
1 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Agile Manifesto

• Origin of agile
• Agile Manifesto

• core part, principles list,
background

• common misunderstanding
• culture

• Underlying assumptions

Course "Softwareprozesse"

• Classical view on agile
• Too much vs. too little planning
• XP planning game

• Usage frequency of various
agile methods

Lutz Prechelt
Freie Universität Berlin, Institut für Informatik

2 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Learning objectives

• Understand the key ideas of the agile movement

• Be able to detect those ideas at work in processes

• Be able to detect deviations and violations of these ideas

3 / 35

On the origins of Agile:
The Waterfall myth

It is often said that
Winston W. Royce: "Managing the development of large
software systems", Proc. WESCON, 1970

has proposed the proper way to develop software as this:

Lutz Prechelt, prechelt@inf.fu-berlin.de

(a plan-driven approach)

http://leadinganswers.typepad.com/leading_answers/files/original_waterfall_paper_winston_royce.pdf
http://leadinganswers.typepad.com/leading_answers/files/original_waterfall_paper_winston_royce.pdf

4 / 35

On the origins of Agile:
The Waterfall myth (2)

• What it really said:
• "In my experience, [this method] has never worked on large

software development efforts"
• "To give the contractor free rein between requirement

definition and operation is inviting trouble."
• Royce recommends several additions as a repair:

• Note: The article talks about "spacecraft mission planning,
commanding and post-flight analysis" where requirements tend to be
well-understood and stable!

• "preliminary design": Architectural design and its documentation
• "plan, control and monitor testing": approach QA systematically

• and take it very seriously
• "do it twice": iterate; build a throw-away prototype

• mostly to understand non-functional behavior
• "involve the customer": get feedback

• have the customer commit to parts of the effort before final delivery

Lutz Prechelt, prechelt@inf.fu-berlin.de

5 / 35

On the origins of Agile:
Waterfall practice

• Subsequent practitioners have often used the basic plan-
driven waterfall process with only two of the repairs:
• Architectural design; Systematic testing

• but missed two crucial ones:
• iterative development; feedback/incremental commitment

• Furthermore, they have often overlooked a crucial element for
information systems:
• User requirements are needed before system requirements

• User requirements are situated in the problem domain (value!)
• System requirements are situated in the solution domain (HW/SW)

Lutz Prechelt, prechelt@inf.fu-berlin.de

6 / 35

On the origins of Agile:
Effect of the misunderstanding

• As a result, many SW projects got into huge trouble
• massive plan overruns; sometimes no useful SW produced at all
• especially for projects with unclear requirements

• As computers got faster, some practitioners developed better
ways of developing SW
• highly iterative; fewer documents; automated testing

• Other projects at least used iterations to
reduce requirements risks
• but many projects continued to work badly

• Conjecture: too much in the classical-view culture
made it hard to see what process was needed.

• Then in 2001, 17 practitioners got together and formulated
their worldview in the Agile Manifesto
• since then, the modern view has quickly gained acceptance

• at least seemingly

Lutz Prechelt, prechelt@inf.fu-berlin.de

7 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Prelude: Agile is about priorities

• Jim Highsmith, Alistair Cockburn: "Agile Software
Development: The Business of Innovation",
IEEE Computer, September 2001
• Very good introduction into the agile way of thinking

• "Processes, tools, documentation, contracts, and
plans are useful.
But when push comes to shove — and it usually
does — something must give, and we need to be
clear about what stays and what gives."
• (Agile methods were initially called

"lightweight" methods, because they attempted to
get rid of dispensable process elements)

Highsmith

Cockburn

http://doi.ieeecomputersociety.org/10.1109/2.947100
http://alistair.cockburn.us/index.php/Image:Ac2003graduation050.png

8 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

The Agile Manifesto

http://www.agilemanifesto.org (2001)

Manifesto for Agile Software Development
• "We are uncovering better ways of developing

software by doing it and helping others do it.

Through this work we have come to value:
• Individuals & interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

(this stays) (this gives way)

That is, while there is value in the items on the right,
we value the items on the left more."

Plausible?
When?

http://www.agilemanifesto.org/

9 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Agile Manifesto: Principles

[We discuss: When is this a good idea? When is it not?
Elements of modern view?]

We follow these principles:
1. Our highest priority is to satisfy the customer

• through early and continuous delivery of valuable software.
(Value focus, not quality focus!)

2. Welcome changing requirements, even late in development.
• Agile processes harness change for

the customer's competitive advantage.
3. Deliver working software frequently,

• from a couple of weeks to a couple of months,
with a preference to the shorter timescale.

4. Business people and developers must work together daily
• throughout the project.

"agile"

(center pillar)

10 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Agile Manifesto: Principles (2)

[We discuss: When is this a good idea? When is it not?
Elements of modern view?]

5. Build projects around motivated individuals.
• Give them the environment and support they need,

and trust them to get the job done.
6. The most efficient and effective method of

conveying information to and within a development team is
face-to-face conversation.

7. Working software is the primary measure
of progress.

8. Agile processes promote sustainable development.
• The sponsors, developers, and users should be able to

maintain a constant pace indefinitely.

"lightweight"

11 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Agile Manifesto: Principles (2)

[We discuss: When is this a good idea? When is it not?
Elements of modern view?]

9. Continuous attention to technical excellence and good design
enhances agility.

10.Simplicity, the art of maximizing the work
not done, is essential.

11.The best architectures, requirements, and designs
emerge from self-organizing teams.

12.At regular intervals, the team reflects on how to become
more effective,
• then tunes and adjusts its behavior accordingly.

(interesting one!)

12 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Use your common sense!

Believe nothing,
no matter where you read it
or who said it,
not even if I have said it,
unless it agrees with your own reason
and your own common sense.

Gautama Siddharta Buddha

13 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

The still-common misunderstanding

Source: http://agilemanifesto.org/history.html

• "The Agile movement is not anti-methodology,
• in fact, many of us want to restore credibility to the word

methodology.
• We want to restore a balance.

• We embrace modeling, but not in order to file some diagram in
a dusty corporate repository.

• We embrace documentation, but not hundreds of pages of
never-maintained and rarely-used tomes.

• We plan, but recognize the limits of planning in a turbulent
environment."

• Agile Methods are about clear positions in difficult trade-offs
• not about letting all discipline and process go and just hack.

http://agilemanifesto.org/history.html

14 / 35

The manifesto folks on culture

Source: http://agilemanifesto.org/history.html

• "we all felt privileged to work with a group of people who held
a set of compatible values,
• a set of values based on trust and respect for each other and

promoting organizational models based on people, collaboration,
and building the types of organizational communities
in which we would want to work."

• "In order to succeed in the new economy, to move
aggressively into the era of […] the web,
• companies have to rid themselves of their Dilbert manifestations

of make-work and arcane policies."
• Does anybody here not know Dilbert?

Lutz Prechelt, prechelt@inf.fu-berlin.de

http://agilemanifesto.org/history.html

15 / 35

Dilbert example

Lutz Prechelt, prechelt@inf.fu-berlin.de

https://dilbert.com/strip/1998-11-10

https://dilbert.com/strip/1998-11-10

16 / 35

The manifesto folks on culture (2)

• "[…] in the final analysis, the meteoric rise of interest in—and
sometimes tremendous criticism of—Agile Methodologies is
about the mushy stuff of values and culture."

Lutz Prechelt, prechelt@inf.fu-berlin.de

ht
tp

s:
//

di
lb

er
t.

co
m

/s
tr

ip
/2

01
7-

04
-2

5
ht

tp
s:

//
di

lb
er

t.
co

m
/s

tr
ip

/2
01

7-
04

-2
6

https://dilbert.com/strip/2017-04-25
https://dilbert.com/strip/2017-04-26

17 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Assumptions of Agile Methods

1. You cannot foresee the development of a whole project
2. Developers are motivated, technically competent,

and capable of good judgement
• if they do not have to work in Dilbert-like work environments

3. A project can adjust to unforeseen changes
• In particular, changes to the design are not ruinously expensive

4. Adjustment is easier if everything that need not be in writing,
is not done in writing
• Code must be in writing
• Some documentation may, too (e.g. for certification)
• Most other information does not.

• And where it does, short-lived throw-away writing is often sufficient.

• Agile methods are useful if these assumptions are met,
• they are problematic if even one of them is not.
• The most risky assumption is that of cheap design changes

18 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

When are the assumptions true?

1. "You cannot foresee the development of a whole project"
• Almost always true

2. "Developers are motivated, technically competent,
and capable of good judgement"
• Depends critically on available staff and organizational culture

3. "Changes to the design are not ruinously expensive"
• True only if modern technology (such as reusable components,

middleware, modules, object-orientation, development tools
etc.) is used in a highly competent fashion

• False if an "architecture breaker" occurs
• almost sure if you do not have a good architecture to begin with

4. "Adjustment is easier if everything that need not be in
writing, is not done in writing"
• Possible only if there is a tightly coupled, fairly stable, and

preferably co-located team
• Not possible in a process-heavy organization:

19 / 35

A very heavy-weight process

Lutz Prechelt, prechelt@inf.fu-berlin.de

20 / 35

More from Highsmith/Cockburn

"Agile Software Development: The Business of Innovation"
• Agile in a nutshell: "Agile methods stress two concepts:

• the unforgiving honesty of working code and
• the effectiveness of people working together with goodwill."

• Generative rules: "Most methodologies provide inclusive rules
—all the things you could possibly do under all situations.
• Agile methods offer generative rules—a minimum set of things

you must do under all situations to generate
appropriate practices for special situations."

• Feedback: "Because they are most applicable to turbulent,
high-change environments, agile approaches recommend
a variety of practices for constant feedback
• on technical decisions, customer requirements, and

management constraints."

Lutz Prechelt, prechelt@inf.fu-berlin.de

http://doi.ieeecomputersociety.org/10.1109/2.947100

21 / 35

More from Highsmith/Cockburn (2)

• Customer collaboration: "Using agile development methods
requires close customer partnerships. […]
• Poor customers result in poor systems."

• Humanist worldview: "What is new about agile methods is not
the practices they use,
• but their recognition of people as the primary drivers of

project success […]"

Lutz Prechelt, prechelt@inf.fu-berlin.de

22 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

SW processes and value generation

• Optimizing value-generation is not easy
• we must find the "right" requirements

• Therefore, conventional (plan-driven) SW processes run a
substantial risk of producing
• a high overhead (increased cost),

• because they build many functions that are not important
• perhaps even low value

• because they miss or distort some important requirements

But it is even worse:
• Requirements (and hence the value proposition) change

much faster and wider today than they did in the past
• Plan-driven processes cannot cope well with

serious changes of a project's value proposition
• due to their high initial investments in requirements and design

23 / 35

The classical view of Agile

• The most obvious difference is
• much less planning (and in that context
• fewer written specifications)

• Obviously, there can be too much planning or too little
• How to think about what is a proper amount?

Lutz Prechelt, prechelt@inf.fu-berlin.de

24 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

The planning spectrum

• Barry Boehm: "Get ready for agile methods, with care",
IEEE Computer, January 2002

• The defining difference between agile and
conventional methods is the amount of planning
• There can be too much planning ("inch-pebble")

as well as too little ("just hacking")

http://doi.ieeecomputersociety.org/10.1109/2.976920

25 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

The planning spectrum (2)

• Risk exposure is the product of
• P(L) (probability of loss) and
• S(L) (size of loss)

• High exposure can come from too much planning or
from too little

execution-related
exposure

planning-related
exposure

26 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

The planning spectrum (3)

• The most relevant factors are
dependability requirements and project size
• More planning is useful if they are high
• Less if they are low

27 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

The "home ground" of agile vs.
plan-driven methods

Agile methods:
• Developers:

• agile-minded, knowledgeable,
co-located, collaborative

• Requirements:
• Largely emergent,

rapid change
• Architecture:

• Designed for current req'mts

• Refactoring:
• Inexpensive

• Size:
• Smaller teams and products

• Primary objective:
• Rapid value or

low requirements risk

Plan-driven methods:
• Developers:

• plan-oriented, adequate skills,
access to external knowledge

• Requirements:
• Knowable early, largely stable

• Architecture:
• Designed for all foreseeable

requirements
• Refactoring:

• Expensive
• Size:

• Larger teams and products
• Primary objective:

• High assurance of reliability

28 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Too much planning and specification

• Specifications may remain unread if they are too detailed

https://dilbert.com/strip/1999-08-09

https://dilbert.com/strip/1999-08-09

29 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

"Just enough" planning:
The XP Planning Game

• Extreme Programming (XP) is one of several concrete agile
development methods
• It consists of a number of specific practices (see next lecture)
• One of these is called "Planning Game" and describes the project

planning method

• XP project planning occurs on three granularity levels
• Release ~2-4 project months
• Iteration ~1-2 project weeks
• Task ~0.5-3 person days

• Only the current Release, Iteration, and set of Tasks are
planned in some detail
• all future Releases and Iterations (even within the current

release) are at most sketched, perhaps not even that

30 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

XP Planning Game:
1. Release planning

• 1. Customer enumerates (rough)
requirements
• Each is written on a Story Card
• Cards are collected

• 2. Customer prioritizes stories into
E (essential), V (valuable), and
N (nice-to-have)

• 3. Developers query Customer to
obtain sufficient detail about
stories to understand their content and purpose
• "conversation"

• 4. Developers estimate development cost for each story
• and categorize their estimates into R (reliable), A (approximate),

and U (unknown)
• 5. Customer selects stories for next release, prefering E and V

• Remaining stories are to be realized in subsequent releases

Value
Risk!

31 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

XP Planning Game:
2. Iteration and task planning

• Before each iteration, the customer can select stories for it
• Priorities may have shifted
• Estimation may now be more precise
• Customer is even allowed to bring in new requirements

• but must drop (for this release) others of the same weight

• Customer defines acceptance tests for selected stories
• "confirmation"

• and clarifies remaining details about the stories
• "conversation"

• Developers turn the set of stories (requirements) into a set of
tasks (design and implementation work)
• A developer adopts a task and then

must personally estimate its size

32 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

XP Planning Game:
3. Plan tracking and replanning

• Tracking the release-level plan
• after each iteration, compare

expected and actual progress
 possibly modify release content

• Tracking the iteration-level plan
• developers report completed tasks daily
 possibly modify iteration content

• Estimation is always done in terms of
"ideal development time"
• i.e., programming only, without interruptions or additional tasks.
• After each iteration, a "load factor" is computed for each

developer, relating ideal time to elapsed time
• and is used during the next iteration planning

• Planning focus is always on stories
• because they represent customer value

33 / 35

Which processes used how often?
State of Agile survey [digitalai21]

• yearly survey, ~4000 respondents
• ~40% North Am., ~40% Europe
• ~50% team members, ~50% managers, consultants etc.

Lutz Prechelt, prechelt@inf.fu-berlin.de

results in 2021

https://stateofagile.com/

34 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Summary

• Agile approaches expect change and attempt to
accommodate it as much as possible

• They attempt to avoid process elements that
make change expensive
• and replace them by something that makes change cheaper

• Agile approaches are most suitable when
• team sizes are small,
• dependability requirements are modest, and
• requirements change is common

• Agile processes apply a very different planning style
• coarser

• postponing much detail-clarification to implementation time
• much shorter-term
• priority is on ensuring value, not finishing on time

35 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Thank you!

next: slides on balancing agile vs. plan-driven

36 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Using Risk for Balancing
Agile vs. Plan-Driven

• Barry Boehm, Richard Turner:
"Using Risk to Balance Agile and Plan-Driven Methods",
IEEE Computer, June 2003

Basic idea:
• Agile methods are susceptible to different risks

than plan-driven methods
• Analyzing risk types and strengths helps

deciding which method (or balance of methods)
to use

Approach:
• Classify risks into

• environmental risks (unavoidable)
• agility-oriented risks (reducible by planning)
• plan-driven risks (reducible by agility) R. Turner

B. Boehm

http://doi.ieeecomputersociety.org/10.1109/MC.2003.1204376

37 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Using Risk for Balancing…:
Examples

• Characteristics of 3 imaginary example projects/systems:

38 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Using Risk for Balancing…:
Examples risk assessment

39 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Using Risk for Balancing…:
Decision schema

• High risk uncertainty "buy" information

now tailor, execute, and monitor

40 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Using Risk for Balancing…:
Levels of development staff

A 5:1 ratio of
Level 1A to
Level 2 staff
can be OK for
agile methods,
but 1B get in
the way.

Plan-driven
can function
with many 1B.

-1 are always
a problem.

41 / 35Lutz Prechelt, prechelt@inf.fu-berlin.de

Using Risk for Balancing…:
Risks and risk levels

	Agile Manifesto
	Learning objectives
	On the origins of Agile:�The Waterfall myth
	On the origins of Agile:�The Waterfall myth (2)
	On the origins of Agile:�Waterfall practice
	On the origins of Agile:�Effect of the misunderstanding
	Prelude: Agile is about priorities
	The Agile Manifesto
	Agile Manifesto: Principles
	Agile Manifesto: Principles (2)
	Agile Manifesto: Principles (2)
	Use your common sense!
	The still-common misunderstanding
	The manifesto folks on culture
	Dilbert example
	The manifesto folks on culture (2)
	Assumptions of Agile Methods
	When are the assumptions true?
	A very heavy-weight process
	More from Highsmith/Cockburn
	More from Highsmith/Cockburn (2)
	SW processes and value generation
	The classical view of Agile
	The planning spectrum
	The planning spectrum (2)
	The planning spectrum (3)
	The "home ground" of agile vs. �plan-driven methods
	Too much planning and specification
	"Just enough" planning:�The XP Planning Game
	XP Planning Game:�1. Release planning
	XP Planning Game:�2. Iteration and task planning
	XP Planning Game:�3. Plan tracking and replanning
	Which processes used how often?�State of Agile survey [digitalai21]
	Summary
	Thank you!
	Using Risk for Balancing�Agile vs. Plan-Driven
	Using Risk for Balancing…:�Examples
	Using Risk for Balancing…:�Examples risk assessment
	Using Risk for Balancing…:�Decision schema
	Using Risk for Balancing…:�Levels of development staff
	Using Risk for Balancing…:�Risks and risk levels

