
1 / 26Lutz Prechelt, prechelt@inf.fu-berlin.de

Agile Technical Practices:
eXtreme Programming (XP), Part I

• Structure of agile methods
• values, roles, technical

practices, mgmt. practices
• eXtreme Programming (XP)

• XP1 vs. XP2 vs. Jeffries
• Values, roles
• Management practices
Technical practices:

Course "Softwareprozesse"

• Continuous Integration
• Ten-minute Build, Feat. Toggle,

C. Delivery, C. Deployment
• Test-first Programming

• Testing, TDD, ATDD

Lutz Prechelt
Freie Universität Berlin, Institut für Informatik

2 / 26Lutz Prechelt, prechelt@inf.fu-berlin.de

Learning objectives
(for parts I & II together)

• Understand
• the structure of methods,
• the role of practices, and
• the difference between management practices

and technical practices

• Roughly understand the practices that make up XP
and how they play together
• including pros and cons (including some research results)

• Roughly understand when to and when not to use XP

3 / 26Lutz Prechelt, prechelt@inf.fu-berlin.de

XP sources

• Kent Beck, Cynthia Andres:
"Extreme Programming Explained:
Embrace Change",
Addison-Wesley, 2004
• 2nd edition (XP, XP2);

complete rewrite of 1999 1st edition
• See article on 1st edition (XP1)
• Different set of practices!

• Worth reading!
• Ron Jeffries (xprogramming.com) uses a

still different mix
• Beck and Jeffries are the co-inventors of XP

• See also other books and articles, c2.com XP roadmap,
Agile Alliance summary, …

https://live.staticflickr.com/73/199247208_e4eb15c076.jpg
https://www.ecured.cu/Ron_Jeffries

https://learning.oreilly.com/library/view/extreme-programming-explained/0321278658/
http://doi.ieeecomputersociety.org/10.1109/2.796139
https://ronjeffries.com/
https://scholar.google.de/scholar?q=Extreme+programming
https://wiki.c2.com/?ExtremeProgrammingRoadmap
https://www.agilealliance.org/glossary/xp
https://live.staticflickr.com/73/199247208_e4eb15c076.jpg
https://www.ecured.cu/Ron_Jeffries

4 / 26

Methods vs. practices

• "method": a systematic procedure for attaining something
• states how to do it (e.g. a cooking recipe, an algorithm)
• Most so-called "methods" are hardly methods

• e.g. Scrum states what to achieve, but rarely how to do it

• "practice": "[What] one does as a habitual or customary
action or act"

• https://wiki.c2.com/?ApproachesMethodsAndPractices
• XP explicitly consists of values, principles, and practices

Lutz Prechelt, prechelt@inf.fu-berlin.de

C M

https://wiki.c2.com/?ApproachesMethodsAndPractices

5 / 26

Methods vs. practices (2)

• Methods have a positivist touch
• "This is how to do it!"
• "If you don't do it like this, you are a fool/outlaw"

• There is a lot of such thinking in would-be agile circles

• Practices have a humanist touch
• "Here is something we tend to do because it is a Good Idea"
• "Feel free to deviate if needed. If really needed."

• XP, Chapter 3:
• "Practices are evidence of values."; "Practices are clear"
• "Bridging the gap between values and practices are principles.

[…] Principles are domain-specific guidelines for life."
• Many so-called methods would better be called principles or

sets of principles
• Scrum's Sprint Review & Retrospective can be considered principles.

Lutz Prechelt, prechelt@inf.fu-berlin.de

C

M

!

Presenter
Presentation Notes
"Scrum's Sprint Review & Retrospective can be considered principles." Why? Too inconcrete to be considered practices.

6 / 26

XP values

• Communication
• Simplicity

• "Simplicity is the most intensely intellectual of the XP values.
To make a system simple enough to gracefully solve only today's
problem is hard work."

• Feedback
• "we use feedback to get closer and closer to our goals."

• Courage
• "Courage is effective action in the face of fear."
• "Sometimes […] manifests as a bias to action. […]

Sometimes courage manifests as patience."
• Respect

• "I am important and so are you."

(Scrum's values are Commitment, Focus, Openness, Respect, and Courage
but Scrum has almost no explanation what they mean. XP does.)

Lutz Prechelt, prechelt@inf.fu-berlin.de

A very interesting
take on
SW development!

Presenter
Presentation Notes
Courage is the most interesting of the XP values.

7 / 26

XP principles

"Principles are domain-specific guidelines for life."
• Too many to discuss here:

• Humanity, Economics, Mutual benefit, Self-similarity,
Improvement, Diversity, Reflection, Flow, Opportunity,
Redundancy, Failure, Quality, Baby steps, Accepted responsibility

• Many we already know, e.g. Humanity, Economics, Improvement,
Diversity, Reflection, Flow, Quality

• Some are really interesting:
• Opportunity: "see problems as opportunities for change."
• Failure: "If you're having trouble succeeding, fail. […]

Isn't failure waste? No, not if it imparts knowledge."
• Baby steps: "What's the least you could do that is recognizably in

the right direction? […] [The] overhead of small steps is much
less than when a team wastefully recoils from aborted big
changes."

• Could almost be considered a technical practice

Lutz Prechelt, prechelt@inf.fu-berlin.de

8 / 26

Martin Fowler on XP

• "To make agile work, you need solid technical practices.
• A lot of agile education under-emphasizes these, but if you

skimp on this you won't gain the productivity and
responsiveness benefits that agile development can give you
(stranding you at level 1 of the agile fluency model.)

• This is one of the reasons that I still think that
Extreme Programming is the most valuable of the
named agile methods as a core and starting point."

• http://martinfowler.com/agile.html

Lutz Prechelt, prechelt@inf.fu-berlin.de

http://martinfowler.com/articles/agileFluency.html
http://martinfowler.com/bliki/ExtremeProgramming.html
http://martinfowler.com/agile.html

9 / 26Lutz Prechelt, prechelt@inf.fu-berlin.de

Practices of XP, XP2, Jeffries' XP
(furthermore, XP2 has 11 "Corollary Practices")

XP1 practices ("traditional"):
1. The Planning Game M
2. Small Releases M
3. 40-Hour Week M
4. On-Site Customer M
5. Pair Programming T
6. Collective Ownership T
7. Metaphor T
8. Simple Design T
9. Refactoring T
10.Testing T
11.Continuous Integration T
12.Coding Standards T

M: Mgmt, T: Technical

XP2 practices ("evolutionary"):
1. Stories M
2. Weekly Cycle M ()
3. Quarterly Cycle M
4. Energized Work M
5. Slack M
6. Whole Team M
7. Sit Together M
8. Informative Workspace M ()
9. Pair Programming T
10.Incremental Design T
11.Test-First Programming T
12.Continuous Integration T
13.Ten-Minute Build T
J: Jeffries' additional practice:
• Customer tests T

Presenter
Presentation Notes
Those with check marks we know already from the units on Agile Manifesto or Scrum.Those with arrows we will talk about today.Slack means planning enough non-essential tasks that can be dropped to meet the deadline.Sit Together is about osmotic communication (and is not easy to get right; needs proper acoustics and enough space).XP1 vs XP2: For instance, collective ownership (8) was taken out because it is now considered difficult and Simple Design has been renamed Incremental Design to reduce misunderstandings. Metaphor is insufficiently universal.Moral: There is no single, fixed, canonical set of practices that make up XP. Small(!) variations exist.

10 / 26Lutz Prechelt, prechelt@inf.fu-berlin.de

XP practices:
XP2, XP1, XP2 "corollary" (optional)

XP2
XP1

XP2 optional

Note: Some connec-
tions are missingGraphic: Stefan Roock

Presenter
Presentation Notes
e.g. Refactoring is a matter of course in XP2 (as an unavoidable aspect of incremental design) and is not even mentioned as a practice.

11 / 26Lutz Prechelt, prechelt@inf.fu-berlin.de

Ron Jeffries' view: core, infrastructure,
customer interface

https://ronjeffries.com/xprog/what-is-extreme-programming/

We'll pay a lot of
attention to the core

Presenter
Presentation Notes
A very helpful perspective!The four in the middle (blue circle) form the process core: the heart of XP.The five on the green circle are a kind of infrastructure for executing it.The four on the large red circle integrate it with the rest of the world.

https://ronjeffries.com/xprog/what-is-extreme-programming/

12 / 26

Kent Beck's stance on practices

• Chapter 6 "Practices":
• "Applying a practice is a choice.
• I think the practices make programming more effective.
• This is a collection of practices that work and

work even better together.
They have been used before.

• Experiment with XP using these practices as your hypotheses.
For example, let’s try deploying more frequently and see
if that helps."

• Chapter 7 "Primary Practices":
• "Practices are theories, predictions."

• About what behaviors are useful and what they achieve.
• Such predictions can be wrong, given a team or situation!

Lutz Prechelt, prechelt@inf.fu-berlin.de

13 / 26Lutz Prechelt, prechelt@inf.fu-berlin.de

XP1/2/J: Continuous Integration (CI)

• "Integrate and test changes after
no more than a couple of hours."
• An automated process (1) builds the system,

(2) runs the automated tests, (3) logs results
• This build represents the project state

• The build must be fully functional at almost any time
• A build that remains broken for some time

is an indicator of bad project health
• Teams without a healthy CI cannot be agile

• Version-management branches make CI difficult
• How many different builds are you willing to run?
• How will developers understand which ones to pay attention to?
• How often are you willing to modify your CI setup?

Presenter
Presentation Notes
Some teams have an alarm light that turns of when the build breaks.Or even a toy rocket launcher shooting at the developer responsible for the breaking commit.(Why is the latter an indicator of a non-XP team? Because with PP you cannot be sure where people will sit.)

14 / 26

Continuous Integration:
Feature Toggles

• Use feature toggles instead and run two builds:
• Production-like settings
• All features "on"

• Feature-toggle practices [MahDreWil21]:
• practitioner survey & literature study

• Have a toggle mgmt system:
• consciously decide each toggle introduction
• metadata (documentation: owner, status, …)
• naming convention, default value
• change log

• Group toggles, manage dependencies
• Expiration date (e.g. as an automated test)

• limit number of toggles

Lutz Prechelt, prechelt@inf.fu-berlin.de

https://link.springer.com/article/10.1007/s10664-020-09901-z

15 / 26

XP2: Ten-minute build

• "Automatically build the whole system and run all of the tests
in ten minutes."
• If it takes longer, it will be used less reduced feedback

• making repairs more costly
• So when the build gets slower, optimize it, e.g.

• find a tool that runs only those tests that execute changed code
• but make sure to run tests relying on external services

• For large systems, modularize more
• Replace individual integration tests if they are slow

• GUI-based system tests make this difficult
• Why do you need so many of them?

• Incremental Design, Test-First Programming

Lutz Prechelt, prechelt@inf.fu-berlin.de

16 / 26

Beyond CI:
Continuous Delivery (CD)

• "Continuous Delivery is a SW development discipline where
you build software in such a way that the software can be
released to production at any time." [Fowler13]
• Having a CI is not enough! One needs to
• prioritize keeping-it-deployable over

• working on new features
• long-running restructurings;

• have a DevOps culture (no silos, autonomy) [Wilsenach15];
• have fully automated "push-button" deployment

• Kanban demands Continuous Delivery; Scrum & XP do not

• Beware of confusing Continuous Delivery (CD) with
Continuous Deployment (CD):

Lutz Prechelt, prechelt@inf.fu-berlin.de

M

Presenter
Presentation Notes
For advantages, see the Quality Experience case study.

https://martinfowler.com/bliki/ContinuousDelivery.html
https://martinfowler.com/bliki/DevOpsCulture.html

17 / 26

Beyond CI:
Continuous Deployment (CD)

• When a build is successful, it will automatically and
immediately be deployed to the production system
• So effectively iterations become extremely short
• Only possible for web-based and similar systems
• Precondition:

Continuous Delivery

• An ambitious goal!
• high risk of

breaking something
• some top companies

did or do this
(e.g. Amazon,
Facebook)

Lutz Prechelt, prechelt@inf.fu-berlin.de

https://www.agilealliance.org/glossary/continuous-deployment/

developer
test

https://www.agilealliance.org/glossary/continuous-deployment/
https://stackoverflow.com/questions/28608015/continuous-integration-vs-continuous-delivery-vs-continuous-deployment

18 / 26Lutz Prechelt, prechelt@inf.fu-berlin.de

XP1: Testing, J: Test-driven development
XP2: Test-First Programming

• "Write a failing automated test before changing any code."
• Write test; see it fail; write code; see test succeed; repeat

• "Test-first programming addresses many problems at once:
• Scope creep [by having to stay focused]
• [Low] Coupling and cohesion [or else testing is difficult]
• Trust […] [G]ive your teammates a reason to trust you
• Rhythm: […] [Develop in] a natural and efficient rhythm --

• test, code, refactor, test, code, refactor."

• "As your experience grows, you’ll be able to squeeze more
and more reassurance into these tests."

• Beck does not discuss granularity
• but implies a fine granularity:
• "Because of their limited scope, these tests tend to run very fast.
• You can run thousands of them as part of the Ten-Minute Build."

19 / 26

Test-first programming: Discussion

• Oft-claimed advantages:
• Clarifies the requirements for the element before coding it
• Defines the interface
• "First": helps keeping up the discipline
• Provides rapid and constant feedback
• Thus allows courage during refactoring

• Suitability depends on a suitable granularity of
"changing any code"
• A too-small granularity may be exaggerated

• Some people insist on iterations of ~1 minute length

Lutz Prechelt, prechelt@inf.fu-berlin.de

20 / 26

Test-first programming: How much?

Kent Beck (on stackoverflow 2008):
• "I get paid for code that works, not for tests,

• so my philosophy is to test as little as possible to reach a given
level of confidence […].

• If I don't typically make a kind of mistake […],
I don't test for it."

• David Heinemeier Hansson (author of Ruby on Rails, 2012)
• "Testing just what's useful takes nuance, experience, and

dozens of fine-grained heuristics."

 A difficult question!

Lutz Prechelt, prechelt@inf.fu-berlin.de

https://stackoverflow.com/questions/153234/how-deep-are-your-unit-tests/
https://signalvnoise.com/posts/3159-testing-like-the-tsa

21 / 26

Test-first programming/TDD:
Personal experience?

If you do serious SW development:

• Do you use thorough automated testing?
• Often? Nearly always?

• Did you ever try test-first programming/TDD?
• Did you try to make it a habit?
• Pros of it? Cons?
• When and where?

• Logic? GUI? Integration?
• New vs. existing code?

• Do your colleagues use it?

• How good is the test suite overall?
• Code coverage?
• How much confidence does it provide?

Lutz Prechelt, prechelt@inf.fu-berlin.de

22 / 26

Research:
What limits industrial TDD adoption?

CauSunPun11: "Factors
limiting industrial adoption of
TDD: a systematic review"

• based on 48 empirical
studies on TDD, mostly
case studies or experiments

• Dev. time often increased
• sometimes decreased

• Many industrial devs lack
TDD knowledge
• Or generally lack skill to

find good test cases
• Sometimes architecture

problems
• (the article is vague here)

• Technical/tool problems
• esp. for GUI testing,

network testing
• Lack of discipline

• e.g. time pressure,
no obvious benefits

• two studies found low TDD
correlated with low quality

• in orgs that prefered TDD

• Legacy code
• (near-)lack of test suite

• and testable structure

Successfully using TDD
is difficult!

Lutz Prechelt, prechelt@inf.fu-berlin.de

https://doi.ieeecomputersociety.org/10.1109/ICST.2011.19

23 / 26

Research:
Effects from TDD

• BisSerFig16: "The effects of
TDD on internal quality,
ext. qual. & productivity:
A systematic review"
• based on 27 studies:

57% using experiments,
32% using a case study

• comparison to test-last

• Trends:
• Academic environments:

Productivity increases
• Industrial environments:

Productivity decreases
• 76% of studies report

better internal SW quality
• e.g. lower coupling

• 88% report better external
SW quality (reliability)

• Conclusion:
• TDD tends to help,

but is not free.

Lutz Prechelt, prechelt@inf.fu-berlin.de

https://doi.org/10.1016/j.infsof.2016.02.004

24 / 26

J: Customer Tests (ATDD)

• Write automated tests at the story-level
• testing relevant, user-visible, valuable functionality directly
• ideally in a form the end user can read (for validation).
• They then serve as always up-to-date documentation.

• Very useful for user support.
• a.k.a. ATDD: Acceptance-Test-Driven Development

• These add confidence beyond what unit tests and
integration tests can provide
• balance with the unit and integration tests, limit redundancy
• write more of them if you often break stories

https://ronjeffries.com/xprog/xpmag/problems-with-acceptance-testing/
https://ronjeffries.com/xprog/blog/automating-story-tests/

Lutz Prechelt, prechelt@inf.fu-berlin.de

https://ronjeffries.com/xprog/xpmag/problems-with-acceptance-testing/
https://ronjeffries.com/xprog/blog/automating-story-tests/

25 / 26Lutz Prechelt, prechelt@inf.fu-berlin.de

Summary

• The "technical excellence" so important for Agile
requires technical practices
• Scrum and Kanban do not offer any; XP does (based on values)

• Continuous Integration, Ten-Minute Build
• are important foundations for agile work
• are the basis for Continuous Delivery (Kanban),

let alone Continuous Deployment

• Thorough automated tests are super important
• for creating the confidence required for

• making changes and
• keeping the design structure intact

• and a Test-First workstyle and Customer Tests
can be helpful for creating them

26 / 26Lutz Prechelt, prechelt@inf.fu-berlin.de

Thank you!

	Agile Technical Practices: �eXtreme Programming (XP), Part I
	Learning objectives�(for parts I & II together)
	XP sources
	Methods vs. practices
	Methods vs. practices (2)
	XP values
	XP principles
	Martin Fowler on XP
	Practices of XP, XP2, Jeffries' XP�(furthermore, XP2 has 11 "Corollary Practices")
	XP practices: �XP2, XP1, XP2 "corollary" (optional)
	Ron Jeffries' view: core, infrastructure,�customer interface
	Kent Beck's stance on practices
	XP1/2/J: Continuous Integration (CI)
	Continuous Integration:�Feature Toggles
	XP2: Ten-minute build
	Beyond CI:�Continuous Delivery (CD)
	Beyond CI:�Continuous Deployment (CD)
	XP1: Testing, J: Test-driven development�XP2: Test-First Programming
	Test-first programming: Discussion
	Test-first programming: How much?
	Test-first programming/TDD:�Personal experience?
	Research:�What limits industrial TDD adoption?
	Research:�Effects from TDD
	J: Customer Tests (ATDD)
	Summary
	Thank you!

