
1 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Agile Technical Practices:
eXtreme Programming (XP) , Part II

• Shared Code,
Coding Standards

• Refactoring
• Simple Design,

Incremental Design

• Practices support each other
• Values and practices

Course "Softwareprozesse"

• Criticism of XP
• Usage survey
• When not to use XP
• Introducing XP
• Further technical practices

Lutz Prechelt
Freie Universität Berlin, Institut für Informatik

2 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Practices of XP, XP2, Jeffries' XP
(furthermore, XP2 has 11 "Corollary Practices")

XP1 practices ("traditional"):
1. The Planning Game M 
2. Small Releases M 
3. 40-Hour Week M 
4. On-Site Customer M 
5. Pair Programming T
6. Collective Ownership T 
7. Metaphor T
8. Simple Design T 
9. Refactoring T 
10.Testing T 
11.Continuous Integration T 
12.Coding Standards T 

M: Mgmt, T: Technical

XP2 practices ("evolutionary"):
1. Stories M 
2. Weekly Cycle M ()
3. Quarterly Cycle M 
4. Energized Work M 
5. Slack M 
6. Whole Team M 
7. Sit Together M 
8. Informative Workspace M 
9. Pair Programming T
10.Incremental Design T 
11.Test-First Programming T 
12.Continuous Integration T 
13.Ten-Minute Build T 
J: Jeffries' additional practice:
• Customer tests T 

Presenter
Presentation Notes
We speak about those with the arrows today.
Looks XP1-heavy, but that is only due to the formulation of XP2, not its actual content.

3 / 35

Shared code,
XP1/J: Coding standards

• Shared Code (corollary
practice, XP1: Collective
code ownership) means
• "Anyone on the team can

improve any part of the
system at any time."

• Important for agility
• especially Simple Design

• Requires a sense of
responsibility
• hence is corollary in XP2

• Coding standards (XP1)
means
• there are rules for code

formatting
• and for naming

• Important to make
Shared Code and
Pair Programming practical

• No longer in XP2
• because it has become

nearly self-understood

Lutz Prechelt, prechelt@inf.fu-berlin.de

Presenter
Presentation Notes
Beck04: "One objection I’ve heard is that if no one person is responsible for a piece of code, then everyone will act irresponsibly. They will make expedient changes, leaving a mess for the next person who has to touch the code. The risk of this happening is why I’ve listed Shared Code as a corollary practice."

4 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

XP1/J: Refactoring

• Refactoring means modifying the structure of a program
without modifying its behavior
• M. Fowler: "Refactoring: Improving the Design of Existing Code",

Addison-Wesley 2018 (1st ed: 1999)
• There are a number of well-defined elementary

refactoring operations, e.g.:
• Rename
• Change Function Declaration
• Collapse X, Combine X, Decompose X, Encapsulate X,

Move X, Remove X, Replace X with Y, Split X
• Extract Class/Function/Superclass/Variable

• opposite: Inline Class/Function/Variable
• Pull Up, Push Down elements in class hierarchy

• Modern IDEs support or even automate
some refactoring operations
• Eclipse, the IntelliJ family, less so Visual Studio Code

https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/
https://learning.oreilly.com/library/view/refactoring-improving-the/0201485672/

5 / 35

What is Refactoring?

• Refactoring is not just
improving the design structure of a program
• This is unavoidable in iterative development

• It is
improving the design structure without changing the behavior
• This can be a simplification if you have a good test suite
• It is cumbersome otherwise

• XP allows courageous refactoring: the automated tests
make it easy to verify whether a refactoring is correct

Lutz Prechelt, prechelt@inf.fu-berlin.de

6 / 35

Fowler: Workflows of refactoring

• Martin Fowler: "Workflows
of Refactoring", OOP 2014
• Video

• TDD refactoring (2:28)
• post-hoc design

• "Yuck!" refactoring (7:25)
• clean up bad code

• "I-don't-understand-this"
refactoring (10:25)
• Materialize freshly gained

understanding
• Always: Find the right time

(12:38)
• Refactor only if tests are

green!

• "We-should-have-done-it-
this-way" refactoring
(14:40)
• prepare for future features

• Planned refactoring (17:30)
• for all I have not yet

learned how to do
underway

• Long-term changes (19:14)
• gradual contributions to

large-scale design changes
• Always: Purpose is

'design stamina'

Lutz Prechelt, prechelt@inf.fu-berlin.de

https://www.youtube.com/watch?v=vqEg37e4Mkw

7 / 35

Research: Motivations for refactoring

• Silva, Tsantalis, Valente (FSE 2016):
"Why we refactor? confessions of GitHub contributors"
• Uses tool to monitor many

Java GitHub projects for
refactoring changes,
validate manually 

• Then immediately ask the author
for the change reason

• Finds that the same refactoring
operation can have many
different reasons:

Lutz Prechelt, prechelt@inf.fu-berlin.de

https://dl.acm.org/doi/abs/10.1145/2950290.2950305

8 / 35

11 motivations for "Extract Method"
refactoring

• Extract reusable method
(43)

• Introduce alternative
method signature (25)

• Decompose method to
improve readability (21)

• Facilitate extension (15)

• Remove duplication (14)

• Replace Method preserving
backward compatibility (6)

• Improve testability (6)

• Enable overriding (4)

• Enable recursion (2)

• Introd. factory method (1)

• Introd. async operation (1)

Similarly, found several
motivations for other
refactorings, too:

• Move class: 9

• Move method: 5

• etc.

Lutz Prechelt, prechelt@inf.fu-berlin.de

9 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

XP1/J: Simple Design
XP2: Incremental Design

• The design is completed step-by-step, along with the code
• It is not invented all at once beforehands

• which would be known as "Big up-front design" (BUFD)
• At any time, the design is oriented only towards the current

requirements, not to those just expected to come later
• When new functions require design changes,

Refactoring is used as the first step
• in order to minimize risk

• Criticism:
• When used naively, this may lead to

very high amounts of rework, because
"architecture breakers" may then occur frequently

• In particular, the XP 1 phrasing "Simple design"
can mislead

10 / 35

Simple Design:
Kent Beck's XP1 formulation

[Beck99]:
• "[Do] the simplest thing that could possibly work"

• Simple Design:
1. "runs all the tests,
2. communicates everything the programmers want to

communicate,
3. contains no duplicate code, and
4. has the fewest possible classes and methods."

Lutz Prechelt, prechelt@inf.fu-berlin.de

Presenter
Presentation Notes
The formulation invites (and produced) various misunderstandings.

http://doi.ieeecomputersociety.org/10.1109/2.796139

11 / 35

Incremental Design:
Kent Beck's XP2 formulation

• "Invest in the design of the
system every day.
• Strive to make the design

of the system an excellent
fit for the needs of the
system that day.

• When your understanding
of the best […] design leaps
forward, work gradually but
persistently to bring the
design back into alignment
with your understanding."

• "Without daily attention to
design, the cost of changes
does skyrocket."

• "[Do not] minimize design
investment over the short
run, but […] keep the
design investment in
proportion to the needs of
the system so far.

• The question is not whether
or not to design,
• the question is when to

design.
• Incremental design

suggests that the most
effective time to design is
in the light of experience."

• "The simple heuristic […]
is to eliminate duplication."

Lutz Prechelt, prechelt@inf.fu-berlin.de

M

C

C
C M

Presenter
Presentation Notes
"in proportion" and "eliminate duplication" sound like overyl fixed engineering rules.

12 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

What makes a design "simple"?
Low redundancy

• A low amount of duplication is not the only attribute of
a high-quality design
• but worth particular attention when

a design is created incrementally

• Slogan: "Do everything once and only once" (OAOO)
• Slogan: "Don't repeat yourself" (DRY)

• Eliminating redundancy usually leads to a system that
can easily be extended and adapted
• However, recognizing and eliminating redundancy is difficult!

C M

Presenter
Presentation Notes
The idea of DRY is older than agile, but the slogans have become much more popular since.

13 / 35

What makes a design "incremental"?
Avoid implementing ahead (YAGNI)

• Experience suggests that we are not good at
predicting what changes will be needed in the future
• Some we do not see coming at all
• Others we see coming only vaguely

• So our precautions against them may be the wrong ones

• Investing in flexibility mechanisms (to accommodate changes)
is then risky

• Slogan: "You ain't gonna need it" (YAGNI)
• Do not invest into flexibility mechanisms that are not yet needed.
• Build flexible designs

• if that flexibility is required now or
• if implementing that flexibility does not cost anything

• Think ahead, but do not implement ahead.

• Depressingly little research has been done on this idea

Lutz Prechelt, prechelt@inf.fu-berlin.de

14 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Simple design option cost example

Assume you build the simplest
possible design D today:

• Assume change A becomes
necessary 1 year later:
• €1000 D cost today
• €1500 A cost next year

• Assume incompatible change B
becomes necessary instead:
• €1000 D cost today
• €1500 B cost next year

Assume you build D'
anticipating a change A:

• Assume change A becomes
necessary 1 year later:
• €1500 D' cost today
• €50 interest (10% of D'-D)
• €500 A cost next year

• Assume incompatible change B
does instead:
• €1500 D' cost today
• €50 interest (10% of D'-D)
• €500 A rework cost next year
• €1500 B cost next year

If the uncertainty of A vs. B is high, D' may be a bad idea!

Presenter
Presentation Notes
A in 1 year is more expensive than D today because the system is more complicated then.
But A and D are assumed to be of similar complexity in principle.

15 / 35

Why is Incremental Design critical?

• Incremental Design (I.D.)
is a lot of work
• you often shift around lots

of things with no immediate
functional benefit

• Non-technical stakeholders
get in the way:
• I.D.'s benefit is even harder

to see than that of tests
•  It is easy for a team to

neglect this practice
• requires lots of discipline

to keep it up
•  XP is perhaps a better

starting point than Scrum

Lutz Prechelt, prechelt@inf.fu-berlin.de
https://newsbook.com.mt/en/squirrels-stash-of-winter-walnuts-causes-car-chaos/

Presenter
Presentation Notes
The photo symbolizes disorder "under the hood" when good design is not taken seriously enough.

https://newsbook.com.mt/en/squirrels-stash-of-winter-walnuts-causes-car-chaos/

16 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

XP1/2/J: Pair Programming (PP)

• All production code is written by two
programmers working together at a single computer
• Thus, a better design can be found,
• many mistakes can be caught immediately,
• the partners learn from each other

• technology, operating style, design process, project details, etc.
• at least two people are highly familiar with each piece of code.
• Pairs switch frequently (e.g. twice daily)
• Collective ownership and Coding standards make PP practical.

• Criticism:
• How can this possibly pay off?

• (Detailed discussion next week)

17 / 35

Practices support each other!

For instance:
• Incremental Design simplifies PP and TDD
• Refactoring helps

create Incremental Design, perform PP, and perform TDD
• TDD makes Incremental Design and Refactoring

less frightening
• PP helps maintain discipline for Incremental Design,

Refactoring and TDD

• …and so on with other practices

Lutz Prechelt, prechelt@inf.fu-berlin.de

Jeffries' XP core

18 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

XP corollary practices

XP2
XP1

XP2 optional

Note: Some connec-
tions are missingGraphic: Stefan Roock

Presenter
Presentation Notes
e.g. Refactoring is a matter of course in XP2 (as an unavoidable aspect of incremental design) and is not even mentioned as a practice.

19 / 35

XP2 Corollary practices

Chapter 9:
• Practices that are difficult or

dangerous when
the Primary practices are
not yet fully in place.
• "Trust your nose about

what you need to improve
next.

• If one of the following
practices seems
appropriate, give it a try.

• It might work or you might
discover that you have
more work to do before you
can use it to improve your
development process."

Interesting ones:
• Real Customer Involvement M

• not only a proxy
• Team Continuity M

• "Keep effective teams
together."

• Root-cause Analysis M T
• Remove causes of defects

• Code and tests T
• all else will be generated

• Single Code Base T
•  toggles, not branches

and others

Lutz Prechelt, prechelt@inf.fu-berlin.de

Presenter
Presentation Notes
"Trust your nose" is once more the humanist modern view (versus the engineering view that is insisting on structured processes and objective decision making).

20 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

XP values revisited

• Communication, Feedback, Courage, Respect
sound like humanist agile blah.

• The values may not look technical
but all of them are reflected in the technical practices

So let us look at that:

21 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Values: Communication

• Very many problems in projects are related to
communication that failed or simply did not happen
• e.g. tacit assumptions about requirements
• e.g. uncoordinated technical decisions T
• e.g. missing information about design ideas T
• e.g. missing notification about technical changes T

• Therefore, XP uses practices that enforce early, frequent,
successful communication
• Practices that require communication:

• continuous integration T
• effort estimation in the planning game

• Practices that create communication:
• pair programming T
• informative workspace
• frequent releases

Presenter
Presentation Notes
Upper: We talked about this extensively in the previous unit.
Lower: You do not know yet what these practices mean, but it is not important here.

22 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Values: Simplicity

• Simple solutions have many nice properties:
• they are easy to design T
• they are easy to implement T
• they are easy to test and debug T
• they are easy to communicate and explain T
• they are easy to change T

• This is true for both product and process T

• Therefore, XP requires to always use the simplest solution
that is sufficient for today's requirements
• and not build something more complicated in the hope that it will

be needed later.
• Slogan: "You Ain't Gonna Need It!"

(YAGNI)

23 / 35

YAGNI illustrated:
"You Ain't Gonna Need It"

Lutz Prechelt, prechelt@inf.fu-berlin.de https://xkcd.com/974/

T

https://xkcd.com/974/

24 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Values: Feedback

• It is immensely helpful for a project if it always gets quick
feedback about the consequences of actions or plans
• How expensive would it be to realize this new requirement?
• Is this new piece of code correct? T
• Does it fit with the rest of the system? T
• How useful is the system overall?

• Therefore, XP integrates concrete and immediate feedback
into the process wherever possible:
• Immediate effort estimation for each

storycard
• Short iterations and frequent releases
• Continuous integration, a rapid build T
• Unit tests for each piece of code T

25 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Values: Courage

• Many aspects of realizing the first three values
require courage:
• e.g. communicating that you will change an oft-used interface
• e.g. building a simple solution only,

although you firmly expect it to become insufficient later
• e.g. facing negative feedback about incorrect code, incompatible

interfaces, infeasible requirements, or impractical aspects of a
delivered system

• Therefore, XP uses a culture practice that encourages courage
• pair programming! T

• and creates an infrastructure that
allows to be courageous or even bold
• in particular with automated testing T

and continuous integration T

Presenter
Presentation Notes
I think Kent Beck wrote this is the initial impulse behind inventing XP:
Let's have the courage to drive proven practices to their extreme.
And he wrote that this is similar to snowboarding: Only courageous behavior is real fun. And it works best.

26 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Values: Respect

• Respect
• of one developer for another,
• of developers for customer, and
• of customer for developers (so we can keep up XP practices T)

• is an important basis for continually realizing
• communication,
• feedback, and [e.g. respect asks to write all those tests T]
• courage

27 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Criticism

• Gerold Keefer: "Extreme Programming Considered Harmful for
Reliable Software Development 2.0", 2003
(an earlier version appeared in the conference Conquest 2002 by isqi.org)
• Provides overview of XP-related literature until 2002

• Critically reviews the claims and reports about XP and argues
that it is recommendable only in rare situations:
• Requires staff competence far above average

• XP reply: People can learn
• No documentation: Requires unusually high team stability

• XP reply: Not unusual for us!
• Cannot work if finding a suitable architecture is difficult

• XP reply: Often it is not. If it is, XP-style experiments can help.
• Is applicable only to projects of modest size

• XP reply: Large projects can use restricted XP at team level

• Who is right?
• Depends! (Barry Boehm's balanced judgement is a better source)

C

Presenter
Presentation Notes
Yes, XP is not for everybody. But humanist thinking suggests that low-competence teams can learn (pair programming will help a lot) and will then become more stable. Do other processes work well with low-competence people?

https://web.archive.org/web/20040728085659/http:/www.avoca-vsm.com/Dateien-Download/ExtremeProgramming.pdf

28 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

A survey of XP use in
embedded(!) systems projects

• O. Salo, P. Abrahamsson:
"Agile methods in
European embedded
software development
organisations: a survey
on the actual use and
usefulness of Extreme
Programming and
Scrum", IET Software,
2008, pp.58-64

• Responses from 35
projects
from 13 organizations
from 8 countries

Presenter
Presentation Notes
Agile homeground diagram: Culture is often problematic, rest is OK (though far from ideal).

http://agilesouthflorida.pbworks.com/f/Agile+Methods+in+European+Embedded+Software+Development.pdf

29 / 35

Results: Use of XP practices

Lutz Prechelt, prechelt@inf.fu-berlin.de







!
!

!

!
!
!

Presenter
Presentation Notes
Only three practices have at least "mostly" for more than 50% of respondents (green check mark):
40-hour week, Coding standards, Open office space.
Other practices have at most "rarely" for more than 50% of respondents (red bang):
Simple design, TDD, Planning game, Collective ownership, On-site customer, PP.
(Worrying! E.g. without simple design and collective ownership that's hardly agile anymore.)

30 / 35

Results: Experienced usefulness

Lutz Prechelt, prechelt@inf.fu-berlin.de

Expectations of respondents without XP experience
were 28% negative.

XP perceived
as more useful
than Scrum.

31 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

When you should not use XP

From the XP book:
• Too-big teams

• XP works for teams of 10, can work for teams of 20
• For teams of 100, integration (that is, design coordination) will

become a bottleneck
• Unbelieving customers and organizations

• XP requires full concentration;
it cannot work in a culture of continuous extensive overtime

• Customers who insist on a thick specification document
break the whole XP process

• Change-hampering technology or constraints
• e.g. replacing a database that absolutely must be compatible

with 164 different applications
• e.g. working with technology that makes builds take 10 hours
• e.g. working with insufficient opportunity for immediate

communication

32 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Introducing XP

• It is difficult to introduce all XP practices at once
• Most need to be learned!

• They can be introduced one-by-one as follows:
• Find the worst problem/weakness of the current process

• "Change begins with awareness."
• Select the XP practice that can help most with this problem
• Introduce it until the problem is much reduced
• Find the now-worst problem and start over

• Good candidates for first practice to introduce:
• Sit Together
• Quarterly Cycles ( Stories)
• Continuous Build & Testing
• Pair Programming

33 / 35

Further practices (technical & mgmt.)

Lutz Prechelt, prechelt@inf.fu-berlin.de

https://w
w

w
.agilealliance.org/agile101/su

bw
ay-m

ap-to-agile-practices/

https://www.agilealliance.org/agile101/subway-map-to-agile-practices/

34 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Summary

• Agile development must work to keep design structure intact
• Refactoring may be useful for doing this
• Refactoring is difficult to research

• Incremental Design means avoiding to look ahead too much
• and aim for a healthy SW structure despite the many changes

• XP practices support each other
• and support the XP values

• XP should often be introduced practice-by-practice
• many agile teams use technical practices too little

35 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Thank you!

(extra slides follow)

36 / 35

Preamble: Why we look at XP

• In the early 2000s, XP was the most well-known agile method
• most popular, most discussed

• Today, it is much less talked about, because many of
its practices have become mainstream.
• Many XP practices are used with most other agile methods

• Sometimes explicitly, but often as a matter of course
• So the relevance of knowing XP is as high as it was

• XP is still the most complete agile process model.
• So the relevance of knowing XP is higher than it is for, say,

Scrum or Kanban
• XP focusses on technical work,

less on management
• Scrum and Kanban focus on mgmt.,

hardly on technical work

Lutz Prechelt, prechelt@inf.fu-berlin.de

37 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

History

• XP is based on ideas that have been around for a long time
• XP was developed into a method in the context of one single

software project (using Smalltalk)
• "C3": Chrysler Comprehensive Compensation,

a project to develop a payroll system for the 87000 employees of
Chrysler Corporation.

• 1995-01: C3 starts
• 1996-03: C3 has not delivered any working functionality.

Kent Beck is hired as an advisor, brings in Ron Jeffries,
reduces project staff, and starts putting C3 into XP mode

• 1996 to 1998: A period of high productivity in the project
• 1998-08: C3 system is piloted and payrolls 10 000 employees
• 2000-02: C3 project is canceled after Chrysler/Daimler-Benz

merger

38 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

XP2/J: Whole Team,
XP1: On-site customer

• All qualifications and competences required
should be represented in the team
• this includes specialized technical knowledge
• as well as business/requirements knowledge ("on-site customer")
• as well as project-level responsibles (coach, plan tracker)

• Thus, the team can always proceed without interruption

• Criticism:
• It is often impossible to find a single person

representing all requirements knowledge
(or to bring several into the team)

• XP requires all members to be full-time, but
very specialized (and rare) technical knowledge
may be needed in multiple projects

39 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

XP2: Sit Together

• The whole team should work as close together as possible,
ideally in a single large office.
• This greatly simplifies communication and makes it more likely to

succeed
• It greatly increases informal communication

• by overhearing other pairs working

• Criticism:
• 10 people in one room leads to

high background noise and
reduces concentration

40 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

XP1: Informative Workspace

• All important information about the project status should be
available directly in the workspace, e.g.
• currently open tasks
• build and test status
• architectural design

sketch

• This can often be done
by hanging note cards
or flip chart sheets
on the walls

41 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Practice: Energized Work

• All members of the team are motivated and work
energetically at any time
• In particular, there are no extended stretches of working

overtime
• This was formerly called "40 hour week"

which was too inflexible in practice
• Also, since Pair Programming (see below) is very intensive,

a good routine of breaks and fun interludes is important

• Criticism:
• Can you really call "working energetically"

a practice that you consciously adopt?

42 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Practice: Stories

• All requirements are stated in the
form of stories
• A short reminder is written on a card
• Most of the information transfer

is done verbally
• The number of such cards must be

modest
• Mostly cards for the current iteration,

never cards beyond the current release

• Criticism:
• For some types of functionality,

stories are just too imprecise
• Non-functional requirements cannot

be expressed by stories
• but need to be considered early

www.jamesshore.com/Multimedia/Beyond-Story-Cards.html

43 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Practice: Weekly Cycle

• The finest granularity of project-level planning is the so-called
"iteration"
• Each iteration implements one or more stories
• An iteration should take about one week, maybe two

• The iteration is the elementary progress step visible for the
customer

• During an iteration,
requirements are fixed
• Programmers can work

without interruption
• Programmers can estimate

the effort well for work
of this size

44 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Practice: Quarterly Cycle

• The larger granularity of project planning is the release
• There should be about four releases per year
• A release is deployed into actual use by actual users (at least a

pilot group) in actual business processes
• Frequent releases provide regular reality checks of

the value generated by the project
• and provide a rhythm for reflecting on the development process

• Criticism:
• Rollout of a release is often very difficult and cannot be done

frequently (e.g. because of required process changes)

45 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Practice: Slack

• Developers have some freely available time (slack time) to be
used for non-project work
• e.g. learning about new technology.

• This time will also allow to
eliminate delays from misestimation, e.g.:
• fix yet-unknown defects
• improve yet-unknown gaps in existing design structure

• ("repay technical debt")
• (in a strong XP team, these two items will be small)

• Criticism:
• It is extremely difficult to keep up this practice in normal project

reality for most organizations

46 / 35

Research: Refactoring impact

• AlDAbd18: "Empirical Evaluation of the Impact of
OO Code Refactoring on Quality Attributes: A SLR"

• based on 76 studies, many using multiple datasets

Lutz Prechelt, prechelt@inf.fu-berlin.de better worse

Presenter
Presentation Notes
Abstract: "[…] different refactoring scenarios sometimes have opposite impacts on different quality attributes. Therefore, it is false that refactoring always improves all software quality aspects. […]"
Prefer SilTsaVal16: Why We Refactor? Confessions of GitHub Contributors, https://dl.acm.org/doi/abs/10.1145/2950290.2950305
"We found that refactoring activity is mainly driven by changes in the requirements and much less by code smells. Extract Method is the most versatile refactoring operation serving 11 different purposes. Finally, we found evidence that the IDE used by the developers affects the adoption of automated refactoring tools."�

https://doi.ieeecomputersociety.org/10.1109/TSE.2017.2658573

47 / 35

Research: Refactoring impact
Interpretation problems

• Most of the metrics applied are naive
• e.g. coupling is a static measure: Each coupling counts the same
• but in practice, some couplings hurt much more than others

• Tradeoffs occur:
• To reduce coupling here, I sometimes increase coupling there

• Perhaps avoidable, but if it costs more work and does not pay off…

• The competence of people and teams varies enormously
• (Probably several other problematic factors)
• What was even counted as a refactoring in those studies?

• Refactorings are wildly mixed with other changes

Conclusion:
• The SLR does not tell us much about Refactoring.

Lutz Prechelt, prechelt@inf.fu-berlin.de

	Agile Technical Practices: �eXtreme Programming (XP) , Part II
	Practices of XP, XP2, Jeffries' XP�(furthermore, XP2 has 11 "Corollary Practices")
	Shared code,�XP1/J: Coding standards
	XP1/J: Refactoring
	What is Refactoring?
	Fowler: Workflows of refactoring
	Research: Motivations for refactoring
	11 motivations for "Extract Method"�refactoring
	XP1/J: Simple Design�XP2: Incremental Design
	Simple Design:�Kent Beck's XP1 formulation
	Incremental Design:�Kent Beck's XP2 formulation
	What makes a design "simple"?�Low redundancy
	What makes a design "incremental"?�Avoid implementing ahead (YAGNI)
	Simple design option cost example
	Why is Incremental Design critical?
	XP1/2/J: Pair Programming (PP)
	Practices support each other!
	XP corollary practices
	XP2 Corollary practices
	XP values revisited
	Values: Communication
	Values: Simplicity
	YAGNI illustrated:�"You Ain't Gonna Need It"
	Values: Feedback
	Values: Courage
	Values: Respect
	Criticism
	A survey of XP use in �embedded(!) systems projects
	Results: Use of XP practices
	Results: Experienced usefulness
	When you should not use XP
	Introducing XP
	Further practices (technical & mgmt.)
	Summary
	Thank you!
	Preamble: Why we look at XP
	History
	XP2/J: Whole Team, �XP1: On-site customer
	XP2: Sit Together
	�XP1: Informative Workspace
	Practice: Energized Work
	Practice: Stories
	Practice: Weekly Cycle
	Practice: Quarterly Cycle
	Practice: Slack
	Research: Refactoring impact
	Research: Refactoring impact�Interpretation problems

