process. �The new employee had never before programmed in C++, nor had he ever heard of functional programming or performed
OOP. �We performed heavy template metaprogramming throughout our code base and had a system of around 600 classes at the time.
Furthermore, the new hire had a lot of enthusiasm, but wasn’t very technically adept. He wasn’t good at analysis and didn’t really understand data.
We hired him because he had a good knowledge of our customer’s domain and a strong mathematical
background.
The first week after we hired him, our velocity dropped, as expected. The second week, our velocity was back to where it had been before the hire. By the end of the third week we had improved our overall velocity, and the new guy could do any task on the board.
He could sit down with any of the rest of us on a part of the system he hadn’t seen before, figure out how it worked and contribute. He’d pretty much figured out both functional and OO programming and could read a template metaprogram — commonly considered to be one of the most difficult aspects of C++.
In the fourth week, he was pairing with our next new hire during that hire’s first week. He was confident and skilled enough to take any task off the board — even in a part of the code base which he’d never seen — and teach the new guy how it worked.
Furthermore, the rest of the team had sufficient confidence in him to have no qualms about him taking on this challenge. No one even bothered to monitor his pairings with the new guy.
Anecdote about paste stack:
One telling example of rapid pair net happened accidentally to the Silver Platter team. �Around 10 am, I was driving. While doing a bit of copy and paste, I accidentally hit Ctrl + Shift + V instead of Ctrl + V.
In Visual Studio, Ctrl + Shift + V operates a paste stack. It remembers everything that you have copied in the past. Pasting inserts the top of the stack.
Pressing the keys again before doing anything else replaces the just-pasted stuff with the next item in the history. You can continue to press the key combination to go back further in your history. This makes it easy to copy from a couple of sources at
once and paste them all together.
My partner and I noticed this and spent a few minutes figuring out what the weird behavior was. We then went on with our work. �Over the rest of the day, we swapped as normal. Once in a while, the paste stack would be useful, so I’d teach it to my
partner.
Around 4 that afternoon I was again driving. My navigator saw me doing some copy and paste and
took the keyboard to show me a neat trick — the paste stack. I was surprised that he’d seen it, so I stood up and asked the bullpen how many of them knew about the paste stack.
All 11 people had learned about it that day.

http://doi.ieeecomputersociety.org/10.1109/ADC.2005.37
http://doi.ieeecomputersociety.org/10.1109/ADC.2005.37

Freie Universitit G

PP influence on motivation?

Studies agree that PP is generally rather motivating

® A survey [WilKesCun00] explains that with a positive form of
"pair pressure":
e Both partners want to show their talent and quality work

e The participants are highly concentrated on their work and keep
each other on task
no reading emails or surfing the web etc.

® [CaoXul05] on competence-level combinations:
e high+low: less enjoyable for the more competent participant
while the less competent participant took benefit
e high+high: leads to "deep-level thinking"
and both participants enjoy the experience

® Some programmers reject PP completely
e usually without even trying it out
e Programmers with longer experience tend to be more skeptical

Lutz Prechelt, prechelt@inf.fu-berlin.de 33 / 36

Presenter
Presentation Notes
Pair pressure is one of the few claims of Beck's characterization.

http://doi.ieeecomputersociety.org/10.1109/52.854064
http://doi.ieeecomputersociety.org/10.1109/HICSS.2005.66

What about
Driver and Navigator/Observer?

Freie Universitit G

e (Classic "definition" of PP, from [WilKesCun0O0]:
e One partner: "driver”, controls keyboard, is writing code

e The other "actively observes” ... "watching for defects, thinking of alternatives,
looking up resources, and considering strategic implications”

e Pair: like a "coherent, intelligent organism working with one mind"

e Empirical: 24 one-hour sessions from 4 companies [BryRomBou08]
e Analyzed: level of abstraction of 14k+ sentences (e.g. syntax, blocks, domain)
e Compared: Expected distribution per definition vs. actual distribution

#utterances at different
abstraction levels

] I I p—
sY D PR BR RW

fine coarse

Driver mNavigator

e Driver and observer do not seem to think on different levels of abstraction.

Lutz Prechelt, prechelt@inf.fu-berlin.de 34 / 36

http://doi.ieeecomputersociety.org/10.1109/52.854064
https://doi.org/10.1016/j.ijhcs.2007.03.005

Summary

Freie Universitat (|

PP can provide huge learning benefits

It leads to focused work, spreads knowledge, and tends to
produce better designs and fewer defects

e Raw speed comparisons are therefore misleading

The process is usually dominated by acquiring the
task-specific system knowledge (S)

e PP is most useful if this is difficult
e or if the pair's knowledge is complementary.

e In the real world, system understanding trumps progr. skills
Speed comparisons ignoring this are irrelevant

PP done badly can be inefficient
e There is a PP skill separate from programming skill

The key success factor is maintaining Togetherness
e joint system understanding, joint approach, good communication

Lutz Prechelt, prechelt@inf.fu-berlin.de 35 / 36

Freie Universitat

Thank you!

This was too much material to digest.
Please review these slides again!

GAAAIII T KEEP TRYING
TO TALK ABOUT MY KIDS
AND YOU KEEP CHANG-
ING THE TOPIC TO YOUR-
SELF!! _

L BECAUSE T'M
FASCINATING.

WELCOME TO DOGBERT'S
SCHOOL FOR THE
SOCTALLY OBLIVIOUS.

TODAY T'LL PAIR
YOU WITH SOMEONE
WHOSE SOCTAL
DEFECT WILL CANCEL
OUT YOUR OWN.

N

scoltadams@acl.com

o-ae-o4 ©2004 Scott Adams, Inc./Dist. by UFS, Inc.

www.dilbert.com

m

strip/2004-10-20

Lutz Prechelt, prechelt@inf.fu-berlin.de 36 / 36

Presenter
Presentation Notes
See also https://dilbert.com/strip/2000-01-24 and https://dilbert.com/strip/2010-09-25

https://dilbert.com/strip/2004-10-20

	Pair Programming (PP)
	Learning objectives
	What is Pair Programming (PP)?
	Most well-known characterization
	Kent Beck's definition, �his and others' claimed effects of PP
	Lecture structure
	AG SE work on PP
	PP: How does it work?�AG SE research approach
	PP: How does it work?�Our research approach (2): The Data
	PP: How does it work?�AG SE research approach (3)
	Vocabulary:�Types of verbal actions found
	Vocabulary/Patterns:�How much of what is going on?
	Patterns: Knowledge transfer�episode structure
	Patterns of Session Dynamics:�Two types of task-relevant knowledge
	PP Session Dynamics:�Pair configurations
	PP Session Dynamics: �How to solve a problem as a pair?
	Session Dynamics:�Key success factors [Zieris20]
	Session Dynamics Pair Constellations:�Type 1 - No Relevant Gaps
	Session Dynamics Pair Constellations:�Type 2 - One-Sided S Gap
	Session Dynamics Pair Constellations:�Type 3 - Collective S Gap
	Session Dynamics Pair Constellations�Type 4 - Complementary Gaps
	Session Dynamics Pair Constellations:�Type 5 - Too-Big Two-Fold Gap
	PP Session Dynamics: Summary
	Distributed Pair Programming (DPP)
	Workspace awareness in Saros
	What about other PP research?
	Research methods used, Quality
	"The effectiveness of pair programming:�A meta-analysis" [HanDybAri09]
	Is PP faster?�Does it produce better quality?
	Problems of quantitative black-box perspectives
	Benefits from more people being �familiar with code?
	Benefits from learning from �one another?
	PP influence on motivation?
	What about�Driver and Navigator/Observer?
	Summary
	Thank you!

